xref: /openbmc/qemu/target/riscv/csr.c (revision f0551560)
1 /*
2  * RISC-V Control and Status Registers.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/timer.h"
23 #include "cpu.h"
24 #include "pmu.h"
25 #include "time_helper.h"
26 #include "qemu/main-loop.h"
27 #include "exec/exec-all.h"
28 #include "sysemu/cpu-timers.h"
29 #include "qemu/guest-random.h"
30 #include "qapi/error.h"
31 
32 /* CSR function table public API */
33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops)
34 {
35     *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)];
36 }
37 
38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops)
39 {
40     csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops;
41 }
42 
43 /* Predicates */
44 static RISCVException fs(CPURISCVState *env, int csrno)
45 {
46 #if !defined(CONFIG_USER_ONLY)
47     if (!env->debugger && !riscv_cpu_fp_enabled(env) &&
48         !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) {
49         return RISCV_EXCP_ILLEGAL_INST;
50     }
51 #endif
52     return RISCV_EXCP_NONE;
53 }
54 
55 static RISCVException vs(CPURISCVState *env, int csrno)
56 {
57     CPUState *cs = env_cpu(env);
58     RISCVCPU *cpu = RISCV_CPU(cs);
59 
60     if (env->misa_ext & RVV ||
61         cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) {
62 #if !defined(CONFIG_USER_ONLY)
63         if (!env->debugger && !riscv_cpu_vector_enabled(env)) {
64             return RISCV_EXCP_ILLEGAL_INST;
65         }
66 #endif
67         return RISCV_EXCP_NONE;
68     }
69     return RISCV_EXCP_ILLEGAL_INST;
70 }
71 
72 static RISCVException ctr(CPURISCVState *env, int csrno)
73 {
74 #if !defined(CONFIG_USER_ONLY)
75     CPUState *cs = env_cpu(env);
76     RISCVCPU *cpu = RISCV_CPU(cs);
77     int ctr_index;
78     target_ulong ctr_mask;
79     int base_csrno = CSR_CYCLE;
80     bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false;
81 
82     if (rv32 && csrno >= CSR_CYCLEH) {
83         /* Offset for RV32 hpmcounternh counters */
84         base_csrno += 0x80;
85     }
86     ctr_index = csrno - base_csrno;
87     ctr_mask = BIT(ctr_index);
88 
89     if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) ||
90         (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) {
91         goto skip_ext_pmu_check;
92     }
93 
94     if (!(cpu->pmu_avail_ctrs & ctr_mask)) {
95         /* No counter is enabled in PMU or the counter is out of range */
96         return RISCV_EXCP_ILLEGAL_INST;
97     }
98 
99 skip_ext_pmu_check:
100 
101     if (((env->priv == PRV_S) && (!get_field(env->mcounteren, ctr_mask))) ||
102         ((env->priv == PRV_U) && (!get_field(env->scounteren, ctr_mask)))) {
103         return RISCV_EXCP_ILLEGAL_INST;
104     }
105 
106     if (riscv_cpu_virt_enabled(env)) {
107         if (!get_field(env->hcounteren, ctr_mask) &&
108             get_field(env->mcounteren, ctr_mask)) {
109             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
110         }
111     }
112 #endif
113     return RISCV_EXCP_NONE;
114 }
115 
116 static RISCVException ctr32(CPURISCVState *env, int csrno)
117 {
118     if (riscv_cpu_mxl(env) != MXL_RV32) {
119         return RISCV_EXCP_ILLEGAL_INST;
120     }
121 
122     return ctr(env, csrno);
123 }
124 
125 #if !defined(CONFIG_USER_ONLY)
126 static RISCVException mctr(CPURISCVState *env, int csrno)
127 {
128     CPUState *cs = env_cpu(env);
129     RISCVCPU *cpu = RISCV_CPU(cs);
130     int ctr_index;
131     int base_csrno = CSR_MHPMCOUNTER3;
132 
133     if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) {
134         /* Offset for RV32 mhpmcounternh counters */
135         base_csrno += 0x80;
136     }
137     ctr_index = csrno - base_csrno;
138     if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) {
139         /* The PMU is not enabled or counter is out of range*/
140         return RISCV_EXCP_ILLEGAL_INST;
141     }
142 
143     return RISCV_EXCP_NONE;
144 }
145 
146 static RISCVException mctr32(CPURISCVState *env, int csrno)
147 {
148     if (riscv_cpu_mxl(env) != MXL_RV32) {
149         return RISCV_EXCP_ILLEGAL_INST;
150     }
151 
152     return mctr(env, csrno);
153 }
154 
155 static RISCVException sscofpmf(CPURISCVState *env, int csrno)
156 {
157     CPUState *cs = env_cpu(env);
158     RISCVCPU *cpu = RISCV_CPU(cs);
159 
160     if (!cpu->cfg.ext_sscofpmf) {
161         return RISCV_EXCP_ILLEGAL_INST;
162     }
163 
164     return RISCV_EXCP_NONE;
165 }
166 
167 static RISCVException any(CPURISCVState *env, int csrno)
168 {
169     return RISCV_EXCP_NONE;
170 }
171 
172 static RISCVException any32(CPURISCVState *env, int csrno)
173 {
174     if (riscv_cpu_mxl(env) != MXL_RV32) {
175         return RISCV_EXCP_ILLEGAL_INST;
176     }
177 
178     return any(env, csrno);
179 
180 }
181 
182 static int aia_any(CPURISCVState *env, int csrno)
183 {
184     RISCVCPU *cpu = env_archcpu(env);
185 
186     if (!cpu->cfg.ext_smaia) {
187         return RISCV_EXCP_ILLEGAL_INST;
188     }
189 
190     return any(env, csrno);
191 }
192 
193 static int aia_any32(CPURISCVState *env, int csrno)
194 {
195     RISCVCPU *cpu = env_archcpu(env);
196 
197     if (!cpu->cfg.ext_smaia) {
198         return RISCV_EXCP_ILLEGAL_INST;
199     }
200 
201     return any32(env, csrno);
202 }
203 
204 static RISCVException smode(CPURISCVState *env, int csrno)
205 {
206     if (riscv_has_ext(env, RVS)) {
207         return RISCV_EXCP_NONE;
208     }
209 
210     return RISCV_EXCP_ILLEGAL_INST;
211 }
212 
213 static int smode32(CPURISCVState *env, int csrno)
214 {
215     if (riscv_cpu_mxl(env) != MXL_RV32) {
216         return RISCV_EXCP_ILLEGAL_INST;
217     }
218 
219     return smode(env, csrno);
220 }
221 
222 static int aia_smode(CPURISCVState *env, int csrno)
223 {
224     RISCVCPU *cpu = env_archcpu(env);
225 
226     if (!cpu->cfg.ext_ssaia) {
227         return RISCV_EXCP_ILLEGAL_INST;
228     }
229 
230     return smode(env, csrno);
231 }
232 
233 static int aia_smode32(CPURISCVState *env, int csrno)
234 {
235     RISCVCPU *cpu = env_archcpu(env);
236 
237     if (!cpu->cfg.ext_ssaia) {
238         return RISCV_EXCP_ILLEGAL_INST;
239     }
240 
241     return smode32(env, csrno);
242 }
243 
244 static RISCVException hmode(CPURISCVState *env, int csrno)
245 {
246     if (riscv_has_ext(env, RVH)) {
247         return RISCV_EXCP_NONE;
248     }
249 
250     return RISCV_EXCP_ILLEGAL_INST;
251 }
252 
253 static RISCVException hmode32(CPURISCVState *env, int csrno)
254 {
255     if (riscv_cpu_mxl(env) != MXL_RV32) {
256         return RISCV_EXCP_ILLEGAL_INST;
257     }
258 
259     return hmode(env, csrno);
260 
261 }
262 
263 static RISCVException umode(CPURISCVState *env, int csrno)
264 {
265     if (riscv_has_ext(env, RVU)) {
266         return RISCV_EXCP_NONE;
267     }
268 
269     return RISCV_EXCP_ILLEGAL_INST;
270 }
271 
272 static RISCVException umode32(CPURISCVState *env, int csrno)
273 {
274     if (riscv_cpu_mxl(env) != MXL_RV32) {
275         return RISCV_EXCP_ILLEGAL_INST;
276     }
277 
278     return umode(env, csrno);
279 }
280 
281 /* Checks if PointerMasking registers could be accessed */
282 static RISCVException pointer_masking(CPURISCVState *env, int csrno)
283 {
284     /* Check if j-ext is present */
285     if (riscv_has_ext(env, RVJ)) {
286         return RISCV_EXCP_NONE;
287     }
288     return RISCV_EXCP_ILLEGAL_INST;
289 }
290 
291 static int aia_hmode(CPURISCVState *env, int csrno)
292 {
293     RISCVCPU *cpu = env_archcpu(env);
294 
295     if (!cpu->cfg.ext_ssaia) {
296         return RISCV_EXCP_ILLEGAL_INST;
297      }
298 
299      return hmode(env, csrno);
300 }
301 
302 static int aia_hmode32(CPURISCVState *env, int csrno)
303 {
304     RISCVCPU *cpu = env_archcpu(env);
305 
306     if (!cpu->cfg.ext_ssaia) {
307         return RISCV_EXCP_ILLEGAL_INST;
308     }
309 
310     return hmode32(env, csrno);
311 }
312 
313 static RISCVException pmp(CPURISCVState *env, int csrno)
314 {
315     if (riscv_feature(env, RISCV_FEATURE_PMP)) {
316         return RISCV_EXCP_NONE;
317     }
318 
319     return RISCV_EXCP_ILLEGAL_INST;
320 }
321 
322 static RISCVException epmp(CPURISCVState *env, int csrno)
323 {
324     if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) {
325         return RISCV_EXCP_NONE;
326     }
327 
328     return RISCV_EXCP_ILLEGAL_INST;
329 }
330 
331 static RISCVException debug(CPURISCVState *env, int csrno)
332 {
333     if (riscv_feature(env, RISCV_FEATURE_DEBUG)) {
334         return RISCV_EXCP_NONE;
335     }
336 
337     return RISCV_EXCP_ILLEGAL_INST;
338 }
339 #endif
340 
341 static RISCVException seed(CPURISCVState *env, int csrno)
342 {
343     RISCVCPU *cpu = env_archcpu(env);
344 
345     if (!cpu->cfg.ext_zkr) {
346         return RISCV_EXCP_ILLEGAL_INST;
347     }
348 
349 #if !defined(CONFIG_USER_ONLY)
350     /*
351      * With a CSR read-write instruction:
352      * 1) The seed CSR is always available in machine mode as normal.
353      * 2) Attempted access to seed from virtual modes VS and VU always raises
354      * an exception(virtual instruction exception only if mseccfg.sseed=1).
355      * 3) Without the corresponding access control bit set to 1, any attempted
356      * access to seed from U, S or HS modes will raise an illegal instruction
357      * exception.
358      */
359     if (env->priv == PRV_M) {
360         return RISCV_EXCP_NONE;
361     } else if (riscv_cpu_virt_enabled(env)) {
362         if (env->mseccfg & MSECCFG_SSEED) {
363             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
364         } else {
365             return RISCV_EXCP_ILLEGAL_INST;
366         }
367     } else {
368         if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) {
369             return RISCV_EXCP_NONE;
370         } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) {
371             return RISCV_EXCP_NONE;
372         } else {
373             return RISCV_EXCP_ILLEGAL_INST;
374         }
375     }
376 #else
377     return RISCV_EXCP_NONE;
378 #endif
379 }
380 
381 /* User Floating-Point CSRs */
382 static RISCVException read_fflags(CPURISCVState *env, int csrno,
383                                   target_ulong *val)
384 {
385     *val = riscv_cpu_get_fflags(env);
386     return RISCV_EXCP_NONE;
387 }
388 
389 static RISCVException write_fflags(CPURISCVState *env, int csrno,
390                                    target_ulong val)
391 {
392 #if !defined(CONFIG_USER_ONLY)
393     if (riscv_has_ext(env, RVF)) {
394         env->mstatus |= MSTATUS_FS;
395     }
396 #endif
397     riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT));
398     return RISCV_EXCP_NONE;
399 }
400 
401 static RISCVException read_frm(CPURISCVState *env, int csrno,
402                                target_ulong *val)
403 {
404     *val = env->frm;
405     return RISCV_EXCP_NONE;
406 }
407 
408 static RISCVException write_frm(CPURISCVState *env, int csrno,
409                                 target_ulong val)
410 {
411 #if !defined(CONFIG_USER_ONLY)
412     if (riscv_has_ext(env, RVF)) {
413         env->mstatus |= MSTATUS_FS;
414     }
415 #endif
416     env->frm = val & (FSR_RD >> FSR_RD_SHIFT);
417     return RISCV_EXCP_NONE;
418 }
419 
420 static RISCVException read_fcsr(CPURISCVState *env, int csrno,
421                                 target_ulong *val)
422 {
423     *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT)
424         | (env->frm << FSR_RD_SHIFT);
425     return RISCV_EXCP_NONE;
426 }
427 
428 static RISCVException write_fcsr(CPURISCVState *env, int csrno,
429                                  target_ulong val)
430 {
431 #if !defined(CONFIG_USER_ONLY)
432     if (riscv_has_ext(env, RVF)) {
433         env->mstatus |= MSTATUS_FS;
434     }
435 #endif
436     env->frm = (val & FSR_RD) >> FSR_RD_SHIFT;
437     riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT);
438     return RISCV_EXCP_NONE;
439 }
440 
441 static RISCVException read_vtype(CPURISCVState *env, int csrno,
442                                  target_ulong *val)
443 {
444     uint64_t vill;
445     switch (env->xl) {
446     case MXL_RV32:
447         vill = (uint32_t)env->vill << 31;
448         break;
449     case MXL_RV64:
450         vill = (uint64_t)env->vill << 63;
451         break;
452     default:
453         g_assert_not_reached();
454     }
455     *val = (target_ulong)vill | env->vtype;
456     return RISCV_EXCP_NONE;
457 }
458 
459 static RISCVException read_vl(CPURISCVState *env, int csrno,
460                               target_ulong *val)
461 {
462     *val = env->vl;
463     return RISCV_EXCP_NONE;
464 }
465 
466 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val)
467 {
468     *val = env_archcpu(env)->cfg.vlen >> 3;
469     return RISCV_EXCP_NONE;
470 }
471 
472 static RISCVException read_vxrm(CPURISCVState *env, int csrno,
473                                 target_ulong *val)
474 {
475     *val = env->vxrm;
476     return RISCV_EXCP_NONE;
477 }
478 
479 static RISCVException write_vxrm(CPURISCVState *env, int csrno,
480                                  target_ulong val)
481 {
482 #if !defined(CONFIG_USER_ONLY)
483     env->mstatus |= MSTATUS_VS;
484 #endif
485     env->vxrm = val;
486     return RISCV_EXCP_NONE;
487 }
488 
489 static RISCVException read_vxsat(CPURISCVState *env, int csrno,
490                                  target_ulong *val)
491 {
492     *val = env->vxsat;
493     return RISCV_EXCP_NONE;
494 }
495 
496 static RISCVException write_vxsat(CPURISCVState *env, int csrno,
497                                   target_ulong val)
498 {
499 #if !defined(CONFIG_USER_ONLY)
500     env->mstatus |= MSTATUS_VS;
501 #endif
502     env->vxsat = val;
503     return RISCV_EXCP_NONE;
504 }
505 
506 static RISCVException read_vstart(CPURISCVState *env, int csrno,
507                                   target_ulong *val)
508 {
509     *val = env->vstart;
510     return RISCV_EXCP_NONE;
511 }
512 
513 static RISCVException write_vstart(CPURISCVState *env, int csrno,
514                                    target_ulong val)
515 {
516 #if !defined(CONFIG_USER_ONLY)
517     env->mstatus |= MSTATUS_VS;
518 #endif
519     /*
520      * The vstart CSR is defined to have only enough writable bits
521      * to hold the largest element index, i.e. lg2(VLEN) bits.
522      */
523     env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen));
524     return RISCV_EXCP_NONE;
525 }
526 
527 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val)
528 {
529     *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT);
530     return RISCV_EXCP_NONE;
531 }
532 
533 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val)
534 {
535 #if !defined(CONFIG_USER_ONLY)
536     env->mstatus |= MSTATUS_VS;
537 #endif
538     env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT;
539     env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT;
540     return RISCV_EXCP_NONE;
541 }
542 
543 /* User Timers and Counters */
544 static target_ulong get_ticks(bool shift)
545 {
546     int64_t val;
547     target_ulong result;
548 
549 #if !defined(CONFIG_USER_ONLY)
550     if (icount_enabled()) {
551         val = icount_get();
552     } else {
553         val = cpu_get_host_ticks();
554     }
555 #else
556     val = cpu_get_host_ticks();
557 #endif
558 
559     if (shift) {
560         result = val >> 32;
561     } else {
562         result = val;
563     }
564 
565     return result;
566 }
567 
568 #if defined(CONFIG_USER_ONLY)
569 static RISCVException read_time(CPURISCVState *env, int csrno,
570                                 target_ulong *val)
571 {
572     *val = cpu_get_host_ticks();
573     return RISCV_EXCP_NONE;
574 }
575 
576 static RISCVException read_timeh(CPURISCVState *env, int csrno,
577                                  target_ulong *val)
578 {
579     *val = cpu_get_host_ticks() >> 32;
580     return RISCV_EXCP_NONE;
581 }
582 
583 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val)
584 {
585     *val = get_ticks(false);
586     return RISCV_EXCP_NONE;
587 }
588 
589 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val)
590 {
591     *val = get_ticks(true);
592     return RISCV_EXCP_NONE;
593 }
594 
595 #else /* CONFIG_USER_ONLY */
596 
597 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val)
598 {
599     int evt_index = csrno - CSR_MCOUNTINHIBIT;
600 
601     *val = env->mhpmevent_val[evt_index];
602 
603     return RISCV_EXCP_NONE;
604 }
605 
606 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val)
607 {
608     int evt_index = csrno - CSR_MCOUNTINHIBIT;
609     uint64_t mhpmevt_val = val;
610 
611     env->mhpmevent_val[evt_index] = val;
612 
613     if (riscv_cpu_mxl(env) == MXL_RV32) {
614         mhpmevt_val = mhpmevt_val |
615                       ((uint64_t)env->mhpmeventh_val[evt_index] << 32);
616     }
617     riscv_pmu_update_event_map(env, mhpmevt_val, evt_index);
618 
619     return RISCV_EXCP_NONE;
620 }
621 
622 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val)
623 {
624     int evt_index = csrno - CSR_MHPMEVENT3H + 3;
625 
626     *val = env->mhpmeventh_val[evt_index];
627 
628     return RISCV_EXCP_NONE;
629 }
630 
631 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val)
632 {
633     int evt_index = csrno - CSR_MHPMEVENT3H + 3;
634     uint64_t mhpmevth_val = val;
635     uint64_t mhpmevt_val = env->mhpmevent_val[evt_index];
636 
637     mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32);
638     env->mhpmeventh_val[evt_index] = val;
639 
640     riscv_pmu_update_event_map(env, mhpmevt_val, evt_index);
641 
642     return RISCV_EXCP_NONE;
643 }
644 
645 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val)
646 {
647     int ctr_idx = csrno - CSR_MCYCLE;
648     PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
649     uint64_t mhpmctr_val = val;
650 
651     counter->mhpmcounter_val = val;
652     if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) ||
653         riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) {
654         counter->mhpmcounter_prev = get_ticks(false);
655         if (ctr_idx > 2) {
656             if (riscv_cpu_mxl(env) == MXL_RV32) {
657                 mhpmctr_val = mhpmctr_val |
658                               ((uint64_t)counter->mhpmcounterh_val << 32);
659             }
660             riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx);
661         }
662      } else {
663         /* Other counters can keep incrementing from the given value */
664         counter->mhpmcounter_prev = val;
665     }
666 
667     return RISCV_EXCP_NONE;
668 }
669 
670 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val)
671 {
672     int ctr_idx = csrno - CSR_MCYCLEH;
673     PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
674     uint64_t mhpmctr_val = counter->mhpmcounter_val;
675     uint64_t mhpmctrh_val = val;
676 
677     counter->mhpmcounterh_val = val;
678     mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32);
679     if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) ||
680         riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) {
681         counter->mhpmcounterh_prev = get_ticks(true);
682         if (ctr_idx > 2) {
683             riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx);
684         }
685     } else {
686         counter->mhpmcounterh_prev = val;
687     }
688 
689     return RISCV_EXCP_NONE;
690 }
691 
692 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val,
693                                          bool upper_half, uint32_t ctr_idx)
694 {
695     PMUCTRState counter = env->pmu_ctrs[ctr_idx];
696     target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev :
697                                          counter.mhpmcounter_prev;
698     target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val :
699                                         counter.mhpmcounter_val;
700 
701     if (get_field(env->mcountinhibit, BIT(ctr_idx))) {
702         /**
703          * Counter should not increment if inhibit bit is set. We can't really
704          * stop the icount counting. Just return the counter value written by
705          * the supervisor to indicate that counter was not incremented.
