1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "sysemu/cpu-timers.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 32 /* CSR function table public API */ 33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 34 { 35 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 36 } 37 38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 41 } 42 43 static RISCVException fs(CPURISCVState *env, int csrno) 44 { 45 #if !defined(CONFIG_USER_ONLY) 46 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 47 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 48 return RISCV_EXCP_ILLEGAL_INST; 49 } 50 #endif 51 return RISCV_EXCP_NONE; 52 } 53 54 static RISCVException vs(CPURISCVState *env, int csrno) 55 { 56 RISCVCPU *cpu = env_archcpu(env); 57 58 if (env->misa_ext & RVV || 59 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 60 #if !defined(CONFIG_USER_ONLY) 61 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 62 return RISCV_EXCP_ILLEGAL_INST; 63 } 64 #endif 65 return RISCV_EXCP_NONE; 66 } 67 return RISCV_EXCP_ILLEGAL_INST; 68 } 69 70 static RISCVException ctr(CPURISCVState *env, int csrno) 71 { 72 #if !defined(CONFIG_USER_ONLY) 73 RISCVCPU *cpu = env_archcpu(env); 74 int ctr_index; 75 target_ulong ctr_mask; 76 int base_csrno = CSR_CYCLE; 77 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 78 79 if (rv32 && csrno >= CSR_CYCLEH) { 80 /* Offset for RV32 hpmcounternh counters */ 81 base_csrno += 0x80; 82 } 83 ctr_index = csrno - base_csrno; 84 ctr_mask = BIT(ctr_index); 85 86 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 87 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 88 goto skip_ext_pmu_check; 89 } 90 91 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 92 /* No counter is enabled in PMU or the counter is out of range */ 93 return RISCV_EXCP_ILLEGAL_INST; 94 } 95 96 skip_ext_pmu_check: 97 98 if (env->debugger) { 99 return RISCV_EXCP_NONE; 100 } 101 102 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 103 return RISCV_EXCP_ILLEGAL_INST; 104 } 105 106 if (riscv_cpu_virt_enabled(env)) { 107 if (!get_field(env->hcounteren, ctr_mask) || 108 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 109 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 110 } 111 } 112 113 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 114 !get_field(env->scounteren, ctr_mask)) { 115 return RISCV_EXCP_ILLEGAL_INST; 116 } 117 118 #endif 119 return RISCV_EXCP_NONE; 120 } 121 122 static RISCVException ctr32(CPURISCVState *env, int csrno) 123 { 124 if (riscv_cpu_mxl(env) != MXL_RV32) { 125 return RISCV_EXCP_ILLEGAL_INST; 126 } 127 128 return ctr(env, csrno); 129 } 130 131 #if !defined(CONFIG_USER_ONLY) 132 static RISCVException mctr(CPURISCVState *env, int csrno) 133 { 134 RISCVCPU *cpu = env_archcpu(env); 135 int ctr_index; 136 int base_csrno = CSR_MHPMCOUNTER3; 137 138 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 139 /* Offset for RV32 mhpmcounternh counters */ 140 base_csrno += 0x80; 141 } 142 ctr_index = csrno - base_csrno; 143 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 144 /* The PMU is not enabled or counter is out of range*/ 145 return RISCV_EXCP_ILLEGAL_INST; 146 } 147 148 return RISCV_EXCP_NONE; 149 } 150 151 static RISCVException mctr32(CPURISCVState *env, int csrno) 152 { 153 if (riscv_cpu_mxl(env) != MXL_RV32) { 154 return RISCV_EXCP_ILLEGAL_INST; 155 } 156 157 return mctr(env, csrno); 158 } 159 160 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 161 { 162 RISCVCPU *cpu = env_archcpu(env); 163 164 if (!cpu->cfg.ext_sscofpmf) { 165 return RISCV_EXCP_ILLEGAL_INST; 166 } 167 168 return RISCV_EXCP_NONE; 169 } 170 171 static RISCVException any(CPURISCVState *env, int csrno) 172 { 173 return RISCV_EXCP_NONE; 174 } 175 176 static RISCVException any32(CPURISCVState *env, int csrno) 177 { 178 if (riscv_cpu_mxl(env) != MXL_RV32) { 179 return RISCV_EXCP_ILLEGAL_INST; 180 } 181 182 return any(env, csrno); 183 184 } 185 186 static int aia_any(CPURISCVState *env, int csrno) 187 { 188 RISCVCPU *cpu = env_archcpu(env); 189 190 if (!cpu->cfg.ext_smaia) { 191 return RISCV_EXCP_ILLEGAL_INST; 192 } 193 194 return any(env, csrno); 195 } 196 197 static int aia_any32(CPURISCVState *env, int csrno) 198 { 199 RISCVCPU *cpu = env_archcpu(env); 200 201 if (!cpu->cfg.ext_smaia) { 202 return RISCV_EXCP_ILLEGAL_INST; 203 } 204 205 return any32(env, csrno); 206 } 207 208 static RISCVException smode(CPURISCVState *env, int csrno) 209 { 210 if (riscv_has_ext(env, RVS)) { 211 return RISCV_EXCP_NONE; 212 } 213 214 return RISCV_EXCP_ILLEGAL_INST; 215 } 216 217 static int smode32(CPURISCVState *env, int csrno) 218 { 219 if (riscv_cpu_mxl(env) != MXL_RV32) { 220 return RISCV_EXCP_ILLEGAL_INST; 221 } 222 223 return smode(env, csrno); 224 } 225 226 static int aia_smode(CPURISCVState *env, int csrno) 227 { 228 RISCVCPU *cpu = env_archcpu(env); 229 230 if (!cpu->cfg.ext_ssaia) { 231 return RISCV_EXCP_ILLEGAL_INST; 232 } 233 234 return smode(env, csrno); 235 } 236 237 static int aia_smode32(CPURISCVState *env, int csrno) 238 { 239 RISCVCPU *cpu = env_archcpu(env); 240 241 if (!cpu->cfg.ext_ssaia) { 242 return RISCV_EXCP_ILLEGAL_INST; 243 } 244 245 return smode32(env, csrno); 246 } 247 248 static RISCVException hmode(CPURISCVState *env, int csrno) 249 { 250 if (riscv_has_ext(env, RVH)) { 251 return RISCV_EXCP_NONE; 252 } 253 254 return RISCV_EXCP_ILLEGAL_INST; 255 } 256 257 static RISCVException hmode32(CPURISCVState *env, int csrno) 258 { 259 if (riscv_cpu_mxl(env) != MXL_RV32) { 260 return RISCV_EXCP_ILLEGAL_INST; 261 } 262 263 return hmode(env, csrno); 264 265 } 266 267 static RISCVException umode(CPURISCVState *env, int csrno) 268 { 269 if (riscv_has_ext(env, RVU)) { 270 return RISCV_EXCP_NONE; 271 } 272 273 return RISCV_EXCP_ILLEGAL_INST; 274 } 275 276 static RISCVException umode32(CPURISCVState *env, int csrno) 277 { 278 if (riscv_cpu_mxl(env) != MXL_RV32) { 279 return RISCV_EXCP_ILLEGAL_INST; 280 } 281 282 return umode(env, csrno); 283 } 284 285 static RISCVException mstateen(CPURISCVState *env, int csrno) 286 { 287 RISCVCPU *cpu = env_archcpu(env); 288 289 if (!cpu->cfg.ext_smstateen) { 290 return RISCV_EXCP_ILLEGAL_INST; 291 } 292 293 return any(env, csrno); 294 } 295 296 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 297 { 298 RISCVCPU *cpu = env_archcpu(env); 299 300 if (!cpu->cfg.ext_smstateen) { 301 return RISCV_EXCP_ILLEGAL_INST; 302 } 303 304 RISCVException ret = hmode(env, csrno); 305 if (ret != RISCV_EXCP_NONE) { 306 return ret; 307 } 308 309 if (env->debugger) { 310 return RISCV_EXCP_NONE; 311 } 312 313 if (env->priv < PRV_M) { 314 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 315 return RISCV_EXCP_ILLEGAL_INST; 316 } 317 } 318 319 return RISCV_EXCP_NONE; 320 } 321 322 static RISCVException hstateen(CPURISCVState *env, int csrno) 323 { 324 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 325 } 326 327 static RISCVException hstateenh(CPURISCVState *env, int csrno) 328 { 329 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 330 } 331 332 static RISCVException sstateen(CPURISCVState *env, int csrno) 333 { 334 bool virt = riscv_cpu_virt_enabled(env); 335 int index = csrno - CSR_SSTATEEN0; 336 RISCVCPU *cpu = env_archcpu(env); 337 338 if (!cpu->cfg.ext_smstateen) { 339 return RISCV_EXCP_ILLEGAL_INST; 340 } 341 342 RISCVException ret = smode(env, csrno); 343 if (ret != RISCV_EXCP_NONE) { 344 return ret; 345 } 346 347 if (env->debugger) { 348 return RISCV_EXCP_NONE; 349 } 350 351 if (env->priv < PRV_M) { 352 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 353 return RISCV_EXCP_ILLEGAL_INST; 354 } 355 356 if (virt) { 357 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 358 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 359 } 360 } 361 } 362 363 return RISCV_EXCP_NONE; 364 } 365 366 static RISCVException sstc(CPURISCVState *env, int csrno) 367 { 368 RISCVCPU *cpu = env_archcpu(env); 369 bool hmode_check = false; 370 371 if (!cpu->cfg.ext_sstc || !env->rdtime_fn) { 372 return RISCV_EXCP_ILLEGAL_INST; 373 } 374 375 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 376 hmode_check = true; 377 } 378 379 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 380 if (ret != RISCV_EXCP_NONE) { 381 return ret; 382 } 383 384 if (env->debugger) { 385 return RISCV_EXCP_NONE; 386 } 387 388 if (env->priv == PRV_M) { 389 return RISCV_EXCP_NONE; 390 } 391 392 /* 393 * No need of separate function for rv32 as menvcfg stores both menvcfg 394 * menvcfgh for RV32. 395 */ 396 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 397 get_field(env->menvcfg, MENVCFG_STCE))) { 398 return RISCV_EXCP_ILLEGAL_INST; 399 } 400 401 if (riscv_cpu_virt_enabled(env)) { 402 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 403 get_field(env->henvcfg, HENVCFG_STCE))) { 404 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 405 } 406 } 407 408 return RISCV_EXCP_NONE; 409 } 410 411 static RISCVException sstc_32(CPURISCVState *env, int csrno) 412 { 413 if (riscv_cpu_mxl(env) != MXL_RV32) { 414 return RISCV_EXCP_ILLEGAL_INST; 415 } 416 417 return sstc(env, csrno); 418 } 419 420 /* Checks if PointerMasking registers could be accessed */ 421 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 422 { 423 /* Check if j-ext is present */ 424 if (riscv_has_ext(env, RVJ)) { 425 return RISCV_EXCP_NONE; 426 } 427 return RISCV_EXCP_ILLEGAL_INST; 428 } 429 430 static int aia_hmode(CPURISCVState *env, int csrno) 431 { 432 RISCVCPU *cpu = env_archcpu(env); 433 434 if (!cpu->cfg.ext_ssaia) { 435 return RISCV_EXCP_ILLEGAL_INST; 436 } 437 438 return hmode(env, csrno); 439 } 440 441 static int aia_hmode32(CPURISCVState *env, int csrno) 442 { 443 RISCVCPU *cpu = env_archcpu(env); 444 445 if (!cpu->cfg.ext_ssaia) { 446 return RISCV_EXCP_ILLEGAL_INST; 447 } 448 449 return hmode32(env, csrno); 450 } 451 452 static RISCVException pmp(CPURISCVState *env, int csrno) 453 { 454 if (riscv_cpu_cfg(env)->pmp) { 455 if (csrno <= CSR_PMPCFG3) { 456 uint32_t reg_index = csrno - CSR_PMPCFG0; 457 458 /* TODO: RV128 restriction check */ 459 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 460 return RISCV_EXCP_ILLEGAL_INST; 461 } 462 } 463 464 return RISCV_EXCP_NONE; 465 } 466 467 return RISCV_EXCP_ILLEGAL_INST; 468 } 469 470 static RISCVException epmp(CPURISCVState *env, int csrno) 471 { 472 if (riscv_cpu_cfg(env)->epmp) { 473 return RISCV_EXCP_NONE; 474 } 475 476 return RISCV_EXCP_ILLEGAL_INST; 477 } 478 479 static RISCVException debug(CPURISCVState *env, int csrno) 480 { 481 if (riscv_cpu_cfg(env)->debug) { 482 return RISCV_EXCP_NONE; 483 } 484 485 return RISCV_EXCP_ILLEGAL_INST; 486 } 487 #endif 488 489 static RISCVException seed(CPURISCVState *env, int csrno) 490 { 491 RISCVCPU *cpu = env_archcpu(env); 492 493 if (!cpu->cfg.ext_zkr) { 494 return RISCV_EXCP_ILLEGAL_INST; 495 } 496 497 #if !defined(CONFIG_USER_ONLY) 498 if (env->debugger) { 499 return RISCV_EXCP_NONE; 500 } 501 502 /* 503 * With a CSR read-write instruction: 504 * 1) The seed CSR is always available in machine mode as normal. 505 * 2) Attempted access to seed from virtual modes VS and VU always raises 506 * an exception(virtual instruction exception only if mseccfg.sseed=1). 507 * 3) Without the corresponding access control bit set to 1, any attempted 508 * access to seed from U, S or HS modes will raise an illegal instruction 509 * exception. 510 */ 511 if (env->priv == PRV_M) { 512 return RISCV_EXCP_NONE; 513 } else if (riscv_cpu_virt_enabled(env)) { 514 if (env->mseccfg & MSECCFG_SSEED) { 515 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 516 } else { 517 return RISCV_EXCP_ILLEGAL_INST; 518 } 519 } else { 520 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 521 return RISCV_EXCP_NONE; 522 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 523 return RISCV_EXCP_NONE; 524 } else { 525 return RISCV_EXCP_ILLEGAL_INST; 526 } 527 } 528 #else 529 return RISCV_EXCP_NONE; 530 #endif 531 } 532 533 /* User Floating-Point CSRs */ 534 static RISCVException read_fflags(CPURISCVState *env, int csrno, 535 target_ulong *val) 536 { 537 *val = riscv_cpu_get_fflags(env); 538 return RISCV_EXCP_NONE; 539 } 540 541 static RISCVException write_fflags(CPURISCVState *env, int csrno, 542 target_ulong val) 543 { 544 #if !defined(CONFIG_USER_ONLY) 545 if (riscv_has_ext(env, RVF)) { 546 env->mstatus |= MSTATUS_FS; 547 } 548 #endif 549 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 550 return RISCV_EXCP_NONE; 551 } 552 553 static RISCVException read_frm(CPURISCVState *env, int csrno, 554 target_ulong *val) 555 { 556 *val = env->frm; 557 return RISCV_EXCP_NONE; 558 } 559 560 static RISCVException write_frm(CPURISCVState *env, int csrno, 561 target_ulong val) 562 { 563 #if !defined(CONFIG_USER_ONLY) 564 if (riscv_has_ext(env, RVF)) { 565 env->mstatus |= MSTATUS_FS; 566 } 567 #endif 568 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 569 return RISCV_EXCP_NONE; 570 } 571 572 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 573 target_ulong *val) 574 { 575 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 576 | (env->frm << FSR_RD_SHIFT); 577 return RISCV_EXCP_NONE; 578 } 579 580 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 581 target_ulong val) 582 { 583 #if !defined(CONFIG_USER_ONLY) 584 if (riscv_has_ext(env, RVF)) { 585 env->mstatus |= MSTATUS_FS; 586 } 587 #endif 588 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 589 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 590 return RISCV_EXCP_NONE; 591 } 592 593 static RISCVException read_vtype(CPURISCVState *env, int csrno, 594 target_ulong *val) 595 { 596 uint64_t vill; 597 switch (env->xl) { 598 case MXL_RV32: 599 vill = (uint32_t)env->vill << 31; 600 break; 601 case MXL_RV64: 602 vill = (uint64_t)env->vill << 63; 603 break; 604 default: 605 g_assert_not_reached(); 606 } 607 *val = (target_ulong)vill | env->vtype; 608 return RISCV_EXCP_NONE; 609 } 610 611 static RISCVException read_vl(CPURISCVState *env, int csrno, 612 target_ulong *val) 613 { 614 *val = env->vl; 615 return RISCV_EXCP_NONE; 616 } 617 618 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 619 { 620 *val = env_archcpu(env)->cfg.vlen >> 3; 621 return RISCV_EXCP_NONE; 622 } 623 624 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 625 target_ulong *val) 626 { 627 *val = env->vxrm; 628 return RISCV_EXCP_NONE; 629 } 630 631 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 632 target_ulong val) 633 { 634 #if !defined(CONFIG_USER_ONLY) 635 env->mstatus |= MSTATUS_VS; 636 #endif 637 env->vxrm = val; 638 return RISCV_EXCP_NONE; 639 } 640 641 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 642 target_ulong *val) 643 { 644 *val = env->vxsat; 645 return RISCV_EXCP_NONE; 646 } 647 648 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 649 target_ulong val) 650 { 651 #if !defined(CONFIG_USER_ONLY) 652 env->mstatus |= MSTATUS_VS; 653 #endif 654 env->vxsat = val; 655 return RISCV_EXCP_NONE; 656 } 657 658 static RISCVException read_vstart(CPURISCVState *env, int csrno, 659 target_ulong *val) 660 { 661 *val = env->vstart; 662 return RISCV_EXCP_NONE; 663 } 664 665 static RISCVException write_vstart(CPURISCVState *env, int csrno, 666 target_ulong val) 667 { 668 #if !defined(CONFIG_USER_ONLY) 669 env->mstatus |= MSTATUS_VS; 670 #endif 671 /* 672 * The vstart CSR is defined to have only enough writable bits 673 * to hold the largest element index, i.e. lg2(VLEN) bits. 674 */ 675 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 676 return RISCV_EXCP_NONE; 677 } 678 679 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 680 { 681 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 682 return RISCV_EXCP_NONE; 683 } 684 685 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 686 { 687 #if !defined(CONFIG_USER_ONLY) 688 env->mstatus |= MSTATUS_VS; 689 #endif 690 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 691 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 692 return RISCV_EXCP_NONE; 693 } 694 695 /* User Timers and Counters */ 696 static target_ulong get_ticks(bool shift) 697 { 698 int64_t val; 699 target_ulong result; 700 701 #if !defined(CONFIG_USER_ONLY) 702 if (icount_enabled()) { 703 val = icount_get(); 704 } else { 705 val = cpu_get_host_ticks(); 706 } 707 #else 708 val = cpu_get_host_ticks(); 709 #endif 710 711 if (shift) { 712 result = val >> 32; 713 } else { 714 result = val; 715 } 716 717 return result; 718 } 719 720 #if defined(CONFIG_USER_ONLY) 721 static RISCVException read_time(CPURISCVState *env, int csrno, 722 target_ulong *val) 723 { 724 *val = cpu_get_host_ticks(); 725 