1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "tcg/tcg-cpu.h" 25 #include "pmu.h" 26 #include "time_helper.h" 27 #include "exec/exec-all.h" 28 #include "exec/tb-flush.h" 29 #include "sysemu/cpu-timers.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 33 34 /* CSR function table public API */ 35 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 36 { 37 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 38 } 39 40 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 41 { 42 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 43 } 44 45 /* Predicates */ 46 #if !defined(CONFIG_USER_ONLY) 47 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) 48 { 49 bool virt = env->virt_enabled; 50 51 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 52 return RISCV_EXCP_NONE; 53 } 54 55 if (!(env->mstateen[index] & bit)) { 56 return RISCV_EXCP_ILLEGAL_INST; 57 } 58 59 if (virt) { 60 if (!(env->hstateen[index] & bit)) { 61 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 62 } 63 64 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 65 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 66 } 67 } 68 69 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 70 if (!(env->sstateen[index] & bit)) { 71 return RISCV_EXCP_ILLEGAL_INST; 72 } 73 } 74 75 return RISCV_EXCP_NONE; 76 } 77 #endif 78 79 static RISCVException fs(CPURISCVState *env, int csrno) 80 { 81 #if !defined(CONFIG_USER_ONLY) 82 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 83 !riscv_cpu_cfg(env)->ext_zfinx) { 84 return RISCV_EXCP_ILLEGAL_INST; 85 } 86 87 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 88 return smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR); 89 } 90 #endif 91 return RISCV_EXCP_NONE; 92 } 93 94 static RISCVException vs(CPURISCVState *env, int csrno) 95 { 96 if (riscv_cpu_cfg(env)->ext_zve32f) { 97 #if !defined(CONFIG_USER_ONLY) 98 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 99 return RISCV_EXCP_ILLEGAL_INST; 100 } 101 #endif 102 return RISCV_EXCP_NONE; 103 } 104 return RISCV_EXCP_ILLEGAL_INST; 105 } 106 107 static RISCVException ctr(CPURISCVState *env, int csrno) 108 { 109 #if !defined(CONFIG_USER_ONLY) 110 RISCVCPU *cpu = env_archcpu(env); 111 int ctr_index; 112 target_ulong ctr_mask; 113 int base_csrno = CSR_CYCLE; 114 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 115 116 if (rv32 && csrno >= CSR_CYCLEH) { 117 /* Offset for RV32 hpmcounternh counters */ 118 base_csrno += 0x80; 119 } 120 ctr_index = csrno - base_csrno; 121 ctr_mask = BIT(ctr_index); 122 123 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 124 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 125 if (!riscv_cpu_cfg(env)->ext_zicntr) { 126 return RISCV_EXCP_ILLEGAL_INST; 127 } 128 129 goto skip_ext_pmu_check; 130 } 131 132 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 133 /* No counter is enabled in PMU or the counter is out of range */ 134 return RISCV_EXCP_ILLEGAL_INST; 135 } 136 137 skip_ext_pmu_check: 138 139 if (env->debugger) { 140 return RISCV_EXCP_NONE; 141 } 142 143 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 144 return RISCV_EXCP_ILLEGAL_INST; 145 } 146 147 if (env->virt_enabled) { 148 if (!get_field(env->hcounteren, ctr_mask) || 149 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 150 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 151 } 152 } 153 154 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 155 !get_field(env->scounteren, ctr_mask)) { 156 return RISCV_EXCP_ILLEGAL_INST; 157 } 158 159 #endif 160 return RISCV_EXCP_NONE; 161 } 162 163 static RISCVException ctr32(CPURISCVState *env, int csrno) 164 { 165 if (riscv_cpu_mxl(env) != MXL_RV32) { 166 return RISCV_EXCP_ILLEGAL_INST; 167 } 168 169 return ctr(env, csrno); 170 } 171 172 static RISCVException zcmt(CPURISCVState *env, int csrno) 173 { 174 if (!riscv_cpu_cfg(env)->ext_zcmt) { 175 return RISCV_EXCP_ILLEGAL_INST; 176 } 177 178 #if !defined(CONFIG_USER_ONLY) 179 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); 180 if (ret != RISCV_EXCP_NONE) { 181 return ret; 182 } 183 #endif 184 185 return RISCV_EXCP_NONE; 186 } 187 188 #if !defined(CONFIG_USER_ONLY) 189 static RISCVException mctr(CPURISCVState *env, int csrno) 190 { 191 RISCVCPU *cpu = env_archcpu(env); 192 uint32_t pmu_avail_ctrs = cpu->pmu_avail_ctrs; 193 int ctr_index; 194 int base_csrno = CSR_MHPMCOUNTER3; 195 196 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 197 /* Offset for RV32 mhpmcounternh counters */ 198 csrno -= 0x80; 199 } 200 201 g_assert(csrno >= CSR_MHPMCOUNTER3 && csrno <= CSR_MHPMCOUNTER31); 202 203 ctr_index = csrno - base_csrno; 204 if ((BIT(ctr_index) & pmu_avail_ctrs >> 3) == 0) { 205 /* The PMU is not enabled or counter is out of range */ 206 return RISCV_EXCP_ILLEGAL_INST; 207 } 208 209 return RISCV_EXCP_NONE; 210 } 211 212 static RISCVException mctr32(CPURISCVState *env, int csrno) 213 { 214 if (riscv_cpu_mxl(env) != MXL_RV32) { 215 return RISCV_EXCP_ILLEGAL_INST; 216 } 217 218 return mctr(env, csrno); 219 } 220 221 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 222 { 223 if (!riscv_cpu_cfg(env)->ext_sscofpmf) { 224 return RISCV_EXCP_ILLEGAL_INST; 225 } 226 227 return RISCV_EXCP_NONE; 228 } 229 230 static RISCVException any(CPURISCVState *env, int csrno) 231 { 232 return RISCV_EXCP_NONE; 233 } 234 235 static RISCVException any32(CPURISCVState *env, int csrno) 236 { 237 if (riscv_cpu_mxl(env) != MXL_RV32) { 238 return RISCV_EXCP_ILLEGAL_INST; 239 } 240 241 return any(env, csrno); 242 243 } 244 245 static int aia_any(CPURISCVState *env, int csrno) 246 { 247 if (!riscv_cpu_cfg(env)->ext_smaia) { 248 return RISCV_EXCP_ILLEGAL_INST; 249 } 250 251 return any(env, csrno); 252 } 253 254 static int aia_any32(CPURISCVState *env, int csrno) 255 { 256 if (!riscv_cpu_cfg(env)->ext_smaia) { 257 return RISCV_EXCP_ILLEGAL_INST; 258 } 259 260 return any32(env, csrno); 261 } 262 263 static RISCVException smode(CPURISCVState *env, int csrno) 264 { 265 if (riscv_has_ext(env, RVS)) { 266 return RISCV_EXCP_NONE; 267 } 268 269 return RISCV_EXCP_ILLEGAL_INST; 270 } 271 272 static int smode32(CPURISCVState *env, int csrno) 273 { 274 if (riscv_cpu_mxl(env) != MXL_RV32) { 275 return RISCV_EXCP_ILLEGAL_INST; 276 } 277 278 return smode(env, csrno); 279 } 280 281 static int aia_smode(CPURISCVState *env, int csrno) 282 { 283 if (!riscv_cpu_cfg(env)->ext_ssaia) { 284 return RISCV_EXCP_ILLEGAL_INST; 285 } 286 287 return smode(env, csrno); 288 } 289 290 static int aia_smode32(CPURISCVState *env, int csrno) 291 { 292 if (!riscv_cpu_cfg(env)->ext_ssaia) { 293 return RISCV_EXCP_ILLEGAL_INST; 294 } 295 296 return smode32(env, csrno); 297 } 298 299 static RISCVException hmode(CPURISCVState *env, int csrno) 300 { 301 if (riscv_has_ext(env, RVH)) { 302 return RISCV_EXCP_NONE; 303 } 304 305 return RISCV_EXCP_ILLEGAL_INST; 306 } 307 308 static RISCVException hmode32(CPURISCVState *env, int csrno) 309 { 310 if (riscv_cpu_mxl(env) != MXL_RV32) { 311 return RISCV_EXCP_ILLEGAL_INST; 312 } 313 314 return hmode(env, csrno); 315 316 } 317 318 static RISCVException umode(CPURISCVState *env, int csrno) 319 { 320 if (riscv_has_ext(env, RVU)) { 321 return RISCV_EXCP_NONE; 322 } 323 324 return RISCV_EXCP_ILLEGAL_INST; 325 } 326 327 static RISCVException umode32(CPURISCVState *env, int csrno) 328 { 329 if (riscv_cpu_mxl(env) != MXL_RV32) { 330 return RISCV_EXCP_ILLEGAL_INST; 331 } 332 333 return umode(env, csrno); 334 } 335 336 static RISCVException mstateen(CPURISCVState *env, int csrno) 337 { 338 if (!riscv_cpu_cfg(env)->ext_smstateen) { 339 return RISCV_EXCP_ILLEGAL_INST; 340 } 341 342 return any(env, csrno); 343 } 344 345 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 346 { 347 if (!riscv_cpu_cfg(env)->ext_smstateen) { 348 return RISCV_EXCP_ILLEGAL_INST; 349 } 350 351 RISCVException ret = hmode(env, csrno); 352 if (ret != RISCV_EXCP_NONE) { 353 return ret; 354 } 355 356 if (env->debugger) { 357 return RISCV_EXCP_NONE; 358 } 359 360 if (env->priv < PRV_M) { 361 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 362 return RISCV_EXCP_ILLEGAL_INST; 363 } 364 } 365 366 return RISCV_EXCP_NONE; 367 } 368 369 static RISCVException hstateen(CPURISCVState *env, int csrno) 370 { 371 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 372 } 373 374 static RISCVException hstateenh(CPURISCVState *env, int csrno) 375 { 376 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 377 } 378 379 static RISCVException sstateen(CPURISCVState *env, int csrno) 380 { 381 bool virt = env->virt_enabled; 382 int index = csrno - CSR_SSTATEEN0; 383 384 if (!riscv_cpu_cfg(env)->ext_smstateen) { 385 return RISCV_EXCP_ILLEGAL_INST; 386 } 387 388 RISCVException ret = smode(env, csrno); 389 if (ret != RISCV_EXCP_NONE) { 390 return ret; 391 } 392 393 if (env->debugger) { 394 return RISCV_EXCP_NONE; 395 } 396 397 if (env->priv < PRV_M) { 398 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 399 return RISCV_EXCP_ILLEGAL_INST; 400 } 401 402 if (virt) { 403 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 404 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 405 } 406 } 407 } 408 409 return RISCV_EXCP_NONE; 410 } 411 412 static RISCVException sstc(CPURISCVState *env, int csrno) 413 { 414 bool hmode_check = false; 415 416 if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { 417 return RISCV_EXCP_ILLEGAL_INST; 418 } 419 420 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 421 hmode_check = true; 422 } 423 424 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 425 if (ret != RISCV_EXCP_NONE) { 426 return ret; 427 } 428 429 if (env->debugger) { 430 return RISCV_EXCP_NONE; 431 } 432 433 if (env->priv == PRV_M) { 434 return RISCV_EXCP_NONE; 435 } 436 437 /* 438 * No need of separate function for rv32 as menvcfg stores both menvcfg 439 * menvcfgh for RV32. 440 */ 441 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 442 get_field(env->menvcfg, MENVCFG_STCE))) { 443 return RISCV_EXCP_ILLEGAL_INST; 444 } 445 446 if (env->virt_enabled) { 447 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 448 get_field(env->henvcfg, HENVCFG_STCE))) { 449 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 450 } 451 } 452 453 return RISCV_EXCP_NONE; 454 } 455 456 static RISCVException sstc_32(CPURISCVState *env, int csrno) 457 { 458 if (riscv_cpu_mxl(env) != MXL_RV32) { 459 return RISCV_EXCP_ILLEGAL_INST; 460 } 461 462 return sstc(env, csrno); 463 } 464 465 static RISCVException satp(CPURISCVState *env, int csrno) 466 { 467 if (env->priv == PRV_S && !env->virt_enabled && 468 get_field(env->mstatus, MSTATUS_TVM)) { 469 return RISCV_EXCP_ILLEGAL_INST; 470 } 471 if (env->priv == PRV_S && env->virt_enabled && 472 get_field(env->hstatus, HSTATUS_VTVM)) { 473 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 474 } 475 476 return smode(env, csrno); 477 } 478 479 static RISCVException hgatp(CPURISCVState *env, int csrno) 480 { 481 if (env->priv == PRV_S && !env->virt_enabled && 482 get_field(env->mstatus, MSTATUS_TVM)) { 483 return RISCV_EXCP_ILLEGAL_INST; 484 } 485 486 return hmode(env, csrno); 487 } 488 489 /* Checks if PointerMasking registers could be accessed */ 490 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 491 { 492 /* Check if j-ext is present */ 493 if (riscv_has_ext(env, RVJ)) { 494 return RISCV_EXCP_NONE; 495 } 496 return RISCV_EXCP_ILLEGAL_INST; 497 } 498 499 static int aia_hmode(CPURISCVState *env, int csrno) 500 { 501 if (!riscv_cpu_cfg(env)->ext_ssaia) { 502 return RISCV_EXCP_ILLEGAL_INST; 503 } 504 505 return hmode(env, csrno); 506 } 507 508 static int aia_hmode32(CPURISCVState *env, int csrno) 509 { 510 if (!riscv_cpu_cfg(env)->ext_ssaia) { 511 return RISCV_EXCP_ILLEGAL_INST; 512 } 513 514 return hmode32(env, csrno); 515 } 516 517 static RISCVException pmp(CPURISCVState *env, int csrno) 518 { 519 if (riscv_cpu_cfg(env)->pmp) { 520 if (csrno <= CSR_PMPCFG3) { 521 uint32_t reg_index = csrno - CSR_PMPCFG0; 522 523 /* TODO: RV128 restriction check */ 524 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 525 return RISCV_EXCP_ILLEGAL_INST; 526 } 527 } 528 529 return RISCV_EXCP_NONE; 530 } 531 532 return RISCV_EXCP_ILLEGAL_INST; 533 } 534 535 static RISCVException have_mseccfg(CPURISCVState *env, int csrno) 536 { 537 if (riscv_cpu_cfg(env)->ext_smepmp) { 538 return RISCV_EXCP_NONE; 539 } 540 if (riscv_cpu_cfg(env)->ext_zkr) { 541 return RISCV_EXCP_NONE; 542 } 543 544 return RISCV_EXCP_ILLEGAL_INST; 545 } 546 547 static RISCVException debug(CPURISCVState *env, int csrno) 548 { 549 if (riscv_cpu_cfg(env)->debug) { 550 return RISCV_EXCP_NONE; 551 } 552 553 return RISCV_EXCP_ILLEGAL_INST; 554 } 555 #endif 556 557 static RISCVException seed(CPURISCVState *env, int csrno) 558 { 559 if (!riscv_cpu_cfg(env)->ext_zkr) { 560 return RISCV_EXCP_ILLEGAL_INST; 561 } 562 563 #if !defined(CONFIG_USER_ONLY) 564 if (env->debugger) { 565 return RISCV_EXCP_NONE; 566 } 567 568 /* 569 * With a CSR read-write instruction: 570 * 1) The seed CSR is always available in machine mode as normal. 571 * 2) Attempted access to seed from virtual modes VS and VU always raises 572 * an exception(virtual instruction exception only if mseccfg.sseed=1). 573 * 3) Without the corresponding access control bit set to 1, any attempted 574 * access to seed from U, S or HS modes will raise an illegal instruction 575 * exception. 576 */ 577 if (env->priv == PRV_M) { 578 return RISCV_EXCP_NONE; 579 } else if (env->virt_enabled) { 580 if (env->mseccfg & MSECCFG_SSEED) { 581 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 582 } else { 583 return RISCV_EXCP_ILLEGAL_INST; 584 } 585 } else { 586 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 587 return RISCV_EXCP_NONE; 588 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 589 return RISCV_EXCP_NONE; 590 } else { 591 return RISCV_EXCP_ILLEGAL_INST; 592 } 593 } 594 #else 595 return RISCV_EXCP_NONE; 596 #endif 597 } 598 599 /* User Floating-Point CSRs */ 600 static RISCVException read_fflags(CPURISCVState *env, int csrno, 601 target_ulong *val) 602 { 603 *val = riscv_cpu_get_fflags(env); 604 return RISCV_EXCP_NONE; 605 } 606 607 static RISCVException write_fflags(CPURISCVState *env, int csrno, 608 target_ulong val) 609 { 610 #if !defined(CONFIG_USER_ONLY) 611 if (riscv_has_ext(env, RVF)) { 612 env->mstatus |= MSTATUS_FS; 613 } 614 #endif 615 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 616 return RISCV_EXCP_NONE; 617 } 618 619 static RISCVException read_frm(CPURISCVState *env, int csrno, 620 target_ulong *val) 621 { 622 *val = env->frm; 623 return RISCV_EXCP_NONE; 624 } 625 626 static RISCVException write_frm(CPURISCVState *env, int csrno, 627 target_ulong val) 628 { 629 #if !defined(CONFIG_USER_ONLY) 630 if (riscv_has_ext(env, RVF)) { 631 env->mstatus |= MSTATUS_FS; 632 } 633 #endif 634 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 635 return RISCV_EXCP_NONE; 636 } 637 638 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 639 target_ulong *val) 640 { 641 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 642 | (env->frm << FSR_RD_SHIFT); 643 return RISCV_EXCP_NONE; 644 } 645 646 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 647 target_ulong val) 648 { 649 #if !defined(CONFIG_USER_ONLY) 650 if (riscv_has_ext(env, RVF)) { 651 env->mstatus |= MSTATUS_FS; 652 } 653 #endif 654 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 655 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 656 return RISCV_EXCP_NONE; 657 } 658 659 static RISCVException read_vtype(CPURISCVState *env, int csrno, 660 target_ulong *val) 661 { 662 uint64_t vill; 663 switch (env->xl) { 664 case MXL_RV32: 665 vill = (uint32_t)env->vill << 31; 666 break; 667 case MXL_RV64: 668 vill = (uint64_t)env->vill << 63; 669 break; 670 default: 671 g_assert_not_reached(); 672 } 673 *val = (target_ulong)vill | env->vtype; 674 return RISCV_EXCP_NONE; 675 } 676 677 static RISCVException read_vl(CPURISCVState *env, int csrno, 678 target_ulong *val) 679 { 680 *val = env->vl; 681 return RISCV_EXCP_NONE; 682 } 683 684 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 685 { 686 *val = riscv_cpu_cfg(env)->vlen >> 3; 687 return RISCV_EXCP_NONE; 688 } 689 690 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 691 target_ulong *val) 692 { 693 *val = env->vxrm; 694 return RISCV_EXCP_NONE; 695 } 696 697 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 698 target_ulong val) 699 { 700 #if !defined(CONFIG_USER_ONLY) 701 env->mstatus |= MSTATUS_VS; 702 #endif 703 env->vxrm = val; 704 return RISCV_EXCP_NONE; 705 } 706 707 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 708 target_ulong *val) 709 { 710 *val = env->vxsat; 711 return RISCV_EXCP_NONE; 712 } 713 714 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 715 target_ulong val) 716 { 717 #if !defined(CONFIG_USER_ONLY) 718 env->mstatus |= MSTATUS_VS; 719 #endif 720 env->vxsat = val; 721 return RISCV_EXCP_NONE; 722 } 723 724 static RISCVException read_vstart(CPURISCVState *env, int csrno, 725 target_ulong *val) 726 { 727 *val = env->vstart; 728 return RISCV_EXCP_NONE; 729 } 730 731 static RISCVException write_vstart(CPURISCVState *env, int csrno, 732 target_ulong val) 733 { 734 #if !defined(CONFIG_USER_ONLY) 735 env->mstatus |= MSTATUS_VS; 736 #endif 737 /* 738 * The vstart CSR is defined to have only enough writable bits 739 * to hold the largest element index, i.e. lg2(VLEN) bits. 740 */ 741 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlen)); 742 return RISCV_EXCP_NONE; 743 } 744 745 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 746 { 747 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 748 return RISCV_EXCP_NONE; 749 } 750 751 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 752 { 753 #if !defined(CONFIG_USER_ONLY) 754 env->mstatus |= MSTATUS_VS; 755 #endif 756 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 757 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 758 return RISCV_EXCP_NONE; 759 } 760 761 /* User Timers and Counters */ 762 static target_ulong get_ticks(bool shift) 763 { 764 int64_t val; 765 target_ulong result; 766 767 #if !defined(CONFIG_USER_ONLY) 768 if (icount_enabled()) { 769 val = icount_get(); 770 } else { 771 val = cpu_get_host_ticks(); 772 } 773 #else 774 val = cpu_get_host_ticks(); 775 #endif 776 777 if (shift) { 778 result = val >> 32; 779 } else { 780 result = val; 781 } 782 783 return result; 784 } 785 786 #if defined(CONFIG_USER_ONLY) 787 static RISCVException read_time(CPURISCVState *env, int csrno, 788 target_ulong *val) 789 { 790 *val = cpu_get_host_ticks(); 791 return RISCV_EXCP_NONE; 792 } 793 794 static RISCVException