1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "tcg/tcg-cpu.h" 25 #include "pmu.h" 26 #include "time_helper.h" 27 #include "exec/exec-all.h" 28 #include "exec/tb-flush.h" 29 #include "sysemu/cpu-timers.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 33 34 /* CSR function table public API */ 35 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 36 { 37 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 38 } 39 40 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 41 { 42 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 43 } 44 45 /* Predicates */ 46 #if !defined(CONFIG_USER_ONLY) 47 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) 48 { 49 bool virt = env->virt_enabled; 50 51 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 52 return RISCV_EXCP_NONE; 53 } 54 55 if (!(env->mstateen[index] & bit)) { 56 return RISCV_EXCP_ILLEGAL_INST; 57 } 58 59 if (virt) { 60 if (!(env->hstateen[index] & bit)) { 61 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 62 } 63 64 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 65 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 66 } 67 } 68 69 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 70 if (!(env->sstateen[index] & bit)) { 71 return RISCV_EXCP_ILLEGAL_INST; 72 } 73 } 74 75 return RISCV_EXCP_NONE; 76 } 77 #endif 78 79 static RISCVException fs(CPURISCVState *env, int csrno) 80 { 81 #if !defined(CONFIG_USER_ONLY) 82 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 83 !riscv_cpu_cfg(env)->ext_zfinx) { 84 return RISCV_EXCP_ILLEGAL_INST; 85 } 86 87 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 88 return smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR); 89 } 90 #endif 91 return RISCV_EXCP_NONE; 92 } 93 94 static RISCVException vs(CPURISCVState *env, int csrno) 95 { 96 if (riscv_cpu_cfg(env)->ext_zve32x) { 97 #if !defined(CONFIG_USER_ONLY) 98 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 99 return RISCV_EXCP_ILLEGAL_INST; 100 } 101 #endif 102 return RISCV_EXCP_NONE; 103 } 104 return RISCV_EXCP_ILLEGAL_INST; 105 } 106 107 static RISCVException ctr(CPURISCVState *env, int csrno) 108 { 109 #if !defined(CONFIG_USER_ONLY) 110 RISCVCPU *cpu = env_archcpu(env); 111 int ctr_index; 112 target_ulong ctr_mask; 113 int base_csrno = CSR_CYCLE; 114 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 115 116 if (rv32 && csrno >= CSR_CYCLEH) { 117 /* Offset for RV32 hpmcounternh counters */ 118 base_csrno += 0x80; 119 } 120 ctr_index = csrno - base_csrno; 121 ctr_mask = BIT(ctr_index); 122 123 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 124 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 125 if (!riscv_cpu_cfg(env)->ext_zicntr) { 126 return RISCV_EXCP_ILLEGAL_INST; 127 } 128 129 goto skip_ext_pmu_check; 130 } 131 132 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 133 /* No counter is enabled in PMU or the counter is out of range */ 134 return RISCV_EXCP_ILLEGAL_INST; 135 } 136 137 skip_ext_pmu_check: 138 139 if (env->debugger) { 140 return RISCV_EXCP_NONE; 141 } 142 143 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 144 return RISCV_EXCP_ILLEGAL_INST; 145 } 146 147 if (env->virt_enabled) { 148 if (!get_field(env->hcounteren, ctr_mask) || 149 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 150 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 151 } 152 } 153 154 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 155 !get_field(env->scounteren, ctr_mask)) { 156 return RISCV_EXCP_ILLEGAL_INST; 157 } 158 159 #endif 160 return RISCV_EXCP_NONE; 161 } 162 163 static RISCVException ctr32(CPURISCVState *env, int csrno) 164 { 165 if (riscv_cpu_mxl(env) != MXL_RV32) { 166 return RISCV_EXCP_ILLEGAL_INST; 167 } 168 169 return ctr(env, csrno); 170 } 171 172 static RISCVException zcmt(CPURISCVState *env, int csrno) 173 { 174 if (!riscv_cpu_cfg(env)->ext_zcmt) { 175 return RISCV_EXCP_ILLEGAL_INST; 176 } 177 178 #if !defined(CONFIG_USER_ONLY) 179 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); 180 if (ret != RISCV_EXCP_NONE) { 181 return ret; 182 } 183 #endif 184 185 return RISCV_EXCP_NONE; 186 } 187 188 #if !defined(CONFIG_USER_ONLY) 189 static RISCVException mctr(CPURISCVState *env, int csrno) 190 { 191 RISCVCPU *cpu = env_archcpu(env); 192 uint32_t pmu_avail_ctrs = cpu->pmu_avail_ctrs; 193 int ctr_index; 194 int base_csrno = CSR_MHPMCOUNTER3; 195 196 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 197 /* Offset for RV32 mhpmcounternh counters */ 198 csrno -= 0x80; 199 } 200 201 g_assert(csrno >= CSR_MHPMCOUNTER3 && csrno <= CSR_MHPMCOUNTER31); 202 203 ctr_index = csrno - base_csrno; 204 if ((BIT(ctr_index) & pmu_avail_ctrs >> 3) == 0) { 205 /* The PMU is not enabled or counter is out of range */ 206 return RISCV_EXCP_ILLEGAL_INST; 207 } 208 209 return RISCV_EXCP_NONE; 210 } 211 212 static RISCVException mctr32(CPURISCVState *env, int csrno) 213 { 214 if (riscv_cpu_mxl(env) != MXL_RV32) { 215 return RISCV_EXCP_ILLEGAL_INST; 216 } 217 218 return mctr(env, csrno); 219 } 220 221 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 222 { 223 if (!riscv_cpu_cfg(env)->ext_sscofpmf) { 224 return RISCV_EXCP_ILLEGAL_INST; 225 } 226 227 return RISCV_EXCP_NONE; 228 } 229 230 static RISCVException any(CPURISCVState *env, int csrno) 231 { 232 return RISCV_EXCP_NONE; 233 } 234 235 static RISCVException any32(CPURISCVState *env, int csrno) 236 { 237 if (riscv_cpu_mxl(env) != MXL_RV32) { 238 return RISCV_EXCP_ILLEGAL_INST; 239 } 240 241 return any(env, csrno); 242 243 } 244 245 static RISCVException aia_any(CPURISCVState *env, int csrno) 246 { 247 if (!riscv_cpu_cfg(env)->ext_smaia) { 248 return RISCV_EXCP_ILLEGAL_INST; 249 } 250 251 return any(env, csrno); 252 } 253 254 static RISCVException aia_any32(CPURISCVState *env, int csrno) 255 { 256 if (!riscv_cpu_cfg(env)->ext_smaia) { 257 return RISCV_EXCP_ILLEGAL_INST; 258 } 259 260 return any32(env, csrno); 261 } 262 263 static RISCVException smode(CPURISCVState *env, int csrno) 264 { 265 if (riscv_has_ext(env, RVS)) { 266 return RISCV_EXCP_NONE; 267 } 268 269 return RISCV_EXCP_ILLEGAL_INST; 270 } 271 272 static RISCVException smode32(CPURISCVState *env, int csrno) 273 { 274 if (riscv_cpu_mxl(env) != MXL_RV32) { 275 return RISCV_EXCP_ILLEGAL_INST; 276 } 277 278 return smode(env, csrno); 279 } 280 281 static RISCVException aia_smode(CPURISCVState *env, int csrno) 282 { 283 if (!riscv_cpu_cfg(env)->ext_ssaia) { 284 return RISCV_EXCP_ILLEGAL_INST; 285 } 286 287 return smode(env, csrno); 288 } 289 290 static RISCVException aia_smode32(CPURISCVState *env, int csrno) 291 { 292 if (!riscv_cpu_cfg(env)->ext_ssaia) { 293 return RISCV_EXCP_ILLEGAL_INST; 294 } 295 296 return smode32(env, csrno); 297 } 298 299 static RISCVException hmode(CPURISCVState *env, int csrno) 300 { 301 if (riscv_has_ext(env, RVH)) { 302 return RISCV_EXCP_NONE; 303 } 304 305 return RISCV_EXCP_ILLEGAL_INST; 306 } 307 308 static RISCVException hmode32(CPURISCVState *env, int csrno) 309 { 310 if (riscv_cpu_mxl(env) != MXL_RV32) { 311 return RISCV_EXCP_ILLEGAL_INST; 312 } 313 314 return hmode(env, csrno); 315 316 } 317 318 static RISCVException umode(CPURISCVState *env, int csrno) 319 { 320 if (riscv_has_ext(env, RVU)) { 321 return RISCV_EXCP_NONE; 322 } 323 324 return RISCV_EXCP_ILLEGAL_INST; 325 } 326 327 static RISCVException umode32(CPURISCVState *env, int csrno) 328 { 329 if (riscv_cpu_mxl(env) != MXL_RV32) { 330 return RISCV_EXCP_ILLEGAL_INST; 331 } 332 333 return umode(env, csrno); 334 } 335 336 static RISCVException mstateen(CPURISCVState *env, int csrno) 337 { 338 if (!riscv_cpu_cfg(env)->ext_smstateen) { 339 return RISCV_EXCP_ILLEGAL_INST; 340 } 341 342 return any(env, csrno); 343 } 344 345 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 346 { 347 if (!riscv_cpu_cfg(env)->ext_smstateen) { 348 return RISCV_EXCP_ILLEGAL_INST; 349 } 350 351 RISCVException ret = hmode(env, csrno); 352 if (ret != RISCV_EXCP_NONE) { 353 return ret; 354 } 355 356 if (env->debugger) { 357 return RISCV_EXCP_NONE; 358 } 359 360 if (env->priv < PRV_M) { 361 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 362 return RISCV_EXCP_ILLEGAL_INST; 363 } 364 } 365 366 return RISCV_EXCP_NONE; 367 } 368 369 static RISCVException hstateen(CPURISCVState *env, int csrno) 370 { 371 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 372 } 373 374 static RISCVException hstateenh(CPURISCVState *env, int csrno) 375 { 376 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 377 } 378 379 static RISCVException sstateen(CPURISCVState *env, int csrno) 380 { 381 bool virt = env->virt_enabled; 382 int index = csrno - CSR_SSTATEEN0; 383 384 if (!riscv_cpu_cfg(env)->ext_smstateen) { 385 return RISCV_EXCP_ILLEGAL_INST; 386 } 387 388 RISCVException ret = smode(env, csrno); 389 if (ret != RISCV_EXCP_NONE) { 390 return ret; 391 } 392 393 if (env->debugger) { 394 return RISCV_EXCP_NONE; 395 } 396 397 if (env->priv < PRV_M) { 398 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 399 return RISCV_EXCP_ILLEGAL_INST; 400 } 401 402 if (virt) { 403 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 404 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 405 } 406 } 407 } 408 409 return RISCV_EXCP_NONE; 410 } 411 412 static RISCVException sstc(CPURISCVState *env, int csrno) 413 { 414 bool hmode_check = false; 415 416 if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { 417 return RISCV_EXCP_ILLEGAL_INST; 418 } 419 420 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 421 hmode_check = true; 422 } 423 424 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 425 if (ret != RISCV_EXCP_NONE) { 426 return ret; 427 } 428 429 if (env->debugger) { 430 return RISCV_EXCP_NONE; 431 } 432 433 if (env->priv == PRV_M) { 434 return RISCV_EXCP_NONE; 435 } 436 437 /* 438 * No need of separate function for rv32 as menvcfg stores both menvcfg 439 * menvcfgh for RV32. 440 */ 441 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 442 get_field(env->menvcfg, MENVCFG_STCE))) { 443 return RISCV_EXCP_ILLEGAL_INST; 444 } 445 446 if (env->virt_enabled) { 447 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 448 get_field(env->henvcfg, HENVCFG_STCE))) { 449 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 450 } 451 } 452 453 return RISCV_EXCP_NONE; 454 } 455 456 static RISCVException sstc_32(CPURISCVState *env, int csrno) 457 { 458 if (riscv_cpu_mxl(env) != MXL_RV32) { 459 return RISCV_EXCP_ILLEGAL_INST; 460 } 461 462 return sstc(env, csrno); 463 } 464 465 static RISCVException satp(CPURISCVState *env, int csrno) 466 { 467 if (env->priv == PRV_S && !env->virt_enabled && 468 get_field(env->mstatus, MSTATUS_TVM)) { 469 return RISCV_EXCP_ILLEGAL_INST; 470 } 471 if (env->priv == PRV_S && env->virt_enabled && 472 get_field(env->hstatus, HSTATUS_VTVM)) { 473 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 474 } 475 476 return smode(env, csrno); 477 } 478 479 static RISCVException hgatp(CPURISCVState *env, int csrno) 480 { 481 if (env->priv == PRV_S && !env->virt_enabled && 482 get_field(env->mstatus, MSTATUS_TVM)) { 483 return RISCV_EXCP_ILLEGAL_INST; 484 } 485 486 return hmode(env, csrno); 487 } 488 489 /* Checks if PointerMasking registers could be accessed */ 490 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 491 { 492 /* Check if j-ext is present */ 493 if (riscv_has_ext(env, RVJ)) { 494 return RISCV_EXCP_NONE; 495 } 496 return RISCV_EXCP_ILLEGAL_INST; 497 } 498 499 static RISCVException aia_hmode(CPURISCVState *env, int csrno) 500 { 501 if (!riscv_cpu_cfg(env)->ext_ssaia) { 502 return RISCV_EXCP_ILLEGAL_INST; 503 } 504 505 return hmode(env, csrno); 506 } 507 508 static RISCVException aia_hmode32(CPURISCVState *env, int csrno) 509 { 510 if (!riscv_cpu_cfg(env)->ext_ssaia) { 511 return RISCV_EXCP_ILLEGAL_INST; 512 } 513 514 return hmode32(env, csrno); 515 } 516 517 static RISCVException pmp(CPURISCVState *env, int csrno) 518 { 519 if (riscv_cpu_cfg(env)->pmp) { 520 if (csrno <= CSR_PMPCFG3) { 521 uint32_t reg_index = csrno - CSR_PMPCFG0; 522 523 /* TODO: RV128 restriction check */ 524 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 525 return RISCV_EXCP_ILLEGAL_INST; 526 } 527 } 528 529 return RISCV_EXCP_NONE; 530 } 531 532 return RISCV_EXCP_ILLEGAL_INST; 533 } 534 535 static RISCVException have_mseccfg(CPURISCVState *env, int csrno) 536 { 537 if (riscv_cpu_cfg(env)->ext_smepmp) { 538 return RISCV_EXCP_NONE; 539 } 540 if (riscv_cpu_cfg(env)->ext_zkr) { 541 return RISCV_EXCP_NONE; 542 } 543 544 return RISCV_EXCP_ILLEGAL_INST; 545 } 546 547 static RISCVException debug(CPURISCVState *env, int csrno) 548 { 549 if (riscv_cpu_cfg(env)->debug) { 550 return RISCV_EXCP_NONE; 551 } 552 553 return RISCV_EXCP_ILLEGAL_INST; 554 } 555 #endif 556 557 static RISCVException seed(CPURISCVState *env, int csrno) 558 { 559 if (!riscv_cpu_cfg(env)->ext_zkr) { 560 return RISCV_EXCP_ILLEGAL_INST; 561 } 562 563 #if !defined(CONFIG_USER_ONLY) 564 if (env->debugger) { 565 return RISCV_EXCP_NONE; 566 } 567 568 /* 569 * With a CSR read-write instruction: 570 * 1) The seed CSR is always available in machine mode as normal. 571 * 2) Attempted access to seed from virtual modes VS and VU always raises 572 * an exception(virtual instruction exception only if mseccfg.sseed=1). 573 * 3) Without the corresponding access control bit set to 1, any attempted 574 * access to seed from U, S or HS modes will raise an illegal instruction 575 * exception. 576 */ 577 if (env->priv == PRV_M) { 578 return RISCV_EXCP_NONE; 579 } else if (env->virt_enabled) { 580 if (env->mseccfg & MSECCFG_SSEED) { 581 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 582 } else { 583 return RISCV_EXCP_ILLEGAL_INST; 584 } 585 } else { 586 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 587 return RISCV_EXCP_NONE; 588 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 589 return RISCV_EXCP_NONE; 590 } else { 591 return RISCV_EXCP_ILLEGAL_INST; 592 } 593 } 594 #else 595 return RISCV_EXCP_NONE; 596 #endif 597 } 598 599 /* User Floating-Point CSRs */ 600 static RISCVException read_fflags(CPURISCVState *env, int csrno, 601 target_ulong *val) 602 { 603 *val = riscv_cpu_get_fflags(env); 604 return RISCV_EXCP_NONE; 605 } 606 607 static RISCVException write_fflags(CPURISCVState *env, int csrno, 608 target_ulong val) 609 { 610 #if !defined(CONFIG_USER_ONLY) 611 if (riscv_has_ext(env, RVF)) { 612 env->mstatus |= MSTATUS_FS; 613 } 614 #endif 615 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 616 return RISCV_EXCP_NONE; 617 } 618 619 static RISCVException read_frm(CPURISCVState *env, int csrno, 620 target_ulong *val) 621 { 622 *val = env->frm; 623 return RISCV_EXCP_NONE; 624 } 625 626 static RISCVException write_frm(CPURISCVState *env, int csrno, 627 target_ulong val) 628 { 629 #if !defined(CONFIG_USER_ONLY) 630 if (riscv_has_ext(env, RVF)) { 631 env->mstatus |= MSTATUS_FS; 632 } 633 #endif 634 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 635 return RISCV_EXCP_NONE; 636 } 637 638 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 639 target_ulong *val) 640 { 641 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 642 | (env->frm << FSR_RD_SHIFT); 643 return RISCV_EXCP_NONE; 644 } 645 646 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 647 target_ulong val) 648 { 649 #if !defined(CONFIG_USER_ONLY) 650 if (riscv_has_ext(env, RVF)) { 651 env->mstatus |= MSTATUS_FS; 652 } 653 #endif 654 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 655 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 656 return RISCV_EXCP_NONE; 657 } 658 659 static RISCVException read_vtype(CPURISCVState *env, int csrno, 660 target_ulong *val) 661 { 662 uint64_t vill; 663 switch (env->xl) { 664 case MXL_RV32: 665 vill = (uint32_t)env->vill << 31; 666 break; 667 case MXL_RV64: 668 vill = (uint64_t)env->vill << 63; 669 break; 670 default: 671 g_assert_not_reached(); 672 } 673 *val = (target_ulong)vill | env->vtype; 674 return RISCV_EXCP_NONE; 675 } 676 677 static RISCVException read_vl(CPURISCVState *env, int csrno, 678 target_ulong *val) 679 { 680 *val = env->vl; 681 return RISCV_EXCP_NONE; 682 } 683 684 static RISCVException read_vlenb(CPURISCVState *env, int csrno, 685 target_ulong *val) 686 { 687 *val = riscv_cpu_cfg(env)->vlenb; 688 return RISCV_EXCP_NONE; 689 } 690 691 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 692 target_ulong *val) 693 { 694 *val = env->vxrm; 695 return RISCV_EXCP_NONE; 696 } 697 698 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 699 target_ulong val) 700 { 701 #if !defined(CONFIG_USER_ONLY) 702 env->mstatus |= MSTATUS_VS; 703 #endif 704 env->vxrm = val; 705 return RISCV_EXCP_NONE; 706 } 707 708 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 709 target_ulong *val) 710 { 711 *val = env->vxsat; 712 return RISCV_EXCP_NONE; 713 } 714 715 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 716 target_ulong val) 717 { 718 #if !defined(CONFIG_USER_ONLY) 719 env->mstatus |= MSTATUS_VS; 720 #endif 721 env->vxsat = val; 722 return RISCV_EXCP_NONE; 723 } 724 725 static RISCVException read_vstart(CPURISCVState *env, int csrno, 726 target_ulong *val) 727 { 728 *val = env->vstart; 729 return RISCV_EXCP_NONE; 730 } 731 732 static RISCVException write_vstart(CPURISCVState *env, int csrno, 733 target_ulong val) 734 { 735 #if !defined(CONFIG_USER_ONLY) 736 env->mstatus |= MSTATUS_VS; 737 #endif 738 /* 739 * The vstart CSR is defined to have only enough writable bits 740 * to hold the largest element index, i.e. lg2(VLEN) bits. 741 */ 742 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlenb << 3)); 743 return RISCV_EXCP_NONE; 744 } 745 746 static RISCVException read_vcsr(CPURISCVState *env, int csrno, 747 target_ulong *val) 748 { 749 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 750 return RISCV_EXCP_NONE; 751 } 752 753 static RISCVException write_vcsr(CPURISCVState *env, int csrno, 754 target_ulong val) 755 { 756 #if !defined(CONFIG_USER_ONLY) 757 env->mstatus |= MSTATUS_VS; 758 #endif 759 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 760 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 761 return RISCV_EXCP_NONE; 762 } 763 764 /* User Timers and Counters */ 765 static target_ulong get_ticks(bool shift, bool instructions) 766 { 767 int64_t val; 768 target_ulong result; 769 770 #if !defined(CONFIG_USER_ONLY) 771 if (icount_enabled()) { 772 if (instructions) { 773 val = icount_get_raw(); 774 } else { 775 val = icount_get(); 776 } 777 } else { 778 val = cpu_get_host_ticks(); 779 } 780 #else 781 val = cpu_get_host_ticks(); 782 #endif 783 784 if (shift) { 785 result = val >> 32; 786 } else { 787 result = val; 788 } 789 790 return result; 791 } 792 793 #if defined(CONFIG_USER_ONLY) 794 static RISCVException read_time(CPURISCVState *env, int csrno, 795 target_ulong *val) 796 { 797 *val = cpu_get_host_ticks(); 798 return RISCV_EXCP_NONE; 799 } 800 801 static RISCVException read_timeh(CPURISCVState *env, int csrno, 802 target_ulong *val) 803 { 804 *val = cpu_get_host_ticks() >> 32; 805 return RISCV_EXCP_NONE; 806 } 807 808 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 809 target_ulong *val) 810 { 811 *val = get_ticks(false, (csrno == CSR_INSTRET)); 