return RISCV_EXCP_NONE; 726 } 727 728 static RISCVException read_timeh(CPURISCVState *env, int csrno, 729 target_ulong *val) 730 { 731 *val = cpu_get_host_ticks() >> 32; 732 return RISCV_EXCP_NONE; 733 } 734 735 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 736 { 737 *val = get_ticks(false); 738 return RISCV_EXCP_NONE; 739 } 740 741 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 742 { 743 *val = get_ticks(true); 744 return RISCV_EXCP_NONE; 745 } 746 747 #else /* CONFIG_USER_ONLY */ 748 749 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 750 { 751 int evt_index = csrno - CSR_MCOUNTINHIBIT; 752 753 *val = env->mhpmevent_val[evt_index]; 754 755 return RISCV_EXCP_NONE; 756 } 757 758 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 759 { 760 int evt_index = csrno - CSR_MCOUNTINHIBIT; 761 uint64_t mhpmevt_val = val; 762 763 env->mhpmevent_val[evt_index] = val; 764 765 if (riscv_cpu_mxl(env) == MXL_RV32) { 766 mhpmevt_val = mhpmevt_val | 767 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 768 } 769 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 770 771 return RISCV_EXCP_NONE; 772 } 773 774 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 775 { 776 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 777 778 *val = env->mhpmeventh_val[evt_index]; 779 780 return RISCV_EXCP_NONE; 781 } 782 783 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 784 { 785 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 786 uint64_t mhpmevth_val = val; 787 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 788 789 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 790 env->mhpmeventh_val[evt_index] = val; 791 792 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 793 794 return RISCV_EXCP_NONE; 795 } 796 797 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 798 { 799 int ctr_idx = csrno - CSR_MCYCLE; 800 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 801 uint64_t mhpmctr_val = val; 802 803 counter->mhpmcounter_val = val; 804 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 805 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 806 counter->mhpmcounter_prev = get_ticks(false); 807 if (ctr_idx > 2) { 808 if (riscv_cpu_mxl(env) == MXL_RV32) { 809 mhpmctr_val = mhpmctr_val | 810 ((uint64_t)counter->mhpmcounterh_val << 32); 811 } 812 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 813 } 814 } else { 815 /* Other counters can keep incrementing from the given value */ 816 counter->mhpmcounter_prev = val; 817 } 818 819 return RISCV_EXCP_NONE; 820 } 821 822 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 823 { 824 int ctr_idx = csrno - CSR_MCYCLEH; 825 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 826 uint64_t mhpmctr_val = counter->mhpmcounter_val; 827 uint64_t mhpmctrh_val = val; 828 829 counter->mhpmcounterh_val = val; 830 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 831 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 832 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 833 counter->mhpmcounterh_prev = get_ticks(true); 834 if (ctr_idx > 2) { 835 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 836 } 837 } else { 838 counter->mhpmcounterh_prev = val; 839 } 840 841 return RISCV_EXCP_NONE; 842 } 843 844 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 845 bool upper_half, uint32_t ctr_idx) 846 { 847 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 848 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 849 counter.mhpmcounter_prev; 850 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 851 counter.mhpmcounter_val; 852 853 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 854 /** 855 * Counter should not increment if inhibit bit is set. We can't really 856 * stop the icount counting. Just return the counter value written by 857 * the supervisor to indicate that counter was not incremented. 858 */ 859 if (!counter.started) { 860 *val = ctr_val; 861 return RISCV_EXCP_NONE; 862 } else { 863 /* Mark that the counter has been stopped */ 864 counter.started = false; 865 } 866 } 867 868 /** 869 * The kernel computes the perf delta by subtracting the current value from 870 * the value it initialized previously (ctr_val). 871 */ 872 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 873 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 874 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 875 } else { 876 *val = ctr_val; 877 } 878 879 return RISCV_EXCP_NONE; 880 } 881 882 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 883 { 884 uint16_t ctr_index; 885 886 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 887 ctr_index = csrno - CSR_MCYCLE; 888 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 889 ctr_index = csrno - CSR_CYCLE; 890 } else { 891 return RISCV_EXCP_ILLEGAL_INST; 892 } 893 894 return riscv_pmu_read_ctr(env, val, false, ctr_index); 895 } 896 897 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 898 { 899 uint16_t ctr_index; 900 901 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 902 ctr_index = csrno - CSR_MCYCLEH; 903 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 904 ctr_index = csrno - CSR_CYCLEH; 905 } else { 906 return RISCV_EXCP_ILLEGAL_INST; 907 } 908 909 return riscv_pmu_read_ctr(env, val, true, ctr_index); 910 } 911 912 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 913 { 914 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 915 int i; 916 *val = 0; 917 target_ulong *mhpm_evt_val; 918 uint64_t of_bit_mask; 919 920 if (riscv_cpu_mxl(env) == MXL_RV32) { 921 mhpm_evt_val = env->mhpmeventh_val; 922 of_bit_mask = MHPMEVENTH_BIT_OF; 923 } else { 924 mhpm_evt_val = env->mhpmevent_val; 925 of_bit_mask = MHPMEVENT_BIT_OF; 926 } 927 928 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 929 if ((get_field(env->mcounteren, BIT(i))) && 930 (mhpm_evt_val[i] & of_bit_mask)) { 931 *val |= BIT(i); 932 } 933 } 934 935 return RISCV_EXCP_NONE; 936 } 937 938 static RISCVException read_time(CPURISCVState *env, int csrno, 939 target_ulong *val) 940 { 941 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 942 943 if (!env->rdtime_fn) { 944 return RISCV_EXCP_ILLEGAL_INST; 945 } 946 947 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 948 return RISCV_EXCP_NONE; 949 } 950 951 static RISCVException read_timeh(CPURISCVState *env, int csrno, 952 target_ulong *val) 953 { 954 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 955 956 if (!env->rdtime_fn) { 957 return RISCV_EXCP_ILLEGAL_INST; 958 } 959 960 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 961 return RISCV_EXCP_NONE; 962 } 963 964 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 965 target_ulong *val) 966 { 967 *val = env->vstimecmp; 968 969 return RISCV_EXCP_NONE; 970 } 971 972 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 973 target_ulong *val) 974 { 975 *val = env->vstimecmp >> 32; 976 977 return RISCV_EXCP_NONE; 978 } 979 980 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 981 target_ulong val) 982 { 983 RISCVCPU *cpu = env_archcpu(env); 984 985 if (riscv_cpu_mxl(env) == MXL_RV32) { 986 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 987 } else { 988 env->vstimecmp = val; 989 } 990 991 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 992 env->htimedelta, MIP_VSTIP); 993 994 return RISCV_EXCP_NONE; 995 } 996 997 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 998 target_ulong val) 999 { 1000 RISCVCPU *cpu = env_archcpu(env); 1001 1002 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1003 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1004 env->htimedelta, MIP_VSTIP); 1005 1006 return RISCV_EXCP_NONE; 1007 } 1008 1009 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1010 target_ulong *val) 1011 { 1012 if (riscv_cpu_virt_enabled(env)) { 1013 *val = env->vstimecmp; 1014 } else { 1015 *val = env->stimecmp; 1016 } 1017 1018 return RISCV_EXCP_NONE; 1019 } 1020 1021 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1022 target_ulong *val) 1023 { 1024 if (riscv_cpu_virt_enabled(env)) { 1025 *val = env->vstimecmp >> 32; 1026 } else { 1027 *val = env->stimecmp >> 32; 1028 } 1029 1030 return RISCV_EXCP_NONE; 1031 } 1032 1033 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1034 target_ulong val) 1035 { 1036 RISCVCPU *cpu = env_archcpu(env); 1037 1038 if (riscv_cpu_virt_enabled(env)) { 1039 if (env->hvictl & HVICTL_VTI) { 1040 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1041 } 1042 return write_vstimecmp(env, csrno, val); 1043 } 1044 1045 if (riscv_cpu_mxl(env) == MXL_RV32) { 1046 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1047 } else { 1048 env->stimecmp = val; 1049 } 1050 1051 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1052 1053 return RISCV_EXCP_NONE; 1054 } 1055 1056 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1057 target_ulong val) 1058 { 1059 RISCVCPU *cpu = env_archcpu(env); 1060 1061 if (riscv_cpu_virt_enabled(env)) { 1062 if (env->hvictl & HVICTL_VTI) { 1063 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1064 } 1065 return write_vstimecmph(env, csrno, val); 1066 } 1067 1068 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1069 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1070 1071 return RISCV_EXCP_NONE; 1072 } 1073 1074 /* Machine constants */ 1075 1076 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1077 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1078 MIP_LCOFIP)) 1079 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1080 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1081 1082 #define VSTOPI_NUM_SRCS 5 1083 1084 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1085 VS_MODE_INTERRUPTS; 1086 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1087 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1088 HS_MODE_INTERRUPTS; 1089 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1090 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1091 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1092 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1093 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1094 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1095 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1096 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1097 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1098 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1099 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1100 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1101 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1102 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1103 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1104 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1105 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1106 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1107 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1108 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1109 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1110 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1111 (1ULL << (RISCV_EXCP_M_ECALL)) | 1112 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1113 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1114 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1115 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1116 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1117 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1118 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1119 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1120 SIP_LCOFIP; 1121 static const target_ulong hip_writable_mask = MIP_VSSIP; 1122 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1123 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1124 1125 static const char valid_vm_1_10_32[16] = { 1126 [VM_1_10_MBARE] = 1, 1127 [VM_1_10_SV32] = 1 1128 }; 1129 1130 static const char valid_vm_1_10_64[16] = { 1131 [VM_1_10_MBARE] = 1, 1132 [VM_1_10_SV39] = 1, 1133 [VM_1_10_SV48] = 1, 1134 [VM_1_10_SV57] = 1 1135 }; 1136 1137 /* Machine Information Registers */ 1138 static RISCVException read_zero(CPURISCVState *env, int csrno, 1139 target_ulong *val) 1140 { 1141 *val = 0; 1142 return RISCV_EXCP_NONE; 1143 } 1144 1145 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1146 target_ulong val) 1147 { 1148 return RISCV_EXCP_NONE; 1149 } 1150 1151 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1152 target_ulong *val) 1153 { 1154 RISCVCPU *cpu = env_archcpu(env); 1155 1156 *val = cpu->cfg.mvendorid; 1157 return RISCV_EXCP_NONE; 1158 } 1159 1160 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1161 target_ulong *val) 1162 { 1163 RISCVCPU *cpu = env_archcpu(env); 1164 1165 *val = cpu->cfg.marchid; 1166 return RISCV_EXCP_NONE; 1167 } 1168 1169 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1170 target_ulong *val) 1171 { 1172 RISCVCPU *cpu = env_archcpu(env); 1173 1174 *val = cpu->cfg.mimpid; 1175 return RISCV_EXCP_NONE; 1176 } 1177 1178 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1179 target_ulong *val) 1180 { 1181 *val = env->mhartid; 1182 return RISCV_EXCP_NONE; 1183 } 1184 1185 /* Machine Trap Setup */ 1186 1187 /* We do not store SD explicitly, only compute it on demand. */ 1188 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1189 { 1190 if ((status & MSTATUS_FS) == MSTATUS_FS || 1191 (status & MSTATUS_VS) == MSTATUS_VS || 1192 (status & MSTATUS_XS) == MSTATUS_XS) { 1193 switch (xl) { 1194 case MXL_RV32: 1195 return status | MSTATUS32_SD; 1196 case MXL_RV64: 1197 return status | MSTATUS64_SD; 1198 case MXL_RV128: 1199 return MSTATUSH128_SD; 1200 default: 1201 g_assert_not_reached(); 1202 } 1203 } 1204 return status; 1205 } 1206 1207 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1208 target_ulong *val) 1209 { 1210 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1211 return RISCV_EXCP_NONE; 1212 } 1213 1214 static int validate_vm(CPURISCVState *env, target_ulong vm) 1215 { 1216 if (riscv_cpu_mxl(env) == MXL_RV32) { 1217 return valid_vm_1_10_32[vm & 0xf]; 1218 } else { 1219 return valid_vm_1_10_64[vm & 0xf]; 1220 } 1221 } 1222 1223 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1224 target_ulong val) 1225 { 1226 uint64_t mstatus = env->mstatus; 1227 uint64_t mask = 0; 1228 RISCVMXL xl = riscv_cpu_mxl(env); 1229 1230 /* flush tlb on mstatus fields that affect VM */ 1231 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1232 MSTATUS_MPRV | MSTATUS_SUM)) { 1233 tlb_flush(env_cpu(env)); 1234 } 1235 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1236 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1237 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1238 MSTATUS_TW | MSTATUS_VS; 1239 1240 if (riscv_has_ext(env, RVF)) { 1241 mask |= MSTATUS_FS; 1242 } 1243 1244 if (xl != MXL_RV32 || env->debugger) { 1245 /* 1246 * RV32: MPV and GVA are not in mstatus. The current plan is to 1247 * add them to mstatush. For now, we just don't support it. 1248 */ 1249 mask |= MSTATUS_MPV | MSTATUS_GVA; 1250 if ((val & MSTATUS64_UXL) != 0) { 1251 mask |= MSTATUS64_UXL; 1252 } 1253 } 1254 1255 mstatus = (mstatus & ~mask) | (val & mask); 1256 1257 if (xl > MXL_RV32) { 1258 /* SXL field is for now read only */ 1259 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1260 } 1261 env->mstatus = mstatus; 1262 env->xl = cpu_recompute_xl(env); 1263 1264 return RISCV_EXCP_NONE; 1265 } 1266 1267 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1268 target_ulong *val) 1269 { 1270 *val = env->mstatus >> 32; 1271 return RISCV_EXCP_NONE; 1272 } 1273 1274 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1275 target_ulong val) 1276 { 1277 uint64_t valh = (uint64_t)val << 32; 1278 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1279 1280 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1281 tlb_flush(env_cpu(env)); 1282 } 1283 1284 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1285 1286 return RISCV_EXCP_NONE; 1287 } 1288 1289 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1290 Int128 *val) 1291 { 1292 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1293 return RISCV_EXCP_NONE; 1294 } 1295 1296 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1297 Int128 *val) 1298 { 1299 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1300 return RISCV_EXCP_NONE; 1301 } 1302 1303 static RISCVException read_misa(CPURISCVState *env, int csrno, 1304 target_ulong *val) 1305 { 1306 target_ulong misa; 1307 1308 switch (env->misa_mxl) { 1309 case MXL_RV32: 1310 misa = (target_ulong)MXL_RV32 << 30; 1311 break; 1312 #ifdef TARGET_RISCV64 1313 case MXL_RV64: 1314 misa = (target_ulong)MXL_RV64 << 62; 1315 break; 1316 #endif 1317 default: 1318 g_assert_not_reached(); 1319 } 1320 1321 *val = misa | env->misa_ext; 1322 return RISCV_EXCP_NONE; 1323 } 1324 1325 static RISCVException write_misa(CPURISCVState *env, int csrno, 1326 target_ulong val) 1327 { 1328 if (!riscv_cpu_cfg(env)->misa_w) { 1329 /* drop write to misa */ 1330 return RISCV_EXCP_NONE; 1331 } 1332 1333 /* 'I' or 'E' must be present */ 1334 if (!