read_timeh(CPURISCVState *env, int csrno, 795 target_ulong *val) 796 { 797 *val = cpu_get_host_ticks() >> 32; 798 return RISCV_EXCP_NONE; 799 } 800 801 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 802 { 803 *val = get_ticks(false); 804 return RISCV_EXCP_NONE; 805 } 806 807 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 808 { 809 *val = get_ticks(true); 810 return RISCV_EXCP_NONE; 811 } 812 813 #else /* CONFIG_USER_ONLY */ 814 815 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 816 { 817 int evt_index = csrno - CSR_MCOUNTINHIBIT; 818 819 *val = env->mhpmevent_val[evt_index]; 820 821 return RISCV_EXCP_NONE; 822 } 823 824 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 825 { 826 int evt_index = csrno - CSR_MCOUNTINHIBIT; 827 uint64_t mhpmevt_val = val; 828 829 env->mhpmevent_val[evt_index] = val; 830 831 if (riscv_cpu_mxl(env) == MXL_RV32) { 832 mhpmevt_val = mhpmevt_val | 833 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 834 } 835 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 836 837 return RISCV_EXCP_NONE; 838 } 839 840 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 841 { 842 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 843 844 *val = env->mhpmeventh_val[evt_index]; 845 846 return RISCV_EXCP_NONE; 847 } 848 849 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 850 { 851 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 852 uint64_t mhpmevth_val = val; 853 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 854 855 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 856 env->mhpmeventh_val[evt_index] = val; 857 858 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 859 860 return RISCV_EXCP_NONE; 861 } 862 863 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 864 { 865 int ctr_idx = csrno - CSR_MCYCLE; 866 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 867 uint64_t mhpmctr_val = val; 868 869 counter->mhpmcounter_val = val; 870 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 871 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 872 counter->mhpmcounter_prev = get_ticks(false); 873 if (ctr_idx > 2) { 874 if (riscv_cpu_mxl(env) == MXL_RV32) { 875 mhpmctr_val = mhpmctr_val | 876 ((uint64_t)counter->mhpmcounterh_val << 32); 877 } 878 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 879 } 880 } else { 881 /* Other counters can keep incrementing from the given value */ 882 counter->mhpmcounter_prev = val; 883 } 884 885 return RISCV_EXCP_NONE; 886 } 887 888 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 889 { 890 int ctr_idx = csrno - CSR_MCYCLEH; 891 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 892 uint64_t mhpmctr_val = counter->mhpmcounter_val; 893 uint64_t mhpmctrh_val = val; 894 895 counter->mhpmcounterh_val = val; 896 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 897 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 898 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 899 counter->mhpmcounterh_prev = get_ticks(true); 900 if (ctr_idx > 2) { 901 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 902 } 903 } else { 904 counter->mhpmcounterh_prev = val; 905 } 906 907 return RISCV_EXCP_NONE; 908 } 909 910 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 911 bool upper_half, uint32_t ctr_idx) 912 { 913 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 914 target_ulong ctr_prev = upper_half ? counter->mhpmcounterh_prev : 915 counter->mhpmcounter_prev; 916 target_ulong ctr_val = upper_half ? counter->mhpmcounterh_val : 917 counter->mhpmcounter_val; 918 919 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 920 /* 921 * Counter should not increment if inhibit bit is set. We can't really 922 * stop the icount counting. Just return the counter value written by 923 * the supervisor to indicate that counter was not incremented. 924 */ 925 if (!counter->started) { 926 *val = ctr_val; 927 return RISCV_EXCP_NONE; 928 } else { 929 /* Mark that the counter has been stopped */ 930 counter->started = false; 931 } 932 } 933 934 /* 935 * The kernel computes the perf delta by subtracting the current value from 936 * the value it initialized previously (ctr_val). 937 */ 938 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 939 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 940 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 941 } else { 942 *val = ctr_val; 943 } 944 945 return RISCV_EXCP_NONE; 946 } 947 948 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 949 { 950 uint16_t ctr_index; 951 952 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 953 ctr_index = csrno - CSR_MCYCLE; 954 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 955 ctr_index = csrno - CSR_CYCLE; 956 } else { 957 return RISCV_EXCP_ILLEGAL_INST; 958 } 959 960 return riscv_pmu_read_ctr(env, val, false, ctr_index); 961 } 962 963 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 964 { 965 uint16_t ctr_index; 966 967 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 968 ctr_index = csrno - CSR_MCYCLEH; 969 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 970 ctr_index = csrno - CSR_CYCLEH; 971 } else { 972 return RISCV_EXCP_ILLEGAL_INST; 973 } 974 975 return riscv_pmu_read_ctr(env, val, true, ctr_index); 976 } 977 978 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 979 { 980 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 981 int i; 982 *val = 0; 983 target_ulong *mhpm_evt_val; 984 uint64_t of_bit_mask; 985 986 if (riscv_cpu_mxl(env) == MXL_RV32) { 987 mhpm_evt_val = env->mhpmeventh_val; 988 of_bit_mask = MHPMEVENTH_BIT_OF; 989 } else { 990 mhpm_evt_val = env->mhpmevent_val; 991 of_bit_mask = MHPMEVENT_BIT_OF; 992 } 993 994 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 995 if ((get_field(env->mcounteren, BIT(i))) && 996 (mhpm_evt_val[i] & of_bit_mask)) { 997 *val |= BIT(i); 998 } 999 } 1000 1001 return RISCV_EXCP_NONE; 1002 } 1003 1004 static RISCVException read_time(CPURISCVState *env, int csrno, 1005 target_ulong *val) 1006 { 1007 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1008 1009 if (!env->rdtime_fn) { 1010 return RISCV_EXCP_ILLEGAL_INST; 1011 } 1012 1013 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 1014 return RISCV_EXCP_NONE; 1015 } 1016 1017 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1018 target_ulong *val) 1019 { 1020 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1021 1022 if (!env->rdtime_fn) { 1023 return RISCV_EXCP_ILLEGAL_INST; 1024 } 1025 1026 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 1027 return RISCV_EXCP_NONE; 1028 } 1029 1030 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 1031 target_ulong *val) 1032 { 1033 *val = env->vstimecmp; 1034 1035 return RISCV_EXCP_NONE; 1036 } 1037 1038 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 1039 target_ulong *val) 1040 { 1041 *val = env->vstimecmp >> 32; 1042 1043 return RISCV_EXCP_NONE; 1044 } 1045 1046 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1047 target_ulong val) 1048 { 1049 if (riscv_cpu_mxl(env) == MXL_RV32) { 1050 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1051 } else { 1052 env->vstimecmp = val; 1053 } 1054 1055 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1056 env->htimedelta, MIP_VSTIP); 1057 1058 return RISCV_EXCP_NONE; 1059 } 1060 1061 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1062 target_ulong val) 1063 { 1064 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1065 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1066 env->htimedelta, MIP_VSTIP); 1067 1068 return RISCV_EXCP_NONE; 1069 } 1070 1071 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1072 target_ulong *val) 1073 { 1074 if (env->virt_enabled) { 1075 *val = env->vstimecmp; 1076 } else { 1077 *val = env->stimecmp; 1078 } 1079 1080 return RISCV_EXCP_NONE; 1081 } 1082 1083 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1084 target_ulong *val) 1085 { 1086 if (env->virt_enabled) { 1087 *val = env->vstimecmp >> 32; 1088 } else { 1089 *val = env->stimecmp >> 32; 1090 } 1091 1092 return RISCV_EXCP_NONE; 1093 } 1094 1095 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1096 target_ulong val) 1097 { 1098 if (env->virt_enabled) { 1099 if (env->hvictl & HVICTL_VTI) { 1100 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1101 } 1102 return write_vstimecmp(env, csrno, val); 1103 } 1104 1105 if (riscv_cpu_mxl(env) == MXL_RV32) { 1106 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1107 } else { 1108 env->stimecmp = val; 1109 } 1110 1111 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1112 1113 return RISCV_EXCP_NONE; 1114 } 1115 1116 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1117 target_ulong val) 1118 { 1119 if (env->virt_enabled) { 1120 if (env->hvictl & HVICTL_VTI) { 1121 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1122 } 1123 return write_vstimecmph(env, csrno, val); 1124 } 1125 1126 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1127 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1128 1129 return RISCV_EXCP_NONE; 1130 } 1131 1132 #define VSTOPI_NUM_SRCS 5 1133 1134 #define LOCAL_INTERRUPTS (~0x1FFF) 1135 1136 static const uint64_t delegable_ints = 1137 S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS | MIP_LCOFIP; 1138 static const uint64_t vs_delegable_ints = 1139 (VS_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & ~MIP_LCOFIP; 1140 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1141 HS_MODE_INTERRUPTS | LOCAL_INTERRUPTS; 1142 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1143 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1144 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1145 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1146 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1147 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1148 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1149 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1150 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1151 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1152 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1153 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1154 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1155 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1156 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1157 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1158 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1159 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1160 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1161 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1162 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1163 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1164 (1ULL << (RISCV_EXCP_M_ECALL)) | 1165 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1166 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1167 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1168 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1169 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1170 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1171 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1172 1173 /* 1174 * Spec allows for bits 13:63 to be either read-only or writable. 1175 * So far we have interrupt LCOFIP in that region which is writable. 1176 * 1177 * Also, spec allows to inject virtual interrupts in this region even 1178 * without any hardware interrupts for that interrupt number. 1179 * 1180 * For now interrupt in 13:63 region are all kept writable. 13 being 1181 * LCOFIP and 14:63 being virtual only. Change this in future if we 1182 * introduce more interrupts that are not writable. 1183 */ 1184 1185 /* Bit STIP can be an alias of mip.STIP that's why it's writable in mvip. */ 1186 static const target_ulong mvip_writable_mask = MIP_SSIP | MIP_STIP | MIP_SEIP | 1187 LOCAL_INTERRUPTS; 1188 static const target_ulong mvien_writable_mask = MIP_SSIP | MIP_SEIP | 1189 LOCAL_INTERRUPTS; 1190 1191 static const target_ulong sip_writable_mask = SIP_SSIP | LOCAL_INTERRUPTS; 1192 static const target_ulong hip_writable_mask = MIP_VSSIP; 1193 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | 1194 MIP_VSEIP | LOCAL_INTERRUPTS; 1195 static const target_ulong hvien_writable_mask = LOCAL_INTERRUPTS; 1196 1197 static const target_ulong vsip_writable_mask = MIP_VSSIP | LOCAL_INTERRUPTS; 1198 1199 const bool valid_vm_1_10_32[16] = { 1200 [VM_1_10_MBARE] = true, 1201 [VM_1_10_SV32] = true 1202 }; 1203 1204 const bool valid_vm_1_10_64[16] = { 1205 [VM_1_10_MBARE] = true, 1206 [VM_1_10_SV39] = true, 1207 [VM_1_10_SV48] = true, 1208 [VM_1_10_SV57] = true 1209 }; 1210 1211 /* Machine Information Registers */ 1212 static RISCVException read_zero(CPURISCVState *env, int csrno, 1213 target_ulong *val) 1214 { 1215 *val = 0; 1216 return RISCV_EXCP_NONE; 1217 } 1218 1219 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1220 target_ulong val) 1221 { 1222 return RISCV_EXCP_NONE; 1223 } 1224 1225 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1226 target_ulong *val) 1227 { 1228 *val = riscv_cpu_cfg(env)->mvendorid; 1229 return RISCV_EXCP_NONE; 1230 } 1231 1232 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1233 target_ulong *val) 1234 { 1235 *val = riscv_cpu_cfg(env)->marchid; 1236 return RISCV_EXCP_NONE; 1237 } 1238 1239 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1240 target_ulong *val) 1241 { 1242 *val = riscv_cpu_cfg(env)->mimpid; 1243 return RISCV_EXCP_NONE; 1244 } 1245 1246 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1247 target_ulong *val) 1248 { 1249 *val = env->mhartid; 1250 return RISCV_EXCP_NONE; 1251 } 1252 1253 /* Machine Trap Setup */ 1254 1255 /* We do not store SD explicitly, only compute it on demand. */ 1256 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1257 { 1258 if ((status & MSTATUS_FS) == MSTATUS_FS || 1259 (status & MSTATUS_VS) == MSTATUS_VS || 1260 (status & MSTATUS_XS) == MSTATUS_XS) { 1261 switch (xl) { 1262 case MXL_RV32: 1263 return status | MSTATUS32_SD; 1264 case MXL_RV64: 1265 return status | MSTATUS64_SD; 1266 case MXL_RV128: 1267 return MSTATUSH128_SD; 1268 default: 1269 g_assert_not_reached(); 1270 } 1271 } 1272 return status; 1273 } 1274 1275 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1276 target_ulong *val) 1277 { 1278 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1279 return RISCV_EXCP_NONE; 1280 } 1281 1282 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1283 { 1284 return (vm & 0xf) <= 1285 satp_mode_max_from_map(riscv_cpu_cfg(env)->satp_mode.map); 1286 } 1287 1288 static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp, 1289 target_ulong val) 1290 { 1291 bool valid = false; 1292 target_ulong new_mpp = get_field(val, MSTATUS_MPP); 1293 1294 switch (new_mpp) { 1295 case PRV_M: 1296 valid = true; 1297 break; 1298 case PRV_S: 1299 valid = riscv_has_ext(env, RVS); 1300 break; 1301 case PRV_U: 1302 valid = riscv_has_ext(env, RVU); 1303 break; 1304 } 1305 1306 /* Remain field unchanged if new_mpp value is invalid */ 1307 if (!valid) { 1308 val = set_field(val, MSTATUS_MPP, old_mpp); 1309 } 1310 1311 return val; 1312 } 1313 1314 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1315 target_ulong val) 1316 { 1317 uint64_t mstatus = env->mstatus; 1318 uint64_t mask = 0; 1319 RISCVMXL xl = riscv_cpu_mxl(env); 1320 1321 /* 1322 * MPP field have been made WARL since priv version 1.11. However, 1323 * legalization for it will not break any software running on 1.10. 1324 */ 1325 val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val); 1326 1327 /* flush tlb on mstatus fields that affect VM */ 1328 if ((val ^ mstatus) & MSTATUS_MXR) { 1329 tlb_flush(env_cpu(env)); 1330 } 1331 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1332 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1333 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1334 MSTATUS_TW; 1335 1336 if (riscv_has_ext(env, RVF)) { 1337 mask |= MSTATUS_FS; 1338 } 1339 if (riscv_has_ext(env, RVV)) { 1340 mask |= MSTATUS_VS; 1341 } 1342 1343 if (xl != MXL_RV32 || env->debugger) { 1344 if (riscv_has_ext(env, RVH)) { 1345 mask |= MSTATUS_MPV | MSTATUS_GVA; 1346 } 1347 if ((val & MSTATUS64_UXL) != 0) { 1348 mask |= MSTATUS64_UXL; 1349 } 1350 } 1351 1352 mstatus = (mstatus & ~mask) | (val & mask); 1353 1354 env->mstatus = mstatus; 1355 1356 /* 1357 * Except in debug mode, UXL/SXL can only be modified by higher 1358 * privilege mode. So xl will not be changed in normal mode. 1359 */ 1360 if (env->debugger) { 1361 env->xl = cpu_recompute_xl(env); 1362 } 1363 1364 riscv_cpu_update_mask(env); 1365 return RISCV_EXCP_NONE; 1366 } 1367 1368 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1369 target_ulong *val) 1370 { 1371 *val = env->mstatus >> 32; 1372 return RISCV_EXCP_NONE; 1373 } 1374 1375 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1376 target_ulong val) 1377 { 1378 uint64_t valh = (uint64_t)val << 32; 1379 uint64_t mask = riscv_has_ext(env, RVH) ? MSTATUS_MPV | MSTATUS_GVA : 0; 1380 1381 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1382 1383 return RISCV_EXCP_NONE; 1384 } 1385 1386 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1387 Int128 *val) 1388 { 1389 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, 1390 env->mstatus)); 1391 return RISCV_EXCP_NONE; 1392 } 1393 1394 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1395 Int128 *val) 1396 { 1397 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1398 return RISCV_EXCP_NONE; 1399 } 1400 1401 static RISCVException read_misa(CPURISCVState *env, int csrno, 1402 target_ulong *val) 1403 { 1404 target_ulong misa; 1405 1406 switch (env->misa_mxl) { 1407 case MXL_RV32: 1408 misa = (target_ulong)MXL_RV32 << 30; 1409 break; 1410 #ifdef TARGET_RISCV64 1411 case MXL_RV64: 1412 misa = (target_ulong)MXL_RV64 << 62; 1413 break; 1414 #endif 1415 default: 1416 g_assert_not_reached(); 1417 } 1418 1419 *val = misa | env->misa_ext; 1420 return RISCV_EXCP_NONE; 1421 } 1422 1423 static RISCVException write_misa(CPURISCVState *env, int csrno, 1424 target_ulong val) 1425 { 1426 RISCVCPU *cpu = env_archcpu(env); 1427 uint32_t orig_misa_ext = env->misa_ext; 1428 Error *local_err = NULL; 1429 1430 if (!riscv_cpu_cfg(env)->misa_w) { 1431 /* drop write to misa */ 1432 return RISCV_EXCP_NONE; 1433 } 1434 1435 /* Mask extensions that are not supported by this hart */ 1436 val &= env->misa_ext_mask; 1437 1438 /* 1439 * Suppress 'C' if next instruction is not aligned 1440 * TODO: this should check next_pc 1441 */ 1442 if ((val & RVC) && (GETPC() & ~3) != 0) { 1443 val &= ~RVC; 1444 } 1445 1446 /* Disable RVG if any of its dependencies are disabled */ 1447 if (!