1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "tcg/tcg-cpu.h" 25 #include "pmu.h" 26 #include "time_helper.h" 27 #include "exec/exec-all.h" 28 #include "exec/tb-flush.h" 29 #include "sysemu/cpu-timers.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 33 /* CSR function table public API */ 34 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 35 { 36 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 37 } 38 39 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 40 { 41 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 42 } 43 44 /* Predicates */ 45 #if !defined(CONFIG_USER_ONLY) 46 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) 47 { 48 bool virt = env->virt_enabled; 49 50 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 51 return RISCV_EXCP_NONE; 52 } 53 54 if (!(env->mstateen[index] & bit)) { 55 return RISCV_EXCP_ILLEGAL_INST; 56 } 57 58 if (virt) { 59 if (!(env->hstateen[index] & bit)) { 60 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 61 } 62 63 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 64 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 65 } 66 } 67 68 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 69 if (!(env->sstateen[index] & bit)) { 70 return RISCV_EXCP_ILLEGAL_INST; 71 } 72 } 73 74 return RISCV_EXCP_NONE; 75 } 76 #endif 77 78 static RISCVException fs(CPURISCVState *env, int csrno) 79 { 80 #if !defined(CONFIG_USER_ONLY) 81 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 82 !riscv_cpu_cfg(env)->ext_zfinx) { 83 return RISCV_EXCP_ILLEGAL_INST; 84 } 85 86 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 87 return smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR); 88 } 89 #endif 90 return RISCV_EXCP_NONE; 91 } 92 93 static RISCVException vs(CPURISCVState *env, int csrno) 94 { 95 if (riscv_cpu_cfg(env)->ext_zve32x) { 96 #if !defined(CONFIG_USER_ONLY) 97 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 98 return RISCV_EXCP_ILLEGAL_INST; 99 } 100 #endif 101 return RISCV_EXCP_NONE; 102 } 103 return RISCV_EXCP_ILLEGAL_INST; 104 } 105 106 static RISCVException ctr(CPURISCVState *env, int csrno) 107 { 108 #if !defined(CONFIG_USER_ONLY) 109 RISCVCPU *cpu = env_archcpu(env); 110 int ctr_index; 111 target_ulong ctr_mask; 112 int base_csrno = CSR_CYCLE; 113 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 114 115 if (rv32 && csrno >= CSR_CYCLEH) { 116 /* Offset for RV32 hpmcounternh counters */ 117 base_csrno += 0x80; 118 } 119 ctr_index = csrno - base_csrno; 120 ctr_mask = BIT(ctr_index); 121 122 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 123 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 124 if (!riscv_cpu_cfg(env)->ext_zicntr) { 125 return RISCV_EXCP_ILLEGAL_INST; 126 } 127 128 goto skip_ext_pmu_check; 129 } 130 131 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 132 /* No counter is enabled in PMU or the counter is out of range */ 133 return RISCV_EXCP_ILLEGAL_INST; 134 } 135 136 skip_ext_pmu_check: 137 138 if (env->debugger) { 139 return RISCV_EXCP_NONE; 140 } 141 142 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 143 return RISCV_EXCP_ILLEGAL_INST; 144 } 145 146 if (env->virt_enabled) { 147 if (!get_field(env->hcounteren, ctr_mask) || 148 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 149 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 150 } 151 } 152 153 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 154 !get_field(env->scounteren, ctr_mask)) { 155 return RISCV_EXCP_ILLEGAL_INST; 156 } 157 158 #endif 159 return RISCV_EXCP_NONE; 160 } 161 162 static RISCVException ctr32(CPURISCVState *env, int csrno) 163 { 164 if (riscv_cpu_mxl(env) != MXL_RV32) { 165 return RISCV_EXCP_ILLEGAL_INST; 166 } 167 168 return ctr(env, csrno); 169 } 170 171 static RISCVException zcmt(CPURISCVState *env, int csrno) 172 { 173 if (!riscv_cpu_cfg(env)->ext_zcmt) { 174 return RISCV_EXCP_ILLEGAL_INST; 175 } 176 177 #if !defined(CONFIG_USER_ONLY) 178 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); 