1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "sysemu/cpu-timers.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 32 /* CSR function table public API */ 33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 34 { 35 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 36 } 37 38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 41 } 42 43 /* Predicates */ 44 #if !defined(CONFIG_USER_ONLY) 45 static RISCVException smstateen_acc_ok(CPURISCVState *env, int index, 46 uint64_t bit) 47 { 48 bool virt = riscv_cpu_virt_enabled(env); 49 CPUState *cs = env_cpu(env); 50 RISCVCPU *cpu = RISCV_CPU(cs); 51 52 if (env->priv == PRV_M || !cpu->cfg.ext_smstateen) { 53 return RISCV_EXCP_NONE; 54 } 55 56 if (!(env->mstateen[index] & bit)) { 57 return RISCV_EXCP_ILLEGAL_INST; 58 } 59 60 if (virt) { 61 if (!(env->hstateen[index] & bit)) { 62 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 63 } 64 65 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 66 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 67 } 68 } 69 70 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 71 if (!(env->sstateen[index] & bit)) { 72 return RISCV_EXCP_ILLEGAL_INST; 73 } 74 } 75 76 return RISCV_EXCP_NONE; 77 } 78 #endif 79 80 static RISCVException fs(CPURISCVState *env, int csrno) 81 { 82 #if !defined(CONFIG_USER_ONLY) 83 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 84 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 85 return RISCV_EXCP_ILLEGAL_INST; 86 } 87 #endif 88 return RISCV_EXCP_NONE; 89 } 90 91 static RISCVException vs(CPURISCVState *env, int csrno) 92 { 93 CPUState *cs = env_cpu(env); 94 RISCVCPU *cpu = RISCV_CPU(cs); 95 96 if (env->misa_ext & RVV || 97 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 98 #if !defined(CONFIG_USER_ONLY) 99 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 100 return RISCV_EXCP_ILLEGAL_INST; 101 } 102 #endif 103 return RISCV_EXCP_NONE; 104 } 105 return RISCV_EXCP_ILLEGAL_INST; 106 } 107 108 static RISCVException ctr(CPURISCVState *env, int csrno) 109 { 110 #if !defined(CONFIG_USER_ONLY) 111 CPUState *cs = env_cpu(env); 112 RISCVCPU *cpu = RISCV_CPU(cs); 113 int ctr_index; 114 target_ulong ctr_mask; 115 int base_csrno = CSR_CYCLE; 116 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 117 118 if (rv32 && csrno >= CSR_CYCLEH) { 119 /* Offset for RV32 hpmcounternh counters */ 120 base_csrno += 0x80; 121 } 122 ctr_index = csrno - base_csrno; 123 ctr_mask = BIT(ctr_index); 124 125 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 126 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 127 goto skip_ext_pmu_check; 128 } 129 130 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 131 /* No counter is enabled in PMU or the counter is out of range */ 132 return RISCV_EXCP_ILLEGAL_INST; 133 } 134 135 skip_ext_pmu_check: 136 137 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 138 return RISCV_EXCP_ILLEGAL_INST; 139 } 140 141 if (riscv_cpu_virt_enabled(env)) { 142 if (!get_field(env->hcounteren, ctr_mask) || 143 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 144 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 145 } 146 } 147 148 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 149 !get_field(env->scounteren, ctr_mask)) { 150 return RISCV_EXCP_ILLEGAL_INST; 151 } 152 153 #endif 154 return RISCV_EXCP_NONE; 155 } 156 157 static RISCVException ctr32(CPURISCVState *env, int csrno) 158 { 159 if (riscv_cpu_mxl(env) != MXL_RV32) { 160 return RISCV_EXCP_ILLEGAL_INST; 161 } 162 163 return ctr(env, csrno); 164 } 165 166 #if !defined(CONFIG_USER_ONLY) 167 static RISCVException mctr(CPURISCVState *env, int csrno) 168 { 169 CPUState *cs = env_cpu(env); 170 RISCVCPU *cpu = RISCV_CPU(cs); 171 int ctr_index; 172 int base_csrno = CSR_MHPMCOUNTER3; 173 174 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 175 /* Offset for RV32 mhpmcounternh counters */ 176 base_csrno += 0x80; 177 } 178 ctr_index = csrno - base_csrno; 179 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 180 /* The PMU is not enabled or counter is out of range*/ 181 return RISCV_EXCP_ILLEGAL_INST; 182 } 183 184 return RISCV_EXCP_NONE; 185 } 186 187 static RISCVException mctr32(CPURISCVState *env, int csrno) 188 { 189 if (riscv_cpu_mxl(env) != MXL_RV32) { 190 return RISCV_EXCP_ILLEGAL_INST; 191 } 192 193 return mctr(env, csrno); 194 } 195 196 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 197 { 198 CPUState *cs = env_cpu(env); 199 RISCVCPU *cpu = RISCV_CPU(cs); 200 201 if (!cpu->cfg.ext_sscofpmf) { 202 return RISCV_EXCP_ILLEGAL_INST; 203 } 204 205 return RISCV_EXCP_NONE; 206 } 207 208 static RISCVException any(CPURISCVState *env, int csrno) 209 { 210 return RISCV_EXCP_NONE; 211 } 212 213 static RISCVException any32(CPURISCVState *env, int csrno) 214 { 215 if (riscv_cpu_mxl(env) != MXL_RV32) { 216 return RISCV_EXCP_ILLEGAL_INST; 217 } 218 219 return any(env, csrno); 220 221 } 222 223 static int aia_any(CPURISCVState *env, int csrno) 224 { 225 RISCVCPU *cpu = env_archcpu(env); 226 227 if (!cpu->cfg.ext_smaia) { 228 return RISCV_EXCP_ILLEGAL_INST; 229 } 230 231 return any(env, csrno); 232 } 233 234 static int aia_any32(CPURISCVState *env, int csrno) 235 { 236 RISCVCPU *cpu = env_archcpu(env); 237 238 if (!cpu->cfg.ext_smaia) { 239 return RISCV_EXCP_ILLEGAL_INST; 240 } 241 242 return any32(env, csrno); 243 } 244 245 static RISCVException smode(CPURISCVState *env, int csrno) 246 { 247 if (riscv_has_ext(env, RVS)) { 248 return RISCV_EXCP_NONE; 249 } 250 251 return RISCV_EXCP_ILLEGAL_INST; 252 } 253 254 static int smode32(CPURISCVState *env, int csrno) 255 { 256 if (riscv_cpu_mxl(env) != MXL_RV32) { 257 return RISCV_EXCP_ILLEGAL_INST; 258 } 259 260 return smode(env, csrno); 261 } 262 263 static int aia_smode(CPURISCVState *env, int csrno) 264 { 265 RISCVCPU *cpu = env_archcpu(env); 266 267 if (!cpu->cfg.ext_ssaia) { 268 return RISCV_EXCP_ILLEGAL_INST; 269 } 270 271 return smode(env, csrno); 272 } 273 274 static int aia_smode32(CPURISCVState *env, int csrno) 275 { 276 RISCVCPU *cpu = env_archcpu(env); 277 278 if (!cpu->cfg.ext_ssaia) { 279 return RISCV_EXCP_ILLEGAL_INST; 280 } 281 282 return smode32(env, csrno); 283 } 284 285 static RISCVException hmode(CPURISCVState *env, int csrno) 286 { 287 if (riscv_has_ext(env, RVH)) { 288 return RISCV_EXCP_NONE; 289 } 290 291 return RISCV_EXCP_ILLEGAL_INST; 292 } 293 294 static RISCVException hmode32(CPURISCVState *env, int csrno) 295 { 296 if (riscv_cpu_mxl(env) != MXL_RV32) { 297 return RISCV_EXCP_ILLEGAL_INST; 298 } 299 300 return hmode(env, csrno); 301 302 } 303 304 static RISCVException umode(CPURISCVState *env, int csrno) 305 { 306 if (riscv_has_ext(env, RVU)) { 307 return RISCV_EXCP_NONE; 308 } 309 310 return RISCV_EXCP_ILLEGAL_INST; 311 } 312 313 static RISCVException umode32(CPURISCVState *env, int csrno) 314 { 315 if (riscv_cpu_mxl(env) != MXL_RV32) { 316 return RISCV_EXCP_ILLEGAL_INST; 317 } 318 319 return umode(env, csrno); 320 } 321 322 static RISCVException mstateen(CPURISCVState *env, int csrno) 323 { 324 CPUState *cs = env_cpu(env); 325 RISCVCPU *cpu = RISCV_CPU(cs); 326 327 if (!cpu->cfg.ext_smstateen) { 328 return RISCV_EXCP_ILLEGAL_INST; 329 } 330 331 return any(env, csrno); 332 } 333 334 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 335 { 336 CPUState *cs = env_cpu(env); 337 RISCVCPU *cpu = RISCV_CPU(cs); 338 339 if (!cpu->cfg.ext_smstateen) { 340 return RISCV_EXCP_ILLEGAL_INST; 341 } 342 343 if (env->priv < PRV_M) { 344 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 345 return RISCV_EXCP_ILLEGAL_INST; 346 } 347 } 348 349 return hmode(env, csrno); 350 } 351 352 static RISCVException hstateen(CPURISCVState *env, int csrno) 353 { 354 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 355 } 356 357 static RISCVException hstateenh(CPURISCVState *env, int csrno) 358 { 359 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 360 } 361 362 static RISCVException sstateen(CPURISCVState *env, int csrno) 363 { 364 bool virt = riscv_cpu_virt_enabled(env); 365 int index = csrno - CSR_SSTATEEN0; 366 CPUState *cs = env_cpu(env); 367 RISCVCPU *cpu = RISCV_CPU(cs); 368 369 if (!cpu->cfg.ext_smstateen) { 370 return RISCV_EXCP_ILLEGAL_INST; 371 } 372 373 if (env->priv < PRV_M) { 374 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 375 return RISCV_EXCP_ILLEGAL_INST; 376 } 377 378 if (virt) { 379 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 380 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 381 } 382 } 383 } 384 385 return smode(env, csrno); 386 } 387 388 /* Checks if PointerMasking registers could be accessed */ 389 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 390 { 391 /* Check if j-ext is present */ 392 if (riscv_has_ext(env, RVJ)) { 393 return RISCV_EXCP_NONE; 394 } 395 return RISCV_EXCP_ILLEGAL_INST; 396 } 397 398 static int aia_hmode(CPURISCVState *env, int csrno) 399 { 400 RISCVCPU *cpu = env_archcpu(env); 401 402 if (!cpu->cfg.ext_ssaia) { 403 return RISCV_EXCP_ILLEGAL_INST; 404 } 405 406 return hmode(env, csrno); 407 } 408 409 static int aia_hmode32(CPURISCVState *env, int csrno) 410 { 411 RISCVCPU *cpu = env_archcpu(env); 412 413 if (!cpu->cfg.ext_ssaia) { 414 return RISCV_EXCP_ILLEGAL_INST; 415 } 416 417 return hmode32(env, csrno); 418 } 419 420 static RISCVException pmp(CPURISCVState *env, int csrno) 421 { 422 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 423 return RISCV_EXCP_NONE; 424 } 425 426 return RISCV_EXCP_ILLEGAL_INST; 427 } 428 429 static RISCVException epmp(CPURISCVState *env, int csrno) 430 { 431 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 432 return RISCV_EXCP_NONE; 433 } 434 435 return RISCV_EXCP_ILLEGAL_INST; 436 } 437 438 static RISCVException debug(CPURISCVState *env, int csrno) 439 { 440 if (riscv_feature(env, RISCV_FEATURE_DEBUG)) { 441 return RISCV_EXCP_NONE; 442 } 443 444 return RISCV_EXCP_ILLEGAL_INST; 445 } 446 #endif 447 448 static RISCVException seed(CPURISCVState *env, int csrno) 449 { 450 RISCVCPU *cpu = env_archcpu(env); 451 452 if (!cpu->cfg.ext_zkr) { 453 return RISCV_EXCP_ILLEGAL_INST; 454 } 455 456 #if !defined(CONFIG_USER_ONLY) 457 /* 458 * With a CSR read-write instruction: 459 * 1) The seed CSR is always available in machine mode as normal. 460 * 2) Attempted access to seed from virtual modes VS and VU always raises 461 * an exception(virtual instruction exception only if mseccfg.sseed=1). 462 * 3) Without the corresponding access control bit set to 1, any attempted 463 * access to seed from U, S or HS modes will raise an illegal instruction 464 * exception. 465 */ 466 if (env->priv == PRV_M) { 467 return RISCV_EXCP_NONE; 468 } else if (riscv_cpu_virt_enabled(env)) { 469 if (env->mseccfg & MSECCFG_SSEED) { 470 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 471 } else { 472 return RISCV_EXCP_ILLEGAL_INST; 473 } 474 } else { 475 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 476 return RISCV_EXCP_NONE; 477 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 478 return RISCV_EXCP_NONE; 479 } else { 480 return RISCV_EXCP_ILLEGAL_INST; 481 } 482 } 483 #else 484 return RISCV_EXCP_NONE; 485 #endif 486 } 487 488 /* User Floating-Point CSRs */ 489 static RISCVException read_fflags(CPURISCVState *env, int csrno, 490 target_ulong *val) 491 { 492 *val = riscv_cpu_get_fflags(env); 493 return RISCV_EXCP_NONE; 494 } 495 496 static RISCVException write_fflags(CPURISCVState *env, int csrno, 497 target_ulong val) 498 { 499 #if !defined(CONFIG_USER_ONLY) 500 if (riscv_has_ext(env, RVF)) { 501 env->mstatus |= MSTATUS_FS; 502 } 503 #endif 504 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 505 return RISCV_EXCP_NONE; 506 } 507 508 static RISCVException read_frm(CPURISCVState *env, int csrno, 509 target_ulong *val) 510 { 511 *val = env->frm; 512 return RISCV_EXCP_NONE; 513 } 514 515 static RISCVException write_frm(CPURISCVState *env, int csrno, 516 target_ulong val) 517 { 518 #if !defined(CONFIG_USER_ONLY) 519 if (riscv_has_ext(env, RVF)) { 520 env->mstatus |= MSTATUS_FS; 521 } 522 #endif 523 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 524 return RISCV_EXCP_NONE; 525 } 526 527 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 528 target_ulong *val) 529 { 530 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 531 | (env->frm << FSR_RD_SHIFT); 532 return RISCV_EXCP_NONE; 533 } 534 535 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 536 target_ulong val) 537 { 538 #if !defined(CONFIG_USER_ONLY) 539 if (riscv_has_ext(env, RVF)) { 540 env->mstatus |= MSTATUS_FS; 541 } 542 #endif 543 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 544 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 545 return RISCV_EXCP_NONE; 546 } 547 548 static RISCVException read_vtype(CPURISCVState *env, int csrno, 549 target_ulong *val) 550 { 551 uint64_t vill; 552 switch (env->xl) { 553 case MXL_RV32: 554 vill = (uint32_t)env->vill << 31; 555 break; 556 case MXL_RV64: 557 vill = (uint64_t)env->vill << 63; 558 break; 559 default: 560 g_assert_not_reached(); 561 } 562 *val = (target_ulong)vill | env->vtype; 563 return RISCV_EXCP_NONE; 564 } 565 566 static RISCVException read_vl(CPURISCVState *env, int csrno, 567 target_ulong *val) 568 { 569 *val = env->vl; 570 return RISCV_EXCP_NONE; 571 } 572 573 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 574 { 575 *val = env_archcpu(env)->cfg.vlen >> 3; 576 return RISCV_EXCP_NONE; 577 } 578 579 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 580 target_ulong *val) 581 { 582 *val = env->vxrm; 583 return RISCV_EXCP_NONE; 584 } 585 586 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 587 target_ulong val) 588 { 589 #if !defined(CONFIG_USER_ONLY) 590 env->mstatus |= MSTATUS_VS; 591 #endif 592 env->vxrm = val; 593 return RISCV_EXCP_NONE; 594 } 595 596 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 597 target_ulong *val) 598 { 599 *val = env->vxsat; 600 return RISCV_EXCP_NONE; 601 } 602 603 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 604 target_ulong val) 605 { 606 #if !defined(CONFIG_USER_ONLY) 607 env->mstatus |= MSTATUS_VS; 608 #endif 609 env->vxsat = val; 610 return RISCV_EXCP_NONE; 611 } 612 613 static RISCVException read_vstart(CPURISCVState *env, int csrno, 614 target_ulong *val) 615 { 616 *val = env->vstart; 617 return RISCV_EXCP_NONE; 618 } 619 620 static RISCVException write_vstart(CPURISCVState *env, int csrno, 621 target_ulong val) 622 { 623 #if !defined(CONFIG_USER_ONLY) 624 env->mstatus |= MSTATUS_VS; 625 #endif 626 /* 627 * The vstart CSR is defined to have only enough writable bits 628 * to hold the largest element index, i.e. lg2(VLEN) bits. 629 */ 630 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 631 return RISCV_EXCP_NONE; 632 } 633 634 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 635 { 636 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 637 return RISCV_EXCP_NONE; 638 } 639 640 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 641 { 642 #if !defined(CONFIG_USER_ONLY) 643 env->mstatus |= MSTATUS_VS; 644 #endif 645 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 646 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 647 return RISCV_EXCP_NONE; 648 } 649 650 /* User Timers and Counters */ 651 static target_ulong get_ticks(bool shift) 652 { 653 int64_t val; 654 target_ulong result; 655 656 #if !defined(CONFIG_USER_ONLY) 657 if (icount_enabled()) { 658 val = icount_get(); 659 } else { 660 val = cpu_get_host_ticks(); 661 } 662 #else 663 val = cpu_get_host_ticks(); 664 #endif 665 666 if (shift) { 667 result = val >> 32; 668 } else { 669 result = val; 670 } 671 672 return result; 673 } 674 675 #if defined(CONFIG_USER_ONLY) 676 static RISCVException read_time(CPURISCVState *env, int csrno, 677 target_ulong *val) 678 { 679 *val = cpu_get_host_ticks(); 680 return RISCV_EXCP_NONE; 681 } 682 683 static RISCVException read_timeh(CPURISCVState *env, int csrno, 684 target_ulong *val) 685 { 686 *val = cpu_get_host_ticks() >> 32; 687 return RISCV_EXCP_NONE; 688 } 689 690 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 691 { 692 *val = get_ticks(false); 693 return RISCV_EXCP_NONE; 694 } 695 696 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 697 { 698 *val = get_ticks(true); 699 return RISCV_EXCP_NONE; 700 } 701 702 #else /* CONFIG_USER_ONLY */ 703 704 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 705 { 706 int evt_index = csrno - CSR_MCOUNTINHIBIT; 707 708 *val = env->mhpmevent_val[evt_index]; 709 710 return RISCV_EXCP_NONE; 711 } 712 713 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 714 { 715 int evt_index = csrno - CSR_MCOUNTINHIBIT; 716 uint64_t mhpmevt_val = val; 717 718 env->mhpmevent_val[evt_index] = val; 719 720 if (riscv_cpu_mxl(env) == MXL_RV32) { 721 mhpmevt_val = mhpmevt_val | 722 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 723 } 724 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 725 726 return RISCV_EXCP_NONE; 727 } 728 729 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 730 { 731 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 732 733 *val = env->mhpmeventh_val[evt_index]; 734 735 return RISCV_EXCP_NONE; 736 } 737 738 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 739 { 740 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 741 uint64_t mhpmevth_val = val; 742 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 743 744 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 745 env->mhpmeventh_val[evt_index] = val; 746 747 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 748 749 return RISCV_EXCP_NONE; 750 } 751 752 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 753 { 754 int ctr_idx = csrno - CSR_MCYCLE; 755 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 756 uint64_t mhpmctr_val = val; 757 758 counter->mhpmcounter_val = val; 759 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 760 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 761 counter->mhpmcounter_prev = get_ticks(false); 762 if (ctr_idx > 2) { 763 if (riscv_cpu_mxl(env) == MXL_RV32) { 764 mhpmctr_val = mhpmctr_val | 765 ((uint64_t)counter->mhpmcounterh_val << 32); 766 } 767 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 768 } 769 } else { 770 /* Other counters can keep incrementing from the given value */ 771 counter->mhpmcounter_prev = val; 772 } 773 774 return RISCV_EXCP_NONE; 775 } 776 777 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 778 { 779 int ctr_idx = csrno - CSR_MCYCLEH; 780 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 781 uint64_t mhpmctr_val = counter->mhpmcounter_val; 782 uint64_t mhpmctrh_val = val; 783 784 counter->mhpmcounterh_val = val; 785 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 786 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 787 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 788 counter->mhpmcounterh_prev = get_ticks(true); 789 if (ctr_idx > 2) { 790 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 791 } 792 } else { 793 counter->mhpmcounterh_prev = val; 794 } 795 796 return RISCV_EXCP_NONE; 797 } 798 799 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 800 bool upper_half, uint32_t ctr_idx) 801 { 802 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 803 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 804 counter.mhpmcounter_prev; 805 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 806 counter.mhpmcounter_val; 807 808 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 809 /** 810 * Counter should not increment if inhibit bit is set. We can't really 811 * stop the icount counting. Just return the counter value written by 812 * the supervisor to indicate that counter was not incremented. 813 */ 814 if (!counter.started) { 815 *val = ctr_val; 816 return RISCV_EXCP_NONE; 817 } else { 818 /* Mark that the counter has been stopped */ 819 counter.started = false; 820 } 821 } 822 823 /** 824 * The kernel computes the perf delta by subtracting the current value from 825 * the value it initialized previously (ctr_val). 826 */ 827 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 828 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 829 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 830 } else { 831 *val = ctr_val; 832 } 833 834 return RISCV_EXCP_NONE; 835 } 836 837 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 838 { 839 uint16_t ctr_index; 840 841 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 842 ctr_index = csrno - CSR_MCYCLE; 843 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 844 ctr_index = csrno - CSR_CYCLE; 845 } else { 846 return RISCV_EXCP_ILLEGAL_INST; 847 } 848 849 return riscv_pmu_read_ctr(env, val, false, ctr_index); 850 } 851 852 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 853 { 854 uint16_t ctr_index; 855 856 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 857 ctr_index = csrno - CSR_MCYCLEH; 858 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 859 ctr_index = csrno - CSR_CYCLEH; 860 } else { 861 return RISCV_EXCP_ILLEGAL_INST; 862 } 863 864 return riscv_pmu_read_ctr(env, val, true, ctr_index); 865 } 866 867 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 868 { 869 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 870 int i; 871 *val = 0; 872 target_ulong *mhpm_evt_val; 873 uint64_t of_bit_mask; 874 875 if (riscv_cpu_mxl(env) == MXL_RV32) { 876 mhpm_evt_val = env->mhpmeventh_val; 877 of_bit_mask = MHPMEVENTH_BIT_OF; 878 } else { 879 mhpm_evt_val = env->mhpmevent_val; 880 of_bit_mask = MHPMEVENT_BIT_OF; 881 } 882 883 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 884 if ((get_field(env->mcounteren, BIT(i))) && 885 (mhpm_evt_val[i] & of_bit_mask)) { 886 *val |= BIT(i); 887 } 888 } 889 890 return RISCV_EXCP_NONE; 891 } 892 893 static RISCVException read_time(CPURISCVState *env, int csrno, 894 target_ulong *val) 895 { 896 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 897 898 if (!env->rdtime_fn) { 899 return RISCV_EXCP_ILLEGAL_INST; 900 } 901 902 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 903 return RISCV_EXCP_NONE; 904 } 905 906 static RISCVException read_timeh(CPURISCVState *env, int csrno, 907 target_ulong *val) 908 { 909 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 910 911 if (!env->rdtime_fn) { 912 return RISCV_EXCP_ILLEGAL_INST; 913 } 914 915 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 916 return RISCV_EXCP_NONE; 917 } 918 919 static RISCVException sstc(CPURISCVState *env, int csrno) 920 { 921 CPUState *cs = env_cpu(env); 922 RISCVCPU *cpu = RISCV_CPU(cs); 923 bool hmode_check = false; 924 925 if (!cpu->cfg.ext_sstc || !env->rdtime_fn) { 926 return RISCV_EXCP_ILLEGAL_INST; 927 } 928 929 if (env->priv == PRV_M) { 930 return RISCV_EXCP_NONE; 931 } 932 933 /* 934 * No need of separate function for rv32 as menvcfg stores both menvcfg 935 * menvcfgh for RV32. 936 */ 937 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 938 get_field(env->menvcfg, MENVCFG_STCE))) { 939 return RISCV_EXCP_ILLEGAL_INST; 940 } 941 942 if (riscv_cpu_virt_enabled(env)) { 943 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 944 get_field(env->henvcfg, HENVCFG_STCE))) { 945 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 946 } 947 } 948 949 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 950 hmode_check = true; 951 } 952 953 return hmode_check ? hmode(env, csrno) : smode(env, csrno); 954 } 955 956 static RISCVException sstc_32(CPURISCVState *env, int csrno) 957 { 958 if (riscv_cpu_mxl(env) != MXL_RV32) { 959 return RISCV_EXCP_ILLEGAL_INST; 960 } 961 962 return sstc(env, csrno); 963 } 964 965 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 966 target_ulong *val) 967 { 968 *val = env->vstimecmp; 969 970 return RISCV_EXCP_NONE; 971 } 972 973 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 974 target_ulong *val) 975 { 976 *val = env->vstimecmp >> 32; 977 978 return RISCV_EXCP_NONE; 979 } 980 981 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 982 target_ulong val) 983 { 984 RISCVCPU *cpu = env_archcpu(env); 985 986 if (riscv_cpu_mxl(env) == MXL_RV32) { 987 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 988 } else { 989 env->vstimecmp = val; 990 } 991 992 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 993 env->htimedelta, MIP_VSTIP); 994 995 return RISCV_EXCP_NONE; 996 } 997 998 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 999 target_ulong val) 1000 { 1001 RISCVCPU *cpu = env_archcpu(env); 1002 1003 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1004 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1005 env->htimedelta, MIP_VSTIP); 1006 1007 return RISCV_EXCP_NONE; 1008 } 1009 1010 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1011 target_ulong *val) 1012 { 1013 if (riscv_cpu_virt_enabled(env)) { 1014 *val = env->vstimecmp; 1015 } else { 1016 *val = env->stimecmp; 1017 } 1018 1019 return RISCV_EXCP_NONE; 1020 } 1021 1022 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1023 target_ulong *val) 1024 { 1025 if (riscv_cpu_virt_enabled(env)) { 1026 *val = env->vstimecmp >> 32; 1027 } else { 1028 *val = env->stimecmp >> 32; 1029 } 1030 1031 return RISCV_EXCP_NONE; 1032 } 1033 1034 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1035 target_ulong val) 1036 { 1037 RISCVCPU *cpu = env_archcpu(env); 1038 1039 if (riscv_cpu_virt_enabled(env)) { 1040 if (env->hvictl & HVICTL_VTI) { 1041 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1042 } 1043 return write_vstimecmp(env, csrno, val); 1044 } 1045 1046 if (riscv_cpu_mxl(env) == MXL_RV32) { 1047 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1048 } else { 1049 env->stimecmp = val; 1050 } 1051 1052 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1053 1054 return RISCV_EXCP_NONE; 1055 } 1056 1057 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1058 target_ulong val) 1059 { 1060 RISCVCPU *cpu = env_archcpu(env); 1061 1062 if (riscv_cpu_virt_enabled(env)) { 1063 if (env->hvictl & HVICTL_VTI) { 1064 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1065 } 1066 return write_vstimecmph(env, csrno, val); 1067 } 1068 1069 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1070 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1071 1072 return RISCV_EXCP_NONE; 1073 } 1074 1075 /* Machine constants */ 1076 1077 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1078 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1079 MIP_LCOFIP)) 1080 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1081 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1082 1083 #define VSTOPI_NUM_SRCS 5 1084 1085 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1086 VS_MODE_INTERRUPTS; 1087 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1088 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1089 HS_MODE_INTERRUPTS; 1090 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1091 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1092 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1093 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1094 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1095 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1096 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1097 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1098 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1099 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1100 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1101 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1102 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1103 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1104 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1105 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1106 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1107 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1108 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1109 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1110 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1111 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1112 (1ULL << (RISCV_EXCP_M_ECALL)) | 1113 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1114 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1115 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1116 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1117 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1118 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1119 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1120 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1121 SIP_LCOFIP; 1122 static const target_ulong hip_writable_mask = MIP_VSSIP; 1123 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1124 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1125 1126 static const char valid_vm_1_10_32[16] = { 1127 [VM_1_10_MBARE] = 1, 1128 [VM_1_10_SV32] = 1 1129 }; 1130 1131 static const char valid_vm_1_10_64[16] = { 1132 [VM_1_10_MBARE] = 1, 1133 [VM_1_10_SV39] = 1, 1134 [VM_1_10_SV48] = 1, 1135 [VM_1_10_SV57] = 1 1136 }; 1137 1138 /* Machine Information Registers */ 1139 static RISCVException read_zero(CPURISCVState *env, int csrno, 1140 target_ulong *val) 1141 { 1142 *val = 0; 1143 return RISCV_EXCP_NONE; 1144 } 1145 1146 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1147 target_ulong val) 1148 { 1149 return RISCV_EXCP_NONE; 1150 } 1151 1152 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1153 target_ulong *val) 1154 { 1155 CPUState *cs = env_cpu(env); 1156 RISCVCPU *cpu = RISCV_CPU(cs); 1157 1158 *val = cpu->cfg.mvendorid; 1159 return RISCV_EXCP_NONE; 1160 } 1161 1162 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1163 target_ulong *val) 1164 { 1165 CPUState *cs = env_cpu(env); 1166 RISCVCPU *cpu = RISCV_CPU(cs); 1167 1168 *val = cpu->cfg.marchid; 1169 return RISCV_EXCP_NONE; 1170 } 1171 1172 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1173 target_ulong *val) 1174 { 1175 CPUState *cs = env_cpu(env); 1176 RISCVCPU *cpu = RISCV_CPU(cs); 1177 1178 *val = cpu->cfg.mimpid; 1179 return RISCV_EXCP_NONE; 1180 } 1181 1182 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1183 target_ulong *val) 1184 { 1185 *val = env->mhartid; 1186 return RISCV_EXCP_NONE; 1187 } 1188 1189 /* Machine Trap Setup */ 1190 1191 /* We do not store SD explicitly, only compute it on demand. */ 1192 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1193 { 1194 if ((status & MSTATUS_FS) == MSTATUS_FS || 1195 (status & MSTATUS_VS) == MSTATUS_VS || 1196 (status & MSTATUS_XS) == MSTATUS_XS) { 1197 switch (xl) { 1198 case MXL_RV32: 1199 return status | MSTATUS32_SD; 1200 case MXL_RV64: 1201 return status | MSTATUS64_SD; 1202 case MXL_RV128: 1203 return MSTATUSH128_SD; 1204 default: 1205 g_assert_not_reached(); 1206 } 1207 } 1208 return status; 1209 } 1210 1211 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1212 target_ulong *val) 1213 { 1214 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1215 return RISCV_EXCP_NONE; 1216 } 1217 1218 static int validate_vm(CPURISCVState *env, target_ulong vm) 1219 { 1220 if (riscv_cpu_mxl(env) == MXL_RV32) { 1221 return valid_vm_1_10_32[vm & 0xf]; 1222 } else { 1223 return valid_vm_1_10_64[vm & 0xf]; 1224 } 1225 } 1226 1227 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1228 target_ulong val) 1229 { 1230 uint64_t mstatus = env->mstatus; 1231 uint64_t mask = 0; 1232 RISCVMXL xl = riscv_cpu_mxl(env); 1233 1234 /* flush tlb on mstatus fields that affect VM */ 1235 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1236 MSTATUS_MPRV | MSTATUS_SUM)) { 1237 tlb_flush(env_cpu(env)); 1238 } 1239 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1240 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1241 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1242 MSTATUS_TW | MSTATUS_VS; 1243 1244 if (riscv_has_ext(env, RVF)) { 1245 mask |= MSTATUS_FS; 1246 } 1247 1248 if (xl != MXL_RV32 || env->debugger) { 1249 /* 1250 * RV32: MPV and GVA are not in mstatus. The current plan is to 1251 * add them to mstatush. For now, we just don't support it. 1252 */ 1253 mask |= MSTATUS_MPV | MSTATUS_GVA; 1254 if ((val & MSTATUS64_UXL) != 0) { 1255 mask |= MSTATUS64_UXL; 1256 } 1257 } 1258 1259 mstatus = (mstatus & ~mask) | (val & mask); 1260 1261 if (xl > MXL_RV32) { 1262 /* SXL field is for now read only */ 1263 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1264 } 1265 env->mstatus = mstatus; 1266 env->xl = cpu_recompute_xl(env); 1267 1268 return RISCV_EXCP_NONE; 1269 } 1270 1271 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1272 target_ulong *val) 1273 { 1274 *val = env->mstatus >> 32; 1275 return RISCV_EXCP_NONE; 1276 } 1277 1278 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1279 target_ulong val) 1280 { 1281 uint64_t valh = (uint64_t)val << 32; 1282 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1283 1284 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1285 tlb_flush(env_cpu(env)); 1286 } 1287 1288 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1289 1290 return RISCV_EXCP_NONE; 1291 } 1292 1293 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1294 Int128 *val) 1295 { 1296 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1297 return RISCV_EXCP_NONE; 1298 } 1299 1300 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1301 Int128 *val) 1302 { 1303 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1304 return RISCV_EXCP_NONE; 1305 } 1306 1307 static RISCVException read_misa(CPURISCVState *env, int csrno, 1308 target_ulong *val) 1309 { 1310 target_ulong misa; 1311 1312 switch (env->misa_mxl) { 1313 case MXL_RV32: 1314 misa = (target_ulong)MXL_RV32 << 30; 1315 break; 1316 #ifdef TARGET_RISCV64 1317 case MXL_RV64: 1318 misa = (target_ulong)MXL_RV64 << 62; 1319 break; 1320 #endif 1321 default: 1322 g_assert_not_reached(); 1323 } 1324 1325 *val = misa | env->misa_ext; 1326 return RISCV_EXCP_NONE; 1327 } 1328 1329 static RISCVException write_misa(CPURISCVState *env, int csrno, 1330 target_ulong val) 1331 { 1332 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 1333 /* drop write to misa */ 1334 return RISCV_EXCP_NONE; 1335 } 1336 1337 /* 'I' or 'E' must be present */ 1338 if (!