812 return RISCV_EXCP_NONE; 813 } 814 815 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 816 target_ulong *val) 817 { 818 *val = get_ticks(true, (csrno == CSR_INSTRETH)); 819 return RISCV_EXCP_NONE; 820 } 821 822 #else /* CONFIG_USER_ONLY */ 823 824 static RISCVException read_mhpmevent(CPURISCVState *env, int csrno, 825 target_ulong *val) 826 { 827 int evt_index = csrno - CSR_MCOUNTINHIBIT; 828 829 *val = env->mhpmevent_val[evt_index]; 830 831 return RISCV_EXCP_NONE; 832 } 833 834 static RISCVException write_mhpmevent(CPURISCVState *env, int csrno, 835 target_ulong val) 836 { 837 int evt_index = csrno - CSR_MCOUNTINHIBIT; 838 uint64_t mhpmevt_val = val; 839 840 env->mhpmevent_val[evt_index] = val; 841 842 if (riscv_cpu_mxl(env) == MXL_RV32) { 843 mhpmevt_val = mhpmevt_val | 844 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 845 } 846 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 847 848 return RISCV_EXCP_NONE; 849 } 850 851 static RISCVException read_mhpmeventh(CPURISCVState *env, int csrno, 852 target_ulong *val) 853 { 854 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 855 856 *val = env->mhpmeventh_val[evt_index]; 857 858 return RISCV_EXCP_NONE; 859 } 860 861 static RISCVException write_mhpmeventh(CPURISCVState *env, int csrno, 862 target_ulong val) 863 { 864 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 865 uint64_t mhpmevth_val = val; 866 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 867 868 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 869 env->mhpmeventh_val[evt_index] = val; 870 871 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 872 873 return RISCV_EXCP_NONE; 874 } 875 876 static RISCVException write_mhpmcounter(CPURISCVState *env, int csrno, 877 target_ulong val) 878 { 879 int ctr_idx = csrno - CSR_MCYCLE; 880 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 881 uint64_t mhpmctr_val = val; 882 bool instr = riscv_pmu_ctr_monitor_instructions(env, ctr_idx); 883 884 counter->mhpmcounter_val = val; 885 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || instr) { 886 counter->mhpmcounter_prev = get_ticks(false, instr); 887 if (ctr_idx > 2) { 888 if (riscv_cpu_mxl(env) == MXL_RV32) { 889 mhpmctr_val = mhpmctr_val | 890 ((uint64_t)counter->mhpmcounterh_val << 32); 891 } 892 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 893 } 894 } else { 895 /* Other counters can keep incrementing from the given value */ 896 counter->mhpmcounter_prev = val; 897 } 898 899 return RISCV_EXCP_NONE; 900 } 901 902 static RISCVException write_mhpmcounterh(CPURISCVState *env, int csrno, 903 target_ulong val) 904 { 905 int ctr_idx = csrno - CSR_MCYCLEH; 906 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 907 uint64_t mhpmctr_val = counter->mhpmcounter_val; 908 uint64_t mhpmctrh_val = val; 909 bool instr = riscv_pmu_ctr_monitor_instructions(env, ctr_idx); 910 911 counter->mhpmcounterh_val = val; 912 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 913 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || instr) { 914 counter->mhpmcounterh_prev = get_ticks(true, instr); 915 if (ctr_idx > 2) { 916 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 917 } 918 } else { 919 counter->mhpmcounterh_prev = val; 920 } 921 922 return RISCV_EXCP_NONE; 923 } 924 925 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 926 bool upper_half, uint32_t ctr_idx) 927 { 928 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 929 target_ulong ctr_prev = upper_half ? counter->mhpmcounterh_prev : 930 counter->mhpmcounter_prev; 931 target_ulong ctr_val = upper_half ? counter->mhpmcounterh_val : 932 counter->mhpmcounter_val; 933 bool instr = riscv_pmu_ctr_monitor_instructions(env, ctr_idx); 934 935 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 936 /* 937 * Counter should not increment if inhibit bit is set. We can't really 938 * stop the icount counting. Just return the counter value written by 939 * the supervisor to indicate that counter was not incremented. 940 */ 941 if (!counter->started) { 942 *val = ctr_val; 943 return RISCV_EXCP_NONE; 944 } else { 945 /* Mark that the counter has been stopped */ 946 counter->started = false; 947 } 948 } 949 950 /* 951 * The kernel computes the perf delta by subtracting the current value from 952 * the value it initialized previously (ctr_val). 953 */ 954 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || instr) { 955 *val = get_ticks(upper_half, instr) - ctr_prev + ctr_val; 956 } else { 957 *val = ctr_val; 958 } 959 960 return RISCV_EXCP_NONE; 961 } 962 963 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 964 target_ulong *val) 965 { 966 uint16_t ctr_index; 967 968 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 969 ctr_index = csrno - CSR_MCYCLE; 970 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 971 ctr_index = csrno - CSR_CYCLE; 972 } else { 973 return RISCV_EXCP_ILLEGAL_INST; 974 } 975 976 return riscv_pmu_read_ctr(env, val, false, ctr_index); 977 } 978 979 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 980 target_ulong *val) 981 { 982 uint16_t ctr_index; 983 984 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 985 ctr_index = csrno - CSR_MCYCLEH; 986 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 987 ctr_index = csrno - CSR_CYCLEH; 988 } else { 989 return RISCV_EXCP_ILLEGAL_INST; 990 } 991 992 return riscv_pmu_read_ctr(env, val, true, ctr_index); 993 } 994 995 static RISCVException read_scountovf(CPURISCVState *env, int csrno, 996 target_ulong *val) 997 { 998 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 999 int i; 1000 *val = 0; 1001 target_ulong *mhpm_evt_val; 1002 uint64_t of_bit_mask; 1003 1004 if (riscv_cpu_mxl(env) == MXL_RV32) { 1005 mhpm_evt_val = env->mhpmeventh_val; 1006 of_bit_mask = MHPMEVENTH_BIT_OF; 1007 } else { 1008 mhpm_evt_val = env->mhpmevent_val; 1009 of_bit_mask = MHPMEVENT_BIT_OF; 1010 } 1011 1012 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 1013 if ((get_field(env->mcounteren, BIT(i))) && 1014 (mhpm_evt_val[i] & of_bit_mask)) { 1015 *val |= BIT(i); 1016 } 1017 } 1018 1019 return RISCV_EXCP_NONE; 1020 } 1021 1022 static RISCVException read_time(CPURISCVState *env, int csrno, 1023 target_ulong *val) 1024 { 1025 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1026 1027 if (!env->rdtime_fn) { 1028 return RISCV_EXCP_ILLEGAL_INST; 1029 } 1030 1031 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 1032 return RISCV_EXCP_NONE; 1033 } 1034 1035 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1036 target_ulong *val) 1037 { 1038 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1039 1040 if (!env->rdtime_fn) { 1041 return RISCV_EXCP_ILLEGAL_INST; 1042 } 1043 1044 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 1045 return RISCV_EXCP_NONE; 1046 } 1047 1048 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 1049 target_ulong *val) 1050 { 1051 *val = env->vstimecmp; 1052 1053 return RISCV_EXCP_NONE; 1054 } 1055 1056 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 1057 target_ulong *val) 1058 { 1059 *val = env->vstimecmp >> 32; 1060 1061 return RISCV_EXCP_NONE; 1062 } 1063 1064 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1065 target_ulong val) 1066 { 1067 if (riscv_cpu_mxl(env) == MXL_RV32) { 1068 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1069 } else { 1070 env->vstimecmp = val; 1071 } 1072 1073 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1074 env->htimedelta, MIP_VSTIP); 1075 1076 return RISCV_EXCP_NONE; 1077 } 1078 1079 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1080 target_ulong val) 1081 { 1082 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1083 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1084 env->htimedelta, MIP_VSTIP); 1085 1086 return RISCV_EXCP_NONE; 1087 } 1088 1089 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1090 target_ulong *val) 1091 { 1092 if (env->virt_enabled) { 1093 *val = env->vstimecmp; 1094 } else { 1095 *val = env->stimecmp; 1096 } 1097 1098 return RISCV_EXCP_NONE; 1099 } 1100 1101 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1102 target_ulong *val) 1103 { 1104 if (env->virt_enabled) { 1105 *val = env->vstimecmp >> 32; 1106 } else { 1107 *val = env->stimecmp >> 32; 1108 } 1109 1110 return RISCV_EXCP_NONE; 1111 } 1112 1113 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1114 target_ulong val) 1115 { 1116 if (env->virt_enabled) { 1117 if (env->hvictl & HVICTL_VTI) { 1118 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1119 } 1120 return write_vstimecmp(env, csrno, val); 1121 } 1122 1123 if (riscv_cpu_mxl(env) == MXL_RV32) { 1124 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1125 } else { 1126 env->stimecmp = val; 1127 } 1128 1129 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1130 1131 return RISCV_EXCP_NONE; 1132 } 1133 1134 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1135 target_ulong val) 1136 { 1137 if (env->virt_enabled) { 1138 if (env->hvictl & HVICTL_VTI) { 1139 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1140 } 1141 return write_vstimecmph(env, csrno, val); 1142 } 1143 1144 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1145 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1146 1147 return RISCV_EXCP_NONE; 1148 } 1149 1150 #define VSTOPI_NUM_SRCS 5 1151 1152 /* 1153 * All core local interrupts except the fixed ones 0:12. This macro is for 1154 * virtual interrupts logic so please don't change this to avoid messing up 1155 * the whole support, For reference see AIA spec: `5.3 Interrupt filtering and 1156 * virtual interrupts for supervisor level` and `6.3.2 Virtual interrupts for 1157 * VS level`. 1158 */ 1159 #define LOCAL_INTERRUPTS (~0x1FFFULL) 1160 1161 static const uint64_t delegable_ints = 1162 S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS | MIP_LCOFIP; 1163 static const uint64_t vs_delegable_ints = 1164 (VS_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & ~MIP_LCOFIP; 1165 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1166 HS_MODE_INTERRUPTS | LOCAL_INTERRUPTS; 1167 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1168 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1169 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1170 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1171 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1172 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1173 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1174 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1175 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1176 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1177 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1178 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1179 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1180 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1181 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1182 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1183 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1184 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1185 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1186 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1187 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1188 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1189 (1ULL << (RISCV_EXCP_M_ECALL)) | 1190 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1191 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1192 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1193 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1194 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1195 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1196 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1197 1198 /* 1199 * Spec allows for bits 13:63 to be either read-only or writable. 1200 * So far we have interrupt LCOFIP in that region which is writable. 1201 * 1202 * Also, spec allows to inject virtual interrupts in this region even 1203 * without any hardware interrupts for that interrupt number. 1204 * 1205 * For now interrupt in 13:63 region are all kept writable. 13 being 1206 * LCOFIP and 14:63 being virtual only. Change this in future if we 1207 * introduce more interrupts that are not writable. 1208 */ 1209 1210 /* Bit STIP can be an alias of mip.STIP that's why it's writable in mvip. */ 1211 static const uint64_t mvip_writable_mask = MIP_SSIP | MIP_STIP | MIP_SEIP | 1212 LOCAL_INTERRUPTS; 1213 static const uint64_t mvien_writable_mask = MIP_SSIP | MIP_SEIP | 1214 LOCAL_INTERRUPTS; 1215 1216 static const uint64_t sip_writable_mask = SIP_SSIP | LOCAL_INTERRUPTS; 1217 static const uint64_t hip_writable_mask = MIP_VSSIP; 1218 static const uint64_t hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | 1219 MIP_VSEIP | LOCAL_INTERRUPTS; 1220 static const uint64_t hvien_writable_mask = LOCAL_INTERRUPTS; 1221 1222 static const uint64_t vsip_writable_mask = MIP_VSSIP | LOCAL_INTERRUPTS; 1223 1224 const bool valid_vm_1_10_32[16] = { 1225 [VM_1_10_MBARE] = true, 1226 [VM_1_10_SV32] = true 1227 }; 1228 1229 const bool valid_vm_1_10_64[16] = { 1230 [VM_1_10_MBARE] = true, 1231 [VM_1_10_SV39] = true, 1232 [VM_1_10_SV48] = true, 1233 [VM_1_10_SV57] = true 1234 }; 1235 1236 /* Machine Information Registers */ 1237 static RISCVException read_zero(CPURISCVState *env, int csrno, 1238 target_ulong *val) 1239 { 1240 *val = 0; 1241 return RISCV_EXCP_NONE; 1242 } 1243 1244 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1245 target_ulong val) 1246 { 1247 return RISCV_EXCP_NONE; 1248 } 1249 1250 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1251 target_ulong *val) 1252 { 1253 *val = riscv_cpu_cfg(env)->mvendorid; 1254 return RISCV_EXCP_NONE; 1255 } 1256 1257 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1258 target_ulong *val) 1259 { 1260 *val = riscv_cpu_cfg(env)->marchid; 1261 return RISCV_EXCP_NONE; 1262 } 1263 1264 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1265 target_ulong *val) 1266 { 1267 *val = riscv_cpu_cfg(env)->mimpid; 1268 return RISCV_EXCP_NONE; 1269 } 1270 1271 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1272 target_ulong *val) 1273 { 1274 *val = env->mhartid; 1275 return RISCV_EXCP_NONE; 1276 } 1277 1278 /* Machine Trap Setup */ 1279 1280 /* We do not store SD explicitly, only compute it on demand. */ 1281 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1282 { 1283 if ((status & MSTATUS_FS) == MSTATUS_FS || 1284 (status & MSTATUS_VS) == MSTATUS_VS || 1285 (status & MSTATUS_XS) == MSTATUS_XS) { 1286 switch (xl) { 1287 case MXL_RV32: 1288 return status | MSTATUS32_SD; 1289 case MXL_RV64: 1290 return status | MSTATUS64_SD; 1291 case MXL_RV128: 1292 return MSTATUSH128_SD; 1293 default: 1294 g_assert_not_reached(); 1295 } 1296 } 1297 return status; 1298 } 1299 1300 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1301 target_ulong *val) 1302 { 1303 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1304 return RISCV_EXCP_NONE; 1305 } 1306 1307 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1308 { 1309 uint64_t mode_supported = riscv_cpu_cfg(env)->satp_mode.map; 1310 return get_field(mode_supported, (1 << vm)); 1311 } 1312 1313 static target_ulong legalize_xatp(CPURISCVState *env, target_ulong old_xatp, 1314 target_ulong val) 1315 { 1316 target_ulong mask; 1317 bool vm; 1318 if (riscv_cpu_mxl(env) == MXL_RV32) { 1319 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1320 mask = (val ^ old_xatp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1321 } else { 1322 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1323 mask = (val ^ old_xatp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1324 } 1325 1326 if (vm && mask) { 1327 /* 1328 * The ISA defines SATP.MODE=Bare as "no translation", but we still 1329 * pass these through QEMU's TLB emulation as it improves 1330 * performance. Flushing the TLB on SATP writes with paging 1331 * enabled avoids leaking those invalid cached mappings. 1332 */ 1333 tlb_flush(env_cpu(env)); 1334 return val; 1335 } 1336 return old_xatp; 1337 } 1338 1339 static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp, 1340 target_ulong val) 1341 { 1342 bool valid = false; 1343 target_ulong new_mpp = get_field(val, MSTATUS_MPP); 1344 1345 switch (new_mpp) { 1346 case PRV_M: 1347 valid = true; 1348 break; 1349 case PRV_S: 1350 valid = riscv_has_ext(env, RVS); 1351 break; 1352 case PRV_U: 1353 valid = riscv_has_ext(env, RVU); 1354 break; 1355 } 1356 1357 /* Remain field unchanged if new_mpp value is invalid */ 1358 if (!valid) { 1359 val = set_field(val, MSTATUS_MPP, old_mpp); 1360 } 1361 1362 return val; 1363 } 1364 1365 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1366 target_ulong val) 1367 { 1368 uint64_t mstatus = env->mstatus; 1369 uint64_t mask = 0; 1370 RISCVMXL xl = riscv_cpu_mxl(env); 1371 1372 /* 1373 * MPP field have been made WARL since priv version 1.11. However, 1374 * legalization for it will not break any software running on 1.10. 1375 */ 1376 val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val); 1377 1378 /* flush tlb on mstatus fields that affect VM */ 1379 if ((val ^ mstatus) & MSTATUS_MXR) { 1380 tlb_flush(env_cpu(env)); 1381 } 1382 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1383 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1384 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1385 MSTATUS_TW; 1386 1387 if (riscv_has_ext(env, RVF)) { 1388 mask |= MSTATUS_FS; 1389 } 1390 if (riscv_has_ext(env, RVV)) { 1391 mask |= MSTATUS_VS; 1392 } 1393 1394 if (xl != MXL_RV32 || env->debugger) { 1395 if (riscv_has_ext(env, RVH)) { 1396 mask |= MSTATUS_MPV | MSTATUS_GVA; 1397 } 1398 if ((val & MSTATUS64_UXL) != 0) { 1399 mask |= MSTATUS64_UXL; 1400 } 1401 } 1402 1403 mstatus = (mstatus & ~mask) | (val & mask); 1404 1405 env->mstatus = mstatus; 1406 1407 /* 1408 * Except in debug mode, UXL/SXL can only be modified by higher 1409 * privilege mode. So xl will not be changed in normal mode. 1410 */ 1411 if (env->debugger) { 1412 env->xl = cpu_recompute_xl(env); 1413 } 1414 1415 riscv_cpu_update_mask(env); 1416 return RISCV_EXCP_NONE; 1417 } 1418 1419 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1420 target_ulong *val) 1421 { 1422 *val = env->mstatus >> 32; 1423 return RISCV_EXCP_NONE; 1424 } 1425 1426 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1427 target_ulong val) 1428 { 1429 uint64_t valh = (uint64_t)val << 32; 1430 uint64_t mask = riscv_has_ext(env, RVH) ? MSTATUS_MPV | MSTATUS_GVA : 0; 1431 1432 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1433 1434 return RISCV_EXCP_NONE; 1435 } 1436 1437 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1438 Int128 *val) 1439 { 1440 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, 1441 env->mstatus)); 1442 return RISCV_EXCP_NONE; 1443 } 1444 1445 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1446 Int128 *val) 1447 { 1448 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1449 return RISCV_EXCP_NONE; 1450 } 1451 1452 static RISCVException read_misa(CPURISCVState *env, int csrno, 1453 target_ulong *val) 1454 { 1455 target_ulong misa; 1456 1457 switch (env->misa_mxl) { 1458 case MXL_RV32: 1459 misa = (target_ulong)MXL_RV32 << 30; 1460 break; 1461 #ifdef TARGET_RISCV64 1462 case MXL_RV64: 1463 misa = (target_ulong)MXL_RV64 << 62; 1464 break; 1465 #endif 1466 default: 1467 g_assert_not_reached(); 1468 } 1469 1470 *val = misa | env->misa_ext; 1471 return RISCV_EXCP_NONE; 1472 } 1473 1474 static RISCVException write_misa(CPURISCVState *env, int csrno, 1475 target_ulong val) 1476 { 1477 RISCVCPU *cpu = env_archcpu(env); 1478 uint32_t orig_misa_ext = env->misa_ext; 1479 Error *local_err = NULL; 1480 1481 if (!riscv_cpu_cfg(env)->misa_w) { 1482 /* drop write to misa */ 1483 return RISCV_EXCP_NONE; 1484 } 1485 1486 /* Mask extensions that are not supported by this hart */ 1487 val &= env->misa_ext_mask; 1488 1489 /* 1490 * Suppress 'C' if next instruction is not aligned 1491 * TODO: this should check next_pc 1492 */ 1493 if ((val & RVC) && (GETPC() & ~3) != 0) { 1494 val &= ~RVC; 1495 } 1496 1497 /* Disable RVG if any of its dependencies are disabled */ 1498 if (!