(val & (RVI | RVE))) { 1335 /* It is not, drop write to misa */ 1336 return RISCV_EXCP_NONE; 1337 } 1338 1339 /* 'E' excludes all other extensions */ 1340 if (val & RVE) { 1341 /* 1342 * when we support 'E' we can do "val = RVE;" however 1343 * for now we just drop writes if 'E' is present. 1344 */ 1345 return RISCV_EXCP_NONE; 1346 } 1347 1348 /* 1349 * misa.MXL writes are not supported by QEMU. 1350 * Drop writes to those bits. 1351 */ 1352 1353 /* Mask extensions that are not supported by this hart */ 1354 val &= env->misa_ext_mask; 1355 1356 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1357 if ((val & RVD) && !(val & RVF)) { 1358 val &= ~RVD; 1359 } 1360 1361 /* 1362 * Suppress 'C' if next instruction is not aligned 1363 * TODO: this should check next_pc 1364 */ 1365 if ((val & RVC) && (GETPC() & ~3) != 0) { 1366 val &= ~RVC; 1367 } 1368 1369 /* If nothing changed, do nothing. */ 1370 if (val == env->misa_ext) { 1371 return RISCV_EXCP_NONE; 1372 } 1373 1374 if (!(val & RVF)) { 1375 env->mstatus &= ~MSTATUS_FS; 1376 } 1377 1378 /* flush translation cache */ 1379 tb_flush(env_cpu(env)); 1380 env->misa_ext = val; 1381 env->xl = riscv_cpu_mxl(env); 1382 return RISCV_EXCP_NONE; 1383 } 1384 1385 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1386 target_ulong *val) 1387 { 1388 *val = env->medeleg; 1389 return RISCV_EXCP_NONE; 1390 } 1391 1392 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1393 target_ulong val) 1394 { 1395 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1396 return RISCV_EXCP_NONE; 1397 } 1398 1399 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1400 uint64_t *ret_val, 1401 uint64_t new_val, uint64_t wr_mask) 1402 { 1403 uint64_t mask = wr_mask & delegable_ints; 1404 1405 if (ret_val) { 1406 *ret_val = env->mideleg; 1407 } 1408 1409 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1410 1411 if (riscv_has_ext(env, RVH)) { 1412 env->mideleg |= HS_MODE_INTERRUPTS; 1413 } 1414 1415 return RISCV_EXCP_NONE; 1416 } 1417 1418 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1419 target_ulong *ret_val, 1420 target_ulong new_val, target_ulong wr_mask) 1421 { 1422 uint64_t rval; 1423 RISCVException ret; 1424 1425 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1426 if (ret_val) { 1427 *ret_val = rval; 1428 } 1429 1430 return ret; 1431 } 1432 1433 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1434 target_ulong *ret_val, 1435 target_ulong new_val, 1436 target_ulong wr_mask) 1437 { 1438 uint64_t rval; 1439 RISCVException ret; 1440 1441 ret = rmw_mideleg64(env, csrno, &rval, 1442 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1443 if (ret_val) { 1444 *ret_val = rval >> 32; 1445 } 1446 1447 return ret; 1448 } 1449 1450 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1451 uint64_t *ret_val, 1452 uint64_t new_val, uint64_t wr_mask) 1453 { 1454 uint64_t mask = wr_mask & all_ints; 1455 1456 if (ret_val) { 1457 *ret_val = env->mie; 1458 } 1459 1460 env->mie = (env->mie & ~mask) | (new_val & mask); 1461 1462 if (!riscv_has_ext(env, RVH)) { 1463 env->mie &= ~((uint64_t)MIP_SGEIP); 1464 } 1465 1466 return RISCV_EXCP_NONE; 1467 } 1468 1469 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1470 target_ulong *ret_val, 1471 target_ulong new_val, target_ulong wr_mask) 1472 { 1473 uint64_t rval; 1474 RISCVException ret; 1475 1476 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1477 if (ret_val) { 1478 *ret_val = rval; 1479 } 1480 1481 return ret; 1482 } 1483 1484 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1485 target_ulong *ret_val, 1486 target_ulong new_val, target_ulong wr_mask) 1487 { 1488 uint64_t rval; 1489 RISCVException ret; 1490 1491 ret = rmw_mie64(env, csrno, &rval, 1492 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1493 if (ret_val) { 1494 *ret_val = rval >> 32; 1495 } 1496 1497 return ret; 1498 } 1499 1500 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1501 { 1502 int irq; 1503 uint8_t iprio; 1504 1505 irq = riscv_cpu_mirq_pending(env); 1506 if (irq <= 0 || irq > 63) { 1507 *val = 0; 1508 } else { 1509 iprio = env->miprio[irq]; 1510 if (!iprio) { 1511 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1512 iprio = IPRIO_MMAXIPRIO; 1513 } 1514 } 1515 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1516 *val |= iprio; 1517 } 1518 1519 return RISCV_EXCP_NONE; 1520 } 1521 1522 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1523 { 1524 if (!riscv_cpu_virt_enabled(env)) { 1525 return csrno; 1526 } 1527 1528 switch (csrno) { 1529 case CSR_SISELECT: 1530 return CSR_VSISELECT; 1531 case CSR_SIREG: 1532 return CSR_VSIREG; 1533 case CSR_STOPEI: 1534 return CSR_VSTOPEI; 1535 default: 1536 return csrno; 1537 }; 1538 } 1539 1540 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1541 target_ulong new_val, target_ulong wr_mask) 1542 { 1543 target_ulong *iselect; 1544 1545 /* Translate CSR number for VS-mode */ 1546 csrno = aia_xlate_vs_csrno(env, csrno); 1547 1548 /* Find the iselect CSR based on CSR number */ 1549 switch (csrno) { 1550 case CSR_MISELECT: 1551 iselect = &env->miselect; 1552 break; 1553 case CSR_SISELECT: 1554 iselect = &env->siselect; 1555 break; 1556 case CSR_VSISELECT: 1557 iselect = &env->vsiselect; 1558 break; 1559 default: 1560 return RISCV_EXCP_ILLEGAL_INST; 1561 }; 1562 1563 if (val) { 1564 *val = *iselect; 1565 } 1566 1567 wr_mask &= ISELECT_MASK; 1568 if (wr_mask) { 1569 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1570 } 1571 1572 return RISCV_EXCP_NONE; 1573 } 1574 1575 static int rmw_iprio(target_ulong xlen, 1576 target_ulong iselect, uint8_t *iprio, 1577 target_ulong *val, target_ulong new_val, 1578 target_ulong wr_mask, int ext_irq_no) 1579 { 1580 int i, firq, nirqs; 1581 target_ulong old_val; 1582 1583 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1584 return -EINVAL; 1585 } 1586 if (xlen != 32 && iselect & 0x1) { 1587 return -EINVAL; 1588 } 1589 1590 nirqs = 4 * (xlen / 32); 1591 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1592 1593 old_val = 0; 1594 for (i = 0; i < nirqs; i++) { 1595 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1596 } 1597 1598 if (val) { 1599 *val = old_val; 1600 } 1601 1602 if (wr_mask) { 1603 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1604 for (i = 0; i < nirqs; i++) { 1605 /* 1606 * M-level and S-level external IRQ priority always read-only 1607 * zero. This means default priority order is always preferred 1608 * for M-level and S-level external IRQs. 1609 */ 1610 if ((firq + i) == ext_irq_no) { 1611 continue; 1612 } 1613 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1614 } 1615 } 1616 1617 return 0; 1618 } 1619 1620 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1621 target_ulong new_val, target_ulong wr_mask) 1622 { 1623 bool virt; 1624 uint8_t *iprio; 1625 int ret = -EINVAL; 1626 target_ulong priv, isel, vgein; 1627 1628 /* Translate CSR number for VS-mode */ 1629 csrno = aia_xlate_vs_csrno(env, csrno); 1630 1631 /* Decode register details from CSR number */ 1632 virt = false; 1633 switch (csrno) { 1634 case CSR_MIREG: 1635 iprio = env->miprio; 1636 isel = env->miselect; 1637 priv = PRV_M; 1638 break; 1639 case CSR_SIREG: 1640 iprio = env->siprio; 1641 isel = env->siselect; 1642 priv = PRV_S; 1643 break; 1644 case CSR_VSIREG: 1645 iprio = env->hviprio; 1646 isel = env->vsiselect; 1647 priv = PRV_S; 1648 virt = true; 1649 break; 1650 default: 1651 goto done; 1652 }; 1653 1654 /* Find the selected guest interrupt file */ 1655 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1656 1657 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1658 /* Local interrupt priority registers not available for VS-mode */ 1659 if (!virt) { 1660 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1661 isel, iprio, val, new_val, wr_mask, 1662 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1663 } 1664 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1665 /* IMSIC registers only available when machine implements it. */ 1666 if (env->aia_ireg_rmw_fn[priv]) { 1667 /* Selected guest interrupt file should not be zero */ 1668 if (virt && (!vgein || env->geilen < vgein)) { 1669 goto done; 1670 } 1671 /* Call machine specific IMSIC register emulation */ 1672 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1673 AIA_MAKE_IREG(isel, priv, virt, vgein, 1674 riscv_cpu_mxl_bits(env)), 1675 val, new_val, wr_mask); 1676 } 1677 } 1678 1679 done: 1680 if (ret) { 1681 return (riscv_cpu_virt_enabled(env) && virt) ? 1682 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1683 } 1684 return RISCV_EXCP_NONE; 1685 } 1686 1687 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1688 target_ulong new_val, target_ulong wr_mask) 1689 { 1690 bool virt; 1691 int ret = -EINVAL; 1692 target_ulong priv, vgein; 1693 1694 /* Translate CSR number for VS-mode */ 1695 csrno = aia_xlate_vs_csrno(env, csrno); 1696 1697 /* Decode register details from CSR number */ 1698 virt = false; 1699 switch (csrno) { 1700 case CSR_MTOPEI: 1701 priv = PRV_M; 1702 break; 1703 case CSR_STOPEI: 1704 priv = PRV_S; 1705 break; 1706 case CSR_VSTOPEI: 1707 priv = PRV_S; 1708 virt = true; 1709 break; 1710 default: 1711 goto done; 1712 }; 1713 1714 /* IMSIC CSRs only available when machine implements IMSIC. */ 1715 if (!env->aia_ireg_rmw_fn[priv]) { 1716 goto done; 1717 } 1718 1719 /* Find the selected guest interrupt file */ 1720 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1721 1722 /* Selected guest interrupt file should be valid */ 1723 if (virt && (!vgein || env->geilen < vgein)) { 1724 goto done; 1725 } 1726 1727 /* Call machine specific IMSIC register emulation for TOPEI */ 1728 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1729 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1730 riscv_cpu_mxl_bits(env)), 1731 val, new_val, wr_mask); 1732 1733 done: 1734 if (ret) { 1735 return (riscv_cpu_virt_enabled(env) && virt) ? 1736 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1737 } 1738 return RISCV_EXCP_NONE; 1739 } 1740 1741 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1742 target_ulong *val) 1743 { 1744 *val = env->mtvec; 1745 return RISCV_EXCP_NONE; 1746 } 1747 1748 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1749 target_ulong val) 1750 { 1751 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1752 if ((val & 3) < 2) { 1753 env->mtvec = val; 1754 } else { 1755 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1756 } 1757 return RISCV_EXCP_NONE; 1758 } 1759 1760 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1761 target_ulong *val) 1762 { 1763 *val = env->mcountinhibit; 1764 return RISCV_EXCP_NONE; 1765 } 1766 1767 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1768 target_ulong val) 1769 { 1770 int cidx; 1771 PMUCTRState *counter; 1772 1773 env->mcountinhibit = val; 1774 1775 /* Check if any other counter is also monitoring cycles/instructions */ 1776 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1777 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1778 counter = &env->pmu_ctrs[cidx]; 1779 counter->started = true; 1780 } 1781 } 1782 1783 return RISCV_EXCP_NONE; 1784 } 1785 1786 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1787 target_ulong *val) 1788 { 1789 *val = env->mcounteren; 1790 return RISCV_EXCP_NONE; 1791 } 1792 1793 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1794 target_ulong val) 1795 { 1796 env->mcounteren = val; 1797 return RISCV_EXCP_NONE; 1798 } 1799 1800 /* Machine Trap Handling */ 1801 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1802 Int128 *val) 1803 { 1804 *val = int128_make128(env->mscratch, env->mscratchh); 1805 return RISCV_EXCP_NONE; 1806 } 1807 1808 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1809 Int128 val) 1810 { 1811 env->mscratch = int128_getlo(val); 1812 env->mscratchh = int128_gethi(val); 1813 return RISCV_EXCP_NONE; 1814 } 1815 1816 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1817 target_ulong *val) 1818 { 1819 *val = env->mscratch; 1820 return RISCV_EXCP_NONE; 1821 } 1822 1823 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1824 target_ulong val) 1825 { 1826 env->mscratch = val; 1827 return RISCV_EXCP_NONE; 1828 } 1829 1830 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1831 target_ulong *val) 1832 { 1833 *val = env->mepc; 1834 return RISCV_EXCP_NONE; 1835 } 1836 1837 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1838 target_ulong val) 1839 { 1840 env->mepc = val; 1841 return RISCV_EXCP_NONE; 1842 } 1843 1844 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1845 target_ulong *val) 1846 { 1847 *val = env->mcause; 1848 return RISCV_EXCP_NONE; 1849 } 1850 1851 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1852 target_ulong val) 1853 { 1854 env->mcause = val; 1855 return RISCV_EXCP_NONE; 1856 } 1857 1858 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1859 target_ulong *val) 1860 { 1861 *val = env->mtval; 1862 return RISCV_EXCP_NONE; 1863 } 1864 1865 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1866 target_ulong val) 1867 { 1868 env->mtval = val; 1869 return RISCV_EXCP_NONE; 1870 } 1871 1872 /* Execution environment configuration setup */ 1873 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1874 target_ulong *val) 1875 { 1876 *val = env->menvcfg; 1877 return RISCV_EXCP_NONE; 1878 } 1879 1880 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1881 target_ulong val) 1882 { 1883 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1884 1885 if (riscv_cpu_mxl(env) == MXL_RV64) { 1886 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1887 } 1888 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1889 1890 return RISCV_EXCP_NONE; 1891 } 1892 1893 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1894 target_ulong *val) 1895 { 1896 *val = env->menvcfg >> 32; 1897 return RISCV_EXCP_NONE; 1898 } 1899 1900 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1901 target_ulong val) 1902 { 1903 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1904 uint64_t valh = (uint64_t)val << 32; 1905 1906 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1907 1908 return RISCV_EXCP_NONE; 1909 } 1910 1911 static RISCVException smstateen_acc_ok(CPURISCVState *env, int index, 1912 uint64_t bit) 1913 { 1914 bool virt = riscv_cpu_virt_enabled(env); 1915 RISCVCPU *cpu = env_archcpu(env); 1916 1917 if (env->priv == PRV_M || !cpu->cfg.ext_smstateen) { 1918 return RISCV_EXCP_NONE; 1919 } 1920 1921 if (!(env->mstateen[index] & bit)) { 1922 return RISCV_EXCP_ILLEGAL_INST; 1923 } 1924 1925 if (virt) { 1926 if (!(env->hstateen[index] & bit)) { 1927 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1928 } 1929 1930 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 1931 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1932 } 1933 } 1934 1935 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 1936 if (!