1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "qemu/main-loop.h" 26 #include "exec/exec-all.h" 27 #include "sysemu/cpu-timers.h" 28 #include "qemu/guest-random.h" 29 #include "qapi/error.h" 30 31 /* CSR function table public API */ 32 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 33 { 34 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 35 } 36 37 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 38 { 39 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 40 } 41 42 /* Predicates */ 43 static RISCVException fs(CPURISCVState *env, int csrno) 44 { 45 #if !defined(CONFIG_USER_ONLY) 46 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 47 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 48 return RISCV_EXCP_ILLEGAL_INST; 49 } 50 #endif 51 return RISCV_EXCP_NONE; 52 } 53 54 static RISCVException vs(CPURISCVState *env, int csrno) 55 { 56 CPUState *cs = env_cpu(env); 57 RISCVCPU *cpu = RISCV_CPU(cs); 58 59 if (env->misa_ext & RVV || 60 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 61 #if !defined(CONFIG_USER_ONLY) 62 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 63 return RISCV_EXCP_ILLEGAL_INST; 64 } 65 #endif 66 return RISCV_EXCP_NONE; 67 } 68 return RISCV_EXCP_ILLEGAL_INST; 69 } 70 71 static RISCVException ctr(CPURISCVState *env, int csrno) 72 { 73 #if !defined(CONFIG_USER_ONLY) 74 CPUState *cs = env_cpu(env); 75 RISCVCPU *cpu = RISCV_CPU(cs); 76 int ctr_index; 77 int base_csrno = CSR_HPMCOUNTER3; 78 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 79 80 if (rv32 && csrno >= CSR_CYCLEH) { 81 /* Offset for RV32 hpmcounternh counters */ 82 base_csrno += 0x80; 83 } 84 ctr_index = csrno - base_csrno; 85 86 if (!cpu->cfg.pmu_num || ctr_index >= (cpu->cfg.pmu_num)) { 87 /* No counter is enabled in PMU or the counter is out of range */ 88 return RISCV_EXCP_ILLEGAL_INST; 89 } 90 91 if (env->priv == PRV_S) { 92 switch (csrno) { 93 case CSR_CYCLE: 94 if (!get_field(env->mcounteren, COUNTEREN_CY)) { 95 return RISCV_EXCP_ILLEGAL_INST; 96 } 97 break; 98 case CSR_TIME: 99 if (!get_field(env->mcounteren, COUNTEREN_TM)) { 100 return RISCV_EXCP_ILLEGAL_INST; 101 } 102 break; 103 case CSR_INSTRET: 104 if (!get_field(env->mcounteren, COUNTEREN_IR)) { 105 return RISCV_EXCP_ILLEGAL_INST; 106 } 107 break; 108 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 109 ctr_index = csrno - CSR_CYCLE; 110 if (!get_field(env->mcounteren, 1 << ctr_index)) { 111 return RISCV_EXCP_ILLEGAL_INST; 112 } 113 break; 114 } 115 if (rv32) { 116 switch (csrno) { 117 case CSR_CYCLEH: 118 if (!get_field(env->mcounteren, COUNTEREN_CY)) { 119 return RISCV_EXCP_ILLEGAL_INST; 120 } 121 break; 122 case CSR_TIMEH: 123 if (!get_field(env->mcounteren, COUNTEREN_TM)) { 124 return RISCV_EXCP_ILLEGAL_INST; 125 } 126 break; 127 case CSR_INSTRETH: 128 if (!get_field(env->mcounteren, COUNTEREN_IR)) { 129 return RISCV_EXCP_ILLEGAL_INST; 130 } 131 break; 132 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 133 ctr_index = csrno - CSR_CYCLEH; 134 if (!get_field(env->mcounteren, 1 << ctr_index)) { 135 return RISCV_EXCP_ILLEGAL_INST; 136 } 137 break; 138 } 139 } 140 } 141 142 if (riscv_cpu_virt_enabled(env)) { 143 switch (csrno) { 144 case CSR_CYCLE: 145 if (!get_field(env->hcounteren, COUNTEREN_CY) && 146 get_field(env->mcounteren, COUNTEREN_CY)) { 147 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 148 } 149 break; 150 case CSR_TIME: 151 if (!get_field(env->hcounteren, COUNTEREN_TM) && 152 get_field(env->mcounteren, COUNTEREN_TM)) { 153 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 154 } 155 break; 156 case CSR_INSTRET: 157 if (!get_field(env->hcounteren, COUNTEREN_IR) && 158 get_field(env->mcounteren, COUNTEREN_IR)) { 159 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 160 } 161 break; 162 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 163 ctr_index = csrno - CSR_CYCLE; 164 if (!get_field(env->hcounteren, 1 << ctr_index) && 165 get_field(env->mcounteren, 1 << ctr_index)) { 166 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 167 } 168 break; 169 } 170 if (rv32) { 171 switch (csrno) { 172 case CSR_CYCLEH: 173 if (!get_field(env->hcounteren, COUNTEREN_CY) && 174 get_field(env->mcounteren, COUNTEREN_CY)) { 175 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 176 } 177 break; 178 case CSR_TIMEH: 179 if (!get_field(env->hcounteren, COUNTEREN_TM) && 180 get_field(env->mcounteren, COUNTEREN_TM)) { 181 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 182 } 183 break; 184 case CSR_INSTRETH: 185 if (!get_field(env->hcounteren, COUNTEREN_IR) && 186 get_field(env->mcounteren, COUNTEREN_IR)) { 187 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 188 } 189 break; 190 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 191 ctr_index = csrno - CSR_CYCLEH; 192 if (!get_field(env->hcounteren, 1 << ctr_index) && 193 get_field(env->mcounteren, 1 << ctr_index)) { 194 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 195 } 196 break; 197 } 198 } 199 } 200 #endif 201 return RISCV_EXCP_NONE; 202 } 203 204 static RISCVException ctr32(CPURISCVState *env, int csrno) 205 { 206 if (riscv_cpu_mxl(env) != MXL_RV32) { 207 return RISCV_EXCP_ILLEGAL_INST; 208 } 209 210 return ctr(env, csrno); 211 } 212 213 #if !defined(CONFIG_USER_ONLY) 214 static RISCVException mctr(CPURISCVState *env, int csrno) 215 { 216 CPUState *cs = env_cpu(env); 217 RISCVCPU *cpu = RISCV_CPU(cs); 218 int ctr_index; 219 int base_csrno = CSR_MHPMCOUNTER3; 220 221 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 222 /* Offset for RV32 mhpmcounternh counters */ 223 base_csrno += 0x80; 224 } 225 ctr_index = csrno - base_csrno; 226 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 227 /* The PMU is not enabled or counter is out of range*/ 228 return RISCV_EXCP_ILLEGAL_INST; 229 } 230 231 return RISCV_EXCP_NONE; 232 } 233 234 static RISCVException mctr32(CPURISCVState *env, int csrno) 235 { 236 if (riscv_cpu_mxl(env) != MXL_RV32) { 237 return RISCV_EXCP_ILLEGAL_INST; 238 } 239 240 return mctr(env, csrno); 241 } 242 243 static RISCVException any(CPURISCVState *env, int csrno) 244 { 245 return RISCV_EXCP_NONE; 246 } 247 248 static RISCVException any32(CPURISCVState *env, int csrno) 249 { 250 if (riscv_cpu_mxl(env) != MXL_RV32) { 251 return RISCV_EXCP_ILLEGAL_INST; 252 } 253 254 return any(env, csrno); 255 256 } 257 258 static int aia_any(CPURISCVState *env, int csrno) 259 { 260 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 261 return RISCV_EXCP_ILLEGAL_INST; 262 } 263 264 return any(env, csrno); 265 } 266 267 static int aia_any32(CPURISCVState *env, int csrno) 268 { 269 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 270 return RISCV_EXCP_ILLEGAL_INST; 271 } 272 273 return any32(env, csrno); 274 } 275 276 static RISCVException smode(CPURISCVState *env, int csrno) 277 { 278 if (riscv_has_ext(env, RVS)) { 279 return RISCV_EXCP_NONE; 280 } 281 282 return RISCV_EXCP_ILLEGAL_INST; 283 } 284 285 static int smode32(CPURISCVState *env, int csrno) 286 { 287 if (riscv_cpu_mxl(env) != MXL_RV32) { 288 return RISCV_EXCP_ILLEGAL_INST; 289 } 290 291 return smode(env, csrno); 292 } 293 294 static int aia_smode(CPURISCVState *env, int csrno) 295 { 296 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 297 return RISCV_EXCP_ILLEGAL_INST; 298 } 299 300 return smode(env, csrno); 301 } 302 303 static int aia_smode32(CPURISCVState *env, int csrno) 304 { 305 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 306 return RISCV_EXCP_ILLEGAL_INST; 307 } 308 309 return smode32(env, csrno); 310 } 311 312 static RISCVException hmode(CPURISCVState *env, int csrno) 313 { 314 if (riscv_has_ext(env, RVH)) { 315 return RISCV_EXCP_NONE; 316 } 317 318 return RISCV_EXCP_ILLEGAL_INST; 319 } 320 321 static RISCVException hmode32(CPURISCVState *env, int csrno) 322 { 323 if (riscv_cpu_mxl(env) != MXL_RV32) { 324 return RISCV_EXCP_ILLEGAL_INST; 325 } 326 327 return hmode(env, csrno); 328 329 } 330 331 static RISCVException umode(CPURISCVState *env, int csrno) 332 { 333 if (riscv_has_ext(env, RVU)) { 334 return RISCV_EXCP_NONE; 335 } 336 337 return RISCV_EXCP_ILLEGAL_INST; 338 } 339 340 static RISCVException umode32(CPURISCVState *env, int csrno) 341 { 342 if (riscv_cpu_mxl(env) != MXL_RV32) { 343 return RISCV_EXCP_ILLEGAL_INST; 344 } 345 346 return umode(env, csrno); 347 } 348 349 /* Checks if PointerMasking registers could be accessed */ 350 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 351 { 352 /* Check if j-ext is present */ 353 if (riscv_has_ext(env, RVJ)) { 354 return RISCV_EXCP_NONE; 355 } 356 return RISCV_EXCP_ILLEGAL_INST; 357 } 358 359 static int aia_hmode(CPURISCVState *env, int csrno) 360 { 361 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 362 return RISCV_EXCP_ILLEGAL_INST; 363 } 364 365 return hmode(env, csrno); 366 } 367 368 static int aia_hmode32(CPURISCVState *env, int csrno) 369 { 370 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 371 return RISCV_EXCP_ILLEGAL_INST; 372 } 373 374 return hmode32(env, csrno); 375 } 376 377 static RISCVException pmp(CPURISCVState *env, int csrno) 378 { 379 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 380 return RISCV_EXCP_NONE; 381 } 382 383 return RISCV_EXCP_ILLEGAL_INST; 384 } 385 386 static RISCVException epmp(CPURISCVState *env, int csrno) 387 { 388 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 389 return RISCV_EXCP_NONE; 390 } 391 392 return RISCV_EXCP_ILLEGAL_INST; 393 } 394 395 static RISCVException debug(CPURISCVState *env, int csrno) 396 { 397 if (riscv_feature(env, RISCV_FEATURE_DEBUG)) { 398 return RISCV_EXCP_NONE; 399 } 400 401 return RISCV_EXCP_ILLEGAL_INST; 402 } 403 #endif 404 405 static RISCVException seed(CPURISCVState *env, int csrno) 406 { 407 RISCVCPU *cpu = env_archcpu(env); 408 409 if (!cpu->cfg.ext_zkr) { 410 return RISCV_EXCP_ILLEGAL_INST; 411 } 412 413 #if !defined(CONFIG_USER_ONLY) 414 /* 415 * With a CSR read-write instruction: 416 * 1) The seed CSR is always available in machine mode as normal. 417 * 2) Attempted access to seed from virtual modes VS and VU always raises 418 * an exception(virtual instruction exception only if mseccfg.sseed=1). 419 * 3) Without the corresponding access control bit set to 1, any attempted 420 * access to seed from U, S or HS modes will raise an illegal instruction 421 * exception. 422 */ 423 if (env->priv == PRV_M) { 424 return RISCV_EXCP_NONE; 425 } else if (riscv_cpu_virt_enabled(env)) { 426 if (env->mseccfg & MSECCFG_SSEED) { 427 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 428 } else { 429 return RISCV_EXCP_ILLEGAL_INST; 430 } 431 } else { 432 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 433 return RISCV_EXCP_NONE; 434 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 435 return RISCV_EXCP_NONE; 436 } else { 437 return RISCV_EXCP_ILLEGAL_INST; 438 } 439 } 440 #else 441 return RISCV_EXCP_NONE; 442 #endif 443 } 444 445 /* User Floating-Point CSRs */ 446 static RISCVException read_fflags(CPURISCVState *env, int csrno, 447 target_ulong *val) 448 { 449 *val = riscv_cpu_get_fflags(env); 450 return RISCV_EXCP_NONE; 451 } 452 453 static RISCVException write_fflags(CPURISCVState *env, int csrno, 454 target_ulong val) 455 { 456 #if !defined(CONFIG_USER_ONLY) 457 if (riscv_has_ext(env, RVF)) { 458 env->mstatus |= MSTATUS_FS; 459 } 460 #endif 461 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 462 return RISCV_EXCP_NONE; 463 } 464 465 static RISCVException read_frm(CPURISCVState *env, int csrno, 466 target_ulong *val) 467 { 468 *val = env->frm; 469 return RISCV_EXCP_NONE; 470 } 471 472 static RISCVException write_frm(CPURISCVState *env, int csrno, 473 target_ulong val) 474 { 475 #if !defined(CONFIG_USER_ONLY) 476 if (riscv_has_ext(env, RVF)) { 477 env->mstatus |= MSTATUS_FS; 478 } 479 #endif 480 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 481 return RISCV_EXCP_NONE; 482 } 483 484 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 485 target_ulong *val) 486 { 487 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 488 | (env->frm << FSR_RD_SHIFT); 489 return RISCV_EXCP_NONE; 490 } 491 492 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 493 target_ulong val) 494 { 495 #if !defined(CONFIG_USER_ONLY) 496 if (riscv_has_ext(env, RVF)) { 497 env->mstatus |= MSTATUS_FS; 498 } 499 #endif 500 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 501 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 502 return RISCV_EXCP_NONE; 503 } 504 505 static RISCVException read_vtype(CPURISCVState *env, int csrno, 506 target_ulong *val) 507 { 508 uint64_t vill; 509 switch (env->xl) { 510 case MXL_RV32: 511 vill = (uint32_t)env->vill << 31; 512 break; 513 case MXL_RV64: 514 vill = (uint64_t)env->vill << 63; 515 break; 516 default: 517 g_assert_not_reached(); 518 } 519 *val = (target_ulong)vill | env->vtype; 520 return RISCV_EXCP_NONE; 521 } 522 523 static RISCVException read_vl(CPURISCVState *env, int csrno, 524 target_ulong *val) 525 { 526 *val = env->vl; 527 return RISCV_EXCP_NONE; 528 } 529 530 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 531 { 532 *val = env_archcpu(env)->cfg.vlen >> 3; 533 return RISCV_EXCP_NONE; 534 } 535 536 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 537 target_ulong *val) 538 { 539 *val = env->vxrm; 540 return RISCV_EXCP_NONE; 541 } 542 543 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 544 target_ulong val) 545 { 546 #if !defined(CONFIG_USER_ONLY) 547 env->mstatus |= MSTATUS_VS; 548 #endif 549 env->vxrm = val; 550 return RISCV_EXCP_NONE; 551 } 552 553 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 554 target_ulong *val) 555 { 556 *val = env->vxsat; 557 return RISCV_EXCP_NONE; 558 } 559 560 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 561 target_ulong val) 562 { 563 #if !defined(CONFIG_USER_ONLY) 564 env->mstatus |= MSTATUS_VS; 565 #endif 566 env->vxsat = val; 567 return RISCV_EXCP_NONE; 568 } 569 570 static RISCVException read_vstart(CPURISCVState *env, int csrno, 571 target_ulong *val) 572 { 573 *val = env->vstart; 574 return RISCV_EXCP_NONE; 575 } 576 577 static RISCVException write_vstart(CPURISCVState *env, int csrno, 578 target_ulong val) 579 { 580 #if !defined(CONFIG_USER_ONLY) 581 