(val & (RVI | RVE))) { 1339 /* It is not, drop write to misa */ 1340 return RISCV_EXCP_NONE; 1341 } 1342 1343 /* 'E' excludes all other extensions */ 1344 if (val & RVE) { 1345 /* when we support 'E' we can do "val = RVE;" however 1346 * for now we just drop writes if 'E' is present. 1347 */ 1348 return RISCV_EXCP_NONE; 1349 } 1350 1351 /* 1352 * misa.MXL writes are not supported by QEMU. 1353 * Drop writes to those bits. 1354 */ 1355 1356 /* Mask extensions that are not supported by this hart */ 1357 val &= env->misa_ext_mask; 1358 1359 /* Mask extensions that are not supported by QEMU */ 1360 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 1361 1362 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1363 if ((val & RVD) && !(val & RVF)) { 1364 val &= ~RVD; 1365 } 1366 1367 /* Suppress 'C' if next instruction is not aligned 1368 * TODO: this should check next_pc 1369 */ 1370 if ((val & RVC) && (GETPC() & ~3) != 0) { 1371 val &= ~RVC; 1372 } 1373 1374 /* If nothing changed, do nothing. */ 1375 if (val == env->misa_ext) { 1376 return RISCV_EXCP_NONE; 1377 } 1378 1379 if (!(val & RVF)) { 1380 env->mstatus &= ~MSTATUS_FS; 1381 } 1382 1383 /* flush translation cache */ 1384 tb_flush(env_cpu(env)); 1385 env->misa_ext = val; 1386 env->xl = riscv_cpu_mxl(env); 1387 return RISCV_EXCP_NONE; 1388 } 1389 1390 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1391 target_ulong *val) 1392 { 1393 *val = env->medeleg; 1394 return RISCV_EXCP_NONE; 1395 } 1396 1397 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1398 target_ulong val) 1399 { 1400 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1401 return RISCV_EXCP_NONE; 1402 } 1403 1404 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1405 uint64_t *ret_val, 1406 uint64_t new_val, uint64_t wr_mask) 1407 { 1408 uint64_t mask = wr_mask & delegable_ints; 1409 1410 if (ret_val) { 1411 *ret_val = env->mideleg; 1412 } 1413 1414 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1415 1416 if (riscv_has_ext(env, RVH)) { 1417 env->mideleg |= HS_MODE_INTERRUPTS; 1418 } 1419 1420 return RISCV_EXCP_NONE; 1421 } 1422 1423 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1424 target_ulong *ret_val, 1425 target_ulong new_val, target_ulong wr_mask) 1426 { 1427 uint64_t rval; 1428 RISCVException ret; 1429 1430 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1431 if (ret_val) { 1432 *ret_val = rval; 1433 } 1434 1435 return ret; 1436 } 1437 1438 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1439 target_ulong *ret_val, 1440 target_ulong new_val, 1441 target_ulong wr_mask) 1442 { 1443 uint64_t rval; 1444 RISCVException ret; 1445 1446 ret = rmw_mideleg64(env, csrno, &rval, 1447 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1448 if (ret_val) { 1449 *ret_val = rval >> 32; 1450 } 1451 1452 return ret; 1453 } 1454 1455 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1456 uint64_t *ret_val, 1457 uint64_t new_val, uint64_t wr_mask) 1458 { 1459 uint64_t mask = wr_mask & all_ints; 1460 1461 if (ret_val) { 1462 *ret_val = env->mie; 1463 } 1464 1465 env->mie = (env->mie & ~mask) | (new_val & mask); 1466 1467 if (!riscv_has_ext(env, RVH)) { 1468 env->mie &= ~((uint64_t)MIP_SGEIP); 1469 } 1470 1471 return RISCV_EXCP_NONE; 1472 } 1473 1474 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1475 target_ulong *ret_val, 1476 target_ulong new_val, target_ulong wr_mask) 1477 { 1478 uint64_t rval; 1479 RISCVException ret; 1480 1481 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1482 if (ret_val) { 1483 *ret_val = rval; 1484 } 1485 1486 return ret; 1487 } 1488 1489 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1490 target_ulong *ret_val, 1491 target_ulong new_val, target_ulong wr_mask) 1492 { 1493 uint64_t rval; 1494 RISCVException ret; 1495 1496 ret = rmw_mie64(env, csrno, &rval, 1497 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1498 if (ret_val) { 1499 *ret_val = rval >> 32; 1500 } 1501 1502 return ret; 1503 } 1504 1505 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1506 { 1507 int irq; 1508 uint8_t iprio; 1509 1510 irq = riscv_cpu_mirq_pending(env); 1511 if (irq <= 0 || irq > 63) { 1512 *val = 0; 1513 } else { 1514 iprio = env->miprio[irq]; 1515 if (!iprio) { 1516 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1517 iprio = IPRIO_MMAXIPRIO; 1518 } 1519 } 1520 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1521 *val |= iprio; 1522 } 1523 1524 return RISCV_EXCP_NONE; 1525 } 1526 1527 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1528 { 1529 if (!riscv_cpu_virt_enabled(env)) { 1530 return csrno; 1531 } 1532 1533 switch (csrno) { 1534 case CSR_SISELECT: 1535 return CSR_VSISELECT; 1536 case CSR_SIREG: 1537 return CSR_VSIREG; 1538 case CSR_STOPEI: 1539 return CSR_VSTOPEI; 1540 default: 1541 return csrno; 1542 }; 1543 } 1544 1545 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1546 target_ulong new_val, target_ulong wr_mask) 1547 { 1548 target_ulong *iselect; 1549 1550 /* Translate CSR number for VS-mode */ 1551 csrno = aia_xlate_vs_csrno(env, csrno); 1552 1553 /* Find the iselect CSR based on CSR number */ 1554 switch (csrno) { 1555 case CSR_MISELECT: 1556 iselect = &env->miselect; 1557 break; 1558 case CSR_SISELECT: 1559 iselect = &env->siselect; 1560 break; 1561 case CSR_VSISELECT: 1562 iselect = &env->vsiselect; 1563 break; 1564 default: 1565 return RISCV_EXCP_ILLEGAL_INST; 1566 }; 1567 1568 if (val) { 1569 *val = *iselect; 1570 } 1571 1572 wr_mask &= ISELECT_MASK; 1573 if (wr_mask) { 1574 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1575 } 1576 1577 return RISCV_EXCP_NONE; 1578 } 1579 1580 static int rmw_iprio(target_ulong xlen, 1581 target_ulong iselect, uint8_t *iprio, 1582 target_ulong *val, target_ulong new_val, 1583 target_ulong wr_mask, int ext_irq_no) 1584 { 1585 int i, firq, nirqs; 1586 target_ulong old_val; 1587 1588 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1589 return -EINVAL; 1590 } 1591 if (xlen != 32 && iselect & 0x1) { 1592 return -EINVAL; 1593 } 1594 1595 nirqs = 4 * (xlen / 32); 1596 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1597 1598 old_val = 0; 1599 for (i = 0; i < nirqs; i++) { 1600 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1601 } 1602 1603 if (val) { 1604 *val = old_val; 1605 } 1606 1607 if (wr_mask) { 1608 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1609 for (i = 0; i < nirqs; i++) { 1610 /* 1611 * M-level and S-level external IRQ priority always read-only 1612 * zero. This means default priority order is always preferred 1613 * for M-level and S-level external IRQs. 1614 */ 1615 if ((firq + i) == ext_irq_no) { 1616 continue; 1617 } 1618 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1619 } 1620 } 1621 1622 return 0; 1623 } 1624 1625 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1626 target_ulong new_val, target_ulong wr_mask) 1627 { 1628 bool virt; 1629 uint8_t *iprio; 1630 int ret = -EINVAL; 1631 target_ulong priv, isel, vgein; 1632 1633 /* Translate CSR number for VS-mode */ 1634 csrno = aia_xlate_vs_csrno(env, csrno); 1635 1636 /* Decode register details from CSR number */ 1637 virt = false; 1638 switch (csrno) { 1639 case CSR_MIREG: 1640 iprio = env->miprio; 1641 isel = env->miselect; 1642 priv = PRV_M; 1643 break; 1644 case CSR_SIREG: 1645 iprio = env->siprio; 1646 isel = env->siselect; 1647 priv = PRV_S; 1648 break; 1649 case CSR_VSIREG: 1650 iprio = env->hviprio; 1651 isel = env->vsiselect; 1652 priv = PRV_S; 1653 virt = true; 1654 break; 1655 default: 1656 goto done; 1657 }; 1658 1659 /* Find the selected guest interrupt file */ 1660 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1661 1662 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1663 /* Local interrupt priority registers not available for VS-mode */ 1664 if (!virt) { 1665 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1666 isel, iprio, val, new_val, wr_mask, 1667 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1668 } 1669 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1670 /* IMSIC registers only available when machine implements it. */ 1671 if (env->aia_ireg_rmw_fn[priv]) { 1672 /* Selected guest interrupt file should not be zero */ 1673 if (virt && (!vgein || env->geilen < vgein)) { 1674 goto done; 1675 } 1676 /* Call machine specific IMSIC register emulation */ 1677 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1678 AIA_MAKE_IREG(isel, priv, virt, vgein, 1679 riscv_cpu_mxl_bits(env)), 1680 val, new_val, wr_mask); 1681 } 1682 } 1683 1684 done: 1685 if (ret) { 1686 return (riscv_cpu_virt_enabled(env) && virt) ? 1687 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1688 } 1689 return RISCV_EXCP_NONE; 1690 } 1691 1692 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1693 target_ulong new_val, target_ulong wr_mask) 1694 { 1695 bool virt; 1696 int ret = -EINVAL; 1697 target_ulong priv, vgein; 1698 1699 /* Translate CSR number for VS-mode */ 1700 csrno = aia_xlate_vs_csrno(env, csrno); 1701 1702 /* Decode register details from CSR number */ 1703 virt = false; 1704 switch (csrno) { 1705 case CSR_MTOPEI: 1706 priv = PRV_M; 1707 break; 1708 case CSR_STOPEI: 1709 priv = PRV_S; 1710 break; 1711 case CSR_VSTOPEI: 1712 priv = PRV_S; 1713 virt = true; 1714 break; 1715 default: 1716 goto done; 1717 }; 1718 1719 /* IMSIC CSRs only available when machine implements IMSIC. */ 1720 if (!env->aia_ireg_rmw_fn[priv]) { 1721 goto done; 1722 } 1723 1724 /* Find the selected guest interrupt file */ 1725 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1726 1727 /* Selected guest interrupt file should be valid */ 1728 if (virt && (!vgein || env->geilen < vgein)) { 1729 goto done; 1730 } 1731 1732 /* Call machine specific IMSIC register emulation for TOPEI */ 1733 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1734 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1735 riscv_cpu_mxl_bits(env)), 1736 val, new_val, wr_mask); 1737 1738 done: 1739 if (ret) { 1740 return (riscv_cpu_virt_enabled(env) && virt) ? 1741 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1742 } 1743 return RISCV_EXCP_NONE; 1744 } 1745 1746 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1747 target_ulong *val) 1748 { 1749 *val = env->mtvec; 1750 return RISCV_EXCP_NONE; 1751 } 1752 1753 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1754 target_ulong val) 1755 { 1756 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1757 if ((val & 3) < 2) { 1758 env->mtvec = val; 1759 } else { 1760 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1761 } 1762 return RISCV_EXCP_NONE; 1763 } 1764 1765 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1766 target_ulong *val) 1767 { 1768 *val = env->mcountinhibit; 1769 return RISCV_EXCP_NONE; 1770 } 1771 1772 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1773 target_ulong val) 1774 { 1775 int cidx; 1776 PMUCTRState *counter; 1777 1778 env->mcountinhibit = val; 1779 1780 /* Check if any other counter is also monitoring cycles/instructions */ 1781 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1782 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1783 counter = &env->pmu_ctrs[cidx]; 1784 counter->started = true; 1785 } 1786 } 1787 1788 return RISCV_EXCP_NONE; 1789 } 1790 1791 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1792 target_ulong *val) 1793 { 1794 *val = env->mcounteren; 1795 return RISCV_EXCP_NONE; 1796 } 1797 1798 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1799 target_ulong val) 1800 { 1801 env->mcounteren = val; 1802 return RISCV_EXCP_NONE; 1803 } 1804 1805 /* Machine Trap Handling */ 1806 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1807 Int128 *val) 1808 { 1809 *val = int128_make128(env->mscratch, env->mscratchh); 1810 return RISCV_EXCP_NONE; 1811 } 1812 1813 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1814 Int128 val) 1815 { 1816 env->mscratch = int128_getlo(val); 1817 env->mscratchh = int128_gethi(val); 1818 return RISCV_EXCP_NONE; 1819 } 1820 1821 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1822 target_ulong *val) 1823 { 1824 *val = env->mscratch; 1825 return RISCV_EXCP_NONE; 1826 } 1827 1828 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1829 target_ulong val) 1830 { 1831 env->mscratch = val; 1832 return RISCV_EXCP_NONE; 1833 } 1834 1835 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1836 target_ulong *val) 1837 { 1838 *val = env->mepc; 1839 return RISCV_EXCP_NONE; 1840 } 1841 1842 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1843 target_ulong val) 1844 { 1845 env->mepc = val; 1846 return RISCV_EXCP_NONE; 1847 } 1848 1849 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1850 target_ulong *val) 1851 { 1852 *val = env->mcause; 1853 return RISCV_EXCP_NONE; 1854 } 1855 1856 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1857 target_ulong val) 1858 { 1859 env->mcause = val; 1860 return RISCV_EXCP_NONE; 1861 } 1862 1863 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1864 target_ulong *val) 1865 { 1866 *val = env->mtval; 1867 return RISCV_EXCP_NONE; 1868 } 1869 1870 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1871 target_ulong val) 1872 { 1873 env->mtval = val; 1874 return RISCV_EXCP_NONE; 1875 } 1876 1877 /* Execution environment configuration setup */ 1878 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1879 target_ulong *val) 1880 { 1881 *val = env->menvcfg; 1882 return RISCV_EXCP_NONE; 1883 } 1884 1885 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1886 target_ulong val) 1887 { 1888 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1889 1890 if (riscv_cpu_mxl(env) == MXL_RV64) { 1891 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1892 } 1893 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1894 1895 return RISCV_EXCP_NONE; 1896 } 1897 1898 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1899 target_ulong *val) 1900 { 1901 *val = env->menvcfg >> 32; 1902 return RISCV_EXCP_NONE; 1903 } 1904 1905 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1906 target_ulong val) 1907 { 1908 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1909 uint64_t valh = (uint64_t)val << 32; 1910 1911 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1912 1913 return RISCV_EXCP_NONE; 1914 } 1915 1916 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1917 target_ulong *val) 1918 { 1919 RISCVException ret; 1920 1921 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1922 if (ret != RISCV_EXCP_NONE) { 1923 return ret; 1924 } 1925 1926 *val = env->senvcfg; 1927 return RISCV_EXCP_NONE; 1928 } 1929 1930 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1931 target_ulong val) 1932 { 1933 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1934 RISCVException ret; 1935 1936 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1937 if (ret != RISCV_EXCP_NONE) { 1938 return ret; 1939 } 1940 1941 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1942 return RISCV_EXCP_NONE; 1943 } 1944 1945 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1946 target_ulong *val) 1947 { 1948 RISCVException ret; 1949 1950 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1951 if (ret != RISCV_EXCP_NONE) { 1952 return ret; 1953 } 1954 1955 *val = env->henvcfg; 1956 return RISCV_EXCP_NONE; 1957 } 1958 1959 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1960 target_ulong val) 1961 { 1962 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1963 RISCVException ret; 1964 1965 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1966 if (ret != RISCV_EXCP_NONE) { 1967 return ret; 1968 } 1969 1970 if (riscv_cpu_mxl(env) == MXL_RV64) { 1971 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 1972 } 1973 1974 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1975 1976 return RISCV_EXCP_NONE; 1977 } 1978 1979 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1980 target_ulong *val) 1981 { 1982 RISCVException ret; 1983 1984 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1985 if (ret != RISCV_EXCP_NONE) { 1986 return ret; 1987 } 1988 1989 *val = env->henvcfg >> 32; 1990 return RISCV_EXCP_NONE; 1991 } 1992 1993 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 1994 target_ulong val) 1995 { 1996 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 1997 uint64_t valh = (uint64_t)val << 32; 1998 RISCVException ret; 1999 2000 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2001 if (ret != RISCV_EXCP_NONE) { 2002 return ret; 2003 } 2004 2005 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2006 return RISCV_EXCP_NONE; 2007 } 2008 2009 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2010 target_ulong *val) 2011 { 2012 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2013 2014 return RISCV_EXCP_NONE; 2015 } 2016 2017 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2018 uint64_t wr_mask, target_ulong new_val) 2019 { 2020 uint64_t *reg; 2021 2022 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2023 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2024 2025 return RISCV_EXCP_NONE; 2026 } 2027 2028 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2029 target_ulong new_val) 2030 { 2031 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2032 2033 return write_mstateen(env, csrno, wr_mask, new_val); 2034 } 2035 2036 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2037 target_ulong new_val) 2038 { 2039 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2040 } 2041 2042 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2043 target_ulong *val) 2044 { 2045 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2046 2047 return RISCV_EXCP_NONE; 2048 } 2049 2050 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2051 uint64_t wr_mask, target_ulong new_val) 2052 { 2053 uint64_t *reg, val; 2054 2055 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2056 val = (uint64_t)new_val << 32; 2057 val |= *reg & 0xFFFFFFFF; 2058 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2059 2060 return RISCV_EXCP_NONE; 2061 } 2062 2063 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2064 target_ulong new_val) 2065 { 2066 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2067 2068 return write_mstateenh(env, csrno, wr_mask, new_val); 2069 } 2070 2071 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2072 target_ulong new_val) 2073 { 2074 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2075 } 2076 2077 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2078 target_ulong *val) 2079 { 2080 int index = csrno - CSR_HSTATEEN0; 2081 2082 *val = env->hstateen[index] & env->mstateen[index]; 2083 2084 return RISCV_EXCP_NONE; 2085 } 2086 2087 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2088 uint64_t mask, target_ulong new_val) 2089 { 2090 int index = csrno - CSR_HSTATEEN0; 2091 uint64_t *reg, wr_mask; 2092 2093 reg = &env->hstateen[index]; 2094 wr_mask = env->mstateen[index] & mask; 2095 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2096 2097 return RISCV_EXCP_NONE; 2098 } 2099 2100 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2101 target_ulong new_val) 2102 { 2103 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2104 2105 return write_hstateen(env, csrno, wr_mask, new_val); 2106 } 2107 2108 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2109 target_ulong new_val) 2110 { 2111 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2112 } 2113 2114 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2115 target_ulong *val) 2116 { 2117 int index = csrno - CSR_HSTATEEN0H; 2118 2119 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2120 2121 return RISCV_EXCP_NONE; 2122 } 2123 2124 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2125 uint64_t mask, target_ulong new_val) 2126 { 2127 int index = csrno - CSR_HSTATEEN0H; 2128 uint64_t *reg, wr_mask, val; 2129 2130 reg = &env->hstateen[index]; 2131 val = (uint64_t)new_val << 32; 2132 val |= *reg & 0xFFFFFFFF; 2133 wr_mask = env->mstateen[index] & mask; 2134 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2135 2136 return RISCV_EXCP_NONE; 2137 } 2138 2139 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2140 target_ulong new_val) 2141 { 2142 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2143 2144 return write_hstateenh(env, csrno, wr_mask, new_val); 2145 } 2146 2147 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2148 target_ulong new_val) 2149 { 2150 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2151 } 2152 2153 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2154 target_ulong *val) 2155 { 2156 bool virt = riscv_cpu_virt_enabled(env); 2157 int index = csrno - CSR_SSTATEEN0; 2158 2159 *val = env->sstateen[index] & env->mstateen[index]; 2160 if (virt) { 2161 *val &= env->hstateen[index]; 2162 } 2163 2164 return RISCV_EXCP_NONE; 2165 } 2166 2167 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2168 uint64_t mask, target_ulong new_val) 2169 { 2170 bool virt = riscv_cpu_virt_enabled(env); 2171 int index = csrno - CSR_SSTATEEN0; 2172 uint64_t wr_mask; 2173 uint64_t *reg; 2174 2175 wr_mask = env->mstateen[index] & mask; 2176 if (virt) { 2177 wr_mask &= env->hstateen[index]; 2178 } 2179 2180 reg = &env->sstateen[index]; 2181 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2182 2183 return RISCV_EXCP_NONE; 2184 } 2185 2186 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2187 target_ulong new_val) 2188 { 2189 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2190 2191 return write_sstateen(env, csrno, wr_mask, new_val); 2192 } 2193 2194 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2195 target_ulong new_val) 2196 { 2197 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2198 } 2199 2200 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2201 uint64_t *ret_val, 2202 uint64_t new_val, uint64_t wr_mask) 2203 { 2204 RISCVCPU *cpu = env_archcpu(env); 2205 uint64_t old_mip, mask = wr_mask & delegable_ints; 2206 uint32_t gin; 2207 2208 if (mask & MIP_SEIP) { 2209 env->software_seip = new_val & MIP_SEIP; 2210 new_val |= env->external_seip * MIP_SEIP; 2211 } 2212 2213 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2214 get_field(env->menvcfg, MENVCFG_STCE)) { 2215 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2216 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2217 } 2218 2219 if (mask) { 2220 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 2221 } else { 2222 old_mip = env->mip; 2223 } 2224 2225 if (csrno != CSR_HVIP) { 2226 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2227 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2228 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2229 } 2230 2231 if (ret_val) { 2232 *ret_val = old_mip; 2233 } 2234 2235 return RISCV_EXCP_NONE; 2236 } 2237 2238 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2239 target_ulong *ret_val, 2240 target_ulong new_val, target_ulong wr_mask) 2241 { 2242 uint64_t rval; 2243 RISCVException ret; 2244 2245 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2246 if (ret_val) { 2247 *ret_val = rval; 2248 } 2249 2250 return ret; 2251 } 2252 2253 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2254 target_ulong *ret_val, 2255 target_ulong new_val, target_ulong wr_mask) 2256 { 2257 uint64_t rval; 2258 RISCVException ret; 2259 2260 ret = rmw_mip64(env, csrno, &rval, 2261 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2262 if (ret_val) { 2263 *ret_val = rval >> 32; 2264 } 2265 2266 return ret; 2267 } 2268 2269 /* Supervisor Trap Setup */ 2270 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2271 Int128 *val) 2272 { 2273 uint64_t mask = sstatus_v1_10_mask; 2274 uint64_t sstatus = env->mstatus & mask; 2275 if (env->xl != MXL_RV32 || env->debugger) { 2276 mask |= SSTATUS64_UXL; 2277 } 2278 2279 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2280 return RISCV_EXCP_NONE; 2281 } 2282 2283 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2284 target_ulong *val) 2285 { 2286 target_ulong mask = (sstatus_v1_10_mask); 2287 if (env->xl != MXL_RV32 || env->debugger) { 2288 mask |= SSTATUS64_UXL; 2289 } 2290 /* TODO: Use SXL not MXL. */ 2291 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2292 return RISCV_EXCP_NONE; 2293 } 2294 2295 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2296 target_ulong val) 2297 { 2298 target_ulong mask = (sstatus_v1_10_mask); 2299 2300 if (env->xl != MXL_RV32 || env->debugger) { 2301 if ((val & SSTATUS64_UXL) != 0) { 2302 mask |= SSTATUS64_UXL; 2303 } 2304 } 2305 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2306 return write_mstatus(env, CSR_MSTATUS, newval); 2307 } 2308 2309 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2310 uint64_t *ret_val, 2311 uint64_t new_val, uint64_t wr_mask) 2312 { 2313 RISCVException ret; 2314 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2315 2316 /* Bring VS-level bits to correct position */ 2317 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2318 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2319 2320 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2321 if (ret_val) { 2322 *ret_val = (rval & mask) >> 1; 2323 } 2324 2325 return ret; 2326 } 2327 2328 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2329 target_ulong *ret_val, 2330 target_ulong new_val, target_ulong wr_mask) 2331 { 2332 uint64_t rval; 2333 RISCVException ret; 2334 2335 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2336 if (ret_val) { 2337 *ret_val = rval; 2338 } 2339 2340 return ret; 2341 } 2342 2343 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2344 target_ulong *ret_val, 2345 target_ulong new_val, target_ulong wr_mask) 2346 { 2347 uint64_t rval; 2348 RISCVException ret; 2349 2350 ret = rmw_vsie64(env, csrno, &rval, 2351 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2352 if (ret_val) { 2353 *ret_val = rval >> 32; 2354 } 2355 2356 return ret; 2357 } 2358 2359 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2360 uint64_t *ret_val, 2361 uint64_t new_val, uint64_t wr_mask) 2362 { 2363 RISCVException ret; 2364 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2365 2366 if (riscv_cpu_virt_enabled(env)) { 2367 if (env->hvictl & HVICTL_VTI) { 2368 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2369 } 2370 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2371 } else { 2372 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2373 } 2374 2375 if (ret_val) { 2376 *ret_val &= mask; 2377 } 2378 2379 return ret; 2380 } 2381 2382 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2383 target_ulong *ret_val, 2384 target_ulong new_val, target_ulong wr_mask) 2385 { 2386 uint64_t rval; 2387 RISCVException ret; 2388 2389 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2390 if (ret == RISCV_EXCP_NONE && ret_val) { 2391 *ret_val = rval; 2392 } 2393 2394 return ret; 2395 } 2396 2397 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2398 target_ulong *ret_val, 2399 target_ulong new_val, target_ulong wr_mask) 2400 { 2401 uint64_t rval; 2402 RISCVException ret; 2403 2404 ret = rmw_sie64(env, csrno, &rval, 2405 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2406 if (ret_val) { 2407 *ret_val = rval >> 32; 2408 } 2409 2410 return ret; 2411 } 2412 2413 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2414 target_ulong *val) 2415 { 2416 *val = env->stvec; 2417 return RISCV_EXCP_NONE; 2418 } 2419 2420 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2421 target_ulong val) 2422 { 2423 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2424 if ((val & 3) < 2) { 2425 env->stvec = val; 2426 } else { 2427 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2428 } 2429 return RISCV_EXCP_NONE; 2430 } 2431 2432 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2433 target_ulong *val) 2434 { 2435 *val = env->scounteren; 2436 return RISCV_EXCP_NONE; 2437 } 2438 2439 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2440 target_ulong val) 2441 { 2442 env->scounteren = val; 2443 return RISCV_EXCP_NONE; 2444 } 2445 2446 /* Supervisor Trap Handling */ 2447 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2448 Int128 *val) 2449 { 2450 *val = int128_make128(env->sscratch, env->sscratchh); 2451 return RISCV_EXCP_NONE; 2452 } 2453 2454 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2455 Int128 val) 2456 { 2457 env->sscratch = int128_getlo(val); 2458 env->sscratchh = int128_gethi(val); 2459 return RISCV_EXCP_NONE; 2460 } 2461 2462 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2463 target_ulong *val) 2464 { 2465 *val = env->sscratch; 2466 return RISCV_EXCP_NONE; 2467 } 2468 2469 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2470 target_ulong val) 2471 { 2472 env->sscratch = val; 2473 return RISCV_EXCP_NONE; 2474 } 2475 2476 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2477 target_ulong *val) 2478 { 2479 *val = env->sepc; 2480 return RISCV_EXCP_NONE; 2481 } 2482 2483 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2484 target_ulong val) 2485 { 2486 env->sepc = val; 2487 return RISCV_EXCP_NONE; 2488 } 2489 2490 static RISCVException read_scause(CPURISCVState *env, int csrno, 2491 target_ulong *val) 2492 { 2493 *val = env->scause; 2494 return RISCV_EXCP_NONE; 2495 } 2496 2497 static RISCVException write_scause(CPURISCVState *env, int csrno, 2498 target_ulong val) 2499 { 2500 env->scause = val; 2501 return RISCV_EXCP_NONE; 2502 } 2503 2504 static RISCVException read_stval(CPURISCVState *env, int csrno, 2505 target_ulong *val) 2506 { 2507 *val = env->stval; 2508 return RISCV_EXCP_NONE; 2509 } 2510 2511 static RISCVException write_stval(CPURISCVState *env, int csrno, 2512 target_ulong val) 2513 { 2514 env->stval = val; 2515 return RISCV_EXCP_NONE; 2516 } 2517 2518 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2519 uint64_t *ret_val, 2520 uint64_t new_val, uint64_t wr_mask) 2521 { 2522 RISCVException ret; 2523 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2524 2525 /* Bring VS-level bits to correct position */ 2526 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2527 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2528 2529 ret = rmw_mip64(env, csrno, &rval, new_val, 2530 wr_mask & mask & vsip_writable_mask); 2531 if (ret_val) { 2532 *ret_val = (rval & mask) >> 1; 2533 } 2534 2535 return ret; 2536 } 2537 2538 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2539 target_ulong *ret_val, 2540 target_ulong new_val, target_ulong wr_mask) 2541 { 2542 uint64_t rval; 2543 RISCVException ret; 2544 2545 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2546 if (ret_val) { 2547 *ret_val = rval; 2548 } 2549 2550 return ret; 2551 } 2552 2553 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2554 target_ulong *ret_val, 2555 target_ulong new_val, target_ulong wr_mask) 2556 { 2557 uint64_t rval; 2558 RISCVException ret; 2559 2560 ret = rmw_vsip64(env, csrno, &rval, 2561 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2562 if (ret_val) { 2563 *ret_val = rval >> 32; 2564 } 2565 2566 return ret; 2567 } 2568 2569 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2570 uint64_t *ret_val, 2571 uint64_t new_val, uint64_t wr_mask) 2572 { 2573 RISCVException ret; 2574 uint64_t mask = env->mideleg & sip_writable_mask; 2575 2576 if (riscv_cpu_virt_enabled(env)) { 2577 if (env->hvictl & HVICTL_VTI) { 2578 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2579 } 2580 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2581 } else { 2582 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2583 } 2584 2585 if (ret_val) { 2586 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2587 } 2588 2589 return ret; 2590 } 2591 2592 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2593 target_ulong *ret_val, 2594 target_ulong new_val, target_ulong wr_mask) 2595 { 2596 uint64_t rval; 2597 RISCVException ret; 2598 2599 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2600 if (ret_val) { 2601 *ret_val = rval; 2602 } 2603 2604 return ret; 2605 } 2606 2607 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2608 target_ulong *ret_val, 2609 target_ulong new_val, target_ulong wr_mask) 2610 { 2611 uint64_t rval; 2612 RISCVException ret; 2613 2614 ret = rmw_sip64(env, csrno, &rval, 2615 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2616 if (ret_val) { 2617 *ret_val = rval >> 32; 2618 } 2619 2620 return ret; 2621 } 2622 2623 /* Supervisor Protection and Translation */ 2624 static RISCVException read_satp(CPURISCVState *env, int csrno, 2625 target_ulong *val) 2626 { 2627 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2628 *val = 0; 2629 return RISCV_EXCP_NONE; 2630 } 2631 2632 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2633 return RISCV_EXCP_ILLEGAL_INST; 2634 } else { 2635 *val = env->satp; 2636 } 2637 2638 return RISCV_EXCP_NONE; 2639 } 2640 2641 static RISCVException write_satp(CPURISCVState *env, int csrno, 2642 target_ulong val) 2643 { 2644 target_ulong vm, mask; 2645 2646 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2647 return RISCV_EXCP_NONE; 2648 } 2649 2650 if (riscv_cpu_mxl(env) == MXL_RV32) { 2651 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2652 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2653 } else { 2654 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2655 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2656 } 2657 2658 if (vm && mask) { 2659 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2660 return RISCV_EXCP_ILLEGAL_INST; 2661 } else { 2662 /* 2663 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2664 * pass these through QEMU's TLB emulation as it improves 2665 * performance. Flushing the TLB on SATP writes with paging 2666 * enabled avoids leaking those invalid cached mappings. 