(val & RVI && val & RVM && val & RVA && 1499 val & RVF && val & RVD)) { 1500 val &= ~RVG; 1501 } 1502 1503 /* If nothing changed, do nothing. */ 1504 if (val == env->misa_ext) { 1505 return RISCV_EXCP_NONE; 1506 } 1507 1508 env->misa_ext = val; 1509 riscv_cpu_validate_set_extensions(cpu, &local_err); 1510 if (local_err != NULL) { 1511 /* Rollback on validation error */ 1512 qemu_log_mask(LOG_GUEST_ERROR, "Unable to write MISA ext value " 1513 "0x%x, keeping existing MISA ext 0x%x\n", 1514 env->misa_ext, orig_misa_ext); 1515 1516 env->misa_ext = orig_misa_ext; 1517 1518 return RISCV_EXCP_NONE; 1519 } 1520 1521 if (!(env->misa_ext & RVF)) { 1522 env->mstatus &= ~MSTATUS_FS; 1523 } 1524 1525 /* flush translation cache */ 1526 tb_flush(env_cpu(env)); 1527 env->xl = riscv_cpu_mxl(env); 1528 return RISCV_EXCP_NONE; 1529 } 1530 1531 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1532 target_ulong *val) 1533 { 1534 *val = env->medeleg; 1535 return RISCV_EXCP_NONE; 1536 } 1537 1538 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1539 target_ulong val) 1540 { 1541 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1542 return RISCV_EXCP_NONE; 1543 } 1544 1545 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1546 uint64_t *ret_val, 1547 uint64_t new_val, uint64_t wr_mask) 1548 { 1549 uint64_t mask = wr_mask & delegable_ints; 1550 1551 if (ret_val) { 1552 *ret_val = env->mideleg; 1553 } 1554 1555 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1556 1557 if (riscv_has_ext(env, RVH)) { 1558 env->mideleg |= HS_MODE_INTERRUPTS; 1559 } 1560 1561 return RISCV_EXCP_NONE; 1562 } 1563 1564 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1565 target_ulong *ret_val, 1566 target_ulong new_val, target_ulong wr_mask) 1567 { 1568 uint64_t rval; 1569 RISCVException ret; 1570 1571 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1572 if (ret_val) { 1573 *ret_val = rval; 1574 } 1575 1576 return ret; 1577 } 1578 1579 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1580 target_ulong *ret_val, 1581 target_ulong new_val, 1582 target_ulong wr_mask) 1583 { 1584 uint64_t rval; 1585 RISCVException ret; 1586 1587 ret = rmw_mideleg64(env, csrno, &rval, 1588 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1589 if (ret_val) { 1590 *ret_val = rval >> 32; 1591 } 1592 1593 return ret; 1594 } 1595 1596 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1597 uint64_t *ret_val, 1598 uint64_t new_val, uint64_t wr_mask) 1599 { 1600 uint64_t mask = wr_mask & all_ints; 1601 1602 if (ret_val) { 1603 *ret_val = env->mie; 1604 } 1605 1606 env->mie = (env->mie & ~mask) | (new_val & mask); 1607 1608 if (!riscv_has_ext(env, RVH)) { 1609 env->mie &= ~((uint64_t)HS_MODE_INTERRUPTS); 1610 } 1611 1612 return RISCV_EXCP_NONE; 1613 } 1614 1615 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1616 target_ulong *ret_val, 1617 target_ulong new_val, target_ulong wr_mask) 1618 { 1619 uint64_t rval; 1620 RISCVException ret; 1621 1622 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1623 if (ret_val) { 1624 *ret_val = rval; 1625 } 1626 1627 return ret; 1628 } 1629 1630 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1631 target_ulong *ret_val, 1632 target_ulong new_val, target_ulong wr_mask) 1633 { 1634 uint64_t rval; 1635 RISCVException ret; 1636 1637 ret = rmw_mie64(env, csrno, &rval, 1638 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1639 if (ret_val) { 1640 *ret_val = rval >> 32; 1641 } 1642 1643 return ret; 1644 } 1645 1646 static RISCVException rmw_mvien64(CPURISCVState *env, int csrno, 1647 uint64_t *ret_val, 1648 uint64_t new_val, uint64_t wr_mask) 1649 { 1650 uint64_t mask = wr_mask & mvien_writable_mask; 1651 1652 if (ret_val) { 1653 *ret_val = env->mvien; 1654 } 1655 1656 env->mvien = (env->mvien & ~mask) | (new_val & mask); 1657 1658 return RISCV_EXCP_NONE; 1659 } 1660 1661 static RISCVException rmw_mvien(CPURISCVState *env, int csrno, 1662 target_ulong *ret_val, 1663 target_ulong new_val, target_ulong wr_mask) 1664 { 1665 uint64_t rval; 1666 RISCVException ret; 1667 1668 ret = rmw_mvien64(env, csrno, &rval, new_val, wr_mask); 1669 if (ret_val) { 1670 *ret_val = rval; 1671 } 1672 1673 return ret; 1674 } 1675 1676 static RISCVException rmw_mvienh(CPURISCVState *env, int csrno, 1677 target_ulong *ret_val, 1678 target_ulong new_val, target_ulong wr_mask) 1679 { 1680 uint64_t rval; 1681 RISCVException ret; 1682 1683 ret = rmw_mvien64(env, csrno, &rval, 1684 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1685 if (ret_val) { 1686 *ret_val = rval >> 32; 1687 } 1688 1689 return ret; 1690 } 1691 1692 static RISCVException read_mtopi(CPURISCVState *env, int csrno, 1693 target_ulong *val) 1694 { 1695 int irq; 1696 uint8_t iprio; 1697 1698 irq = riscv_cpu_mirq_pending(env); 1699 if (irq <= 0 || irq > 63) { 1700 *val = 0; 1701 } else { 1702 iprio = env->miprio[irq]; 1703 if (!iprio) { 1704 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1705 iprio = IPRIO_MMAXIPRIO; 1706 } 1707 } 1708 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1709 *val |= iprio; 1710 } 1711 1712 return RISCV_EXCP_NONE; 1713 } 1714 1715 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1716 { 1717 if (!env->virt_enabled) { 1718 return csrno; 1719 } 1720 1721 switch (csrno) { 1722 case CSR_SISELECT: 1723 return CSR_VSISELECT; 1724 case CSR_SIREG: 1725 return CSR_VSIREG; 1726 case CSR_STOPEI: 1727 return CSR_VSTOPEI; 1728 default: 1729 return csrno; 1730 }; 1731 } 1732 1733 static RISCVException rmw_xiselect(CPURISCVState *env, int csrno, 1734 target_ulong *val, target_ulong new_val, 1735 target_ulong wr_mask) 1736 { 1737 target_ulong *iselect; 1738 1739 /* Translate CSR number for VS-mode */ 1740 csrno = aia_xlate_vs_csrno(env, csrno); 1741 1742 /* Find the iselect CSR based on CSR number */ 1743 switch (csrno) { 1744 case CSR_MISELECT: 1745 iselect = &env->miselect; 1746 break; 1747 case CSR_SISELECT: 1748 iselect = &env->siselect; 1749 break; 1750 case CSR_VSISELECT: 1751 iselect = &env->vsiselect; 1752 break; 1753 default: 1754 return RISCV_EXCP_ILLEGAL_INST; 1755 }; 1756 1757 if (val) { 1758 *val = *iselect; 1759 } 1760 1761 wr_mask &= ISELECT_MASK; 1762 if (wr_mask) { 1763 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1764 } 1765 1766 return RISCV_EXCP_NONE; 1767 } 1768 1769 static int rmw_iprio(target_ulong xlen, 1770 target_ulong iselect, uint8_t *iprio, 1771 target_ulong *val, target_ulong new_val, 1772 target_ulong wr_mask, int ext_irq_no) 1773 { 1774 int i, firq, nirqs; 1775 target_ulong old_val; 1776 1777 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1778 return -EINVAL; 1779 } 1780 if (xlen != 32 && iselect & 0x1) { 1781 return -EINVAL; 1782 } 1783 1784 nirqs = 4 * (xlen / 32); 1785 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1786 1787 old_val = 0; 1788 for (i = 0; i < nirqs; i++) { 1789 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1790 } 1791 1792 if (val) { 1793 *val = old_val; 1794 } 1795 1796 if (wr_mask) { 1797 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1798 for (i = 0; i < nirqs; i++) { 1799 /* 1800 * M-level and S-level external IRQ priority always read-only 1801 * zero. This means default priority order is always preferred 1802 * for M-level and S-level external IRQs. 1803 */ 1804 if ((firq + i) == ext_irq_no) { 1805 continue; 1806 } 1807 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1808 } 1809 } 1810 1811 return 0; 1812 } 1813 1814 static RISCVException rmw_xireg(CPURISCVState *env, int csrno, 1815 target_ulong *val, target_ulong new_val, 1816 target_ulong wr_mask) 1817 { 1818 bool virt, isel_reserved; 1819 uint8_t *iprio; 1820 int ret = -EINVAL; 1821 target_ulong priv, isel, vgein; 1822 1823 /* Translate CSR number for VS-mode */ 1824 csrno = aia_xlate_vs_csrno(env, csrno); 1825 1826 /* Decode register details from CSR number */ 1827 virt = false; 1828 isel_reserved = false; 1829 switch (csrno) { 1830 case CSR_MIREG: 1831 iprio = env->miprio; 1832 isel = env->miselect; 1833 priv = PRV_M; 1834 break; 1835 case CSR_SIREG: 1836 if (env->priv == PRV_S && env->mvien & MIP_SEIP && 1837 env->siselect >= ISELECT_IMSIC_EIDELIVERY && 1838 env->siselect <= ISELECT_IMSIC_EIE63) { 1839 goto done; 1840 } 1841 iprio = env->siprio; 1842 isel = env->siselect; 1843 priv = PRV_S; 1844 break; 1845 case CSR_VSIREG: 1846 iprio = env->hviprio; 1847 isel = env->vsiselect; 1848 priv = PRV_S; 1849 virt = true; 1850 break; 1851 default: 1852 goto done; 1853 }; 1854 1855 /* Find the selected guest interrupt file */ 1856 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1857 1858 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1859 /* Local interrupt priority registers not available for VS-mode */ 1860 if (!virt) { 1861 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1862 isel, iprio, val, new_val, wr_mask, 1863 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1864 } 1865 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1866 /* IMSIC registers only available when machine implements it. */ 1867 if (env->aia_ireg_rmw_fn[priv]) { 1868 /* Selected guest interrupt file should not be zero */ 1869 if (virt && (!vgein || env->geilen < vgein)) { 1870 goto done; 1871 } 1872 /* Call machine specific IMSIC register emulation */ 1873 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1874 AIA_MAKE_IREG(isel, priv, virt, vgein, 1875 riscv_cpu_mxl_bits(env)), 1876 val, new_val, wr_mask); 1877 } 1878 } else { 1879 isel_reserved = true; 1880 } 1881 1882 done: 1883 if (ret) { 1884 return (env->virt_enabled && virt && !isel_reserved) ? 1885 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1886 } 1887 return RISCV_EXCP_NONE; 1888 } 1889 1890 static RISCVException rmw_xtopei(CPURISCVState *env, int csrno, 1891 target_ulong *val, target_ulong new_val, 1892 target_ulong wr_mask) 1893 { 1894 bool virt; 1895 int ret = -EINVAL; 1896 target_ulong priv, vgein; 1897 1898 /* Translate CSR number for VS-mode */ 1899 csrno = aia_xlate_vs_csrno(env, csrno); 1900 1901 /* Decode register details from CSR number */ 1902 virt = false; 1903 switch (csrno) { 1904 case CSR_MTOPEI: 1905 priv = PRV_M; 1906 break; 1907 case CSR_STOPEI: 1908 if (env->mvien & MIP_SEIP && env->priv == PRV_S) { 1909 goto done; 1910 } 1911 priv = PRV_S; 1912 break; 1913 case CSR_VSTOPEI: 1914 priv = PRV_S; 1915 virt = true; 1916 break; 1917 default: 1918 goto done; 1919 }; 1920 1921 /* IMSIC CSRs only available when machine implements IMSIC. */ 1922 if (!env->aia_ireg_rmw_fn[priv]) { 1923 goto done; 1924 } 1925 1926 /* Find the selected guest interrupt file */ 1927 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1928 1929 /* Selected guest interrupt file should be valid */ 1930 if (virt && (!vgein || env->geilen < vgein)) { 1931 goto done; 1932 } 1933 1934 /* Call machine specific IMSIC register emulation for TOPEI */ 1935 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1936 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1937 riscv_cpu_mxl_bits(env)), 1938 val, new_val, wr_mask); 1939 1940 done: 1941 if (ret) { 1942 return (env->virt_enabled && virt) ? 1943 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1944 } 1945 return RISCV_EXCP_NONE; 1946 } 1947 1948 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1949 target_ulong *val) 1950 { 1951 *val = env->mtvec; 1952 return RISCV_EXCP_NONE; 1953 } 1954 1955 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1956 target_ulong val) 1957 { 1958 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1959 if ((val & 3) < 2) { 1960 env->mtvec = val; 1961 } else { 1962 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1963 } 1964 return RISCV_EXCP_NONE; 1965 } 1966 1967 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1968 target_ulong *val) 1969 { 1970 *val = env->mcountinhibit; 1971 return RISCV_EXCP_NONE; 1972 } 1973 1974 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1975 target_ulong val) 1976 { 1977 int cidx; 1978 PMUCTRState *counter; 1979 RISCVCPU *cpu = env_archcpu(env); 1980 1981 /* WARL register - disable unavailable counters; TM bit is always 0 */ 1982 env->mcountinhibit = 1983 val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_IR); 1984 1985 /* Check if any other counter is also monitoring cycles/instructions */ 1986 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1987 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1988 counter = &env->pmu_ctrs[cidx]; 1989 counter->started = true; 1990 } 1991 } 1992 1993 return RISCV_EXCP_NONE; 1994 } 1995 1996 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1997 target_ulong *val) 1998 { 1999 *val = env->mcounteren; 2000 return RISCV_EXCP_NONE; 2001 } 2002 2003 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 2004 target_ulong val) 2005 { 2006 RISCVCPU *cpu = env_archcpu(env); 2007 2008 /* WARL register - disable unavailable counters */ 2009 env->mcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 2010 COUNTEREN_IR); 2011 return RISCV_EXCP_NONE; 2012 } 2013 2014 /* Machine Trap Handling */ 2015 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 2016 Int128 *val) 2017 { 2018 *val = int128_make128(env->mscratch, env->mscratchh); 2019 return RISCV_EXCP_NONE; 2020 } 2021 2022 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 2023 Int128 val) 2024 { 2025 env->mscratch = int128_getlo(val); 2026 env->mscratchh = int128_gethi(val); 2027 return RISCV_EXCP_NONE; 2028 } 2029 2030 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 2031 target_ulong *val) 2032 { 2033 *val = env->mscratch; 2034 return RISCV_EXCP_NONE; 2035 } 2036 2037 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 2038 target_ulong val) 2039 { 2040 env->mscratch = val; 2041 return RISCV_EXCP_NONE; 2042 } 2043 2044 static RISCVException read_mepc(CPURISCVState *env, int csrno, 2045 target_ulong *val) 2046 { 2047 *val = env->mepc; 2048 return RISCV_EXCP_NONE; 2049 } 2050 2051 static RISCVException write_mepc(CPURISCVState *env, int csrno, 2052 target_ulong val) 2053 { 2054 env->mepc = val; 2055 return RISCV_EXCP_NONE; 2056 } 2057 2058 static RISCVException read_mcause(CPURISCVState *env, int csrno, 2059 target_ulong *val) 2060 { 2061 *val = env->mcause; 2062 return RISCV_EXCP_NONE; 2063 } 2064 2065 static RISCVException write_mcause(CPURISCVState *env, int csrno, 2066 target_ulong val) 2067 { 2068 env->mcause = val; 2069 return RISCV_EXCP_NONE; 2070 } 2071 2072 static RISCVException read_mtval(CPURISCVState *env, int csrno, 2073 target_ulong *val) 2074 { 2075 *val = env->mtval; 2076 return RISCV_EXCP_NONE; 2077 } 2078 2079 static RISCVException write_mtval(CPURISCVState *env, int csrno, 2080 target_ulong val) 2081 { 2082 env->mtval = val; 2083 return RISCV_EXCP_NONE; 2084 } 2085 2086 /* Execution environment configuration setup */ 2087 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 2088 target_ulong *val) 2089 { 2090 *val = env->menvcfg; 2091 return RISCV_EXCP_NONE; 2092 } 2093 2094 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 2095 target_ulong val) 2096 { 2097 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 2098 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 2099 2100 if (riscv_cpu_mxl(env) == MXL_RV64) { 2101 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 2102 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 2103 (cfg->ext_svadu ? MENVCFG_ADUE : 0); 2104 } 2105 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 2106 2107 return RISCV_EXCP_NONE; 2108 } 2109 2110 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 2111 target_ulong *val) 2112 { 2113 *val = env->menvcfg >> 32; 2114 return RISCV_EXCP_NONE; 2115 } 2116 2117 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 2118 target_ulong val) 2119 { 2120 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 2121 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 2122 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 2123 (cfg->ext_svadu ? MENVCFG_ADUE : 0); 2124 uint64_t valh = (uint64_t)val << 32; 2125 2126 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 2127 2128 return RISCV_EXCP_NONE; 2129 } 2130 2131 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 2132 target_ulong *val) 2133 { 2134 RISCVException ret; 2135 2136 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2137 if (ret != RISCV_EXCP_NONE) { 2138 return ret; 2139 } 2140 2141 *val = env->senvcfg; 2142 return RISCV_EXCP_NONE; 2143 } 2144 2145 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 2146 target_ulong val) 2147 { 2148 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 2149 RISCVException ret; 2150 2151 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2152 if (ret != RISCV_EXCP_NONE) { 2153 return ret; 2154 } 2155 2156 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 2157 return RISCV_EXCP_NONE; 2158 } 2159 2160 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 2161 target_ulong *val) 2162 { 2163 RISCVException ret; 2164 2165 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2166 if (ret != RISCV_EXCP_NONE) { 2167 return ret; 2168 } 2169 2170 /* 2171 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 2172 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 2173 * henvcfg.adue is read_only 0 when menvcfg.adue = 0 2174 */ 2175 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | 2176 env->menvcfg); 2177 return RISCV_EXCP_NONE; 2178 } 2179 2180 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 2181 target_ulong val) 2182 { 2183 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 2184 RISCVException ret; 2185 2186 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2187 if (ret != RISCV_EXCP_NONE) { 2188 return ret; 2189 } 2190 2191 if (riscv_cpu_mxl(env) == MXL_RV64) { 2192 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE); 2193 } 2194 2195 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 2196 2197 return RISCV_EXCP_NONE; 2198 } 2199 2200 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 2201 target_ulong *val) 2202 { 2203 RISCVException ret; 2204 2205 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2206 if (ret != RISCV_EXCP_NONE) { 2207 return ret; 2208 } 2209 2210 