706          */
707         if (!counter.started) {
708             *val = ctr_val;
709             return RISCV_EXCP_NONE;
710         } else {
711             /* Mark that the counter has been stopped */
712             counter.started = false;
713         }
714     }
715 
716     /**
717      * The kernel computes the perf delta by subtracting the current value from
718      * the value it initialized previously (ctr_val).
719      */
720     if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) ||
721         riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) {
722         *val = get_ticks(upper_half) - ctr_prev + ctr_val;
723     } else {
724         *val = ctr_val;
725     }
726 
727     return RISCV_EXCP_NONE;
728 }
729 
730 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val)
731 {
732     uint16_t ctr_index;
733 
734     if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) {
735         ctr_index = csrno - CSR_MCYCLE;
736     } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) {
737         ctr_index = csrno - CSR_CYCLE;
738     } else {
739         return RISCV_EXCP_ILLEGAL_INST;
740     }
741 
742     return riscv_pmu_read_ctr(env, val, false, ctr_index);
743 }
744 
745 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val)
746 {
747     uint16_t ctr_index;
748 
749     if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) {
750         ctr_index = csrno - CSR_MCYCLEH;
751     } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) {
752         ctr_index = csrno - CSR_CYCLEH;
753     } else {
754         return RISCV_EXCP_ILLEGAL_INST;
755     }
756 
757     return riscv_pmu_read_ctr(env, val, true, ctr_index);
758 }
759 
760 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val)
761 {
762     int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT;
763     int i;
764     *val = 0;
765     target_ulong *mhpm_evt_val;
766     uint64_t of_bit_mask;
767 
768     if (riscv_cpu_mxl(env) == MXL_RV32) {
769         mhpm_evt_val = env->mhpmeventh_val;
770         of_bit_mask = MHPMEVENTH_BIT_OF;
771     } else {
772         mhpm_evt_val = env->mhpmevent_val;
773         of_bit_mask = MHPMEVENT_BIT_OF;
774     }
775 
776     for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) {
777         if ((get_field(env->mcounteren, BIT(i))) &&
778             (mhpm_evt_val[i] & of_bit_mask)) {
779                     *val |= BIT(i);
780             }
781     }
782 
783     return RISCV_EXCP_NONE;
784 }
785 
786 static RISCVException read_time(CPURISCVState *env, int csrno,
787                                 target_ulong *val)
788 {
789     uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
790 
791     if (!env->rdtime_fn) {
792         return RISCV_EXCP_ILLEGAL_INST;
793     }
794 
795     *val = env->rdtime_fn(env->rdtime_fn_arg) + delta;
796     return RISCV_EXCP_NONE;
797 }
798 
799 static RISCVException read_timeh(CPURISCVState *env, int csrno,
800                                  target_ulong *val)
801 {
802     uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
803 
804     if (!env->rdtime_fn) {
805         return RISCV_EXCP_ILLEGAL_INST;
806     }
807 
808     *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32;
809     return RISCV_EXCP_NONE;
810 }
811 
812 static RISCVException sstc(CPURISCVState *env, int csrno)
813 {
814     CPUState *cs = env_cpu(env);
815     RISCVCPU *cpu = RISCV_CPU(cs);
816     bool hmode_check = false;
817 
818     if (!cpu->cfg.ext_sstc || !env->rdtime_fn) {
819         return RISCV_EXCP_ILLEGAL_INST;
820     }
821 
822     if (env->priv == PRV_M) {
823         return RISCV_EXCP_NONE;
824     }
825 
826     /*
827      * No need of separate function for rv32 as menvcfg stores both menvcfg
828      * menvcfgh for RV32.
829      */
830     if (!(get_field(env->mcounteren, COUNTEREN_TM) &&
831           get_field(env->menvcfg, MENVCFG_STCE))) {
832         return RISCV_EXCP_ILLEGAL_INST;
833     }
834 
835     if (riscv_cpu_virt_enabled(env)) {
836         if (!(get_field(env->hcounteren, COUNTEREN_TM) &
837               get_field(env->henvcfg, HENVCFG_STCE))) {
838             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
839         }
840     }
841 
842     if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) {
843         hmode_check = true;
844     }
845 
846     return hmode_check ? hmode(env, csrno) : smode(env, csrno);
847 }
848 
849 static RISCVException sstc_32(CPURISCVState *env, int csrno)
850 {
851     if (riscv_cpu_mxl(env) != MXL_RV32) {
852         return RISCV_EXCP_ILLEGAL_INST;
853     }
854 
855     return sstc(env, csrno);
856 }
857 
858 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno,
859                                     target_ulong *val)
860 {
861     *val = env->vstimecmp;
862 
863     return RISCV_EXCP_NONE;
864 }
865 
866 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno,
867                                     target_ulong *val)
868 {
869     *val = env->vstimecmp >> 32;
870 
871     return RISCV_EXCP_NONE;
872 }
873 
874 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno,
875                                     target_ulong val)
876 {
877     RISCVCPU *cpu = env_archcpu(env);
878 
879     if (riscv_cpu_mxl(env) == MXL_RV32) {
880         env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val);
881     } else {
882         env->vstimecmp = val;
883     }
884 
885     riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp,
886                               env->htimedelta, MIP_VSTIP);
887 
888     return RISCV_EXCP_NONE;
889 }
890 
891 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno,
892                                     target_ulong val)
893 {
894     RISCVCPU *cpu = env_archcpu(env);
895 
896     env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val);
897     riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp,
898                               env->htimedelta, MIP_VSTIP);
899 
900     return RISCV_EXCP_NONE;
901 }
902 
903 static RISCVException read_stimecmp(CPURISCVState *env, int csrno,
904                                     target_ulong *val)
905 {
906     if (riscv_cpu_virt_enabled(env)) {
907         *val = env->vstimecmp;
908     } else {
909         *val = env->stimecmp;
910     }
911 
912     return RISCV_EXCP_NONE;
913 }
914 
915 static RISCVException read_stimecmph(CPURISCVState *env, int csrno,
916                                     target_ulong *val)
917 {
918     if (riscv_cpu_virt_enabled(env)) {
919         *val = env->vstimecmp >> 32;
920     } else {
921         *val = env->stimecmp >> 32;
922     }
923 
924     return RISCV_EXCP_NONE;
925 }
926 
927 static RISCVException write_stimecmp(CPURISCVState *env, int csrno,
928                                     target_ulong val)
929 {
930     RISCVCPU *cpu = env_archcpu(env);
931 
932     if (riscv_cpu_virt_enabled(env)) {
933         return write_vstimecmp(env, csrno, val);
934     }
935 
936     if (riscv_cpu_mxl(env) == MXL_RV32) {
937         env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val);
938     } else {
939         env->stimecmp = val;
940     }
941 
942     riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP);
943 
944     return RISCV_EXCP_NONE;
945 }
946 
947 static RISCVException write_stimecmph(CPURISCVState *env, int csrno,
948                                     target_ulong val)
949 {
950     RISCVCPU *cpu = env_archcpu(env);
951 
952     if (riscv_cpu_virt_enabled(env)) {
953         return write_vstimecmph(env, csrno, val);
954     }
955 
956     env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val);
957     riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP);
958 
959     return RISCV_EXCP_NONE;
960 }
961 
962 /* Machine constants */
963 
964 #define M_MODE_INTERRUPTS  ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP))
965 #define S_MODE_INTERRUPTS  ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \
966                                       MIP_LCOFIP))
967 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP))
968 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS))
969 
970 #define VSTOPI_NUM_SRCS 5
971 
972 static const uint64_t delegable_ints = S_MODE_INTERRUPTS |
973                                            VS_MODE_INTERRUPTS;
974 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS;
975 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS |
976                                      HS_MODE_INTERRUPTS;
977 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \
978                          (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \
979                          (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \
980                          (1ULL << (RISCV_EXCP_BREAKPOINT)) | \
981                          (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \
982                          (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \
983                          (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \
984                          (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \
985                          (1ULL << (RISCV_EXCP_U_ECALL)) | \
986                          (1ULL << (RISCV_EXCP_S_ECALL)) | \
987                          (1ULL << (RISCV_EXCP_VS_ECALL)) | \
988                          (1ULL << (RISCV_EXCP_M_ECALL)) | \
989                          (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \
990                          (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \
991                          (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \
992                          (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \
993                          (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \
994                          (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \
995                          (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)))
996 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS &
997     ~((1ULL << (RISCV_EXCP_S_ECALL)) |
998       (1ULL << (RISCV_EXCP_VS_ECALL)) |
999       (1ULL << (RISCV_EXCP_M_ECALL)) |
1000       (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) |
1001       (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) |
1002       (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) |
1003       (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)));
1004 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE |
1005     SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS |
1006     SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS;
1007 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP |
1008                                               SIP_LCOFIP;
1009 static const target_ulong hip_writable_mask = MIP_VSSIP;
1010 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP;
1011 static const target_ulong vsip_writable_mask = MIP_VSSIP;
1012 
1013 static const char valid_vm_1_10_32[16] = {
1014     [VM_1_10_MBARE] = 1,
1015     [VM_1_10_SV32] = 1
1016 };
1017 
1018 static const char valid_vm_1_10_64[16] = {
1019     [VM_1_10_MBARE] = 1,
1020     [VM_1_10_SV39] = 1,
1021     [VM_1_10_SV48] = 1,
1022     [VM_1_10_SV57] = 1
1023 };
1024 
1025 /* Machine Information Registers */
1026 static RISCVException read_zero(CPURISCVState *env, int csrno,
1027                                 target_ulong *val)
1028 {
1029     *val = 0;
1030     return RISCV_EXCP_NONE;
1031 }
1032 
1033 static RISCVException write_ignore(CPURISCVState *env, int csrno,
1034                                    target_ulong val)
1035 {
1036     return RISCV_EXCP_NONE;
1037 }
1038 
1039 static RISCVException read_mvendorid(CPURISCVState *env, int csrno,
1040                                      target_ulong *val)
1041 {
1042     CPUState *cs = env_cpu(env);
1043     RISCVCPU *cpu = RISCV_CPU(cs);
1044 
1045     *val = cpu->cfg.mvendorid;
1046     return RISCV_EXCP_NONE;
1047 }
1048 
1049 static RISCVException read_marchid(CPURISCVState *env, int csrno,
1050                                    target_ulong *val)
1051 {
1052     CPUState *cs = env_cpu(env);
1053     RISCVCPU *cpu = RISCV_CPU(cs);
1054 
1055     *val = cpu->cfg.marchid;
1056     return RISCV_EXCP_NONE;
1057 }
1058 
1059 static RISCVException read_mimpid(CPURISCVState *env, int csrno,
1060                                   target_ulong *val)
1061 {
1062     CPUState *cs = env_cpu(env);
1063     RISCVCPU *cpu = RISCV_CPU(cs);
1064 
1065     *val = cpu->cfg.mimpid;
1066     return RISCV_EXCP_NONE;
1067 }
1068 
1069 static RISCVException read_mhartid(CPURISCVState *env, int csrno,
1070                                    target_ulong *val)
1071 {
1072     *val = env->mhartid;
1073     return RISCV_EXCP_NONE;
1074 }
1075 
1076 /* Machine Trap Setup */
1077 
1078 /* We do not store SD explicitly, only compute it on demand. */
1079 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status)
1080 {
1081     if ((status & MSTATUS_FS) == MSTATUS_FS ||
1082         (status & MSTATUS_VS) == MSTATUS_VS ||
1083         (status & MSTATUS_XS) == MSTATUS_XS) {
1084         switch (xl) {
1085         case MXL_RV32:
1086             return status | MSTATUS32_SD;
1087         case MXL_RV64:
1088             return status | MSTATUS64_SD;
1089         case MXL_RV128:
1090             return MSTATUSH128_SD;
1091         default:
1092             g_assert_not_reached();
1093         }
1094     }
1095     return status;
1096 }
1097 
1098 static RISCVException read_mstatus(CPURISCVState *env, int csrno,
1099                                    target_ulong *val)
1100 {
1101     *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus);
1102     return RISCV_EXCP_NONE;
1103 }
1104 
1105 static int validate_vm(CPURISCVState *env, target_ulong vm)
1106 {
1107     if (riscv_cpu_mxl(env) == MXL_RV32) {
1108         return valid_vm_1_10_32[vm & 0xf];
1109     } else {
1110         return valid_vm_1_10_64[vm & 0xf];
1111     }
1112 }
1113 
1114 static RISCVException write_mstatus(CPURISCVState *env, int csrno,
1115                                     target_ulong val)
1116 {
1117     uint64_t mstatus = env->mstatus;
1118     uint64_t mask = 0;
1119     RISCVMXL xl = riscv_cpu_mxl(env);
1120 
1121     /* flush tlb on mstatus fields that affect VM */
1122     if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV |
1123             MSTATUS_MPRV | MSTATUS_SUM)) {
1124         tlb_flush(env_cpu(env));
1125     }
1126     mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE |
1127         MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM |
1128         MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR |
1129         MSTATUS_TW | MSTATUS_VS;
1130 
1131     if (riscv_has_ext(env, RVF)) {
1132         mask |= MSTATUS_FS;
1133     }
1134 
1135     if (xl != MXL_RV32 || env->debugger) {
1136         /*
1137          * RV32: MPV and GVA are not in mstatus. The current plan is to
1138          * add them to mstatush. For now, we just don't support it.
1139          */
1140         mask |= MSTATUS_MPV | MSTATUS_GVA;
1141         if ((val & MSTATUS64_UXL) != 0) {
1142             mask |= MSTATUS64_UXL;
1143         }
1144     }
1145 
1146     mstatus = (mstatus & ~mask) | (val & mask);
1147 
1148     if (xl > MXL_RV32) {
1149         /* SXL field is for now read only */
1150         mstatus = set_field(mstatus, MSTATUS64_SXL, xl);
1151     }
1152     env->mstatus = mstatus;
1153     env->xl = cpu_recompute_xl(env);
1154 
1155     return RISCV_EXCP_NONE;
1156 }
1157 
1158 static RISCVException read_mstatush(CPURISCVState *env, int csrno,
1159                                     target_ulong *val)
1160 {
1161     *val = env->mstatus >> 32;
1162     return RISCV_EXCP_NONE;
1163 }
1164 
1165 static RISCVException write_mstatush(CPURISCVState *env, int csrno,
1166                                      target_ulong val)
1167 {
1168     uint64_t valh = (uint64_t)val << 32;
1169     uint64_t mask = MSTATUS_MPV | MSTATUS_GVA;
1170 
1171     if ((valh ^ env->mstatus) & (MSTATUS_MPV)) {
1172         tlb_flush(env_cpu(env));
1173     }
1174 
1175     env->mstatus = (env->mstatus & ~mask) | (valh & mask);
1176 
1177     return RISCV_EXCP_NONE;
1178 }
1179 
1180 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno,
1181                                         Int128 *val)
1182 {
1183     *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus));
1184     return RISCV_EXCP_NONE;
1185 }
1186 
1187 static RISCVException read_misa_i128(CPURISCVState *env, int csrno,
1188                                      Int128 *val)
1189 {
1190     *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62);
1191     return RISCV_EXCP_NONE;
1192 }
1193 
1194 static RISCVException read_misa(CPURISCVState *env, int csrno,
1195                                 target_ulong *val)
1196 {
1197     target_ulong misa;
1198 
1199     switch (env->misa_mxl) {
1200     case MXL_RV32:
1201         misa = (target_ulong)MXL_RV32 << 30;
1202         break;
1203 #ifdef TARGET_RISCV64
1204     case MXL_RV64:
1205         misa = (target_ulong)MXL_RV64 << 62;
1206         break;
1207 #endif
1208     default:
1209         g_assert_not_reached();
1210     }
1211 
1212     *val = misa | env->misa_ext;
1213     return RISCV_EXCP_NONE;
1214 }
1215 
1216 static RISCVException write_misa(CPURISCVState *env, int csrno,
1217                                  target_ulong val)
1218 {
1219     if (!riscv_feature(env, RISCV_FEATURE_MISA)) {
1220         /* drop write to misa */
1221         return RISCV_EXCP_NONE;
1222     }
1223 
1224     /* 'I' or 'E' must be present */
1225     if (!(val & (RVI | RVE))) {
1226         /* It is not, drop write to misa */
1227         return RISCV_EXCP_NONE;
1228     }
1229 
1230     /* 'E' excludes all other extensions */
1231     if (val & RVE) {
1232         /* when we support 'E' we can do "val = RVE;" however
1233          * for now we just drop writes if 'E' is present.
1234          */
1235         return RISCV_EXCP_NONE;
1236     }
1237 
1238     /*
1239      * misa.MXL writes are not supported by QEMU.
1240      * Drop writes to those bits.