2667 */ 2668 tlb_flush(env_cpu(env)); 2669 env->satp = val; 2670 } 2671 } 2672 return RISCV_EXCP_NONE; 2673 } 2674 2675 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2676 { 2677 int irq, ret; 2678 target_ulong topei; 2679 uint64_t vseip, vsgein; 2680 uint32_t iid, iprio, hviid, hviprio, gein; 2681 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2682 2683 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2684 hviid = get_field(env->hvictl, HVICTL_IID); 2685 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2686 2687 if (gein) { 2688 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2689 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2690 if (gein <= env->geilen && vseip) { 2691 siid[scount] = IRQ_S_EXT; 2692 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2693 if (env->aia_ireg_rmw_fn[PRV_S]) { 2694 /* 2695 * Call machine specific IMSIC register emulation for 2696 * reading TOPEI. 2697 */ 2698 ret = env->aia_ireg_rmw_fn[PRV_S]( 2699 env->aia_ireg_rmw_fn_arg[PRV_S], 2700 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2701 riscv_cpu_mxl_bits(env)), 2702 &topei, 0, 0); 2703 if (!ret && topei) { 2704 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2705 } 2706 } 2707 scount++; 2708 } 2709 } else { 2710 if (hviid == IRQ_S_EXT && hviprio) { 2711 siid[scount] = IRQ_S_EXT; 2712 siprio[scount] = hviprio; 2713 scount++; 2714 } 2715 } 2716 2717 if (env->hvictl & HVICTL_VTI) { 2718 if (hviid != IRQ_S_EXT) { 2719 siid[scount] = hviid; 2720 siprio[scount] = hviprio; 2721 scount++; 2722 } 2723 } else { 2724 irq = riscv_cpu_vsirq_pending(env); 2725 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2726 siid[scount] = irq; 2727 siprio[scount] = env->hviprio[irq]; 2728 scount++; 2729 } 2730 } 2731 2732 iid = 0; 2733 iprio = UINT_MAX; 2734 for (s = 0; s < scount; s++) { 2735 if (siprio[s] < iprio) { 2736 iid = siid[s]; 2737 iprio = siprio[s]; 2738 } 2739 } 2740 2741 if (iid) { 2742 if (env->hvictl & HVICTL_IPRIOM) { 2743 if (iprio > IPRIO_MMAXIPRIO) { 2744 iprio = IPRIO_MMAXIPRIO; 2745 } 2746 if (!iprio) { 2747 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2748 iprio = IPRIO_MMAXIPRIO; 2749 } 2750 } 2751 } else { 2752 iprio = 1; 2753 } 2754 } else { 2755 iprio = 0; 2756 } 2757 2758 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2759 *val |= iprio; 2760 return RISCV_EXCP_NONE; 2761 } 2762 2763 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2764 { 2765 int irq; 2766 uint8_t iprio; 2767 2768 if (riscv_cpu_virt_enabled(env)) { 2769 return read_vstopi(env, CSR_VSTOPI, val); 2770 } 2771 2772 irq = riscv_cpu_sirq_pending(env); 2773 if (irq <= 0 || irq > 63) { 2774 *val = 0; 2775 } else { 2776 iprio = env->siprio[irq]; 2777 if (!iprio) { 2778 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2779 iprio = IPRIO_MMAXIPRIO; 2780 } 2781 } 2782 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2783 *val |= iprio; 2784 } 2785 2786 return RISCV_EXCP_NONE; 2787 } 2788 2789 /* Hypervisor Extensions */ 2790 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2791 target_ulong *val) 2792 { 2793 *val = env->hstatus; 2794 if (riscv_cpu_mxl(env) != MXL_RV32) { 2795 /* We only support 64-bit VSXL */ 2796 *val = set_field(*val, HSTATUS_VSXL, 2); 2797 } 2798 /* We only support little endian */ 2799 *val = set_field(*val, HSTATUS_VSBE, 0); 2800 return RISCV_EXCP_NONE; 2801 } 2802 2803 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2804 target_ulong val) 2805 { 2806 env->hstatus = val; 2807 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2808 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2809 } 2810 if (get_field(val, HSTATUS_VSBE) != 0) { 2811 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2812 } 2813 return RISCV_EXCP_NONE; 2814 } 2815 2816 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2817 target_ulong *val) 2818 { 2819 *val = env->hedeleg; 2820 return RISCV_EXCP_NONE; 2821 } 2822 2823 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2824 target_ulong val) 2825 { 2826 env->hedeleg = val & vs_delegable_excps; 2827 return RISCV_EXCP_NONE; 2828 } 2829 2830 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2831 uint64_t *ret_val, 2832 uint64_t new_val, uint64_t wr_mask) 2833 { 2834 uint64_t mask = wr_mask & vs_delegable_ints; 2835 2836 if (ret_val) { 2837 *ret_val = env->hideleg & vs_delegable_ints; 2838 } 2839 2840 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2841 return RISCV_EXCP_NONE; 2842 } 2843 2844 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2845 target_ulong *ret_val, 2846 target_ulong new_val, target_ulong wr_mask) 2847 { 2848 uint64_t rval; 2849 RISCVException ret; 2850 2851 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2852 if (ret_val) { 2853 *ret_val = rval; 2854 } 2855 2856 return ret; 2857 } 2858 2859 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2860 target_ulong *ret_val, 2861 target_ulong new_val, target_ulong wr_mask) 2862 { 2863 uint64_t rval; 2864 RISCVException ret; 2865 2866 ret = rmw_hideleg64(env, csrno, &rval, 2867 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2868 if (ret_val) { 2869 *ret_val = rval >> 32; 2870 } 2871 2872 return ret; 2873 } 2874 2875 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2876 uint64_t *ret_val, 2877 uint64_t new_val, uint64_t wr_mask) 2878 { 2879 RISCVException ret; 2880 2881 ret = rmw_mip64(env, csrno, ret_val, new_val, 2882 wr_mask & hvip_writable_mask); 2883 if (ret_val) { 2884 *ret_val &= VS_MODE_INTERRUPTS; 2885 } 2886 2887 return ret; 2888 } 2889 2890 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2891 target_ulong *ret_val, 2892 target_ulong new_val, target_ulong wr_mask) 2893 { 2894 uint64_t rval; 2895 RISCVException ret; 2896 2897 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2898 if (ret_val) { 2899 *ret_val = rval; 2900 } 2901 2902 return ret; 2903 } 2904 2905 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2906 target_ulong *ret_val, 2907 target_ulong new_val, target_ulong wr_mask) 2908 { 2909 uint64_t rval; 2910 RISCVException ret; 2911 2912 ret = rmw_hvip64(env, csrno, &rval, 2913 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2914 if (ret_val) { 2915 *ret_val = rval >> 32; 2916 } 2917 2918 return ret; 2919 } 2920 2921 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2922 target_ulong *ret_value, 2923 target_ulong new_value, target_ulong write_mask) 2924 { 2925 int ret = rmw_mip(env, csrno, ret_value, new_value, 2926 write_mask & hip_writable_mask); 2927 2928 if (ret_value) { 2929 *ret_value &= HS_MODE_INTERRUPTS; 2930 } 2931 return ret; 2932 } 2933 2934 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2935 target_ulong *ret_val, 2936 target_ulong new_val, target_ulong wr_mask) 2937 { 2938 uint64_t rval; 2939 RISCVException ret; 2940 2941 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2942 if (ret_val) { 2943 *ret_val = rval & HS_MODE_INTERRUPTS; 2944 } 2945 2946 return ret; 2947 } 2948 2949 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2950 target_ulong *val) 2951 { 2952 *val = env->hcounteren; 2953 return RISCV_EXCP_NONE; 2954 } 2955 2956 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2957 target_ulong val) 2958 { 2959 env->hcounteren = val; 2960 return RISCV_EXCP_NONE; 2961 } 2962 2963 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2964 target_ulong *val) 2965 { 2966 if (val) { 2967 *val = env->hgeie; 2968 } 2969 return RISCV_EXCP_NONE; 2970 } 2971 2972 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2973 target_ulong val) 2974 { 2975 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2976 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2977 env->hgeie = val; 2978 /* Update mip.SGEIP bit */ 2979 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2980 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2981 return RISCV_EXCP_NONE; 2982 } 2983 2984 static RISCVException read_htval(CPURISCVState *env, int csrno, 2985 target_ulong *val) 2986 { 2987 *val = env->htval; 2988 return RISCV_EXCP_NONE; 2989 } 2990 2991 static RISCVException write_htval(CPURISCVState *env, int csrno, 2992 target_ulong val) 2993 { 2994 env->htval = val; 2995 return RISCV_EXCP_NONE; 2996 } 2997 2998 static RISCVException read_htinst(CPURISCVState *env, int csrno, 2999 target_ulong *val) 3000 { 3001 *val = env->htinst; 3002 return RISCV_EXCP_NONE; 3003 } 3004 3005 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3006 target_ulong val) 3007 { 3008 return RISCV_EXCP_NONE; 3009 } 3010 3011 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3012 target_ulong *val) 3013 { 3014 if (val) { 3015 *val = env->hgeip; 3016 } 3017 return RISCV_EXCP_NONE; 3018 } 3019 3020 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3021 target_ulong *val) 3022 { 3023 *val = env->hgatp; 3024 return RISCV_EXCP_NONE; 3025 } 3026 3027 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3028 target_ulong val) 3029 { 3030 env->hgatp = val; 3031 return RISCV_EXCP_NONE; 3032 } 3033 3034 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3035 target_ulong *val) 3036 { 3037 if (!env->rdtime_fn) { 3038 return RISCV_EXCP_ILLEGAL_INST; 3039 } 3040 3041 *val = env->htimedelta; 3042 return RISCV_EXCP_NONE; 3043 } 3044 3045 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3046 target_ulong val) 3047 { 3048 RISCVCPU *cpu = env_archcpu(env); 3049 3050 if (!env->rdtime_fn) { 3051 return RISCV_EXCP_ILLEGAL_INST; 3052 } 3053 3054 if (riscv_cpu_mxl(env) == MXL_RV32) { 3055 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3056 } else { 3057 env->htimedelta = val; 3058 } 3059 3060 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3061 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3062 env->htimedelta, MIP_VSTIP); 3063 } 3064 3065 return RISCV_EXCP_NONE; 3066 } 3067 3068 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3069 target_ulong *val) 3070 { 3071 if (!env->rdtime_fn) { 3072 return RISCV_EXCP_ILLEGAL_INST; 3073 } 3074 3075 *val = env->htimedelta >> 32; 3076 return RISCV_EXCP_NONE; 3077 } 3078 3079 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3080 target_ulong val) 3081 { 3082 RISCVCPU *cpu = env_archcpu(env); 3083 3084 if (!env->rdtime_fn) { 3085 return RISCV_EXCP_ILLEGAL_INST; 3086 } 3087 3088 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3089 3090 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3091 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3092 env->htimedelta, MIP_VSTIP); 3093 } 3094 3095 return RISCV_EXCP_NONE; 3096 } 3097 3098 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3099 { 3100 *val = env->hvictl; 3101 return RISCV_EXCP_NONE; 3102 } 3103 3104 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3105 { 3106 env->hvictl = val & HVICTL_VALID_MASK; 3107 return RISCV_EXCP_NONE; 3108 } 3109 3110 static int read_hvipriox(CPURISCVState *env, int first_index, 3111 uint8_t *iprio, target_ulong *val) 3112 { 3113 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3114 3115 /* First index has to be a multiple of number of irqs per register */ 3116 if (first_index % num_irqs) { 3117 return (riscv_cpu_virt_enabled(env)) ? 3118 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3119 } 3120 3121 /* Fill-up return value */ 3122 *val = 0; 3123 for (i = 0; i < num_irqs; i++) { 3124 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3125 continue; 3126 } 3127 if (rdzero) { 3128 continue; 3129 } 3130 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3131 } 3132 3133 return RISCV_EXCP_NONE; 3134 } 3135 3136 static int write_hvipriox(CPURISCVState *env, int first_index, 3137 uint8_t *iprio, target_ulong val) 3138 { 3139 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3140 3141 /* First index has to be a multiple of number of irqs per register */ 3142 if (first_index % num_irqs) { 3143 return (riscv_cpu_virt_enabled(env)) ? 3144 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3145 } 3146 3147 /* Fill-up priority arrary */ 3148 for (i = 0; i < num_irqs; i++) { 3149 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3150 continue; 3151 } 3152 if (rdzero) { 3153 iprio[irq] = 0; 3154 } else { 3155 iprio[irq] = (val >> (i * 8)) & 0xff; 3156 } 3157 } 3158 3159 return RISCV_EXCP_NONE; 3160 } 3161 3162 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3163 { 3164 return read_hvipriox(env, 0, env->hviprio, val); 3165 } 3166 3167 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3168 { 3169 return write_hvipriox(env, 0, env->hviprio, val); 3170 } 3171 3172 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3173 { 3174 return read_hvipriox(env, 4, env->hviprio, val); 3175 } 3176 3177 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3178 { 3179 return write_hvipriox(env, 4, env->hviprio, val); 3180 } 3181 3182 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3183 { 3184 return read_hvipriox(env, 8, env->hviprio, val); 3185 } 3186 3187 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3188 { 3189 return write_hvipriox(env, 8, env->hviprio, val); 3190 } 3191 3192 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3193 { 3194 return read_hvipriox(env, 12, env->hviprio, val); 3195 } 3196 3197 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3198 { 3199 return write_hvipriox(env, 12, env->hviprio, val); 3200 } 3201 3202 /* Virtual CSR Registers */ 3203 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3204 target_ulong *val) 3205 { 3206 *val = env->vsstatus; 3207 return RISCV_EXCP_NONE; 3208 } 3209 3210 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3211 target_ulong val) 3212 { 3213 uint64_t mask = (target_ulong)-1; 3214 if ((val & VSSTATUS64_UXL) == 0) { 3215 mask &= ~VSSTATUS64_UXL; 3216 } 3217 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3218 return RISCV_EXCP_NONE; 3219 } 3220 3221 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3222 { 3223 *val = env->vstvec; 3224 return RISCV_EXCP_NONE; 3225 } 3226 3227 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3228 target_ulong val) 3229 { 3230 env->vstvec = val; 3231 return RISCV_EXCP_NONE; 3232 } 3233 3234 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3235 target_ulong *val) 3236 { 3237 *val = env->vsscratch; 3238 return RISCV_EXCP_NONE; 3239 } 3240 3241 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3242 target_ulong val) 3243 { 3244 env->vsscratch = val; 3245 return RISCV_EXCP_NONE; 3246 } 3247 3248 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3249 target_ulong *val) 3250 { 3251 *val = env->vsepc; 3252 return RISCV_EXCP_NONE; 3253 } 3254 3255 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3256 target_ulong val) 3257 { 3258 env->vsepc = val; 3259 return RISCV_EXCP_NONE; 3260 } 3261 3262 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3263 target_ulong *val) 3264 { 3265 *val = env->vscause; 3266 return RISCV_EXCP_NONE; 3267 } 3268 3269 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3270 target_ulong val) 3271 { 3272 env->vscause = val; 3273 return RISCV_EXCP_NONE; 3274 } 3275 3276 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3277 target_ulong *val) 3278 { 3279 *val = env->vstval; 3280 return