(env->sstateen[index] & bit)) { 1937 return RISCV_EXCP_ILLEGAL_INST; 1938 } 1939 } 1940 1941 return RISCV_EXCP_NONE; 1942 } 1943 1944 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1945 target_ulong *val) 1946 { 1947 RISCVException ret; 1948 1949 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1950 if (ret != RISCV_EXCP_NONE) { 1951 return ret; 1952 } 1953 1954 *val = env->senvcfg; 1955 return RISCV_EXCP_NONE; 1956 } 1957 1958 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1959 target_ulong val) 1960 { 1961 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1962 RISCVException ret; 1963 1964 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1965 if (ret != RISCV_EXCP_NONE) { 1966 return ret; 1967 } 1968 1969 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1970 return RISCV_EXCP_NONE; 1971 } 1972 1973 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1974 target_ulong *val) 1975 { 1976 RISCVException ret; 1977 1978 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1979 if (ret != RISCV_EXCP_NONE) { 1980 return ret; 1981 } 1982 1983 *val = env->henvcfg; 1984 return RISCV_EXCP_NONE; 1985 } 1986 1987 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1988 target_ulong val) 1989 { 1990 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1991 RISCVException ret; 1992 1993 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1994 if (ret != RISCV_EXCP_NONE) { 1995 return ret; 1996 } 1997 1998 if (riscv_cpu_mxl(env) == MXL_RV64) { 1999 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 2000 } 2001 2002 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 2003 2004 return RISCV_EXCP_NONE; 2005 } 2006 2007 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 2008 target_ulong *val) 2009 { 2010 RISCVException ret; 2011 2012 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2013 if (ret != RISCV_EXCP_NONE) { 2014 return ret; 2015 } 2016 2017 *val = env->henvcfg >> 32; 2018 return RISCV_EXCP_NONE; 2019 } 2020 2021 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2022 target_ulong val) 2023 { 2024 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 2025 uint64_t valh = (uint64_t)val << 32; 2026 RISCVException ret; 2027 2028 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2029 if (ret != RISCV_EXCP_NONE) { 2030 return ret; 2031 } 2032 2033 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2034 return RISCV_EXCP_NONE; 2035 } 2036 2037 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2038 target_ulong *val) 2039 { 2040 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2041 2042 return RISCV_EXCP_NONE; 2043 } 2044 2045 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2046 uint64_t wr_mask, target_ulong new_val) 2047 { 2048 uint64_t *reg; 2049 2050 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2051 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2052 2053 return RISCV_EXCP_NONE; 2054 } 2055 2056 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2057 target_ulong new_val) 2058 { 2059 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2060 2061 return write_mstateen(env, csrno, wr_mask, new_val); 2062 } 2063 2064 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2065 target_ulong new_val) 2066 { 2067 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2068 } 2069 2070 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2071 target_ulong *val) 2072 { 2073 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2074 2075 return RISCV_EXCP_NONE; 2076 } 2077 2078 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2079 uint64_t wr_mask, target_ulong new_val) 2080 { 2081 uint64_t *reg, val; 2082 2083 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2084 val = (uint64_t)new_val << 32; 2085 val |= *reg & 0xFFFFFFFF; 2086 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2087 2088 return RISCV_EXCP_NONE; 2089 } 2090 2091 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2092 target_ulong new_val) 2093 { 2094 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2095 2096 return write_mstateenh(env, csrno, wr_mask, new_val); 2097 } 2098 2099 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2100 target_ulong new_val) 2101 { 2102 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2103 } 2104 2105 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2106 target_ulong *val) 2107 { 2108 int index = csrno - CSR_HSTATEEN0; 2109 2110 *val = env->hstateen[index] & env->mstateen[index]; 2111 2112 return RISCV_EXCP_NONE; 2113 } 2114 2115 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2116 uint64_t mask, target_ulong new_val) 2117 { 2118 int index = csrno - CSR_HSTATEEN0; 2119 uint64_t *reg, wr_mask; 2120 2121 reg = &env->hstateen[index]; 2122 wr_mask = env->mstateen[index] & mask; 2123 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2124 2125 return RISCV_EXCP_NONE; 2126 } 2127 2128 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2129 target_ulong new_val) 2130 { 2131 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2132 2133 return write_hstateen(env, csrno, wr_mask, new_val); 2134 } 2135 2136 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2137 target_ulong new_val) 2138 { 2139 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2140 } 2141 2142 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2143 target_ulong *val) 2144 { 2145 int index = csrno - CSR_HSTATEEN0H; 2146 2147 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2148 2149 return RISCV_EXCP_NONE; 2150 } 2151 2152 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2153 uint64_t mask, target_ulong new_val) 2154 { 2155 int index = csrno - CSR_HSTATEEN0H; 2156 uint64_t *reg, wr_mask, val; 2157 2158 reg = &env->hstateen[index]; 2159 val = (uint64_t)new_val << 32; 2160 val |= *reg & 0xFFFFFFFF; 2161 wr_mask = env->mstateen[index] & mask; 2162 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2163 2164 return RISCV_EXCP_NONE; 2165 } 2166 2167 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2168 target_ulong new_val) 2169 { 2170 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2171 2172 return write_hstateenh(env, csrno, wr_mask, new_val); 2173 } 2174 2175 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2176 target_ulong new_val) 2177 { 2178 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2179 } 2180 2181 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2182 target_ulong *val) 2183 { 2184 bool virt = riscv_cpu_virt_enabled(env); 2185 int index = csrno - CSR_SSTATEEN0; 2186 2187 *val = env->sstateen[index] & env->mstateen[index]; 2188 if (virt) { 2189 *val &= env->hstateen[index]; 2190 } 2191 2192 return RISCV_EXCP_NONE; 2193 } 2194 2195 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2196 uint64_t mask, target_ulong new_val) 2197 { 2198 bool virt = riscv_cpu_virt_enabled(env); 2199 int index = csrno - CSR_SSTATEEN0; 2200 uint64_t wr_mask; 2201 uint64_t *reg; 2202 2203 wr_mask = env->mstateen[index] & mask; 2204 if (virt) { 2205 wr_mask &= env->hstateen[index]; 2206 } 2207 2208 reg = &env->sstateen[index]; 2209 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2210 2211 return RISCV_EXCP_NONE; 2212 } 2213 2214 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2215 target_ulong new_val) 2216 { 2217 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2218 2219 return write_sstateen(env, csrno, wr_mask, new_val); 2220 } 2221 2222 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2223 target_ulong new_val) 2224 { 2225 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2226 } 2227 2228 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2229 uint64_t *ret_val, 2230 uint64_t new_val, uint64_t wr_mask) 2231 { 2232 RISCVCPU *cpu = env_archcpu(env); 2233 uint64_t old_mip, mask = wr_mask & delegable_ints; 2234 uint32_t gin; 2235 2236 if (mask & MIP_SEIP) { 2237 env->software_seip = new_val & MIP_SEIP; 2238 new_val |= env->external_seip * MIP_SEIP; 2239 } 2240 2241 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2242 get_field(env->menvcfg, MENVCFG_STCE)) { 2243 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2244 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2245 } 2246 2247 if (mask) { 2248 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 2249 } else { 2250 old_mip = env->mip; 2251 } 2252 2253 if (csrno != CSR_HVIP) { 2254 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2255 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2256 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2257 } 2258 2259 if (ret_val) { 2260 *ret_val = old_mip; 2261 } 2262 2263 return RISCV_EXCP_NONE; 2264 } 2265 2266 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2267 target_ulong *ret_val, 2268 target_ulong new_val, target_ulong wr_mask) 2269 { 2270 uint64_t rval; 2271 RISCVException ret; 2272 2273 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2274 if (ret_val) { 2275 *ret_val = rval; 2276 } 2277 2278 return ret; 2279 } 2280 2281 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2282 target_ulong *ret_val, 2283 target_ulong new_val, target_ulong wr_mask) 2284 { 2285 uint64_t rval; 2286 RISCVException ret; 2287 2288 ret = rmw_mip64(env, csrno, &rval, 2289 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2290 if (ret_val) { 2291 *ret_val = rval >> 32; 2292 } 2293 2294 return ret; 2295 } 2296 2297 /* Supervisor Trap Setup */ 2298 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2299 Int128 *val) 2300 { 2301 uint64_t mask = sstatus_v1_10_mask; 2302 uint64_t sstatus = env->mstatus & mask; 2303 if (env->xl != MXL_RV32 || env->debugger) { 2304 mask |= SSTATUS64_UXL; 2305 } 2306 2307 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2308 return RISCV_EXCP_NONE; 2309 } 2310 2311 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2312 target_ulong *val) 2313 { 2314 target_ulong mask = (sstatus_v1_10_mask); 2315 if (env->xl != MXL_RV32 || env->debugger) { 2316 mask |= SSTATUS64_UXL; 2317 } 2318 /* TODO: Use SXL not MXL. */ 2319 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2320 return RISCV_EXCP_NONE; 2321 } 2322 2323 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2324 target_ulong val) 2325 { 2326 target_ulong mask = (sstatus_v1_10_mask); 2327 2328 if (env->xl != MXL_RV32 || env->debugger) { 2329 if ((val & SSTATUS64_UXL) != 0) { 2330 mask |= SSTATUS64_UXL; 2331 } 2332 } 2333 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2334 return write_mstatus(env, CSR_MSTATUS, newval); 2335 } 2336 2337 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2338 uint64_t *ret_val, 2339 uint64_t new_val, uint64_t wr_mask) 2340 { 2341 RISCVException ret; 2342 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2343 2344 /* Bring VS-level bits to correct position */ 2345 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2346 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2347 2348 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2349 if (ret_val) { 2350 *ret_val = (rval & mask) >> 1; 2351 } 2352 2353 return ret; 2354 } 2355 2356 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2357 target_ulong *ret_val, 2358 target_ulong new_val, target_ulong wr_mask) 2359 { 2360 uint64_t rval; 2361 RISCVException ret; 2362 2363 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2364 if (ret_val) { 2365 *ret_val = rval; 2366 } 2367 2368 return ret; 2369 } 2370 2371 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2372 target_ulong *ret_val, 2373 target_ulong new_val, target_ulong wr_mask) 2374 { 2375 uint64_t rval; 2376 RISCVException ret; 2377 2378 ret = rmw_vsie64(env, csrno, &rval, 2379 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2380 if (ret_val) { 2381 *ret_val = rval >> 32; 2382 } 2383 2384 return ret; 2385 } 2386 2387 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2388 uint64_t *ret_val, 2389 uint64_t new_val, uint64_t wr_mask) 2390 { 2391 RISCVException ret; 2392 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2393 2394 if (riscv_cpu_virt_enabled(env)) { 2395 if (env->hvictl & HVICTL_VTI) { 2396 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2397 } 2398 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2399 } else { 2400 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2401 } 2402 2403 if (ret_val) { 2404 *ret_val &= mask; 2405 } 2406 2407 return ret; 2408 } 2409 2410 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2411 target_ulong *ret_val, 2412 target_ulong new_val, target_ulong wr_mask) 2413 { 2414 uint64_t rval; 2415 RISCVException ret; 2416 2417 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2418 if (ret == RISCV_EXCP_NONE && ret_val) { 2419 *ret_val = rval; 2420 } 2421 2422 return ret; 2423 } 2424 2425 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2426 target_ulong *ret_val, 2427 target_ulong new_val, target_ulong wr_mask) 2428 { 2429 uint64_t rval; 2430 RISCVException ret; 2431 2432 ret = rmw_sie64(env, csrno, &rval, 2433 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2434 if (ret_val) { 2435 *ret_val = rval >> 32; 2436 } 2437 2438 return ret; 2439 } 2440 2441 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2442 target_ulong *val) 2443 { 2444 *val = env->stvec; 2445 return RISCV_EXCP_NONE; 2446 } 2447 2448 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2449 target_ulong val) 2450 { 2451 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2452 if ((val & 3) < 2) { 2453 env->stvec = val; 2454 } else { 2455 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2456 } 2457 return RISCV_EXCP_NONE; 2458 } 2459 2460 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2461 target_ulong *val) 2462 { 2463 *val = env->scounteren; 2464 return RISCV_EXCP_NONE; 2465 } 2466 2467 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2468 target_ulong val) 2469 { 2470 env->scounteren = val; 2471 return RISCV_EXCP_NONE; 2472 } 2473 2474 /* Supervisor Trap Handling */ 2475 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2476 Int128 *val) 2477 { 2478 *val = int128_make128(env->sscratch, env->sscratchh); 2479 return RISCV_EXCP_NONE; 2480 } 2481 2482 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2483 Int128 val) 2484 { 2485 env->sscratch = int128_getlo(val); 2486 env->sscratchh = int128_gethi(val); 2487 return RISCV_EXCP_NONE; 2488 } 2489 2490 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2491 target_ulong *val) 2492 { 2493 *val = env->sscratch; 2494 return RISCV_EXCP_NONE; 2495 } 2496 2497 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2498 target_ulong val) 2499 { 2500 env->sscratch = val; 2501 return RISCV_EXCP_NONE; 2502 } 2503 2504 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2505 target_ulong *val) 2506 { 2507 *val = env->sepc; 2508 return RISCV_EXCP_NONE; 2509 } 2510 2511 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2512 target_ulong val) 2513 { 2514 env->sepc = val; 2515 return RISCV_EXCP_NONE; 2516 } 2517 2518 static RISCVException read_scause(CPURISCVState *env, int csrno, 2519 target_ulong *val) 2520 { 2521 *val = env->scause; 2522 return RISCV_EXCP_NONE; 2523 } 2524 2525 static RISCVException write_scause(CPURISCVState *env, int csrno, 2526 target_ulong val) 2527 { 2528 env->scause = val; 2529 return RISCV_EXCP_NONE; 2530 } 2531 2532 static RISCVException read_stval(CPURISCVState *env, int csrno, 2533 target_ulong *val) 2534 { 2535 *val = env->stval; 2536 return RISCV_EXCP_NONE; 2537 } 2538 2539 static RISCVException write_stval(CPURISCVState *env, int csrno, 2540 target_ulong val) 2541 { 2542 env->stval = val; 2543 return RISCV_EXCP_NONE; 2544 } 2545 2546 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2547 uint64_t *ret_val, 2548 uint64_t new_val, uint64_t wr_mask) 2549 { 2550 RISCVException ret; 2551 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2552 2553 /* Bring VS-level bits to correct position */ 2554 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2555 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2556 2557 ret = rmw_mip64(env, csrno, &rval, new_val, 2558 wr_mask & mask & vsip_writable_mask); 2559 if (ret_val) { 2560 *ret_val = (rval & mask) >> 1; 2561 } 2562 2563 return ret; 2564 } 2565 2566 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2567 target_ulong *ret_val, 2568 target_ulong new_val, target_ulong wr_mask) 2569 { 2570 uint64_t rval; 2571 RISCVException ret; 2572 2573 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2574 if (ret_val) { 2575 *ret_val = rval; 2576 } 2577 2578 return ret; 2579 } 2580 2581 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2582 target_ulong *ret_val, 2583 target_ulong new_val, target_ulong wr_mask) 2584 { 2585 uint64_t rval; 2586 RISCVException ret; 2587 2588 ret = rmw_vsip64(env, csrno, &rval, 2589 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2590 if (ret_val) { 2591 *ret_val = rval >> 32; 2592 } 2593 2594 return ret; 2595 } 2596 2597 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2598 uint64_t *ret_val, 2599 uint64_t new_val, uint64_t wr_mask) 2600 { 2601 RISCVException ret; 2602 uint64_t mask = env->mideleg & sip_writable_mask; 2603 2604 if (riscv_cpu_virt_enabled(env)) { 2605 if (env->hvictl & HVICTL_VTI) { 2606 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2607 } 2608 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2609 } else { 2610 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2611 } 2612 2613 if (ret_val) { 2614 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2615 } 2616 2617 return ret; 2618 } 2619 2620 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2621 target_ulong *ret_val, 2622 target_ulong new_val, target_ulong wr_mask) 2623 { 2624 uint64_t rval; 2625 RISCVException ret; 2626 2627 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2628 if (ret_val) { 2629 *ret_val = rval; 2630 } 2631 2632 return ret; 2633 } 2634 2635 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2636 target_ulong *ret_val, 2637 target_ulong new_val, target_ulong wr_mask) 2638 { 2639 uint64_t rval; 2640 RISCVException ret; 2641 2642 ret = rmw_sip64(env, csrno, &rval, 2643 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2644 if (ret_val) { 2645 *ret_val = rval >> 32; 2646 } 2647 2648 return ret; 2649 } 2650 2651 /* Supervisor Protection and Translation */ 2652 static RISCVException read_satp(CPURISCVState *env, int csrno, 2653 target_ulong *val) 2654 { 2655 if (!riscv_cpu_cfg(env)->mmu) { 2656 *val = 0; 2657 return RISCV_EXCP_NONE; 2658 } 2659 2660 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2661 return RISCV_EXCP_ILLEGAL_INST; 2662 } else { 2663 *val = env->satp; 2664 } 2665 2666 return RISCV_EXCP_NONE; 2667 } 2668 2669 static RISCVException write_satp(CPURISCVState *env, int csrno, 2670 target_ulong val) 2671 { 2672 target_ulong vm, mask; 2673 2674 if (!riscv_cpu_cfg(env)->mmu) { 2675 return RISCV_EXCP_NONE; 2676 } 2677 2678 if (riscv_cpu_mxl(env) == MXL_RV32) { 2679 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2680 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2681 } else { 2682 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2683 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2684 } 2685 2686 if (vm && mask) { 2687 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2688 return RISCV_EXCP_ILLEGAL_INST; 2689 } else { 2690 /* 2691 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2692 * pass these through QEMU's TLB emulation as it improves 2693 * performance. Flushing the TLB on SATP writes with paging 2694 * enabled avoids leaking those invalid cached mappings. 