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | 2211 env->menvcfg)) >> 32; 2212 return RISCV_EXCP_NONE; 2213 } 2214 2215 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2216 target_ulong val) 2217 { 2218 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 2219 HENVCFG_ADUE); 2220 uint64_t valh = (uint64_t)val << 32; 2221 RISCVException ret; 2222 2223 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2224 if (ret != RISCV_EXCP_NONE) { 2225 return ret; 2226 } 2227 2228 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2229 return RISCV_EXCP_NONE; 2230 } 2231 2232 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2233 target_ulong *val) 2234 { 2235 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2236 2237 return RISCV_EXCP_NONE; 2238 } 2239 2240 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2241 uint64_t wr_mask, target_ulong new_val) 2242 { 2243 uint64_t *reg; 2244 2245 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2246 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2247 2248 return RISCV_EXCP_NONE; 2249 } 2250 2251 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2252 target_ulong new_val) 2253 { 2254 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2255 if (!riscv_has_ext(env, RVF)) { 2256 wr_mask |= SMSTATEEN0_FCSR; 2257 } 2258 2259 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 2260 wr_mask |= SMSTATEEN0_P1P13; 2261 } 2262 2263 return write_mstateen(env, csrno, wr_mask, new_val); 2264 } 2265 2266 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2267 target_ulong new_val) 2268 { 2269 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2270 } 2271 2272 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2273 target_ulong *val) 2274 { 2275 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2276 2277 return RISCV_EXCP_NONE; 2278 } 2279 2280 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2281 uint64_t wr_mask, target_ulong new_val) 2282 { 2283 uint64_t *reg, val; 2284 2285 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2286 val = (uint64_t)new_val << 32; 2287 val |= *reg & 0xFFFFFFFF; 2288 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2289 2290 return RISCV_EXCP_NONE; 2291 } 2292 2293 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2294 target_ulong new_val) 2295 { 2296 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2297 2298 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 2299 wr_mask |= SMSTATEEN0_P1P13; 2300 } 2301 2302 return write_mstateenh(env, csrno, wr_mask, new_val); 2303 } 2304 2305 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2306 target_ulong new_val) 2307 { 2308 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2309 } 2310 2311 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2312 target_ulong *val) 2313 { 2314 int index = csrno - CSR_HSTATEEN0; 2315 2316 *val = env->hstateen[index] & env->mstateen[index]; 2317 2318 return RISCV_EXCP_NONE; 2319 } 2320 2321 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2322 uint64_t mask, target_ulong new_val) 2323 { 2324 int index = csrno - CSR_HSTATEEN0; 2325 uint64_t *reg, wr_mask; 2326 2327 reg = &env->hstateen[index]; 2328 wr_mask = env->mstateen[index] & mask; 2329 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2330 2331 return RISCV_EXCP_NONE; 2332 } 2333 2334 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2335 target_ulong new_val) 2336 { 2337 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2338 2339 if (!riscv_has_ext(env, RVF)) { 2340 wr_mask |= SMSTATEEN0_FCSR; 2341 } 2342 2343 return write_hstateen(env, csrno, wr_mask, new_val); 2344 } 2345 2346 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2347 target_ulong new_val) 2348 { 2349 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2350 } 2351 2352 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2353 target_ulong *val) 2354 { 2355 int index = csrno - CSR_HSTATEEN0H; 2356 2357 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2358 2359 return RISCV_EXCP_NONE; 2360 } 2361 2362 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2363 uint64_t mask, target_ulong new_val) 2364 { 2365 int index = csrno - CSR_HSTATEEN0H; 2366 uint64_t *reg, wr_mask, val; 2367 2368 reg = &env->hstateen[index]; 2369 val = (uint64_t)new_val << 32; 2370 val |= *reg & 0xFFFFFFFF; 2371 wr_mask = env->mstateen[index] & mask; 2372 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2373 2374 return RISCV_EXCP_NONE; 2375 } 2376 2377 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2378 target_ulong new_val) 2379 { 2380 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2381 2382 return write_hstateenh(env, csrno, wr_mask, new_val); 2383 } 2384 2385 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2386 target_ulong new_val) 2387 { 2388 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2389 } 2390 2391 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2392 target_ulong *val) 2393 { 2394 bool virt = env->virt_enabled; 2395 int index = csrno - CSR_SSTATEEN0; 2396 2397 *val = env->sstateen[index] & env->mstateen[index]; 2398 if (virt) { 2399 *val &= env->hstateen[index]; 2400 } 2401 2402 return RISCV_EXCP_NONE; 2403 } 2404 2405 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2406 uint64_t mask, target_ulong new_val) 2407 { 2408 bool virt = env->virt_enabled; 2409 int index = csrno - CSR_SSTATEEN0; 2410 uint64_t wr_mask; 2411 uint64_t *reg; 2412 2413 wr_mask = env->mstateen[index] & mask; 2414 if (virt) { 2415 wr_mask &= env->hstateen[index]; 2416 } 2417 2418 reg = &env->sstateen[index]; 2419 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2420 2421 return RISCV_EXCP_NONE; 2422 } 2423 2424 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2425 target_ulong new_val) 2426 { 2427 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2428 2429 if (!riscv_has_ext(env, RVF)) { 2430 wr_mask |= SMSTATEEN0_FCSR; 2431 } 2432 2433 return write_sstateen(env, csrno, wr_mask, new_val); 2434 } 2435 2436 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2437 target_ulong new_val) 2438 { 2439 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2440 } 2441 2442 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2443 uint64_t *ret_val, 2444 uint64_t new_val, uint64_t wr_mask) 2445 { 2446 uint64_t old_mip, mask = wr_mask & delegable_ints; 2447 uint32_t gin; 2448 2449 if (mask & MIP_SEIP) { 2450 env->software_seip = new_val & MIP_SEIP; 2451 new_val |= env->external_seip * MIP_SEIP; 2452 } 2453 2454 if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && 2455 get_field(env->menvcfg, MENVCFG_STCE)) { 2456 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2457 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2458 } 2459 2460 if (mask) { 2461 old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); 2462 } else { 2463 old_mip = env->mip; 2464 } 2465 2466 if (csrno != CSR_HVIP) { 2467 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2468 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2469 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2470 } 2471 2472 if (ret_val) { 2473 *ret_val = old_mip; 2474 } 2475 2476 return RISCV_EXCP_NONE; 2477 } 2478 2479 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2480 target_ulong *ret_val, 2481 target_ulong new_val, target_ulong wr_mask) 2482 { 2483 uint64_t rval; 2484 RISCVException ret; 2485 2486 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2487 if (ret_val) { 2488 *ret_val = rval; 2489 } 2490 2491 return ret; 2492 } 2493 2494 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2495 target_ulong *ret_val, 2496 target_ulong new_val, target_ulong wr_mask) 2497 { 2498 uint64_t rval; 2499 RISCVException ret; 2500 2501 ret = rmw_mip64(env, csrno, &rval, 2502 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2503 if (ret_val) { 2504 *ret_val = rval >> 32; 2505 } 2506 2507 return ret; 2508 } 2509 2510 /* 2511 * The function is written for two use-cases: 2512 * 1- To access mvip csr as is for m-mode access. 2513 * 2- To access sip as a combination of mip and mvip for s-mode. 2514 * 2515 * Both report bits 1, 5, 9 and 13:63 but with the exception of 2516 * STIP being read-only zero in case of mvip when sstc extension 2517 * is present. 2518 * Also, sip needs to be read-only zero when both mideleg[i] and 2519 * mvien[i] are zero but mvip needs to be an alias of mip. 2520 */ 2521 static RISCVException rmw_mvip64(CPURISCVState *env, int csrno, 2522 uint64_t *ret_val, 2523 uint64_t new_val, uint64_t wr_mask) 2524 { 2525 RISCVCPU *cpu = env_archcpu(env); 2526 target_ulong ret_mip = 0; 2527 RISCVException ret; 2528 uint64_t old_mvip; 2529 2530 /* 2531 * mideleg[i] mvien[i] 2532 * 0 0 No delegation. mvip[i] is alias of mip[i]. 2533 * 0 1 mvip[i] becomes source of interrupt, mip bypassed. 2534 * 1 X mip[i] is source of interrupt and mvip[i] aliases 2535 * mip[i]. 2536 * 2537 * So alias condition would be for bits: 2538 * ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (mideleg | ~mvien)) | 2539 * (!sstc & MIP_STIP) 2540 * 2541 * Non-alias condition will be for bits: 2542 * (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~mideleg & mvien) 2543 * 2544 * alias_mask denotes the bits that come from mip nalias_mask denotes bits 2545 * that come from hvip. 2546 */ 2547 uint64_t alias_mask = ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2548 (env->mideleg | ~env->mvien)) | MIP_STIP; 2549 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2550 (~env->mideleg & env->mvien); 2551 uint64_t wr_mask_mvip; 2552 uint64_t wr_mask_mip; 2553 2554 /* 2555 * mideleg[i] mvien[i] 2556 * 0 0 sip[i] read-only zero. 2557 * 0 1 sip[i] alias of mvip[i]. 2558 * 1 X sip[i] alias of mip[i]. 2559 * 2560 * Both alias and non-alias mask remain same for sip except for bits 2561 * which are zero in both mideleg and mvien. 2562 */ 2563 if (csrno == CSR_SIP) { 2564 /* Remove bits that are zero in both mideleg and mvien. */ 2565 alias_mask &= (env->mideleg | env->mvien); 2566 nalias_mask &= (env->mideleg | env->mvien); 2567 } 2568 2569 /* 2570 * If sstc is present, mvip.STIP is not an alias of mip.STIP so clear 2571 * that our in mip returned value. 2572 */ 2573 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2574 get_field(env->menvcfg, MENVCFG_STCE)) { 2575 alias_mask &= ~MIP_STIP; 2576 } 2577 2578 wr_mask_mip = wr_mask & alias_mask & mvip_writable_mask; 2579 wr_mask_mvip = wr_mask & nalias_mask & mvip_writable_mask; 2580 2581 /* 2582 * For bits set in alias_mask, mvip needs to be alias of mip, so forward 2583 * this to rmw_mip. 2584 */ 2585 ret = rmw_mip(env, CSR_MIP, &ret_mip, new_val, wr_mask_mip); 2586 if (ret != RISCV_EXCP_NONE) { 2587 return ret; 2588 } 2589 2590 old_mvip = env->mvip; 2591 2592 /* 2593 * Write to mvip. Update only non-alias bits. Alias bits were updated 2594 * in mip in rmw_mip above. 2595 */ 2596 if (wr_mask_mvip) { 2597 env->mvip = (env->mvip & ~wr_mask_mvip) | (new_val & wr_mask_mvip); 2598 2599 /* 2600 * Given mvip is separate source from mip, we need to trigger interrupt 2601 * from here separately. Normally this happen from riscv_cpu_update_mip. 2602 */ 2603 riscv_cpu_interrupt(env); 2604 } 2605 2606 if (ret_val) { 2607 ret_mip &= alias_mask; 2608 old_mvip &= nalias_mask; 2609 2610 *ret_val = old_mvip | ret_mip; 2611 } 2612 2613 return RISCV_EXCP_NONE; 2614 } 2615 2616 static RISCVException rmw_mvip(CPURISCVState *env, int csrno, 2617 target_ulong *ret_val, 2618 target_ulong new_val, target_ulong wr_mask) 2619 { 2620 uint64_t rval; 2621 RISCVException ret; 2622 2623 ret = rmw_mvip64(env, csrno, &rval, new_val, wr_mask); 2624 if (ret_val) { 2625 *ret_val = rval; 2626 } 2627 2628 return ret; 2629 } 2630 2631 static RISCVException rmw_mviph(CPURISCVState *env, int csrno, 2632 target_ulong *ret_val, 2633 target_ulong new_val, target_ulong wr_mask) 2634 { 2635 uint64_t rval; 2636 RISCVException ret; 2637 2638 ret = rmw_mvip64(env, csrno, &rval, 2639 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2640 if (ret_val) { 2641 *ret_val = rval >> 32; 2642 } 2643 2644 return ret; 2645 } 2646 2647 /* Supervisor Trap Setup */ 2648 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2649 Int128 *val) 2650 { 2651 uint64_t mask = sstatus_v1_10_mask; 2652 uint64_t sstatus = env->mstatus & mask; 2653 if (env->xl != MXL_RV32 || env->debugger) { 2654 mask |= SSTATUS64_UXL; 2655 } 2656 2657 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2658 return RISCV_EXCP_NONE; 2659 } 2660 2661 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2662 target_ulong *val) 2663 { 2664 target_ulong mask = (sstatus_v1_10_mask); 2665 if (env->xl != MXL_RV32 || env->debugger) { 2666 mask |= SSTATUS64_UXL; 2667 } 2668 /* TODO: Use SXL not MXL. */ 2669 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2670 return RISCV_EXCP_NONE; 2671 } 2672 2673 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2674 target_ulong val) 2675 { 2676 target_ulong mask = (sstatus_v1_10_mask); 2677 2678 if (env->xl != MXL_RV32 || env->debugger) { 2679 if ((val & SSTATUS64_UXL) != 0) { 2680 mask |= SSTATUS64_UXL; 2681 } 2682 } 2683 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2684 return write_mstatus(env, CSR_MSTATUS, newval); 2685 } 2686 2687 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2688 uint64_t *ret_val, 2689 uint64_t new_val, uint64_t wr_mask) 2690 { 2691 uint64_t alias_mask = (LOCAL_INTERRUPTS | VS_MODE_INTERRUPTS) & 2692 env->hideleg; 2693 uint64_t nalias_mask = LOCAL_INTERRUPTS & (~env->hideleg & env->hvien); 2694 uint64_t rval, rval_vs, vsbits; 2695 uint64_t wr_mask_vsie; 2696 uint64_t wr_mask_mie; 2697 RISCVException ret; 2698 2699 /* Bring VS-level bits to correct position */ 2700 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2701 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2702 new_val |= vsbits << 1; 2703 2704 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2705 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2706 wr_mask |= vsbits << 1; 2707 2708 wr_mask_mie = wr_mask & alias_mask; 2709 wr_mask_vsie = wr_mask & nalias_mask; 2710 2711 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask_mie); 2712 2713 rval_vs = env->vsie & nalias_mask; 2714 env->vsie = (env->vsie & ~wr_mask_vsie) | (new_val & wr_mask_vsie); 2715 2716 if (ret_val) { 2717 rval &= alias_mask; 2718 vsbits = rval & VS_MODE_INTERRUPTS; 2719 rval &= ~VS_MODE_INTERRUPTS; 2720 *ret_val = rval | (vsbits >> 1) | rval_vs; 2721 } 2722 2723 return ret; 2724 } 2725 2726 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2727 target_ulong *ret_val, 2728 target_ulong new_val, target_ulong wr_mask) 2729 { 2730 uint64_t rval; 2731 RISCVException ret; 2732 2733 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2734 if (ret_val) { 2735 *ret_val = rval; 2736 } 2737 2738 return ret; 2739 } 2740 2741 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2742 target_ulong *ret_val, 2743 target_ulong new_val, target_ulong wr_mask) 2744 { 2745 uint64_t rval; 2746 RISCVException ret; 2747 2748 ret = rmw_vsie64(env, csrno, &rval, 2749 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2750 if (ret_val) { 2751 *ret_val = rval >> 32; 2752 } 2753 2754 return ret; 2755 } 2756 2757 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2758 uint64_t *ret_val, 2759 uint64_t new_val, uint64_t wr_mask) 2760 { 2761 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2762 (~env->mideleg & env->mvien); 2763 uint64_t alias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & env->mideleg; 2764 uint64_t sie_mask = wr_mask & nalias_mask; 2765 RISCVException ret; 2766 2767 /* 2768 * mideleg[i] mvien[i] 2769 * 0 0 sie[i] read-only zero. 2770 * 0 1 sie[i] is a separate writable bit. 2771 * 1 X sie[i] alias of mie[i]. 2772 * 2773 * Both alias and non-alias mask remain same for sip except for bits 2774 * which are zero in both mideleg and mvien. 2775 */ 2776 if (env->virt_enabled) { 2777 if (env->hvictl & HVICTL_VTI) { 2778 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2779 } 2780 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2781 if (ret_val) { 2782 *ret_val &= alias_mask; 2783 } 2784 } else { 2785 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & alias_mask); 2786 if (ret_val) { 2787 *ret_val &= alias_mask; 2788 *ret_val |= env->sie & nalias_mask; 2789 } 2790 2791 env->sie = (env->sie & ~sie_mask) | (new_val & sie_mask); 2792 } 2793 2794 return ret; 2795 } 2796 2797 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2798 target_ulong *ret_val, 2799 target_ulong new_val, target_ulong wr_mask) 2800 { 2801 uint64_t rval; 2802 RISCVException ret; 2803 2804 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2805 if (ret == RISCV_EXCP_NONE && ret_val) { 2806 *ret_val = rval; 2807 } 2808 2809 return ret; 2810 } 2811 2812 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2813 target_ulong *ret_val, 2814 target_ulong new_val, target_ulong wr_mask) 2815 { 2816 uint64_t rval; 2817 RISCVException ret; 2818 2819 ret = rmw_sie64(env, csrno, &rval, 2820 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2821 if (ret_val) { 2822 *ret_val = rval >> 32; 2823 } 2824 2825 return ret; 2826 } 2827 2828 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2829 target_ulong *val) 2830 { 2831 *val = env->stvec; 2832 return RISCV_EXCP_NONE; 2833 } 2834 2835 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2836 target_ulong val) 2837 { 2838 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2839 if ((val & 3) < 2) { 2840 env->stvec = val; 2841 } else { 2842 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2843 } 2844 return RISCV_EXCP_NONE; 2845 } 2846 2847 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2848 target_ulong *val) 2849 { 2850 *val = env->scounteren; 2851 return RISCV_EXCP_NONE; 2852 } 2853 2854 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2855 target_ulong val) 2856 { 2857 env->scounteren = val; 2858 return RISCV_EXCP_NONE; 2859 } 2860 2861 /* Supervisor Trap Handling */ 2862 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2863 Int128 *val) 2864 { 2865 *val = int128_make128(env->sscratch, env->sscratchh); 2866 return RISCV_EXCP_NONE; 2867 } 2868 2869 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2870 Int128 val) 2871 { 2872 env->sscratch = int128_getlo(val); 2873 env->sscratchh = int128_gethi(val); 2874 return RISCV_EXCP_NONE; 2875 } 2876 2877 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2878 target_ulong *val) 2879 { 2880 *val = env->sscratch; 2881 return RISCV_EXCP_NONE; 2882 } 2883 2884 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2885 target_ulong val) 2886 { 2887 env->sscratch = val; 2888 return RISCV_EXCP_NONE; 2889 } 2890 2891 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2892 target_ulong *val) 2893 { 2894 *val = env->sepc; 2895 return RISCV_EXCP_NONE; 2896 } 2897 2898 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2899 target_ulong val) 2900 { 2901 env->sepc = val; 2902 return RISCV_EXCP_NONE; 2903 } 2904 2905 static RISCVException read_scause(CPURISCVState *env, int csrno, 2906 target_ulong *val) 2907 { 2908 *val = env->scause; 2909 return RISCV_EXCP_NONE; 2910 } 2911 2912 static RISCVException write_scause(CPURISCVState *env, int csrno, 2913 target_ulong val) 2914 { 2915 env->scause = val; 2916 return RISCV_EXCP_NONE; 2917 } 2918 2919 static RISCVException read_stval(CPURISCVState *env, int csrno, 2920 target_ulong *val) 2921 { 2922 *val = env->stval; 2923 return RISCV_EXCP_NONE; 2924 } 2925 2926 static RISCVException write_stval(CPURISCVState *env, int csrno, 2927 target_ulong val) 2928 { 2929 env->stval = val; 2930 return RISCV_EXCP_NONE; 2931 } 2932 2933 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2934 uint64_t *ret_val, 2935 uint64_t new_val, uint64_t wr_mask); 2936 2937 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2938 uint64_t *ret_val, 2939 uint64_t new_val, uint64_t wr_mask) 2940 { 2941 RISCVException ret; 2942 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2943 uint64_t vsbits; 2944 2945 /* Add virtualized bits into vsip mask. */ 2946 mask |= env->hvien & ~env->hideleg; 2947 2948 /* Bring VS-level bits to correct position */ 2949 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2950 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2951 new_val |= vsbits << 1; 2952 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2953 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2954 wr_mask |= vsbits << 1; 2955 2956 ret = rmw_hvip64(env, csrno, &rval, new_val, 2957 wr_mask & mask & vsip_writable_mask); 2958 if (ret_val) { 2959 rval &= mask; 2960 vsbits = rval & VS_MODE_INTERRUPTS; 2961 rval &= ~VS_MODE_INTERRUPTS; 2962 *ret_val = rval | (vsbits >> 1); 2963 } 2964 2965 return ret; 2966 } 2967 2968 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2969 target_ulong *ret_val, 2970 target_ulong new_val, target_ulong wr_mask) 2971 { 2972 uint64_t rval; 2973 RISCVException ret; 2974 2975 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2976 if (ret_val) { 2977 *ret_val = rval; 2978 } 2979 2980 return ret; 2981 } 2982 2983 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2984 target_ulong *ret_val, 2985 target_ulong new_val, target_ulong wr_mask) 2986 { 2987 uint64_t rval; 2988 RISCVException ret; 2989 2990 ret = rmw_vsip64(env, csrno, &rval, 2991 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2992 if (ret_val) { 2993 *ret_val = rval >> 32; 2994 } 2995 2996 return ret; 2997 } 2998 2999 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 3000 uint64_t *ret_val, 3001 uint64_t new_val, uint64_t wr_mask) 3002 { 3003 RISCVException ret; 3004 uint64_t mask = (env->mideleg | env->mvien) & sip_writable_mask; 3005 3006 if (env->virt_enabled) { 3007 if (env->hvictl & HVICTL_VTI) { 3008 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3009 } 3010 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 3011 } else { 3012 ret = rmw_mvip64(env, csrno, ret_val, new_val, wr_mask & mask); 3013 } 3014 3015 if (ret_val) { 3016 *ret_val &= (env->mideleg | env->mvien) & 3017 (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS); 3018 } 3019 3020 return ret; 3021 } 3022 3023 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 3024 target_ulong *ret_val, 3025 target_ulong new_val, target_ulong wr_mask) 3026 { 3027 uint64_t rval; 3028 RISCVException ret; 3029 3030 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 3031 if (ret_val) { 3032 *ret_val = rval; 3033 } 3034 3035 return ret; 3036 } 3037 3038 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 3039 target_ulong *ret_val, 3040 target_ulong new_val, target_ulong wr_mask) 3041 { 3042 uint64_t rval; 3043 RISCVException ret; 3044 3045 ret = rmw_sip64(env, csrno, &rval, 3046 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3047 if (ret_val) { 3048 *ret_val = rval >> 32; 3049 } 3050 3051 return ret; 3052 } 3053 3054 /* Supervisor Protection and Translation */ 3055 static RISCVException read_satp(CPURISCVState *env, int csrno, 3056 target_ulong *val) 3057 { 3058 if (!riscv_cpu_cfg(env)->mmu) { 3059 *val = 0; 3060 return RISCV_EXCP_NONE; 3061 } 3062 *val = env->satp; 3063 return RISCV_EXCP_NONE; 3064 } 3065 3066 static RISCVException write_satp(CPURISCVState *env, int csrno, 3067 target_ulong val) 3068 { 3069 if (!riscv_cpu_cfg(env)->mmu) { 3070 return RISCV_EXCP_NONE; 3071 } 3072 3073 env->satp = legalize_xatp(env, env->satp, val); 3074 return RISCV_EXCP_NONE; 3075 } 3076 3077 static RISCVException read_vstopi(CPURISCVState *env, int csrno, 3078 target_ulong *val) 3079 { 3080 int irq, ret; 3081 target_ulong topei; 3082 uint64_t vseip, vsgein; 3083 uint32_t iid, iprio, hviid, hviprio, gein; 3084 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 3085 3086 gein = get_field(env->hstatus, HSTATUS_VGEIN); 3087 hviid = get_field(env->hvictl, HVICTL_IID); 3088 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 3089 3090 if (gein) { 3091 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 3092 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 3093 if (gein <= env->geilen && vseip) { 3094 siid[scount] = IRQ_S_EXT; 3095 siprio[scount] = IPRIO_MMAXIPRIO + 1; 3096 if (env->aia_ireg_rmw_fn[PRV_S]) { 3097 /* 3098 * Call machine specific IMSIC register emulation for 3099 * reading TOPEI. 3100 */ 3101 ret = env->aia_ireg_rmw_fn[PRV_S]( 3102 env->aia_ireg_rmw_fn_arg[PRV_S], 3103 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 3104 riscv_cpu_mxl_bits(env)), 3105 &topei, 0, 0); 3106 if (!ret && topei) { 3107 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 3108 } 3109 } 3110 scount++; 3111 } 3112 } else { 3113 if (hviid == IRQ_S_EXT && hviprio) { 3114 siid[scount] = IRQ_S_EXT; 3115 siprio[scount] = hviprio; 3116 scount++; 3117 } 3118 } 3119 3120 if (env->hvictl & HVICTL_VTI) { 3121 if (hviid != IRQ_S_EXT) { 3122 siid[scount] = hviid; 3123 siprio[scount] = hviprio; 3124 scount++; 3125 } 3126 } else { 3127 irq = riscv_cpu_vsirq_pending(env); 3128 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 3129 siid[scount] = irq; 3130 siprio[scount] = env->hviprio[irq]; 3131 scount++; 3132 } 3133 } 3134 3135 iid = 0; 3136 iprio = UINT_MAX; 3137 for (s = 0; s < scount; s++) { 3138 if (siprio[s] < iprio) { 3139 iid = siid[s]; 3140 iprio = siprio[s]; 3141 } 3142 } 3143 3144 if (iid) { 3145 if (env->hvictl & HVICTL_IPRIOM) { 3146 if (iprio > IPRIO_MMAXIPRIO) { 3147 iprio = IPRIO_MMAXIPRIO; 3148 } 3149 if (!iprio) { 3150 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 3151 iprio = IPRIO_MMAXIPRIO; 3152 } 3153 } 3154 } else { 3155 iprio = 1; 3156 } 3157 } else { 3158 iprio = 0; 3159 } 3160 3161 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 3162 *val |= iprio; 3163 3164 return RISCV_EXCP_NONE; 3165 } 3166 3167 static RISCVException read_stopi(CPURISCVState *env, int csrno, 3168 target_ulong *val) 3169 { 3170 int irq; 3171 uint8_t iprio; 3172 3173 if (env->virt_enabled) { 3174 return read_vstopi(env, CSR_VSTOPI, val); 3175 } 3176 3177 irq = riscv_cpu_sirq_pending(env); 3178 if (irq <= 0 || irq > 63) { 3179 *val = 0; 3180 } else { 3181 iprio = env->siprio[irq]; 3182 if (!iprio) { 3183 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 3184 iprio = IPRIO_MMAXIPRIO; 3185 } 3186 } 3187 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 3188 *val |= iprio; 3189 } 3190 3191 return RISCV_EXCP_NONE; 3192 } 3193 3194 /* Hypervisor Extensions */ 3195 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 3196 target_ulong *val) 3197 { 3198 *val = env->hstatus; 3199 if (riscv_cpu_mxl(env) != MXL_RV32) { 3200 /* We only support 64-bit VSXL */ 3201 *val = set_field(*val, HSTATUS_VSXL, 2); 3202 } 3203 /* We only support little endian */ 3204 *val = set_field(*val, HSTATUS_VSBE, 0); 3205 return RISCV_EXCP_NONE; 3206 } 3207 3208 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 3209 target_ulong val) 3210 { 3211 env->hstatus = val; 3212 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 3213 qemu_log_mask(LOG_UNIMP, 3214 "QEMU does not support mixed HSXLEN options."); 3215 } 3216 if (get_field(val, HSTATUS_VSBE) != 0) { 3217 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 3218 } 3219 return RISCV_EXCP_NONE; 3220 } 3221 3222 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 3223 target_ulong *val) 3224 { 3225 *val = env->hedeleg; 3226 return RISCV_EXCP_NONE; 3227 } 3228 3229 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 3230 target_ulong val) 3231 { 3232 env->hedeleg = val & vs_delegable_excps; 3233 return RISCV_EXCP_NONE; 3234 } 3235 3236 static RISCVException read_hedelegh(CPURISCVState *env, int csrno, 3237 target_ulong *val) 3238 { 3239 RISCVException ret; 3240 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 3241 if (ret != RISCV_EXCP_NONE) { 3242 return ret; 3243 } 3244 3245 /* Reserved, now read zero */ 3246 *val = 0; 3247 return RISCV_EXCP_NONE; 3248 } 3249 3250 static RISCVException write_hedelegh(CPURISCVState *env, int csrno, 3251 target_ulong val) 3252 { 3253 RISCVException ret; 3254 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 3255 if (ret != RISCV_EXCP_NONE) { 3256 return ret; 3257 } 3258 3259 /* Reserved, now write ignore */ 3260 return RISCV_EXCP_NONE; 3261 } 3262 3263 static RISCVException rmw_hvien64(CPURISCVState *env, int csrno, 3264 uint64_t *ret_val, 3265 uint64_t new_val, uint64_t wr_mask) 3266 { 3267 uint64_t mask = wr_mask & hvien_writable_mask; 3268 3269 if (ret_val) { 3270 *ret_val = env->hvien; 3271 } 3272 3273 env->hvien = (env->hvien & ~mask) | (new_val & mask); 3274 3275 return RISCV_EXCP_NONE; 3276 } 3277 3278 static RISCVException rmw_hvien(CPURISCVState *env, int csrno, 3279 target_ulong *ret_val, 3280 target_ulong new_val, target_ulong wr_mask) 3281 { 3282 uint64_t rval; 3283 RISCVException ret; 3284 3285 ret = rmw_hvien64(env, csrno, &rval, new_val, wr_mask); 3286 if (ret_val) { 3287 *ret_val = rval; 3288 } 3289 3290 return ret; 3291 } 3292 3293 static RISCVException rmw_hvienh(CPURISCVState *env, int csrno, 3294 target_ulong *ret_val, 3295 target_ulong new_val, target_ulong wr_mask) 3296 { 3297 uint64_t rval; 3298 RISCVException ret; 3299 3300 ret = rmw_hvien64(env, csrno, &rval, 3301 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3302 if (ret_val) { 3303 *ret_val = rval >> 32; 3304 } 3305 3306 return ret; 3307 } 3308 3309 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 3310 uint64_t *ret_val, 3311 uint64_t new_val, uint64_t wr_mask) 3312 { 3313 uint64_t mask = wr_mask & vs_delegable_ints; 3314 3315 if (ret_val) { 3316 *ret_val = env->hideleg & vs_delegable_ints; 3317 } 3318 3319 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 3320 return RISCV_EXCP_NONE; 3321 } 3322 3323 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 3324 target_ulong *ret_val, 3325 target_ulong new_val, target_ulong wr_mask) 3326 { 3327 uint64_t rval; 3328 RISCVException ret; 3329 3330 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 3331 if (ret_val) { 3332 *ret_val = rval; 3333 } 3334 3335 return ret; 3336 } 3337 3338 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 3339 target_ulong *ret_val, 3340 target_ulong new_val, target_ulong wr_mask) 3341 { 3342 uint64_t rval; 3343 RISCVException ret; 3344 3345 ret = rmw_hideleg64(env, csrno, &rval, 3346 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3347 if (ret_val) { 3348 *ret_val = rval >> 32; 3349 } 3350 3351 return ret; 3352 } 3353 3354 /* 3355 * The function is written for two use-cases: 3356 * 1- To access hvip csr as is for HS-mode access. 3357 * 2- To access vsip as a combination of hvip, and mip for vs-mode. 3358 * 3359 * Both report bits 2, 6, 10 and 13:63. 3360 * vsip needs to be read-only zero when both hideleg[i] and 3361 * hvien[i] are zero. 3362 */ 3363 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 3364 uint64_t *ret_val, 3365 uint64_t new_val, uint64_t wr_mask) 3366 { 3367 RISCVException ret; 3368 uint64_t old_hvip; 3369 uint64_t ret_mip; 3370 3371 /* 3372 * For bits 10, 6 and 2, vsip[i] is an alias of hip[i]. These bits are 3373 * present in hip, hvip and mip. Where mip[i] is alias of hip[i] and hvip[i] 3374 * is OR'ed in hip[i] to inject virtual interrupts from hypervisor. These 3375 * bits are actually being maintained in mip so we read them from there. 3376 * This way we have a single source of truth and allows for easier 3377 * implementation. 3378 * 3379 * For bits 13:63 we have: 3380 * 3381 * hideleg[i] hvien[i] 3382 * 0 0 No delegation. vsip[i] readonly zero. 3383 * 0 1 vsip[i] is alias of hvip[i], sip bypassed. 3384 * 1 X vsip[i] is alias of sip[i], hvip bypassed. 3385 * 3386 * alias_mask denotes the bits that come from sip (mip here given we 3387 * maintain all bits there). nalias_mask denotes bits that come from 3388 * hvip. 3389 */ 3390 uint64_t alias_mask = (env->hideleg | ~env->hvien) | VS_MODE_INTERRUPTS; 3391 uint64_t nalias_mask = (~env->hideleg & env->hvien); 3392 uint64_t wr_mask_hvip; 3393 uint64_t wr_mask_mip; 3394 3395 /* 3396 * Both alias and non-alias mask remain same for vsip except: 3397 * 1- For VS* bits if they are zero in hideleg. 3398 * 2- For 13:63 bits if they are zero in both hideleg and hvien. 3399 */ 3400 if (csrno == CSR_VSIP) { 3401 /* zero-out VS* bits that are not delegated to VS mode. */ 3402 alias_mask &= (env->hideleg | ~VS_MODE_INTERRUPTS); 3403 3404 /* 3405 * zero-out 13:63 bits that are zero in both hideleg and hvien. 3406 * nalias_mask mask can not contain any VS* bits so only second 3407 * condition applies on it. 3408 */ 3409 nalias_mask &= (env->hideleg | env->hvien); 3410 alias_mask &= (env->hideleg | env->hvien); 3411 } 3412 3413 wr_mask_hvip = wr_mask & nalias_mask & hvip_writable_mask; 3414 wr_mask_mip = wr_mask & alias_mask & hvip_writable_mask; 3415 3416 /* Aliased bits, bits 10, 6, 2 need to come from mip. */ 3417 ret = rmw_mip64(env, csrno, &ret_mip, new_val, wr_mask_mip); 3418 if (ret != RISCV_EXCP_NONE) { 3419 return ret; 3420 } 3421 3422 old_hvip = env->hvip; 3423 3424 if (wr_mask_hvip) { 3425 env->hvip = (env->hvip & ~wr_mask_hvip) | (new_val & wr_mask_hvip); 3426 3427 /* 3428 * Given hvip is separate source from mip, we need to trigger interrupt 3429 * from here separately. Normally this happen from riscv_cpu_update_mip. 3430 */ 3431 riscv_cpu_interrupt(env); 3432 } 3433 3434 if (ret_val) { 3435 /* Only take VS* bits from mip. */ 3436 ret_mip &= alias_mask; 3437 3438 /* Take in non-delegated 13:63 bits from hvip. */ 3439 old_hvip &= nalias_mask; 3440 3441 *ret_val = ret_mip | old_hvip; 3442 } 3443 3444 return ret; 3445 } 3446 3447 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 3448 target_ulong *ret_val, 3449 target_ulong new_val, target_ulong wr_mask) 3450 { 3451 uint64_t rval; 3452 RISCVException ret; 3453 3454 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 3455 if (ret_val) { 3456 *ret_val = rval; 3457 } 3458 3459 return ret; 3460 } 3461 3462 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 3463 target_ulong *ret_val, 3464 target_ulong new_val, target_ulong wr_mask) 3465 { 3466 uint64_t rval; 3467 RISCVException ret; 3468 3469 ret = rmw_hvip64(env, csrno, &rval, 3470 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3471 if (ret_val) { 3472 *ret_val = rval >> 32; 3473 } 3474 3475 return ret; 3476 } 3477 3478 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 3479 target_ulong *ret_value, 3480 target_ulong new_value, target_ulong write_mask) 3481 { 3482 int ret = rmw_mip(env, csrno, ret_value, new_value, 3483 write_mask & hip_writable_mask); 3484 3485 if (ret_value) { 3486 *ret_value &= HS_MODE_INTERRUPTS; 3487 } 3488 return ret; 3489 } 3490 3491 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 3492 target_ulong *ret_val, 3493 target_ulong new_val, target_ulong wr_mask) 3494 { 3495 uint64_t rval; 3496 RISCVException ret; 3497 3498 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 3499 if (ret_val) { 3500 *ret_val = rval & HS_MODE_INTERRUPTS; 3501 } 3502 3503 return ret; 3504 } 3505 3506 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 3507 target_ulong *val) 3508 { 3509 *val = env->hcounteren; 3510 return RISCV_EXCP_NONE; 3511 } 3512 3513 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 3514 target_ulong val) 3515 { 3516 env->hcounteren = val; 3517 return RISCV_EXCP_NONE; 3518 } 3519 3520 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 3521 target_ulong *val) 3522 { 3523 if (val) { 3524 *val = env->hgeie; 3525 } 3526 return RISCV_EXCP_NONE; 3527 } 3528 3529 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 3530 target_ulong val) 3531 { 3532 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 3533 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 3534 env->hgeie = val; 3535 /* Update mip.SGEIP bit */ 3536 riscv_cpu_update_mip(env, MIP_SGEIP, 3537 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 3538 return RISCV_EXCP_NONE; 3539 } 3540 3541 static RISCVException read_htval(CPURISCVState *env, int csrno, 3542 target_ulong *val) 3543 { 3544 *val = env->htval; 3545 return RISCV_EXCP_NONE; 3546 } 3547 3548 static RISCVException write_htval(CPURISCVState *env, int csrno, 3549 target_ulong val) 3550 { 3551 env->htval = val; 3552 return RISCV_EXCP_NONE; 3553 } 3554 3555 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3556 target_ulong *val) 3557 { 3558 *val = env->htinst; 3559 return RISCV_EXCP_NONE; 3560 } 3561 3562 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3563 target_ulong val) 3564 { 3565 return RISCV_EXCP_NONE; 3566 } 3567 3568 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3569 target_ulong *val) 3570 { 3571 if (val) { 3572 *val = env->hgeip; 3573 } 3574 return RISCV_EXCP_NONE; 3575 } 3576 3577 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3578 target_ulong *val) 3579 { 3580 *val = env->hgatp; 3581 return RISCV_EXCP_NONE; 3582 } 3583 3584 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3585 target_ulong val) 3586 { 3587 env->hgatp = legalize_xatp(env, env->hgatp, val); 3588 return RISCV_EXCP_NONE; 3589 } 3590 3591 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3592 target_ulong *val) 3593 { 3594 if (!env->rdtime_fn) { 3595 return RISCV_EXCP_ILLEGAL_INST; 3596 } 3597 3598 *val = env->htimedelta; 3599 return RISCV_EXCP_NONE; 3600 } 3601 3602 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3603 target_ulong val) 3604 { 3605 if (!env->rdtime_fn) { 3606 return RISCV_EXCP_ILLEGAL_INST; 3607 } 3608 3609 if (riscv_cpu_mxl(env) == MXL_RV32) { 3610 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3611 } else { 3612 env->htimedelta = val; 3613 } 3614 3615 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3616 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3617 env->htimedelta, MIP_VSTIP); 3618 } 3619 3620 return RISCV_EXCP_NONE; 3621 } 3622 3623 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3624 target_ulong *val) 3625 { 3626 if (!env->rdtime_fn) { 3627 return RISCV_EXCP_ILLEGAL_INST; 3628 } 3629 3630 *val = env->htimedelta >> 32; 3631 return RISCV_EXCP_NONE; 3632 } 3633 3634 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3635 target_ulong val) 3636 { 3637 if (!env->rdtime_fn) { 3638 return RISCV_EXCP_ILLEGAL_INST; 3639 } 3640 3641 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3642 3643 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3644 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3645 env->htimedelta, MIP_VSTIP); 3646 } 3647 3648 return RISCV_EXCP_NONE; 3649 } 3650 3651 static RISCVException read_hvictl(CPURISCVState *env, int csrno, 3652 target_ulong *val) 3653 { 3654 *val = env->hvictl; 3655 return RISCV_EXCP_NONE; 3656 } 3657 3658 static RISCVException write_hvictl(CPURISCVState *env, int csrno, 3659 target_ulong val) 3660 { 3661 env->hvictl = val & HVICTL_VALID_MASK; 3662 return RISCV_EXCP_NONE; 3663 } 3664 3665 static RISCVException read_hvipriox(CPURISCVState *env, int first_index, 3666 uint8_t *iprio, target_ulong *val) 3667 { 3668 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3669 3670 /* First index has to be a multiple of number of irqs per register */ 3671 if (first_index % num_irqs) { 3672 return (env->virt_enabled) ? 