1241      */
1242 
1243     /* Mask extensions that are not supported by this hart */
1244     val &= env->misa_ext_mask;
1245 
1246     /* Mask extensions that are not supported by QEMU */
1247     val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV);
1248 
1249     /* 'D' depends on 'F', so clear 'D' if 'F' is not present */
1250     if ((val & RVD) && !(val & RVF)) {
1251         val &= ~RVD;
1252     }
1253 
1254     /* Suppress 'C' if next instruction is not aligned
1255      * TODO: this should check next_pc
1256      */
1257     if ((val & RVC) && (GETPC() & ~3) != 0) {
1258         val &= ~RVC;
1259     }
1260 
1261     /* If nothing changed, do nothing. */
1262     if (val == env->misa_ext) {
1263         return RISCV_EXCP_NONE;
1264     }
1265 
1266     if (!(val & RVF)) {
1267         env->mstatus &= ~MSTATUS_FS;
1268     }
1269 
1270     /* flush translation cache */
1271     tb_flush(env_cpu(env));
1272     env->misa_ext = val;
1273     env->xl = riscv_cpu_mxl(env);
1274     return RISCV_EXCP_NONE;
1275 }
1276 
1277 static RISCVException read_medeleg(CPURISCVState *env, int csrno,
1278                                    target_ulong *val)
1279 {
1280     *val = env->medeleg;
1281     return RISCV_EXCP_NONE;
1282 }
1283 
1284 static RISCVException write_medeleg(CPURISCVState *env, int csrno,
1285                                     target_ulong val)
1286 {
1287     env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS);
1288     return RISCV_EXCP_NONE;
1289 }
1290 
1291 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno,
1292                                     uint64_t *ret_val,
1293                                     uint64_t new_val, uint64_t wr_mask)
1294 {
1295     uint64_t mask = wr_mask & delegable_ints;
1296 
1297     if (ret_val) {
1298         *ret_val = env->mideleg;
1299     }
1300 
1301     env->mideleg = (env->mideleg & ~mask) | (new_val & mask);
1302 
1303     if (riscv_has_ext(env, RVH)) {
1304         env->mideleg |= HS_MODE_INTERRUPTS;
1305     }
1306 
1307     return RISCV_EXCP_NONE;
1308 }
1309 
1310 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno,
1311                                   target_ulong *ret_val,
1312                                   target_ulong new_val, target_ulong wr_mask)
1313 {
1314     uint64_t rval;
1315     RISCVException ret;
1316 
1317     ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask);
1318     if (ret_val) {
1319         *ret_val = rval;
1320     }
1321 
1322     return ret;
1323 }
1324 
1325 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno,
1326                                    target_ulong *ret_val,
1327                                    target_ulong new_val,
1328                                    target_ulong wr_mask)
1329 {
1330     uint64_t rval;
1331     RISCVException ret;
1332 
1333     ret = rmw_mideleg64(env, csrno, &rval,
1334         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1335     if (ret_val) {
1336         *ret_val = rval >> 32;
1337     }
1338 
1339     return ret;
1340 }
1341 
1342 static RISCVException rmw_mie64(CPURISCVState *env, int csrno,
1343                                 uint64_t *ret_val,
1344                                 uint64_t new_val, uint64_t wr_mask)
1345 {
1346     uint64_t mask = wr_mask & all_ints;
1347 
1348     if (ret_val) {
1349         *ret_val = env->mie;
1350     }
1351 
1352     env->mie = (env->mie & ~mask) | (new_val & mask);
1353 
1354     if (!riscv_has_ext(env, RVH)) {
1355         env->mie &= ~((uint64_t)MIP_SGEIP);
1356     }
1357 
1358     return RISCV_EXCP_NONE;
1359 }
1360 
1361 static RISCVException rmw_mie(CPURISCVState *env, int csrno,
1362                               target_ulong *ret_val,
1363                               target_ulong new_val, target_ulong wr_mask)
1364 {
1365     uint64_t rval;
1366     RISCVException ret;
1367 
1368     ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask);
1369     if (ret_val) {
1370         *ret_val = rval;
1371     }
1372 
1373     return ret;
1374 }
1375 
1376 static RISCVException rmw_mieh(CPURISCVState *env, int csrno,
1377                                target_ulong *ret_val,
1378                                target_ulong new_val, target_ulong wr_mask)
1379 {
1380     uint64_t rval;
1381     RISCVException ret;
1382 
1383     ret = rmw_mie64(env, csrno, &rval,
1384         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1385     if (ret_val) {
1386         *ret_val = rval >> 32;
1387     }
1388 
1389     return ret;
1390 }
1391 
1392 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val)
1393 {
1394     int irq;
1395     uint8_t iprio;
1396 
1397     irq = riscv_cpu_mirq_pending(env);
1398     if (irq <= 0 || irq > 63) {
1399         *val = 0;
1400     } else {
1401         iprio = env->miprio[irq];
1402         if (!iprio) {
1403             if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) {
1404                 iprio = IPRIO_MMAXIPRIO;
1405             }
1406         }
1407         *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT;
1408         *val |= iprio;
1409     }
1410 
1411     return RISCV_EXCP_NONE;
1412 }
1413 
1414 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno)
1415 {
1416     if (!riscv_cpu_virt_enabled(env)) {
1417         return csrno;
1418     }
1419 
1420     switch (csrno) {
1421     case CSR_SISELECT:
1422         return CSR_VSISELECT;
1423     case CSR_SIREG:
1424         return CSR_VSIREG;
1425     case CSR_STOPEI:
1426         return CSR_VSTOPEI;
1427     default:
1428         return csrno;
1429     };
1430 }
1431 
1432 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val,
1433                         target_ulong new_val, target_ulong wr_mask)
1434 {
1435     target_ulong *iselect;
1436 
1437     /* Translate CSR number for VS-mode */
1438     csrno = aia_xlate_vs_csrno(env, csrno);
1439 
1440     /* Find the iselect CSR based on CSR number */
1441     switch (csrno) {
1442     case CSR_MISELECT:
1443         iselect = &env->miselect;
1444         break;
1445     case CSR_SISELECT:
1446         iselect = &env->siselect;
1447         break;
1448     case CSR_VSISELECT:
1449         iselect = &env->vsiselect;
1450         break;
1451     default:
1452          return RISCV_EXCP_ILLEGAL_INST;
1453     };
1454 
1455     if (val) {
1456         *val = *iselect;
1457     }
1458 
1459     wr_mask &= ISELECT_MASK;
1460     if (wr_mask) {
1461         *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask);
1462     }
1463 
1464     return RISCV_EXCP_NONE;
1465 }
1466 
1467 static int rmw_iprio(target_ulong xlen,
1468                      target_ulong iselect, uint8_t *iprio,
1469                      target_ulong *val, target_ulong new_val,
1470                      target_ulong wr_mask, int ext_irq_no)
1471 {
1472     int i, firq, nirqs;
1473     target_ulong old_val;
1474 
1475     if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) {
1476         return -EINVAL;
1477     }
1478     if (xlen != 32 && iselect & 0x1) {
1479         return -EINVAL;
1480     }
1481 
1482     nirqs = 4 * (xlen / 32);
1483     firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs);
1484 
1485     old_val = 0;
1486     for (i = 0; i < nirqs; i++) {
1487         old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i);
1488     }
1489 
1490     if (val) {
1491         *val = old_val;
1492     }
1493 
1494     if (wr_mask) {
1495         new_val = (old_val & ~wr_mask) | (new_val & wr_mask);
1496         for (i = 0; i < nirqs; i++) {
1497             /*
1498              * M-level and S-level external IRQ priority always read-only
1499              * zero. This means default priority order is always preferred
1500              * for M-level and S-level external IRQs.
1501              */
1502             if ((firq + i) == ext_irq_no) {
1503                 continue;
1504             }
1505             iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff;
1506         }
1507     }
1508 
1509     return 0;
1510 }
1511 
1512 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val,
1513                      target_ulong new_val, target_ulong wr_mask)
1514 {
1515     bool virt;
1516     uint8_t *iprio;
1517     int ret = -EINVAL;
1518     target_ulong priv, isel, vgein;
1519 
1520     /* Translate CSR number for VS-mode */
1521     csrno = aia_xlate_vs_csrno(env, csrno);
1522 
1523     /* Decode register details from CSR number */
1524     virt = false;
1525     switch (csrno) {
1526     case CSR_MIREG:
1527         iprio = env->miprio;
1528         isel = env->miselect;
1529         priv = PRV_M;
1530         break;
1531     case CSR_SIREG:
1532         iprio = env->siprio;
1533         isel = env->siselect;
1534         priv = PRV_S;
1535         break;
1536     case CSR_VSIREG:
1537         iprio = env->hviprio;
1538         isel = env->vsiselect;
1539         priv = PRV_S;
1540         virt = true;
1541         break;
1542     default:
1543          goto done;
1544     };
1545 
1546     /* Find the selected guest interrupt file */
1547     vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0;
1548 
1549     if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) {
1550         /* Local interrupt priority registers not available for VS-mode */
1551         if (!virt) {
1552             ret = rmw_iprio(riscv_cpu_mxl_bits(env),
1553                             isel, iprio, val, new_val, wr_mask,
1554                             (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT);
1555         }
1556     } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) {
1557         /* IMSIC registers only available when machine implements it. */
1558         if (env->aia_ireg_rmw_fn[priv]) {
1559             /* Selected guest interrupt file should not be zero */
1560             if (virt && (!vgein || env->geilen < vgein)) {
1561                 goto done;
1562             }
1563             /* Call machine specific IMSIC register emulation */
1564             ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv],
1565                                     AIA_MAKE_IREG(isel, priv, virt, vgein,
1566                                                   riscv_cpu_mxl_bits(env)),
1567                                     val, new_val, wr_mask);
1568         }
1569     }
1570 
1571 done:
1572     if (ret) {
1573         return (riscv_cpu_virt_enabled(env) && virt) ?
1574                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
1575     }
1576     return RISCV_EXCP_NONE;
1577 }
1578 
1579 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val,
1580                       target_ulong new_val, target_ulong wr_mask)
1581 {
1582     bool virt;
1583     int ret = -EINVAL;
1584     target_ulong priv, vgein;
1585 
1586     /* Translate CSR number for VS-mode */
1587     csrno = aia_xlate_vs_csrno(env, csrno);
1588 
1589     /* Decode register details from CSR number */
1590     virt = false;
1591     switch (csrno) {
1592     case CSR_MTOPEI:
1593         priv = PRV_M;
1594         break;
1595     case CSR_STOPEI:
1596         priv = PRV_S;
1597         break;
1598     case CSR_VSTOPEI:
1599         priv = PRV_S;
1600         virt = true;
1601         break;
1602     default:
1603         goto done;
1604     };
1605 
1606     /* IMSIC CSRs only available when machine implements IMSIC. */
1607     if (!env->aia_ireg_rmw_fn[priv]) {
1608         goto done;
1609     }
1610 
1611     /* Find the selected guest interrupt file */
1612     vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0;
1613 
1614     /* Selected guest interrupt file should be valid */
1615     if (virt && (!vgein || env->geilen < vgein)) {
1616         goto done;
1617     }
1618 
1619     /* Call machine specific IMSIC register emulation for TOPEI */
1620     ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv],
1621                     AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein,
1622                                   riscv_cpu_mxl_bits(env)),
1623                     val, new_val, wr_mask);
1624 
1625 done:
1626     if (ret) {
1627         return (riscv_cpu_virt_enabled(env) && virt) ?
1628                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
1629     }
1630     return RISCV_EXCP_NONE;
1631 }
1632 
1633 static RISCVException read_mtvec(CPURISCVState *env, int csrno,
1634                                  target_ulong *val)
1635 {
1636     *val = env->mtvec;
1637     return RISCV_EXCP_NONE;
1638 }
1639 
1640 static RISCVException write_mtvec(CPURISCVState *env, int csrno,
1641                                   target_ulong val)
1642 {
1643     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
1644     if ((val & 3) < 2) {
1645         env->mtvec = val;
1646     } else {
1647         qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n");
1648     }
1649     return RISCV_EXCP_NONE;
1650 }
1651 
1652 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno,
1653                                          target_ulong *val)
1654 {
1655     *val = env->mcountinhibit;
1656     return RISCV_EXCP_NONE;
1657 }
1658 
1659 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno,
1660                                           target_ulong val)
1661 {
1662     int cidx;
1663     PMUCTRState *counter;
1664 
1665     env->mcountinhibit = val;
1666 
1667     /* Check if any other counter is also monitoring cycles/instructions */
1668     for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) {
1669         if (!get_field(env->mcountinhibit, BIT(cidx))) {
1670             counter = &env->pmu_ctrs[cidx];
1671             counter->started = true;
1672         }
1673     }
1674 
1675     return RISCV_EXCP_NONE;
1676 }
1677 
1678 static RISCVException read_mcounteren(CPURISCVState *env, int csrno,
1679                                       target_ulong *val)
1680 {
1681     *val = env->mcounteren;
1682     return RISCV_EXCP_NONE;
1683 }
1684 
1685 static RISCVException write_mcounteren(CPURISCVState *env, int csrno,
1686                                        target_ulong val)
1687 {
1688     env->mcounteren = val;
1689     return RISCV_EXCP_NONE;
1690 }
1691 
1692 /* Machine Trap Handling */
1693 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno,
1694                                          Int128 *val)
1695 {
1696     *val = int128_make128(env->mscratch, env->mscratchh);
1697     return RISCV_EXCP_NONE;
1698 }
1699 
1700 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno,
1701                                           Int128 val)
1702 {
1703     env->mscratch = int128_getlo(val);
1704     env->mscratchh = int128_gethi(val);
1705     return RISCV_EXCP_NONE;
1706 }
1707 
1708 static RISCVException read_mscratch(CPURISCVState *env, int csrno,
1709                                     target_ulong *val)
1710 {
1711     *val = env->mscratch;
1712     return RISCV_EXCP_NONE;
1713 }
1714 
1715 static RISCVException write_mscratch(CPURISCVState *env, int csrno,
1716                                      target_ulong val)
1717 {
1718     env->mscratch = val;
1719     return RISCV_EXCP_NONE;
1720 }
1721 
1722 static RISCVException read_mepc(CPURISCVState *env, int csrno,
1723                                      target_ulong *val)
1724 {
1725     *val = env->mepc;
1726     return RISCV_EXCP_NONE;
1727 }
1728 
1729 static RISCVException write_mepc(CPURISCVState *env, int csrno,
1730                                      target_ulong val)
1731 {
1732     env->mepc = val;
1733     return RISCV_EXCP_NONE;
1734 }
1735 
1736 static RISCVException read_mcause(CPURISCVState *env, int csrno,
1737                                      target_ulong *val)
1738 {
1739     *val = env->mcause;
1740     return RISCV_EXCP_NONE;
1741 }
1742 
1743 static RISCVException write_mcause(CPURISCVState *env, int csrno,
1744                                      target_ulong val)
1745 {
1746     env->mcause = val;
1747     return RISCV_EXCP_NONE;
1748 }
1749 
1750 static RISCVException read_mtval(CPURISCVState *env, int csrno,
1751                                  target_ulong *val)
1752 {
1753     *val = env->mtval;
1754     return RISCV_EXCP_NONE;
1755 }
1756 
1757 static RISCVException write_mtval(CPURISCVState *env, int csrno,
1758                                   target_ulong val)
1759 {
1760     env->mtval = val;
1761     return RISCV_EXCP_NONE;
1762 }
1763 
1764 /* Execution environment configuration setup */
1765 static RISCVException read_menvcfg(CPURISCVState *env, int csrno,
1766                                  target_ulong *val)
1767 {
1768     *val = env->menvcfg;
1769     return RISCV_EXCP_NONE;
1770 }
1771 
1772 static RISCVException write_menvcfg(CPURISCVState *env, int csrno,
1773                                   target_ulong val)
1774 {
1775     uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE;
1776 
1777     if (riscv_cpu_mxl(env) == MXL_RV64) {
1778         mask |= MENVCFG_PBMTE | MENVCFG_STCE;
1779     }
1780     env->menvcfg = (env->menvcfg & ~mask) | (val & mask);
1781 
1782     return RISCV_EXCP_NONE;
1783 }
1784 
1785 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno,
1786                                  target_ulong *val)
1787 {
1788     *val = env->menvcfg >> 32;
1789     return RISCV_EXCP_NONE;
1790 }
1791 
1792 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno,
1793                                   target_ulong val)
1794 {
1795     uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE;
1796     uint64_t valh = (uint64_t)val << 32;
1797 
1798     env->menvcfg = (env->menvcfg & ~mask) | (valh & mask);
1799 
1800     return RISCV_EXCP_NONE;
1801 }
1802 
1803 static RISCVException read_senvcfg(CPURISCVState *env, int csrno,
1804                                  target_ulong *val)
1805 {
1806     *val = env->senvcfg;
1807     return RISCV_EXCP_NONE;
1808 }
1809 
1810 static RISCVException write_senvcfg(CPURISCVState *env, int csrno,
1811                                   target_ulong val)
1812 {
1813     uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE;
1814 
1815     env->senvcfg = (env->senvcfg & ~mask) | (val & mask);
1816 