2695 */ 2696 tlb_flush(env_cpu(env)); 2697 env->satp = val; 2698 } 2699 } 2700 return RISCV_EXCP_NONE; 2701 } 2702 2703 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2704 { 2705 int irq, ret; 2706 target_ulong topei; 2707 uint64_t vseip, vsgein; 2708 uint32_t iid, iprio, hviid, hviprio, gein; 2709 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2710 2711 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2712 hviid = get_field(env->hvictl, HVICTL_IID); 2713 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2714 2715 if (gein) { 2716 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2717 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2718 if (gein <= env->geilen && vseip) { 2719 siid[scount] = IRQ_S_EXT; 2720 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2721 if (env->aia_ireg_rmw_fn[PRV_S]) { 2722 /* 2723 * Call machine specific IMSIC register emulation for 2724 * reading TOPEI. 2725 */ 2726 ret = env->aia_ireg_rmw_fn[PRV_S]( 2727 env->aia_ireg_rmw_fn_arg[PRV_S], 2728 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2729 riscv_cpu_mxl_bits(env)), 2730 &topei, 0, 0); 2731 if (!ret && topei) { 2732 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2733 } 2734 } 2735 scount++; 2736 } 2737 } else { 2738 if (hviid == IRQ_S_EXT && hviprio) { 2739 siid[scount] = IRQ_S_EXT; 2740 siprio[scount] = hviprio; 2741 scount++; 2742 } 2743 } 2744 2745 if (env->hvictl & HVICTL_VTI) { 2746 if (hviid != IRQ_S_EXT) { 2747 siid[scount] = hviid; 2748 siprio[scount] = hviprio; 2749 scount++; 2750 } 2751 } else { 2752 irq = riscv_cpu_vsirq_pending(env); 2753 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2754 siid[scount] = irq; 2755 siprio[scount] = env->hviprio[irq]; 2756 scount++; 2757 } 2758 } 2759 2760 iid = 0; 2761 iprio = UINT_MAX; 2762 for (s = 0; s < scount; s++) { 2763 if (siprio[s] < iprio) { 2764 iid = siid[s]; 2765 iprio = siprio[s]; 2766 } 2767 } 2768 2769 if (iid) { 2770 if (env->hvictl & HVICTL_IPRIOM) { 2771 if (iprio > IPRIO_MMAXIPRIO) { 2772 iprio = IPRIO_MMAXIPRIO; 2773 } 2774 if (!iprio) { 2775 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2776 iprio = IPRIO_MMAXIPRIO; 2777 } 2778 } 2779 } else { 2780 iprio = 1; 2781 } 2782 } else { 2783 iprio = 0; 2784 } 2785 2786 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2787 *val |= iprio; 2788 return RISCV_EXCP_NONE; 2789 } 2790 2791 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2792 { 2793 int irq; 2794 uint8_t iprio; 2795 2796 if (riscv_cpu_virt_enabled(env)) { 2797 return read_vstopi(env, CSR_VSTOPI, val); 2798 } 2799 2800 irq = riscv_cpu_sirq_pending(env); 2801 if (irq <= 0 || irq > 63) { 2802 *val = 0; 2803 } else { 2804 iprio = env->siprio[irq]; 2805 if (!iprio) { 2806 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2807 iprio = IPRIO_MMAXIPRIO; 2808 } 2809 } 2810 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2811 *val |= iprio; 2812 } 2813 2814 return RISCV_EXCP_NONE; 2815 } 2816 2817 /* Hypervisor Extensions */ 2818 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2819 target_ulong *val) 2820 { 2821 *val = env->hstatus; 2822 if (riscv_cpu_mxl(env) != MXL_RV32) { 2823 /* We only support 64-bit VSXL */ 2824 *val = set_field(*val, HSTATUS_VSXL, 2); 2825 } 2826 /* We only support little endian */ 2827 *val = set_field(*val, HSTATUS_VSBE, 0); 2828 return RISCV_EXCP_NONE; 2829 } 2830 2831 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2832 target_ulong val) 2833 { 2834 env->hstatus = val; 2835 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2836 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2837 } 2838 if (get_field(val, HSTATUS_VSBE) != 0) { 2839 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2840 } 2841 return RISCV_EXCP_NONE; 2842 } 2843 2844 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2845 target_ulong *val) 2846 { 2847 *val = env->hedeleg; 2848 return RISCV_EXCP_NONE; 2849 } 2850 2851 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2852 target_ulong val) 2853 { 2854 env->hedeleg = val & vs_delegable_excps; 2855 return RISCV_EXCP_NONE; 2856 } 2857 2858 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2859 uint64_t *ret_val, 2860 uint64_t new_val, uint64_t wr_mask) 2861 { 2862 uint64_t mask = wr_mask & vs_delegable_ints; 2863 2864 if (ret_val) { 2865 *ret_val = env->hideleg & vs_delegable_ints; 2866 } 2867 2868 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2869 return RISCV_EXCP_NONE; 2870 } 2871 2872 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2873 target_ulong *ret_val, 2874 target_ulong new_val, target_ulong wr_mask) 2875 { 2876 uint64_t rval; 2877 RISCVException ret; 2878 2879 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2880 if (ret_val) { 2881 *ret_val = rval; 2882 } 2883 2884 return ret; 2885 } 2886 2887 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2888 target_ulong *ret_val, 2889 target_ulong new_val, target_ulong wr_mask) 2890 { 2891 uint64_t rval; 2892 RISCVException ret; 2893 2894 ret = rmw_hideleg64(env, csrno, &rval, 2895 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2896 if (ret_val) { 2897 *ret_val = rval >> 32; 2898 } 2899 2900 return ret; 2901 } 2902 2903 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2904 uint64_t *ret_val, 2905 uint64_t new_val, uint64_t wr_mask) 2906 { 2907 RISCVException ret; 2908 2909 ret = rmw_mip64(env, csrno, ret_val, new_val, 2910 wr_mask & hvip_writable_mask); 2911 if (ret_val) { 2912 *ret_val &= VS_MODE_INTERRUPTS; 2913 } 2914 2915 return ret; 2916 } 2917 2918 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2919 target_ulong *ret_val, 2920 target_ulong new_val, target_ulong wr_mask) 2921 { 2922 uint64_t rval; 2923 RISCVException ret; 2924 2925 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2926 if (ret_val) { 2927 *ret_val = rval; 2928 } 2929 2930 return ret; 2931 } 2932 2933 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2934 target_ulong *ret_val, 2935 target_ulong new_val, target_ulong wr_mask) 2936 { 2937 uint64_t rval; 2938 RISCVException ret; 2939 2940 ret = rmw_hvip64(env, csrno, &rval, 2941 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2942 if (ret_val) { 2943 *ret_val = rval >> 32; 2944 } 2945 2946 return ret; 2947 } 2948 2949 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2950 target_ulong *ret_value, 2951 target_ulong new_value, target_ulong write_mask) 2952 { 2953 int ret = rmw_mip(env, csrno, ret_value, new_value, 2954 write_mask & hip_writable_mask); 2955 2956 if (ret_value) { 2957 *ret_value &= HS_MODE_INTERRUPTS; 2958 } 2959 return ret; 2960 } 2961 2962 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2963 target_ulong *ret_val, 2964 target_ulong new_val, target_ulong wr_mask) 2965 { 2966 uint64_t rval; 2967 RISCVException ret; 2968 2969 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2970 if (ret_val) { 2971 *ret_val = rval & HS_MODE_INTERRUPTS; 2972 } 2973 2974 return ret; 2975 } 2976 2977 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2978 target_ulong *val) 2979 { 2980 *val = env->hcounteren; 2981 return RISCV_EXCP_NONE; 2982 } 2983 2984 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2985 target_ulong val) 2986 { 2987 env->hcounteren = val; 2988 return RISCV_EXCP_NONE; 2989 } 2990 2991 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2992 target_ulong *val) 2993 { 2994 if (val) { 2995 *val = env->hgeie; 2996 } 2997 return RISCV_EXCP_NONE; 2998 } 2999 3000 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 3001 target_ulong val) 3002 { 3003 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 3004 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 3005 env->hgeie = val; 3006 /* Update mip.SGEIP bit */ 3007 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 3008 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 3009 return RISCV_EXCP_NONE; 3010 } 3011 3012 static RISCVException read_htval(CPURISCVState *env, int csrno, 3013 target_ulong *val) 3014 { 3015 *val = env->htval; 3016 return RISCV_EXCP_NONE; 3017 } 3018 3019 static RISCVException write_htval(CPURISCVState *env, int csrno, 3020 target_ulong val) 3021 { 3022 env->htval = val; 3023 return RISCV_EXCP_NONE; 3024 } 3025 3026 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3027 target_ulong *val) 3028 { 3029 *val = env->htinst; 3030 return RISCV_EXCP_NONE; 3031 } 3032 3033 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3034 target_ulong val) 3035 { 3036 return RISCV_EXCP_NONE; 3037 } 3038 3039 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3040 target_ulong *val) 3041 { 3042 if (val) { 3043 *val = env->hgeip; 3044 } 3045 return RISCV_EXCP_NONE; 3046 } 3047 3048 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3049 target_ulong *val) 3050 { 3051 *val = env->hgatp; 3052 return RISCV_EXCP_NONE; 3053 } 3054 3055 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3056 target_ulong val) 3057 { 3058 env->hgatp = val; 3059 return RISCV_EXCP_NONE; 3060 } 3061 3062 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3063 target_ulong *val) 3064 { 3065 if (!env->rdtime_fn) { 3066 return RISCV_EXCP_ILLEGAL_INST; 3067 } 3068 3069 *val = env->htimedelta; 3070 return RISCV_EXCP_NONE; 3071 } 3072 3073 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3074 target_ulong val) 3075 { 3076 RISCVCPU *cpu = env_archcpu(env); 3077 3078 if (!env->rdtime_fn) { 3079 return RISCV_EXCP_ILLEGAL_INST; 3080 } 3081 3082 if (riscv_cpu_mxl(env) == MXL_RV32) { 3083 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3084 } else { 3085 env->htimedelta = val; 3086 } 3087 3088 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3089 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3090 env->htimedelta, MIP_VSTIP); 3091 } 3092 3093 return RISCV_EXCP_NONE; 3094 } 3095 3096 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3097 target_ulong *val) 3098 { 3099 if (!env->rdtime_fn) { 3100 return RISCV_EXCP_ILLEGAL_INST; 3101 } 3102 3103 *val = env->htimedelta >> 32; 3104 return RISCV_EXCP_NONE; 3105 } 3106 3107 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3108 target_ulong val) 3109 { 3110 RISCVCPU *cpu = env_archcpu(env); 3111 3112 if (!env->rdtime_fn) { 3113 return RISCV_EXCP_ILLEGAL_INST; 3114 } 3115 3116 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3117 3118 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3119 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3120 env->htimedelta, MIP_VSTIP); 3121 } 3122 3123 return RISCV_EXCP_NONE; 3124 } 3125 3126 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3127 { 3128 *val = env->hvictl; 3129 return RISCV_EXCP_NONE; 3130 } 3131 3132 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3133 { 3134 env->hvictl = val & HVICTL_VALID_MASK; 3135 return RISCV_EXCP_NONE; 3136 } 3137 3138 static int read_hvipriox(CPURISCVState *env, int first_index, 3139 uint8_t *iprio, target_ulong *val) 3140 { 3141 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3142 3143 /* First index has to be a multiple of number of irqs per register */ 3144 if (first_index % num_irqs) { 3145 return (riscv_cpu_virt_enabled(env)) ? 3146 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3147 } 3148 3149 /* Fill-up return value */ 3150 *val = 0; 3151 for (i = 0; i < num_irqs; i++) { 3152 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3153 continue; 3154 } 3155 if (rdzero) { 3156 continue; 3157 } 3158 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3159 } 3160 3161 return RISCV_EXCP_NONE; 3162 } 3163 3164 static int write_hvipriox(CPURISCVState *env, int first_index, 3165 uint8_t *iprio, target_ulong val) 3166 { 3167 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3168 3169 /* First index has to be a multiple of number of irqs per register */ 3170 if (first_index % num_irqs) { 3171 return (riscv_cpu_virt_enabled(env)) ? 3172 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3173 } 3174 3175 /* Fill-up priority arrary */ 3176 for (i = 0; i < num_irqs; i++) { 3177 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3178 continue; 3179 } 3180 if (rdzero) { 3181 iprio[irq] = 0; 3182 } else { 3183 iprio[irq] = (val >> (i * 8)) & 0xff; 3184 } 3185 } 3186 3187 return RISCV_EXCP_NONE; 3188 } 3189 3190 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3191 { 3192 return read_hvipriox(env, 0, env->hviprio, val); 3193 } 3194 3195 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3196 { 3197 return write_hvipriox(env, 0, env->hviprio, val); 3198 } 3199 3200 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3201 { 3202 return read_hvipriox(env, 4, env->hviprio, val); 3203 } 3204 3205 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3206 { 3207 return write_hvipriox(env, 4, env->hviprio, val); 3208 } 3209 3210 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3211 { 3212 return read_hvipriox(env, 8, env->hviprio, val); 3213 } 3214 3215 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3216 { 3217 return write_hvipriox(env, 8, env->hviprio, val); 3218 } 3219 3220 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3221 { 3222 return read_hvipriox(env, 12, env->hviprio, val); 3223 } 3224 3225 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3226 { 3227 return write_hvipriox(env, 12, env->hviprio, val); 3228 } 3229 3230 /* Virtual CSR Registers */ 3231 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3232 target_ulong *val) 3233 { 3234 *val = env->vsstatus; 3235 return RISCV_EXCP_NONE; 3236 } 3237 3238 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3239 target_ulong val) 3240 { 3241 uint64_t mask = (target_ulong)-1; 3242 if ((val & VSSTATUS64_UXL) == 0) { 3243 mask &= ~VSSTATUS64_UXL; 3244 } 3245 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3246 return RISCV_EXCP_NONE; 3247 } 3248 3249 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3250 { 3251 *val = env->vstvec; 3252 return RISCV_EXCP_NONE; 3253 } 3254 3255 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3256 target_ulong val) 3257 { 3258 env->vstvec = val; 3259 return RISCV_EXCP_NONE; 3260 } 3261 3262 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3263 target_ulong *val) 3264 { 3265 *val = env->vsscratch; 3266 return RISCV_EXCP_NONE; 3267 } 3268 3269 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3270 target_ulong val) 3271 { 3272 env->vsscratch = val; 3273 return RISCV_EXCP_NONE; 3274 } 3275 3276 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3277 target_ulong *val) 3278 { 3279 *val = env->vsepc; 3280 return RISCV_EXCP_NONE; 3281 } 3282 3283 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3284 target_ulong val) 3285 { 3286 env->vsepc = val; 3287 return RISCV_EXCP_NONE; 3288 } 3289 3290 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3291 target_ulong *val) 3292 { 3293 *val = env->vscause; 3294 return RISCV_EXCP_NONE; 3295 } 3296 3297 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3298 target_ulong val) 3299 { 3300 env->vscause = val; 3301 return RISCV_EXCP_NONE; 3302 } 3303 3304 