env->mstatus |= MSTATUS_VS; 582 #endif 583 /* 584 * The vstart CSR is defined to have only enough writable bits 585 * to hold the largest element index, i.e. lg2(VLEN) bits. 586 */ 587 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 588 return RISCV_EXCP_NONE; 589 } 590 591 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 592 { 593 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 594 return RISCV_EXCP_NONE; 595 } 596 597 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 598 { 599 #if !defined(CONFIG_USER_ONLY) 600 env->mstatus |= MSTATUS_VS; 601 #endif 602 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 603 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 604 return RISCV_EXCP_NONE; 605 } 606 607 /* User Timers and Counters */ 608 static target_ulong get_ticks(bool shift) 609 { 610 int64_t val; 611 target_ulong result; 612 613 #if !defined(CONFIG_USER_ONLY) 614 if (icount_enabled()) { 615 val = icount_get(); 616 } else { 617 val = cpu_get_host_ticks(); 618 } 619 #else 620 val = cpu_get_host_ticks(); 621 #endif 622 623 if (shift) { 624 result = val >> 32; 625 } else { 626 result = val; 627 } 628 629 return result; 630 } 631 632 #if defined(CONFIG_USER_ONLY) 633 static RISCVException read_time(CPURISCVState *env, int csrno, 634 target_ulong *val) 635 { 636 *val = cpu_get_host_ticks(); 637 return RISCV_EXCP_NONE; 638 } 639 640 static RISCVException read_timeh(CPURISCVState *env, int csrno, 641 target_ulong *val) 642 { 643 *val = cpu_get_host_ticks() >> 32; 644 return RISCV_EXCP_NONE; 645 } 646 647 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 648 { 649 *val = get_ticks(false); 650 return RISCV_EXCP_NONE; 651 } 652 653 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 654 { 655 *val = get_ticks(true); 656 return RISCV_EXCP_NONE; 657 } 658 659 #else /* CONFIG_USER_ONLY */ 660 661 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 662 { 663 int evt_index = csrno - CSR_MCOUNTINHIBIT; 664 665 *val = env->mhpmevent_val[evt_index]; 666 667 return RISCV_EXCP_NONE; 668 } 669 670 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 671 { 672 int evt_index = csrno - CSR_MCOUNTINHIBIT; 673 674 env->mhpmevent_val[evt_index] = val; 675 676 return RISCV_EXCP_NONE; 677 } 678 679 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 680 { 681 int ctr_idx = csrno - CSR_MCYCLE; 682 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 683 684 counter->mhpmcounter_val = val; 685 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 686 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 687 counter->mhpmcounter_prev = get_ticks(false); 688 } else { 689 /* Other counters can keep incrementing from the given value */ 690 counter->mhpmcounter_prev = val; 691 } 692 693 return RISCV_EXCP_NONE; 694 } 695 696 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 697 { 698 int ctr_idx = csrno - CSR_MCYCLEH; 699 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 700 701 counter->mhpmcounterh_val = val; 702 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 703 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 704 counter->mhpmcounterh_prev = get_ticks(true); 705 } else { 706 counter->mhpmcounterh_prev = val; 707 } 708 709 return RISCV_EXCP_NONE; 710 } 711 712 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 713 bool upper_half, uint32_t ctr_idx) 714 { 715 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 716 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 717 counter.mhpmcounter_prev; 718 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 719 counter.mhpmcounter_val; 720 721 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 722 /** 723 * Counter should not increment if inhibit bit is set. We can't really 724 * stop the icount counting. Just return the counter value written by 725 * the supervisor to indicate that counter was not incremented. 726 */ 727 if (!counter.started) { 728 *val = ctr_val; 729 return RISCV_EXCP_NONE; 730 } else { 731 /* Mark that the counter has been stopped */ 732 counter.started = false; 733 } 734 } 735 736 /** 737 * The kernel computes the perf delta by subtracting the current value from 738 * the value it initialized previously (ctr_val). 739 */ 740 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 741 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 742 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 743 } else { 744 *val = ctr_val; 745 } 746 747 return RISCV_EXCP_NONE; 748 } 749 750 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 751 { 752 uint16_t ctr_index; 753 754 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 755 ctr_index = csrno - CSR_MCYCLE; 756 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 757 ctr_index = csrno - CSR_CYCLE; 758 } else { 759 return RISCV_EXCP_ILLEGAL_INST; 760 } 761 762 return riscv_pmu_read_ctr(env, val, false, ctr_index); 763 } 764 765 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 766 { 767 uint16_t ctr_index; 768 769 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 770 ctr_index = csrno - CSR_MCYCLEH; 771 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 772 ctr_index = csrno - CSR_CYCLEH; 773 } else { 774 return RISCV_EXCP_ILLEGAL_INST; 775 } 776 777 return riscv_pmu_read_ctr(env, val, true, ctr_index); 778 } 779 780 static RISCVException read_time(CPURISCVState *env, int csrno, 781 target_ulong *val) 782 { 783 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 784 785 if (!env->rdtime_fn) { 786 return RISCV_EXCP_ILLEGAL_INST; 787 } 788 789 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 790 return RISCV_EXCP_NONE; 791 } 792 793 static RISCVException read_timeh(CPURISCVState *env, int csrno, 794 target_ulong *val) 795 { 796 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 797 798 if (!env->rdtime_fn) { 799 return RISCV_EXCP_ILLEGAL_INST; 800 } 801 802 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 803 return RISCV_EXCP_NONE; 804 } 805 806 /* Machine constants */ 807 808 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 809 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP)) 810 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 811 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 812 813 #define VSTOPI_NUM_SRCS 5 814 815 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 816 VS_MODE_INTERRUPTS; 817 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 818 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 819 HS_MODE_INTERRUPTS; 820 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 821 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 822 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 823 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 824 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 825 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 826 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 827 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 828 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 829 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 830 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 831 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 832 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 833 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 834 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 835 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 836 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 837 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 838 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 839 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 840 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 841 (1ULL << (RISCV_EXCP_VS_ECALL)) | 842 (1ULL << (RISCV_EXCP_M_ECALL)) | 843 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 844 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 845 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 846 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 847 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 848 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 849 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 850 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP; 851 static const target_ulong hip_writable_mask = MIP_VSSIP; 852 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 853 static const target_ulong vsip_writable_mask = MIP_VSSIP; 854 855 static const char valid_vm_1_10_32[16] = { 856 [VM_1_10_MBARE] = 1, 857 [VM_1_10_SV32] = 1 858 }; 859 860 static const char valid_vm_1_10_64[16] = { 861 [VM_1_10_MBARE] = 1, 862 [VM_1_10_SV39] = 1, 863 [VM_1_10_SV48] = 1, 864 [VM_1_10_SV57] = 1 865 }; 866 867 /* Machine Information Registers */ 868 static RISCVException read_zero(CPURISCVState *env, int csrno, 869 target_ulong *val) 870 { 871 *val = 0; 872 return RISCV_EXCP_NONE; 873 } 874 875 static RISCVException write_ignore(CPURISCVState *env, int csrno, 876 target_ulong val) 877 { 878 return RISCV_EXCP_NONE; 879 } 880 881 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 882 target_ulong *val) 883 { 884 CPUState *cs = env_cpu(env); 885 RISCVCPU *cpu = RISCV_CPU(cs); 886 887 *val = cpu->cfg.mvendorid; 888 return RISCV_EXCP_NONE; 889 } 890 891 static RISCVException read_marchid(CPURISCVState *env, int csrno, 892 target_ulong *val) 893 { 894 CPUState *cs = env_cpu(env); 895 RISCVCPU *cpu = RISCV_CPU(cs); 896 897 *val = cpu->cfg.marchid; 898 return RISCV_EXCP_NONE; 899 } 900 901 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 902 target_ulong *val) 903 { 904 CPUState *cs = env_cpu(env); 905 RISCVCPU *cpu = RISCV_CPU(cs); 906 907 *val = cpu->cfg.mimpid; 908 return RISCV_EXCP_NONE; 909 } 910 911 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 912 target_ulong *val) 913 { 914 *val = env->mhartid; 915 return RISCV_EXCP_NONE; 916 } 917 918 /* Machine Trap Setup */ 919 920 /* We do not store SD explicitly, only compute it on demand. */ 921 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 922 { 923 if ((status & MSTATUS_FS) == MSTATUS_FS || 924 (status & MSTATUS_VS) == MSTATUS_VS || 925 (status & MSTATUS_XS) == MSTATUS_XS) { 926 switch (xl) { 927 case MXL_RV32: 928 return status | MSTATUS32_SD; 929 case MXL_RV64: 930 return status | MSTATUS64_SD; 931 case MXL_RV128: 932 return MSTATUSH128_SD; 933 default: 934 g_assert_not_reached(); 935 } 936 } 937 return status; 938 } 939 940 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 941 target_ulong *val) 942 { 943 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 944 return RISCV_EXCP_NONE; 945 } 946 947 static int validate_vm(CPURISCVState *env, target_ulong vm) 948 { 949 if (riscv_cpu_mxl(env) == MXL_RV32) { 950 return valid_vm_1_10_32[vm & 0xf]; 951 } else { 952 return valid_vm_1_10_64[vm & 0xf]; 953 } 954 } 955 956 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 957 target_ulong val) 958 { 959 uint64_t mstatus = env->mstatus; 960 uint64_t mask = 0; 961 RISCVMXL xl = riscv_cpu_mxl(env); 962 963 /* flush tlb on mstatus fields that affect VM */ 964 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 965 MSTATUS_MPRV | MSTATUS_SUM)) { 966 tlb_flush(env_cpu(env)); 967 } 968 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 969 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 970 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 971 MSTATUS_TW | MSTATUS_VS; 972 973 if (riscv_has_ext(env, RVF)) { 974 mask |= MSTATUS_FS; 975 } 976 977 if (xl != MXL_RV32 || env->debugger) { 978 /* 979 * RV32: MPV and GVA are not in mstatus. The current plan is to 980 * add them to mstatush. For now, we just don't support it. 981 */ 982 mask |= MSTATUS_MPV | MSTATUS_GVA; 983 if ((val & MSTATUS64_UXL) != 0) { 984 mask |= MSTATUS64_UXL; 985 } 986 } 987 988 mstatus = (mstatus & ~mask) | (val & mask); 989 990 if (xl > MXL_RV32) { 991 /* SXL field is for now read only */ 992 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 993 } 994 env->mstatus = mstatus; 995 env->xl = cpu_recompute_xl(env); 996 997 return RISCV_EXCP_NONE; 998 } 999 1000 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1001 target_ulong *val) 1002 { 1003 *val = env->mstatus >> 32; 1004 return RISCV_EXCP_NONE; 1005 } 1006 1007 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1008 target_ulong val) 1009 { 1010 uint64_t valh = (uint64_t)val << 32; 1011 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1012 1013 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1014 tlb_flush(env_cpu(env)); 1015 } 1016 1017 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1018 1019 return RISCV_EXCP_NONE; 1020 } 1021 1022 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1023 Int128 *val) 1024 { 1025 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1026 return RISCV_EXCP_NONE; 1027 } 1028 1029 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1030 Int128 *val) 1031 { 1032 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1033 return RISCV_EXCP_NONE; 1034 } 1035 1036 static RISCVException read_misa(CPURISCVState *env, int csrno, 1037 target_ulong *val) 1038 { 1039 target_ulong misa; 1040 1041 switch (env->misa_mxl) { 1042 case MXL_RV32: 1043 misa = (target_ulong)MXL_RV32 << 30; 1044 break; 1045 #ifdef TARGET_RISCV64 1046 case MXL_RV64: 1047 misa = (target_ulong)MXL_RV64 << 62; 1048 break; 1049 #endif 1050 default: 1051 g_assert_not_reached(); 1052 } 1053 1054 *val = misa | env->misa_ext; 1055 return RISCV_EXCP_NONE; 1056 } 1057 1058 static RISCVException write_misa(CPURISCVState *env, int csrno, 1059 target_ulong val) 1060 { 1061 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 1062 /* drop write to misa */ 1063 return RISCV_EXCP_NONE; 1064 } 1065 1066 /* 'I' or 'E' must be present */ 1067 if (!(val & (RVI | RVE))) { 1068 /* It is not, drop write to misa */ 1069 return RISCV_EXCP_NONE; 1070 } 1071 1072 /* 'E' excludes all other extensions */ 1073 if (val & RVE) { 1074 /* when we support 'E' we can do "val = RVE;" however 1075 * for now we just drop writes if 'E' is present. 