(val & RVI && val & RVM && val & RVA && 1448 val & RVF && val & RVD)) { 1449 val &= ~RVG; 1450 } 1451 1452 /* If nothing changed, do nothing. */ 1453 if (val == env->misa_ext) { 1454 return RISCV_EXCP_NONE; 1455 } 1456 1457 env->misa_ext = val; 1458 riscv_cpu_validate_set_extensions(cpu, &local_err); 1459 if (local_err != NULL) { 1460 /* Rollback on validation error */ 1461 qemu_log_mask(LOG_GUEST_ERROR, "Unable to write MISA ext value " 1462 "0x%x, keeping existing MISA ext 0x%x\n", 1463 env->misa_ext, orig_misa_ext); 1464 1465 env->misa_ext = orig_misa_ext; 1466 1467 return RISCV_EXCP_NONE; 1468 } 1469 1470 if (!(env->misa_ext & RVF)) { 1471 env->mstatus &= ~MSTATUS_FS; 1472 } 1473 1474 /* flush translation cache */ 1475 tb_flush(env_cpu(env)); 1476 env->xl = riscv_cpu_mxl(env); 1477 return RISCV_EXCP_NONE; 1478 } 1479 1480 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1481 target_ulong *val) 1482 { 1483 *val = env->medeleg; 1484 return RISCV_EXCP_NONE; 1485 } 1486 1487 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1488 target_ulong val) 1489 { 1490 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1491 return RISCV_EXCP_NONE; 1492 } 1493 1494 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1495 uint64_t *ret_val, 1496 uint64_t new_val, uint64_t wr_mask) 1497 { 1498 uint64_t mask = wr_mask & delegable_ints; 1499 1500 if (ret_val) { 1501 *ret_val = env->mideleg; 1502 } 1503 1504 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1505 1506 if (riscv_has_ext(env, RVH)) { 1507 env->mideleg |= HS_MODE_INTERRUPTS; 1508 } 1509 1510 return RISCV_EXCP_NONE; 1511 } 1512 1513 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1514 target_ulong *ret_val, 1515 target_ulong new_val, target_ulong wr_mask) 1516 { 1517 uint64_t rval; 1518 RISCVException ret; 1519 1520 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1521 if (ret_val) { 1522 *ret_val = rval; 1523 } 1524 1525 return ret; 1526 } 1527 1528 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1529 target_ulong *ret_val, 1530 target_ulong new_val, 1531 target_ulong wr_mask) 1532 { 1533 uint64_t rval; 1534 RISCVException ret; 1535 1536 ret = rmw_mideleg64(env, csrno, &rval, 1537 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1538 if (ret_val) { 1539 *ret_val = rval >> 32; 1540 } 1541 1542 return ret; 1543 } 1544 1545 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1546 uint64_t *ret_val, 1547 uint64_t new_val, uint64_t wr_mask) 1548 { 1549 uint64_t mask = wr_mask & all_ints; 1550 1551 if (ret_val) { 1552 *ret_val = env->mie; 1553 } 1554 1555 env->mie = (env->mie & ~mask) | (new_val & mask); 1556 1557 if (!riscv_has_ext(env, RVH)) { 1558 env->mie &= ~((uint64_t)HS_MODE_INTERRUPTS); 1559 } 1560 1561 return RISCV_EXCP_NONE; 1562 } 1563 1564 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1565 target_ulong *ret_val, 1566 target_ulong new_val, target_ulong wr_mask) 1567 { 1568 uint64_t rval; 1569 RISCVException ret; 1570 1571 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1572 if (ret_val) { 1573 *ret_val = rval; 1574 } 1575 1576 return ret; 1577 } 1578 1579 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1580 target_ulong *ret_val, 1581 target_ulong new_val, target_ulong wr_mask) 1582 { 1583 uint64_t rval; 1584 RISCVException ret; 1585 1586 ret = rmw_mie64(env, csrno, &rval, 1587 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1588 if (ret_val) { 1589 *ret_val = rval >> 32; 1590 } 1591 1592 return ret; 1593 } 1594 1595 static RISCVException rmw_mvien64(CPURISCVState *env, int csrno, 1596 uint64_t *ret_val, 1597 uint64_t new_val, uint64_t wr_mask) 1598 { 1599 uint64_t mask = wr_mask & mvien_writable_mask; 1600 1601 if (ret_val) { 1602 *ret_val = env->mvien; 1603 } 1604 1605 env->mvien = (env->mvien & ~mask) | (new_val & mask); 1606 1607 return RISCV_EXCP_NONE; 1608 } 1609 1610 static RISCVException rmw_mvien(CPURISCVState *env, int csrno, 1611 target_ulong *ret_val, 1612 target_ulong new_val, target_ulong wr_mask) 1613 { 1614 uint64_t rval; 1615 RISCVException ret; 1616 1617 ret = rmw_mvien64(env, csrno, &rval, new_val, wr_mask); 1618 if (ret_val) { 1619 *ret_val = rval; 1620 } 1621 1622 return ret; 1623 } 1624 1625 static RISCVException rmw_mvienh(CPURISCVState *env, int csrno, 1626 target_ulong *ret_val, 1627 target_ulong new_val, target_ulong wr_mask) 1628 { 1629 uint64_t rval; 1630 RISCVException ret; 1631 1632 ret = rmw_mvien64(env, csrno, &rval, 1633 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1634 if (ret_val) { 1635 *ret_val = rval >> 32; 1636 } 1637 1638 return ret; 1639 } 1640 1641 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1642 { 1643 int irq; 1644 uint8_t iprio; 1645 1646 irq = riscv_cpu_mirq_pending(env); 1647 if (irq <= 0 || irq > 63) { 1648 *val = 0; 1649 } else { 1650 iprio = env->miprio[irq]; 1651 if (!iprio) { 1652 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1653 iprio = IPRIO_MMAXIPRIO; 1654 } 1655 } 1656 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1657 *val |= iprio; 1658 } 1659 1660 return RISCV_EXCP_NONE; 1661 } 1662 1663 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1664 { 1665 if (!env->virt_enabled) { 1666 return csrno; 1667 } 1668 1669 switch (csrno) { 1670 case CSR_SISELECT: 1671 return CSR_VSISELECT; 1672 case CSR_SIREG: 1673 return CSR_VSIREG; 1674 case CSR_STOPEI: 1675 return CSR_VSTOPEI; 1676 default: 1677 return csrno; 1678 }; 1679 } 1680 1681 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1682 target_ulong new_val, target_ulong wr_mask) 1683 { 1684 target_ulong *iselect; 1685 1686 /* Translate CSR number for VS-mode */ 1687 csrno = aia_xlate_vs_csrno(env, csrno); 1688 1689 /* Find the iselect CSR based on CSR number */ 1690 switch (csrno) { 1691 case CSR_MISELECT: 1692 iselect = &env->miselect; 1693 break; 1694 case CSR_SISELECT: 1695 iselect = &env->siselect; 1696 break; 1697 case CSR_VSISELECT: 1698 iselect = &env->vsiselect; 1699 break; 1700 default: 1701 return RISCV_EXCP_ILLEGAL_INST; 1702 }; 1703 1704 if (val) { 1705 *val = *iselect; 1706 } 1707 1708 wr_mask &= ISELECT_MASK; 1709 if (wr_mask) { 1710 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1711 } 1712 1713 return RISCV_EXCP_NONE; 1714 } 1715 1716 static int rmw_iprio(target_ulong xlen, 1717 target_ulong iselect, uint8_t *iprio, 1718 target_ulong *val, target_ulong new_val, 1719 target_ulong wr_mask, int ext_irq_no) 1720 { 1721 int i, firq, nirqs; 1722 target_ulong old_val; 1723 1724 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1725 return -EINVAL; 1726 } 1727 if (xlen != 32 && iselect & 0x1) { 1728 return -EINVAL; 1729 } 1730 1731 nirqs = 4 * (xlen / 32); 1732 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1733 1734 old_val = 0; 1735 for (i = 0; i < nirqs; i++) { 1736 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1737 } 1738 1739 if (val) { 1740 *val = old_val; 1741 } 1742 1743 if (wr_mask) { 1744 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1745 for (i = 0; i < nirqs; i++) { 1746 /* 1747 * M-level and S-level external IRQ priority always read-only 1748 * zero. This means default priority order is always preferred 1749 * for M-level and S-level external IRQs. 1750 */ 1751 if ((firq + i) == ext_irq_no) { 1752 continue; 1753 } 1754 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1755 } 1756 } 1757 1758 return 0; 1759 } 1760 1761 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1762 target_ulong new_val, target_ulong wr_mask) 1763 { 1764 bool virt, isel_reserved; 1765 uint8_t *iprio; 1766 int ret = -EINVAL; 1767 target_ulong priv, isel, vgein; 1768 1769 /* Translate CSR number for VS-mode */ 1770 csrno = aia_xlate_vs_csrno(env, csrno); 1771 1772 /* Decode register details from CSR number */ 1773 virt = false; 1774 isel_reserved = false; 1775 switch (csrno) { 1776 case CSR_MIREG: 1777 iprio = env->miprio; 1778 isel = env->miselect; 1779 priv = PRV_M; 1780 break; 1781 case CSR_SIREG: 1782 if (env->priv == PRV_S && env->mvien & MIP_SEIP && 1783 env->siselect >= ISELECT_IMSIC_EIDELIVERY && 1784 env->siselect <= ISELECT_IMSIC_EIE63) { 1785 goto done; 1786 } 1787 iprio = env->siprio; 1788 isel = env->siselect; 1789 priv = PRV_S; 1790 break; 1791 case CSR_VSIREG: 1792 iprio = env->hviprio; 1793 isel = env->vsiselect; 1794 priv = PRV_S; 1795 virt = true; 1796 break; 1797 default: 1798 goto done; 1799 }; 1800 1801 /* Find the selected guest interrupt file */ 1802 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1803 1804 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1805 /* Local interrupt priority registers not available for VS-mode */ 1806 if (!virt) { 1807 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1808 isel, iprio, val, new_val, wr_mask, 1809 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1810 } 1811 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1812 /* IMSIC registers only available when machine implements it. */ 1813 if (env->aia_ireg_rmw_fn[priv]) { 1814 /* Selected guest interrupt file should not be zero */ 1815 if (virt && (!vgein || env->geilen < vgein)) { 1816 goto done; 1817 } 1818 /* Call machine specific IMSIC register emulation */ 1819 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1820 AIA_MAKE_IREG(isel, priv, virt, vgein, 1821 riscv_cpu_mxl_bits(env)), 1822 val, new_val, wr_mask); 1823 } 1824 } else { 1825 isel_reserved = true; 1826 } 1827 1828 done: 1829 if (ret) { 1830 return (env->virt_enabled && virt && !isel_reserved) ? 1831 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1832 } 1833 return RISCV_EXCP_NONE; 1834 } 1835 1836 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1837 target_ulong new_val, target_ulong wr_mask) 1838 { 1839 bool virt; 1840 int ret = -EINVAL; 1841 target_ulong priv, vgein; 1842 1843 /* Translate CSR number for VS-mode */ 1844 csrno = aia_xlate_vs_csrno(env, csrno); 1845 1846 /* Decode register details from CSR number */ 1847 virt = false; 1848 switch (csrno) { 1849 case CSR_MTOPEI: 1850 priv = PRV_M; 1851 break; 1852 case CSR_STOPEI: 1853 if (env->mvien & MIP_SEIP && env->priv == PRV_S) { 1854 goto done; 1855 } 1856 priv = PRV_S; 1857 break; 1858 case CSR_VSTOPEI: 1859 priv = PRV_S; 1860 virt = true; 1861 break; 1862 default: 1863 goto done; 1864 }; 1865 1866 /* IMSIC CSRs only available when machine implements IMSIC. */ 1867 if (!env->aia_ireg_rmw_fn[priv]) { 1868 goto done; 1869 } 1870 1871 /* Find the selected guest interrupt file */ 1872 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1873 1874 /* Selected guest interrupt file should be valid */ 1875 if (virt && (!vgein || env->geilen < vgein)) { 1876 goto done; 1877 } 1878 1879 /* Call machine specific IMSIC register emulation for TOPEI */ 1880 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1881 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1882 riscv_cpu_mxl_bits(env)), 1883 val, new_val, wr_mask); 1884 1885 done: 1886 if (ret) { 1887 return (env->virt_enabled && virt) ? 1888 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1889 } 1890 return RISCV_EXCP_NONE; 1891 } 1892 1893 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1894 target_ulong *val) 1895 { 1896 *val = env->mtvec; 1897 return RISCV_EXCP_NONE; 1898 } 1899 1900 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1901 target_ulong val) 1902 { 1903 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1904 if ((val & 3) < 2) { 1905 env->mtvec = val; 1906 } else { 1907 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1908 } 1909 return RISCV_EXCP_NONE; 1910 } 1911 1912 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1913 target_ulong *val) 1914 { 1915 *val = env->mcountinhibit; 1916 return RISCV_EXCP_NONE; 1917 } 1918 1919 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1920 target_ulong val) 1921 { 1922 int cidx; 1923 PMUCTRState *counter; 1924 RISCVCPU *cpu = env_archcpu(env); 1925 1926 /* WARL register - disable unavailable counters; TM bit is always 0 */ 1927 env->mcountinhibit = 1928 val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_IR); 1929 1930 /* Check if any other counter is also monitoring cycles/instructions */ 1931 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1932 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1933 counter = &env->pmu_ctrs[cidx]; 1934 counter->started = true; 1935 } 1936 } 1937 1938 return RISCV_EXCP_NONE; 1939 } 1940 1941 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1942 target_ulong *val) 1943 { 1944 *val = env->mcounteren; 1945 return RISCV_EXCP_NONE; 1946 } 1947 1948 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1949 target_ulong val) 1950 { 1951 RISCVCPU *cpu = env_archcpu(env); 1952 1953 /* WARL register - disable unavailable counters */ 1954 env->mcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 1955 COUNTEREN_IR); 1956 return RISCV_EXCP_NONE; 1957 } 1958 1959 /* Machine Trap Handling */ 1960 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1961 Int128 *val) 1962 { 1963 *val = int128_make128(env->mscratch, env->mscratchh); 1964 return RISCV_EXCP_NONE; 1965 } 1966 1967 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1968 Int128 val) 1969 { 1970 env->mscratch = int128_getlo(val); 1971 env->mscratchh = int128_gethi(val); 1972 return RISCV_EXCP_NONE; 1973 } 1974 1975 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1976 target_ulong *val) 1977 { 1978 *val = env->mscratch; 1979 return RISCV_EXCP_NONE; 1980 } 1981 1982 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1983 target_ulong val) 1984 { 1985 env->mscratch = val; 1986 return RISCV_EXCP_NONE; 1987 } 1988 1989 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1990 target_ulong *val) 1991 { 1992 *val = env->mepc; 1993 return RISCV_EXCP_NONE; 1994 } 1995 1996 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1997 target_ulong val) 1998 { 1999 env->mepc = val; 2000 return RISCV_EXCP_NONE; 2001 } 2002 2003 static RISCVException read_mcause(CPURISCVState *env, int csrno, 2004 target_ulong *val) 2005 { 2006 *val = env->mcause; 2007 return RISCV_EXCP_NONE; 2008 } 2009 2010 static RISCVException write_mcause(CPURISCVState *env, int csrno, 2011 target_ulong val) 2012 { 2013 env->mcause = val; 2014 return RISCV_EXCP_NONE; 2015 } 2016 2017 static RISCVException read_mtval(CPURISCVState *env, int csrno, 2018 target_ulong *val) 2019 { 2020 *val = env->mtval; 2021 return RISCV_EXCP_NONE; 2022 } 2023 2024 static RISCVException write_mtval(CPURISCVState *env, int csrno, 2025 target_ulong val) 2026 { 2027 env->mtval = val; 2028 return RISCV_EXCP_NONE; 2029 } 2030 2031 /* Execution environment configuration setup */ 2032 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 2033 target_ulong *val) 2034 { 2035 *val = env->menvcfg; 2036 return RISCV_EXCP_NONE; 2037 } 2038 2039 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 2040 target_ulong val) 2041 { 2042 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 2043 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 2044 2045 if (riscv_cpu_mxl(env) == MXL_RV64) { 2046 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 2047 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 2048 (cfg->ext_svadu ? MENVCFG_ADUE : 0); 2049 } 2050 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 2051 2052 return RISCV_EXCP_NONE; 2053 } 2054 2055 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 2056 target_ulong *val) 2057 { 2058 *val = env->menvcfg >> 32; 2059 return RISCV_EXCP_NONE; 2060 } 2061 2062 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 2063 target_ulong val) 2064 { 2065 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 2066 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 2067 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 2068 (cfg->ext_svadu ? MENVCFG_ADUE : 0); 2069 uint64_t valh = (uint64_t)val << 32; 2070 2071 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 2072 2073 return RISCV_EXCP_NONE; 2074 } 2075 2076 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 2077 target_ulong *val) 2078 { 2079 RISCVException ret; 2080 2081 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2082 if (ret != RISCV_EXCP_NONE) { 2083 return ret; 2084 } 2085 2086 *val = env->senvcfg; 2087 return RISCV_EXCP_NONE; 2088 } 2089 2090 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 2091 target_ulong val) 2092 { 2093 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 2094 RISCVException ret; 2095 2096 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2097 if (ret != RISCV_EXCP_NONE) { 2098 return ret; 2099 } 2100 2101 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 2102 return RISCV_EXCP_NONE; 2103 } 2104 2105 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 2106 target_ulong *val) 2107 { 2108 RISCVException ret; 2109 2110 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2111 if (ret != RISCV_EXCP_NONE) { 2112 return ret; 2113 } 2114 2115 /* 2116 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 2117 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 2118 * henvcfg.hade is read_only 0 when menvcfg.hade = 0 2119 */ 2120 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | 2121 env->menvcfg); 2122 return RISCV_EXCP_NONE; 2123 } 2124 2125 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 2126 target_ulong val) 2127 { 2128 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 2129 RISCVException ret; 2130 2131 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2132 if (ret != RISCV_EXCP_NONE) { 2133 return ret; 2134 } 2135 2136 if (riscv_cpu_mxl(env) == MXL_RV64) { 2137 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE); 2138 } 2139 2140 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 2141 2142 return RISCV_EXCP_NONE; 2143 } 2144 2145 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 2146 target_ulong *val) 2147 { 2148 RISCVException ret; 2149 2150 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2151 if (ret != RISCV_EXCP_NONE) { 2152 return ret; 2153 } 2154 2155 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | 2156 env->menvcfg)) >> 32; 2157 return RISCV_EXCP_NONE; 2158 } 2159 2160 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2161 target_ulong val) 2162 { 2163 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 2164 HENVCFG_ADUE); 2165 uint64_t valh = (uint64_t)val << 32; 2166 RISCVException ret; 2167 2168 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2169 if (ret != RISCV_EXCP_NONE) { 2170 return ret; 2171 } 2172 2173 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2174 return RISCV_EXCP_NONE; 2175 } 2176 2177 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2178 target_ulong *val) 2179 { 2180 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2181 2182 return RISCV_EXCP_NONE; 2183 } 2184 2185 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2186 uint64_t wr_mask, target_ulong new_val) 2187 { 2188 uint64_t *reg; 2189 2190 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2191 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2192 2193 return RISCV_EXCP_NONE; 2194 } 2195 2196 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2197 target_ulong new_val) 2198 { 2199 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2200 if (!riscv_has_ext(env, RVF)) { 2201 wr_mask |= SMSTATEEN0_FCSR; 2202 } 2203 2204 return write_mstateen(env, csrno, wr_mask, new_val); 2205 } 2206 2207 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2208 target_ulong new_val) 2209 { 2210 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2211 } 2212 2213 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2214 target_ulong *val) 2215 { 2216 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2217 2218 return RISCV_EXCP_NONE; 2219 } 2220 2221 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2222 uint64_t wr_mask, target_ulong new_val) 2223 { 2224 uint64_t *reg, val; 2225 2226 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2227 val = (uint64_t)new_val << 32; 2228 val |= *reg & 0xFFFFFFFF; 2229 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2230 2231 return RISCV_EXCP_NONE; 2232 } 2233 2234 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2235 target_ulong new_val) 2236 { 2237 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2238 2239 return write_mstateenh(env, csrno, wr_mask, new_val); 2240 } 2241 2242 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2243 target_ulong new_val) 2244 { 2245 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2246 } 2247 2248 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2249 target_ulong *val) 2250 { 2251 int index = csrno - CSR_HSTATEEN0; 2252 2253 *val = env->hstateen[index] & env->mstateen[index]; 2254 2255 return RISCV_EXCP_NONE; 2256 } 2257 2258 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2259 uint64_t mask, target_ulong new_val) 2260 { 2261 int index = csrno - CSR_HSTATEEN0; 2262 uint64_t *reg, wr_mask; 2263 2264 reg = &env->hstateen[index]; 2265 wr_mask = env->mstateen[index] & mask; 2266 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2267 2268 return RISCV_EXCP_NONE; 2269 } 2270 2271 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2272 target_ulong new_val) 2273 { 2274 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2275 2276 if (!riscv_has_ext(env, RVF)) { 2277 wr_mask |= SMSTATEEN0_FCSR; 2278 } 2279 2280 return write_hstateen(env, csrno, wr_mask, new_val); 2281 } 2282 2283 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2284 target_ulong new_val) 2285 { 2286 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2287 } 2288 2289 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2290 target_ulong *val) 2291 { 2292 int index = csrno - CSR_HSTATEEN0H; 2293 2294 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2295 2296 return RISCV_EXCP_NONE; 2297 } 2298 2299 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2300 uint64_t mask, target_ulong new_val) 2301 { 2302 int index = csrno - CSR_HSTATEEN0H; 2303 uint64_t *reg, wr_mask, val; 2304 2305 reg = &env->hstateen[index]; 2306 val = (uint64_t)new_val << 32; 2307 val |= *reg & 0xFFFFFFFF; 2308 wr_mask = env->mstateen[index] & mask; 2309 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2310 2311 return RISCV_EXCP_NONE; 2312 } 2313 2314 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2315 target_ulong new_val) 2316 { 2317 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2318 2319 return write_hstateenh(env, csrno, wr_mask, new_val); 2320 } 2321 2322 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2323 target_ulong new_val) 2324 { 2325 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2326 } 2327 2328 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2329 target_ulong *val) 2330 { 2331 bool virt = env->virt_enabled; 2332 int index = csrno - CSR_SSTATEEN0; 2333 2334 *val = env->sstateen[index] & env->mstateen[index]; 2335 if (virt) { 2336 *val &= env->hstateen[index]; 2337 } 2338 2339 return RISCV_EXCP_NONE; 2340 } 2341 2342 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2343 uint64_t mask, target_ulong new_val) 2344 { 2345 bool virt = env->virt_enabled; 2346 int index = csrno - CSR_SSTATEEN0; 2347 uint64_t wr_mask; 2348 uint64_t *reg; 2349 2350 wr_mask = env->mstateen[index] & mask; 2351 if (virt) { 2352 wr_mask &= env->hstateen[index]; 2353 } 2354 2355 reg = &env->sstateen[index]; 2356 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2357 2358 return RISCV_EXCP_NONE; 2359 } 2360 2361 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2362 target_ulong new_val) 2363 { 2364 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2365 2366 if (!riscv_has_ext(env, RVF)) { 2367 wr_mask |= SMSTATEEN0_FCSR; 2368 } 2369 2370 return write_sstateen(env, csrno, wr_mask, new_val); 2371 } 2372 2373 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2374 target_ulong new_val) 2375 { 2376 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2377 } 2378 2379 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2380 uint64_t *ret_val, 2381 uint64_t new_val, uint64_t wr_mask) 2382 { 2383 uint64_t old_mip, mask = wr_mask & delegable_ints; 2384 uint32_t gin; 2385 2386 if (mask & MIP_SEIP) { 2387 env->software_seip = new_val & MIP_SEIP; 2388 new_val |= env->external_seip * MIP_SEIP; 2389 } 2390 2391 if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && 2392 get_field(env->menvcfg, MENVCFG_STCE)) { 2393 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2394 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2395 } 2396 2397 if (mask) { 2398 old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); 2399 } else { 2400 old_mip = env->mip; 2401 } 2402 2403 if (csrno != CSR_HVIP) { 2404 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2405 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2406 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2407 } 2408 2409 if (ret_val) { 2410 *ret_val = old_mip; 2411 } 2412 2413 return RISCV_EXCP_NONE; 2414 } 2415 2416 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2417 target_ulong *ret_val, 2418 target_ulong new_val, target_ulong wr_mask) 2419 { 2420 uint64_t rval; 2421 RISCVException ret; 2422 2423 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2424 if (ret_val) { 2425 *ret_val = rval; 2426 } 2427 2428 return ret; 2429 } 2430 2431 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2432 target_ulong *ret_val, 2433 target_ulong new_val, target_ulong wr_mask) 2434 { 2435 uint64_t rval; 2436 RISCVException ret; 2437 2438 ret = rmw_mip64(env, csrno, &rval, 2439 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2440 if (ret_val) { 2441 *ret_val = rval >> 32; 2442 } 2443 2444 return ret; 2445 } 2446 2447 /* 2448 * The function is written for two use-cases: 2449 * 1- To access mvip csr as is for m-mode access. 2450 * 2- To access sip as a combination of mip and mvip for s-mode. 2451 * 2452 * Both report bits 1, 5, 9 and 13:63 but with the exception of 2453 * STIP being read-only zero in case of mvip when sstc extension 2454 * is present. 2455 * Also, sip needs to be read-only zero when both mideleg[i] and 2456 * mvien[i] are zero but mvip needs to be an alias of mip. 2457 */ 2458 static RISCVException rmw_mvip64(CPURISCVState *env, int csrno, 2459 uint64_t *ret_val, 2460 uint64_t new_val, uint64_t wr_mask) 2461 { 2462 RISCVCPU *cpu = env_archcpu(env); 2463 target_ulong ret_mip = 0; 2464 RISCVException ret; 2465 uint64_t old_mvip; 2466 2467 /* 2468 * mideleg[i] mvien[i] 2469 * 0 0 No delegation. mvip[i] is alias of mip[i]. 2470 * 0 1 mvip[i] becomes source of interrupt, mip bypassed. 2471 * 1 X mip[i] is source of interrupt and mvip[i] aliases 2472 * mip[i]. 2473 * 2474 * So alias condition would be for bits: 2475 * ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (mideleg | ~mvien)) | 2476 * (!sstc & MIP_STIP) 2477 * 2478 * Non-alias condition will be for bits: 2479 * (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~mideleg & mvien) 2480 * 2481 * alias_mask denotes the bits that come from mip nalias_mask denotes bits 2482 * that come from hvip. 2483 */ 2484 uint64_t alias_mask = ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2485 (env->mideleg | ~env->mvien)) | MIP_STIP; 2486 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2487 (~env->mideleg & env->mvien); 2488 uint64_t wr_mask_mvip; 2489 uint64_t wr_mask_mip; 2490 2491 /* 2492 * mideleg[i] mvien[i] 2493 * 0 0 sip[i] read-only zero. 2494 * 0 1 sip[i] alias of mvip[i]. 2495 * 1 X sip[i] alias of mip[i]. 2496 * 2497 * Both alias and non-alias mask remain same for sip except for bits 2498 * which are zero in both mideleg and mvien. 2499 */ 2500 if (csrno == CSR_SIP) { 2501 /* Remove bits that are zero in both mideleg and mvien. */ 2502 alias_mask &= (env->mideleg | env->mvien); 2503 nalias_mask &= (env->mideleg | env->mvien); 2504 } 2505 2506 /* 2507 * If sstc is present, mvip.STIP is not an alias of mip.STIP so clear 2508 * that our in mip returned value. 2509 */ 2510 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2511 get_field(env->menvcfg, MENVCFG_STCE)) { 2512 alias_mask &= ~MIP_STIP; 2513 } 2514 2515 wr_mask_mip = wr_mask & alias_mask & mvip_writable_mask; 2516 wr_mask_mvip = wr_mask & nalias_mask & mvip_writable_mask; 2517 2518 /* 2519 * For bits set in alias_mask, mvip needs to be alias of mip, so forward 2520 * this to rmw_mip. 2521 */ 2522 ret = rmw_mip(env, CSR_MIP, &ret_mip, new_val, wr_mask_mip); 2523 if (ret != RISCV_EXCP_NONE) { 2524 return ret; 2525 } 2526 2527 old_mvip = env->mvip; 2528 2529 /* 2530 * Write to mvip. Update only non-alias bits. Alias bits were updated 2531 * in mip in rmw_mip above. 2532 */ 2533 if (wr_mask_mvip) { 2534 env->mvip = (env->mvip & ~wr_mask_mvip) | (new_val & wr_mask_mvip); 2535 2536 /* 2537 * Given mvip is separate source from mip, we need to trigger interrupt 2538 * from here separately. Normally this happen from riscv_cpu_update_mip. 2539 */ 2540 riscv_cpu_interrupt(env); 2541 } 2542 2543 if (ret_val) { 2544 ret_mip &= alias_mask; 2545 old_mvip &= nalias_mask; 2546 2547 *ret_val = old_mvip | ret_mip; 2548 } 2549 2550 return RISCV_EXCP_NONE; 2551 } 2552 2553 static RISCVException rmw_mvip(CPURISCVState *env, int csrno, 2554 target_ulong *ret_val, 2555 target_ulong new_val, target_ulong wr_mask) 2556 { 2557 uint64_t rval; 2558 RISCVException ret; 2559 2560 ret = rmw_mvip64(env, csrno, &rval, new_val, wr_mask); 2561 if (ret_val) { 2562 *ret_val = rval; 2563 } 2564 2565 return ret; 2566 } 2567 2568 static RISCVException rmw_mviph(CPURISCVState *env, int csrno, 2569 target_ulong *ret_val, 2570 target_ulong new_val, target_ulong wr_mask) 2571 { 2572 uint64_t rval; 2573 RISCVException ret; 2574 2575 ret = rmw_mvip64(env, csrno, &rval, 2576 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2577 if (ret_val) { 2578 *ret_val = rval >> 32; 2579 } 2580 2581 return ret; 2582 } 2583 2584 /* Supervisor Trap Setup */ 2585 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2586 Int128 *val) 2587 { 2588 uint64_t mask = sstatus_v1_10_mask; 2589 uint64_t sstatus = env->mstatus & mask; 2590 if (env->xl != MXL_RV32 || env->debugger) { 2591 mask |= SSTATUS64_UXL; 2592 } 2593 2594 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2595 return RISCV_EXCP_NONE; 2596 } 2597 2598 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2599 target_ulong *val) 2600 { 2601 target_ulong mask = (sstatus_v1_10_mask); 2602 if (env->xl != MXL_RV32 || env->debugger) { 2603 mask |= SSTATUS64_UXL; 2604 } 2605 /* TODO: Use SXL not MXL. */ 2606 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2607 return RISCV_EXCP_NONE; 2608 } 2609 2610 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2611 target_ulong val) 2612 { 2613 target_ulong mask = (sstatus_v1_10_mask); 2614 2615 if (env->xl != MXL_RV32 || env->debugger) { 2616 if ((val & SSTATUS64_UXL) != 0) { 2617 mask |= SSTATUS64_UXL; 2618 } 2619 } 2620 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2621 return write_mstatus(env, CSR_MSTATUS, newval); 2622 } 2623 2624 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2625 uint64_t *ret_val, 2626 uint64_t new_val, uint64_t wr_mask) 2627 { 2628 uint64_t alias_mask = (LOCAL_INTERRUPTS | VS_MODE_INTERRUPTS) & 2629 env->hideleg; 2630 uint64_t nalias_mask = LOCAL_INTERRUPTS & (~env->hideleg & env->hvien); 2631 uint64_t rval, rval_vs, vsbits; 2632 uint64_t wr_mask_vsie; 2633 uint64_t wr_mask_mie; 2634 RISCVException ret; 2635 2636 /* Bring VS-level bits to correct position */ 2637 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2638 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2639 new_val |= vsbits << 1; 2640 2641 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2642 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2643 wr_mask |= vsbits << 1; 2644 2645 wr_mask_mie = wr_mask & alias_mask; 2646 wr_mask_vsie = wr_mask & nalias_mask; 2647 2648 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask_mie); 2649 2650 rval_vs = env->vsie & nalias_mask; 2651 env->vsie = (env->vsie & ~wr_mask_vsie) | (new_val & wr_mask_vsie); 2652 2653 if (ret_val) { 2654 rval &= alias_mask; 2655 vsbits = rval & VS_MODE_INTERRUPTS; 2656 rval &= ~VS_MODE_INTERRUPTS; 2657 *ret_val = rval | (vsbits >> 1) | rval_vs; 2658 } 2659 2660 return ret; 2661 } 2662 2663 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2664 target_ulong *ret_val, 2665 target_ulong new_val, target_ulong wr_mask) 2666 { 2667 uint64_t rval; 2668 RISCVException ret; 2669 2670 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2671 if (ret_val) { 2672 *ret_val = rval; 2673 } 2674 2675 return ret; 2676 } 2677 2678 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2679 target_ulong *ret_val, 2680 target_ulong new_val, target_ulong wr_mask) 2681 { 2682 uint64_t rval; 2683 RISCVException ret; 2684 2685 ret = rmw_vsie64(env, csrno, &rval, 2686 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2687 if (ret_val) { 2688 *ret_val = rval >> 32; 2689 } 2690 2691 return ret; 2692 } 2693 2694 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2695 uint64_t *ret_val, 2696 uint64_t new_val, uint64_t wr_mask) 2697 { 2698 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2699 (~env->mideleg & env->mvien); 2700 uint64_t alias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & env->mideleg; 2701 uint64_t sie_mask = wr_mask & nalias_mask; 2702 RISCVException ret; 2703 2704 /* 2705 * mideleg[i] mvien[i] 2706 * 0 0 sie[i] read-only zero. 2707 * 0 1 sie[i] is a separate writable bit. 2708 * 1 X sie[i] alias of mie[i]. 2709 * 2710 * Both alias and non-alias mask remain same for sip except for bits 2711 * which are zero in both mideleg and mvien. 2712 */ 2713 if (env->virt_enabled) { 2714 if (env->hvictl & HVICTL_VTI) { 2715 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2716 } 2717 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2718 if (ret_val) { 2719 *ret_val &= alias_mask; 2720 } 2721 } else { 2722 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & alias_mask); 2723 if (ret_val) { 2724 *ret_val &= alias_mask; 2725 *ret_val |= env->sie & nalias_mask; 2726 } 2727 2728 env->sie = (env->sie & ~sie_mask) | (new_val & sie_mask); 2729 } 2730 2731 return ret; 2732 } 2733 2734 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2735 target_ulong *ret_val, 2736 target_ulong new_val, target_ulong wr_mask) 2737 { 2738 uint64_t rval; 2739 RISCVException ret; 2740 2741 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2742 if (ret == RISCV_EXCP_NONE && ret_val) { 2743 *ret_val = rval; 2744 } 2745 2746 return ret; 2747 } 2748 2749 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2750 target_ulong *ret_val, 2751 target_ulong new_val, target_ulong wr_mask) 2752 { 2753 uint64_t rval; 2754 RISCVException ret; 2755 2756 ret = rmw_sie64(env, csrno, &rval, 2757 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2758 if (ret_val) { 2759 *ret_val = rval >> 32; 2760 } 2761 2762 return ret; 2763 } 2764 2765 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2766 target_ulong *val) 2767 { 2768 *val = env->stvec; 2769 return RISCV_EXCP_NONE; 2770 } 2771 2772 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2773 target_ulong val) 2774 { 2775 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2776 if ((val & 3) < 2) { 2777 env->stvec = val; 2778 } else { 2779 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2780 } 2781 return RISCV_EXCP_NONE; 2782 } 2783 2784 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2785 target_ulong *val) 2786 { 2787 *val = env->scounteren; 2788 return RISCV_EXCP_NONE; 2789 } 2790 2791 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2792 target_ulong val) 2793 { 2794 env->scounteren = val; 2795 return RISCV_EXCP_NONE; 2796 } 2797 2798 /* Supervisor Trap Handling */ 2799 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2800 Int128 *val) 2801 { 2802 *val = int128_make128(env->sscratch, env->sscratchh); 2803 return RISCV_EXCP_NONE; 2804 } 2805 2806 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2807 Int128 val) 2808 { 2809 env->sscratch = int128_getlo(val); 2810 env->sscratchh = int128_gethi(val); 2811 return RISCV_EXCP_NONE; 2812 } 2813 2814 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2815 target_ulong *val) 2816 { 2817 *val = env->sscratch; 2818 return RISCV_EXCP_NONE; 2819 } 2820 2821 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2822 target_ulong val) 2823 { 2824 env->sscratch = val; 2825 return RISCV_EXCP_NONE; 2826 } 2827 2828 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2829 target_ulong *val) 2830 { 2831 *val = env->sepc; 2832 return RISCV_EXCP_NONE; 2833 } 2834 2835 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2836 target_ulong val) 2837 { 2838 env->sepc = val; 2839 return RISCV_EXCP_NONE; 2840 } 2841 2842 static RISCVException read_scause(CPURISCVState *env, int csrno, 2843 target_ulong *val) 2844 { 2845 *val = env->scause; 2846 return RISCV_EXCP_NONE; 2847 } 2848 2849 static RISCVException write_scause(CPURISCVState *env, int csrno, 2850 target_ulong val) 2851 { 2852 env->scause = val; 2853 return RISCV_EXCP_NONE; 2854 } 2855 2856 static RISCVException read_stval(CPURISCVState *env, int csrno, 2857 target_ulong *val) 2858 { 2859 *val = env->stval; 2860 return RISCV_EXCP_NONE; 2861 } 2862 2863 static RISCVException write_stval(CPURISCVState *env, int csrno, 2864 target_ulong val) 2865 { 2866 env->stval = val; 2867 return RISCV_EXCP_NONE; 2868 } 2869 2870 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2871 uint64_t *ret_val, 2872 uint64_t new_val, uint64_t wr_mask); 2873 2874 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2875 uint64_t *ret_val, 2876 uint64_t new_val, uint64_t wr_mask) 2877 { 2878 RISCVException ret; 2879 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2880 uint64_t vsbits; 2881 2882 /* Add virtualized bits into vsip mask. */ 2883 mask |= env->hvien & ~env->hideleg; 2884 2885 /* Bring VS-level bits to correct position */ 2886 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2887 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2888 new_val |= vsbits << 1; 2889 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2890 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2891 wr_mask |= vsbits << 1; 2892 2893 ret = rmw_hvip64(env, csrno, &rval, new_val, 2894 wr_mask & mask & vsip_writable_mask); 2895 if (ret_val) { 2896 rval &= mask; 2897 vsbits = rval & VS_MODE_INTERRUPTS; 2898 rval &= ~VS_MODE_INTERRUPTS; 2899 *ret_val = rval | (vsbits >> 1); 2900 } 2901 2902 return ret; 2903 } 2904 2905 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2906 target_ulong *ret_val, 2907 target_ulong new_val, target_ulong wr_mask) 2908 { 2909 uint64_t rval; 2910 RISCVException ret; 2911 2912 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2913 if (ret_val) { 2914 *ret_val = rval; 2915 } 2916 2917 return ret; 2918 } 2919 2920 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2921 target_ulong *ret_val, 2922 target_ulong new_val, target_ulong wr_mask) 2923 { 2924 uint64_t rval; 2925 RISCVException ret; 2926 2927 ret = rmw_vsip64(env, csrno, &rval, 2928 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2929 if (ret_val) { 2930 *ret_val = rval >> 32; 2931 } 2932 2933 return ret; 2934 } 2935 2936 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2937 uint64_t *ret_val, 2938 uint64_t new_val, uint64_t wr_mask) 2939 { 2940 RISCVException ret; 2941 uint64_t mask = (env->mideleg | env->mvien) & sip_writable_mask; 2942 2943 if (env->virt_enabled) { 2944 if (env->hvictl & HVICTL_VTI) { 2945 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2946 } 2947 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2948 } else { 2949 ret = rmw_mvip64(env, csrno, ret_val, new_val, wr_mask & mask); 2950 } 2951 2952 if (ret_val) { 2953 *ret_val &= (env->mideleg | env->mvien) & 2954 (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS); 2955 } 2956 2957 return ret; 2958 } 2959 2960 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2961 target_ulong *ret_val, 2962 target_ulong new_val, target_ulong wr_mask) 2963 { 2964 uint64_t rval; 2965 RISCVException ret; 2966 2967 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2968 if (ret_val) { 2969 *ret_val = rval; 2970 } 2971 2972 return ret; 2973 } 2974 2975 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2976 target_ulong *ret_val, 2977 target_ulong new_val, target_ulong wr_mask) 2978 { 2979 uint64_t rval; 2980 RISCVException ret; 2981 2982 ret = rmw_sip64(env, csrno, &rval, 2983 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2984 if (ret_val) { 2985 *ret_val = rval >> 32; 2986 } 2987 2988 return ret; 2989 } 2990 2991 /* Supervisor Protection and Translation */ 2992 static RISCVException read_satp(CPURISCVState *env, int csrno, 2993 target_ulong *val) 2994 { 2995 if (!riscv_cpu_cfg(env)->mmu) { 2996 *val = 0; 2997 return RISCV_EXCP_NONE; 2998 } 2999 *val = env->satp; 3000 return RISCV_EXCP_NONE; 3001 } 3002 3003 static RISCVException write_satp(CPURISCVState *env, int csrno, 3004 target_ulong val) 3005 { 3006 target_ulong mask; 3007 bool vm; 3008 3009 if (!riscv_cpu_cfg(env)->mmu) { 3010 return RISCV_EXCP_NONE; 3011 } 3012 3013 if (riscv_cpu_mxl(env) == MXL_RV32) { 3014 vm = validate_vm(env, get_field(val, SATP32_MODE)); 3015 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 3016 } else { 3017 vm = validate_vm(env, get_field(val, SATP64_MODE)); 3018 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 3019 } 3020 3021 if (vm && mask) { 3022 /* 3023 * The ISA defines SATP.MODE=Bare as "no translation", but we still 3024 * pass these through QEMU's TLB emulation as it improves 3025 * performance. Flushing the TLB on SATP writes with paging 3026 * enabled avoids leaking those invalid cached mappings. 3027 */ 3028 tlb_flush(env_cpu(env)); 3029 env->satp = val; 3030 } 3031 return RISCV_EXCP_NONE; 3032 } 3033 3034 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 3035 { 3036 int irq, ret; 3037 target_ulong topei; 3038 uint64_t vseip, vsgein; 3039 uint32_t iid, iprio, hviid, hviprio, gein; 3040 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 3041 3042 gein = get_field(env->hstatus, HSTATUS_VGEIN); 3043 hviid = get_field(env->hvictl, HVICTL_IID); 3044 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 3045 3046 if (gein) { 3047 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 3048 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 3049 if (gein <= env->geilen && vseip) { 3050 siid[scount] = IRQ_S_EXT; 3051 siprio[scount] = IPRIO_MMAXIPRIO + 1; 3052 if (env->aia_ireg_rmw_fn[PRV_S]) { 3053 /* 3054 * Call machine specific IMSIC register emulation for 3055 * reading TOPEI. 3056 */ 3057 ret = env->aia_ireg_rmw_fn[PRV_S]( 3058 env->aia_ireg_rmw_fn_arg[PRV_S], 3059 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 3060 riscv_cpu_mxl_bits(env)), 3061 &topei, 0, 0); 3062 if (!ret && topei) { 3063 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 3064 } 3065 } 3066 scount++; 3067 } 3068 } else { 3069 if (hviid == IRQ_S_EXT && hviprio) { 3070 siid[scount] = IRQ_S_EXT; 3071 siprio[scount] = hviprio; 3072 scount++; 3073 } 3074 } 3075 3076 if (env->hvictl & HVICTL_VTI) { 3077 if (hviid != IRQ_S_EXT) { 3078 siid[scount] = hviid; 3079 siprio[scount] = hviprio; 3080 scount++; 3081 } 3082 } else { 3083 irq = riscv_cpu_vsirq_pending(env); 3084 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 3085 siid[scount] = irq; 3086 siprio[scount] = env->hviprio[irq]; 3087 scount++; 3088 } 3089 } 3090 3091 iid = 0; 3092 iprio = UINT_MAX; 3093 for (s = 0; s < scount; s++) { 3094 if (siprio[s] < iprio) { 3095 iid = siid[s]; 3096 iprio = siprio[s]; 3097 } 3098 } 3099 3100 if (iid) { 3101 if (env->hvictl & HVICTL_IPRIOM) { 3102 if (iprio > IPRIO_MMAXIPRIO) { 3103 iprio = IPRIO_MMAXIPRIO; 3104 } 3105 if (!iprio) { 3106 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 3107 iprio = IPRIO_MMAXIPRIO; 3108 } 3109 } 3110 } else { 3111 iprio = 1; 3112 } 3113 } else { 3114 iprio = 0; 3115 } 3116 3117 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 3118 *val |= iprio; 3119 3120 return RISCV_EXCP_NONE; 3121 } 3122 3123 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 3124 { 3125 int irq; 3126 uint8_t iprio; 3127 3128 if (env->virt_enabled) { 3129 return read_vstopi(env, CSR_VSTOPI, val); 3130 } 3131 3132 irq = riscv_cpu_sirq_pending(env); 3133 if (irq <= 0 || irq > 63) { 3134 *val = 0; 3135 } else { 3136 iprio = env->siprio[irq]; 3137 if (!iprio) { 3138 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 3139 iprio = IPRIO_MMAXIPRIO; 3140 } 3141 } 3142 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 3143 *val |= iprio; 3144 } 3145 3146 return RISCV_EXCP_NONE; 3147 } 3148 3149 /* Hypervisor Extensions */ 3150 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 3151 target_ulong *val) 3152 { 3153 *val = env->hstatus; 3154 if (riscv_cpu_mxl(env) != MXL_RV32) { 3155 /* We only support 64-bit VSXL */ 3156 *val = set_field(*val, HSTATUS_VSXL, 2); 3157 } 3158 /* We only support little endian */ 3159 *val = set_field(*val, HSTATUS_VSBE, 0); 3160 return RISCV_EXCP_NONE; 3161 } 3162 3163 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 3164 target_ulong val) 3165 { 3166 env->hstatus = val; 3167 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 3168 qemu_log_mask(LOG_UNIMP, 3169 "QEMU does not support mixed HSXLEN options."); 3170 } 3171 if (get_field(val, HSTATUS_VSBE) != 0) { 3172 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 3173 } 3174 return RISCV_EXCP_NONE; 3175 } 3176 3177 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 3178 target_ulong *val) 3179 { 3180 *val = env->hedeleg; 3181 return RISCV_EXCP_NONE; 3182 } 3183 3184 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 3185 target_ulong val) 3186 { 3187 env->hedeleg = val & vs_delegable_excps; 3188 return RISCV_EXCP_NONE; 3189 } 3190 3191 static RISCVException rmw_hvien64(CPURISCVState *env, int csrno, 3192 uint64_t *ret_val, 3193 uint64_t new_val, uint64_t wr_mask) 3194 { 3195 uint64_t mask = wr_mask & hvien_writable_mask; 3196 3197 if (ret_val) { 3198 *ret_val = env->hvien; 3199 } 3200 3201 env->hvien = (env->hvien & ~mask) | (new_val & mask); 3202 3203 return RISCV_EXCP_NONE; 3204 } 3205 3206 static RISCVException rmw_hvien(CPURISCVState *env, int csrno, 3207 target_ulong *ret_val, 3208 target_ulong new_val, target_ulong wr_mask) 3209 { 3210 uint64_t rval; 3211 RISCVException ret; 3212 3213 ret = rmw_hvien64(env, csrno, &rval, new_val, wr_mask); 3214 if (ret_val) { 3215 *ret_val = rval; 3216 } 3217 3218 return ret; 3219 } 3220 3221 static RISCVException rmw_hvienh(CPURISCVState *env, int csrno, 3222 target_ulong *ret_val, 3223 target_ulong new_val, target_ulong wr_mask) 3224 { 3225 uint64_t rval; 3226 RISCVException ret; 3227 3228 ret = rmw_hvien64(env, csrno, &rval, 3229 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3230 if (ret_val) { 3231 *ret_val = rval >> 32; 3232 } 3233 3234 return ret; 3235 } 3236 3237 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 3238 uint64_t *ret_val, 3239 uint64_t new_val, uint64_t wr_mask) 3240 { 3241 uint64_t mask = wr_mask & vs_delegable_ints; 3242 3243 if (ret_val) { 3244 *ret_val = env->hideleg & vs_delegable_ints; 3245 } 3246 3247 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 3248 return RISCV_EXCP_NONE; 3249 } 3250 3251 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 3252 target_ulong *ret_val, 3253 target_ulong new_val, target_ulong wr_mask) 3254 { 3255 uint64_t rval; 3256 RISCVException ret; 3257 3258 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 3259 if (ret_val) { 3260 *ret_val = rval; 3261 } 3262 3263 return ret; 3264 } 3265 3266 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 3267 target_ulong *ret_val, 3268 target_ulong new_val, target_ulong wr_mask) 3269 { 3270 uint64_t rval; 3271 RISCVException ret; 3272 3273 ret = rmw_hideleg64(env, csrno, &rval, 3274 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3275 if (ret_val) { 3276 *ret_val = rval >> 32; 3277 } 3278 3279 return ret; 3280 } 3281 3282 /* 3283 * The function is written for two use-cases: 3284 * 1- To access hvip csr as is for HS-mode access. 3285 * 2- To access vsip as a combination of hvip, and mip for vs-mode. 3286 * 3287 * Both report bits 2, 6, 10 and 13:63. 3288 * vsip needs to be read-only zero when both hideleg[i] and 3289 * hvien[i] are zero. 3290 */ 3291 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 3292 uint64_t *ret_val, 3293 uint64_t new_val, uint64_t wr_mask) 3294 { 3295 RISCVException ret; 3296 uint64_t old_hvip; 3297 uint64_t ret_mip; 3298 3299 /* 3300 * For bits 10, 6 and 2, vsip[i] is an alias of hip[i]. These bits are 3301 * present in hip, hvip and mip. Where mip[i] is alias of hip[i] and hvip[i] 3302 * is OR'ed in hip[i] to inject virtual interrupts from hypervisor. These 3303 * bits are actually being maintained in mip so we read them from there. 3304 * This way we have a single source of truth and allows for easier 3305 * implementation. 3306 * 3307 * For bits 13:63 we have: 3308 * 3309 * hideleg[i] hvien[i] 3310 * 0 0 No delegation. vsip[i] readonly zero. 3311 * 0 1 vsip[i] is alias of hvip[i], sip bypassed. 3312 * 1 X vsip[i] is alias of sip[i], hvip bypassed. 3313 * 3314 * alias_mask denotes the bits that come from sip (mip here given we 3315 * maintain all bits there). nalias_mask denotes bits that come from 3316 * hvip. 3317 */ 3318 uint64_t alias_mask = (env->hideleg | ~env->hvien) | VS_MODE_INTERRUPTS; 3319 uint64_t nalias_mask = (~env->hideleg & env->hvien); 3320 uint64_t wr_mask_hvip; 3321 uint64_t wr_mask_mip; 3322 3323 /* 3324 * Both alias and non-alias mask remain same for vsip except: 3325 * 1- For VS* bits if they are zero in hideleg. 3326 * 2- For 13:63 bits if they are zero in both hideleg and hvien. 3327 */ 3328 if (csrno == CSR_VSIP) { 3329 /* zero-out VS* bits that are not delegated to VS mode. */ 3330 alias_mask &= (env->hideleg | ~VS_MODE_INTERRUPTS); 3331 3332 /* 3333 * zero-out 13:63 bits that are zero in both hideleg and hvien. 3334 * nalias_mask mask can not contain any VS* bits so only second 3335 * condition applies on it. 3336 */ 3337 nalias_mask &= (env->hideleg | env->hvien); 3338 alias_mask &= (env->hideleg | env->hvien); 3339 } 3340 3341 wr_mask_hvip = wr_mask & nalias_mask & hvip_writable_mask; 3342 wr_mask_mip = wr_mask & alias_mask & hvip_writable_mask; 3343 3344 /* Aliased bits, bits 10, 6, 2 need to come from mip. */ 3345 ret = rmw_mip64(env, csrno, &ret_mip, new_val, wr_mask_mip); 3346 if (ret != RISCV_EXCP_NONE) { 3347 return ret; 3348 } 3349 3350 old_hvip = env->hvip; 3351 3352 if (wr_mask_hvip) { 3353 env->hvip = (env->hvip & ~wr_mask_hvip) | (new_val & wr_mask_hvip); 3354 3355 /* 3356 * Given hvip is separate source from mip, we need to trigger interrupt 3357 * from here separately. Normally this happen from riscv_cpu_update_mip. 3358 */ 3359 riscv_cpu_interrupt(env); 3360 } 3361 3362 if (ret_val) { 3363 /* Only take VS* bits from mip. */ 3364 ret_mip &= alias_mask; 3365 3366 /* Take in non-delegated 13:63 bits from hvip. */ 3367 old_hvip &= nalias_mask; 3368 3369 *ret_val = ret_mip | old_hvip; 3370 } 3371 3372 return ret; 3373 } 3374 3375 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 3376 target_ulong *ret_val, 3377 target_ulong new_val, target_ulong wr_mask) 3378 { 3379 uint64_t rval; 3380 RISCVException ret; 3381 3382 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 3383 if (ret_val) { 3384 *ret_val = rval; 3385 } 3386 3387 return ret; 3388 } 3389 3390 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 3391 target_ulong *ret_val, 3392 target_ulong new_val, target_ulong wr_mask) 3393 { 3394 uint64_t rval; 3395 RISCVException ret; 3396 3397 ret = rmw_hvip64(env, csrno, &rval, 3398 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3399 if (ret_val) { 3400 *ret_val = rval >> 32; 3401 } 3402 3403 return ret; 3404 } 3405 3406 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 3407 target_ulong *ret_value, 3408 target_ulong new_value, target_ulong write_mask) 3409 { 3410 int ret = rmw_mip(env, csrno, ret_value, new_value, 3411 write_mask & hip_writable_mask); 3412 3413 if (ret_value) { 3414 *ret_value &= HS_MODE_INTERRUPTS; 3415 } 3416 return ret; 3417 } 3418 3419 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 3420 target_ulong *ret_val, 3421 target_ulong new_val, target_ulong wr_mask) 3422 { 3423 uint64_t rval; 3424 RISCVException ret; 3425 3426 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 3427 if (ret_val) { 3428 *ret_val = rval & HS_MODE_INTERRUPTS; 3429 } 3430 3431 return ret; 3432 } 3433 3434 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 3435 target_ulong *val) 3436 { 3437 *val = env->hcounteren; 3438 return RISCV_EXCP_NONE; 3439 } 3440 3441 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 3442 target_ulong val) 3443 { 3444 env->hcounteren = val; 3445 return RISCV_EXCP_NONE; 3446 } 3447 3448 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 3449 target_ulong *val) 3450 { 3451 if (val) { 3452 *val = env->hgeie; 3453 } 3454 return RISCV_EXCP_NONE; 3455 } 3456 3457 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 3458 target_ulong val) 3459 { 3460 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 3461 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 3462 env->hgeie = val; 3463 /* Update mip.SGEIP bit */ 3464 riscv_cpu_update_mip(env, MIP_SGEIP, 3465 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 3466 return RISCV_EXCP_NONE; 3467 } 3468 3469 static RISCVException read_htval(CPURISCVState *env, int csrno, 3470 target_ulong *val) 3471 { 3472 *val = env->htval; 3473 return RISCV_EXCP_NONE; 3474 } 3475 3476 static RISCVException write_htval(CPURISCVState *env, int csrno, 3477 target_ulong val) 3478 { 3479 env->htval = val; 3480 return RISCV_EXCP_NONE; 3481 } 3482 3483 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3484 target_ulong *val) 3485 { 3486 *val = env->htinst; 3487 return RISCV_EXCP_NONE; 3488 } 3489 3490 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3491 target_ulong val) 3492 { 3493 return RISCV_EXCP_NONE; 3494 } 3495 3496 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3497 target_ulong *val) 3498 { 3499 if (val) { 3500 *val = env->hgeip; 3501 } 3502 return RISCV_EXCP_NONE; 3503 } 3504 3505 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3506 target_ulong *val) 3507 { 3508 *val = env->hgatp; 3509 return RISCV_EXCP_NONE; 3510 } 3511 3512 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3513 target_ulong val) 3514 { 3515 env->hgatp = val; 3516 return RISCV_EXCP_NONE; 3517 } 3518 3519 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3520 target_ulong *val) 3521 { 3522 if (!env->rdtime_fn) { 3523 return RISCV_EXCP_ILLEGAL_INST; 3524 } 3525 3526 *val = env->htimedelta; 3527 return RISCV_EXCP_NONE; 3528 } 3529 3530 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3531 target_ulong val) 3532 { 3533 if (!env->rdtime_fn) { 3534 return RISCV_EXCP_ILLEGAL_INST; 3535 } 3536 3537 if (riscv_cpu_mxl(env) == MXL_RV32) { 3538 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3539 } else { 3540 env->htimedelta = val; 3541 } 3542 3543 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3544 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3545 env->htimedelta, MIP_VSTIP); 3546 } 3547 3548 return RISCV_EXCP_NONE; 3549 } 3550 3551 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3552 target_ulong *val) 3553 { 3554 if (!env->rdtime_fn) { 3555 return RISCV_EXCP_ILLEGAL_INST; 3556 } 3557 3558 *val = env->htimedelta >> 32; 3559 return RISCV_EXCP_NONE; 3560 } 3561 3562 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3563 target_ulong val) 3564 { 3565 if (!env->rdtime_fn) { 3566 return RISCV_EXCP_ILLEGAL_INST; 3567 } 3568 3569 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3570 3571 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3572 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3573 env->htimedelta, MIP_VSTIP); 3574 } 3575 3576 return RISCV_EXCP_NONE; 3577 } 3578 3579 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3580 { 3581 *val = env->hvictl; 3582 return RISCV_EXCP_NONE; 3583 } 3584 3585 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3586 { 3587 env->hvictl = val & HVICTL_VALID_MASK; 3588 return RISCV_EXCP_NONE; 3589 } 3590 3591 static int read_hvipriox(CPURISCVState *env, int first_index, 3592 uint8_t *iprio, target_ulong *val) 3593 { 3594 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3595 3596 /* First index has to be a multiple of number of irqs per register */ 3597 if (first_index % num_irqs) { 3598 return (env->virt_enabled) ? 