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3305 target_ulong *val) 3306 { 3307 *val = env->vstval; 3308 return RISCV_EXCP_NONE; 3309 } 3310 3311 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3312 target_ulong val) 3313 { 3314 env->vstval = val; 3315 return RISCV_EXCP_NONE; 3316 } 3317 3318 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3319 target_ulong *val) 3320 { 3321 *val = env->vsatp; 3322 return RISCV_EXCP_NONE; 3323 } 3324 3325 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3326 target_ulong val) 3327 { 3328 env->vsatp = val; 3329 return RISCV_EXCP_NONE; 3330 } 3331 3332 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3333 target_ulong *val) 3334 { 3335 *val = env->mtval2; 3336 return RISCV_EXCP_NONE; 3337 } 3338 3339 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3340 target_ulong val) 3341 { 3342 env->mtval2 = val; 3343 return RISCV_EXCP_NONE; 3344 } 3345 3346 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3347 target_ulong *val) 3348 { 3349 *val = env->mtinst; 3350 return RISCV_EXCP_NONE; 3351 } 3352 3353 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3354 target_ulong val) 3355 { 3356 env->mtinst = val; 3357 return RISCV_EXCP_NONE; 3358 } 3359 3360 /* Physical Memory Protection */ 3361 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3362 target_ulong *val) 3363 { 3364 *val = mseccfg_csr_read(env); 3365 return RISCV_EXCP_NONE; 3366 } 3367 3368 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3369 target_ulong val) 3370 { 3371 mseccfg_csr_write(env, val); 3372 return RISCV_EXCP_NONE; 3373 } 3374 3375 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3376 target_ulong *val) 3377 { 3378 uint32_t reg_index = csrno - CSR_PMPCFG0; 3379 3380 *val = pmpcfg_csr_read(env, reg_index); 3381 return RISCV_EXCP_NONE; 3382 } 3383 3384 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3385 target_ulong val) 3386 { 3387 uint32_t reg_index = csrno - CSR_PMPCFG0; 3388 3389 pmpcfg_csr_write(env, reg_index, val); 3390 return RISCV_EXCP_NONE; 3391 } 3392 3393 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3394 target_ulong *val) 3395 { 3396 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3397 return RISCV_EXCP_NONE; 3398 } 3399 3400 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3401 target_ulong val) 3402 { 3403 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3404 return RISCV_EXCP_NONE; 3405 } 3406 3407 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3408 target_ulong *val) 3409 { 3410 *val = tselect_csr_read(env); 3411 return RISCV_EXCP_NONE; 3412 } 3413 3414 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3415 target_ulong val) 3416 { 3417 tselect_csr_write(env, val); 3418 return RISCV_EXCP_NONE; 3419 } 3420 3421 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3422 target_ulong *val) 3423 { 3424 /* return 0 in tdata1 to end the trigger enumeration */ 3425 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3426 *val = 0; 3427 return RISCV_EXCP_NONE; 3428 } 3429 3430 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3431 return RISCV_EXCP_ILLEGAL_INST; 3432 } 3433 3434 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3435 return RISCV_EXCP_NONE; 3436 } 3437 3438 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3439 target_ulong val) 3440 { 3441 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3442 return RISCV_EXCP_ILLEGAL_INST; 3443 } 3444 3445 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3446 return RISCV_EXCP_NONE; 3447 } 3448 3449 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3450 target_ulong *val) 3451 { 3452 *val = tinfo_csr_read(env); 3453 return RISCV_EXCP_NONE; 3454 } 3455 3456 /* 3457 * Functions to access Pointer Masking feature registers 3458 * We have to check if current priv lvl could modify 3459 * csr in given mode 3460 */ 3461 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3462 { 3463 int csr_priv = get_field(csrno, 0x300); 3464 int pm_current; 3465 3466 if (env->debugger) { 3467 return false; 3468 } 3469 /* 3470 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3471 * so allow the access 3472 */ 3473 if (env->priv != csr_priv) { 3474 return false; 3475 } 3476 switch (env->priv) { 3477 case PRV_M: 3478 pm_current = get_field(env->mmte, M_PM_CURRENT); 3479 break; 3480 case PRV_S: 3481 pm_current = get_field(env->mmte, S_PM_CURRENT); 3482 break; 3483 case PRV_U: 3484 pm_current = get_field(env->mmte, U_PM_CURRENT); 3485 break; 3486 default: 3487 g_assert_not_reached(); 3488 } 3489 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3490 return !pm_current; 3491 } 3492 3493 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3494 target_ulong *val) 3495 { 3496 *val = env->mmte & MMTE_MASK; 3497 return RISCV_EXCP_NONE; 3498 } 3499 3500 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3501 target_ulong val) 3502 { 3503 uint64_t mstatus; 3504 target_ulong wpri_val = val & MMTE_MASK; 3505 3506 if (val != wpri_val) { 3507 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3508 "MMTE: WPRI violation written 0x", val, 3509 "vs expected 0x", wpri_val); 3510 } 3511 /* for machine mode pm.current is hardwired to 1 */ 3512 wpri_val |= MMTE_M_PM_CURRENT; 3513 3514 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3515 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3516 env->mmte = wpri_val | PM_EXT_DIRTY; 3517 riscv_cpu_update_mask(env); 3518 3519 /* Set XS and SD bits, since PM CSRs are dirty */ 3520 mstatus = env->mstatus | MSTATUS_XS; 3521 write_mstatus(env, csrno, mstatus); 3522 return RISCV_EXCP_NONE; 3523 } 3524 3525 static RISCVException read_smte(CPURISCVState *env, int csrno, 3526 target_ulong *val) 3527 { 3528 *val = env->mmte & SMTE_MASK; 3529 return RISCV_EXCP_NONE; 3530 } 3531 3532 static RISCVException write_smte(CPURISCVState *env, int csrno, 3533 target_ulong val) 3534 { 3535 target_ulong wpri_val = val & SMTE_MASK; 3536 3537 if (val != wpri_val) { 3538 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3539 "SMTE: WPRI violation written 0x", val, 3540 "vs expected 0x", wpri_val); 3541 } 3542 3543 /* if pm.current==0 we can't modify current PM CSRs */ 3544 if (check_pm_current_disabled(env, csrno)) { 3545 return RISCV_EXCP_NONE; 3546 } 3547 3548 wpri_val |= (env->mmte & ~SMTE_MASK); 3549 write_mmte(env, csrno, wpri_val); 3550 return RISCV_EXCP_NONE; 3551 } 3552 3553 static RISCVException read_umte(CPURISCVState *env, int csrno, 3554 target_ulong *val) 3555 { 3556 *val = env->mmte & UMTE_MASK; 3557 return RISCV_EXCP_NONE; 3558 } 3559 3560 static RISCVException write_umte(CPURISCVState *env, int csrno, 3561 target_ulong val) 3562 { 3563 target_ulong wpri_val = val & UMTE_MASK; 3564 3565 if (val != wpri_val) { 3566 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3567 "UMTE: WPRI violation written 0x", val, 3568 "vs expected 0x", wpri_val); 3569 } 3570 3571 if (check_pm_current_disabled(env, csrno)) { 3572 return RISCV_EXCP_NONE; 3573 } 3574 3575 wpri_val |= (env->mmte & ~UMTE_MASK); 3576 write_mmte(env, csrno, wpri_val); 3577 return RISCV_EXCP_NONE; 3578 } 3579 3580 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3581 target_ulong *val) 3582 { 3583 *val = env->mpmmask; 3584 return RISCV_EXCP_NONE; 3585 } 3586 3587 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3588 target_ulong val) 3589 { 3590 uint64_t mstatus; 3591 3592 env->mpmmask = val; 3593 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3594 env->cur_pmmask = val; 3595 } 3596 env->mmte |= PM_EXT_DIRTY; 3597 3598 /* Set XS and SD bits, since PM CSRs are dirty */ 3599 mstatus = env->mstatus | MSTATUS_XS; 3600 write_mstatus(env, csrno, mstatus); 3601 return RISCV_EXCP_NONE; 3602 } 3603 3604 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3605 target_ulong *val) 3606 { 3607 *val = env->spmmask; 3608 return RISCV_EXCP_NONE; 3609 } 3610 3611 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3612 target_ulong val) 3613 { 3614 uint64_t mstatus; 3615 3616 /* if pm.current==0 we can't modify current PM CSRs */ 3617 if (check_pm_current_disabled(env, csrno)) { 3618 return RISCV_EXCP_NONE; 3619 } 3620 env->spmmask = val; 3621 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3622 env->cur_pmmask = val; 3623 } 3624 env->mmte |= PM_EXT_DIRTY; 3625 3626 /* Set XS and SD bits, since PM CSRs are dirty */ 3627 mstatus = env->mstatus | MSTATUS_XS; 3628 write_mstatus(env, csrno, mstatus); 3629 return RISCV_EXCP_NONE; 3630 } 3631 3632 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3633 target_ulong *val) 3634 { 3635 *val = env->upmmask; 3636 return RISCV_EXCP_NONE; 3637 } 3638 3639 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3640 target_ulong val) 3641 { 3642 uint64_t mstatus; 3643 3644 /* if pm.current==0 we can't modify current PM CSRs */ 3645 if (check_pm_current_disabled(env, csrno)) { 3646 return RISCV_EXCP_NONE; 3647 } 3648 env->upmmask = val; 3649 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3650 env->cur_pmmask = val; 3651 } 3652 env->mmte |= PM_EXT_DIRTY; 3653 3654 /* Set XS and SD bits, since PM CSRs are dirty */ 3655 mstatus = env->mstatus | MSTATUS_XS; 3656 write_mstatus(env, csrno, mstatus); 3657 return RISCV_EXCP_NONE; 3658 } 3659 3660 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3661 target_ulong *val) 3662 { 3663 *val = env->mpmbase; 3664 return RISCV_EXCP_NONE; 3665 } 3666 3667 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3668 target_ulong val) 3669 { 3670 uint64_t mstatus; 3671 3672 env->mpmbase = val; 3673 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3674 env->cur_pmbase = val; 3675 } 3676 env->mmte |= PM_EXT_DIRTY; 3677 3678 /* Set XS and SD bits, since PM CSRs are dirty */ 3679 mstatus = env->mstatus | MSTATUS_XS; 3680 write_mstatus(env, csrno, mstatus); 3681 return RISCV_EXCP_NONE; 3682 } 3683 3684 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3685 target_ulong *val) 3686 { 3687 *val = env->spmbase; 3688 return RISCV_EXCP_NONE; 3689 } 3690 3691 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3692 target_ulong val) 3693 { 3694 uint64_t mstatus; 3695 3696 /* if pm.current==0 we can't modify current PM CSRs */ 3697 if (check_pm_current_disabled(env, csrno)) { 3698 return RISCV_EXCP_NONE; 3699 } 3700 env->spmbase = val; 3701 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3702 env->cur_pmbase = val; 3703 } 3704 env->mmte |= PM_EXT_DIRTY; 3705 3706 /* Set XS and SD bits, since PM CSRs are dirty */ 3707 mstatus = env->mstatus | MSTATUS_XS; 3708 write_mstatus(env, csrno, mstatus); 3709 return RISCV_EXCP_NONE; 3710 } 3711 3712 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3713 target_ulong *val) 3714 { 3715 *val = env->upmbase; 3716 return RISCV_EXCP_NONE; 3717 } 3718 3719 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3720 target_ulong val) 3721 { 3722 uint64_t mstatus; 3723 3724 /* if pm.current==0 we can't modify current PM CSRs */ 3725 if (check_pm_current_disabled(env, csrno)) { 3726 return RISCV_EXCP_NONE; 3727 } 3728 env->upmbase = val; 3729 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3730 env->cur_pmbase = val; 3731 } 3732 env->mmte |= PM_EXT_DIRTY; 3733 3734 /* Set XS and SD bits, since PM CSRs are dirty */ 3735 mstatus = env->mstatus | MSTATUS_XS; 3736 write_mstatus(env, csrno, mstatus); 3737 return RISCV_EXCP_NONE; 3738 } 3739 3740 #endif 3741 3742 /* Crypto Extension */ 3743 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3744 target_ulong *ret_value, 3745 target_ulong new_value, 3746 target_ulong write_mask) 3747 { 3748 uint16_t random_v; 3749 Error *random_e = NULL; 3750 int random_r; 3751 target_ulong rval; 3752 3753 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3754 if (unlikely(random_r < 0)) { 3755 /* 3756 * Failed, for unknown reasons in the crypto subsystem. 3757 * The best we can do is log the reason and return a 3758 * failure indication to the guest. There is no reason 3759 * we know to expect the failure to be transitory, so 3760 * indicate DEAD to avoid having the guest spin on WAIT. 3761 */ 3762 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3763 __func__, error_get_pretty(random_e)); 3764 error_free(random_e); 3765 rval = SEED_OPST_DEAD; 3766 } else { 3767 rval = random_v | SEED_OPST_ES16; 3768 } 3769 3770 if (ret_value) { 3771 *ret_value = rval; 3772 } 3773 3774 return RISCV_EXCP_NONE; 3775 } 3776 3777 /* 3778 * riscv_csrrw - read and/or update control and status register 3779 * 3780 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3781 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3782 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3783 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3784 */ 3785 3786 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3787 int csrno, 3788 bool write_mask, 3789 RISCVCPU *cpu) 3790 { 3791 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3792 bool read_only = get_field(csrno, 0xC00) == 3; 3793 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3794 3795 /* ensure the CSR extension is enabled */ 3796 if (!cpu->cfg.ext_icsr) { 3797 return RISCV_EXCP_ILLEGAL_INST; 3798 } 3799 3800 /* privileged spec version check */ 3801 if (env->priv_ver < csr_min_priv) { 3802 return RISCV_EXCP_ILLEGAL_INST; 3803 } 3804 3805 /* read / write check */ 3806 if (write_mask && read_only) { 3807 return RISCV_EXCP_ILLEGAL_INST; 3808 } 3809 3810 /* 3811 * The predicate() not only does existence check but also does some 3812 * access control check which triggers for example virtual instruction 3813 * exception in some cases. When writing read-only CSRs in those cases 3814 * illegal instruction exception should be triggered instead of virtual 3815 * instruction exception. Hence this comes after the read / write check. 3816 */ 3817 g_assert(csr_ops[csrno].predicate != NULL); 3818 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3819 if (ret != RISCV_EXCP_NONE) { 3820 return ret; 3821 } 3822 3823 #if !defined(CONFIG_USER_ONLY) 3824 int csr_priv, effective_priv = env->priv; 3825 3826 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3827 !riscv_cpu_virt_enabled(env)) { 3828 /* 3829 * We are in HS mode. Add 1 to the effective privledge level to 3830 * allow us to access the Hypervisor CSRs. 3831 */ 3832 effective_priv++; 3833 } 3834 3835 csr_priv = get_field(csrno, 0x300); 3836 if (!env->debugger && (effective_priv < csr_priv)) { 3837 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3838 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3839 } 3840 return RISCV_EXCP_ILLEGAL_INST; 3841 } 3842 #endif 3843 return RISCV_EXCP_NONE; 3844 } 3845 3846 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3847 target_ulong *ret_value, 3848 target_ulong new_value, 3849 target_ulong write_mask) 3850 { 3851 RISCVException ret; 3852 target_ulong old_value; 3853 3854 /* execute combined read/write operation if it exists */ 3855 if (csr_ops[csrno].op) { 3856 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3857 } 3858 3859 /* if no accessor exists then return failure */ 3860 if (!csr_ops[csrno].read) { 3861 return RISCV_EXCP_ILLEGAL_INST; 3862 } 3863 /* read old value */ 3864 ret = csr_ops[csrno].read(env, csrno, &old_value); 3865 if (ret != RISCV_EXCP_NONE) { 3866 return ret; 3867 } 3868 3869 /* write value if writable and write mask set, otherwise drop writes */ 3870 if (write_mask) { 3871 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3872 if (csr_ops[csrno].write) { 3873 ret = csr_ops[csrno].write(env, csrno, new_value); 3874 if (ret != RISCV_EXCP_NONE) { 3875 return ret; 3876 } 3877 } 3878 } 3879 3880 /* return old value */ 3881 if (ret_value) { 3882 *ret_value = old_value; 3883 } 3884 3885 return RISCV_EXCP_NONE; 3886 } 3887 3888 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3889 target_ulong *ret_value, 3890 target_ulong new_value, target_ulong write_mask) 3891 { 3892 RISCVCPU *cpu = env_archcpu(env); 3893 3894 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3895 if (ret != RISCV_EXCP_NONE) { 3896 return ret; 3897 } 3898 3899 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3900 } 3901 3902 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3903 Int128 *ret_value, 3904 Int128 new_value, 3905 Int128 write_mask) 3906 { 3907 RISCVException ret; 3908 Int128 old_value; 3909 3910 /* read old value */ 3911 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3912 if (ret != RISCV_EXCP_NONE) { 3913 return ret; 3914 } 3915 3916 /* write value if writable and write mask set, otherwise drop writes */ 3917 if (int128_nz(write_mask)) { 3918 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3919 int128_and(new_value, write_mask)); 3920 if (csr_ops[csrno].write128) { 3921 ret = csr_ops[csrno].write128(env, csrno, new_value); 3922 if (ret != RISCV_EXCP_NONE) { 3923 return ret; 3924 } 3925 } else if (csr_ops[csrno].write) { 3926 /* avoids having to write wrappers for all registers */ 3927 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3928 if (ret != RISCV_EXCP_NONE) { 3929 return ret; 3930 } 3931 } 3932 } 3933 3934 /* return old value */ 3935 if (ret_value) { 3936 *ret_value = old_value; 3937 } 3938 3939 return RISCV_EXCP_NONE; 3940 } 3941 3942 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3943 Int128 *ret_value, 3944 Int128 new_value, Int128 write_mask) 3945 { 3946 RISCVException ret; 3947 RISCVCPU *cpu = env_archcpu(env); 3948 3949 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3950 if (ret != RISCV_EXCP_NONE) { 3951 return ret; 3952 } 3953 3954 if (csr_ops[csrno].read128) { 3955 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3956 } 3957 3958 /* 3959 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3960 * at all defined. 