1076 */ 1077 return RISCV_EXCP_NONE; 1078 } 1079 1080 /* 1081 * misa.MXL writes are not supported by QEMU. 1082 * Drop writes to those bits. 1083 */ 1084 1085 /* Mask extensions that are not supported by this hart */ 1086 val &= env->misa_ext_mask; 1087 1088 /* Mask extensions that are not supported by QEMU */ 1089 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 1090 1091 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1092 if ((val & RVD) && !(val & RVF)) { 1093 val &= ~RVD; 1094 } 1095 1096 /* Suppress 'C' if next instruction is not aligned 1097 * TODO: this should check next_pc 1098 */ 1099 if ((val & RVC) && (GETPC() & ~3) != 0) { 1100 val &= ~RVC; 1101 } 1102 1103 /* If nothing changed, do nothing. */ 1104 if (val == env->misa_ext) { 1105 return RISCV_EXCP_NONE; 1106 } 1107 1108 if (!(val & RVF)) { 1109 env->mstatus &= ~MSTATUS_FS; 1110 } 1111 1112 /* flush translation cache */ 1113 tb_flush(env_cpu(env)); 1114 env->misa_ext = val; 1115 env->xl = riscv_cpu_mxl(env); 1116 return RISCV_EXCP_NONE; 1117 } 1118 1119 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1120 target_ulong *val) 1121 { 1122 *val = env->medeleg; 1123 return RISCV_EXCP_NONE; 1124 } 1125 1126 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1127 target_ulong val) 1128 { 1129 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1130 return RISCV_EXCP_NONE; 1131 } 1132 1133 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1134 uint64_t *ret_val, 1135 uint64_t new_val, uint64_t wr_mask) 1136 { 1137 uint64_t mask = wr_mask & delegable_ints; 1138 1139 if (ret_val) { 1140 *ret_val = env->mideleg; 1141 } 1142 1143 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1144 1145 if (riscv_has_ext(env, RVH)) { 1146 env->mideleg |= HS_MODE_INTERRUPTS; 1147 } 1148 1149 return RISCV_EXCP_NONE; 1150 } 1151 1152 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1153 target_ulong *ret_val, 1154 target_ulong new_val, target_ulong wr_mask) 1155 { 1156 uint64_t rval; 1157 RISCVException ret; 1158 1159 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1160 if (ret_val) { 1161 *ret_val = rval; 1162 } 1163 1164 return ret; 1165 } 1166 1167 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1168 target_ulong *ret_val, 1169 target_ulong new_val, 1170 target_ulong wr_mask) 1171 { 1172 uint64_t rval; 1173 RISCVException ret; 1174 1175 ret = rmw_mideleg64(env, csrno, &rval, 1176 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1177 if (ret_val) { 1178 *ret_val = rval >> 32; 1179 } 1180 1181 return ret; 1182 } 1183 1184 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1185 uint64_t *ret_val, 1186 uint64_t new_val, uint64_t wr_mask) 1187 { 1188 uint64_t mask = wr_mask & all_ints; 1189 1190 if (ret_val) { 1191 *ret_val = env->mie; 1192 } 1193 1194 env->mie = (env->mie & ~mask) | (new_val & mask); 1195 1196 if (!riscv_has_ext(env, RVH)) { 1197 env->mie &= ~((uint64_t)MIP_SGEIP); 1198 } 1199 1200 return RISCV_EXCP_NONE; 1201 } 1202 1203 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1204 target_ulong *ret_val, 1205 target_ulong new_val, target_ulong wr_mask) 1206 { 1207 uint64_t rval; 1208 RISCVException ret; 1209 1210 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1211 if (ret_val) { 1212 *ret_val = rval; 1213 } 1214 1215 return ret; 1216 } 1217 1218 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1219 target_ulong *ret_val, 1220 target_ulong new_val, target_ulong wr_mask) 1221 { 1222 uint64_t rval; 1223 RISCVException ret; 1224 1225 ret = rmw_mie64(env, csrno, &rval, 1226 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1227 if (ret_val) { 1228 *ret_val = rval >> 32; 1229 } 1230 1231 return ret; 1232 } 1233 1234 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1235 { 1236 int irq; 1237 uint8_t iprio; 1238 1239 irq = riscv_cpu_mirq_pending(env); 1240 if (irq <= 0 || irq > 63) { 1241 *val = 0; 1242 } else { 1243 iprio = env->miprio[irq]; 1244 if (!iprio) { 1245 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1246 iprio = IPRIO_MMAXIPRIO; 1247 } 1248 } 1249 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1250 *val |= iprio; 1251 } 1252 1253 return RISCV_EXCP_NONE; 1254 } 1255 1256 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1257 { 1258 if (!riscv_cpu_virt_enabled(env)) { 1259 return csrno; 1260 } 1261 1262 switch (csrno) { 1263 case CSR_SISELECT: 1264 return CSR_VSISELECT; 1265 case CSR_SIREG: 1266 return CSR_VSIREG; 1267 case CSR_STOPEI: 1268 return CSR_VSTOPEI; 1269 default: 1270 return csrno; 1271 }; 1272 } 1273 1274 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1275 target_ulong new_val, target_ulong wr_mask) 1276 { 1277 target_ulong *iselect; 1278 1279 /* Translate CSR number for VS-mode */ 1280 csrno = aia_xlate_vs_csrno(env, csrno); 1281 1282 /* Find the iselect CSR based on CSR number */ 1283 switch (csrno) { 1284 case CSR_MISELECT: 1285 iselect = &env->miselect; 1286 break; 1287 case CSR_SISELECT: 1288 iselect = &env->siselect; 1289 break; 1290 case CSR_VSISELECT: 1291 iselect = &env->vsiselect; 1292 break; 1293 default: 1294 return RISCV_EXCP_ILLEGAL_INST; 1295 }; 1296 1297 if (val) { 1298 *val = *iselect; 1299 } 1300 1301 wr_mask &= ISELECT_MASK; 1302 if (wr_mask) { 1303 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1304 } 1305 1306 return RISCV_EXCP_NONE; 1307 } 1308 1309 static int rmw_iprio(target_ulong xlen, 1310 target_ulong iselect, uint8_t *iprio, 1311 target_ulong *val, target_ulong new_val, 1312 target_ulong wr_mask, int ext_irq_no) 1313 { 1314 int i, firq, nirqs; 1315 target_ulong old_val; 1316 1317 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1318 return -EINVAL; 1319 } 1320 if (xlen != 32 && iselect & 0x1) { 1321 return -EINVAL; 1322 } 1323 1324 nirqs = 4 * (xlen / 32); 1325 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1326 1327 old_val = 0; 1328 for (i = 0; i < nirqs; i++) { 1329 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1330 } 1331 1332 if (val) { 1333 *val = old_val; 1334 } 1335 1336 if (wr_mask) { 1337 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1338 for (i = 0; i < nirqs; i++) { 1339 /* 1340 * M-level and S-level external IRQ priority always read-only 1341 * zero. This means default priority order is always preferred 1342 * for M-level and S-level external IRQs. 1343 */ 1344 if ((firq + i) == ext_irq_no) { 1345 continue; 1346 } 1347 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1348 } 1349 } 1350 1351 return 0; 1352 } 1353 1354 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1355 target_ulong new_val, target_ulong wr_mask) 1356 { 1357 bool virt; 1358 uint8_t *iprio; 1359 int ret = -EINVAL; 1360 target_ulong priv, isel, vgein; 1361 1362 /* Translate CSR number for VS-mode */ 1363 csrno = aia_xlate_vs_csrno(env, csrno); 1364 1365 /* Decode register details from CSR number */ 1366 virt = false; 1367 switch (csrno) { 1368 case CSR_MIREG: 1369 iprio = env->miprio; 1370 isel = env->miselect; 1371 priv = PRV_M; 1372 break; 1373 case CSR_SIREG: 1374 iprio = env->siprio; 1375 isel = env->siselect; 1376 priv = PRV_S; 1377 break; 1378 case CSR_VSIREG: 1379 iprio = env->hviprio; 1380 isel = env->vsiselect; 1381 priv = PRV_S; 1382 virt = true; 1383 break; 1384 default: 1385 goto done; 1386 }; 1387 1388 /* Find the selected guest interrupt file */ 1389 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1390 1391 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1392 /* Local interrupt priority registers not available for VS-mode */ 1393 if (!virt) { 1394 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1395 isel, iprio, val, new_val, wr_mask, 1396 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1397 } 1398 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1399 /* IMSIC registers only available when machine implements it. */ 1400 if (env->aia_ireg_rmw_fn[priv]) { 1401 /* Selected guest interrupt file should not be zero */ 1402 if (virt && (!vgein || env->geilen < vgein)) { 1403 goto done; 1404 } 1405 /* Call machine specific IMSIC register emulation */ 1406 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1407 AIA_MAKE_IREG(isel, priv, virt, vgein, 1408 riscv_cpu_mxl_bits(env)), 1409 val, new_val, wr_mask); 1410 } 1411 } 1412 1413 done: 1414 if (ret) { 1415 return (riscv_cpu_virt_enabled(env) && virt) ? 1416 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1417 } 1418 return RISCV_EXCP_NONE; 1419 } 1420 1421 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1422 target_ulong new_val, target_ulong wr_mask) 1423 { 1424 bool virt; 1425 int ret = -EINVAL; 1426 target_ulong priv, vgein; 1427 1428 /* Translate CSR number for VS-mode */ 1429 csrno = aia_xlate_vs_csrno(env, csrno); 1430 1431 /* Decode register details from CSR number */ 1432 virt = false; 1433 switch (csrno) { 1434 case CSR_MTOPEI: 1435 priv = PRV_M; 1436 break; 1437 case CSR_STOPEI: 1438 priv = PRV_S; 1439 break; 1440 case CSR_VSTOPEI: 1441 priv = PRV_S; 1442 virt = true; 1443 break; 1444 default: 1445 goto done; 1446 }; 1447 1448 /* IMSIC CSRs only available when machine implements IMSIC. */ 1449 if (!env->aia_ireg_rmw_fn[priv]) { 1450 goto done; 1451 } 1452 1453 /* Find the selected guest interrupt file */ 1454 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1455 1456 /* Selected guest interrupt file should be valid */ 1457 if (virt && (!vgein || env->geilen < vgein)) { 1458 goto done; 1459 } 1460 1461 /* Call machine specific IMSIC register emulation for TOPEI */ 1462 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1463 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1464 riscv_cpu_mxl_bits(env)), 1465 val, new_val, wr_mask); 1466 1467 done: 1468 if (ret) { 1469 return (riscv_cpu_virt_enabled(env) && virt) ? 1470 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1471 } 1472 return RISCV_EXCP_NONE; 1473 } 1474 1475 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1476 target_ulong *val) 1477 { 1478 *val = env->mtvec; 1479 return RISCV_EXCP_NONE; 1480 } 1481 1482 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1483 target_ulong val) 1484 { 1485 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1486 if ((val & 3) < 2) { 1487 env->mtvec = val; 1488 } else { 1489 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1490 } 1491 return RISCV_EXCP_NONE; 1492 } 1493 1494 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1495 target_ulong *val) 1496 { 1497 if (env->priv_ver < PRIV_VERSION_1_11_0) { 1498 return RISCV_EXCP_ILLEGAL_INST; 1499 } 1500 1501 *val = env->mcountinhibit; 1502 return RISCV_EXCP_NONE; 1503 } 1504 1505 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1506 target_ulong val) 1507 { 1508 int cidx; 1509 PMUCTRState *counter; 1510 1511 if (env->priv_ver < PRIV_VERSION_1_11_0) { 1512 return RISCV_EXCP_ILLEGAL_INST; 1513 } 1514 1515 env->mcountinhibit = val; 1516 1517 /* Check if any other counter is also monitoring cycles/instructions */ 1518 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1519 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1520 counter = &env->pmu_ctrs[cidx]; 1521 counter->started = true; 1522 } 1523 } 1524 1525 return RISCV_EXCP_NONE; 1526 } 1527 1528 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1529 target_ulong *val) 1530 { 1531 *val = env->mcounteren; 1532 return RISCV_EXCP_NONE; 1533 } 1534 1535 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1536 target_ulong val) 1537 { 1538 env->mcounteren = val; 1539 return RISCV_EXCP_NONE; 1540 } 1541 1542 /* Machine Trap Handling */ 1543 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1544 Int128 *val) 1545 { 1546 *val = int128_make128(env->mscratch, env->mscratchh); 1547 return RISCV_EXCP_NONE; 1548 } 1549 1550 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1551 Int128 val) 1552 { 1553 env->mscratch = int128_getlo(val); 1554 env->mscratchh = int128_gethi(val); 1555 return RISCV_EXCP_NONE; 1556 } 1557 1558 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1559 target_ulong *val) 1560 { 1561 *val = env->mscratch; 1562 return RISCV_EXCP_NONE; 1563 } 1564 1565 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1566 target_ulong val) 1567 { 1568 env->mscratch = val; 1569 return RISCV_EXCP_NONE; 1570 } 1571 1572 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1573 target_ulong *val) 1574 { 1575 *val = env->mepc; 1576 return RISCV_EXCP_NONE; 1577 } 1578 1579 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1580 target_ulong val) 1581 { 1582 env->mepc = val; 1583 return RISCV_EXCP_NONE; 1584 } 1585 1586 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1587 target_ulong *val) 1588 { 1589 *val = env->mcause; 1590 return RISCV_EXCP_NONE; 1591 } 1592 1593 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1594 target_ulong val) 1595 { 1596 env->mcause = val; 1597 return RISCV_EXCP_NONE; 1598 } 1599 1600 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1601 target_ulong *val) 1602 { 1603 *val = env->mtval; 1604 return RISCV_EXCP_NONE; 1605 } 1606 1607 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1608 target_ulong val) 1609 { 1610 env->mtval = val; 1611 return RISCV_EXCP_NONE; 1612 } 1613 1614 /* Execution environment configuration setup */ 1615 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1616 target_ulong *val) 1617 { 1618 *val = env->menvcfg; 1619 return RISCV_EXCP_NONE; 1620 } 1621 1622 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1623 target_ulong val) 1624 { 1625 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1626 1627 if (riscv_cpu_mxl(env) == MXL_RV64) { 1628 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1629 } 1630 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1631 1632 return RISCV_EXCP_NONE; 1633 } 1634 1635 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1636 target_ulong *val) 1637 { 1638 *val = env->menvcfg >> 32; 1639 return RISCV_EXCP_NONE; 1640 } 1641 1642 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1643 target_ulong val) 1644 { 1645 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1646 uint64_t valh = (uint64_t)val << 32; 1647 1648 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1649 1650 return RISCV_EXCP_NONE; 1651 } 1652 1653 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1654 target_ulong *val) 1655 { 1656 *val = env->senvcfg; 1657 return RISCV_EXCP_NONE; 1658 } 1659 1660 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1661 target_ulong val) 1662 { 1663 