3599 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3600 } 3601 3602 /* Fill-up return value */ 3603 *val = 0; 3604 for (i = 0; i < num_irqs; i++) { 3605 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3606 continue; 3607 } 3608 if (rdzero) { 3609 continue; 3610 } 3611 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3612 } 3613 3614 return RISCV_EXCP_NONE; 3615 } 3616 3617 static int write_hvipriox(CPURISCVState *env, int first_index, 3618 uint8_t *iprio, target_ulong val) 3619 { 3620 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3621 3622 /* First index has to be a multiple of number of irqs per register */ 3623 if (first_index % num_irqs) { 3624 return (env->virt_enabled) ? 3625 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3626 } 3627 3628 /* Fill-up priority array */ 3629 for (i = 0; i < num_irqs; i++) { 3630 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3631 continue; 3632 } 3633 if (rdzero) { 3634 iprio[irq] = 0; 3635 } else { 3636 iprio[irq] = (val >> (i * 8)) & 0xff; 3637 } 3638 } 3639 3640 return RISCV_EXCP_NONE; 3641 } 3642 3643 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3644 { 3645 return read_hvipriox(env, 0, env->hviprio, val); 3646 } 3647 3648 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3649 { 3650 return write_hvipriox(env, 0, env->hviprio, val); 3651 } 3652 3653 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3654 { 3655 return read_hvipriox(env, 4, env->hviprio, val); 3656 } 3657 3658 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3659 { 3660 return write_hvipriox(env, 4, env->hviprio, val); 3661 } 3662 3663 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3664 { 3665 return read_hvipriox(env, 8, env->hviprio, val); 3666 } 3667 3668 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3669 { 3670 return write_hvipriox(env, 8, env->hviprio, val); 3671 } 3672 3673 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3674 { 3675 return read_hvipriox(env, 12, env->hviprio, val); 3676 } 3677 3678 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3679 { 3680 return write_hvipriox(env, 12, env->hviprio, val); 3681 } 3682 3683 /* Virtual CSR Registers */ 3684 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3685 target_ulong *val) 3686 { 3687 *val = env->vsstatus; 3688 return RISCV_EXCP_NONE; 3689 } 3690 3691 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3692 target_ulong val) 3693 { 3694 uint64_t mask = (target_ulong)-1; 3695 if ((val & VSSTATUS64_UXL) == 0) { 3696 mask &= ~VSSTATUS64_UXL; 3697 } 3698 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3699 return RISCV_EXCP_NONE; 3700 } 3701 3702 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3703 { 3704 *val = env->vstvec; 3705 return RISCV_EXCP_NONE; 3706 } 3707 3708 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3709 target_ulong val) 3710 { 3711 env->vstvec = val; 3712 return RISCV_EXCP_NONE; 3713 } 3714 3715 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3716 target_ulong *val) 3717 { 3718 *val = env->vsscratch; 3719 return RISCV_EXCP_NONE; 3720 } 3721 3722 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3723 target_ulong val) 3724 { 3725 env->vsscratch = val; 3726 return RISCV_EXCP_NONE; 3727 } 3728 3729 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3730 target_ulong *val) 3731 { 3732 *val = env->vsepc; 3733 return RISCV_EXCP_NONE; 3734 } 3735 3736 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3737 target_ulong val) 3738 { 3739 env->vsepc = val; 3740 return RISCV_EXCP_NONE; 3741 } 3742 3743 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3744 target_ulong *val) 3745 { 3746 *val = env->vscause; 3747 return RISCV_EXCP_NONE; 3748 } 3749 3750 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3751 target_ulong val) 3752 { 3753 env->vscause = val; 3754 return RISCV_EXCP_NONE; 3755 } 3756 3757 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3758 target_ulong *val) 3759 { 3760 *val = env->vstval; 3761 return RISCV_EXCP_NONE; 3762 } 3763 3764 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3765 target_ulong val) 3766 { 3767 env->vstval = val; 3768 return RISCV_EXCP_NONE; 3769 } 3770 3771 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3772 target_ulong *val) 3773 { 3774 *val = env->vsatp; 3775 return RISCV_EXCP_NONE; 3776 } 3777 3778 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3779 target_ulong val) 3780 { 3781 env->vsatp = val; 3782 return RISCV_EXCP_NONE; 3783 } 3784 3785 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3786 target_ulong *val) 3787 { 3788 *val = env->mtval2; 3789 return RISCV_EXCP_NONE; 3790 } 3791 3792 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3793 target_ulong val) 3794 { 3795 env->mtval2 = val; 3796 return RISCV_EXCP_NONE; 3797 } 3798 3799 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3800 target_ulong *val) 3801 { 3802 *val = env->mtinst; 3803 return RISCV_EXCP_NONE; 3804 } 3805 3806 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3807 target_ulong val) 3808 { 3809 env->mtinst = val; 3810 return RISCV_EXCP_NONE; 3811 } 3812 3813 /* Physical Memory Protection */ 3814 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3815 target_ulong *val) 3816 { 3817 *val = mseccfg_csr_read(env); 3818 return RISCV_EXCP_NONE; 3819 } 3820 3821 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3822 target_ulong val) 3823 { 3824 mseccfg_csr_write(env, val); 3825 return RISCV_EXCP_NONE; 3826 } 3827 3828 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3829 target_ulong *val) 3830 { 3831 uint32_t reg_index = csrno - CSR_PMPCFG0; 3832 3833 *val = pmpcfg_csr_read(env, reg_index); 3834 return RISCV_EXCP_NONE; 3835 } 3836 3837 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3838 target_ulong val) 3839 { 3840 uint32_t reg_index = csrno - CSR_PMPCFG0; 3841 3842 pmpcfg_csr_write(env, reg_index, val); 3843 return RISCV_EXCP_NONE; 3844 } 3845 3846 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3847 target_ulong *val) 3848 { 3849 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3850 return RISCV_EXCP_NONE; 3851 } 3852 3853 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3854 target_ulong val) 3855 { 3856 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3857 return RISCV_EXCP_NONE; 3858 } 3859 3860 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3861 target_ulong *val) 3862 { 3863 *val = tselect_csr_read(env); 3864 return RISCV_EXCP_NONE; 3865 } 3866 3867 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3868 target_ulong val) 3869 { 3870 tselect_csr_write(env, val); 3871 return RISCV_EXCP_NONE; 3872 } 3873 3874 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3875 target_ulong *val) 3876 { 3877 /* return 0 in tdata1 to end the trigger enumeration */ 3878 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3879 *val = 0; 3880 return RISCV_EXCP_NONE; 3881 } 3882 3883 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3884 return RISCV_EXCP_ILLEGAL_INST; 3885 } 3886 3887 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3888 return RISCV_EXCP_NONE; 3889 } 3890 3891 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3892 target_ulong val) 3893 { 3894 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3895 return RISCV_EXCP_ILLEGAL_INST; 3896 } 3897 3898 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3899 return RISCV_EXCP_NONE; 3900 } 3901 3902 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3903 target_ulong *val) 3904 { 3905 *val = tinfo_csr_read(env); 3906 return RISCV_EXCP_NONE; 3907 } 3908 3909 /* 3910 * Functions to access Pointer Masking feature registers 3911 * We have to check if current priv lvl could modify 3912 * csr in given mode 3913 */ 3914 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3915 { 3916 int csr_priv = get_field(csrno, 0x300); 3917 int pm_current; 3918 3919 if (env->debugger) { 3920 return false; 3921 } 3922 /* 3923 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3924 * so allow the access 3925 */ 3926 if (env->priv != csr_priv) { 3927 return false; 3928 } 3929 switch (env->priv) { 3930 case PRV_M: 3931 pm_current = get_field(env->mmte, M_PM_CURRENT); 3932 break; 3933 case PRV_S: 3934 pm_current = get_field(env->mmte, S_PM_CURRENT); 3935 break; 3936 case PRV_U: 3937 pm_current = get_field(env->mmte, U_PM_CURRENT); 3938 break; 3939 default: 3940 g_assert_not_reached(); 3941 } 3942 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3943 return !pm_current; 3944 } 3945 3946 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3947 target_ulong *val) 3948 { 3949 *val = env->mmte & MMTE_MASK; 3950 return RISCV_EXCP_NONE; 3951 } 3952 3953 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3954 target_ulong val) 3955 { 3956 uint64_t mstatus; 3957 target_ulong wpri_val = val & MMTE_MASK; 3958 3959 if (val != wpri_val) { 3960 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 3961 TARGET_FMT_lx "\n", "MMTE: WPRI violation written 0x", 3962 val, "vs expected 0x", wpri_val); 3963 } 3964 /* for machine mode pm.current is hardwired to 1 */ 3965 wpri_val |= MMTE_M_PM_CURRENT; 3966 3967 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3968 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3969 env->mmte = wpri_val | EXT_STATUS_DIRTY; 3970 riscv_cpu_update_mask(env); 3971 3972 /* Set XS and SD bits, since PM CSRs are dirty */ 3973 mstatus = env->mstatus | MSTATUS_XS; 3974 write_mstatus(env, csrno, mstatus); 3975 return RISCV_EXCP_NONE; 3976 } 3977 3978 static RISCVException read_smte(CPURISCVState *env, int csrno, 3979 target_ulong *val) 3980 { 3981 *val = env->mmte & SMTE_MASK; 3982 return RISCV_EXCP_NONE; 3983 } 3984 3985 static RISCVException write_smte(CPURISCVState *env, int csrno, 3986 target_ulong val) 3987 { 3988 target_ulong wpri_val = val & SMTE_MASK; 3989 3990 if (val != wpri_val) { 3991 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 3992 TARGET_FMT_lx "\n", "SMTE: WPRI violation written 0x", 3993 val, "vs expected 0x", wpri_val); 3994 } 3995 3996 /* if pm.current==0 we can't modify current PM CSRs */ 3997 if (check_pm_current_disabled(env, csrno)) { 3998 return RISCV_EXCP_NONE; 3999 } 4000 4001 wpri_val |= (env->mmte & ~SMTE_MASK); 4002 write_mmte(env, csrno, wpri_val); 4003 return RISCV_EXCP_NONE; 4004 } 4005 4006 static RISCVException read_umte(CPURISCVState *env, int csrno, 4007 target_ulong *val) 4008 { 4009 *val = env->mmte & UMTE_MASK; 4010 return RISCV_EXCP_NONE; 4011 } 4012 4013 static RISCVException write_umte(CPURISCVState *env, int csrno, 4014 target_ulong val) 4015 { 4016 target_ulong wpri_val = val & UMTE_MASK; 4017 4018 if (val != wpri_val) { 4019 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4020 TARGET_FMT_lx "\n", "UMTE: WPRI violation written 0x", 4021 val, "vs expected 0x", wpri_val); 4022 } 4023 4024 if (check_pm_current_disabled(env, csrno)) { 4025 return RISCV_EXCP_NONE; 4026 } 4027 4028 wpri_val |= (env->mmte & ~UMTE_MASK); 4029 write_mmte(env, csrno, wpri_val); 4030 return RISCV_EXCP_NONE; 4031 } 4032 4033 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 4034 target_ulong *val) 4035 { 4036 *val = env->mpmmask; 4037 return RISCV_EXCP_NONE; 4038 } 4039 4040 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 4041 target_ulong val) 4042 { 4043 uint64_t mstatus; 4044 4045 env->mpmmask = val; 4046 if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { 4047 env->cur_pmmask = val; 4048 } 4049 env->mmte |= EXT_STATUS_DIRTY; 4050 4051 /* Set XS and SD bits, since PM CSRs are dirty */ 4052 mstatus = env->mstatus | MSTATUS_XS; 4053 write_mstatus(env, csrno, mstatus); 4054 return RISCV_EXCP_NONE; 4055 } 4056 4057 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 4058 target_ulong *val) 4059 { 4060 *val = env->spmmask; 4061 return RISCV_EXCP_NONE; 4062 } 4063 4064 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 4065 target_ulong val) 4066 { 4067 uint64_t mstatus; 4068 4069 /* if pm.current==0 we can't modify current PM CSRs */ 4070 if (check_pm_current_disabled(env, csrno)) { 4071 return RISCV_EXCP_NONE; 4072 } 4073 env->spmmask = val; 4074 if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { 4075 env->cur_pmmask = val; 4076 if (cpu_get_xl(env, PRV_S) == MXL_RV32) { 4077 env->cur_pmmask &= UINT32_MAX; 4078 } 4079 } 4080 env->mmte |= EXT_STATUS_DIRTY; 4081 4082 /* Set XS and SD bits, since PM CSRs are dirty */ 4083 mstatus = env->mstatus | MSTATUS_XS; 4084 write_mstatus(env, csrno, mstatus); 4085 return RISCV_EXCP_NONE; 4086 } 4087 4088 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 4089 target_ulong *val) 4090 { 4091 *val = env->upmmask; 4092 return RISCV_EXCP_NONE; 4093 } 4094 4095 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 4096 target_ulong val) 4097 { 4098 uint64_t mstatus; 4099 4100 /* if pm.current==0 we can't modify current PM CSRs */ 4101 if (check_pm_current_disabled(env, csrno)) { 4102 return RISCV_EXCP_NONE; 4103 } 4104 env->upmmask = val; 4105 if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { 4106 env->cur_pmmask = val; 4107 if (cpu_get_xl(env, PRV_U) == MXL_RV32) { 4108 env->cur_pmmask &= UINT32_MAX; 4109 } 4110 } 4111 env->mmte |= EXT_STATUS_DIRTY; 4112 4113 /* Set XS and SD bits, since PM CSRs are dirty */ 4114 mstatus = env->mstatus | MSTATUS_XS; 4115 write_mstatus(env, csrno, mstatus); 4116 return RISCV_EXCP_NONE; 4117 } 4118 4119 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 4120 target_ulong *val) 4121 { 4122 *val = env->mpmbase; 4123 return RISCV_EXCP_NONE; 4124 } 4125 4126 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 4127 target_ulong val) 4128 { 4129 uint64_t mstatus; 4130 4131 env->mpmbase = val; 4132 if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { 4133 env->cur_pmbase = val; 4134 } 4135 env->mmte |= EXT_STATUS_DIRTY; 4136 4137 /* Set XS and SD bits, since PM CSRs are dirty */ 4138 mstatus = env->mstatus | MSTATUS_XS; 4139 write_mstatus(env, csrno, mstatus); 4140 return RISCV_EXCP_NONE; 4141 } 4142 4143 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 4144 target_ulong *val) 4145 { 4146 *val = env->spmbase; 4147 return RISCV_EXCP_NONE; 4148 } 4149 4150 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 4151 target_ulong val) 4152 { 4153 uint64_t mstatus; 4154 4155 /* if pm.current==0 we can't modify current PM CSRs */ 4156 if (check_pm_current_disabled(env, csrno)) { 4157 return RISCV_EXCP_NONE; 4158 } 4159 env->spmbase = val; 4160 if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { 4161 env->cur_pmbase = val; 4162 if (cpu_get_xl(env, PRV_S) == MXL_RV32) { 4163 env->cur_pmbase &= UINT32_MAX; 4164 } 4165 } 4166 env->mmte |= EXT_STATUS_DIRTY; 4167 4168 /* Set XS and SD bits, since PM CSRs are dirty */ 4169 mstatus = env->mstatus | MSTATUS_XS; 4170 write_mstatus(env, csrno, mstatus); 4171 return RISCV_EXCP_NONE; 4172 } 4173 4174 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 4175 target_ulong *val) 4176 { 4177 *val = env->upmbase; 4178 return RISCV_EXCP_NONE; 4179 } 4180 4181 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 4182 target_ulong val) 4183 { 4184 uint64_t mstatus; 4185 4186 /* if pm.current==0 we can't modify current PM CSRs */ 4187 if (check_pm_current_disabled(env, csrno)) { 4188 return RISCV_EXCP_NONE; 4189 } 4190 env->upmbase = val; 4191 if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { 4192 env->cur_pmbase = val; 4193 if (cpu_get_xl(env, PRV_U) == MXL_RV32) { 4194 env->cur_pmbase &= UINT32_MAX; 4195 } 4196 } 4197 env->mmte |= EXT_STATUS_DIRTY; 4198 4199 /* Set XS and SD bits, since PM CSRs are dirty */ 4200 mstatus = env->mstatus | MSTATUS_XS; 4201 write_mstatus(env, csrno, mstatus); 4202 return RISCV_EXCP_NONE; 4203 } 4204 4205 #endif 4206 4207 /* Crypto Extension */ 4208 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 4209 target_ulong *ret_value, 4210 target_ulong new_value, 4211 target_ulong write_mask) 4212 { 4213 uint16_t random_v; 4214 Error *random_e = NULL; 4215 int random_r; 4216 target_ulong rval; 4217 4218 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 4219 if (unlikely(random_r < 0)) { 4220 /* 4221 * Failed, for unknown reasons in the crypto subsystem. 4222 * The best we can do is log the reason and return a 4223 * failure indication to the guest. There is no reason 4224 * we know to expect the failure to be transitory, so 4225 * indicate DEAD to avoid having the guest spin on WAIT. 4226 */ 4227 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 4228 __func__, error_get_pretty(random_e)); 4229 error_free(random_e); 4230 rval = SEED_OPST_DEAD; 4231 } else { 4232 rval = random_v | SEED_OPST_ES16; 4233 } 4234 4235 if (ret_value) { 4236 *ret_value = rval; 4237 } 4238 4239 return RISCV_EXCP_NONE; 4240 } 4241 4242 /* 4243 * riscv_csrrw - read and/or update control and status register 4244 * 4245 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 4246 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 4247 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 4248 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 4249 */ 4250 4251 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 4252 int csrno, 4253 bool write_mask) 4254 { 4255 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 4256 bool read_only = get_field(csrno, 0xC00) == 3; 4257 int csr_min_priv = csr_ops[csrno].min_priv_ver; 4258 4259 /* ensure the CSR extension is enabled */ 4260 if (!riscv_cpu_cfg(env)->ext_zicsr) { 4261 return RISCV_EXCP_ILLEGAL_INST; 4262 } 4263 4264 /* ensure CSR is implemented by checking predicate */ 4265 if (!csr_ops[csrno].predicate) { 4266 return RISCV_EXCP_ILLEGAL_INST; 4267 } 4268 4269 /* privileged spec version check */ 4270 if (env->priv_ver < csr_min_priv) { 4271 return RISCV_EXCP_ILLEGAL_INST; 4272 } 4273 4274 /* read / write check */ 4275 if (write_mask && read_only) { 4276 return RISCV_EXCP_ILLEGAL_INST; 4277 } 4278 4279 /* 4280 * The predicate() not only does existence check but also does some 4281 * access control check which triggers for example virtual instruction 4282 * exception in some cases. When writing read-only CSRs in those cases 4283 * illegal instruction exception should be triggered instead of virtual 4284 * instruction exception. Hence this comes after the read / write check. 