3961 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3962 * significant), for those, this fallback is correctly handling the accesses 3963 */ 3964 target_ulong old_value; 3965 ret = riscv_csrrw_do64(env, csrno, &old_value, 3966 int128_getlo(new_value), 3967 int128_getlo(write_mask)); 3968 if (ret == RISCV_EXCP_NONE && ret_value) { 3969 *ret_value = int128_make64(old_value); 3970 } 3971 return ret; 3972 } 3973 3974 /* 3975 * Debugger support. If not in user mode, set env->debugger before the 3976 * riscv_csrrw call and clear it after the call. 3977 */ 3978 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3979 target_ulong *ret_value, 3980 target_ulong new_value, 3981 target_ulong write_mask) 3982 { 3983 RISCVException ret; 3984 #if !defined(CONFIG_USER_ONLY) 3985 env->debugger = true; 3986 #endif 3987 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3988 #if !defined(CONFIG_USER_ONLY) 3989 env->debugger = false; 3990 #endif 3991 return ret; 3992 } 3993 3994 /* Control and Status Register function table */ 3995 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3996 /* User Floating-Point CSRs */ 3997 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3998 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3999 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 4000 /* Vector CSRs */ 4001 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 4002 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 4003 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4004 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4005 [CSR_VL] = { "vl", vs, read_vl }, 4006 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4007 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4008 /* User Timers and Counters */ 4009 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4010 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4011 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4012 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4013 4014 /* 4015 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4016 * rdtime callback is not provided by machine/platform emulation. 4017 */ 4018 [CSR_TIME] = { "time", ctr, read_time }, 4019 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4020 4021 /* Crypto Extension */ 4022 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4023 4024 #if !defined(CONFIG_USER_ONLY) 4025 /* Machine Timers and Counters */ 4026 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4027 write_mhpmcounter }, 4028 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4029 write_mhpmcounter }, 4030 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4031 write_mhpmcounterh }, 4032 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4033 write_mhpmcounterh }, 4034 4035 /* Machine Information Registers */ 4036 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4037 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4038 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4039 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4040 4041 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4042 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4043 /* Machine Trap Setup */ 4044 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4045 NULL, read_mstatus_i128 }, 4046 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4047 NULL, read_misa_i128 }, 4048 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4049 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4050 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4051 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4052 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4053 write_mcounteren }, 4054 4055 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4056 write_mstatush }, 4057 4058 /* Machine Trap Handling */ 4059 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4060 NULL, read_mscratch_i128, write_mscratch_i128 }, 4061 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4062 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4063 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4064 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4065 4066 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4067 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4068 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4069 4070 /* Machine-Level Interrupts (AIA) */ 4071 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4072 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4073 4074 /* Virtual Interrupts for Supervisor Level (AIA) */ 4075 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4076 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4077 4078 /* Machine-Level High-Half CSRs (AIA) */ 4079 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4080 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4081 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4082 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4083 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4084 4085 /* Execution environment configuration */ 4086 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4087 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4088 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4089 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4090 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4091 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4092 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4093 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4094 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4095 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4096 4097 /* Smstateen extension CSRs */ 4098 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4099 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4100 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4101 write_mstateen0h, 4102 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4103 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4104 write_mstateen_1_3, 4105 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4106 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4107 write_mstateenh_1_3, 4108 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4109 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4110 write_mstateen_1_3, 4111 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4112 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4113 write_mstateenh_1_3, 4114 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4115 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4116 write_mstateen_1_3, 4117 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4118 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4119 write_mstateenh_1_3, 4120 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4121 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4122 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4123 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4124 write_hstateen0h, 4125 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4126 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4127 write_hstateen_1_3, 4128 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4129 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4130 write_hstateenh_1_3, 4131 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4132 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4133 write_hstateen_1_3, 4134 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4135 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4136 write_hstateenh_1_3, 4137 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4138 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4139 write_hstateen_1_3, 4140 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4141 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4142 write_hstateenh_1_3, 4143 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4144 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4145 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4146 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4147 write_sstateen_1_3, 4148 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4149 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4150 write_sstateen_1_3, 4151 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4152 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4153 write_sstateen_1_3, 4154 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4155 4156 /* Supervisor Trap Setup */ 4157 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4158 NULL, read_sstatus_i128 }, 4159 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4160 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4161 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4162 write_scounteren }, 4163 4164 /* Supervisor Trap Handling */ 4165 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4166 NULL, read_sscratch_i128, write_sscratch_i128 }, 4167 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4168 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4169 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4170 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4171 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4172 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4173 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4174 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4175 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4176 write_vstimecmp, 4177 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4178 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4179 write_vstimecmph, 4180 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4181 4182 /* Supervisor Protection and Translation */ 4183 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 4184 4185 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4186 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4187 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4188 4189 /* Supervisor-Level Interrupts (AIA) */ 4190 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4191 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4192 4193 /* Supervisor-Level High-Half CSRs (AIA) */ 4194 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4195 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4196 4197 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4198 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4199 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4200 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4201 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4202 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4203 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4204 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4205 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4206 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4207 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4208 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4209 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4210 write_hcounteren, 4211 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4212 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4213 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4214 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4215 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4216 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4217 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4218 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4219 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4220 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 4221 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4222 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4223 write_htimedelta, 4224 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4225 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4226 write_htimedeltah, 4227 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4228 4229 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4230 write_vsstatus, 4231 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4232 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4233 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4234 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4235 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4236 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4237 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4238 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4239 write_vsscratch, 4240 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4241 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4242 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4243 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4244 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4245 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4246 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4247 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4248 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4249 4250 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4251 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4252 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4253 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4254 4255 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4256 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4257 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4258 write_hvictl }, 4259 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4260 write_hviprio1 }, 4261 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4262 write_hviprio2 }, 4263 4264 /* 4265 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4266 */ 4267 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4268 rmw_xiselect }, 4269 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4270 4271 /* VS-Level Interrupts (H-extension with AIA) */ 4272 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4273 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4274 4275 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4276 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4277 rmw_hidelegh }, 4278 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4279 write_ignore }, 4280 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4281 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4282 write_hviprio1h }, 4283 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4284 write_hviprio2h }, 4285 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4286 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4287 4288 /* Physical Memory Protection */ 4289 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4290 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4291 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4292 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4293 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4294 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4295 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4296 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4297 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4298 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4299 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4300 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4301 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4302 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4303 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4304 