RISCV_EXCP_NONE; 3281 } 3282 3283 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3284 target_ulong val) 3285 { 3286 env->vstval = val; 3287 return RISCV_EXCP_NONE; 3288 } 3289 3290 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3291 target_ulong *val) 3292 { 3293 *val = env->vsatp; 3294 return RISCV_EXCP_NONE; 3295 } 3296 3297 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3298 target_ulong val) 3299 { 3300 env->vsatp = val; 3301 return RISCV_EXCP_NONE; 3302 } 3303 3304 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3305 target_ulong *val) 3306 { 3307 *val = env->mtval2; 3308 return RISCV_EXCP_NONE; 3309 } 3310 3311 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3312 target_ulong val) 3313 { 3314 env->mtval2 = val; 3315 return RISCV_EXCP_NONE; 3316 } 3317 3318 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3319 target_ulong *val) 3320 { 3321 *val = env->mtinst; 3322 return RISCV_EXCP_NONE; 3323 } 3324 3325 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3326 target_ulong val) 3327 { 3328 env->mtinst = val; 3329 return RISCV_EXCP_NONE; 3330 } 3331 3332 /* Physical Memory Protection */ 3333 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3334 target_ulong *val) 3335 { 3336 *val = mseccfg_csr_read(env); 3337 return RISCV_EXCP_NONE; 3338 } 3339 3340 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3341 target_ulong val) 3342 { 3343 mseccfg_csr_write(env, val); 3344 return RISCV_EXCP_NONE; 3345 } 3346 3347 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 3348 { 3349 /* TODO: RV128 restriction check */ 3350 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 3351 return false; 3352 } 3353 return true; 3354 } 3355 3356 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3357 target_ulong *val) 3358 { 3359 uint32_t reg_index = csrno - CSR_PMPCFG0; 3360 3361 if (!check_pmp_reg_index(env, reg_index)) { 3362 return RISCV_EXCP_ILLEGAL_INST; 3363 } 3364 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 3365 return RISCV_EXCP_NONE; 3366 } 3367 3368 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3369 target_ulong val) 3370 { 3371 uint32_t reg_index = csrno - CSR_PMPCFG0; 3372 3373 if (!check_pmp_reg_index(env, reg_index)) { 3374 return RISCV_EXCP_ILLEGAL_INST; 3375 } 3376 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 3377 return RISCV_EXCP_NONE; 3378 } 3379 3380 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3381 target_ulong *val) 3382 { 3383 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3384 return RISCV_EXCP_NONE; 3385 } 3386 3387 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3388 target_ulong val) 3389 { 3390 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3391 return RISCV_EXCP_NONE; 3392 } 3393 3394 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3395 target_ulong *val) 3396 { 3397 *val = tselect_csr_read(env); 3398 return RISCV_EXCP_NONE; 3399 } 3400 3401 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3402 target_ulong val) 3403 { 3404 tselect_csr_write(env, val); 3405 return RISCV_EXCP_NONE; 3406 } 3407 3408 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3409 target_ulong *val) 3410 { 3411 /* return 0 in tdata1 to end the trigger enumeration */ 3412 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3413 *val = 0; 3414 return RISCV_EXCP_NONE; 3415 } 3416 3417 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3418 return RISCV_EXCP_ILLEGAL_INST; 3419 } 3420 3421 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3422 return RISCV_EXCP_NONE; 3423 } 3424 3425 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3426 target_ulong val) 3427 { 3428 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3429 return RISCV_EXCP_ILLEGAL_INST; 3430 } 3431 3432 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3433 return RISCV_EXCP_NONE; 3434 } 3435 3436 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3437 target_ulong *val) 3438 { 3439 *val = tinfo_csr_read(env); 3440 return RISCV_EXCP_NONE; 3441 } 3442 3443 /* 3444 * Functions to access Pointer Masking feature registers 3445 * We have to check if current priv lvl could modify 3446 * csr in given mode 3447 */ 3448 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3449 { 3450 int csr_priv = get_field(csrno, 0x300); 3451 int pm_current; 3452 3453 if (env->debugger) { 3454 return false; 3455 } 3456 /* 3457 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3458 * so allow the access 3459 */ 3460 if (env->priv != csr_priv) { 3461 return false; 3462 } 3463 switch (env->priv) { 3464 case PRV_M: 3465 pm_current = get_field(env->mmte, M_PM_CURRENT); 3466 break; 3467 case PRV_S: 3468 pm_current = get_field(env->mmte, S_PM_CURRENT); 3469 break; 3470 case PRV_U: 3471 pm_current = get_field(env->mmte, U_PM_CURRENT); 3472 break; 3473 default: 3474 g_assert_not_reached(); 3475 } 3476 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3477 return !pm_current; 3478 } 3479 3480 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3481 target_ulong *val) 3482 { 3483 *val = env->mmte & MMTE_MASK; 3484 return RISCV_EXCP_NONE; 3485 } 3486 3487 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3488 target_ulong val) 3489 { 3490 uint64_t mstatus; 3491 target_ulong wpri_val = val & MMTE_MASK; 3492 3493 if (val != wpri_val) { 3494 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3495 "MMTE: WPRI violation written 0x", val, 3496 "vs expected 0x", wpri_val); 3497 } 3498 /* for machine mode pm.current is hardwired to 1 */ 3499 wpri_val |= MMTE_M_PM_CURRENT; 3500 3501 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3502 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3503 env->mmte = wpri_val | PM_EXT_DIRTY; 3504 riscv_cpu_update_mask(env); 3505 3506 /* Set XS and SD bits, since PM CSRs are dirty */ 3507 mstatus = env->mstatus | MSTATUS_XS; 3508 write_mstatus(env, csrno, mstatus); 3509 return RISCV_EXCP_NONE; 3510 } 3511 3512 static RISCVException read_smte(CPURISCVState *env, int csrno, 3513 target_ulong *val) 3514 { 3515 *val = env->mmte & SMTE_MASK; 3516 return RISCV_EXCP_NONE; 3517 } 3518 3519 static RISCVException write_smte(CPURISCVState *env, int csrno, 3520 target_ulong val) 3521 { 3522 target_ulong wpri_val = val & SMTE_MASK; 3523 3524 if (val != wpri_val) { 3525 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3526 "SMTE: WPRI violation written 0x", val, 3527 "vs expected 0x", wpri_val); 3528 } 3529 3530 /* if pm.current==0 we can't modify current PM CSRs */ 3531 if (check_pm_current_disabled(env, csrno)) { 3532 return RISCV_EXCP_NONE; 3533 } 3534 3535 wpri_val |= (env->mmte & ~SMTE_MASK); 3536 write_mmte(env, csrno, wpri_val); 3537 return RISCV_EXCP_NONE; 3538 } 3539 3540 static RISCVException read_umte(CPURISCVState *env, int csrno, 3541 target_ulong *val) 3542 { 3543 *val = env->mmte & UMTE_MASK; 3544 return RISCV_EXCP_NONE; 3545 } 3546 3547 static RISCVException write_umte(CPURISCVState *env, int csrno, 3548 target_ulong val) 3549 { 3550 target_ulong wpri_val = val & UMTE_MASK; 3551 3552 if (val != wpri_val) { 3553 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3554 "UMTE: WPRI violation written 0x", val, 3555 "vs expected 0x", wpri_val); 3556 } 3557 3558 if (check_pm_current_disabled(env, csrno)) { 3559 return RISCV_EXCP_NONE; 3560 } 3561 3562 wpri_val |= (env->mmte & ~UMTE_MASK); 3563 write_mmte(env, csrno, wpri_val); 3564 return RISCV_EXCP_NONE; 3565 } 3566 3567 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3568 target_ulong *val) 3569 { 3570 *val = env->mpmmask; 3571 return RISCV_EXCP_NONE; 3572 } 3573 3574 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3575 target_ulong val) 3576 { 3577 uint64_t mstatus; 3578 3579 env->mpmmask = val; 3580 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3581 env->cur_pmmask = val; 3582 } 3583 env->mmte |= PM_EXT_DIRTY; 3584 3585 /* Set XS and SD bits, since PM CSRs are dirty */ 3586 mstatus = env->mstatus | MSTATUS_XS; 3587 write_mstatus(env, csrno, mstatus); 3588 return RISCV_EXCP_NONE; 3589 } 3590 3591 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3592 target_ulong *val) 3593 { 3594 *val = env->spmmask; 3595 return RISCV_EXCP_NONE; 3596 } 3597 3598 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3599 target_ulong val) 3600 { 3601 uint64_t mstatus; 3602 3603 /* if pm.current==0 we can't modify current PM CSRs */ 3604 if (check_pm_current_disabled(env, csrno)) { 3605 return RISCV_EXCP_NONE; 3606 } 3607 env->spmmask = val; 3608 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3609 env->cur_pmmask = val; 3610 } 3611 env->mmte |= PM_EXT_DIRTY; 3612 3613 /* Set XS and SD bits, since PM CSRs are dirty */ 3614 mstatus = env->mstatus | MSTATUS_XS; 3615 write_mstatus(env, csrno, mstatus); 3616 return RISCV_EXCP_NONE; 3617 } 3618 3619 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3620 target_ulong *val) 3621 { 3622 *val = env->upmmask; 3623 return RISCV_EXCP_NONE; 3624 } 3625 3626 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3627 target_ulong val) 3628 { 3629 uint64_t mstatus; 3630 3631 /* if pm.current==0 we can't modify current PM CSRs */ 3632 if (check_pm_current_disabled(env, csrno)) { 3633 return RISCV_EXCP_NONE; 3634 } 3635 env->upmmask = val; 3636 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3637 env->cur_pmmask = val; 3638 } 3639 env->mmte |= PM_EXT_DIRTY; 3640 3641 /* Set XS and SD bits, since PM CSRs are dirty */ 3642 mstatus = env->mstatus | MSTATUS_XS; 3643 write_mstatus(env, csrno, mstatus); 3644 return RISCV_EXCP_NONE; 3645 } 3646 3647 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3648 target_ulong *val) 3649 { 3650 *val = env->mpmbase; 3651 return RISCV_EXCP_NONE; 3652 } 3653 3654 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3655 target_ulong val) 3656 { 3657 uint64_t mstatus; 3658 3659 env->mpmbase = val; 3660 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3661 env->cur_pmbase = val; 3662 } 3663 env->mmte |= PM_EXT_DIRTY; 3664 3665 /* Set XS and SD bits, since PM CSRs are dirty */ 3666 mstatus = env->mstatus | MSTATUS_XS; 3667 write_mstatus(env, csrno, mstatus); 3668 return RISCV_EXCP_NONE; 3669 } 3670 3671 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3672 target_ulong *val) 3673 { 3674 *val = env->spmbase; 3675 return RISCV_EXCP_NONE; 3676 } 3677 3678 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3679 target_ulong val) 3680 { 3681 uint64_t mstatus; 3682 3683 /* if pm.current==0 we can't modify current PM CSRs */ 3684 if (check_pm_current_disabled(env, csrno)) { 3685 return RISCV_EXCP_NONE; 3686 } 3687 env->spmbase = val; 3688 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3689 env->cur_pmbase = val; 3690 } 3691 env->mmte |= PM_EXT_DIRTY; 3692 3693 /* Set XS and SD bits, since PM CSRs are dirty */ 3694 mstatus = env->mstatus | MSTATUS_XS; 3695 write_mstatus(env, csrno, mstatus); 3696 return RISCV_EXCP_NONE; 3697 } 3698 3699 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3700 target_ulong *val) 3701 { 3702 *val = env->upmbase; 3703 return RISCV_EXCP_NONE; 3704 } 3705 3706 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3707 target_ulong val) 3708 { 3709 uint64_t mstatus; 3710 3711 /* if pm.current==0 we can't modify current PM CSRs */ 3712 if (check_pm_current_disabled(env, csrno)) { 3713 return RISCV_EXCP_NONE; 3714 } 3715 env->upmbase = val; 3716 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3717 env->cur_pmbase = val; 3718 } 3719 env->mmte |= PM_EXT_DIRTY; 3720 3721 /* Set XS and SD bits, since PM CSRs are dirty */ 3722 mstatus = env->mstatus | MSTATUS_XS; 3723 write_mstatus(env, csrno, mstatus); 3724 return RISCV_EXCP_NONE; 3725 } 3726 3727 #endif 3728 3729 /* Crypto Extension */ 3730 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3731 target_ulong *ret_value, 3732 target_ulong new_value, 3733 target_ulong write_mask) 3734 { 3735 uint16_t random_v; 3736 Error *random_e = NULL; 3737 int random_r; 3738 target_ulong rval; 3739 3740 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3741 if (unlikely(random_r < 0)) { 3742 /* 3743 * Failed, for unknown reasons in the crypto subsystem. 3744 * The best we can do is log the reason and return a 3745 * failure indication to the guest. There is no reason 3746 * we know to expect the failure to be transitory, so 3747 * indicate DEAD to avoid having the guest spin on WAIT. 3748 */ 3749 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3750 __func__, error_get_pretty(random_e)); 3751 error_free(random_e); 3752 rval = SEED_OPST_DEAD; 3753 } else { 3754 rval = random_v | SEED_OPST_ES16; 3755 } 3756 3757 if (ret_value) { 3758 *ret_value = rval; 3759 } 3760 3761 return RISCV_EXCP_NONE; 3762 } 3763 3764 /* 3765 * riscv_csrrw - read and/or update control and status register 3766 * 3767 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3768 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3769 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3770 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3771 */ 3772 3773 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3774 int csrno, 3775 bool write_mask, 3776 RISCVCPU *cpu) 3777 { 3778 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3779 int read_only = get_field(csrno, 0xC00) == 3; 3780 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3781 3782 /* ensure the CSR extension is enabled. */ 3783 if (!cpu->cfg.ext_icsr) { 3784 return RISCV_EXCP_ILLEGAL_INST; 3785 } 3786 3787 if (env->priv_ver < csr_min_priv) { 3788 return RISCV_EXCP_ILLEGAL_INST; 3789 } 3790 3791 /* check predicate */ 3792 if (!csr_ops[csrno].predicate) { 3793 return RISCV_EXCP_ILLEGAL_INST; 3794 } 3795 3796 if (write_mask && read_only) { 3797 return RISCV_EXCP_ILLEGAL_INST; 3798 } 3799 3800 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3801 if (ret != RISCV_EXCP_NONE) { 3802 return ret; 3803 } 3804 3805 #if !defined(CONFIG_USER_ONLY) 3806 int csr_priv, effective_priv = env->priv; 3807 3808 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3809 !riscv_cpu_virt_enabled(env)) { 3810 /* 3811 * We are in HS mode. Add 1 to the effective privledge level to 3812 * allow us to access the Hypervisor CSRs. 3813 */ 3814 effective_priv++; 3815 } 3816 3817 csr_priv = get_field(csrno, 0x300); 3818 if (!env->debugger && (effective_priv < csr_priv)) { 3819 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3820 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3821 } 3822 return RISCV_EXCP_ILLEGAL_INST; 3823 } 3824 #endif 3825 return RISCV_EXCP_NONE; 3826 } 3827 3828 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3829 target_ulong *ret_value, 3830 target_ulong new_value, 3831 target_ulong write_mask) 3832 { 3833 RISCVException ret; 3834 target_ulong old_value; 3835 3836 /* execute combined read/write operation if it exists */ 3837 if (csr_ops[csrno].op) { 3838 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3839 } 3840 3841 /* if no accessor exists then return failure */ 3842 if (!csr_ops[csrno].read) { 3843 return RISCV_EXCP_ILLEGAL_INST; 3844 } 3845 /* read old value */ 3846 ret = csr_ops[csrno].read(env, csrno, &old_value); 3847 if (ret != RISCV_EXCP_NONE) { 3848 return ret; 3849 } 3850 3851 /* write value if writable and write mask set, otherwise drop writes */ 3852 if (write_mask) { 3853 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3854 if (csr_ops[csrno].write) { 3855 ret = csr_ops[csrno].write(env, csrno, new_value); 3856 if (ret != RISCV_EXCP_NONE) { 3857 return ret; 3858 } 3859 } 3860 } 3861 3862 /* return old value */ 3863 if (ret_value) { 3864 *ret_value = old_value; 3865 } 3866 3867 return RISCV_EXCP_NONE; 3868 } 3869 3870 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3871 target_ulong *ret_value, 3872 target_ulong new_value, target_ulong write_mask) 3873 { 3874 RISCVCPU *cpu = env_archcpu(env); 3875 3876 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3877 if (ret != RISCV_EXCP_NONE) { 3878 return ret; 3879 } 3880 3881 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3882 } 3883 3884 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3885 Int128 *ret_value, 3886 Int128 new_value, 3887 Int128 write_mask) 3888 { 3889 RISCVException ret; 3890 Int128 old_value; 3891 3892 /* read old value */ 3893 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3894 if (ret != RISCV_EXCP_NONE) { 3895 return ret; 3896 } 3897 3898 /* write value if writable and write mask set, otherwise drop writes */ 3899 if (int128_nz(write_mask)) { 3900 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3901 int128_and(new_value, write_mask)); 3902 if (csr_ops[csrno].write128) { 3903 ret = csr_ops[csrno].write128(env, csrno, new_value); 3904 if (ret != RISCV_EXCP_NONE) { 3905 return ret; 3906 } 3907 } else if (csr_ops[csrno].write) { 3908 /* avoids having to write wrappers for all registers */ 3909 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3910 if (ret != RISCV_EXCP_NONE) { 3911 return ret; 3912 } 3913 } 3914 } 3915 3916 /* return old value */ 3917 if (ret_value) { 3918 *ret_value = old_value; 3919 } 3920 3921 return RISCV_EXCP_NONE; 3922 } 3923 3924 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3925 Int128 *ret_value, 3926 Int128 new_value, Int128 write_mask) 3927 { 3928 RISCVException ret; 3929 RISCVCPU *cpu = env_archcpu(env); 3930 3931 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3932 if (ret != RISCV_EXCP_NONE) { 3933 return ret; 3934 } 3935 3936 if (csr_ops[csrno].read128) { 3937 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3938 } 3939 3940 /* 3941 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3942 * at all defined. 