1817     return RISCV_EXCP_NONE;
1818 }
1819 
1820 static RISCVException read_henvcfg(CPURISCVState *env, int csrno,
1821                                  target_ulong *val)
1822 {
1823     *val = env->henvcfg;
1824     return RISCV_EXCP_NONE;
1825 }
1826 
1827 static RISCVException write_henvcfg(CPURISCVState *env, int csrno,
1828                                   target_ulong val)
1829 {
1830     uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE;
1831 
1832     if (riscv_cpu_mxl(env) == MXL_RV64) {
1833         mask |= HENVCFG_PBMTE | HENVCFG_STCE;
1834     }
1835 
1836     env->henvcfg = (env->henvcfg & ~mask) | (val & mask);
1837 
1838     return RISCV_EXCP_NONE;
1839 }
1840 
1841 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno,
1842                                  target_ulong *val)
1843 {
1844     *val = env->henvcfg >> 32;
1845     return RISCV_EXCP_NONE;
1846 }
1847 
1848 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno,
1849                                   target_ulong val)
1850 {
1851     uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE;
1852     uint64_t valh = (uint64_t)val << 32;
1853 
1854     env->henvcfg = (env->henvcfg & ~mask) | (valh & mask);
1855 
1856     return RISCV_EXCP_NONE;
1857 }
1858 
1859 static RISCVException rmw_mip64(CPURISCVState *env, int csrno,
1860                                 uint64_t *ret_val,
1861                                 uint64_t new_val, uint64_t wr_mask)
1862 {
1863     RISCVCPU *cpu = env_archcpu(env);
1864     uint64_t old_mip, mask = wr_mask & delegable_ints;
1865     uint32_t gin;
1866 
1867     if (mask & MIP_SEIP) {
1868         env->software_seip = new_val & MIP_SEIP;
1869         new_val |= env->external_seip * MIP_SEIP;
1870     }
1871 
1872     if (cpu->cfg.ext_sstc && (env->priv == PRV_M) &&
1873         get_field(env->menvcfg, MENVCFG_STCE)) {
1874         /* sstc extension forbids STIP & VSTIP to be writeable in mip */
1875         mask = mask & ~(MIP_STIP | MIP_VSTIP);
1876     }
1877 
1878     if (mask) {
1879         old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask));
1880     } else {
1881         old_mip = env->mip;
1882     }
1883 
1884     if (csrno != CSR_HVIP) {
1885         gin = get_field(env->hstatus, HSTATUS_VGEIN);
1886         old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0;
1887         old_mip |= env->vstime_irq ? MIP_VSTIP : 0;
1888     }
1889 
1890     if (ret_val) {
1891         *ret_val = old_mip;
1892     }
1893 
1894     return RISCV_EXCP_NONE;
1895 }
1896 
1897 static RISCVException rmw_mip(CPURISCVState *env, int csrno,
1898                               target_ulong *ret_val,
1899                               target_ulong new_val, target_ulong wr_mask)
1900 {
1901     uint64_t rval;
1902     RISCVException ret;
1903 
1904     ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask);
1905     if (ret_val) {
1906         *ret_val = rval;
1907     }
1908 
1909     return ret;
1910 }
1911 
1912 static RISCVException rmw_miph(CPURISCVState *env, int csrno,
1913                                target_ulong *ret_val,
1914                                target_ulong new_val, target_ulong wr_mask)
1915 {
1916     uint64_t rval;
1917     RISCVException ret;
1918 
1919     ret = rmw_mip64(env, csrno, &rval,
1920         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1921     if (ret_val) {
1922         *ret_val = rval >> 32;
1923     }
1924 
1925     return ret;
1926 }
1927 
1928 /* Supervisor Trap Setup */
1929 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno,
1930                                         Int128 *val)
1931 {
1932     uint64_t mask = sstatus_v1_10_mask;
1933     uint64_t sstatus = env->mstatus & mask;
1934     if (env->xl != MXL_RV32 || env->debugger) {
1935         mask |= SSTATUS64_UXL;
1936     }
1937 
1938     *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus));
1939     return RISCV_EXCP_NONE;
1940 }
1941 
1942 static RISCVException read_sstatus(CPURISCVState *env, int csrno,
1943                                    target_ulong *val)
1944 {
1945     target_ulong mask = (sstatus_v1_10_mask);
1946     if (env->xl != MXL_RV32 || env->debugger) {
1947         mask |= SSTATUS64_UXL;
1948     }
1949     /* TODO: Use SXL not MXL. */
1950     *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask);
1951     return RISCV_EXCP_NONE;
1952 }
1953 
1954 static RISCVException write_sstatus(CPURISCVState *env, int csrno,
1955                                     target_ulong val)
1956 {
1957     target_ulong mask = (sstatus_v1_10_mask);
1958 
1959     if (env->xl != MXL_RV32 || env->debugger) {
1960         if ((val & SSTATUS64_UXL) != 0) {
1961             mask |= SSTATUS64_UXL;
1962         }
1963     }
1964     target_ulong newval = (env->mstatus & ~mask) | (val & mask);
1965     return write_mstatus(env, CSR_MSTATUS, newval);
1966 }
1967 
1968 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno,
1969                                  uint64_t *ret_val,
1970                                  uint64_t new_val, uint64_t wr_mask)
1971 {
1972     RISCVException ret;
1973     uint64_t rval, vsbits, mask = env->hideleg & VS_MODE_INTERRUPTS;
1974 
1975     /* Bring VS-level bits to correct position */
1976     vsbits = new_val & (VS_MODE_INTERRUPTS >> 1);
1977     new_val &= ~(VS_MODE_INTERRUPTS >> 1);
1978     new_val |= vsbits << 1;
1979     vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1);
1980     wr_mask &= ~(VS_MODE_INTERRUPTS >> 1);
1981     wr_mask |= vsbits << 1;
1982 
1983     ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask);
1984     if (ret_val) {
1985         rval &= mask;
1986         vsbits = rval & VS_MODE_INTERRUPTS;
1987         rval &= ~VS_MODE_INTERRUPTS;
1988         *ret_val = rval | (vsbits >> 1);
1989     }
1990 
1991     return ret;
1992 }
1993 
1994 static RISCVException rmw_vsie(CPURISCVState *env, int csrno,
1995                                target_ulong *ret_val,
1996                                target_ulong new_val, target_ulong wr_mask)
1997 {
1998     uint64_t rval;
1999     RISCVException ret;
2000 
2001     ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask);
2002     if (ret_val) {
2003         *ret_val = rval;
2004     }
2005 
2006     return ret;
2007 }
2008 
2009 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno,
2010                                 target_ulong *ret_val,
2011                                 target_ulong new_val, target_ulong wr_mask)
2012 {
2013     uint64_t rval;
2014     RISCVException ret;
2015 
2016     ret = rmw_vsie64(env, csrno, &rval,
2017         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2018     if (ret_val) {
2019         *ret_val = rval >> 32;
2020     }
2021 
2022     return ret;
2023 }
2024 
2025 static RISCVException rmw_sie64(CPURISCVState *env, int csrno,
2026                                 uint64_t *ret_val,
2027                                 uint64_t new_val, uint64_t wr_mask)
2028 {
2029     RISCVException ret;
2030     uint64_t mask = env->mideleg & S_MODE_INTERRUPTS;
2031 
2032     if (riscv_cpu_virt_enabled(env)) {
2033         if (env->hvictl & HVICTL_VTI) {
2034             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
2035         }
2036         ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask);
2037     } else {
2038         ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask);
2039     }
2040 
2041     if (ret_val) {
2042         *ret_val &= mask;
2043     }
2044 
2045     return ret;
2046 }
2047 
2048 static RISCVException rmw_sie(CPURISCVState *env, int csrno,
2049                               target_ulong *ret_val,
2050                               target_ulong new_val, target_ulong wr_mask)
2051 {
2052     uint64_t rval;
2053     RISCVException ret;
2054 
2055     ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask);
2056     if (ret == RISCV_EXCP_NONE && ret_val) {
2057         *ret_val = rval;
2058     }
2059 
2060     return ret;
2061 }
2062 
2063 static RISCVException rmw_sieh(CPURISCVState *env, int csrno,
2064                                target_ulong *ret_val,
2065                                target_ulong new_val, target_ulong wr_mask)
2066 {
2067     uint64_t rval;
2068     RISCVException ret;
2069 
2070     ret = rmw_sie64(env, csrno, &rval,
2071         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2072     if (ret_val) {
2073         *ret_val = rval >> 32;
2074     }
2075 
2076     return ret;
2077 }
2078 
2079 static RISCVException read_stvec(CPURISCVState *env, int csrno,
2080                                  target_ulong *val)
2081 {
2082     *val = env->stvec;
2083     return RISCV_EXCP_NONE;
2084 }
2085 
2086 static RISCVException write_stvec(CPURISCVState *env, int csrno,
2087                                   target_ulong val)
2088 {
2089     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
2090     if ((val & 3) < 2) {
2091         env->stvec = val;
2092     } else {
2093         qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n");
2094     }
2095     return RISCV_EXCP_NONE;
2096 }
2097 
2098 static RISCVException read_scounteren(CPURISCVState *env, int csrno,
2099                                       target_ulong *val)
2100 {
2101     *val = env->scounteren;
2102     return RISCV_EXCP_NONE;
2103 }
2104 
2105 static RISCVException write_scounteren(CPURISCVState *env, int csrno,
2106                                        target_ulong val)
2107 {
2108     env->scounteren = val;
2109     return RISCV_EXCP_NONE;
2110 }
2111 
2112 /* Supervisor Trap Handling */
2113 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno,
2114                                          Int128 *val)
2115 {
2116     *val = int128_make128(env->sscratch, env->sscratchh);
2117     return RISCV_EXCP_NONE;
2118 }
2119 
2120 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno,
2121                                           Int128 val)
2122 {
2123     env->sscratch = int128_getlo(val);
2124     env->sscratchh = int128_gethi(val);
2125     return RISCV_EXCP_NONE;
2126 }
2127 
2128 static RISCVException read_sscratch(CPURISCVState *env, int csrno,
2129                                     target_ulong *val)
2130 {
2131     *val = env->sscratch;
2132     return RISCV_EXCP_NONE;
2133 }
2134 
2135 static RISCVException write_sscratch(CPURISCVState *env, int csrno,
2136                                      target_ulong val)
2137 {
2138     env->sscratch = val;
2139     return RISCV_EXCP_NONE;
2140 }
2141 
2142 static RISCVException read_sepc(CPURISCVState *env, int csrno,
2143                                 target_ulong *val)
2144 {
2145     *val = env->sepc;
2146     return RISCV_EXCP_NONE;
2147 }
2148 
2149 static RISCVException write_sepc(CPURISCVState *env, int csrno,
2150                                  target_ulong val)
2151 {
2152     env->sepc = val;
2153     return RISCV_EXCP_NONE;
2154 }
2155 
2156 static RISCVException read_scause(CPURISCVState *env, int csrno,
2157                                   target_ulong *val)
2158 {
2159     *val = env->scause;
2160     return RISCV_EXCP_NONE;
2161 }
2162 
2163 static RISCVException write_scause(CPURISCVState *env, int csrno,
2164                                    target_ulong val)
2165 {
2166     env->scause = val;
2167     return RISCV_EXCP_NONE;
2168 }
2169 
2170 static RISCVException read_stval(CPURISCVState *env, int csrno,
2171                                  target_ulong *val)
2172 {
2173     *val = env->stval;
2174     return RISCV_EXCP_NONE;
2175 }
2176 
2177 static RISCVException write_stval(CPURISCVState *env, int csrno,
2178                                   target_ulong val)
2179 {
2180     env->stval = val;
2181     return RISCV_EXCP_NONE;
2182 }
2183 
2184 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno,
2185                                  uint64_t *ret_val,
2186                                  uint64_t new_val, uint64_t wr_mask)
2187 {
2188     RISCVException ret;
2189     uint64_t rval, vsbits, mask = env->hideleg & vsip_writable_mask;
2190 
2191     /* Bring VS-level bits to correct position */
2192     vsbits = new_val & (VS_MODE_INTERRUPTS >> 1);
2193     new_val &= ~(VS_MODE_INTERRUPTS >> 1);
2194     new_val |= vsbits << 1;
2195     vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1);
2196     wr_mask &= ~(VS_MODE_INTERRUPTS >> 1);
2197     wr_mask |= vsbits << 1;
2198 
2199     ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask & mask);
2200     if (ret_val) {
2201         rval &= mask;
2202         vsbits = rval & VS_MODE_INTERRUPTS;
2203         rval &= ~VS_MODE_INTERRUPTS;
2204         *ret_val = rval | (vsbits >> 1);
2205     }
2206 
2207     return ret;
2208 }
2209 
2210 static RISCVException rmw_vsip(CPURISCVState *env, int csrno,
2211                                target_ulong *ret_val,
2212                                target_ulong new_val, target_ulong wr_mask)
2213 {
2214     uint64_t rval;
2215     RISCVException ret;
2216 
2217     ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask);
2218     if (ret_val) {
2219         *ret_val = rval;
2220     }
2221 
2222     return ret;
2223 }
2224 
2225 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno,
2226                                 target_ulong *ret_val,
2227                                 target_ulong new_val, target_ulong wr_mask)
2228 {
2229     uint64_t rval;
2230     RISCVException ret;
2231 
2232     ret = rmw_vsip64(env, csrno, &rval,
2233         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2234     if (ret_val) {
2235         *ret_val = rval >> 32;
2236     }
2237 
2238     return ret;
2239 }
2240 
2241 static RISCVException rmw_sip64(CPURISCVState *env, int csrno,
2242                                 uint64_t *ret_val,
2243                                 uint64_t new_val, uint64_t wr_mask)
2244 {
2245     RISCVException ret;
2246     uint64_t mask = env->mideleg & sip_writable_mask;
2247 
2248     if (riscv_cpu_virt_enabled(env)) {
2249         if (env->hvictl & HVICTL_VTI) {
2250             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
2251         }
2252         ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask);
2253     } else {
2254         ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask);
2255     }
2256 
2257     if (ret_val) {
2258         *ret_val &= env->mideleg & S_MODE_INTERRUPTS;
2259     }
2260 
2261     return ret;
2262 }
2263 
2264 static RISCVException rmw_sip(CPURISCVState *env, int csrno,
2265                               target_ulong *ret_val,
2266                               target_ulong new_val, target_ulong wr_mask)
2267 {
2268     uint64_t rval;
2269     RISCVException ret;
2270 
2271     ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask);
2272     if (ret_val) {
2273         *ret_val = rval;
2274     }
2275 
2276     return ret;
2277 }
2278 
2279 static RISCVException rmw_siph(CPURISCVState *env, int csrno,
2280                                target_ulong *ret_val,
2281                                target_ulong new_val, target_ulong wr_mask)
2282 {
2283     uint64_t rval;
2284     RISCVException ret;
2285 
2286     ret = rmw_sip64(env, csrno, &rval,
2287         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2288     if (ret_val) {
2289         *ret_val = rval >> 32;
2290     }
2291 
2292     return ret;
2293 }
2294 
2295 /* Supervisor Protection and Translation */
2296 static RISCVException read_satp(CPURISCVState *env, int csrno,
2297                                 target_ulong *val)
2298 {
2299     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
2300         *val = 0;
2301         return RISCV_EXCP_NONE;
2302     }
2303 
2304     if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
2305         return RISCV_EXCP_ILLEGAL_INST;
2306     } else {
2307         *val = env->satp;
2308     }
2309 
2310     return RISCV_EXCP_NONE;
2311 }
2312 
2313 static RISCVException write_satp(CPURISCVState *env, int csrno,
2314                                  target_ulong val)
2315 {
2316     target_ulong vm, mask;
2317 
2318     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
2319         return RISCV_EXCP_NONE;
2320     }
2321 
2322     if (riscv_cpu_mxl(env) == MXL_RV32) {
2323         vm = validate_vm(env, get_field(val, SATP32_MODE));
2324         mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN);
2325     } else {
2326         vm = validate_vm(env, get_field(val, SATP64_MODE));
2327         mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN);
2328     }
2329 
2330     if (vm && mask) {
2331         if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
2332             return RISCV_EXCP_ILLEGAL_INST;
2333         } else {
2334             /*
2335              * The ISA defines SATP.MODE=Bare as "no translation", but we still
2336              * pass these through QEMU's TLB emulation as it improves
2337              * performance.  Flushing the TLB on SATP writes with paging
2338              * enabled avoids leaking those invalid cached mappings.
2339              */
2340             tlb_flush(env_cpu(env));
2341             env->satp = val;
2342         }
2343     }
2344     return RISCV_EXCP_NONE;
2345 }
2346 
2347 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val)
2348 {
2349     int irq, ret;
2350     target_ulong topei;
2351     uint64_t vseip, vsgein;
2352     uint32_t iid, iprio, hviid, hviprio, gein;
2353     uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS];
2354 
2355     gein = get_field(env->hstatus, HSTATUS_VGEIN);
2356     hviid = get_field(env->hvictl, HVICTL_IID);
2357     hviprio = get_field(env->hvictl, HVICTL_IPRIO);
2358 
2359     if (gein) {
2360         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
2361         vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP;
2362         if (gein <= env->geilen && vseip) {
2363             siid[scount] = IRQ_S_EXT;
2364             siprio[scount] = IPRIO_MMAXIPRIO + 1;
2365             if (env->aia_ireg_rmw_fn[PRV_S]) {
2366                 /*
2367                  * Call machine specific IMSIC register emulation for
2368                  * reading TOPEI.