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4305 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4306 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4307 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4308 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4309 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4310 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4311 4312 /* Debug CSRs */ 4313 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4314 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4315 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4316 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4317 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4318 4319 /* User Pointer Masking */ 4320 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4321 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4322 write_upmmask }, 4323 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4324 write_upmbase }, 4325 /* Machine Pointer Masking */ 4326 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4327 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4328 write_mpmmask }, 4329 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4330 write_mpmbase }, 4331 /* Supervisor Pointer Masking */ 4332 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4333 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4334 write_spmmask }, 4335 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4336 write_spmbase }, 4337 4338 /* Performance Counters */ 4339 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4340 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4341 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4342 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4343 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4344 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4345 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4346 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4347 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4348 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4349 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4350 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4351 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4352 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4353 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4354 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4355 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4356 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4357 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4358 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4359 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4360 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4361 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4362 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4363 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4364 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4365 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4366 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4367 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4368 4369 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4370 write_mhpmcounter }, 4371 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4372 write_mhpmcounter }, 4373 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4374 write_mhpmcounter }, 4375 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4376 write_mhpmcounter }, 4377 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4378 write_mhpmcounter }, 4379 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4380 write_mhpmcounter }, 4381 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4382 write_mhpmcounter }, 4383 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4384 write_mhpmcounter }, 4385 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4386 write_mhpmcounter }, 4387 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4388 write_mhpmcounter }, 4389 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4390 write_mhpmcounter }, 4391 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4392 write_mhpmcounter }, 4393 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4394 write_mhpmcounter }, 4395 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4396 write_mhpmcounter }, 4397 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4398 write_mhpmcounter }, 4399 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4400 write_mhpmcounter }, 4401 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4402 write_mhpmcounter }, 4403 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4404 write_mhpmcounter }, 4405 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4406 write_mhpmcounter }, 4407 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4408 write_mhpmcounter }, 4409 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4410 write_mhpmcounter }, 4411 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4412 write_mhpmcounter }, 4413 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4414 write_mhpmcounter }, 4415 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4416 write_mhpmcounter }, 4417 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4418 write_mhpmcounter }, 4419 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4420 write_mhpmcounter }, 4421 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4422 write_mhpmcounter }, 4423 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4424 write_mhpmcounter }, 4425 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4426 write_mhpmcounter }, 4427 4428 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4429 write_mcountinhibit, 4430 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4431 4432 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4433 write_mhpmevent }, 4434 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4435 write_mhpmevent }, 4436 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4437 write_mhpmevent }, 4438 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4439 write_mhpmevent }, 4440 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4441 write_mhpmevent }, 4442 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4443 write_mhpmevent }, 4444 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4445 write_mhpmevent }, 4446 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4447 write_mhpmevent }, 4448 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4449 write_mhpmevent }, 4450 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4451 write_mhpmevent }, 4452 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4453 write_mhpmevent }, 4454 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4455 write_mhpmevent }, 4456 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4457 write_mhpmevent }, 4458 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4459 write_mhpmevent }, 4460 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4461 write_mhpmevent }, 4462 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4463 write_mhpmevent }, 4464 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4465 write_mhpmevent }, 4466 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4467 write_mhpmevent }, 4468 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4469 write_mhpmevent }, 4470 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4471 write_mhpmevent }, 4472 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4473 write_mhpmevent }, 4474 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4475 write_mhpmevent }, 4476 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4477 write_mhpmevent }, 4478 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4479 write_mhpmevent }, 4480 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4481 write_mhpmevent }, 4482 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4483 write_mhpmevent }, 4484 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4485 write_mhpmevent }, 4486 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4487 write_mhpmevent }, 4488 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4489 write_mhpmevent }, 4490 4491 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4492 write_mhpmeventh, 4493 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4494 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4495 write_mhpmeventh, 4496 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4497 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4498 write_mhpmeventh, 4499 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4500 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4501 write_mhpmeventh, 4502 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4503 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4504 write_mhpmeventh, 4505 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4506 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4507 write_mhpmeventh, 4508 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4509 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4510 write_mhpmeventh, 4511 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4512 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4513 write_mhpmeventh, 4514 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4515 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4516 write_mhpmeventh, 4517 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4518 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4519 write_mhpmeventh, 4520 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4521 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4522 write_mhpmeventh, 4523 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4524 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4525 write_mhpmeventh, 4526 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4527 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4528 write_mhpmeventh, 4529 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4530 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4531 write_mhpmeventh, 4532 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4533 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4534 write_mhpmeventh, 4535 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4536 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4537 write_mhpmeventh, 4538 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4539 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4540 write_mhpmeventh, 4541 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4542 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4543 write_mhpmeventh, 4544 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4545 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4546 write_mhpmeventh, 4547 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4548 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4549 write_mhpmeventh, 4550 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4551 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4552 write_mhpmeventh, 4553 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4554 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4555 write_mhpmeventh, 4556 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4557 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4558 write_mhpmeventh, 4559 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4560 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4561 write_mhpmeventh, 4562 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4563 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4564 write_mhpmeventh, 4565 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4566 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4567 write_mhpmeventh, 4568 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4569 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4570 write_mhpmeventh, 4571 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4572 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4573 write_mhpmeventh, 4574 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4575 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4576 write_mhpmeventh, 4577 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4578 4579 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4580 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4581 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4582 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4583 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4584 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4585 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4586 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4587 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4588 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4589 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4590 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4591 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4592 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4593 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4594 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4595 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4596 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4597 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4598 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4599 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4600 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4601 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4602 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4603 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4604 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4605 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4606 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4607 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4608 4609 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4610 write_mhpmcounterh }, 4611 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4612 write_mhpmcounterh }, 4613 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4614 write_mhpmcounterh }, 4615 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4616 write_mhpmcounterh }, 4617 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4618 write_mhpmcounterh }, 4619 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4620 write_mhpmcounterh }, 4621 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4622 write_mhpmcounterh }, 4623 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4624 write_mhpmcounterh }, 4625 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4626 write_mhpmcounterh }, 4627 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4628 write_mhpmcounterh }, 4629 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4630 write_mhpmcounterh }, 4631 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4632 write_mhpmcounterh }, 4633 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4634 write_mhpmcounterh }, 4635 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4636 write_mhpmcounterh }, 4637 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4638 write_mhpmcounterh }, 4639 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4640 write_mhpmcounterh }, 4641 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4642 write_mhpmcounterh }, 4643 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4644 write_mhpmcounterh }, 4645 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4646 write_mhpmcounterh }, 4647 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4648 write_mhpmcounterh }, 4649 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4650 write_mhpmcounterh }, 4651 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4652 write_mhpmcounterh }, 4653 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4654 write_mhpmcounterh }, 4655 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4656 write_mhpmcounterh }, 4657 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4658 write_mhpmcounterh }, 4659 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4660 write_mhpmcounterh }, 4661 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4662 write_mhpmcounterh }, 4663 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4664 write_mhpmcounterh }, 4665 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4666 write_mhpmcounterh }, 4667 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4668 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4669 4670 #endif /* !CONFIG_USER_ONLY */ 4671 }; 4672