4285 */ 4286 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 4287 if (ret != RISCV_EXCP_NONE) { 4288 return ret; 4289 } 4290 4291 #if !defined(CONFIG_USER_ONLY) 4292 int csr_priv, effective_priv = env->priv; 4293 4294 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 4295 !env->virt_enabled) { 4296 /* 4297 * We are in HS mode. Add 1 to the effective privilege level to 4298 * allow us to access the Hypervisor CSRs. 4299 */ 4300 effective_priv++; 4301 } 4302 4303 csr_priv = get_field(csrno, 0x300); 4304 if (!env->debugger && (effective_priv < csr_priv)) { 4305 if (csr_priv == (PRV_S + 1) && env->virt_enabled) { 4306 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 4307 } 4308 return RISCV_EXCP_ILLEGAL_INST; 4309 } 4310 #endif 4311 return RISCV_EXCP_NONE; 4312 } 4313 4314 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 4315 target_ulong *ret_value, 4316 target_ulong new_value, 4317 target_ulong write_mask) 4318 { 4319 RISCVException ret; 4320 target_ulong old_value = 0; 4321 4322 /* execute combined read/write operation if it exists */ 4323 if (csr_ops[csrno].op) { 4324 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 4325 } 4326 4327 /* 4328 * ret_value == NULL means that rd=x0 and we're coming from helper_csrw() 4329 * and we can't throw side effects caused by CSR reads. 4330 */ 4331 if (ret_value) { 4332 /* if no accessor exists then return failure */ 4333 if (!csr_ops[csrno].read) { 4334 return RISCV_EXCP_ILLEGAL_INST; 4335 } 4336 /* read old value */ 4337 ret = csr_ops[csrno].read(env, csrno, &old_value); 4338 if (ret != RISCV_EXCP_NONE) { 4339 return ret; 4340 } 4341 } 4342 4343 /* write value if writable and write mask set, otherwise drop writes */ 4344 if (write_mask) { 4345 new_value = (old_value & ~write_mask) | (new_value & write_mask); 4346 if (csr_ops[csrno].write) { 4347 ret = csr_ops[csrno].write(env, csrno, new_value); 4348 if (ret != RISCV_EXCP_NONE) { 4349 return ret; 4350 } 4351 } 4352 } 4353 4354 /* return old value */ 4355 if (ret_value) { 4356 *ret_value = old_value; 4357 } 4358 4359 return RISCV_EXCP_NONE; 4360 } 4361 4362 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 4363 target_ulong *ret_value, 4364 target_ulong new_value, target_ulong write_mask) 4365 { 4366 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask); 4367 if (ret != RISCV_EXCP_NONE) { 4368 return ret; 4369 } 4370 4371 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 4372 } 4373 4374 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 4375 Int128 *ret_value, 4376 Int128 new_value, 4377 Int128 write_mask) 4378 { 4379 RISCVException ret; 4380 Int128 old_value; 4381 4382 /* read old value */ 4383 ret = csr_ops[csrno].read128(env, csrno, &old_value); 4384 if (ret != RISCV_EXCP_NONE) { 4385 return ret; 4386 } 4387 4388 /* write value if writable and write mask set, otherwise drop writes */ 4389 if (int128_nz(write_mask)) { 4390 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 4391 int128_and(new_value, write_mask)); 4392 if (csr_ops[csrno].write128) { 4393 ret = csr_ops[csrno].write128(env, csrno, new_value); 4394 if (ret != RISCV_EXCP_NONE) { 4395 return ret; 4396 } 4397 } else if (csr_ops[csrno].write) { 4398 /* avoids having to write wrappers for all registers */ 4399 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 4400 if (ret != RISCV_EXCP_NONE) { 4401 return ret; 4402 } 4403 } 4404 } 4405 4406 /* return old value */ 4407 if (ret_value) { 4408 *ret_value = old_value; 4409 } 4410 4411 return RISCV_EXCP_NONE; 4412 } 4413 4414 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 4415 Int128 *ret_value, 4416 Int128 new_value, Int128 write_mask) 4417 { 4418 RISCVException ret; 4419 4420 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask)); 4421 if (ret != RISCV_EXCP_NONE) { 4422 return ret; 4423 } 4424 4425 if (csr_ops[csrno].read128) { 4426 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 4427 } 4428 4429 /* 4430 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 4431 * at all defined. 4432 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 4433 * significant), for those, this fallback is correctly handling the 4434 * accesses 4435 */ 4436 target_ulong old_value; 4437 ret = riscv_csrrw_do64(env, csrno, &old_value, 4438 int128_getlo(new_value), 4439 int128_getlo(write_mask)); 4440 if (ret == RISCV_EXCP_NONE && ret_value) { 4441 *ret_value = int128_make64(old_value); 4442 } 4443 return ret; 4444 } 4445 4446 /* 4447 * Debugger support. If not in user mode, set env->debugger before the 4448 * riscv_csrrw call and clear it after the call. 4449 */ 4450 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 4451 target_ulong *ret_value, 4452 target_ulong new_value, 4453 target_ulong write_mask) 4454 { 4455 RISCVException ret; 4456 #if !defined(CONFIG_USER_ONLY) 4457 env->debugger = true; 4458 #endif 4459 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 4460 #if !defined(CONFIG_USER_ONLY) 4461 env->debugger = false; 4462 #endif 4463 return ret; 4464 } 4465 4466 static RISCVException read_jvt(CPURISCVState *env, int csrno, 4467 target_ulong *val) 4468 { 4469 *val = env->jvt; 4470 return RISCV_EXCP_NONE; 4471 } 4472 4473 static RISCVException write_jvt(CPURISCVState *env, int csrno, 4474 target_ulong val) 4475 { 4476 env->jvt = val; 4477 return RISCV_EXCP_NONE; 4478 } 4479 4480 /* 4481 * Control and Status Register function table 4482 * riscv_csr_operations::predicate() must be provided for an implemented CSR 4483 */ 4484 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 4485 /* User Floating-Point CSRs */ 4486 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 4487 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 4488 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 4489 /* Vector CSRs */ 4490 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 4491 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 4492 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4493 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4494 [CSR_VL] = { "vl", vs, read_vl }, 4495 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4496 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4497 /* User Timers and Counters */ 4498 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4499 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4500 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4501 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4502 4503 /* 4504 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4505 * rdtime callback is not provided by machine/platform emulation. 4506 */ 4507 [CSR_TIME] = { "time", ctr, read_time }, 4508 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4509 4510 /* Crypto Extension */ 4511 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4512 4513 /* Zcmt Extension */ 4514 [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, 4515 4516 #if !defined(CONFIG_USER_ONLY) 4517 /* Machine Timers and Counters */ 4518 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4519 write_mhpmcounter }, 4520 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4521 write_mhpmcounter }, 4522 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4523 write_mhpmcounterh }, 4524 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4525 write_mhpmcounterh }, 4526 4527 /* Machine Information Registers */ 4528 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4529 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4530 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4531 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4532 4533 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4534 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4535 /* Machine Trap Setup */ 4536 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4537 NULL, read_mstatus_i128 }, 4538 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4539 NULL, read_misa_i128 }, 4540 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4541 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4542 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4543 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4544 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4545 write_mcounteren }, 4546 4547 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4548 write_mstatush }, 4549 4550 /* Machine Trap Handling */ 4551 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4552 NULL, read_mscratch_i128, write_mscratch_i128 }, 4553 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4554 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4555 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4556 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4557 4558 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4559 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4560 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4561 4562 /* Machine-Level Interrupts (AIA) */ 4563 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4564 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4565 4566 /* Virtual Interrupts for Supervisor Level (AIA) */ 4567 [CSR_MVIEN] = { "mvien", aia_any, NULL, NULL, rmw_mvien }, 4568 [CSR_MVIP] = { "mvip", aia_any, NULL, NULL, rmw_mvip }, 4569 4570 /* Machine-Level High-Half CSRs (AIA) */ 4571 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4572 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4573 [CSR_MVIENH] = { "mvienh", aia_any32, NULL, NULL, rmw_mvienh }, 4574 [CSR_MVIPH] = { "mviph", aia_any32, NULL, NULL, rmw_mviph }, 4575 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4576 4577 /* Execution environment configuration */ 4578 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4579 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4580 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4581 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4582 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4583 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4584 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4585 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4586 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4587 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4588 4589 /* Smstateen extension CSRs */ 4590 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4591 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4592 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4593 write_mstateen0h, 4594 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4595 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4596 write_mstateen_1_3, 4597 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4598 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4599 write_mstateenh_1_3, 4600 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4601 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4602 write_mstateen_1_3, 4603 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4604 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4605 write_mstateenh_1_3, 4606 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4607 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4608 write_mstateen_1_3, 4609 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4610 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4611 write_mstateenh_1_3, 4612 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4613 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4614 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4615 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4616 write_hstateen0h, 4617 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4618 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4619 write_hstateen_1_3, 4620 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4621 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4622 write_hstateenh_1_3, 4623 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4624 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4625 write_hstateen_1_3, 4626 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4627 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4628 write_hstateenh_1_3, 4629 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4630 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4631 write_hstateen_1_3, 4632 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4633 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4634 write_hstateenh_1_3, 4635 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4636 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4637 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4638 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4639 write_sstateen_1_3, 4640 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4641 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4642 write_sstateen_1_3, 4643 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4644 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4645 write_sstateen_1_3, 4646 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4647 4648 /* Supervisor Trap Setup */ 4649 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4650 NULL, read_sstatus_i128 }, 4651 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4652 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4653 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4654 write_scounteren }, 4655 4656 /* Supervisor Trap Handling */ 4657 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4658 NULL, read_sscratch_i128, write_sscratch_i128 }, 4659 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4660 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4661 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4662 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4663 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4664 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4665 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4666 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4667 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4668 write_vstimecmp, 4669 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4670 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4671 write_vstimecmph, 4672 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4673 4674 /* Supervisor Protection and Translation */ 4675 [CSR_SATP] = { "satp", satp, read_satp, write_satp }, 4676 4677 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4678 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4679 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4680 4681 /* Supervisor-Level Interrupts (AIA) */ 4682 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4683 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4684 4685 /* Supervisor-Level High-Half CSRs (AIA) */ 4686 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4687 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4688 4689 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4690 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4691 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4692 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4693 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4694 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4695 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4696 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4697 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4698 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4699 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4700 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4701 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4702 write_hcounteren, 4703 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4704 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4705 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4706 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4707 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4708 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4709 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4710 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4711 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4712 [CSR_HGATP] = { "hgatp", hgatp, read_hgatp, write_hgatp, 4713 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4714 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4715 write_htimedelta, 4716 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4717 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4718 write_htimedeltah, 4719 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4720 4721 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4722 write_vsstatus, 4723 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4724 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4725 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4726 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4727 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4728 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4729 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4730 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4731 write_vsscratch, 4732 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4733 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4734 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4735 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4736 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4737 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4738 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4739 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4740 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4741 4742 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4743 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4744 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4745 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4746 4747 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4748 [CSR_HVIEN] = { "hvien", aia_hmode, NULL, NULL, rmw_hvien }, 4749 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4750 write_hvictl }, 4751 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4752 write_hviprio1 }, 