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1664 1665 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1666 1667 return RISCV_EXCP_NONE; 1668 } 1669 1670 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1671 target_ulong *val) 1672 { 1673 *val = env->henvcfg; 1674 return RISCV_EXCP_NONE; 1675 } 1676 1677 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1678 target_ulong val) 1679 { 1680 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1681 1682 if (riscv_cpu_mxl(env) == MXL_RV64) { 1683 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 1684 } 1685 1686 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1687 1688 return RISCV_EXCP_NONE; 1689 } 1690 1691 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1692 target_ulong *val) 1693 { 1694 *val = env->henvcfg >> 32; 1695 return RISCV_EXCP_NONE; 1696 } 1697 1698 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 1699 target_ulong val) 1700 { 1701 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 1702 uint64_t valh = (uint64_t)val << 32; 1703 1704 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 1705 1706 return RISCV_EXCP_NONE; 1707 } 1708 1709 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 1710 uint64_t *ret_val, 1711 uint64_t new_val, uint64_t wr_mask) 1712 { 1713 RISCVCPU *cpu = env_archcpu(env); 1714 uint64_t old_mip, mask = wr_mask & delegable_ints; 1715 uint32_t gin; 1716 1717 if (mask & MIP_SEIP) { 1718 env->software_seip = new_val & MIP_SEIP; 1719 new_val |= env->external_seip * MIP_SEIP; 1720 } 1721 1722 if (mask) { 1723 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 1724 } else { 1725 old_mip = env->mip; 1726 } 1727 1728 if (csrno != CSR_HVIP) { 1729 gin = get_field(env->hstatus, HSTATUS_VGEIN); 1730 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 1731 } 1732 1733 if (ret_val) { 1734 *ret_val = old_mip; 1735 } 1736 1737 return RISCV_EXCP_NONE; 1738 } 1739 1740 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 1741 target_ulong *ret_val, 1742 target_ulong new_val, target_ulong wr_mask) 1743 { 1744 uint64_t rval; 1745 RISCVException ret; 1746 1747 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 1748 if (ret_val) { 1749 *ret_val = rval; 1750 } 1751 1752 return ret; 1753 } 1754 1755 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 1756 target_ulong *ret_val, 1757 target_ulong new_val, target_ulong wr_mask) 1758 { 1759 uint64_t rval; 1760 RISCVException ret; 1761 1762 ret = rmw_mip64(env, csrno, &rval, 1763 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1764 if (ret_val) { 1765 *ret_val = rval >> 32; 1766 } 1767 1768 return ret; 1769 } 1770 1771 /* Supervisor Trap Setup */ 1772 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 1773 Int128 *val) 1774 { 1775 uint64_t mask = sstatus_v1_10_mask; 1776 uint64_t sstatus = env->mstatus & mask; 1777 if (env->xl != MXL_RV32 || env->debugger) { 1778 mask |= SSTATUS64_UXL; 1779 } 1780 1781 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 1782 return RISCV_EXCP_NONE; 1783 } 1784 1785 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 1786 target_ulong *val) 1787 { 1788 target_ulong mask = (sstatus_v1_10_mask); 1789 if (env->xl != MXL_RV32 || env->debugger) { 1790 mask |= SSTATUS64_UXL; 1791 } 1792 /* TODO: Use SXL not MXL. */ 1793 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 1794 return RISCV_EXCP_NONE; 1795 } 1796 1797 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 1798 target_ulong val) 1799 { 1800 target_ulong mask = (sstatus_v1_10_mask); 1801 1802 if (env->xl != MXL_RV32 || env->debugger) { 1803 if ((val & SSTATUS64_UXL) != 0) { 1804 mask |= SSTATUS64_UXL; 1805 } 1806 } 1807 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 1808 return write_mstatus(env, CSR_MSTATUS, newval); 1809 } 1810 1811 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 1812 uint64_t *ret_val, 1813 uint64_t new_val, uint64_t wr_mask) 1814 { 1815 RISCVException ret; 1816 uint64_t rval, vsbits, mask = env->hideleg & VS_MODE_INTERRUPTS; 1817 1818 /* Bring VS-level bits to correct position */ 1819 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 1820 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 1821 new_val |= vsbits << 1; 1822 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 1823 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 1824 wr_mask |= vsbits << 1; 1825 1826 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 1827 if (ret_val) { 1828 rval &= mask; 1829 vsbits = rval & VS_MODE_INTERRUPTS; 1830 rval &= ~VS_MODE_INTERRUPTS; 1831 *ret_val = rval | (vsbits >> 1); 1832 } 1833 1834 return ret; 1835 } 1836 1837 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 1838 target_ulong *ret_val, 1839 target_ulong new_val, target_ulong wr_mask) 1840 { 1841 uint64_t rval; 1842 RISCVException ret; 1843 1844 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 1845 if (ret_val) { 1846 *ret_val = rval; 1847 } 1848 1849 return ret; 1850 } 1851 1852 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 1853 target_ulong *ret_val, 1854 target_ulong new_val, target_ulong wr_mask) 1855 { 1856 uint64_t rval; 1857 RISCVException ret; 1858 1859 ret = rmw_vsie64(env, csrno, &rval, 1860 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1861 if (ret_val) { 1862 *ret_val = rval >> 32; 1863 } 1864 1865 return ret; 1866 } 1867 1868 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 1869 uint64_t *ret_val, 1870 uint64_t new_val, uint64_t wr_mask) 1871 { 1872 RISCVException ret; 1873 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 1874 1875 if (riscv_cpu_virt_enabled(env)) { 1876 if (env->hvictl & HVICTL_VTI) { 1877 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1878 } 1879 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 1880 } else { 1881 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 1882 } 1883 1884 if (ret_val) { 1885 *ret_val &= mask; 1886 } 1887 1888 return ret; 1889 } 1890 1891 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 1892 target_ulong *ret_val, 1893 target_ulong new_val, target_ulong wr_mask) 1894 { 1895 uint64_t rval; 1896 RISCVException ret; 1897 1898 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 1899 if (ret == RISCV_EXCP_NONE && ret_val) { 1900 *ret_val = rval; 1901 } 1902 1903 return ret; 1904 } 1905 1906 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 1907 target_ulong *ret_val, 1908 target_ulong new_val, target_ulong wr_mask) 1909 { 1910 uint64_t rval; 1911 RISCVException ret; 1912 1913 ret = rmw_sie64(env, csrno, &rval, 1914 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1915 if (ret_val) { 1916 *ret_val = rval >> 32; 1917 } 1918 1919 return ret; 1920 } 1921 1922 static RISCVException read_stvec(CPURISCVState *env, int csrno, 1923 target_ulong *val) 1924 { 1925 *val = env->stvec; 1926 return RISCV_EXCP_NONE; 1927 } 1928 1929 static RISCVException write_stvec(CPURISCVState *env, int csrno, 1930 target_ulong val) 1931 { 1932 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1933 if ((val & 3) < 2) { 1934 env->stvec = val; 1935 } else { 1936 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 1937 } 1938 return RISCV_EXCP_NONE; 1939 } 1940 1941 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 1942 target_ulong *val) 1943 { 1944 *val = env->scounteren; 1945 return RISCV_EXCP_NONE; 1946 } 1947 1948 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 1949 target_ulong val) 1950 { 1951 env->scounteren = val; 1952 return RISCV_EXCP_NONE; 1953 } 1954 1955 /* Supervisor Trap Handling */ 1956 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 1957 Int128 *val) 1958 { 1959 *val = int128_make128(env->sscratch, env->sscratchh); 1960 return RISCV_EXCP_NONE; 1961 } 1962 1963 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 1964 Int128 val) 1965 { 1966 env->sscratch = int128_getlo(val); 1967 env->sscratchh = int128_gethi(val); 1968 return RISCV_EXCP_NONE; 1969 } 1970 1971 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 1972 target_ulong *val) 1973 { 1974 *val = env->sscratch; 1975 return RISCV_EXCP_NONE; 1976 } 1977 1978 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 1979 target_ulong val) 1980 { 1981 env->sscratch = val; 1982 return RISCV_EXCP_NONE; 1983 } 1984 1985 static RISCVException read_sepc(CPURISCVState *env, int csrno, 1986 target_ulong *val) 1987 { 1988 *val = env->sepc; 1989 return RISCV_EXCP_NONE; 1990 } 1991 1992 static RISCVException write_sepc(CPURISCVState *env, int csrno, 1993 target_ulong val) 1994 { 1995 env->sepc = val; 1996 return RISCV_EXCP_NONE; 1997 } 1998 1999 static RISCVException read_scause(CPURISCVState *env, int csrno, 2000 target_ulong *val) 2001 { 2002 *val = env->scause; 2003 return RISCV_EXCP_NONE; 2004 } 2005 2006 static RISCVException write_scause(CPURISCVState *env, int csrno, 2007 target_ulong val) 2008 { 2009 env->scause = val; 2010 return RISCV_EXCP_NONE; 2011 } 2012 2013 static RISCVException read_stval(CPURISCVState *env, int csrno, 2014 target_ulong *val) 2015 { 2016 *val = env->stval; 2017 return RISCV_EXCP_NONE; 2018 } 2019 2020 static RISCVException write_stval(CPURISCVState *env, int csrno, 2021 target_ulong val) 2022 { 2023 env->stval = val; 2024 return RISCV_EXCP_NONE; 2025 } 2026 2027 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2028 uint64_t *ret_val, 2029 uint64_t new_val, uint64_t wr_mask) 2030 { 2031 RISCVException ret; 2032 uint64_t rval, vsbits, mask = env->hideleg & vsip_writable_mask; 2033 2034 /* Bring VS-level bits to correct position */ 2035 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2036 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2037 new_val |= vsbits << 1; 2038 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2039 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2040 wr_mask |= vsbits << 1; 2041 2042 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask & mask); 2043 if (ret_val) { 2044 rval &= mask; 2045 vsbits = rval & VS_MODE_INTERRUPTS; 2046 rval &= ~VS_MODE_INTERRUPTS; 2047 *ret_val = rval | (vsbits >> 1); 2048 } 2049 2050 return ret; 2051 } 2052 2053 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2054 target_ulong *ret_val, 2055 target_ulong new_val, target_ulong wr_mask) 2056 { 2057 uint64_t rval; 2058 RISCVException ret; 2059 2060 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2061 if (ret_val) { 2062 *ret_val = rval; 2063 } 2064 2065 return ret; 2066 } 2067 2068 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2069 target_ulong *ret_val, 2070 target_ulong new_val, target_ulong wr_mask) 2071 { 2072 uint64_t rval; 2073 RISCVException ret; 2074 2075 ret = rmw_vsip64(env, csrno, &rval, 2076 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2077 if (ret_val) { 2078 *ret_val = rval >> 32; 2079 } 2080 2081 return ret; 2082 } 2083 2084 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2085 uint64_t *ret_val, 2086 uint64_t new_val, uint64_t wr_mask) 2087 { 2088 RISCVException ret; 2089 uint64_t mask = env->mideleg & sip_writable_mask; 2090 2091 if (riscv_cpu_virt_enabled(env)) { 2092 if (env->hvictl & HVICTL_VTI) { 2093 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2094 } 2095 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2096 } else { 2097 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2098 } 2099 2100 if (ret_val) { 2101 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2102 } 2103 2104 return ret; 2105 } 2106 2107 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2108 target_ulong *ret_val, 2109 target_ulong new_val, target_ulong wr_mask) 2110 { 2111 uint64_t rval; 2112 RISCVException ret; 2113 2114 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2115 if (ret_val) { 2116 *ret_val = rval; 2117 } 2118 2119 return ret; 2120 } 2121 2122 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2123 target_ulong *ret_val, 2124 target_ulong new_val, target_ulong wr_mask) 2125 { 2126 uint64_t rval; 2127 RISCVException ret; 2128 2129 ret = rmw_sip64(env, csrno, &rval, 2130 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2131 if (ret_val) { 2132 *ret_val = rval >> 32; 2133 } 2134 2135 return ret; 2136 } 2137 2138 /* Supervisor Protection and Translation */ 2139 static RISCVException read_satp(CPURISCVState *env, int csrno, 2140 target_ulong *val) 2141 { 2142 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2143 *val = 0; 2144 return RISCV_EXCP_NONE; 2145 } 2146 2147 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2148 return RISCV_EXCP_ILLEGAL_INST; 2149 } else { 2150 *val = env->satp; 2151 } 2152 2153 return RISCV_EXCP_NONE; 2154 } 2155 2156 static RISCVException write_satp(CPURISCVState *env, int csrno, 2157 target_ulong val) 2158 { 2159 target_ulong vm, mask; 2160 2161 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2162 return RISCV_EXCP_NONE; 2163 } 2164 2165 if (riscv_cpu_mxl(env) == MXL_RV32) { 2166 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2167 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2168 } else { 2169 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2170 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2171 } 2172 2173 if (vm && mask) { 2174 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2175 return RISCV_EXCP_ILLEGAL_INST; 2176 } else { 2177 /* 2178 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2179 * pass these through QEMU's TLB emulation as it improves 2180 * performance. Flushing the TLB on SATP writes with paging 2181 * enabled avoids leaking those invalid cached mappings. 2182 */ 2183 tlb_flush(env_cpu(env)); 2184 env->satp = val; 2185 } 2186 } 2187 return RISCV_EXCP_NONE; 2188 } 2189 2190 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2191 { 2192 int irq, ret; 2193 target_ulong topei; 2194 uint64_t vseip, vsgein; 2195 uint32_t iid, iprio, hviid, hviprio, gein; 2196 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2197 2198 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2199 hviid = get_field(env->hvictl, HVICTL_IID); 2200 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2201 2202 if (gein) { 2203 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2204 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2205 if (gein <= env->geilen && vseip) { 2206 siid[scount] = IRQ_S_EXT; 2207 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2208 if (env->aia_ireg_rmw_fn[PRV_S]) { 2209 /* 2210 * Call machine specific IMSIC register emulation for 2211 * reading TOPEI. 