2369                  */
2370                 ret = env->aia_ireg_rmw_fn[PRV_S](
2371                         env->aia_ireg_rmw_fn_arg[PRV_S],
2372                         AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein,
2373                                       riscv_cpu_mxl_bits(env)),
2374                         &topei, 0, 0);
2375                 if (!ret && topei) {
2376                     siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK;
2377                 }
2378             }
2379             scount++;
2380         }
2381     } else {
2382         if (hviid == IRQ_S_EXT && hviprio) {
2383             siid[scount] = IRQ_S_EXT;
2384             siprio[scount] = hviprio;
2385             scount++;
2386         }
2387     }
2388 
2389     if (env->hvictl & HVICTL_VTI) {
2390         if (hviid != IRQ_S_EXT) {
2391             siid[scount] = hviid;
2392             siprio[scount] = hviprio;
2393             scount++;
2394         }
2395     } else {
2396         irq = riscv_cpu_vsirq_pending(env);
2397         if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) {
2398             siid[scount] = irq;
2399             siprio[scount] = env->hviprio[irq];
2400             scount++;
2401         }
2402     }
2403 
2404     iid = 0;
2405     iprio = UINT_MAX;
2406     for (s = 0; s < scount; s++) {
2407         if (siprio[s] < iprio) {
2408             iid = siid[s];
2409             iprio = siprio[s];
2410         }
2411     }
2412 
2413     if (iid) {
2414         if (env->hvictl & HVICTL_IPRIOM) {
2415             if (iprio > IPRIO_MMAXIPRIO) {
2416                 iprio = IPRIO_MMAXIPRIO;
2417             }
2418             if (!iprio) {
2419                 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) {
2420                     iprio = IPRIO_MMAXIPRIO;
2421                 }
2422             }
2423         } else {
2424             iprio = 1;
2425         }
2426     } else {
2427         iprio = 0;
2428     }
2429 
2430     *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT;
2431     *val |= iprio;
2432     return RISCV_EXCP_NONE;
2433 }
2434 
2435 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val)
2436 {
2437     int irq;
2438     uint8_t iprio;
2439 
2440     if (riscv_cpu_virt_enabled(env)) {
2441         return read_vstopi(env, CSR_VSTOPI, val);
2442     }
2443 
2444     irq = riscv_cpu_sirq_pending(env);
2445     if (irq <= 0 || irq > 63) {
2446         *val = 0;
2447     } else {
2448         iprio = env->siprio[irq];
2449         if (!iprio) {
2450             if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) {
2451                 iprio = IPRIO_MMAXIPRIO;
2452            }
2453         }
2454         *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT;
2455         *val |= iprio;
2456     }
2457 
2458     return RISCV_EXCP_NONE;
2459 }
2460 
2461 /* Hypervisor Extensions */
2462 static RISCVException read_hstatus(CPURISCVState *env, int csrno,
2463                                    target_ulong *val)
2464 {
2465     *val = env->hstatus;
2466     if (riscv_cpu_mxl(env) != MXL_RV32) {
2467         /* We only support 64-bit VSXL */
2468         *val = set_field(*val, HSTATUS_VSXL, 2);
2469     }
2470     /* We only support little endian */
2471     *val = set_field(*val, HSTATUS_VSBE, 0);
2472     return RISCV_EXCP_NONE;
2473 }
2474 
2475 static RISCVException write_hstatus(CPURISCVState *env, int csrno,
2476                                     target_ulong val)
2477 {
2478     env->hstatus = val;
2479     if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) {
2480         qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options.");
2481     }
2482     if (get_field(val, HSTATUS_VSBE) != 0) {
2483         qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests.");
2484     }
2485     return RISCV_EXCP_NONE;
2486 }
2487 
2488 static RISCVException read_hedeleg(CPURISCVState *env, int csrno,
2489                                    target_ulong *val)
2490 {
2491     *val = env->hedeleg;
2492     return RISCV_EXCP_NONE;
2493 }
2494 
2495 static RISCVException write_hedeleg(CPURISCVState *env, int csrno,
2496                                     target_ulong val)
2497 {
2498     env->hedeleg = val & vs_delegable_excps;
2499     return RISCV_EXCP_NONE;
2500 }
2501 
2502 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno,
2503                                     uint64_t *ret_val,
2504                                     uint64_t new_val, uint64_t wr_mask)
2505 {
2506     uint64_t mask = wr_mask & vs_delegable_ints;
2507 
2508     if (ret_val) {
2509         *ret_val = env->hideleg & vs_delegable_ints;
2510     }
2511 
2512     env->hideleg = (env->hideleg & ~mask) | (new_val & mask);
2513     return RISCV_EXCP_NONE;
2514 }
2515 
2516 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno,
2517                                   target_ulong *ret_val,
2518                                   target_ulong new_val, target_ulong wr_mask)
2519 {
2520     uint64_t rval;
2521     RISCVException ret;
2522 
2523     ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask);
2524     if (ret_val) {
2525         *ret_val = rval;
2526     }
2527 
2528     return ret;
2529 }
2530 
2531 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno,
2532                                    target_ulong *ret_val,
2533                                    target_ulong new_val, target_ulong wr_mask)
2534 {
2535     uint64_t rval;
2536     RISCVException ret;
2537 
2538     ret = rmw_hideleg64(env, csrno, &rval,
2539         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2540     if (ret_val) {
2541         *ret_val = rval >> 32;
2542     }
2543 
2544     return ret;
2545 }
2546 
2547 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno,
2548                                  uint64_t *ret_val,
2549                                  uint64_t new_val, uint64_t wr_mask)
2550 {
2551     RISCVException ret;
2552 
2553     ret = rmw_mip64(env, csrno, ret_val, new_val,
2554                     wr_mask & hvip_writable_mask);
2555     if (ret_val) {
2556         *ret_val &= VS_MODE_INTERRUPTS;
2557     }
2558 
2559     return ret;
2560 }
2561 
2562 static RISCVException rmw_hvip(CPURISCVState *env, int csrno,
2563                                target_ulong *ret_val,
2564                                target_ulong new_val, target_ulong wr_mask)
2565 {
2566     uint64_t rval;
2567     RISCVException ret;
2568 
2569     ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask);
2570     if (ret_val) {
2571         *ret_val = rval;
2572     }
2573 
2574     return ret;
2575 }
2576 
2577 static RISCVException rmw_hviph(CPURISCVState *env, int csrno,
2578                                 target_ulong *ret_val,
2579                                 target_ulong new_val, target_ulong wr_mask)
2580 {
2581     uint64_t rval;
2582     RISCVException ret;
2583 
2584     ret = rmw_hvip64(env, csrno, &rval,
2585         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2586     if (ret_val) {
2587         *ret_val = rval >> 32;
2588     }
2589 
2590     return ret;
2591 }
2592 
2593 static RISCVException rmw_hip(CPURISCVState *env, int csrno,
2594                               target_ulong *ret_value,
2595                               target_ulong new_value, target_ulong write_mask)
2596 {
2597     int ret = rmw_mip(env, csrno, ret_value, new_value,
2598                       write_mask & hip_writable_mask);
2599 
2600     if (ret_value) {
2601         *ret_value &= HS_MODE_INTERRUPTS;
2602     }
2603     return ret;
2604 }
2605 
2606 static RISCVException rmw_hie(CPURISCVState *env, int csrno,
2607                               target_ulong *ret_val,
2608                               target_ulong new_val, target_ulong wr_mask)
2609 {
2610     uint64_t rval;
2611     RISCVException ret;
2612 
2613     ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS);
2614     if (ret_val) {
2615         *ret_val = rval & HS_MODE_INTERRUPTS;
2616     }
2617 
2618     return ret;
2619 }
2620 
2621 static RISCVException read_hcounteren(CPURISCVState *env, int csrno,
2622                                       target_ulong *val)
2623 {
2624     *val = env->hcounteren;
2625     return RISCV_EXCP_NONE;
2626 }
2627 
2628 static RISCVException write_hcounteren(CPURISCVState *env, int csrno,
2629                                        target_ulong val)
2630 {
2631     env->hcounteren = val;
2632     return RISCV_EXCP_NONE;
2633 }
2634 
2635 static RISCVException read_hgeie(CPURISCVState *env, int csrno,
2636                                  target_ulong *val)
2637 {
2638     if (val) {
2639         *val = env->hgeie;
2640     }
2641     return RISCV_EXCP_NONE;
2642 }
2643 
2644 static RISCVException write_hgeie(CPURISCVState *env, int csrno,
2645                                   target_ulong val)
2646 {
2647     /* Only GEILEN:1 bits implemented and BIT0 is never implemented */
2648     val &= ((((target_ulong)1) << env->geilen) - 1) << 1;
2649     env->hgeie = val;
2650     /* Update mip.SGEIP bit */
2651     riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP,
2652                          BOOL_TO_MASK(!!(env->hgeie & env->hgeip)));
2653     return RISCV_EXCP_NONE;
2654 }
2655 
2656 static RISCVException read_htval(CPURISCVState *env, int csrno,
2657                                  target_ulong *val)
2658 {
2659     *val = env->htval;
2660     return RISCV_EXCP_NONE;
2661 }
2662 
2663 static RISCVException write_htval(CPURISCVState *env, int csrno,
2664                                   target_ulong val)
2665 {
2666     env->htval = val;
2667     return RISCV_EXCP_NONE;
2668 }
2669 
2670 static RISCVException read_htinst(CPURISCVState *env, int csrno,
2671                                   target_ulong *val)
2672 {
2673     *val = env->htinst;
2674     return RISCV_EXCP_NONE;
2675 }
2676 
2677 static RISCVException write_htinst(CPURISCVState *env, int csrno,
2678                                    target_ulong val)
2679 {
2680     return RISCV_EXCP_NONE;
2681 }
2682 
2683 static RISCVException read_hgeip(CPURISCVState *env, int csrno,
2684                                  target_ulong *val)
2685 {
2686     if (val) {
2687         *val = env->hgeip;
2688     }
2689     return RISCV_EXCP_NONE;
2690 }
2691 
2692 static RISCVException read_hgatp(CPURISCVState *env, int csrno,
2693                                  target_ulong *val)
2694 {
2695     *val = env->hgatp;
2696     return RISCV_EXCP_NONE;
2697 }
2698 
2699 static RISCVException write_hgatp(CPURISCVState *env, int csrno,
2700                                   target_ulong val)
2701 {
2702     env->hgatp = val;
2703     return RISCV_EXCP_NONE;
2704 }
2705 
2706 static RISCVException read_htimedelta(CPURISCVState *env, int csrno,
2707                                       target_ulong *val)
2708 {
2709     if (!env->rdtime_fn) {
2710         return RISCV_EXCP_ILLEGAL_INST;
2711     }
2712 
2713     *val = env->htimedelta;
2714     return RISCV_EXCP_NONE;
2715 }
2716 
2717 static RISCVException write_htimedelta(CPURISCVState *env, int csrno,
2718                                        target_ulong val)
2719 {
2720     if (!env->rdtime_fn) {
2721         return RISCV_EXCP_ILLEGAL_INST;
2722     }
2723 
2724     if (riscv_cpu_mxl(env) == MXL_RV32) {
2725         env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val);
2726     } else {
2727         env->htimedelta = val;
2728     }
2729     return RISCV_EXCP_NONE;
2730 }
2731 
2732 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno,
2733                                        target_ulong *val)
2734 {
2735     if (!env->rdtime_fn) {
2736         return RISCV_EXCP_ILLEGAL_INST;
2737     }
2738 
2739     *val = env->htimedelta >> 32;
2740     return RISCV_EXCP_NONE;
2741 }
2742 
2743 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno,
2744                                         target_ulong val)
2745 {
2746     if (!env->rdtime_fn) {
2747         return RISCV_EXCP_ILLEGAL_INST;
2748     }
2749 
2750     env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val);
2751     return RISCV_EXCP_NONE;
2752 }
2753 
2754 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val)
2755 {
2756     *val = env->hvictl;
2757     return RISCV_EXCP_NONE;
2758 }
2759 
2760 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val)
2761 {
2762     env->hvictl = val & HVICTL_VALID_MASK;
2763     return RISCV_EXCP_NONE;
2764 }
2765 
2766 static int read_hvipriox(CPURISCVState *env, int first_index,
2767                          uint8_t *iprio, target_ulong *val)
2768 {
2769     int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32);
2770 
2771     /* First index has to be a multiple of number of irqs per register */
2772     if (first_index % num_irqs) {
2773         return (riscv_cpu_virt_enabled(env)) ?
2774                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
2775     }
2776 
2777     /* Fill-up return value */
2778     *val = 0;
2779     for (i = 0; i < num_irqs; i++) {
2780         if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) {
2781             continue;
2782         }
2783         if (rdzero) {
2784             continue;
2785         }
2786         *val |= ((target_ulong)iprio[irq]) << (i * 8);
2787     }
2788 
2789     return RISCV_EXCP_NONE;
2790 }
2791 
2792 static int write_hvipriox(CPURISCVState *env, int first_index,
2793                           uint8_t *iprio, target_ulong val)
2794 {
2795     int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32);
2796 
2797     /* First index has to be a multiple of number of irqs per register */
2798     if (first_index % num_irqs) {
2799         return (riscv_cpu_virt_enabled(env)) ?
2800                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
2801     }
2802 
2803     /* Fill-up priority arrary */
2804     for (i = 0; i < num_irqs; i++) {
2805         if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) {
2806             continue;
2807         }
2808         if (rdzero) {
2809             iprio[irq] = 0;
2810         } else {
2811             iprio[irq] = (val >> (i * 8)) & 0xff;
2812         }
2813     }
2814 
2815     return RISCV_EXCP_NONE;
2816 }
2817 
2818 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val)
2819 {
2820     return read_hvipriox(env, 0, env->hviprio, val);
2821 }
2822 
2823 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val)
2824 {
2825     return write_hvipriox(env, 0, env->hviprio, val);
2826 }
2827 
2828 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val)
2829 {
2830     return read_hvipriox(env, 4, env->hviprio, val);
2831 }
2832 
2833 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val)
2834 {
2835     return write_hvipriox(env, 4, env->hviprio, val);
2836 }
2837 
2838 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val)
2839 {
2840     return read_hvipriox(env, 8, env->hviprio, val);
2841 }
2842 
2843 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val)
2844 {
2845     return write_hvipriox(env, 8, env->hviprio, val);
2846 }
2847 
2848 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val)
2849 {
2850     return read_hvipriox(env, 12, env->hviprio, val);
2851 }
2852 
2853 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val)
2854 {
2855     return write_hvipriox(env, 12, env->hviprio, val);
2856 }
2857 
2858 /* Virtual CSR Registers */
2859 static RISCVException read_vsstatus(CPURISCVState *env, int csrno,
2860                                     target_ulong *val)
2861 {
2862     *val = env->vsstatus;
2863     return RISCV_EXCP_NONE;
2864 }
2865 
2866 static RISCVException write_vsstatus(CPURISCVState *env, int csrno,
2867                                      target_ulong val)
2868 {
2869     uint64_t mask = (target_ulong)-1;
2870     if ((val & VSSTATUS64_UXL) == 0) {
2871         mask &= ~VSSTATUS64_UXL;
2872     }
2873     env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val;
2874     return RISCV_EXCP_NONE;
2875 }
2876 
2877 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val)
2878 {
2879     *val = env->vstvec;
2880     return RISCV_EXCP_NONE;
2881 }
2882 
2883 static RISCVException write_vstvec(CPURISCVState *env, int csrno,
2884                                    target_ulong val)
2885 {
2886     env->vstvec = val;
2887     return RISCV_EXCP_NONE;
2888 }
2889 
2890 static RISCVException read_vsscratch(CPURISCVState *env, int csrno,
2891                                      target_ulong *val)
2892 {
2893     *val = env->vsscratch;
2894     return RISCV_EXCP_NONE;
2895 }
2896 
2897 static RISCVException write_vsscratch(CPURISCVState *env, int csrno,
2898                                       target_ulong val)
2899 {
2900     env->vsscratch = val;
2901     return RISCV_EXCP_NONE;
2902 }
2903 
2904 static RISCVException read_vsepc(CPURISCVState *env, int csrno,
2905                                  target_ulong *val)
2906 {
2907     *val = env->vsepc;
2908     return RISCV_EXCP_NONE;
2909 }
2910 
2911 static RISCVException write_vsepc(CPURISCVState *env, int csrno,
2912                                   target_ulong val)
2913 {
2914     env->vsepc = val;
2915     return RISCV_EXCP_NONE;
2916 }
2917 
2918 static RISCVException read_vscause(CPURISCVState *env, int csrno,
2919                                    target_ulong *val)
2920 {
2921     *val = env->vscause;
2922     return RISCV_EXCP_NONE;
2923 }
2924 
2925 static RISCVException write_vscause(CPURISCVState *env, int csrno,
2926                                     target_ulong val)
2927 {
2928     env->vscause = val;
2929     return RISCV_EXCP_NONE;
2930 }
2931 
2932 static RISCVException read_vstval(CPURISCVState *env, int csrno,
2933                                   target_ulong *val)
2934 {
2935     *val = env->vstval;
2936     return RISCV_EXCP_NONE;
2937 }
2938 
2939 static RISCVException write_vstval(CPURISCVState *env, int csrno,
2940                                    target_ulong val)
2941 {
2942     env->vstval = val;
2943     return RISCV_EXCP_NONE;
2944 }
2945 
2946 static RISCVException read_vsatp(CPURISCVState *env, int csrno,
2947                                  target_ulong *val)
2948 {
2949     *val = env->vsatp;
2950     return RISCV_EXCP_NONE;
2951 }
2952 
2953 static RISCVException write_vsatp(CPURISCVState *env, int csrno,
2954                                   target_ulong val)
2955 {
2956     env->vsatp = val;
2957     return RISCV_EXCP_NONE;
2958 }
2959 
2960 static RISCVException read_mtval2(CPURISCVState *env, int csrno,
2961                                   target_ulong *val)
2962 {
2963     *val = env->mtval2;
2964     return RISCV_EXCP_NONE;
2965 }
2966 
2967 static RISCVException write_mtval2(CPURISCVState *env, int csrno,
2968                                    target_ulong val)
2969 {
2970     env->mtval2 = val;
2971     return RISCV_EXCP_NONE;
2972 }
2973 
2974 static RISCVException read_mtinst(CPURISCVState *env, int csrno,
2975                                   target_ulong *val)
2976 {
2977     *val = env->mtinst;
2978     return RISCV_EXCP_NONE;
2979 }
2980 
2981 static RISCVException write_mtinst(CPURISCVState *env, int csrno,
2982                                    target_ulong val)
2983 {
2984     env->mtinst = val;
2985     return RISCV_EXCP_NONE;
2986 }
2987 
2988 /* Physical Memory Protection */
2989 static RISCVException read_mseccfg(CPURISCVState *env, int csrno,
2990                                    target_ulong *val)
2991 {
2992     *val = mseccfg_csr_read(env);
2993     return RISCV_EXCP_NONE;
2994 }
2995 
2996 static RISCVException write_mseccfg(CPURISCVState *env, int csrno,
2997                          target_ulong val)
2998 {
2999     mseccfg_csr_write(env, val);
3000     return RISCV_EXCP_NONE;
3001 }
3002 
3003 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index)
3004 {
3005     /* TODO: RV128 restriction check */
3006     if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) {
3007         return false;
3008     }
3009     return true;
3010 }
3011 
3012 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno,
3013                                   target_ulong *val)
3014 {
3015     uint32_t reg_index = csrno - CSR_PMPCFG0;
3016 
3017     if (!check_pmp_reg_index(env, reg_index)) {
3018         return RISCV_EXCP_ILLEGAL_INST;
3019     }
3020     *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0);
3021     return RISCV_EXCP_NONE;
3022 }
3023 
3024 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno,
3025                                    target_ulong val)
3026 {
3027     uint32_t reg_index = csrno - CSR_PMPCFG0;
3028 
3029     if (!check_pmp_reg_index(env, reg_index)) {
3030         return RISCV_EXCP_ILLEGAL_INST;
3031     }
3032     pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val);
3033     return RISCV_EXCP_NONE;
3034 }
3035 
3036 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno,
3037                                    target_ulong *val)
3038 {
3039     *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0);
3040     return RISCV_EXCP_NONE;
3041 }
3042 
3043 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno,
3044                                     target_ulong val)
3045 {
3046     pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val);
3047     return RISCV_EXCP_NONE;
3048 }
3049 
3050 static RISCVException read_tselect(CPURISCVState *env, int csrno,
3051                                    target_ulong *val)