3673 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3674 } 3675 3676 /* Fill-up return value */ 3677 *val = 0; 3678 for (i = 0; i < num_irqs; i++) { 3679 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3680 continue; 3681 } 3682 if (rdzero) { 3683 continue; 3684 } 3685 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3686 } 3687 3688 return RISCV_EXCP_NONE; 3689 } 3690 3691 static RISCVException write_hvipriox(CPURISCVState *env, int first_index, 3692 uint8_t *iprio, target_ulong val) 3693 { 3694 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3695 3696 /* First index has to be a multiple of number of irqs per register */ 3697 if (first_index % num_irqs) { 3698 return (env->virt_enabled) ? 3699 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3700 } 3701 3702 /* Fill-up priority array */ 3703 for (i = 0; i < num_irqs; i++) { 3704 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3705 continue; 3706 } 3707 if (rdzero) { 3708 iprio[irq] = 0; 3709 } else { 3710 iprio[irq] = (val >> (i * 8)) & 0xff; 3711 } 3712 } 3713 3714 return RISCV_EXCP_NONE; 3715 } 3716 3717 static RISCVException read_hviprio1(CPURISCVState *env, int csrno, 3718 target_ulong *val) 3719 { 3720 return read_hvipriox(env, 0, env->hviprio, val); 3721 } 3722 3723 static RISCVException write_hviprio1(CPURISCVState *env, int csrno, 3724 target_ulong val) 3725 { 3726 return write_hvipriox(env, 0, env->hviprio, val); 3727 } 3728 3729 static RISCVException read_hviprio1h(CPURISCVState *env, int csrno, 3730 target_ulong *val) 3731 { 3732 return read_hvipriox(env, 4, env->hviprio, val); 3733 } 3734 3735 static RISCVException write_hviprio1h(CPURISCVState *env, int csrno, 3736 target_ulong val) 3737 { 3738 return write_hvipriox(env, 4, env->hviprio, val); 3739 } 3740 3741 static RISCVException read_hviprio2(CPURISCVState *env, int csrno, 3742 target_ulong *val) 3743 { 3744 return read_hvipriox(env, 8, env->hviprio, val); 3745 } 3746 3747 static RISCVException write_hviprio2(CPURISCVState *env, int csrno, 3748 target_ulong val) 3749 { 3750 return write_hvipriox(env, 8, env->hviprio, val); 3751 } 3752 3753 static RISCVException read_hviprio2h(CPURISCVState *env, int csrno, 3754 target_ulong *val) 3755 { 3756 return read_hvipriox(env, 12, env->hviprio, val); 3757 } 3758 3759 static RISCVException write_hviprio2h(CPURISCVState *env, int csrno, 3760 target_ulong val) 3761 { 3762 return write_hvipriox(env, 12, env->hviprio, val); 3763 } 3764 3765 /* Virtual CSR Registers */ 3766 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3767 target_ulong *val) 3768 { 3769 *val = env->vsstatus; 3770 return RISCV_EXCP_NONE; 3771 } 3772 3773 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3774 target_ulong val) 3775 { 3776 uint64_t mask = (target_ulong)-1; 3777 if ((val & VSSTATUS64_UXL) == 0) { 3778 mask &= ~VSSTATUS64_UXL; 3779 } 3780 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3781 return RISCV_EXCP_NONE; 3782 } 3783 3784 static RISCVException read_vstvec(CPURISCVState *env, int csrno, 3785 target_ulong *val) 3786 { 3787 *val = env->vstvec; 3788 return RISCV_EXCP_NONE; 3789 } 3790 3791 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3792 target_ulong val) 3793 { 3794 env->vstvec = val; 3795 return RISCV_EXCP_NONE; 3796 } 3797 3798 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3799 target_ulong *val) 3800 { 3801 *val = env->vsscratch; 3802 return RISCV_EXCP_NONE; 3803 } 3804 3805 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3806 target_ulong val) 3807 { 3808 env->vsscratch = val; 3809 return RISCV_EXCP_NONE; 3810 } 3811 3812 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3813 target_ulong *val) 3814 { 3815 *val = env->vsepc; 3816 return RISCV_EXCP_NONE; 3817 } 3818 3819 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3820 target_ulong val) 3821 { 3822 env->vsepc = val; 3823 return RISCV_EXCP_NONE; 3824 } 3825 3826 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3827 target_ulong *val) 3828 { 3829 *val = env->vscause; 3830 return RISCV_EXCP_NONE; 3831 } 3832 3833 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3834 target_ulong val) 3835 { 3836 env->vscause = val; 3837 return RISCV_EXCP_NONE; 3838 } 3839 3840 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3841 target_ulong *val) 3842 { 3843 *val = env->vstval; 3844 return RISCV_EXCP_NONE; 3845 } 3846 3847 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3848 target_ulong val) 3849 { 3850 env->vstval = val; 3851 return RISCV_EXCP_NONE; 3852 } 3853 3854 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3855 target_ulong *val) 3856 { 3857 *val = env->vsatp; 3858 return RISCV_EXCP_NONE; 3859 } 3860 3861 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3862 target_ulong val) 3863 { 3864 env->vsatp = legalize_xatp(env, env->vsatp, val); 3865 return RISCV_EXCP_NONE; 3866 } 3867 3868 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3869 target_ulong *val) 3870 { 3871 *val = env->mtval2; 3872 return RISCV_EXCP_NONE; 3873 } 3874 3875 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3876 target_ulong val) 3877 { 3878 env->mtval2 = val; 3879 return RISCV_EXCP_NONE; 3880 } 3881 3882 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3883 target_ulong *val) 3884 { 3885 *val = env->mtinst; 3886 return RISCV_EXCP_NONE; 3887 } 3888 3889 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3890 target_ulong val) 3891 { 3892 env->mtinst = val; 3893 return RISCV_EXCP_NONE; 3894 } 3895 3896 /* Physical Memory Protection */ 3897 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3898 target_ulong *val) 3899 { 3900 *val = mseccfg_csr_read(env); 3901 return RISCV_EXCP_NONE; 3902 } 3903 3904 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3905 target_ulong val) 3906 { 3907 mseccfg_csr_write(env, val); 3908 return RISCV_EXCP_NONE; 3909 } 3910 3911 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3912 target_ulong *val) 3913 { 3914 uint32_t reg_index = csrno - CSR_PMPCFG0; 3915 3916 *val = pmpcfg_csr_read(env, reg_index); 3917 return RISCV_EXCP_NONE; 3918 } 3919 3920 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3921 target_ulong val) 3922 { 3923 uint32_t reg_index = csrno - CSR_PMPCFG0; 3924 3925 pmpcfg_csr_write(env, reg_index, val); 3926 return RISCV_EXCP_NONE; 3927 } 3928 3929 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3930 target_ulong *val) 3931 { 3932 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3933 return RISCV_EXCP_NONE; 3934 } 3935 3936 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3937 target_ulong val) 3938 { 3939 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3940 return RISCV_EXCP_NONE; 3941 } 3942 3943 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3944 target_ulong *val) 3945 { 3946 *val = tselect_csr_read(env); 3947 return RISCV_EXCP_NONE; 3948 } 3949 3950 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3951 target_ulong val) 3952 { 3953 tselect_csr_write(env, val); 3954 return RISCV_EXCP_NONE; 3955 } 3956 3957 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3958 target_ulong *val) 3959 { 3960 /* return 0 in tdata1 to end the trigger enumeration */ 3961 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3962 *val = 0; 3963 return RISCV_EXCP_NONE; 3964 } 3965 3966 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3967 return RISCV_EXCP_ILLEGAL_INST; 3968 } 3969 3970 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3971 return RISCV_EXCP_NONE; 3972 } 3973 3974 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3975 target_ulong val) 3976 { 3977 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3978 return RISCV_EXCP_ILLEGAL_INST; 3979 } 3980 3981 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3982 return RISCV_EXCP_NONE; 3983 } 3984 3985 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3986 target_ulong *val) 3987 { 3988 *val = tinfo_csr_read(env); 3989 return RISCV_EXCP_NONE; 3990 } 3991 3992 static RISCVException read_mcontext(CPURISCVState *env, int csrno, 3993 target_ulong *val) 3994 { 3995 *val = env->mcontext; 3996 return RISCV_EXCP_NONE; 3997 } 3998 3999 static RISCVException write_mcontext(CPURISCVState *env, int csrno, 4000 target_ulong val) 4001 { 4002 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 4003 int32_t mask; 4004 4005 if (riscv_has_ext(env, RVH)) { 4006 /* Spec suggest 7-bit for RV32 and 14-bit for RV64 w/ H extension */ 4007 mask = rv32 ? MCONTEXT32_HCONTEXT : MCONTEXT64_HCONTEXT; 4008 } else { 4009 /* Spec suggest 6-bit for RV32 and 13-bit for RV64 w/o H extension */ 4010 mask = rv32 ? MCONTEXT32 : MCONTEXT64; 4011 } 4012 4013 env->mcontext = val & mask; 4014 return RISCV_EXCP_NONE; 4015 } 4016 4017 /* 4018 * Functions to access Pointer Masking feature registers 4019 * We have to check if current priv lvl could modify 4020 * csr in given mode 4021 */ 4022 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 4023 { 4024 int csr_priv = get_field(csrno, 0x300); 4025 int pm_current; 4026 4027 if (env->debugger) { 4028 return false; 4029 } 4030 /* 4031 * If priv lvls differ that means we're accessing csr from higher priv lvl, 4032 * so allow the access 4033 */ 4034 if (env->priv != csr_priv) { 4035 return false; 4036 } 4037 switch (env->priv) { 4038 case PRV_M: 4039 pm_current = get_field(env->mmte, M_PM_CURRENT); 4040 break; 4041 case PRV_S: 4042 pm_current = get_field(env->mmte, S_PM_CURRENT); 4043 break; 4044 case PRV_U: 4045 pm_current = get_field(env->mmte, U_PM_CURRENT); 4046 break; 4047 default: 4048 g_assert_not_reached(); 4049 } 4050 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 4051 return !pm_current; 4052 } 4053 4054 static RISCVException read_mmte(CPURISCVState *env, int csrno, 4055 target_ulong *val) 4056 { 4057 *val = env->mmte & MMTE_MASK; 4058 return RISCV_EXCP_NONE; 4059 } 4060 4061 static RISCVException write_mmte(CPURISCVState *env, int csrno, 4062 target_ulong val) 4063 { 4064 uint64_t mstatus; 4065 target_ulong wpri_val = val & MMTE_MASK; 4066 4067 if (val != wpri_val) { 4068 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4069 TARGET_FMT_lx "\n", "MMTE: WPRI violation written 0x", 4070 val, "vs expected 0x", wpri_val); 4071 } 4072 /* for machine mode pm.current is hardwired to 1 */ 4073 wpri_val |= MMTE_M_PM_CURRENT; 4074 4075 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 4076 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 4077 env->mmte = wpri_val | EXT_STATUS_DIRTY; 4078 riscv_cpu_update_mask(env); 4079 4080 /* Set XS and SD bits, since PM CSRs are dirty */ 4081 mstatus = env->mstatus | MSTATUS_XS; 4082 write_mstatus(env, csrno, mstatus); 4083 return RISCV_EXCP_NONE; 4084 } 4085 4086 static RISCVException read_smte(CPURISCVState *env, int csrno, 4087 target_ulong *val) 4088 { 4089 *val = env->mmte & SMTE_MASK; 4090 return RISCV_EXCP_NONE; 4091 } 4092 4093 static RISCVException write_smte(CPURISCVState *env, int csrno, 4094 target_ulong val) 4095 { 4096 target_ulong wpri_val = val & SMTE_MASK; 4097 4098 if (val != wpri_val) { 4099 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4100 TARGET_FMT_lx "\n", "SMTE: WPRI violation written 0x", 4101 val, "vs expected 0x", wpri_val); 4102 } 4103 4104 /* if pm.current==0 we can't modify current PM CSRs */ 4105 if (check_pm_current_disabled(env, csrno)) { 4106 return RISCV_EXCP_NONE; 4107 } 4108 4109 wpri_val |= (env->mmte & ~SMTE_MASK); 4110 write_mmte(env, csrno, wpri_val); 4111 return RISCV_EXCP_NONE; 4112 } 4113 4114 static RISCVException read_umte(CPURISCVState *env, int csrno, 4115 target_ulong *val) 4116 { 4117 *val = env->mmte & UMTE_MASK; 4118 return RISCV_EXCP_NONE; 4119 } 4120 4121 static RISCVException write_umte(CPURISCVState *env, int csrno, 4122 target_ulong val) 4123 { 4124 target_ulong wpri_val = val & UMTE_MASK; 4125 4126 if (val != wpri_val) { 4127 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4128 TARGET_FMT_lx "\n", "UMTE: WPRI violation written 0x", 4129 val, "vs expected 0x", wpri_val); 4130 } 4131 4132 if (check_pm_current_disabled(env, csrno)) { 4133 return RISCV_EXCP_NONE; 4134 } 4135 4136 wpri_val |= (env->mmte & ~UMTE_MASK); 4137 write_mmte(env, csrno, wpri_val); 4138 return RISCV_EXCP_NONE; 4139 } 4140 4141 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 4142 target_ulong *val) 4143 { 4144 *val = env->mpmmask; 4145 return RISCV_EXCP_NONE; 4146 } 4147 4148 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 4149 target_ulong val) 4150 { 4151 uint64_t mstatus; 4152 4153 env->mpmmask = val; 4154 if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { 4155 env->cur_pmmask = val; 4156 } 4157 env->mmte |= EXT_STATUS_DIRTY; 4158 4159 /* Set XS and SD bits, since PM CSRs are dirty */ 4160 mstatus = env->mstatus | MSTATUS_XS; 4161 write_mstatus(env, csrno, mstatus); 4162 return RISCV_EXCP_NONE; 4163 } 4164 4165 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 4166 target_ulong *val) 4167 { 4168 *val = env->spmmask; 4169 return RISCV_EXCP_NONE; 4170 } 4171 4172 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 4173 target_ulong val) 4174 { 4175 uint64_t mstatus; 4176 4177 /* if pm.current==0 we can't modify current PM CSRs */ 4178 if (check_pm_current_disabled(env, csrno)) { 4179 return RISCV_EXCP_NONE; 4180 } 4181 env->spmmask = val; 4182 if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { 4183 env->cur_pmmask = val; 4184 if (cpu_get_xl(env, PRV_S) == MXL_RV32) { 4185 env->cur_pmmask &= UINT32_MAX; 4186 } 4187 } 4188 env->mmte |= EXT_STATUS_DIRTY; 4189 4190 /* Set XS and SD bits, since PM CSRs are dirty */ 4191 mstatus = env->mstatus | MSTATUS_XS; 4192 write_mstatus(env, csrno, mstatus); 4193 return RISCV_EXCP_NONE; 4194 } 4195 4196 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 4197 target_ulong *val) 4198 { 4199 *val = env->upmmask; 4200 return RISCV_EXCP_NONE; 4201 } 4202 4203 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 4204 target_ulong val) 4205 { 4206 uint64_t mstatus; 4207 4208 /* if pm.current==0 we can't modify current PM CSRs */ 4209 if (check_pm_current_disabled(env, csrno)) { 4210 return RISCV_EXCP_NONE; 4211 } 4212 env->upmmask = val; 4213 if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { 4214 env->cur_pmmask = val; 4215 if (cpu_get_xl(env, PRV_U) == MXL_RV32) { 4216 env->cur_pmmask &= UINT32_MAX; 4217 } 4218 } 4219 env->mmte |= EXT_STATUS_DIRTY; 4220 4221 /* Set XS and SD bits, since PM CSRs are dirty */ 4222 mstatus = env->mstatus | MSTATUS_XS; 4223 write_mstatus(env, csrno, mstatus); 4224 return RISCV_EXCP_NONE; 4225 } 4226 4227 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 4228 target_ulong *val) 4229 { 4230 *val = env->mpmbase; 4231 return RISCV_EXCP_NONE; 4232 } 4233 4234 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 4235 target_ulong val) 4236 { 4237 uint64_t mstatus; 4238 4239 env->mpmbase = val; 4240 if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { 4241 env->cur_pmbase = val; 4242 } 4243 env->mmte |= EXT_STATUS_DIRTY; 4244 4245 /* Set XS and SD bits, since PM CSRs are dirty */ 4246 mstatus = env->mstatus | MSTATUS_XS; 4247 write_mstatus(env, csrno, mstatus); 4248 return RISCV_EXCP_NONE; 4249 } 4250 4251 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 4252 target_ulong *val) 4253 { 4254 *val = env->spmbase; 4255 return RISCV_EXCP_NONE; 4256 } 4257 4258 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 4259 target_ulong val) 4260 { 4261 uint64_t mstatus; 4262 4263 /* if pm.current==0 we can't modify current PM CSRs */ 4264 if (check_pm_current_disabled(env, csrno)) { 4265 return RISCV_EXCP_NONE; 4266 } 4267 env->spmbase = val; 4268 if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { 4269 env->cur_pmbase = val; 4270 if (cpu_get_xl(env, PRV_S) == MXL_RV32) { 4271 env->cur_pmbase &= UINT32_MAX; 4272 } 4273 } 4274 env->mmte |= EXT_STATUS_DIRTY; 4275 4276 /* Set XS and SD bits, since PM CSRs are dirty */ 4277 mstatus = env->mstatus | MSTATUS_XS; 4278 write_mstatus(env, csrno, mstatus); 4279 return RISCV_EXCP_NONE; 4280 } 4281 4282 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 4283 target_ulong *val) 4284 { 4285 *val = env->upmbase; 4286 return RISCV_EXCP_NONE; 4287 } 4288 4289 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 4290 target_ulong val) 4291 { 4292 uint64_t mstatus; 4293 4294 /* if pm.current==0 we can't modify current PM CSRs */ 4295 if (check_pm_current_disabled(env, csrno)) { 4296 return RISCV_EXCP_NONE; 4297 } 4298 env->upmbase = val; 4299 if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { 4300 env->cur_pmbase = val; 4301 if (cpu_get_xl(env, PRV_U) == MXL_RV32) { 4302 env->cur_pmbase &= UINT32_MAX; 4303 } 4304 } 4305 env->mmte |= EXT_STATUS_DIRTY; 4306 4307 /* Set XS and SD bits, since PM CSRs are dirty */ 4308 mstatus = env->mstatus | MSTATUS_XS; 4309 write_mstatus(env, csrno, mstatus); 4310 return RISCV_EXCP_NONE; 4311 } 4312 4313 #endif 4314 4315 /* Crypto Extension */ 4316 target_ulong riscv_new_csr_seed(target_ulong new_value, 4317 target_ulong write_mask) 4318 { 4319 uint16_t random_v; 4320 Error *random_e = NULL; 4321 int random_r; 4322 target_ulong rval; 4323 4324 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 4325 if (unlikely(random_r < 0)) { 4326 /* 4327 * Failed, for unknown reasons in the crypto subsystem. 4328 * The best we can do is log the reason and return a 4329 * failure indication to the guest. There is no reason 4330 * we know to expect the failure to be transitory, so 4331 * indicate DEAD to avoid having the guest spin on WAIT. 4332 */ 4333 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 4334 __func__, error_get_pretty(random_e)); 4335 error_free(random_e); 4336 rval = SEED_OPST_DEAD; 4337 } else { 4338 rval = random_v | SEED_OPST_ES16; 4339 } 4340 4341 return rval; 4342 } 4343 4344 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 4345 target_ulong *ret_value, 4346 target_ulong new_value, 4347 target_ulong write_mask) 4348 { 4349 target_ulong rval; 4350 4351 rval = riscv_new_csr_seed(new_value, write_mask); 4352 4353 if (ret_value) { 4354 *ret_value = rval; 4355 } 4356 4357 return RISCV_EXCP_NONE; 4358 } 4359 4360 /* 4361 * riscv_csrrw - read and/or update control and status register 4362 * 4363 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 4364 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 4365 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 4366 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 4367 */ 4368 4369 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 4370 int csrno, 4371 bool write_mask) 4372 { 4373 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 4374 bool read_only = get_field(csrno, 0xC00) == 3; 4375 int csr_min_priv = csr_ops[csrno].min_priv_ver; 4376 4377 /* ensure the CSR extension is enabled */ 4378 if (!riscv_cpu_cfg(env)->ext_zicsr) { 4379 return RISCV_EXCP_ILLEGAL_INST; 4380 } 4381 4382 /* ensure CSR is implemented by checking predicate */ 4383 if (!csr_ops[csrno].predicate) { 4384 return RISCV_EXCP_ILLEGAL_INST; 4385 } 4386 4387 /* privileged spec version check */ 4388 if (env->priv_ver < csr_min_priv) { 4389 return RISCV_EXCP_ILLEGAL_INST; 4390 } 4391 4392 /* read / write check */ 4393 if (write_mask && read_only) { 4394 return RISCV_EXCP_ILLEGAL_INST; 4395 } 4396 4397 /* 4398 * The predicate() not only does existence check but also does some 4399 * access control check which triggers for example virtual instruction 4400 * exception in some cases. When writing read-only CSRs in those cases 4401 * illegal instruction exception should be triggered instead of virtual 4402 * instruction exception. Hence this comes after the read / write check. 