2212 */ 2213 ret = env->aia_ireg_rmw_fn[PRV_S]( 2214 env->aia_ireg_rmw_fn_arg[PRV_S], 2215 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2216 riscv_cpu_mxl_bits(env)), 2217 &topei, 0, 0); 2218 if (!ret && topei) { 2219 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2220 } 2221 } 2222 scount++; 2223 } 2224 } else { 2225 if (hviid == IRQ_S_EXT && hviprio) { 2226 siid[scount] = IRQ_S_EXT; 2227 siprio[scount] = hviprio; 2228 scount++; 2229 } 2230 } 2231 2232 if (env->hvictl & HVICTL_VTI) { 2233 if (hviid != IRQ_S_EXT) { 2234 siid[scount] = hviid; 2235 siprio[scount] = hviprio; 2236 scount++; 2237 } 2238 } else { 2239 irq = riscv_cpu_vsirq_pending(env); 2240 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2241 siid[scount] = irq; 2242 siprio[scount] = env->hviprio[irq]; 2243 scount++; 2244 } 2245 } 2246 2247 iid = 0; 2248 iprio = UINT_MAX; 2249 for (s = 0; s < scount; s++) { 2250 if (siprio[s] < iprio) { 2251 iid = siid[s]; 2252 iprio = siprio[s]; 2253 } 2254 } 2255 2256 if (iid) { 2257 if (env->hvictl & HVICTL_IPRIOM) { 2258 if (iprio > IPRIO_MMAXIPRIO) { 2259 iprio = IPRIO_MMAXIPRIO; 2260 } 2261 if (!iprio) { 2262 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2263 iprio = IPRIO_MMAXIPRIO; 2264 } 2265 } 2266 } else { 2267 iprio = 1; 2268 } 2269 } else { 2270 iprio = 0; 2271 } 2272 2273 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2274 *val |= iprio; 2275 return RISCV_EXCP_NONE; 2276 } 2277 2278 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2279 { 2280 int irq; 2281 uint8_t iprio; 2282 2283 if (riscv_cpu_virt_enabled(env)) { 2284 return read_vstopi(env, CSR_VSTOPI, val); 2285 } 2286 2287 irq = riscv_cpu_sirq_pending(env); 2288 if (irq <= 0 || irq > 63) { 2289 *val = 0; 2290 } else { 2291 iprio = env->siprio[irq]; 2292 if (!iprio) { 2293 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2294 iprio = IPRIO_MMAXIPRIO; 2295 } 2296 } 2297 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2298 *val |= iprio; 2299 } 2300 2301 return RISCV_EXCP_NONE; 2302 } 2303 2304 /* Hypervisor Extensions */ 2305 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2306 target_ulong *val) 2307 { 2308 *val = env->hstatus; 2309 if (riscv_cpu_mxl(env) != MXL_RV32) { 2310 /* We only support 64-bit VSXL */ 2311 *val = set_field(*val, HSTATUS_VSXL, 2); 2312 } 2313 /* We only support little endian */ 2314 *val = set_field(*val, HSTATUS_VSBE, 0); 2315 return RISCV_EXCP_NONE; 2316 } 2317 2318 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2319 target_ulong val) 2320 { 2321 env->hstatus = val; 2322 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2323 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2324 } 2325 if (get_field(val, HSTATUS_VSBE) != 0) { 2326 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2327 } 2328 return RISCV_EXCP_NONE; 2329 } 2330 2331 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2332 target_ulong *val) 2333 { 2334 *val = env->hedeleg; 2335 return RISCV_EXCP_NONE; 2336 } 2337 2338 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2339 target_ulong val) 2340 { 2341 env->hedeleg = val & vs_delegable_excps; 2342 return RISCV_EXCP_NONE; 2343 } 2344 2345 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2346 uint64_t *ret_val, 2347 uint64_t new_val, uint64_t wr_mask) 2348 { 2349 uint64_t mask = wr_mask & vs_delegable_ints; 2350 2351 if (ret_val) { 2352 *ret_val = env->hideleg & vs_delegable_ints; 2353 } 2354 2355 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2356 return RISCV_EXCP_NONE; 2357 } 2358 2359 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2360 target_ulong *ret_val, 2361 target_ulong new_val, target_ulong wr_mask) 2362 { 2363 uint64_t rval; 2364 RISCVException ret; 2365 2366 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2367 if (ret_val) { 2368 *ret_val = rval; 2369 } 2370 2371 return ret; 2372 } 2373 2374 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2375 target_ulong *ret_val, 2376 target_ulong new_val, target_ulong wr_mask) 2377 { 2378 uint64_t rval; 2379 RISCVException ret; 2380 2381 ret = rmw_hideleg64(env, csrno, &rval, 2382 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2383 if (ret_val) { 2384 *ret_val = rval >> 32; 2385 } 2386 2387 return ret; 2388 } 2389 2390 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2391 uint64_t *ret_val, 2392 uint64_t new_val, uint64_t wr_mask) 2393 { 2394 RISCVException ret; 2395 2396 ret = rmw_mip64(env, csrno, ret_val, new_val, 2397 wr_mask & hvip_writable_mask); 2398 if (ret_val) { 2399 *ret_val &= VS_MODE_INTERRUPTS; 2400 } 2401 2402 return ret; 2403 } 2404 2405 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2406 target_ulong *ret_val, 2407 target_ulong new_val, target_ulong wr_mask) 2408 { 2409 uint64_t rval; 2410 RISCVException ret; 2411 2412 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2413 if (ret_val) { 2414 *ret_val = rval; 2415 } 2416 2417 return ret; 2418 } 2419 2420 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2421 target_ulong *ret_val, 2422 target_ulong new_val, target_ulong wr_mask) 2423 { 2424 uint64_t rval; 2425 RISCVException ret; 2426 2427 ret = rmw_hvip64(env, csrno, &rval, 2428 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2429 if (ret_val) { 2430 *ret_val = rval >> 32; 2431 } 2432 2433 return ret; 2434 } 2435 2436 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2437 target_ulong *ret_value, 2438 target_ulong new_value, target_ulong write_mask) 2439 { 2440 int ret = rmw_mip(env, csrno, ret_value, new_value, 2441 write_mask & hip_writable_mask); 2442 2443 if (ret_value) { 2444 *ret_value &= HS_MODE_INTERRUPTS; 2445 } 2446 return ret; 2447 } 2448 2449 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2450 target_ulong *ret_val, 2451 target_ulong new_val, target_ulong wr_mask) 2452 { 2453 uint64_t rval; 2454 RISCVException ret; 2455 2456 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2457 if (ret_val) { 2458 *ret_val = rval & HS_MODE_INTERRUPTS; 2459 } 2460 2461 return ret; 2462 } 2463 2464 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2465 target_ulong *val) 2466 { 2467 *val = env->hcounteren; 2468 return RISCV_EXCP_NONE; 2469 } 2470 2471 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2472 target_ulong val) 2473 { 2474 env->hcounteren = val; 2475 return RISCV_EXCP_NONE; 2476 } 2477 2478 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2479 target_ulong *val) 2480 { 2481 if (val) { 2482 *val = env->hgeie; 2483 } 2484 return RISCV_EXCP_NONE; 2485 } 2486 2487 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2488 target_ulong val) 2489 { 2490 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2491 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2492 env->hgeie = val; 2493 /* Update mip.SGEIP bit */ 2494 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2495 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2496 return RISCV_EXCP_NONE; 2497 } 2498 2499 static RISCVException read_htval(CPURISCVState *env, int csrno, 2500 target_ulong *val) 2501 { 2502 *val = env->htval; 2503 return RISCV_EXCP_NONE; 2504 } 2505 2506 static RISCVException write_htval(CPURISCVState *env, int csrno, 2507 target_ulong val) 2508 { 2509 env->htval = val; 2510 return RISCV_EXCP_NONE; 2511 } 2512 2513 static RISCVException read_htinst(CPURISCVState *env, int csrno, 2514 target_ulong *val) 2515 { 2516 *val = env->htinst; 2517 return RISCV_EXCP_NONE; 2518 } 2519 2520 static RISCVException write_htinst(CPURISCVState *env, int csrno, 2521 target_ulong val) 2522 { 2523 return RISCV_EXCP_NONE; 2524 } 2525 2526 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 2527 target_ulong *val) 2528 { 2529 if (val) { 2530 *val = env->hgeip; 2531 } 2532 return RISCV_EXCP_NONE; 2533 } 2534 2535 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 2536 target_ulong *val) 2537 { 2538 *val = env->hgatp; 2539 return RISCV_EXCP_NONE; 2540 } 2541 2542 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 2543 target_ulong val) 2544 { 2545 env->hgatp = val; 2546 return RISCV_EXCP_NONE; 2547 } 2548 2549 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 2550 target_ulong *val) 2551 { 2552 if (!env->rdtime_fn) { 2553 return RISCV_EXCP_ILLEGAL_INST; 2554 } 2555 2556 *val = env->htimedelta; 2557 return RISCV_EXCP_NONE; 2558 } 2559 2560 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 2561 target_ulong val) 2562 { 2563 if (!env->rdtime_fn) { 2564 return RISCV_EXCP_ILLEGAL_INST; 2565 } 2566 2567 if (riscv_cpu_mxl(env) == MXL_RV32) { 2568 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 2569 } else { 2570 env->htimedelta = val; 2571 } 2572 return RISCV_EXCP_NONE; 2573 } 2574 2575 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 2576 target_ulong *val) 2577 { 2578 if (!env->rdtime_fn) { 2579 return RISCV_EXCP_ILLEGAL_INST; 2580 } 2581 2582 *val = env->htimedelta >> 32; 2583 return RISCV_EXCP_NONE; 2584 } 2585 2586 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 2587 target_ulong val) 2588 { 2589 if (!env->rdtime_fn) { 2590 return RISCV_EXCP_ILLEGAL_INST; 2591 } 2592 2593 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 2594 return RISCV_EXCP_NONE; 2595 } 2596 2597 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 2598 { 2599 *val = env->hvictl; 2600 return RISCV_EXCP_NONE; 2601 } 2602 2603 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 2604 { 2605 env->hvictl = val & HVICTL_VALID_MASK; 2606 return RISCV_EXCP_NONE; 2607 } 2608 2609 static int read_hvipriox(CPURISCVState *env, int first_index, 2610 uint8_t *iprio, target_ulong *val) 2611 { 2612 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2613 2614 /* First index has to be a multiple of number of irqs per register */ 2615 if (first_index % num_irqs) { 2616 return (riscv_cpu_virt_enabled(env)) ? 2617 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2618 } 2619 2620 /* Fill-up return value */ 2621 *val = 0; 2622 for (i = 0; i < num_irqs; i++) { 2623 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2624 continue; 2625 } 2626 if (rdzero) { 2627 continue; 2628 } 2629 *val |= ((target_ulong)iprio[irq]) << (i * 8); 2630 } 2631 2632 return RISCV_EXCP_NONE; 2633 } 2634 2635 static int write_hvipriox(CPURISCVState *env, int first_index, 2636 uint8_t *iprio, target_ulong val) 2637 { 2638 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2639 2640 /* First index has to be a multiple of number of irqs per register */ 2641 if (first_index % num_irqs) { 2642 return (riscv_cpu_virt_enabled(env)) ? 2643 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2644 } 2645 2646 /* Fill-up priority arrary */ 2647 for (i = 0; i < num_irqs; i++) { 2648 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2649 continue; 2650 } 2651 if (rdzero) { 2652 iprio[irq] = 0; 2653 } else { 2654 iprio[irq] = (val >> (i * 8)) & 0xff; 2655 } 2656 } 2657 2658 return RISCV_EXCP_NONE; 2659 } 2660 2661 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 2662 { 2663 return read_hvipriox(env, 0, env->hviprio, val); 2664 } 2665 2666 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 2667 { 2668 return write_hvipriox(env, 0, env->hviprio, val); 2669 } 2670 2671 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 2672 { 2673 return read_hvipriox(env, 4, env->hviprio, val); 2674 } 2675 2676 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 2677 { 2678 return write_hvipriox(env, 4, env->hviprio, val); 2679 } 2680 2681 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 2682 { 2683 return read_hvipriox(env, 8, env->hviprio, val); 2684 } 2685 2686 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 2687 { 2688 return write_hvipriox(env, 8, env->hviprio, val); 2689 } 2690 2691 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 2692 { 2693 return read_hvipriox(env, 12, env->hviprio, val); 2694 } 2695 2696 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 2697 { 2698 return write_hvipriox(env, 12, env->hviprio, val); 2699 } 2700 2701 /* Virtual CSR Registers */ 2702 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 2703 target_ulong *val) 2704 { 2705 *val = env->vsstatus; 2706 return RISCV_EXCP_NONE; 2707 } 2708 2709 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 2710 target_ulong val) 2711 { 2712 uint64_t mask = (target_ulong)-1; 2713 if ((val & VSSTATUS64_UXL) == 0) { 2714 mask &= ~VSSTATUS64_UXL; 2715 } 2716 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 2717 return RISCV_EXCP_NONE; 2718 } 2719 2720 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 2721 { 2722 *val = env->vstvec; 2723 return RISCV_EXCP_NONE; 2724 } 2725 2726 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 2727 target_ulong val) 2728 { 2729 env->vstvec = val; 2730 return RISCV_EXCP_NONE; 2731 } 2732 2733 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 2734 target_ulong *val) 2735 { 2736 *val = env->vsscratch; 2737 return RISCV_EXCP_NONE; 2738 } 2739 2740 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 2741 target_ulong val) 2742 { 2743 env->vsscratch = val; 2744 return RISCV_EXCP_NONE; 2745 } 2746 2747 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 2748 target_ulong *val) 2749 { 2750 *val = env->vsepc; 2751 return RISCV_EXCP_NONE; 2752 } 2753 2754 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 2755 target_ulong val) 2756 { 2757 env->vsepc = val; 2758 return RISCV_EXCP_NONE; 2759 } 2760 2761 static RISCVException read_vscause(CPURISCVState *env, int csrno, 2762 target_ulong *val) 2763 { 2764 *val = env->vscause; 2765 return RISCV_EXCP_NONE; 2766 } 2767 2768 static RISCVException write_vscause(CPURISCVState *env, int csrno, 2769 target_ulong val) 2770 { 2771 env->vscause = val; 2772 return RISCV_EXCP_NONE; 2773 } 2774 2775 static RISCVException read_vstval(CPURISCVState *env, int csrno, 2776 target_ulong *val) 2777 { 2778 *val = env->vstval; 2779 return RISCV_EXCP_NONE; 2780 } 2781 2782 static RISCVException write_vstval(CPURISCVState *env, int csrno, 2783 target_ulong val) 2784 { 2785 env->vstval = val; 2786 return RISCV_EXCP_NONE; 2787 } 2788 