3943 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3944 * significant), for those, this fallback is correctly handling the accesses 3945 */ 3946 target_ulong old_value; 3947 ret = riscv_csrrw_do64(env, csrno, &old_value, 3948 int128_getlo(new_value), 3949 int128_getlo(write_mask)); 3950 if (ret == RISCV_EXCP_NONE && ret_value) { 3951 *ret_value = int128_make64(old_value); 3952 } 3953 return ret; 3954 } 3955 3956 /* 3957 * Debugger support. If not in user mode, set env->debugger before the 3958 * riscv_csrrw call and clear it after the call. 3959 */ 3960 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3961 target_ulong *ret_value, 3962 target_ulong new_value, 3963 target_ulong write_mask) 3964 { 3965 RISCVException ret; 3966 #if !defined(CONFIG_USER_ONLY) 3967 env->debugger = true; 3968 #endif 3969 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3970 #if !defined(CONFIG_USER_ONLY) 3971 env->debugger = false; 3972 #endif 3973 return ret; 3974 } 3975 3976 /* Control and Status Register function table */ 3977 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3978 /* User Floating-Point CSRs */ 3979 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3980 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3981 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3982 /* Vector CSRs */ 3983 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 3984 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 3985 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 3986 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 3987 [CSR_VL] = { "vl", vs, read_vl }, 3988 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 3989 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 3990 /* User Timers and Counters */ 3991 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 3992 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 3993 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 3994 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 3995 3996 /* 3997 * In privileged mode, the monitor will have to emulate TIME CSRs only if 3998 * rdtime callback is not provided by machine/platform emulation. 3999 */ 4000 [CSR_TIME] = { "time", ctr, read_time }, 4001 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4002 4003 /* Crypto Extension */ 4004 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4005 4006 #if !defined(CONFIG_USER_ONLY) 4007 /* Machine Timers and Counters */ 4008 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4009 write_mhpmcounter }, 4010 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4011 write_mhpmcounter }, 4012 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4013 write_mhpmcounterh }, 4014 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4015 write_mhpmcounterh }, 4016 4017 /* Machine Information Registers */ 4018 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4019 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4020 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4021 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4022 4023 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4024 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4025 /* Machine Trap Setup */ 4026 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4027 NULL, read_mstatus_i128 }, 4028 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4029 NULL, read_misa_i128 }, 4030 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4031 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4032 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4033 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4034 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4035 write_mcounteren }, 4036 4037 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4038 write_mstatush }, 4039 4040 /* Machine Trap Handling */ 4041 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4042 NULL, read_mscratch_i128, write_mscratch_i128 }, 4043 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4044 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4045 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4046 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4047 4048 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4049 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4050 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4051 4052 /* Machine-Level Interrupts (AIA) */ 4053 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4054 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4055 4056 /* Virtual Interrupts for Supervisor Level (AIA) */ 4057 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4058 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4059 4060 /* Machine-Level High-Half CSRs (AIA) */ 4061 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4062 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4063 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4064 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4065 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4066 4067 /* Execution environment configuration */ 4068 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4069 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4070 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4071 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4072 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4073 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4074 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4075 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4076 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4077 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4078 4079 /* Smstateen extension CSRs */ 4080 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4081 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4082 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4083 write_mstateen0h, 4084 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4085 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4086 write_mstateen_1_3, 4087 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4088 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4089 write_mstateenh_1_3, 4090 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4091 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4092 write_mstateen_1_3, 4093 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4094 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4095 write_mstateenh_1_3, 4096 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4097 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4098 write_mstateen_1_3, 4099 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4100 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4101 write_mstateenh_1_3, 4102 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4103 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4104 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4105 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4106 write_hstateen0h, 4107 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4108 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4109 write_hstateen_1_3, 4110 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4111 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4112 write_hstateenh_1_3, 4113 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4114 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4115 write_hstateen_1_3, 4116 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4117 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4118 write_hstateenh_1_3, 4119 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4120 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4121 write_hstateen_1_3, 4122 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4123 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4124 write_hstateenh_1_3, 4125 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4126 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4127 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4128 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4129 write_sstateen_1_3, 4130 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4131 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4132 write_sstateen_1_3, 4133 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4134 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4135 write_sstateen_1_3, 4136 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4137 4138 /* Supervisor Trap Setup */ 4139 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4140 NULL, read_sstatus_i128 }, 4141 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4142 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4143 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4144 write_scounteren }, 4145 4146 /* Supervisor Trap Handling */ 4147 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4148 NULL, read_sscratch_i128, write_sscratch_i128 }, 4149 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4150 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4151 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4152 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4153 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4154 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4155 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4156 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4157 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4158 write_vstimecmp, 4159 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4160 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4161 write_vstimecmph, 4162 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4163 4164 /* Supervisor Protection and Translation */ 4165 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 4166 4167 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4168 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4169 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4170 4171 /* Supervisor-Level Interrupts (AIA) */ 4172 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4173 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4174 4175 /* Supervisor-Level High-Half CSRs (AIA) */ 4176 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4177 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4178 4179 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4180 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4181 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4182 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4183 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4184 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4185 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4186 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4187 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4188 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4189 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4190 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4191 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4192 write_hcounteren, 4193 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4194 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4195 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4196 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4197 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4198 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4199 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4200 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4201 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4202 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 4203 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4204 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4205 write_htimedelta, 4206 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4207 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4208 write_htimedeltah, 4209 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4210 4211 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4212 write_vsstatus, 4213 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4214 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4215 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4216 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4217 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4218 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4219 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4220 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4221 write_vsscratch, 4222 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4223 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4224 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4225 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4226 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4227 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4228 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4229 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4230 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4231 4232 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4233 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4234 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4235 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4236 4237 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4238 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4239 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4240 write_hvictl }, 4241 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4242 write_hviprio1 }, 4243 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4244 write_hviprio2 }, 4245 4246 /* 4247 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4248 */ 4249 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4250 rmw_xiselect }, 4251 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4252 4253 /* VS-Level Interrupts (H-extension with AIA) */ 4254 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4255 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4256 4257 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4258 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4259 rmw_hidelegh }, 4260 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4261 write_ignore }, 4262 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4263 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4264 write_hviprio1h }, 4265 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4266 write_hviprio2h }, 4267 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4268 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4269 4270 /* Physical Memory Protection */ 4271 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4272 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4273 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4274 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4275 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4276 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4277 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4278 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4279 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4280 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4281 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4282 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4283 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4284 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4285 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4286 