4753 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4754 write_hviprio2 }, 4755 /* 4756 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4757 */ 4758 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4759 rmw_xiselect }, 4760 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4761 4762 /* VS-Level Interrupts (H-extension with AIA) */ 4763 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4764 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4765 4766 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4767 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4768 rmw_hidelegh }, 4769 [CSR_HVIENH] = { "hvienh", aia_hmode32, NULL, NULL, rmw_hvienh }, 4770 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4771 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4772 write_hviprio1h }, 4773 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4774 write_hviprio2h }, 4775 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4776 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4777 4778 /* Physical Memory Protection */ 4779 [CSR_MSECCFG] = { "mseccfg", have_mseccfg, read_mseccfg, write_mseccfg, 4780 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4781 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4782 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4783 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4784 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4785 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4786 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4787 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4788 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4789 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4790 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4791 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4792 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4793 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4794 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4795 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4796 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4797 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4798 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4799 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4800 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4801 4802 /* Debug CSRs */ 4803 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4804 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4805 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4806 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4807 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4808 4809 /* User Pointer Masking */ 4810 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4811 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4812 write_upmmask }, 4813 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4814 write_upmbase }, 4815 /* Machine Pointer Masking */ 4816 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4817 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4818 write_mpmmask }, 4819 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4820 write_mpmbase }, 4821 /* Supervisor Pointer Masking */ 4822 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4823 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4824 write_spmmask }, 4825 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4826 write_spmbase }, 4827 4828 /* Performance Counters */ 4829 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4830 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4831 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4832 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4833 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4834 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4835 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4836 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4837 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4838 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4839 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4840 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4841 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4842 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4843 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4844 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4845 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4846 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4847 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4848 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4849 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4850 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4851 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4852 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4853 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4854 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4855 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4856 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4857 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4858 4859 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4860 write_mhpmcounter }, 4861 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4862 write_mhpmcounter }, 4863 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4864 write_mhpmcounter }, 4865 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4866 write_mhpmcounter }, 4867 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4868 write_mhpmcounter }, 4869 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4870 write_mhpmcounter }, 4871 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4872 write_mhpmcounter }, 4873 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4874 write_mhpmcounter }, 4875 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4876 write_mhpmcounter }, 4877 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4878 write_mhpmcounter }, 4879 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4880 write_mhpmcounter }, 4881 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4882 write_mhpmcounter }, 4883 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4884 write_mhpmcounter }, 4885 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4886 write_mhpmcounter }, 4887 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4888 write_mhpmcounter }, 4889 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4890 write_mhpmcounter }, 4891 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4892 write_mhpmcounter }, 4893 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4894 write_mhpmcounter }, 4895 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4896 write_mhpmcounter }, 4897 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4898 write_mhpmcounter }, 4899 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4900 write_mhpmcounter }, 4901 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4902 write_mhpmcounter }, 4903 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4904 write_mhpmcounter }, 4905 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4906 write_mhpmcounter }, 4907 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4908 write_mhpmcounter }, 4909 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4910 write_mhpmcounter }, 4911 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4912 write_mhpmcounter }, 4913 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4914 write_mhpmcounter }, 4915 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4916 write_mhpmcounter }, 4917 4918 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4919 write_mcountinhibit, 4920 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4921 4922 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4923 write_mhpmevent }, 4924 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4925 write_mhpmevent }, 4926 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4927 write_mhpmevent }, 4928 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4929 write_mhpmevent }, 4930 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4931 write_mhpmevent }, 4932 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4933 write_mhpmevent }, 4934 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4935 write_mhpmevent }, 4936 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4937 write_mhpmevent }, 4938 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4939 write_mhpmevent }, 4940 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4941 write_mhpmevent }, 4942 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4943 write_mhpmevent }, 4944 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4945 write_mhpmevent }, 4946 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4947 write_mhpmevent }, 4948 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4949 write_mhpmevent }, 4950 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4951 write_mhpmevent }, 4952 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4953 write_mhpmevent }, 4954 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4955 write_mhpmevent }, 4956 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4957 write_mhpmevent }, 4958 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4959 write_mhpmevent }, 4960 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4961 write_mhpmevent }, 4962 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4963 write_mhpmevent }, 4964 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4965 write_mhpmevent }, 4966 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4967 write_mhpmevent }, 4968 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4969 write_mhpmevent }, 4970 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4971 write_mhpmevent }, 4972 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4973 write_mhpmevent }, 4974 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4975 write_mhpmevent }, 4976 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4977 write_mhpmevent }, 4978 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4979 write_mhpmevent }, 4980 4981 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4982 write_mhpmeventh, 4983 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4984 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4985 write_mhpmeventh, 4986 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4987 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4988 write_mhpmeventh, 4989 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4990 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4991 write_mhpmeventh, 4992 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4993 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4994 write_mhpmeventh, 4995 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4996 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4997 write_mhpmeventh, 4998 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4999 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 5000 write_mhpmeventh, 5001 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5002 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 5003 write_mhpmeventh, 5004 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5005 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 5006 write_mhpmeventh, 5007 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5008 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 5009 write_mhpmeventh, 5010 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5011 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 5012 write_mhpmeventh, 5013 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5014 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 5015 write_mhpmeventh, 5016 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5017 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 5018 write_mhpmeventh, 5019 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5020 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 5021 write_mhpmeventh, 5022 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5023 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 5024 write_mhpmeventh, 5025 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5026 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 5027 write_mhpmeventh, 5028 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5029 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 5030 write_mhpmeventh, 5031 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5032 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 5033 write_mhpmeventh, 5034 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5035 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 5036 write_mhpmeventh, 5037 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5038 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 5039 write_mhpmeventh, 5040 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5041 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 5042 write_mhpmeventh, 5043 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5044 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 5045 write_mhpmeventh, 5046 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5047 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 5048 write_mhpmeventh, 5049 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5050 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 5051 write_mhpmeventh, 5052 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5053 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 5054 write_mhpmeventh, 5055 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5056 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 5057 write_mhpmeventh, 5058 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5059 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 5060 write_mhpmeventh, 5061 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5062 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 5063 write_mhpmeventh, 5064 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5065 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 5066 write_mhpmeventh, 5067 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5068 5069 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 5070 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 5071 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 5072 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 5073 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 5074 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 5075 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 5076 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 5077 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 5078 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 5079 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 5080 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 5081 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 5082 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 5083 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 5084 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 5085 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 5086 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 5087 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 5088 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 5089 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 5090 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 5091 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 5092 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 5093 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 5094 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 5095 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 5096 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 5097 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 5098 5099 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 5100 write_mhpmcounterh }, 5101 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 5102 write_mhpmcounterh }, 5103 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 5104 write_mhpmcounterh }, 5105 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 5106 write_mhpmcounterh }, 5107 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 5108 write_mhpmcounterh }, 5109 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 5110 write_mhpmcounterh }, 5111 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 5112 write_mhpmcounterh }, 5113 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 5114 write_mhpmcounterh }, 5115 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 5116 write_mhpmcounterh }, 5117 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 5118 write_mhpmcounterh }, 5119 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 5120 write_mhpmcounterh }, 5121 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 5122 write_mhpmcounterh }, 5123 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 5124 write_mhpmcounterh }, 5125 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 5126 write_mhpmcounterh }, 5127 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 5128 write_mhpmcounterh }, 5129 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 5130 write_mhpmcounterh }, 5131 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 5132 write_mhpmcounterh }, 5133 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 5134 write_mhpmcounterh }, 5135 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 5136 write_mhpmcounterh }, 5137 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 5138 write_mhpmcounterh }, 5139 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 5140 write_mhpmcounterh }, 5141 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 5142 write_mhpmcounterh }, 5143 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 5144 write_mhpmcounterh }, 5145 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 5146 write_mhpmcounterh }, 5147 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 5148 write_mhpmcounterh }, 5149 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 5150 write_mhpmcounterh }, 5151 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 5152 write_mhpmcounterh }, 5153 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 5154 write_mhpmcounterh }, 5155 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 5156 write_mhpmcounterh }, 5157 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 5158 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5159 5160 #endif /* !CONFIG_USER_ONLY */ 5161 }; 5162