2789 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 2790 target_ulong *val) 2791 { 2792 *val = env->vsatp; 2793 return RISCV_EXCP_NONE; 2794 } 2795 2796 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 2797 target_ulong val) 2798 { 2799 env->vsatp = val; 2800 return RISCV_EXCP_NONE; 2801 } 2802 2803 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 2804 target_ulong *val) 2805 { 2806 *val = env->mtval2; 2807 return RISCV_EXCP_NONE; 2808 } 2809 2810 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 2811 target_ulong val) 2812 { 2813 env->mtval2 = val; 2814 return RISCV_EXCP_NONE; 2815 } 2816 2817 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 2818 target_ulong *val) 2819 { 2820 *val = env->mtinst; 2821 return RISCV_EXCP_NONE; 2822 } 2823 2824 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 2825 target_ulong val) 2826 { 2827 env->mtinst = val; 2828 return RISCV_EXCP_NONE; 2829 } 2830 2831 /* Physical Memory Protection */ 2832 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 2833 target_ulong *val) 2834 { 2835 *val = mseccfg_csr_read(env); 2836 return RISCV_EXCP_NONE; 2837 } 2838 2839 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 2840 target_ulong val) 2841 { 2842 mseccfg_csr_write(env, val); 2843 return RISCV_EXCP_NONE; 2844 } 2845 2846 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 2847 { 2848 /* TODO: RV128 restriction check */ 2849 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 2850 return false; 2851 } 2852 return true; 2853 } 2854 2855 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 2856 target_ulong *val) 2857 { 2858 uint32_t reg_index = csrno - CSR_PMPCFG0; 2859 2860 if (!check_pmp_reg_index(env, reg_index)) { 2861 return RISCV_EXCP_ILLEGAL_INST; 2862 } 2863 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 2864 return RISCV_EXCP_NONE; 2865 } 2866 2867 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 2868 target_ulong val) 2869 { 2870 uint32_t reg_index = csrno - CSR_PMPCFG0; 2871 2872 if (!check_pmp_reg_index(env, reg_index)) { 2873 return RISCV_EXCP_ILLEGAL_INST; 2874 } 2875 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 2876 return RISCV_EXCP_NONE; 2877 } 2878 2879 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 2880 target_ulong *val) 2881 { 2882 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 2883 return RISCV_EXCP_NONE; 2884 } 2885 2886 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 2887 target_ulong val) 2888 { 2889 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 2890 return RISCV_EXCP_NONE; 2891 } 2892 2893 static RISCVException read_tselect(CPURISCVState *env, int csrno, 2894 target_ulong *val) 2895 { 2896 *val = tselect_csr_read(env); 2897 return RISCV_EXCP_NONE; 2898 } 2899 2900 static RISCVException write_tselect(CPURISCVState *env, int csrno, 2901 target_ulong val) 2902 { 2903 tselect_csr_write(env, val); 2904 return RISCV_EXCP_NONE; 2905 } 2906 2907 static RISCVException read_tdata(CPURISCVState *env, int csrno, 2908 target_ulong *val) 2909 { 2910 /* return 0 in tdata1 to end the trigger enumeration */ 2911 if (env->trigger_cur >= TRIGGER_NUM && csrno == CSR_TDATA1) { 2912 *val = 0; 2913 return RISCV_EXCP_NONE; 2914 } 2915 2916 if (!tdata_available(env, csrno - CSR_TDATA1)) { 2917 return RISCV_EXCP_ILLEGAL_INST; 2918 } 2919 2920 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 2921 return RISCV_EXCP_NONE; 2922 } 2923 2924 static RISCVException write_tdata(CPURISCVState *env, int csrno, 2925 target_ulong val) 2926 { 2927 if (!tdata_available(env, csrno - CSR_TDATA1)) { 2928 return RISCV_EXCP_ILLEGAL_INST; 2929 } 2930 2931 tdata_csr_write(env, csrno - CSR_TDATA1, val); 2932 return RISCV_EXCP_NONE; 2933 } 2934 2935 /* 2936 * Functions to access Pointer Masking feature registers 2937 * We have to check if current priv lvl could modify 2938 * csr in given mode 2939 */ 2940 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 2941 { 2942 int csr_priv = get_field(csrno, 0x300); 2943 int pm_current; 2944 2945 if (env->debugger) { 2946 return false; 2947 } 2948 /* 2949 * If priv lvls differ that means we're accessing csr from higher priv lvl, 2950 * so allow the access 2951 */ 2952 if (env->priv != csr_priv) { 2953 return false; 2954 } 2955 switch (env->priv) { 2956 case PRV_M: 2957 pm_current = get_field(env->mmte, M_PM_CURRENT); 2958 break; 2959 case PRV_S: 2960 pm_current = get_field(env->mmte, S_PM_CURRENT); 2961 break; 2962 case PRV_U: 2963 pm_current = get_field(env->mmte, U_PM_CURRENT); 2964 break; 2965 default: 2966 g_assert_not_reached(); 2967 } 2968 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 2969 return !pm_current; 2970 } 2971 2972 static RISCVException read_mmte(CPURISCVState *env, int csrno, 2973 target_ulong *val) 2974 { 2975 *val = env->mmte & MMTE_MASK; 2976 return RISCV_EXCP_NONE; 2977 } 2978 2979 static RISCVException write_mmte(CPURISCVState *env, int csrno, 2980 target_ulong val) 2981 { 2982 uint64_t mstatus; 2983 target_ulong wpri_val = val & MMTE_MASK; 2984 2985 if (val != wpri_val) { 2986 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 2987 "MMTE: WPRI violation written 0x", val, 2988 "vs expected 0x", wpri_val); 2989 } 2990 /* for machine mode pm.current is hardwired to 1 */ 2991 wpri_val |= MMTE_M_PM_CURRENT; 2992 2993 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 2994 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 2995 env->mmte = wpri_val | PM_EXT_DIRTY; 2996 riscv_cpu_update_mask(env); 2997 2998 /* Set XS and SD bits, since PM CSRs are dirty */ 2999 mstatus = env->mstatus | MSTATUS_XS; 3000 write_mstatus(env, csrno, mstatus); 3001 return RISCV_EXCP_NONE; 3002 } 3003 3004 static RISCVException read_smte(CPURISCVState *env, int csrno, 3005 target_ulong *val) 3006 { 3007 *val = env->mmte & SMTE_MASK; 3008 return RISCV_EXCP_NONE; 3009 } 3010 3011 static RISCVException write_smte(CPURISCVState *env, int csrno, 3012 target_ulong val) 3013 { 3014 target_ulong wpri_val = val & SMTE_MASK; 3015 3016 if (val != wpri_val) { 3017 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3018 "SMTE: WPRI violation written 0x", val, 3019 "vs expected 0x", wpri_val); 3020 } 3021 3022 /* if pm.current==0 we can't modify current PM CSRs */ 3023 if (check_pm_current_disabled(env, csrno)) { 3024 return RISCV_EXCP_NONE; 3025 } 3026 3027 wpri_val |= (env->mmte & ~SMTE_MASK); 3028 write_mmte(env, csrno, wpri_val); 3029 return RISCV_EXCP_NONE; 3030 } 3031 3032 static RISCVException read_umte(CPURISCVState *env, int csrno, 3033 target_ulong *val) 3034 { 3035 *val = env->mmte & UMTE_MASK; 3036 return RISCV_EXCP_NONE; 3037 } 3038 3039 static RISCVException write_umte(CPURISCVState *env, int csrno, 3040 target_ulong val) 3041 { 3042 target_ulong wpri_val = val & UMTE_MASK; 3043 3044 if (val != wpri_val) { 3045 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3046 "UMTE: WPRI violation written 0x", val, 3047 "vs expected 0x", wpri_val); 3048 } 3049 3050 if (check_pm_current_disabled(env, csrno)) { 3051 return RISCV_EXCP_NONE; 3052 } 3053 3054 wpri_val |= (env->mmte & ~UMTE_MASK); 3055 write_mmte(env, csrno, wpri_val); 3056 return RISCV_EXCP_NONE; 3057 } 3058 3059 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3060 target_ulong *val) 3061 { 3062 *val = env->mpmmask; 3063 return RISCV_EXCP_NONE; 3064 } 3065 3066 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3067 target_ulong val) 3068 { 3069 uint64_t mstatus; 3070 3071 env->mpmmask = val; 3072 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3073 env->cur_pmmask = val; 3074 } 3075 env->mmte |= PM_EXT_DIRTY; 3076 3077 /* Set XS and SD bits, since PM CSRs are dirty */ 3078 mstatus = env->mstatus | MSTATUS_XS; 3079 write_mstatus(env, csrno, mstatus); 3080 return RISCV_EXCP_NONE; 3081 } 3082 3083 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3084 target_ulong *val) 3085 { 3086 *val = env->spmmask; 3087 return RISCV_EXCP_NONE; 3088 } 3089 3090 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3091 target_ulong val) 3092 { 3093 uint64_t mstatus; 3094 3095 /* if pm.current==0 we can't modify current PM CSRs */ 3096 if (check_pm_current_disabled(env, csrno)) { 3097 return RISCV_EXCP_NONE; 3098 } 3099 env->spmmask = val; 3100 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3101 env->cur_pmmask = val; 3102 } 3103 env->mmte |= PM_EXT_DIRTY; 3104 3105 /* Set XS and SD bits, since PM CSRs are dirty */ 3106 mstatus = env->mstatus | MSTATUS_XS; 3107 write_mstatus(env, csrno, mstatus); 3108 return RISCV_EXCP_NONE; 3109 } 3110 3111 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3112 target_ulong *val) 3113 { 3114 *val = env->upmmask; 3115 return RISCV_EXCP_NONE; 3116 } 3117 3118 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3119 target_ulong val) 3120 { 3121 uint64_t mstatus; 3122 3123 /* if pm.current==0 we can't modify current PM CSRs */ 3124 if (check_pm_current_disabled(env, csrno)) { 3125 return RISCV_EXCP_NONE; 3126 } 3127 env->upmmask = val; 3128 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3129 env->cur_pmmask = val; 3130 } 3131 env->mmte |= PM_EXT_DIRTY; 3132 3133 /* Set XS and SD bits, since PM CSRs are dirty */ 3134 mstatus = env->mstatus | MSTATUS_XS; 3135 write_mstatus(env, csrno, mstatus); 3136 return RISCV_EXCP_NONE; 3137 } 3138 3139 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3140 target_ulong *val) 3141 { 3142 *val = env->mpmbase; 3143 return RISCV_EXCP_NONE; 3144 } 3145 3146 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3147 target_ulong val) 3148 { 3149 uint64_t mstatus; 3150 3151 env->mpmbase = val; 3152 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3153 env->cur_pmbase = val; 3154 } 3155 env->mmte |= PM_EXT_DIRTY; 3156 3157 /* Set XS and SD bits, since PM CSRs are dirty */ 3158 mstatus = env->mstatus | MSTATUS_XS; 3159 write_mstatus(env, csrno, mstatus); 3160 return RISCV_EXCP_NONE; 3161 } 3162 3163 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3164 target_ulong *val) 3165 { 3166 *val = env->spmbase; 3167 return RISCV_EXCP_NONE; 3168 } 3169 3170 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3171 target_ulong val) 3172 { 3173 uint64_t mstatus; 3174 3175 /* if pm.current==0 we can't modify current PM CSRs */ 3176 if (check_pm_current_disabled(env, csrno)) { 3177 return RISCV_EXCP_NONE; 3178 } 3179 env->spmbase = val; 3180 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3181 env->cur_pmbase = val; 3182 } 3183 env->mmte |= PM_EXT_DIRTY; 3184 3185 /* Set XS and SD bits, since PM CSRs are dirty */ 3186 mstatus = env->mstatus | MSTATUS_XS; 3187 write_mstatus(env, csrno, mstatus); 3188 return RISCV_EXCP_NONE; 3189 } 3190 3191 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3192 target_ulong *val) 3193 { 3194 *val = env->upmbase; 3195 return RISCV_EXCP_NONE; 3196 } 3197 3198 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3199 target_ulong val) 3200 { 3201 uint64_t mstatus; 3202 3203 /* if pm.current==0 we can't modify current PM CSRs */ 3204 if (check_pm_current_disabled(env, csrno)) { 3205 return RISCV_EXCP_NONE; 3206 } 3207 env->upmbase = val; 3208 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3209 env->cur_pmbase = val; 3210 } 3211 env->mmte |= PM_EXT_DIRTY; 3212 3213 /* Set XS and SD bits, since PM CSRs are dirty */ 3214 mstatus = env->mstatus | MSTATUS_XS; 3215 write_mstatus(env, csrno, mstatus); 3216 return RISCV_EXCP_NONE; 3217 } 3218 3219 #endif 3220 3221 /* Crypto Extension */ 3222 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3223 target_ulong *ret_value, 3224 target_ulong new_value, 3225 target_ulong write_mask) 3226 { 3227 uint16_t random_v; 3228 Error *random_e = NULL; 3229 int random_r; 3230 target_ulong rval; 3231 3232 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3233 if (unlikely(random_r < 0)) { 3234 /* 3235 * Failed, for unknown reasons in the crypto subsystem. 3236 * The best we can do is log the reason and return a 3237 * failure indication to the guest. There is no reason 3238 * we know to expect the failure to be transitory, so 3239 * indicate DEAD to avoid having the guest spin on WAIT. 3240 */ 3241 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3242 __func__, error_get_pretty(random_e)); 3243 error_free(random_e); 3244 rval = SEED_OPST_DEAD; 3245 } else { 3246 rval = random_v | SEED_OPST_ES16; 3247 } 3248 3249 if (ret_value) { 3250 *ret_value = rval; 3251 } 3252 3253 return RISCV_EXCP_NONE; 3254 } 3255 3256 /* 3257 * riscv_csrrw - read and/or update control and status register 3258 * 3259 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3260 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3261 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3262 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3263 */ 3264 3265 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3266 int csrno, 3267 bool write_mask, 3268 RISCVCPU *cpu) 3269 { 3270 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3271 int read_only = get_field(csrno, 0xC00) == 3; 3272 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3273 3274 /* ensure the CSR extension is enabled. */ 3275 if (!cpu->cfg.ext_icsr) { 3276 return RISCV_EXCP_ILLEGAL_INST; 3277 } 3278 3279 if (env->priv_ver < csr_min_priv) { 3280 return RISCV_EXCP_ILLEGAL_INST; 3281 } 3282 3283 /* check predicate */ 3284 if (!csr_ops[csrno].predicate) { 3285 return RISCV_EXCP_ILLEGAL_INST; 3286 } 3287 3288 if (write_mask && read_only) { 3289 return RISCV_EXCP_ILLEGAL_INST; 3290 } 3291 3292 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3293 if (ret != RISCV_EXCP_NONE) { 3294 return ret; 3295 } 3296 3297 #if !defined(CONFIG_USER_ONLY) 3298 int csr_priv, effective_priv = env->priv; 3299 3300 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3301 !riscv_cpu_virt_enabled(env)) { 3302 /* 3303 * We are in HS mode. Add 1 to the effective privledge level to 3304 * allow us to access the Hypervisor CSRs. 3305 */ 3306 effective_priv++; 3307 } 3308 3309 csr_priv = get_field(csrno, 0x300); 3310 if (!env->debugger && (effective_priv < csr_priv)) { 3311 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3312 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3313 } 3314 return RISCV_EXCP_ILLEGAL_INST; 3315 } 