3052 {
3053     *val = tselect_csr_read(env);
3054     return RISCV_EXCP_NONE;
3055 }
3056 
3057 static RISCVException write_tselect(CPURISCVState *env, int csrno,
3058                                     target_ulong val)
3059 {
3060     tselect_csr_write(env, val);
3061     return RISCV_EXCP_NONE;
3062 }
3063 
3064 static RISCVException read_tdata(CPURISCVState *env, int csrno,
3065                                  target_ulong *val)
3066 {
3067     /* return 0 in tdata1 to end the trigger enumeration */
3068     if (env->trigger_cur >= TRIGGER_NUM && csrno == CSR_TDATA1) {
3069         *val = 0;
3070         return RISCV_EXCP_NONE;
3071     }
3072 
3073     if (!tdata_available(env, csrno - CSR_TDATA1)) {
3074         return RISCV_EXCP_ILLEGAL_INST;
3075     }
3076 
3077     *val = tdata_csr_read(env, csrno - CSR_TDATA1);
3078     return RISCV_EXCP_NONE;
3079 }
3080 
3081 static RISCVException write_tdata(CPURISCVState *env, int csrno,
3082                                   target_ulong val)
3083 {
3084     if (!tdata_available(env, csrno - CSR_TDATA1)) {
3085         return RISCV_EXCP_ILLEGAL_INST;
3086     }
3087 
3088     tdata_csr_write(env, csrno - CSR_TDATA1, val);
3089     return RISCV_EXCP_NONE;
3090 }
3091 
3092 /*
3093  * Functions to access Pointer Masking feature registers
3094  * We have to check if current priv lvl could modify
3095  * csr in given mode
3096  */
3097 static bool check_pm_current_disabled(CPURISCVState *env, int csrno)
3098 {
3099     int csr_priv = get_field(csrno, 0x300);
3100     int pm_current;
3101 
3102     if (env->debugger) {
3103         return false;
3104     }
3105     /*
3106      * If priv lvls differ that means we're accessing csr from higher priv lvl,
3107      * so allow the access
3108      */
3109     if (env->priv != csr_priv) {
3110         return false;
3111     }
3112     switch (env->priv) {
3113     case PRV_M:
3114         pm_current = get_field(env->mmte, M_PM_CURRENT);
3115         break;
3116     case PRV_S:
3117         pm_current = get_field(env->mmte, S_PM_CURRENT);
3118         break;
3119     case PRV_U:
3120         pm_current = get_field(env->mmte, U_PM_CURRENT);
3121         break;
3122     default:
3123         g_assert_not_reached();
3124     }
3125     /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */
3126     return !pm_current;
3127 }
3128 
3129 static RISCVException read_mmte(CPURISCVState *env, int csrno,
3130                                 target_ulong *val)
3131 {
3132     *val = env->mmte & MMTE_MASK;
3133     return RISCV_EXCP_NONE;
3134 }
3135 
3136 static RISCVException write_mmte(CPURISCVState *env, int csrno,
3137                                  target_ulong val)
3138 {
3139     uint64_t mstatus;
3140     target_ulong wpri_val = val & MMTE_MASK;
3141 
3142     if (val != wpri_val) {
3143         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
3144                       "MMTE: WPRI violation written 0x", val,
3145                       "vs expected 0x", wpri_val);
3146     }
3147     /* for machine mode pm.current is hardwired to 1 */
3148     wpri_val |= MMTE_M_PM_CURRENT;
3149 
3150     /* hardwiring pm.instruction bit to 0, since it's not supported yet */
3151     wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN);
3152     env->mmte = wpri_val | PM_EXT_DIRTY;
3153     riscv_cpu_update_mask(env);
3154 
3155     /* Set XS and SD bits, since PM CSRs are dirty */
3156     mstatus = env->mstatus | MSTATUS_XS;
3157     write_mstatus(env, csrno, mstatus);
3158     return RISCV_EXCP_NONE;
3159 }
3160 
3161 static RISCVException read_smte(CPURISCVState *env, int csrno,
3162                                 target_ulong *val)
3163 {
3164     *val = env->mmte & SMTE_MASK;
3165     return RISCV_EXCP_NONE;
3166 }
3167 
3168 static RISCVException write_smte(CPURISCVState *env, int csrno,
3169                                  target_ulong val)
3170 {
3171     target_ulong wpri_val = val & SMTE_MASK;
3172 
3173     if (val != wpri_val) {
3174         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
3175                       "SMTE: WPRI violation written 0x", val,
3176                       "vs expected 0x", wpri_val);
3177     }
3178 
3179     /* if pm.current==0 we can't modify current PM CSRs */
3180     if (check_pm_current_disabled(env, csrno)) {
3181         return RISCV_EXCP_NONE;
3182     }
3183 
3184     wpri_val |= (env->mmte & ~SMTE_MASK);
3185     write_mmte(env, csrno, wpri_val);
3186     return RISCV_EXCP_NONE;
3187 }
3188 
3189 static RISCVException read_umte(CPURISCVState *env, int csrno,
3190                                 target_ulong *val)
3191 {
3192     *val = env->mmte & UMTE_MASK;
3193     return RISCV_EXCP_NONE;
3194 }
3195 
3196 static RISCVException write_umte(CPURISCVState *env, int csrno,
3197                                  target_ulong val)
3198 {
3199     target_ulong wpri_val = val & UMTE_MASK;
3200 
3201     if (val != wpri_val) {
3202         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
3203                       "UMTE: WPRI violation written 0x", val,
3204                       "vs expected 0x", wpri_val);
3205     }
3206 
3207     if (check_pm_current_disabled(env, csrno)) {
3208         return RISCV_EXCP_NONE;
3209     }
3210 
3211     wpri_val |= (env->mmte & ~UMTE_MASK);
3212     write_mmte(env, csrno, wpri_val);
3213     return RISCV_EXCP_NONE;
3214 }
3215 
3216 static RISCVException read_mpmmask(CPURISCVState *env, int csrno,
3217                                    target_ulong *val)
3218 {
3219     *val = env->mpmmask;
3220     return RISCV_EXCP_NONE;
3221 }
3222 
3223 static RISCVException write_mpmmask(CPURISCVState *env, int csrno,
3224                                     target_ulong val)
3225 {
3226     uint64_t mstatus;
3227 
3228     env->mpmmask = val;
3229     if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) {
3230         env->cur_pmmask = val;
3231     }
3232     env->mmte |= PM_EXT_DIRTY;
3233 
3234     /* Set XS and SD bits, since PM CSRs are dirty */
3235     mstatus = env->mstatus | MSTATUS_XS;
3236     write_mstatus(env, csrno, mstatus);
3237     return RISCV_EXCP_NONE;
3238 }
3239 
3240 static RISCVException read_spmmask(CPURISCVState *env, int csrno,
3241                                    target_ulong *val)
3242 {
3243     *val = env->spmmask;
3244     return RISCV_EXCP_NONE;
3245 }
3246 
3247 static RISCVException write_spmmask(CPURISCVState *env, int csrno,
3248                                     target_ulong val)
3249 {
3250     uint64_t mstatus;
3251 
3252     /* if pm.current==0 we can't modify current PM CSRs */
3253     if (check_pm_current_disabled(env, csrno)) {
3254         return RISCV_EXCP_NONE;
3255     }
3256     env->spmmask = val;
3257     if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) {
3258         env->cur_pmmask = val;
3259     }
3260     env->mmte |= PM_EXT_DIRTY;
3261 
3262     /* Set XS and SD bits, since PM CSRs are dirty */
3263     mstatus = env->mstatus | MSTATUS_XS;
3264     write_mstatus(env, csrno, mstatus);
3265     return RISCV_EXCP_NONE;
3266 }
3267 
3268 static RISCVException read_upmmask(CPURISCVState *env, int csrno,
3269                                    target_ulong *val)
3270 {
3271     *val = env->upmmask;
3272     return RISCV_EXCP_NONE;
3273 }
3274 
3275 static RISCVException write_upmmask(CPURISCVState *env, int csrno,
3276                                     target_ulong val)
3277 {
3278     uint64_t mstatus;
3279 
3280     /* if pm.current==0 we can't modify current PM CSRs */
3281     if (check_pm_current_disabled(env, csrno)) {
3282         return RISCV_EXCP_NONE;
3283     }
3284     env->upmmask = val;
3285     if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) {
3286         env->cur_pmmask = val;
3287     }
3288     env->mmte |= PM_EXT_DIRTY;
3289 
3290     /* Set XS and SD bits, since PM CSRs are dirty */
3291     mstatus = env->mstatus | MSTATUS_XS;
3292     write_mstatus(env, csrno, mstatus);
3293     return RISCV_EXCP_NONE;
3294 }
3295 
3296 static RISCVException read_mpmbase(CPURISCVState *env, int csrno,
3297                                    target_ulong *val)
3298 {
3299     *val = env->mpmbase;
3300     return RISCV_EXCP_NONE;
3301 }
3302 
3303 static RISCVException write_mpmbase(CPURISCVState *env, int csrno,
3304                                     target_ulong val)
3305 {
3306     uint64_t mstatus;
3307 
3308     env->mpmbase = val;
3309     if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) {
3310         env->cur_pmbase = val;
3311     }
3312     env->mmte |= PM_EXT_DIRTY;
3313 
3314     /* Set XS and SD bits, since PM CSRs are dirty */
3315     mstatus = env->mstatus | MSTATUS_XS;
3316     write_mstatus(env, csrno, mstatus);
3317     return RISCV_EXCP_NONE;
3318 }
3319 
3320 static RISCVException read_spmbase(CPURISCVState *env, int csrno,
3321                                    target_ulong *val)
3322 {
3323     *val = env->spmbase;
3324     return RISCV_EXCP_NONE;
3325 }
3326 
3327 static RISCVException write_spmbase(CPURISCVState *env, int csrno,
3328                                     target_ulong val)
3329 {
3330     uint64_t mstatus;
3331 
3332     /* if pm.current==0 we can't modify current PM CSRs */
3333     if (check_pm_current_disabled(env, csrno)) {
3334         return RISCV_EXCP_NONE;
3335     }
3336     env->spmbase = val;
3337     if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) {
3338         env->cur_pmbase = val;
3339     }
3340     env->mmte |= PM_EXT_DIRTY;
3341 
3342     /* Set XS and SD bits, since PM CSRs are dirty */
3343     mstatus = env->mstatus | MSTATUS_XS;
3344     write_mstatus(env, csrno, mstatus);
3345     return RISCV_EXCP_NONE;
3346 }
3347 
3348 static RISCVException read_upmbase(CPURISCVState *env, int csrno,
3349                                    target_ulong *val)
3350 {
3351     *val = env->upmbase;
3352     return RISCV_EXCP_NONE;
3353 }
3354 
3355 static RISCVException write_upmbase(CPURISCVState *env, int csrno,
3356                                     target_ulong val)
3357 {
3358     uint64_t mstatus;
3359 
3360     /* if pm.current==0 we can't modify current PM CSRs */
3361     if (check_pm_current_disabled(env, csrno)) {
3362         return RISCV_EXCP_NONE;
3363     }
3364     env->upmbase = val;
3365     if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) {
3366         env->cur_pmbase = val;
3367     }
3368     env->mmte |= PM_EXT_DIRTY;
3369 
3370     /* Set XS and SD bits, since PM CSRs are dirty */
3371     mstatus = env->mstatus | MSTATUS_XS;
3372     write_mstatus(env, csrno, mstatus);
3373     return RISCV_EXCP_NONE;
3374 }
3375 
3376 #endif
3377 
3378 /* Crypto Extension */
3379 static RISCVException rmw_seed(CPURISCVState *env, int csrno,
3380                                target_ulong *ret_value,
3381                                target_ulong new_value,
3382                                target_ulong write_mask)
3383 {
3384     uint16_t random_v;
3385     Error *random_e = NULL;
3386     int random_r;
3387     target_ulong rval;
3388 
3389     random_r = qemu_guest_getrandom(&random_v, 2, &random_e);
3390     if (unlikely(random_r < 0)) {
3391         /*
3392          * Failed, for unknown reasons in the crypto subsystem.
3393          * The best we can do is log the reason and return a
3394          * failure indication to the guest.  There is no reason
3395          * we know to expect the failure to be transitory, so
3396          * indicate DEAD to avoid having the guest spin on WAIT.
3397          */
3398         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
3399                       __func__, error_get_pretty(random_e));
3400         error_free(random_e);
3401         rval = SEED_OPST_DEAD;
3402     } else {
3403         rval = random_v | SEED_OPST_ES16;
3404     }
3405 
3406     if (ret_value) {
3407         *ret_value = rval;
3408     }
3409 
3410     return RISCV_EXCP_NONE;
3411 }
3412 
3413 /*
3414  * riscv_csrrw - read and/or update control and status register
3415  *
3416  * csrr   <->  riscv_csrrw(env, csrno, ret_value, 0, 0);
3417  * csrrw  <->  riscv_csrrw(env, csrno, ret_value, value, -1);
3418  * csrrs  <->  riscv_csrrw(env, csrno, ret_value, -1, value);
3419  * csrrc  <->  riscv_csrrw(env, csrno, ret_value, 0, value);
3420  */
3421 
3422 static inline RISCVException riscv_csrrw_check(CPURISCVState *env,
3423                                                int csrno,
3424                                                bool write_mask,
3425                                                RISCVCPU *cpu)
3426 {
3427     /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */
3428     int read_only = get_field(csrno, 0xC00) == 3;
3429     int csr_min_priv = csr_ops[csrno].min_priv_ver;
3430 
3431     /* ensure the CSR extension is enabled. */
3432     if (!cpu->cfg.ext_icsr) {
3433         return RISCV_EXCP_ILLEGAL_INST;
3434     }
3435 
3436     if (env->priv_ver < csr_min_priv) {
3437         return RISCV_EXCP_ILLEGAL_INST;
3438     }
3439 
3440     /* check predicate */
3441     if (!csr_ops[csrno].predicate) {
3442         return RISCV_EXCP_ILLEGAL_INST;
3443     }
3444 
3445     if (write_mask && read_only) {
3446         return RISCV_EXCP_ILLEGAL_INST;
3447     }
3448 
3449     RISCVException ret = csr_ops[csrno].predicate(env, csrno);
3450     if (ret != RISCV_EXCP_NONE) {
3451         return ret;
3452     }
3453 
3454 #if !defined(CONFIG_USER_ONLY)
3455     int csr_priv, effective_priv = env->priv;
3456 
3457     if (riscv_has_ext(env, RVH) && env->priv == PRV_S &&
3458         !riscv_cpu_virt_enabled(env)) {
3459         /*
3460          * We are in HS mode. Add 1 to the effective privledge level to
3461          * allow us to access the Hypervisor CSRs.
3462          */
3463         effective_priv++;
3464     }
3465 
3466     csr_priv = get_field(csrno, 0x300);
3467     if (!env->debugger && (effective_priv < csr_priv)) {
3468         if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) {
3469             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
3470         }
3471         return RISCV_EXCP_ILLEGAL_INST;
3472     }
3473 #endif
3474     return RISCV_EXCP_NONE;
3475 }
3476 
3477 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno,
3478                                        target_ulong *ret_value,
3479                                        target_ulong new_value,
3480                                        target_ulong write_mask)
3481 {
3482     RISCVException ret;
3483     target_ulong old_value;
3484 
3485     /* execute combined read/write operation if it exists */
3486     if (csr_ops[csrno].op) {
3487         return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask);
3488     }
3489 
3490     /* if no accessor exists then return failure */
3491     if (!csr_ops[csrno].read) {
3492         return RISCV_EXCP_ILLEGAL_INST;
3493     }
3494     /* read old value */
3495     ret = csr_ops[csrno].read(env, csrno, &old_value);
3496     if (ret != RISCV_EXCP_NONE) {
3497         return ret;
3498     }
3499 
3500     /* write value if writable and write mask set, otherwise drop writes */
3501     if (write_mask) {
3502         new_value = (old_value & ~write_mask) | (new_value & write_mask);
3503         if (csr_ops[csrno].write) {
3504             ret = csr_ops[csrno].write(env, csrno, new_value);
3505             if (ret != RISCV_EXCP_NONE) {
3506                 return ret;
3507             }
3508         }
3509     }
3510 
3511     /* return old value */
3512     if (ret_value) {
3513         *ret_value = old_value;
3514     }
3515 
3516     return RISCV_EXCP_NONE;
3517 }
3518 
3519 RISCVException riscv_csrrw(CPURISCVState *env, int csrno,
3520                            target_ulong *ret_value,
3521                            target_ulong new_value, target_ulong write_mask)
3522 {
3523     RISCVCPU *cpu = env_archcpu(env);
3524 
3525     RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu);
3526     if (ret != RISCV_EXCP_NONE) {
3527         return ret;
3528     }
3529 
3530     return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask);
3531 }
3532 
3533 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno,
3534                                         Int128 *ret_value,
3535                                         Int128 new_value,
3536                                         Int128 write_mask)
3537 {
3538     RISCVException ret;
3539     Int128 old_value;
3540 
3541     /* read old value */
3542     ret = csr_ops[csrno].read128(env, csrno, &old_value);
3543     if (ret != RISCV_EXCP_NONE) {
3544         return ret;
3545     }
3546 
3547     /* write value if writable and write mask set, otherwise drop writes */
3548     if (int128_nz(write_mask)) {
3549         new_value = int128_or(int128_and(old_value, int128_not(write_mask)),
3550                               int128_and(new_value, write_mask));
3551         if (csr_ops[csrno].write128) {
3552             ret = csr_ops[csrno].write128(env, csrno, new_value);
3553             if (ret != RISCV_EXCP_NONE) {
3554                 return ret;
3555             }
3556         } else if (csr_ops[csrno].write) {
3557             /* avoids having to write wrappers for all registers */
3558             ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value));
3559             if (ret != RISCV_EXCP_NONE) {
3560                 return ret;
3561             }
3562         }
3563     }
3564 
3565     /* return old value */
3566     if (ret_value) {
3567         *ret_value = old_value;
3568     }
3569 
3570     return RISCV_EXCP_NONE;
3571 }
3572 
3573 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno,
3574                                 Int128 *ret_value,
3575                                 Int128 new_value, Int128 write_mask)
3576 {
3577     RISCVException ret;
3578     RISCVCPU *cpu = env_archcpu(env);
3579 
3580     ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu);
3581     if (ret != RISCV_EXCP_NONE) {
3582         return ret;
3583     }
3584 
3585     if (csr_ops[csrno].read128) {
3586         return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask);
3587     }
3588 
3589     /*
3590      * Fall back to 64-bit version for now, if the 128-bit alternative isn't
3591      * at all defined.
3592      * Note, some CSRs don't need to extend to MXLEN (64 upper bits non
3593      * significant), for those, this fallback is correctly handling the accesses
3594      */
3595     target_ulong old_value;
3596     ret = riscv_csrrw_do64(env, csrno, &old_value,
3597                            int128_getlo(new_value),
3598                            int128_getlo(write_mask));
3599     if (ret == RISCV_EXCP_NONE && ret_value) {
3600         *ret_value = int128_make64(old_value);
3601     }
3602     return ret;
3603 }
3604 
3605 /*
3606  * Debugger support.  If not in user mode, set env->debugger before the
3607  * riscv_csrrw call and clear it after the call.
3608  */
3609 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno,
3610                                  target_ulong *ret_value,
3611                                  target_ulong new_value,
3612                                  target_ulong write_mask)
3613 {
3614     RISCVException ret;
3615 #if !defined(CONFIG_USER_ONLY)
3616     env->debugger = true;
3617 #endif
3618     ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask);
3619 #if !defined(CONFIG_USER_ONLY)
3620     env->debugger = false;
3621 #endif
3622     return ret;
3623 }
3624 
3625 /* Control and Status Register function table */
3626 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = {
3627     /* User Floating-Point CSRs */
3628     [CSR_FFLAGS]   = { "fflags",   fs,     read_fflags,  write_fflags },
3629     [CSR_FRM]      = { "frm",      fs,     read_frm,     write_frm    },
3630     [CSR_FCSR]     = { "fcsr",     fs,     read_fcsr,    write_fcsr   },
3631     /* Vector CSRs */
3632     [CSR_VSTART]   = { "vstart",   vs,     read_vstart,  write_vstart,
3633                        .min_priv_ver = PRIV_VERSION_1_12_0            },
3634     [CSR_VXSAT]    = { "vxsat",    vs,     read_vxsat,   write_vxsat,
3635                        .min_priv_ver = PRIV_VERSION_1_12_0            },
3636     [CSR_VXRM]     = { "vxrm",     vs,     read_vxrm,    write_vxrm,
3637                        .min_priv_ver = PRIV_VERSION_1_12_0            },
3638     [CSR_VCSR]     = { "vcsr",     vs,     read_vcsr,    write_vcsr,
3639                        .min_priv_ver = PRIV_VERSION_1_12_0            },
3640     [CSR_VL]       = { "vl",       vs,     read_vl,
3641                        .min_priv_ver = PRIV_VERSION_1_12_0            },
3642     [CSR_VTYPE]    = { "vtype",    vs,     read_vtype,
3643                        .min_priv_ver = PRIV_VERSION_1_12_0            },
3644     [CSR_VLENB]    = { "vlenb",    vs,     read_vlenb,
3645                        .min_priv_ver = PRIV_VERSION_1_12_0            },
3646     /* User Timers and Counters */
3647     [CSR_CYCLE]    = { "cycle",    ctr,    read_hpmcounter  },
3648     [CSR_INSTRET]  = { "instret",  ctr,    read_hpmcounter  },
3649     [CSR_CYCLEH]   = { "cycleh",   ctr32,  read_hpmcounterh },
3650     [CSR_INSTRETH] = { "instreth", ctr32,  read_hpmcounterh },
3651 
3652     /*
3653      * In privileged mode, the monitor will have to emulate TIME CSRs only if
3654      * rdtime callback is not provided by machine/platform emulation.