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4287 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4288 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4289 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4290 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4291 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4292 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4293 4294 /* Debug CSRs */ 4295 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4296 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4297 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4298 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4299 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4300 4301 /* User Pointer Masking */ 4302 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4303 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4304 write_upmmask }, 4305 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4306 write_upmbase }, 4307 /* Machine Pointer Masking */ 4308 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4309 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4310 write_mpmmask }, 4311 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4312 write_mpmbase }, 4313 /* Supervisor Pointer Masking */ 4314 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4315 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4316 write_spmmask }, 4317 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4318 write_spmbase }, 4319 4320 /* Performance Counters */ 4321 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4322 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4323 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4324 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4325 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4326 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4327 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4328 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4329 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4330 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4331 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4332 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4333 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4334 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4335 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4336 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4337 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4338 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4339 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4340 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4341 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4342 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4343 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4344 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4345 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4346 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4347 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4348 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4349 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4350 4351 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4352 write_mhpmcounter }, 4353 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4354 write_mhpmcounter }, 4355 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4356 write_mhpmcounter }, 4357 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4358 write_mhpmcounter }, 4359 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4360 write_mhpmcounter }, 4361 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4362 write_mhpmcounter }, 4363 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4364 write_mhpmcounter }, 4365 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4366 write_mhpmcounter }, 4367 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4368 write_mhpmcounter }, 4369 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4370 write_mhpmcounter }, 4371 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4372 write_mhpmcounter }, 4373 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4374 write_mhpmcounter }, 4375 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4376 write_mhpmcounter }, 4377 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4378 write_mhpmcounter }, 4379 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4380 write_mhpmcounter }, 4381 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4382 write_mhpmcounter }, 4383 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4384 write_mhpmcounter }, 4385 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4386 write_mhpmcounter }, 4387 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4388 write_mhpmcounter }, 4389 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4390 write_mhpmcounter }, 4391 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4392 write_mhpmcounter }, 4393 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4394 write_mhpmcounter }, 4395 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4396 write_mhpmcounter }, 4397 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4398 write_mhpmcounter }, 4399 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4400 write_mhpmcounter }, 4401 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4402 write_mhpmcounter }, 4403 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4404 write_mhpmcounter }, 4405 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4406 write_mhpmcounter }, 4407 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4408 write_mhpmcounter }, 4409 4410 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4411 write_mcountinhibit, 4412 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4413 4414 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4415 write_mhpmevent }, 4416 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4417 write_mhpmevent }, 4418 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4419 write_mhpmevent }, 4420 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4421 write_mhpmevent }, 4422 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4423 write_mhpmevent }, 4424 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4425 write_mhpmevent }, 4426 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4427 write_mhpmevent }, 4428 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4429 write_mhpmevent }, 4430 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4431 write_mhpmevent }, 4432 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4433 write_mhpmevent }, 4434 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4435 write_mhpmevent }, 4436 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4437 write_mhpmevent }, 4438 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4439 write_mhpmevent }, 4440 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4441 write_mhpmevent }, 4442 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4443 write_mhpmevent }, 4444 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4445 write_mhpmevent }, 4446 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4447 write_mhpmevent }, 4448 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4449 write_mhpmevent }, 4450 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4451 write_mhpmevent }, 4452 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4453 write_mhpmevent }, 4454 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4455 write_mhpmevent }, 4456 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4457 write_mhpmevent }, 4458 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4459 write_mhpmevent }, 4460 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4461 write_mhpmevent }, 4462 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4463 write_mhpmevent }, 4464 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4465 write_mhpmevent }, 4466 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4467 write_mhpmevent }, 4468 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4469 write_mhpmevent }, 4470 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4471 write_mhpmevent }, 4472 4473 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4474 write_mhpmeventh, 4475 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4476 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4477 write_mhpmeventh, 4478 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4479 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4480 write_mhpmeventh, 4481 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4482 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4483 write_mhpmeventh, 4484 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4485 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4486 write_mhpmeventh, 4487 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4488 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4489 write_mhpmeventh, 4490 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4491 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4492 write_mhpmeventh, 4493 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4494 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4495 write_mhpmeventh, 4496 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4497 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4498 write_mhpmeventh, 4499 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4500 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4501 write_mhpmeventh, 4502 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4503 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4504 write_mhpmeventh, 4505 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4506 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4507 write_mhpmeventh, 4508 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4509 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4510 write_mhpmeventh, 4511 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4512 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4513 write_mhpmeventh, 4514 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4515 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4516 write_mhpmeventh, 4517 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4518 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4519 write_mhpmeventh, 4520 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4521 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4522 write_mhpmeventh, 4523 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4524 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4525 write_mhpmeventh, 4526 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4527 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4528 write_mhpmeventh, 4529 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4530 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4531 write_mhpmeventh, 4532 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4533 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4534 write_mhpmeventh, 4535 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4536 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4537 write_mhpmeventh, 4538 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4539 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4540 write_mhpmeventh, 4541 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4542 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4543 write_mhpmeventh, 4544 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4545 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4546 write_mhpmeventh, 4547 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4548 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4549 write_mhpmeventh, 4550 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4551 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4552 write_mhpmeventh, 4553 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4554 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4555 write_mhpmeventh, 4556 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4557 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4558 write_mhpmeventh, 4559 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4560 4561 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4562 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4563 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4564 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4565 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4566 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4567 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4568 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4569 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4570 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4571 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4572 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4573 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4574 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4575 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4576 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4577 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4578 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4579 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4580 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4581 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4582 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4583 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4584 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4585 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4586 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4587 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4588 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4589 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4590 4591 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4592 write_mhpmcounterh }, 4593 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4594 write_mhpmcounterh }, 4595 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4596 write_mhpmcounterh }, 4597 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4598 write_mhpmcounterh }, 4599 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4600 write_mhpmcounterh }, 4601 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4602 write_mhpmcounterh }, 4603 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4604 write_mhpmcounterh }, 4605 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4606 write_mhpmcounterh }, 4607 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4608 write_mhpmcounterh }, 4609 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4610 write_mhpmcounterh }, 4611 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4612 write_mhpmcounterh }, 4613 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4614 write_mhpmcounterh }, 4615 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4616 write_mhpmcounterh }, 4617 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4618 write_mhpmcounterh }, 4619 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4620 write_mhpmcounterh }, 4621 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4622 write_mhpmcounterh }, 4623 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4624 write_mhpmcounterh }, 4625 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4626 write_mhpmcounterh }, 4627 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4628 write_mhpmcounterh }, 4629 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4630 write_mhpmcounterh }, 4631 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4632 write_mhpmcounterh }, 4633 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4634 write_mhpmcounterh }, 4635 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4636 write_mhpmcounterh }, 4637 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4638 write_mhpmcounterh }, 4639 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4640 write_mhpmcounterh }, 4641 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4642 write_mhpmcounterh }, 4643 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4644 write_mhpmcounterh }, 4645 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4646 write_mhpmcounterh }, 4647 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4648 write_mhpmcounterh }, 4649 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4650 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4651 4652 #endif /* !CONFIG_USER_ONLY */ 4653 }; 4654