3316 #endif 3317 return RISCV_EXCP_NONE; 3318 } 3319 3320 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3321 target_ulong *ret_value, 3322 target_ulong new_value, 3323 target_ulong write_mask) 3324 { 3325 RISCVException ret; 3326 target_ulong old_value; 3327 3328 /* execute combined read/write operation if it exists */ 3329 if (csr_ops[csrno].op) { 3330 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3331 } 3332 3333 /* if no accessor exists then return failure */ 3334 if (!csr_ops[csrno].read) { 3335 return RISCV_EXCP_ILLEGAL_INST; 3336 } 3337 /* read old value */ 3338 ret = csr_ops[csrno].read(env, csrno, &old_value); 3339 if (ret != RISCV_EXCP_NONE) { 3340 return ret; 3341 } 3342 3343 /* write value if writable and write mask set, otherwise drop writes */ 3344 if (write_mask) { 3345 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3346 if (csr_ops[csrno].write) { 3347 ret = csr_ops[csrno].write(env, csrno, new_value); 3348 if (ret != RISCV_EXCP_NONE) { 3349 return ret; 3350 } 3351 } 3352 } 3353 3354 /* return old value */ 3355 if (ret_value) { 3356 *ret_value = old_value; 3357 } 3358 3359 return RISCV_EXCP_NONE; 3360 } 3361 3362 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3363 target_ulong *ret_value, 3364 target_ulong new_value, target_ulong write_mask) 3365 { 3366 RISCVCPU *cpu = env_archcpu(env); 3367 3368 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3369 if (ret != RISCV_EXCP_NONE) { 3370 return ret; 3371 } 3372 3373 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3374 } 3375 3376 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3377 Int128 *ret_value, 3378 Int128 new_value, 3379 Int128 write_mask) 3380 { 3381 RISCVException ret; 3382 Int128 old_value; 3383 3384 /* read old value */ 3385 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3386 if (ret != RISCV_EXCP_NONE) { 3387 return ret; 3388 } 3389 3390 /* write value if writable and write mask set, otherwise drop writes */ 3391 if (int128_nz(write_mask)) { 3392 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3393 int128_and(new_value, write_mask)); 3394 if (csr_ops[csrno].write128) { 3395 ret = csr_ops[csrno].write128(env, csrno, new_value); 3396 if (ret != RISCV_EXCP_NONE) { 3397 return ret; 3398 } 3399 } else if (csr_ops[csrno].write) { 3400 /* avoids having to write wrappers for all registers */ 3401 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3402 if (ret != RISCV_EXCP_NONE) { 3403 return ret; 3404 } 3405 } 3406 } 3407 3408 /* return old value */ 3409 if (ret_value) { 3410 *ret_value = old_value; 3411 } 3412 3413 return RISCV_EXCP_NONE; 3414 } 3415 3416 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3417 Int128 *ret_value, 3418 Int128 new_value, Int128 write_mask) 3419 { 3420 RISCVException ret; 3421 RISCVCPU *cpu = env_archcpu(env); 3422 3423 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3424 if (ret != RISCV_EXCP_NONE) { 3425 return ret; 3426 } 3427 3428 if (csr_ops[csrno].read128) { 3429 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3430 } 3431 3432 /* 3433 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3434 * at all defined. 3435 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3436 * significant), for those, this fallback is correctly handling the accesses 3437 */ 3438 target_ulong old_value; 3439 ret = riscv_csrrw_do64(env, csrno, &old_value, 3440 int128_getlo(new_value), 3441 int128_getlo(write_mask)); 3442 if (ret == RISCV_EXCP_NONE && ret_value) { 3443 *ret_value = int128_make64(old_value); 3444 } 3445 return ret; 3446 } 3447 3448 /* 3449 * Debugger support. If not in user mode, set env->debugger before the 3450 * riscv_csrrw call and clear it after the call. 3451 */ 3452 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3453 target_ulong *ret_value, 3454 target_ulong new_value, 3455 target_ulong write_mask) 3456 { 3457 RISCVException ret; 3458 #if !defined(CONFIG_USER_ONLY) 3459 env->debugger = true; 3460 #endif 3461 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3462 #if !defined(CONFIG_USER_ONLY) 3463 env->debugger = false; 3464 #endif 3465 return ret; 3466 } 3467 3468 /* Control and Status Register function table */ 3469 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3470 /* User Floating-Point CSRs */ 3471 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3472 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3473 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3474 /* Vector CSRs */ 3475 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart, 3476 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3477 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat, 3478 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3479 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm, 3480 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3481 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr, 3482 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3483 [CSR_VL] = { "vl", vs, read_vl, 3484 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3485 [CSR_VTYPE] = { "vtype", vs, read_vtype, 3486 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3487 [CSR_VLENB] = { "vlenb", vs, read_vlenb, 3488 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3489 /* User Timers and Counters */ 3490 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 3491 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 3492 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 3493 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 3494 3495 /* 3496 * In privileged mode, the monitor will have to emulate TIME CSRs only if 3497 * rdtime callback is not provided by machine/platform emulation. 3498 */ 3499 [CSR_TIME] = { "time", ctr, read_time }, 3500 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 3501 3502 /* Crypto Extension */ 3503 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 3504 3505 #if !defined(CONFIG_USER_ONLY) 3506 /* Machine Timers and Counters */ 3507 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 3508 write_mhpmcounter }, 3509 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 3510 write_mhpmcounter }, 3511 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 3512 write_mhpmcounterh }, 3513 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 3514 write_mhpmcounterh }, 3515 3516 /* Machine Information Registers */ 3517 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 3518 [CSR_MARCHID] = { "marchid", any, read_marchid }, 3519 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 3520 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 3521 3522 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 3523 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3524 /* Machine Trap Setup */ 3525 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 3526 NULL, read_mstatus_i128 }, 3527 [CSR_MISA] = { "misa", any, read_misa, write_misa, 3528 NULL, read_misa_i128 }, 3529 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 3530 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 3531 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 3532 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 3533 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 3534 write_mcounteren }, 3535 3536 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 3537 write_mstatush }, 3538 3539 /* Machine Trap Handling */ 3540 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 3541 NULL, read_mscratch_i128, write_mscratch_i128 }, 3542 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 3543 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 3544 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 3545 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 3546 3547 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 3548 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 3549 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 3550 3551 /* Machine-Level Interrupts (AIA) */ 3552 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 3553 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 3554 3555 /* Virtual Interrupts for Supervisor Level (AIA) */ 3556 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 3557 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 3558 3559 /* Machine-Level High-Half CSRs (AIA) */ 3560 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 3561 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 3562 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 3563 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 3564 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 3565 3566 /* Execution environment configuration */ 3567 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 3568 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3569 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 3570 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3571 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 3572 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3573 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 3574 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3575 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 3576 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3577 3578 /* Supervisor Trap Setup */ 3579 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 3580 NULL, read_sstatus_i128 }, 3581 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 3582 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 3583 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 3584 write_scounteren }, 3585 3586 /* Supervisor Trap Handling */ 3587 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 3588 NULL, read_sscratch_i128, write_sscratch_i128 }, 3589 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 3590 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 3591 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 3592 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 3593 3594 /* Supervisor Protection and Translation */ 3595 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 3596 3597 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 3598 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 3599 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 3600 3601 /* Supervisor-Level Interrupts (AIA) */ 3602 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 3603 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 3604 3605 /* Supervisor-Level High-Half CSRs (AIA) */ 3606 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 3607 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 3608 3609 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 3610 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3611 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 3612 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3613 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 3614 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3615 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 3616 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3617 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 3618 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3619 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 3620 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3621 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 3622 write_hcounteren, 3623 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3624 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 3625 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3626 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 3627 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3628 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 3629 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3630 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 3631 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3632 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 3633 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3634 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 3635 write_htimedelta, 3636 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3637 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 3638 write_htimedeltah, 3639 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3640 3641 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 3642 write_vsstatus, 3643 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3644 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 3645 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3646 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 3647 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3648 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 3649 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3650 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 3651 write_vsscratch, 3652 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3653 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 3654 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3655 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 3656 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3657 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 3658 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3659 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 3660 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3661 3662 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 3663 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3664 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 3665 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3666 3667 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 3668 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 3669 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 3670 write_hvictl }, 3671 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 3672 write_hviprio1 }, 3673 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 3674 write_hviprio2 }, 3675 3676 /* 3677 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 3678 */ 3679 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 3680 rmw_xiselect }, 3681 