3655      */
3656     [CSR_TIME]  = { "time",  ctr,   read_time  },
3657     [CSR_TIMEH] = { "timeh", ctr32, read_timeh },
3658 
3659     /* Crypto Extension */
3660     [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed },
3661 
3662 #if !defined(CONFIG_USER_ONLY)
3663     /* Machine Timers and Counters */
3664     [CSR_MCYCLE]    = { "mcycle",    any,   read_hpmcounter,
3665                         write_mhpmcounter                    },
3666     [CSR_MINSTRET]  = { "minstret",  any,   read_hpmcounter,
3667                         write_mhpmcounter                    },
3668     [CSR_MCYCLEH]   = { "mcycleh",   any32, read_hpmcounterh,
3669                         write_mhpmcounterh                   },
3670     [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh,
3671                         write_mhpmcounterh                   },
3672 
3673     /* Machine Information Registers */
3674     [CSR_MVENDORID] = { "mvendorid", any,   read_mvendorid },
3675     [CSR_MARCHID]   = { "marchid",   any,   read_marchid   },
3676     [CSR_MIMPID]    = { "mimpid",    any,   read_mimpid    },
3677     [CSR_MHARTID]   = { "mhartid",   any,   read_mhartid   },
3678 
3679     [CSR_MCONFIGPTR]  = { "mconfigptr", any,   read_zero,
3680                           .min_priv_ver = PRIV_VERSION_1_12_0 },
3681     /* Machine Trap Setup */
3682     [CSR_MSTATUS]     = { "mstatus",    any,   read_mstatus, write_mstatus,
3683                           NULL,                read_mstatus_i128           },
3684     [CSR_MISA]        = { "misa",       any,   read_misa,    write_misa,
3685                           NULL,                read_misa_i128              },
3686     [CSR_MIDELEG]     = { "mideleg",    any,   NULL, NULL,   rmw_mideleg   },
3687     [CSR_MEDELEG]     = { "medeleg",    any,   read_medeleg, write_medeleg },
3688     [CSR_MIE]         = { "mie",        any,   NULL, NULL,   rmw_mie       },
3689     [CSR_MTVEC]       = { "mtvec",      any,   read_mtvec,   write_mtvec   },
3690     [CSR_MCOUNTEREN]  = { "mcounteren", umode, read_mcounteren,
3691                           write_mcounteren                                 },
3692 
3693     [CSR_MSTATUSH]    = { "mstatush",   any32, read_mstatush,
3694                           write_mstatush                                   },
3695 
3696     /* Machine Trap Handling */
3697     [CSR_MSCRATCH] = { "mscratch", any,  read_mscratch, write_mscratch,
3698                        NULL, read_mscratch_i128, write_mscratch_i128   },
3699     [CSR_MEPC]     = { "mepc",     any,  read_mepc,     write_mepc     },
3700     [CSR_MCAUSE]   = { "mcause",   any,  read_mcause,   write_mcause   },
3701     [CSR_MTVAL]    = { "mtval",    any,  read_mtval,    write_mtval    },
3702     [CSR_MIP]      = { "mip",      any,  NULL,    NULL, rmw_mip        },
3703 
3704     /* Machine-Level Window to Indirectly Accessed Registers (AIA) */
3705     [CSR_MISELECT] = { "miselect", aia_any,   NULL, NULL,    rmw_xiselect },
3706     [CSR_MIREG]    = { "mireg",    aia_any,   NULL, NULL,    rmw_xireg },
3707 
3708     /* Machine-Level Interrupts (AIA) */
3709     [CSR_MTOPEI]   = { "mtopei",   aia_any, NULL, NULL, rmw_xtopei },
3710     [CSR_MTOPI]    = { "mtopi",    aia_any, read_mtopi },
3711 
3712     /* Virtual Interrupts for Supervisor Level (AIA) */
3713     [CSR_MVIEN]    = { "mvien",    aia_any, read_zero, write_ignore },
3714     [CSR_MVIP]     = { "mvip",     aia_any, read_zero, write_ignore },
3715 
3716     /* Machine-Level High-Half CSRs (AIA) */
3717     [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh },
3718     [CSR_MIEH]     = { "mieh",     aia_any32, NULL, NULL, rmw_mieh     },
3719     [CSR_MVIENH]   = { "mvienh",   aia_any32, read_zero,  write_ignore },
3720     [CSR_MVIPH]    = { "mviph",    aia_any32, read_zero,  write_ignore },
3721     [CSR_MIPH]     = { "miph",     aia_any32, NULL, NULL, rmw_miph     },
3722 
3723     /* Execution environment configuration */
3724     [CSR_MENVCFG]  = { "menvcfg",  umode, read_menvcfg,  write_menvcfg,
3725                        .min_priv_ver = PRIV_VERSION_1_12_0              },
3726     [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh,
3727                        .min_priv_ver = PRIV_VERSION_1_12_0              },
3728     [CSR_SENVCFG]  = { "senvcfg",  smode, read_senvcfg,  write_senvcfg,
3729                        .min_priv_ver = PRIV_VERSION_1_12_0              },
3730     [CSR_HENVCFG]  = { "henvcfg",  hmode, read_henvcfg, write_henvcfg,
3731                        .min_priv_ver = PRIV_VERSION_1_12_0              },
3732     [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh,
3733                        .min_priv_ver = PRIV_VERSION_1_12_0              },
3734 
3735     /* Supervisor Trap Setup */
3736     [CSR_SSTATUS]    = { "sstatus",    smode, read_sstatus,    write_sstatus,
3737                          NULL,                read_sstatus_i128               },
3738     [CSR_SIE]        = { "sie",        smode, NULL,   NULL,    rmw_sie        },
3739     [CSR_STVEC]      = { "stvec",      smode, read_stvec,      write_stvec    },
3740     [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren,
3741                          write_scounteren                                     },
3742 
3743     /* Supervisor Trap Handling */
3744     [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch,
3745                        NULL, read_sscratch_i128, write_sscratch_i128    },
3746     [CSR_SEPC]     = { "sepc",     smode, read_sepc,     write_sepc     },
3747     [CSR_SCAUSE]   = { "scause",   smode, read_scause,   write_scause   },
3748     [CSR_STVAL]    = { "stval",    smode, read_stval,    write_stval    },
3749     [CSR_SIP]      = { "sip",      smode, NULL,    NULL, rmw_sip        },
3750     [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp,
3751                        .min_priv_ver = PRIV_VERSION_1_12_0 },
3752     [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph,
3753                         .min_priv_ver = PRIV_VERSION_1_12_0 },
3754     [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp,
3755                         write_vstimecmp,
3756                         .min_priv_ver = PRIV_VERSION_1_12_0 },
3757     [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph,
3758                          write_vstimecmph,
3759                          .min_priv_ver = PRIV_VERSION_1_12_0 },
3760 
3761     /* Supervisor Protection and Translation */
3762     [CSR_SATP]     = { "satp",     smode, read_satp,     write_satp     },
3763 
3764     /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */
3765     [CSR_SISELECT]   = { "siselect",   aia_smode, NULL, NULL, rmw_xiselect },
3766     [CSR_SIREG]      = { "sireg",      aia_smode, NULL, NULL, rmw_xireg },
3767 
3768     /* Supervisor-Level Interrupts (AIA) */
3769     [CSR_STOPEI]     = { "stopei",     aia_smode, NULL, NULL, rmw_xtopei },
3770     [CSR_STOPI]      = { "stopi",      aia_smode, read_stopi },
3771 
3772     /* Supervisor-Level High-Half CSRs (AIA) */
3773     [CSR_SIEH]       = { "sieh",   aia_smode32, NULL, NULL, rmw_sieh },
3774     [CSR_SIPH]       = { "siph",   aia_smode32, NULL, NULL, rmw_siph },
3775 
3776     [CSR_HSTATUS]     = { "hstatus",     hmode,   read_hstatus, write_hstatus,
3777                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3778     [CSR_HEDELEG]     = { "hedeleg",     hmode,   read_hedeleg, write_hedeleg,
3779                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3780     [CSR_HIDELEG]     = { "hideleg",     hmode,   NULL,   NULL, rmw_hideleg,
3781                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3782     [CSR_HVIP]        = { "hvip",        hmode,   NULL,   NULL, rmw_hvip,
3783                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3784     [CSR_HIP]         = { "hip",         hmode,   NULL,   NULL, rmw_hip,
3785                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3786     [CSR_HIE]         = { "hie",         hmode,   NULL,   NULL, rmw_hie,
3787                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3788     [CSR_HCOUNTEREN]  = { "hcounteren",  hmode,   read_hcounteren,
3789                           write_hcounteren,
3790                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3791     [CSR_HGEIE]       = { "hgeie",       hmode,   read_hgeie,   write_hgeie,
3792                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3793     [CSR_HTVAL]       = { "htval",       hmode,   read_htval,   write_htval,
3794                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3795     [CSR_HTINST]      = { "htinst",      hmode,   read_htinst,  write_htinst,
3796                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3797     [CSR_HGEIP]       = { "hgeip",       hmode,   read_hgeip,
3798                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3799     [CSR_HGATP]       = { "hgatp",       hmode,   read_hgatp,   write_hgatp,
3800                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3801     [CSR_HTIMEDELTA]  = { "htimedelta",  hmode,   read_htimedelta,
3802                           write_htimedelta,
3803                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3804     [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah,
3805                           write_htimedeltah,
3806                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3807 
3808     [CSR_VSSTATUS]    = { "vsstatus",    hmode,   read_vsstatus,
3809                           write_vsstatus,
3810                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3811     [CSR_VSIP]        = { "vsip",        hmode,   NULL,    NULL, rmw_vsip,
3812                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3813     [CSR_VSIE]        = { "vsie",        hmode,   NULL,    NULL, rmw_vsie ,
3814                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3815     [CSR_VSTVEC]      = { "vstvec",      hmode,   read_vstvec,   write_vstvec,
3816                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3817     [CSR_VSSCRATCH]   = { "vsscratch",   hmode,   read_vsscratch,
3818                           write_vsscratch,
3819                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3820     [CSR_VSEPC]       = { "vsepc",       hmode,   read_vsepc,    write_vsepc,
3821                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3822     [CSR_VSCAUSE]     = { "vscause",     hmode,   read_vscause,  write_vscause,
3823                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3824     [CSR_VSTVAL]      = { "vstval",      hmode,   read_vstval,   write_vstval,
3825                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3826     [CSR_VSATP]       = { "vsatp",       hmode,   read_vsatp,    write_vsatp,
3827                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3828 
3829     [CSR_MTVAL2]      = { "mtval2",      hmode,   read_mtval2,   write_mtval2,
3830                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3831     [CSR_MTINST]      = { "mtinst",      hmode,   read_mtinst,   write_mtinst,
3832                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3833 
3834     /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */
3835     [CSR_HVIEN]       = { "hvien",       aia_hmode, read_zero, write_ignore },
3836     [CSR_HVICTL]      = { "hvictl",      aia_hmode, read_hvictl,
3837                           write_hvictl                                      },
3838     [CSR_HVIPRIO1]    = { "hviprio1",    aia_hmode, read_hviprio1,
3839                           write_hviprio1                                    },
3840     [CSR_HVIPRIO2]    = { "hviprio2",    aia_hmode, read_hviprio2,
3841                           write_hviprio2                                    },
3842 
3843     /*
3844      * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA)
3845      */
3846     [CSR_VSISELECT]   = { "vsiselect",   aia_hmode, NULL, NULL,
3847                           rmw_xiselect                                     },
3848     [CSR_VSIREG]      = { "vsireg",      aia_hmode, NULL, NULL, rmw_xireg  },
3849 
3850     /* VS-Level Interrupts (H-extension with AIA) */
3851     [CSR_VSTOPEI]     = { "vstopei",     aia_hmode, NULL, NULL, rmw_xtopei },
3852     [CSR_VSTOPI]      = { "vstopi",      aia_hmode, read_vstopi },
3853 
3854     /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */
3855     [CSR_HIDELEGH]    = { "hidelegh",    aia_hmode32, NULL, NULL,
3856                           rmw_hidelegh                                      },
3857     [CSR_HVIENH]      = { "hvienh",      aia_hmode32, read_zero,
3858                           write_ignore                                      },
3859     [CSR_HVIPH]       = { "hviph",       aia_hmode32, NULL, NULL, rmw_hviph },
3860     [CSR_HVIPRIO1H]   = { "hviprio1h",   aia_hmode32, read_hviprio1h,
3861                           write_hviprio1h                                   },
3862     [CSR_HVIPRIO2H]   = { "hviprio2h",   aia_hmode32, read_hviprio2h,
3863                           write_hviprio2h                                   },
3864     [CSR_VSIEH]       = { "vsieh",       aia_hmode32, NULL, NULL, rmw_vsieh },
3865     [CSR_VSIPH]       = { "vsiph",       aia_hmode32, NULL, NULL, rmw_vsiph },
3866 
3867     /* Physical Memory Protection */
3868     [CSR_MSECCFG]    = { "mseccfg",  epmp, read_mseccfg, write_mseccfg,
3869                          .min_priv_ver = PRIV_VERSION_1_11_0           },
3870     [CSR_PMPCFG0]    = { "pmpcfg0",   pmp, read_pmpcfg,  write_pmpcfg  },
3871     [CSR_PMPCFG1]    = { "pmpcfg1",   pmp, read_pmpcfg,  write_pmpcfg  },
3872     [CSR_PMPCFG2]    = { "pmpcfg2",   pmp, read_pmpcfg,  write_pmpcfg  },
3873     [CSR_PMPCFG3]    = { "pmpcfg3",   pmp, read_pmpcfg,  write_pmpcfg  },
3874     [CSR_PMPADDR0]   = { "pmpaddr0",  pmp, read_pmpaddr, write_pmpaddr },
3875     [CSR_PMPADDR1]   = { "pmpaddr1",  pmp, read_pmpaddr, write_pmpaddr },
3876     [CSR_PMPADDR2]   = { "pmpaddr2",  pmp, read_pmpaddr, write_pmpaddr },
3877     [CSR_PMPADDR3]   = { "pmpaddr3",  pmp, read_pmpaddr, write_pmpaddr },
3878     [CSR_PMPADDR4]   = { "pmpaddr4",  pmp, read_pmpaddr, write_pmpaddr },
3879     [CSR_PMPADDR5]   = { "pmpaddr5",  pmp, read_pmpaddr, write_pmpaddr },
3880     [CSR_PMPADDR6]   = { "pmpaddr6",  pmp, read_pmpaddr, write_pmpaddr },
3881     [CSR_PMPADDR7]   = { "pmpaddr7",  pmp, read_pmpaddr, write_pmpaddr },
3882     [CSR_PMPADDR8]   = { "pmpaddr8",  pmp, read_pmpaddr, write_pmpaddr },
3883     [CSR_PMPADDR9]   = { "pmpaddr9",  pmp, read_pmpaddr, write_pmpaddr },
3884     [CSR_PMPADDR10]  = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr },
3885     [CSR_PMPADDR11]  = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr },
3886     [CSR_PMPADDR12]  = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr },
3887     [CSR_PMPADDR13]  = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr },
3888     [CSR_PMPADDR14] =  { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr },
3889     [CSR_PMPADDR15] =  { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr },
3890 
3891     /* Debug CSRs */
3892     [CSR_TSELECT]   =  { "tselect", debug, read_tselect, write_tselect },
3893     [CSR_TDATA1]    =  { "tdata1",  debug, read_tdata,   write_tdata   },
3894     [CSR_TDATA2]    =  { "tdata2",  debug, read_tdata,   write_tdata   },
3895     [CSR_TDATA3]    =  { "tdata3",  debug, read_tdata,   write_tdata   },
3896 
3897     /* User Pointer Masking */
3898     [CSR_UMTE]    =    { "umte",    pointer_masking, read_umte,  write_umte },
3899     [CSR_UPMMASK] =    { "upmmask", pointer_masking, read_upmmask,
3900                          write_upmmask                                      },
3901     [CSR_UPMBASE] =    { "upmbase", pointer_masking, read_upmbase,
3902                          write_upmbase                                      },
3903     /* Machine Pointer Masking */
3904     [CSR_MMTE]    =    { "mmte",    pointer_masking, read_mmte,  write_mmte },
3905     [CSR_MPMMASK] =    { "mpmmask", pointer_masking, read_mpmmask,
3906                          write_mpmmask                                      },
3907     [CSR_MPMBASE] =    { "mpmbase", pointer_masking, read_mpmbase,
3908                          write_mpmbase                                      },
3909     /* Supervisor Pointer Masking */
3910     [CSR_SMTE]    =    { "smte",    pointer_masking, read_smte,  write_smte },
3911     [CSR_SPMMASK] =    { "spmmask", pointer_masking, read_spmmask,
3912                          write_spmmask                                      },
3913     [CSR_SPMBASE] =    { "spmbase", pointer_masking, read_spmbase,
3914                          write_spmbase                                      },
3915 
3916     /* Performance Counters */
3917     [CSR_HPMCOUNTER3]    = { "hpmcounter3",    ctr,    read_hpmcounter },
3918     [CSR_HPMCOUNTER4]    = { "hpmcounter4",    ctr,    read_hpmcounter },
3919     [CSR_HPMCOUNTER5]    = { "hpmcounter5",    ctr,    read_hpmcounter },
3920     [CSR_HPMCOUNTER6]    = { "hpmcounter6",    ctr,    read_hpmcounter },
3921     [CSR_HPMCOUNTER7]    = { "hpmcounter7",    ctr,    read_hpmcounter },
3922     [CSR_HPMCOUNTER8]    = { "hpmcounter8",    ctr,    read_hpmcounter },
3923     [CSR_HPMCOUNTER9]    = { "hpmcounter9",    ctr,    read_hpmcounter },
3924     [CSR_HPMCOUNTER10]   = { "hpmcounter10",   ctr,    read_hpmcounter },
3925     [CSR_HPMCOUNTER11]   = { "hpmcounter11",   ctr,    read_hpmcounter },
3926     [CSR_HPMCOUNTER12]   = { "hpmcounter12",   ctr,    read_hpmcounter },
3927     [CSR_HPMCOUNTER13]   = { "hpmcounter13",   ctr,    read_hpmcounter },
3928     [CSR_HPMCOUNTER14]   = { "hpmcounter14",   ctr,    read_hpmcounter },
3929     [CSR_HPMCOUNTER15]   = { "hpmcounter15",   ctr,    read_hpmcounter },
3930     [CSR_HPMCOUNTER16]   = { "hpmcounter16",   ctr,    read_hpmcounter },
3931     [CSR_HPMCOUNTER17]   = { "hpmcounter17",   ctr,    read_hpmcounter },
3932     [CSR_HPMCOUNTER18]   = { "hpmcounter18",   ctr,    read_hpmcounter },
3933     [CSR_HPMCOUNTER19]   = { "hpmcounter19",   ctr,    read_hpmcounter },
3934     [CSR_HPMCOUNTER20]   = { "hpmcounter20",   ctr,    read_hpmcounter },
3935     [CSR_HPMCOUNTER21]   = { "hpmcounter21",   ctr,    read_hpmcounter },
3936     [CSR_HPMCOUNTER22]   = { "hpmcounter22",   ctr,    read_hpmcounter },
3937     [CSR_HPMCOUNTER23]   = { "hpmcounter23",   ctr,    read_hpmcounter },
3938     [CSR_HPMCOUNTER24]   = { "hpmcounter24",   ctr,    read_hpmcounter },
3939     [CSR_HPMCOUNTER25]   = { "hpmcounter25",   ctr,    read_hpmcounter },
3940     [CSR_HPMCOUNTER26]   = { "hpmcounter26",   ctr,    read_hpmcounter },
3941     [CSR_HPMCOUNTER27]   = { "hpmcounter27",   ctr,    read_hpmcounter },
3942     [CSR_HPMCOUNTER28]   = { "hpmcounter28",   ctr,    read_hpmcounter },
3943     [CSR_HPMCOUNTER29]   = { "hpmcounter29",   ctr,    read_hpmcounter },
3944     [CSR_HPMCOUNTER30]   = { "hpmcounter30",   ctr,    read_hpmcounter },
3945     [CSR_HPMCOUNTER31]   = { "hpmcounter31",   ctr,    read_hpmcounter },
3946 
3947     [CSR_MHPMCOUNTER3]   = { "mhpmcounter3",   mctr,    read_hpmcounter,
3948                              write_mhpmcounter                         },
3949     [CSR_MHPMCOUNTER4]   = { "mhpmcounter4",   mctr,    read_hpmcounter,
3950                              write_mhpmcounter                         },
3951     [CSR_MHPMCOUNTER5]   = { "mhpmcounter5",   mctr,    read_hpmcounter,
3952                              write_mhpmcounter                         },
3953     [CSR_MHPMCOUNTER6]   = { "mhpmcounter6",   mctr,    read_hpmcounter,
3954                              write_mhpmcounter                         },
3955     [CSR_MHPMCOUNTER7]   = { "mhpmcounter7",   mctr,    read_hpmcounter,
3956                              write_mhpmcounter                         },
3957     [CSR_MHPMCOUNTER8]   = { "mhpmcounter8",   mctr,    read_hpmcounter,
3958                              write_mhpmcounter                         },
3959     [CSR_MHPMCOUNTER9]   = { "mhpmcounter9",   mctr,    read_hpmcounter,
3960                              write_mhpmcounter                         },
3961     [CSR_MHPMCOUNTER10]  = { "mhpmcounter10",  mctr,    read_hpmcounter,
3962                              write_mhpmcounter                         },
3963     [CSR_MHPMCOUNTER11]  = { "mhpmcounter11",  mctr,    read_hpmcounter,
3964                              write_mhpmcounter                         },
3965     [CSR_MHPMCOUNTER12]  = { "mhpmcounter12",  mctr,    read_hpmcounter,
3966                              write_mhpmcounter                         },
3967     [CSR_MHPMCOUNTER13]  = { "mhpmcounter13",  mctr,    read_hpmcounter,