4403 */ 4404 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 4405 if (ret != RISCV_EXCP_NONE) { 4406 return ret; 4407 } 4408 4409 #if !defined(CONFIG_USER_ONLY) 4410 int csr_priv, effective_priv = env->priv; 4411 4412 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 4413 !env->virt_enabled) { 4414 /* 4415 * We are in HS mode. Add 1 to the effective privilege level to 4416 * allow us to access the Hypervisor CSRs. 4417 */ 4418 effective_priv++; 4419 } 4420 4421 csr_priv = get_field(csrno, 0x300); 4422 if (!env->debugger && (effective_priv < csr_priv)) { 4423 if (csr_priv == (PRV_S + 1) && env->virt_enabled) { 4424 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 4425 } 4426 return RISCV_EXCP_ILLEGAL_INST; 4427 } 4428 #endif 4429 return RISCV_EXCP_NONE; 4430 } 4431 4432 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 4433 target_ulong *ret_value, 4434 target_ulong new_value, 4435 target_ulong write_mask) 4436 { 4437 RISCVException ret; 4438 target_ulong old_value = 0; 4439 4440 /* execute combined read/write operation if it exists */ 4441 if (csr_ops[csrno].op) { 4442 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 4443 } 4444 4445 /* 4446 * ret_value == NULL means that rd=x0 and we're coming from helper_csrw() 4447 * and we can't throw side effects caused by CSR reads. 4448 */ 4449 if (ret_value) { 4450 /* if no accessor exists then return failure */ 4451 if (!csr_ops[csrno].read) { 4452 return RISCV_EXCP_ILLEGAL_INST; 4453 } 4454 /* read old value */ 4455 ret = csr_ops[csrno].read(env, csrno, &old_value); 4456 if (ret != RISCV_EXCP_NONE) { 4457 return ret; 4458 } 4459 } 4460 4461 /* write value if writable and write mask set, otherwise drop writes */ 4462 if (write_mask) { 4463 new_value = (old_value & ~write_mask) | (new_value & write_mask); 4464 if (csr_ops[csrno].write) { 4465 ret = csr_ops[csrno].write(env, csrno, new_value); 4466 if (ret != RISCV_EXCP_NONE) { 4467 return ret; 4468 } 4469 } 4470 } 4471 4472 /* return old value */ 4473 if (ret_value) { 4474 *ret_value = old_value; 4475 } 4476 4477 return RISCV_EXCP_NONE; 4478 } 4479 4480 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 4481 target_ulong *ret_value, 4482 target_ulong new_value, target_ulong write_mask) 4483 { 4484 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask); 4485 if (ret != RISCV_EXCP_NONE) { 4486 return ret; 4487 } 4488 4489 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 4490 } 4491 4492 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 4493 Int128 *ret_value, 4494 Int128 new_value, 4495 Int128 write_mask) 4496 { 4497 RISCVException ret; 4498 Int128 old_value; 4499 4500 /* read old value */ 4501 ret = csr_ops[csrno].read128(env, csrno, &old_value); 4502 if (ret != RISCV_EXCP_NONE) { 4503 return ret; 4504 } 4505 4506 /* write value if writable and write mask set, otherwise drop writes */ 4507 if (int128_nz(write_mask)) { 4508 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 4509 int128_and(new_value, write_mask)); 4510 if (csr_ops[csrno].write128) { 4511 ret = csr_ops[csrno].write128(env, csrno, new_value); 4512 if (ret != RISCV_EXCP_NONE) { 4513 return ret; 4514 } 4515 } else if (csr_ops[csrno].write) { 4516 /* avoids having to write wrappers for all registers */ 4517 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 4518 if (ret != RISCV_EXCP_NONE) { 4519 return ret; 4520 } 4521 } 4522 } 4523 4524 /* return old value */ 4525 if (ret_value) { 4526 *ret_value = old_value; 4527 } 4528 4529 return RISCV_EXCP_NONE; 4530 } 4531 4532 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 4533 Int128 *ret_value, 4534 Int128 new_value, Int128 write_mask) 4535 { 4536 RISCVException ret; 4537 4538 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask)); 4539 if (ret != RISCV_EXCP_NONE) { 4540 return ret; 4541 } 4542 4543 if (csr_ops[csrno].read128) { 4544 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 4545 } 4546 4547 /* 4548 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 4549 * at all defined. 4550 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 4551 * significant), for those, this fallback is correctly handling the 4552 * accesses 4553 */ 4554 target_ulong old_value; 4555 ret = riscv_csrrw_do64(env, csrno, &old_value, 4556 int128_getlo(new_value), 4557 int128_getlo(write_mask)); 4558 if (ret == RISCV_EXCP_NONE && ret_value) { 4559 *ret_value = int128_make64(old_value); 4560 } 4561 return ret; 4562 } 4563 4564 /* 4565 * Debugger support. If not in user mode, set env->debugger before the 4566 * riscv_csrrw call and clear it after the call. 4567 */ 4568 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 4569 target_ulong *ret_value, 4570 target_ulong new_value, 4571 target_ulong write_mask) 4572 { 4573 RISCVException ret; 4574 #if !defined(CONFIG_USER_ONLY) 4575 env->debugger = true; 4576 #endif 4577 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 4578 #if !defined(CONFIG_USER_ONLY) 4579 env->debugger = false; 4580 #endif 4581 return ret; 4582 } 4583 4584 static RISCVException read_jvt(CPURISCVState *env, int csrno, 4585 target_ulong *val) 4586 { 4587 *val = env->jvt; 4588 return RISCV_EXCP_NONE; 4589 } 4590 4591 static RISCVException write_jvt(CPURISCVState *env, int csrno, 4592 target_ulong val) 4593 { 4594 env->jvt = val; 4595 return RISCV_EXCP_NONE; 4596 } 4597 4598 /* 4599 * Control and Status Register function table 4600 * riscv_csr_operations::predicate() must be provided for an implemented CSR 4601 */ 4602 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 4603 /* User Floating-Point CSRs */ 4604 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 4605 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 4606 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 4607 /* Vector CSRs */ 4608 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 4609 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 4610 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4611 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4612 [CSR_VL] = { "vl", vs, read_vl }, 4613 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4614 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4615 /* User Timers and Counters */ 4616 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4617 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4618 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4619 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4620 4621 /* 4622 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4623 * rdtime callback is not provided by machine/platform emulation. 4624 */ 4625 [CSR_TIME] = { "time", ctr, read_time }, 4626 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4627 4628 /* Crypto Extension */ 4629 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4630 4631 /* Zcmt Extension */ 4632 [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, 4633 4634 #if !defined(CONFIG_USER_ONLY) 4635 /* Machine Timers and Counters */ 4636 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4637 write_mhpmcounter }, 4638 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4639 write_mhpmcounter }, 4640 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4641 write_mhpmcounterh }, 4642 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4643 write_mhpmcounterh }, 4644 4645 /* Machine Information Registers */ 4646 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4647 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4648 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4649 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4650 4651 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4652 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4653 /* Machine Trap Setup */ 4654 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4655 NULL, read_mstatus_i128 }, 4656 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4657 NULL, read_misa_i128 }, 4658 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4659 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4660 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4661 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4662 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4663 write_mcounteren }, 4664 4665 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4666 write_mstatush }, 4667 [CSR_MEDELEGH] = { "medelegh", any32, read_zero, write_ignore, 4668 .min_priv_ver = PRIV_VERSION_1_13_0 }, 4669 [CSR_HEDELEGH] = { "hedelegh", hmode32, read_hedelegh, write_hedelegh, 4670 .min_priv_ver = PRIV_VERSION_1_13_0 }, 4671 4672 /* Machine Trap Handling */ 4673 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4674 NULL, read_mscratch_i128, write_mscratch_i128 }, 4675 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4676 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4677 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4678 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4679 4680 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4681 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4682 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4683 4684 /* Machine-Level Interrupts (AIA) */ 4685 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4686 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4687 4688 /* Virtual Interrupts for Supervisor Level (AIA) */ 4689 [CSR_MVIEN] = { "mvien", aia_any, NULL, NULL, rmw_mvien }, 4690 [CSR_MVIP] = { "mvip", aia_any, NULL, NULL, rmw_mvip }, 4691 4692 /* Machine-Level High-Half CSRs (AIA) */ 4693 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4694 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4695 [CSR_MVIENH] = { "mvienh", aia_any32, NULL, NULL, rmw_mvienh }, 4696 [CSR_MVIPH] = { "mviph", aia_any32, NULL, NULL, rmw_mviph }, 4697 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4698 4699 /* Execution environment configuration */ 4700 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4701 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4702 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4703 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4704 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4705 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4706 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4707 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4708 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4709 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4710 4711 /* Smstateen extension CSRs */ 4712 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4713 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4714 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4715 write_mstateen0h, 4716 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4717 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4718 write_mstateen_1_3, 4719 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4720 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4721 write_mstateenh_1_3, 4722 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4723 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4724 write_mstateen_1_3, 4725 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4726 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4727 write_mstateenh_1_3, 4728 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4729 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4730 write_mstateen_1_3, 4731 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4732 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4733 write_mstateenh_1_3, 4734 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4735 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4736 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4737 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4738 write_hstateen0h, 4739 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4740 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4741 write_hstateen_1_3, 4742 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4743 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4744 write_hstateenh_1_3, 4745 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4746 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4747 write_hstateen_1_3, 4748 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4749 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4750 write_hstateenh_1_3, 4751 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4752 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4753 write_hstateen_1_3, 4754 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4755 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4756 write_hstateenh_1_3, 4757 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4758 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4759 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4760 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4761 write_sstateen_1_3, 4762 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4763 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4764 write_sstateen_1_3, 4765 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4766 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4767 write_sstateen_1_3, 4768 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4769 4770 /* Supervisor Trap Setup */ 4771 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4772 NULL, read_sstatus_i128 }, 4773 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4774 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4775 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4776 write_scounteren }, 4777 4778 /* Supervisor Trap Handling */ 4779 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4780 NULL, read_sscratch_i128, write_sscratch_i128 }, 4781 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4782 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4783 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4784 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4785 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4786 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4787 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4788 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4789 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4790 write_vstimecmp, 4791 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4792 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4793 write_vstimecmph, 4794 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4795 4796 /* Supervisor Protection and Translation */ 4797 [CSR_SATP] = { "satp", satp, read_satp, write_satp }, 4798 4799 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4800 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4801 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4802 4803 /* Supervisor-Level Interrupts (AIA) */ 4804 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4805 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4806 4807 /* Supervisor-Level High-Half CSRs (AIA) */ 4808 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4809 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4810 4811 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4812 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4813 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4814 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4815 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4816 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4817 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4818 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4819 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4820 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4821 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4822 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4823 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4824 write_hcounteren, 4825 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4826 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4827 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4828 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4829 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4830 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4831 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4832 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4833 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4834 [CSR_HGATP] = { "hgatp", hgatp, read_hgatp, write_hgatp, 4835 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4836 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4837 write_htimedelta, 4838 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4839 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4840 write_htimedeltah, 4841 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4842 4843 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4844 write_vsstatus, 4845 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4846 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4847 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4848 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4849 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4850 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4851 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4852 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4853 write_vsscratch, 4854 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4855 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4856 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4857 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4858 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4859 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4860 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4861 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4862 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4863 4864 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4865 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4866 