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 3682 3683 /* VS-Level Interrupts (H-extension with AIA) */ 3684 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 3685 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 3686 3687 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 3688 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 3689 rmw_hidelegh }, 3690 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 3691 write_ignore }, 3692 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 3693 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 3694 write_hviprio1h }, 3695 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 3696 write_hviprio2h }, 3697 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 3698 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 3699 3700 /* Physical Memory Protection */ 3701 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 3702 .min_priv_ver = PRIV_VERSION_1_11_0 }, 3703 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 3704 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 3705 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 3706 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 3707 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 3708 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 3709 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 3710 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 3711 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 3712 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 3713 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 3714 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 3715 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 3716 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 3717 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 3718 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 3719 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 3720 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 3721 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 3722 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 3723 3724 /* Debug CSRs */ 3725 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 3726 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 3727 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 3728 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 3729 3730 /* User Pointer Masking */ 3731 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 3732 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 3733 write_upmmask }, 3734 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 3735 write_upmbase }, 3736 /* Machine Pointer Masking */ 3737 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 3738 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 3739 write_mpmmask }, 3740 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 3741 write_mpmbase }, 3742 /* Supervisor Pointer Masking */ 3743 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 3744 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 3745 write_spmmask }, 3746 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 3747 write_spmbase }, 3748 3749 /* Performance Counters */ 3750 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 3751 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 3752 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 3753 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 3754 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 3755 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 3756 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 3757 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 3758 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 3759 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 3760 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 3761 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 3762 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 3763 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 3764 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 3765 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 3766 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 3767 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 3768 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 3769 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 3770 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 3771 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 3772 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 3773 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 3774 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 3775 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 3776 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 3777 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 3778 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 3779 3780 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 3781 write_mhpmcounter }, 3782 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 3783 write_mhpmcounter }, 3784 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 3785 write_mhpmcounter }, 3786 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 3787 write_mhpmcounter }, 3788 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 3789 write_mhpmcounter }, 3790 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 3791 write_mhpmcounter }, 3792 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 3793 write_mhpmcounter }, 3794 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 3795 write_mhpmcounter }, 3796 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 3797 write_mhpmcounter }, 3798 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 3799 write_mhpmcounter }, 3800 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 3801 write_mhpmcounter }, 3802 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 3803 write_mhpmcounter }, 3804 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 3805 write_mhpmcounter }, 3806 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 3807 write_mhpmcounter }, 3808 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 3809 write_mhpmcounter }, 3810 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 3811 write_mhpmcounter }, 3812 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 3813 write_mhpmcounter }, 3814 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 3815 write_mhpmcounter }, 3816 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 3817 write_mhpmcounter }, 3818 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 3819 write_mhpmcounter }, 3820 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 3821 write_mhpmcounter }, 3822 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 3823 write_mhpmcounter }, 3824 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 3825 write_mhpmcounter }, 3826 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 3827 write_mhpmcounter }, 3828 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 3829 write_mhpmcounter }, 3830 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 3831 write_mhpmcounter }, 3832 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 3833 write_mhpmcounter }, 3834 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 3835 write_mhpmcounter }, 3836 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 3837 write_mhpmcounter }, 3838 3839 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 3840 write_mcountinhibit, 3841 .min_priv_ver = PRIV_VERSION_1_11_0 }, 3842 3843 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 3844 write_mhpmevent }, 3845 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 3846 write_mhpmevent }, 3847 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 3848 write_mhpmevent }, 3849 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 3850 write_mhpmevent }, 3851 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 3852 write_mhpmevent }, 3853 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 3854 write_mhpmevent }, 3855 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 3856 write_mhpmevent }, 3857 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 3858 write_mhpmevent }, 3859 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 3860 write_mhpmevent }, 3861 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 3862 write_mhpmevent }, 3863 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 3864 write_mhpmevent }, 3865 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 3866 write_mhpmevent }, 3867 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 3868 write_mhpmevent }, 3869 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 3870 write_mhpmevent }, 3871 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 3872 write_mhpmevent }, 3873 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 3874 write_mhpmevent }, 3875 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 3876 write_mhpmevent }, 3877 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 3878 write_mhpmevent }, 3879 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 3880 write_mhpmevent }, 3881 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 3882 write_mhpmevent }, 3883 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 3884 write_mhpmevent }, 3885 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 3886 write_mhpmevent }, 3887 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 3888 write_mhpmevent }, 3889 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 3890 write_mhpmevent }, 3891 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 3892 write_mhpmevent }, 3893 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 3894 write_mhpmevent }, 3895 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 3896 write_mhpmevent }, 3897 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 3898 write_mhpmevent }, 3899 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 3900 write_mhpmevent }, 3901 3902 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 3903 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 3904 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 3905 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 3906 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 3907 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 3908 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 3909 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 3910 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 3911 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 3912 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 3913 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 3914 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 3915 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 3916 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 3917 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 3918 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 3919 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 3920 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 3921 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 3922 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 3923 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 3924 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 3925 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 3926 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 3927 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 3928 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 3929 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 3930 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 3931 3932 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 3933 write_mhpmcounterh }, 3934 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 3935 write_mhpmcounterh }, 3936 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 3937 write_mhpmcounterh }, 3938 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 3939 write_mhpmcounterh }, 3940 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 3941 write_mhpmcounterh }, 3942 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 3943 write_mhpmcounterh }, 3944 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 3945 write_mhpmcounterh }, 3946 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 3947 write_mhpmcounterh }, 3948 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 3949 write_mhpmcounterh }, 3950 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 3951 write_mhpmcounterh }, 3952 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 3953 write_mhpmcounterh }, 3954 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 3955 write_mhpmcounterh }, 3956 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 3957 write_mhpmcounterh }, 3958 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 3959 write_mhpmcounterh }, 3960 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 3961 write_mhpmcounterh }, 3962 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 3963 write_mhpmcounterh }, 3964 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 3965 write_mhpmcounterh }, 3966 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 3967 write_mhpmcounterh }, 3968 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 3969 write_mhpmcounterh }, 3970 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 3971 write_mhpmcounterh }, 3972 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 3973 write_mhpmcounterh }, 3974 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 3975 write_mhpmcounterh }, 3976 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 3977 write_mhpmcounterh }, 3978 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 3979 write_mhpmcounterh }, 3980 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 3981 write_mhpmcounterh }, 3982 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 3983 write_mhpmcounterh }, 3984 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 3985 write_mhpmcounterh }, 3986 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 3987 write_mhpmcounterh }, 3988 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 3989 write_mhpmcounterh }, 3990 #endif /* !CONFIG_USER_ONLY */ 3991 }; 3992