3968                              write_mhpmcounter                         },
3969     [CSR_MHPMCOUNTER14]  = { "mhpmcounter14",  mctr,    read_hpmcounter,
3970                              write_mhpmcounter                         },
3971     [CSR_MHPMCOUNTER15]  = { "mhpmcounter15",  mctr,    read_hpmcounter,
3972                              write_mhpmcounter                         },
3973     [CSR_MHPMCOUNTER16]  = { "mhpmcounter16",  mctr,    read_hpmcounter,
3974                              write_mhpmcounter                         },
3975     [CSR_MHPMCOUNTER17]  = { "mhpmcounter17",  mctr,    read_hpmcounter,
3976                              write_mhpmcounter                         },
3977     [CSR_MHPMCOUNTER18]  = { "mhpmcounter18",  mctr,    read_hpmcounter,
3978                              write_mhpmcounter                         },
3979     [CSR_MHPMCOUNTER19]  = { "mhpmcounter19",  mctr,    read_hpmcounter,
3980                              write_mhpmcounter                         },
3981     [CSR_MHPMCOUNTER20]  = { "mhpmcounter20",  mctr,    read_hpmcounter,
3982                              write_mhpmcounter                         },
3983     [CSR_MHPMCOUNTER21]  = { "mhpmcounter21",  mctr,    read_hpmcounter,
3984                              write_mhpmcounter                         },
3985     [CSR_MHPMCOUNTER22]  = { "mhpmcounter22",  mctr,    read_hpmcounter,
3986                              write_mhpmcounter                         },
3987     [CSR_MHPMCOUNTER23]  = { "mhpmcounter23",  mctr,    read_hpmcounter,
3988                              write_mhpmcounter                         },
3989     [CSR_MHPMCOUNTER24]  = { "mhpmcounter24",  mctr,    read_hpmcounter,
3990                              write_mhpmcounter                         },
3991     [CSR_MHPMCOUNTER25]  = { "mhpmcounter25",  mctr,    read_hpmcounter,
3992                              write_mhpmcounter                         },
3993     [CSR_MHPMCOUNTER26]  = { "mhpmcounter26",  mctr,    read_hpmcounter,
3994                              write_mhpmcounter                         },
3995     [CSR_MHPMCOUNTER27]  = { "mhpmcounter27",  mctr,    read_hpmcounter,
3996                              write_mhpmcounter                         },
3997     [CSR_MHPMCOUNTER28]  = { "mhpmcounter28",  mctr,    read_hpmcounter,
3998                              write_mhpmcounter                         },
3999     [CSR_MHPMCOUNTER29]  = { "mhpmcounter29",  mctr,    read_hpmcounter,
4000                              write_mhpmcounter                         },
4001     [CSR_MHPMCOUNTER30]  = { "mhpmcounter30",  mctr,    read_hpmcounter,
4002                              write_mhpmcounter                         },
4003     [CSR_MHPMCOUNTER31]  = { "mhpmcounter31",  mctr,    read_hpmcounter,
4004                              write_mhpmcounter                         },
4005 
4006     [CSR_MCOUNTINHIBIT]  = { "mcountinhibit",  any, read_mcountinhibit,
4007                              write_mcountinhibit,
4008                              .min_priv_ver = PRIV_VERSION_1_11_0       },
4009 
4010     [CSR_MHPMEVENT3]     = { "mhpmevent3",     any,    read_mhpmevent,
4011                              write_mhpmevent                           },
4012     [CSR_MHPMEVENT4]     = { "mhpmevent4",     any,    read_mhpmevent,
4013                              write_mhpmevent                           },
4014     [CSR_MHPMEVENT5]     = { "mhpmevent5",     any,    read_mhpmevent,
4015                              write_mhpmevent                           },
4016     [CSR_MHPMEVENT6]     = { "mhpmevent6",     any,    read_mhpmevent,
4017                              write_mhpmevent                           },
4018     [CSR_MHPMEVENT7]     = { "mhpmevent7",     any,    read_mhpmevent,
4019                              write_mhpmevent                           },
4020     [CSR_MHPMEVENT8]     = { "mhpmevent8",     any,    read_mhpmevent,
4021                              write_mhpmevent                           },
4022     [CSR_MHPMEVENT9]     = { "mhpmevent9",     any,    read_mhpmevent,
4023                              write_mhpmevent                           },
4024     [CSR_MHPMEVENT10]    = { "mhpmevent10",    any,    read_mhpmevent,
4025                              write_mhpmevent                           },
4026     [CSR_MHPMEVENT11]    = { "mhpmevent11",    any,    read_mhpmevent,
4027                              write_mhpmevent                           },
4028     [CSR_MHPMEVENT12]    = { "mhpmevent12",    any,    read_mhpmevent,
4029                              write_mhpmevent                           },
4030     [CSR_MHPMEVENT13]    = { "mhpmevent13",    any,    read_mhpmevent,
4031                              write_mhpmevent                           },
4032     [CSR_MHPMEVENT14]    = { "mhpmevent14",    any,    read_mhpmevent,
4033                              write_mhpmevent                           },
4034     [CSR_MHPMEVENT15]    = { "mhpmevent15",    any,    read_mhpmevent,
4035                              write_mhpmevent                           },
4036     [CSR_MHPMEVENT16]    = { "mhpmevent16",    any,    read_mhpmevent,
4037                              write_mhpmevent                           },
4038     [CSR_MHPMEVENT17]    = { "mhpmevent17",    any,    read_mhpmevent,
4039                              write_mhpmevent                           },
4040     [CSR_MHPMEVENT18]    = { "mhpmevent18",    any,    read_mhpmevent,
4041                              write_mhpmevent                           },
4042     [CSR_MHPMEVENT19]    = { "mhpmevent19",    any,    read_mhpmevent,
4043                              write_mhpmevent                           },
4044     [CSR_MHPMEVENT20]    = { "mhpmevent20",    any,    read_mhpmevent,
4045                              write_mhpmevent                           },
4046     [CSR_MHPMEVENT21]    = { "mhpmevent21",    any,    read_mhpmevent,
4047                              write_mhpmevent                           },
4048     [CSR_MHPMEVENT22]    = { "mhpmevent22",    any,    read_mhpmevent,
4049                              write_mhpmevent                           },
4050     [CSR_MHPMEVENT23]    = { "mhpmevent23",    any,    read_mhpmevent,
4051                              write_mhpmevent                           },
4052     [CSR_MHPMEVENT24]    = { "mhpmevent24",    any,    read_mhpmevent,
4053                              write_mhpmevent                           },
4054     [CSR_MHPMEVENT25]    = { "mhpmevent25",    any,    read_mhpmevent,
4055                              write_mhpmevent                           },
4056     [CSR_MHPMEVENT26]    = { "mhpmevent26",    any,    read_mhpmevent,
4057                              write_mhpmevent                           },
4058     [CSR_MHPMEVENT27]    = { "mhpmevent27",    any,    read_mhpmevent,
4059                              write_mhpmevent                           },
4060     [CSR_MHPMEVENT28]    = { "mhpmevent28",    any,    read_mhpmevent,
4061                              write_mhpmevent                           },
4062     [CSR_MHPMEVENT29]    = { "mhpmevent29",    any,    read_mhpmevent,
4063                              write_mhpmevent                           },
4064     [CSR_MHPMEVENT30]    = { "mhpmevent30",    any,    read_mhpmevent,
4065                              write_mhpmevent                           },
4066     [CSR_MHPMEVENT31]    = { "mhpmevent31",    any,    read_mhpmevent,
4067                              write_mhpmevent                           },
4068 
4069     [CSR_MHPMEVENT3H]    = { "mhpmevent3h",    sscofpmf,  read_mhpmeventh,
4070                              write_mhpmeventh,
4071                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4072     [CSR_MHPMEVENT4H]    = { "mhpmevent4h",    sscofpmf,  read_mhpmeventh,
4073                              write_mhpmeventh,
4074                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4075     [CSR_MHPMEVENT5H]    = { "mhpmevent5h",    sscofpmf,  read_mhpmeventh,
4076                              write_mhpmeventh,
4077                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4078     [CSR_MHPMEVENT6H]    = { "mhpmevent6h",    sscofpmf,  read_mhpmeventh,
4079                              write_mhpmeventh,
4080                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4081     [CSR_MHPMEVENT7H]    = { "mhpmevent7h",    sscofpmf,  read_mhpmeventh,
4082                              write_mhpmeventh,
4083                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4084     [CSR_MHPMEVENT8H]    = { "mhpmevent8h",    sscofpmf,  read_mhpmeventh,
4085                              write_mhpmeventh,
4086                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4087     [CSR_MHPMEVENT9H]    = { "mhpmevent9h",    sscofpmf,  read_mhpmeventh,
4088                              write_mhpmeventh,
4089                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4090     [CSR_MHPMEVENT10H]   = { "mhpmevent10h",    sscofpmf,  read_mhpmeventh,
4091                              write_mhpmeventh,
4092                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4093     [CSR_MHPMEVENT11H]   = { "mhpmevent11h",    sscofpmf,  read_mhpmeventh,
4094                              write_mhpmeventh,
4095                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4096     [CSR_MHPMEVENT12H]   = { "mhpmevent12h",    sscofpmf,  read_mhpmeventh,
4097                              write_mhpmeventh,
4098                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4099     [CSR_MHPMEVENT13H]   = { "mhpmevent13h",    sscofpmf,  read_mhpmeventh,
4100                              write_mhpmeventh,
4101                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4102     [CSR_MHPMEVENT14H]   = { "mhpmevent14h",    sscofpmf,  read_mhpmeventh,
4103                              write_mhpmeventh,
4104                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4105     [CSR_MHPMEVENT15H]   = { "mhpmevent15h",    sscofpmf,  read_mhpmeventh,
4106                              write_mhpmeventh,
4107                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4108     [CSR_MHPMEVENT16H]   = { "mhpmevent16h",    sscofpmf,  read_mhpmeventh,
4109                              write_mhpmeventh,
4110                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4111     [CSR_MHPMEVENT17H]   = { "mhpmevent17h",    sscofpmf,  read_mhpmeventh,
4112                              write_mhpmeventh,
4113                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4114     [CSR_MHPMEVENT18H]   = { "mhpmevent18h",    sscofpmf,  read_mhpmeventh,
4115                              write_mhpmeventh,
4116                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4117     [CSR_MHPMEVENT19H]   = { "mhpmevent19h",    sscofpmf,  read_mhpmeventh,
4118                              write_mhpmeventh,
4119                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4120     [CSR_MHPMEVENT20H]   = { "mhpmevent20h",    sscofpmf,  read_mhpmeventh,
4121                              write_mhpmeventh,
4122                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4123     [CSR_MHPMEVENT21H]   = { "mhpmevent21h",    sscofpmf,  read_mhpmeventh,
4124                              write_mhpmeventh,
4125                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4126     [CSR_MHPMEVENT22H]   = { "mhpmevent22h",    sscofpmf,  read_mhpmeventh,
4127                              write_mhpmeventh,
4128                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4129     [CSR_MHPMEVENT23H]   = { "mhpmevent23h",    sscofpmf,  read_mhpmeventh,
4130                              write_mhpmeventh,
4131                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4132     [CSR_MHPMEVENT24H]   = { "mhpmevent24h",    sscofpmf,  read_mhpmeventh,
4133                              write_mhpmeventh,
4134                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4135     [CSR_MHPMEVENT25H]   = { "mhpmevent25h",    sscofpmf,  read_mhpmeventh,
4136                              write_mhpmeventh,
4137                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4138     [CSR_MHPMEVENT26H]   = { "mhpmevent26h",    sscofpmf,  read_mhpmeventh,
4139                              write_mhpmeventh,
4140                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4141     [CSR_MHPMEVENT27H]   = { "mhpmevent27h",    sscofpmf,  read_mhpmeventh,
4142                              write_mhpmeventh,
4143                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4144     [CSR_MHPMEVENT28H]   = { "mhpmevent28h",    sscofpmf,  read_mhpmeventh,
4145                              write_mhpmeventh,
4146                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4147     [CSR_MHPMEVENT29H]   = { "mhpmevent29h",    sscofpmf,  read_mhpmeventh,
4148                              write_mhpmeventh,
4149                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4150     [CSR_MHPMEVENT30H]   = { "mhpmevent30h",    sscofpmf,  read_mhpmeventh,
4151                              write_mhpmeventh,
4152                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4153     [CSR_MHPMEVENT31H]   = { "mhpmevent31h",    sscofpmf,  read_mhpmeventh,
4154                              write_mhpmeventh,
4155                              .min_priv_ver = PRIV_VERSION_1_12_0        },
4156 
4157     [CSR_HPMCOUNTER3H]   = { "hpmcounter3h",   ctr32,  read_hpmcounterh },
4158     [CSR_HPMCOUNTER4H]   = { "hpmcounter4h",   ctr32,  read_hpmcounterh },
4159     [CSR_HPMCOUNTER5H]   = { "hpmcounter5h",   ctr32,  read_hpmcounterh },
4160     [CSR_HPMCOUNTER6H]   = { "hpmcounter6h",   ctr32,  read_hpmcounterh },
4161     [CSR_HPMCOUNTER7H]   = { "hpmcounter7h",   ctr32,  read_hpmcounterh },
4162     [CSR_HPMCOUNTER8H]   = { "hpmcounter8h",   ctr32,  read_hpmcounterh },
4163     [CSR_HPMCOUNTER9H]   = { "hpmcounter9h",   ctr32,  read_hpmcounterh },
4164     [CSR_HPMCOUNTER10H]  = { "hpmcounter10h",  ctr32,  read_hpmcounterh },
4165     [CSR_HPMCOUNTER11H]  = { "hpmcounter11h",  ctr32,  read_hpmcounterh },
4166     [CSR_HPMCOUNTER12H]  = { "hpmcounter12h",  ctr32,  read_hpmcounterh },
4167     [CSR_HPMCOUNTER13H]  = { "hpmcounter13h",  ctr32,  read_hpmcounterh },
4168     [CSR_HPMCOUNTER14H]  = { "hpmcounter14h",  ctr32,  read_hpmcounterh },
4169     [CSR_HPMCOUNTER15H]  = { "hpmcounter15h",  ctr32,  read_hpmcounterh },
4170     [CSR_HPMCOUNTER16H]  = { "hpmcounter16h",  ctr32,  read_hpmcounterh },
4171     [CSR_HPMCOUNTER17H]  = { "hpmcounter17h",  ctr32,  read_hpmcounterh },
4172     [CSR_HPMCOUNTER18H]  = { "hpmcounter18h",  ctr32,  read_hpmcounterh },
4173     [CSR_HPMCOUNTER19H]  = { "hpmcounter19h",  ctr32,  read_hpmcounterh },
4174     [CSR_HPMCOUNTER20H]  = { "hpmcounter20h",  ctr32,  read_hpmcounterh },
4175     [CSR_HPMCOUNTER21H]  = { "hpmcounter21h",  ctr32,  read_hpmcounterh },
4176     [CSR_HPMCOUNTER22H]  = { "hpmcounter22h",  ctr32,  read_hpmcounterh },
4177     [CSR_HPMCOUNTER23H]  = { "hpmcounter23h",  ctr32,  read_hpmcounterh },
4178     [CSR_HPMCOUNTER24H]  = { "hpmcounter24h",  ctr32,  read_hpmcounterh },
4179     [CSR_HPMCOUNTER25H]  = { "hpmcounter25h",  ctr32,  read_hpmcounterh },
4180     [CSR_HPMCOUNTER26H]  = { "hpmcounter26h",  ctr32,  read_hpmcounterh },
4181     [CSR_HPMCOUNTER27H]  = { "hpmcounter27h",  ctr32,  read_hpmcounterh },
4182     [CSR_HPMCOUNTER28H]  = { "hpmcounter28h",  ctr32,  read_hpmcounterh },
4183     [CSR_HPMCOUNTER29H]  = { "hpmcounter29h",  ctr32,  read_hpmcounterh },
4184     [CSR_HPMCOUNTER30H]  = { "hpmcounter30h",  ctr32,  read_hpmcounterh },
4185     [CSR_HPMCOUNTER31H]  = { "hpmcounter31h",  ctr32,  read_hpmcounterh },
4186 
4187     [CSR_MHPMCOUNTER3H]  = { "mhpmcounter3h",  mctr32,  read_hpmcounterh,
4188                              write_mhpmcounterh                         },
4189     [CSR_MHPMCOUNTER4H]  = { "mhpmcounter4h",  mctr32,  read_hpmcounterh,
4190                              write_mhpmcounterh                         },
4191     [CSR_MHPMCOUNTER5H]  = { "mhpmcounter5h",  mctr32,  read_hpmcounterh,
4192                              write_mhpmcounterh                         },
4193     [CSR_MHPMCOUNTER6H]  = { "mhpmcounter6h",  mctr32,  read_hpmcounterh,
4194                              write_mhpmcounterh                         },
4195     [CSR_MHPMCOUNTER7H]  = { "mhpmcounter7h",  mctr32,  read_hpmcounterh,
4196                              write_mhpmcounterh                         },
4197     [CSR_MHPMCOUNTER8H]  = { "mhpmcounter8h",  mctr32,  read_hpmcounterh,
4198                              write_mhpmcounterh                         },
4199     [CSR_MHPMCOUNTER9H]  = { "mhpmcounter9h",  mctr32,  read_hpmcounterh,
4200                              write_mhpmcounterh                         },
4201     [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32,  read_hpmcounterh,
4202                              write_mhpmcounterh                         },
4203     [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32,  read_hpmcounterh,
4204                              write_mhpmcounterh                         },
4205     [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32,  read_hpmcounterh,
4206                              write_mhpmcounterh                         },
4207     [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32,  read_hpmcounterh,
4208                              write_mhpmcounterh                         },
4209     [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32,  read_hpmcounterh,
4210                              write_mhpmcounterh                         },
4211     [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32,  read_hpmcounterh,
4212                              write_mhpmcounterh                         },
4213     [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32,  read_hpmcounterh,
4214                              write_mhpmcounterh                         },
4215     [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32,  read_hpmcounterh,
4216                              write_mhpmcounterh                         },
4217     [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32,  read_hpmcounterh,
4218                              write_mhpmcounterh                         },
4219     [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32,  read_hpmcounterh,
4220                              write_mhpmcounterh                         },
4221     [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32,  read_hpmcounterh,
4222                              write_mhpmcounterh                         },
4223     [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32,  read_hpmcounterh,
4224                              write_mhpmcounterh                         },
4225     [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32,  read_hpmcounterh,
4226                              write_mhpmcounterh                         },
4227     [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32,  read_hpmcounterh,
4228                              write_mhpmcounterh                         },
4229     [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32,  read_hpmcounterh,
4230                              write_mhpmcounterh                         },
4231     [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32,  read_hpmcounterh,
4232                              write_mhpmcounterh                         },
4233     [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32,  read_hpmcounterh,
4234                              write_mhpmcounterh                         },
4235     [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32,  read_hpmcounterh,
4236                              write_mhpmcounterh                         },
4237     [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32,  read_hpmcounterh,
4238                              write_mhpmcounterh                         },
4239     [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32,  read_hpmcounterh,
4240                              write_mhpmcounterh                         },
4241     [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32,  read_hpmcounterh,
4242                              write_mhpmcounterh                         },
4243     [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32,  read_hpmcounterh,
4244                              write_mhpmcounterh                         },
4245     [CSR_SCOUNTOVF]      = { "scountovf", sscofpmf,  read_scountovf,
4246                              .min_priv_ver = PRIV_VERSION_1_12_0 },
4247 
4248 #endif /* !CONFIG_USER_ONLY */
4249 };
4250