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4867 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4868 4869 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4870 [CSR_HVIEN] = { "hvien", aia_hmode, NULL, NULL, rmw_hvien }, 4871 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4872 write_hvictl }, 4873 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4874 write_hviprio1 }, 4875 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4876 write_hviprio2 }, 4877 /* 4878 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4879 */ 4880 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4881 rmw_xiselect }, 4882 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4883 4884 /* VS-Level Interrupts (H-extension with AIA) */ 4885 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4886 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4887 4888 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4889 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4890 rmw_hidelegh }, 4891 [CSR_HVIENH] = { "hvienh", aia_hmode32, NULL, NULL, rmw_hvienh }, 4892 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4893 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4894 write_hviprio1h }, 4895 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4896 write_hviprio2h }, 4897 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4898 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4899 4900 /* Physical Memory Protection */ 4901 [CSR_MSECCFG] = { "mseccfg", have_mseccfg, read_mseccfg, write_mseccfg, 4902 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4903 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4904 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4905 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4906 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4907 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4908 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4909 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4910 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4911 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4912 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4913 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4914 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4915 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4916 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4917 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4918 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4919 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4920 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4921 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4922 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4923 4924 /* Debug CSRs */ 4925 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4926 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4927 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4928 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4929 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4930 [CSR_MCONTEXT] = { "mcontext", debug, read_mcontext, write_mcontext }, 4931 4932 /* User Pointer Masking */ 4933 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4934 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4935 write_upmmask }, 4936 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4937 write_upmbase }, 4938 /* Machine Pointer Masking */ 4939 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4940 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4941 write_mpmmask }, 4942 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4943 write_mpmbase }, 4944 /* Supervisor Pointer Masking */ 4945 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4946 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4947 write_spmmask }, 4948 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4949 write_spmbase }, 4950 4951 /* Performance Counters */ 4952 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4953 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4954 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4955 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4956 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4957 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4958 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4959 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4960 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4961 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4962 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4963 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4964 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4965 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4966 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4967 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4968 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4969 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4970 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4971 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4972 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4973 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4974 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4975 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4976 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4977 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4978 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4979 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4980 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4981 4982 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4983 write_mhpmcounter }, 4984 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4985 write_mhpmcounter }, 4986 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4987 write_mhpmcounter }, 4988 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4989 write_mhpmcounter }, 4990 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4991 write_mhpmcounter }, 4992 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4993 write_mhpmcounter }, 4994 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4995 write_mhpmcounter }, 4996 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4997 write_mhpmcounter }, 4998 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4999 write_mhpmcounter }, 5000 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 5001 write_mhpmcounter }, 5002 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 5003 write_mhpmcounter }, 5004 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 5005 write_mhpmcounter }, 5006 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 5007 write_mhpmcounter }, 5008 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 5009 write_mhpmcounter }, 5010 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 5011 write_mhpmcounter }, 5012 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 5013 write_mhpmcounter }, 5014 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 5015 write_mhpmcounter }, 5016 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 5017 write_mhpmcounter }, 5018 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 5019 write_mhpmcounter }, 5020 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 5021 write_mhpmcounter }, 5022 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 5023 write_mhpmcounter }, 5024 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 5025 write_mhpmcounter }, 5026 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 5027 write_mhpmcounter }, 5028 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 5029 write_mhpmcounter }, 5030 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 5031 write_mhpmcounter }, 5032 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 5033 write_mhpmcounter }, 5034 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 5035 write_mhpmcounter }, 5036 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 5037 write_mhpmcounter }, 5038 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 5039 write_mhpmcounter }, 5040 5041 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 5042 write_mcountinhibit, 5043 .min_priv_ver = PRIV_VERSION_1_11_0 }, 5044 5045 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 5046 write_mhpmevent }, 5047 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 5048 write_mhpmevent }, 5049 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 5050 write_mhpmevent }, 5051 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 5052 write_mhpmevent }, 5053 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 5054 write_mhpmevent }, 5055 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 5056 write_mhpmevent }, 5057 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 5058 write_mhpmevent }, 5059 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 5060 write_mhpmevent }, 5061 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 5062 write_mhpmevent }, 5063 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 5064 write_mhpmevent }, 5065 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 5066 write_mhpmevent }, 5067 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 5068 write_mhpmevent }, 5069 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 5070 write_mhpmevent }, 5071 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 5072 write_mhpmevent }, 5073 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 5074 write_mhpmevent }, 5075 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 5076 write_mhpmevent }, 5077 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 5078 write_mhpmevent }, 5079 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 5080 write_mhpmevent }, 5081 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 5082 write_mhpmevent }, 5083 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 5084 write_mhpmevent }, 5085 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 5086 write_mhpmevent }, 5087 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 5088 write_mhpmevent }, 5089 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 5090 write_mhpmevent }, 5091 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 5092 write_mhpmevent }, 5093 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 5094 write_mhpmevent }, 5095 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 5096 write_mhpmevent }, 5097 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 5098 write_mhpmevent }, 5099 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 5100 write_mhpmevent }, 5101 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 5102 write_mhpmevent }, 5103 5104 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 5105 write_mhpmeventh, 5106 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5107 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 5108 write_mhpmeventh, 5109 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5110 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 5111 write_mhpmeventh, 5112 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5113 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 5114 write_mhpmeventh, 5115 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5116 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 5117 write_mhpmeventh, 5118 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5119 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 5120 write_mhpmeventh, 5121 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5122 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 5123 write_mhpmeventh, 5124 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5125 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 5126 write_mhpmeventh, 5127 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5128 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 5129 write_mhpmeventh, 5130 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5131 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 5132 write_mhpmeventh, 5133 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5134 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 5135 write_mhpmeventh, 5136 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5137 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 5138 write_mhpmeventh, 5139 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5140 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 5141 write_mhpmeventh, 5142 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5143 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 5144 write_mhpmeventh, 5145 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5146 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 5147 write_mhpmeventh, 5148 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5149 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 5150 write_mhpmeventh, 5151 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5152 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 5153 write_mhpmeventh, 5154 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5155 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 5156 write_mhpmeventh, 5157 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5158 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 5159 write_mhpmeventh, 5160 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5161 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 5162 write_mhpmeventh, 5163 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5164 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 5165 write_mhpmeventh, 5166 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5167 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 5168 write_mhpmeventh, 5169 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5170 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 5171 write_mhpmeventh, 5172 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5173 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 5174 write_mhpmeventh, 5175 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5176 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 5177 write_mhpmeventh, 5178 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5179 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 5180 write_mhpmeventh, 5181 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5182 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 5183 write_mhpmeventh, 5184 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5185 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 5186 write_mhpmeventh, 5187 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5188 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 5189 write_mhpmeventh, 5190 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5191 5192 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 5193 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 5194 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 5195 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 5196 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 5197 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 5198 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 5199 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 5200 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 5201 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 5202 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 5203 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 5204 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 5205 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 5206 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 5207 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 5208 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 5209 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 5210 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 5211 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 5212 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 5213 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 5214 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 5215 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 5216 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 5217 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 5218 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 5219 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 5220 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 5221 5222 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 5223 write_mhpmcounterh }, 5224 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 5225 write_mhpmcounterh }, 5226 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 5227 write_mhpmcounterh }, 5228 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 5229 write_mhpmcounterh }, 5230 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 5231 write_mhpmcounterh }, 5232 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 5233 write_mhpmcounterh }, 5234 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 5235 write_mhpmcounterh }, 5236 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 5237 write_mhpmcounterh }, 5238 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 5239 write_mhpmcounterh }, 5240 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 5241 write_mhpmcounterh }, 5242 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 5243 write_mhpmcounterh }, 5244 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 5245 write_mhpmcounterh }, 5246 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 5247 write_mhpmcounterh }, 5248 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 5249 write_mhpmcounterh }, 5250 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 5251 write_mhpmcounterh }, 5252 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 5253 write_mhpmcounterh }, 5254 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 5255 write_mhpmcounterh }, 5256 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 5257 write_mhpmcounterh }, 5258 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 5259 write_mhpmcounterh }, 5260 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 5261 write_mhpmcounterh }, 5262 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 5263 write_mhpmcounterh }, 5264 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 5265 write_mhpmcounterh }, 5266 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 5267 write_mhpmcounterh }, 5268 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 5269 write_mhpmcounterh }, 5270 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 5271 write_mhpmcounterh }, 5272 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 5273 write_mhpmcounterh }, 5274 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 5275 write_mhpmcounterh }, 5276 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 5277 write_mhpmcounterh }, 5278 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 5279 write_mhpmcounterh }, 5280 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 5281 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5282 5283 #endif /* !CONFIG_USER_ONLY */ 5284 }; 5285