179 if (ret != RISCV_EXCP_NONE) { 180 return ret; 181 } 182 #endif 183 184 return RISCV_EXCP_NONE; 185 } 186 187 #if !defined(CONFIG_USER_ONLY) 188 static RISCVException mctr(CPURISCVState *env, int csrno) 189 { 190 RISCVCPU *cpu = env_archcpu(env); 191 uint32_t pmu_avail_ctrs = cpu->pmu_avail_ctrs; 192 int ctr_index; 193 int base_csrno = CSR_MHPMCOUNTER3; 194 195 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 196 /* Offset for RV32 mhpmcounternh counters */ 197 csrno -= 0x80; 198 } 199 200 g_assert(csrno >= CSR_MHPMCOUNTER3 && csrno <= CSR_MHPMCOUNTER31); 201 202 ctr_index = csrno - base_csrno; 203 if ((BIT(ctr_index) & pmu_avail_ctrs >> 3) == 0) { 204 /* The PMU is not enabled or counter is out of range */ 205 return RISCV_EXCP_ILLEGAL_INST; 206 } 207 208 return RISCV_EXCP_NONE; 209 } 210 211 static RISCVException mctr32(CPURISCVState *env, int csrno) 212 { 213 if (riscv_cpu_mxl(env) != MXL_RV32) { 214 return RISCV_EXCP_ILLEGAL_INST; 215 } 216 217 return mctr(env, csrno); 218 } 219 220 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 221 { 222 if (!riscv_cpu_cfg(env)->ext_sscofpmf) { 223 return RISCV_EXCP_ILLEGAL_INST; 224 } 225 226 return RISCV_EXCP_NONE; 227 } 228 229 static RISCVException sscofpmf_32(CPURISCVState *env, int csrno) 230 { 231 if (riscv_cpu_mxl(env) != MXL_RV32) { 232 return RISCV_EXCP_ILLEGAL_INST; 233 } 234 235 return sscofpmf(env, csrno); 236 } 237 238 static RISCVException smcntrpmf(CPURISCVState *env, int csrno) 239 { 240 if (!riscv_cpu_cfg(env)->ext_smcntrpmf) { 241 return RISCV_EXCP_ILLEGAL_INST; 242 } 243 244 return RISCV_EXCP_NONE; 245 } 246 247 static RISCVException smcntrpmf_32(CPURISCVState *env, int csrno) 248 { 249 if (riscv_cpu_mxl(env) != MXL_RV32) { 250 return RISCV_EXCP_ILLEGAL_INST; 251 } 252 253 return smcntrpmf(env, csrno); 254 } 255 256 static RISCVException any(CPURISCVState *env, int csrno) 257 { 258 return RISCV_EXCP_NONE; 259 } 260 261 static RISCVException any32(CPURISCVState *env, int csrno) 262 { 263 if (riscv_cpu_mxl(env) != MXL_RV32) { 264 return RISCV_EXCP_ILLEGAL_INST; 265 } 266 267 return any(env, csrno); 268 269 } 270 271 static RISCVException aia_any(CPURISCVState *env, int csrno) 272 { 273 if (!riscv_cpu_cfg(env)->ext_smaia) { 274 return RISCV_EXCP_ILLEGAL_INST; 275 } 276 277 return any(env, csrno); 278 } 279 280 static RISCVException aia_any32(CPURISCVState *env, int csrno) 281 { 282 if (!riscv_cpu_cfg(env)->ext_smaia) { 283 return RISCV_EXCP_ILLEGAL_INST; 284 } 285 286 return any32(env, csrno); 287 } 288 289 static RISCVException smode(CPURISCVState *env, int csrno) 290 { 291 if (riscv_has_ext(env, RVS)) { 292 return RISCV_EXCP_NONE; 293 } 294 295 return RISCV_EXCP_ILLEGAL_INST; 296 } 297 298 static RISCVException smode32(CPURISCVState *env, int csrno) 299 { 300 if (riscv_cpu_mxl(env) != MXL_RV32) { 301 return RISCV_EXCP_ILLEGAL_INST; 302 } 303 304 return smode(env, csrno); 305 } 306 307 static RISCVException aia_smode(CPURISCVState *env, int csrno) 308 { 309 if (!riscv_cpu_cfg(env)->ext_ssaia) { 310 return RISCV_EXCP_ILLEGAL_INST; 311 } 312 313 return smode(env, csrno); 314 } 315 316 static RISCVException aia_smode32(CPURISCVState *env, int csrno) 317 { 318 if (!riscv_cpu_cfg(env)->ext_ssaia) { 319 return RISCV_EXCP_ILLEGAL_INST; 320 } 321 322 return smode32(env, csrno); 323 } 324 325 static RISCVException hmode(CPURISCVState *env, int csrno) 326 { 327 if (riscv_has_ext(env, RVH)) { 328 return RISCV_EXCP_NONE; 329 } 330 331 return RISCV_EXCP_ILLEGAL_INST; 332 } 333 334 static RISCVException hmode32(CPURISCVState *env, int csrno) 335 { 336 if (riscv_cpu_mxl(env) != MXL_RV32) { 337 return RISCV_EXCP_ILLEGAL_INST; 338 } 339 340 return hmode(env, csrno); 341 342 } 343 344 static RISCVException umode(CPURISCVState *env, int csrno) 345 { 346 if (riscv_has_ext(env, RVU)) { 347 return RISCV_EXCP_NONE; 348 } 349 350 return RISCV_EXCP_ILLEGAL_INST; 351 } 352 353 static RISCVException umode32(CPURISCVState *env, int csrno) 354 { 355 if (riscv_cpu_mxl(env) != MXL_RV32) { 356 return RISCV_EXCP_ILLEGAL_INST; 357 } 358 359 return umode(env, csrno); 360 } 361 362 static RISCVException mstateen(CPURISCVState *env, int csrno) 363 { 364 if (!riscv_cpu_cfg(env)->ext_smstateen) { 365 return RISCV_EXCP_ILLEGAL_INST; 366 } 367 368 return any(env, csrno); 369 } 370 371 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 372 { 373 if (!riscv_cpu_cfg(env)->ext_smstateen) { 374 return RISCV_EXCP_ILLEGAL_INST; 375 } 376 377 RISCVException ret = hmode(env, csrno); 378 if (ret != RISCV_EXCP_NONE) { 379 return ret; 380 } 381 382 if (env->debugger) { 383 return RISCV_EXCP_NONE; 384 } 385 386 if (env->priv < PRV_M) { 387 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 388 return RISCV_EXCP_ILLEGAL_INST; 389 } 390 } 391 392 return RISCV_EXCP_NONE; 393 } 394 395 static RISCVException hstateen(CPURISCVState *env, int csrno) 396 { 397 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 398 } 399 400 static RISCVException hstateenh(CPURISCVState *env, int csrno) 401 { 402 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 403 } 404 405 static RISCVException sstateen(CPURISCVState *env, int csrno) 406 { 407 bool virt = env->virt_enabled; 408 int index = csrno - CSR_SSTATEEN0; 409 410 if (!riscv_cpu_cfg(env)->ext_smstateen) { 411 return RISCV_EXCP_ILLEGAL_INST; 412 } 413 414 RISCVException ret = smode(env, csrno); 415 if (ret != RISCV_EXCP_NONE) { 416 return ret; 417 } 418 419 if (env->debugger) { 420 return RISCV_EXCP_NONE; 421 } 422 423 if (env->priv < PRV_M) { 424 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 425 return RISCV_EXCP_ILLEGAL_INST; 426 } 427 428 if (virt) { 429 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 430 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 431 } 432 } 433 } 434 435 return RISCV_EXCP_NONE; 436 } 437 438 static RISCVException sstc(CPURISCVState *env, int csrno) 439 { 440 bool hmode_check = false; 441 442 if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { 443 return RISCV_EXCP_ILLEGAL_INST; 444 } 445 446 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 447 hmode_check = true; 448 } 449 450 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 451 if (ret != RISCV_EXCP_NONE) { 452 return ret; 453 } 454 455 if (env->debugger) { 456 return RISCV_EXCP_NONE; 457 } 458 459 if (env->priv == PRV_M) { 460 return RISCV_EXCP_NONE; 461 } 462 463 /* 464 * No need of separate function for rv32 as menvcfg stores both menvcfg 465 * menvcfgh for RV32. 466 */ 467 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 468 get_field(env->menvcfg, MENVCFG_STCE))) { 469 return RISCV_EXCP_ILLEGAL_INST; 470 } 471 472 if (env->virt_enabled) { 473 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 474 get_field(env->henvcfg, HENVCFG_STCE))) { 475 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 476 } 477 } 478 479 return RISCV_EXCP_NONE; 480 } 481 482 static RISCVException sstc_32(CPURISCVState *env, int csrno) 483 { 484 if (riscv_cpu_mxl(env) != MXL_RV32) { 485 return RISCV_EXCP_ILLEGAL_INST; 486 } 487 488 return sstc(env, csrno); 489 } 490 491 static RISCVException satp(CPURISCVState *env, int csrno) 492 { 493 if (env->priv == PRV_S && !env->virt_enabled && 494 get_field(env->mstatus, MSTATUS_TVM)) { 495 return RISCV_EXCP_ILLEGAL_INST; 496 } 497 if (env->priv == PRV_S && env->virt_enabled && 498 get_field(env->hstatus, HSTATUS_VTVM)) { 499 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 500 } 501 502 return smode(env, csrno); 503 } 504 505 static RISCVException hgatp(CPURISCVState *env, int csrno) 506 { 507 if (env->priv == PRV_S && !env->virt_enabled && 508 get_field(env->mstatus, MSTATUS_TVM)) { 509 return RISCV_EXCP_ILLEGAL_INST; 510 } 511 512 return hmode(env, csrno); 513 } 514 515 /* Checks if PointerMasking registers could be accessed */ 516 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 517 { 518 /* Check if j-ext is present */ 519 if (riscv_has_ext(env, RVJ)) { 520 return RISCV_EXCP_NONE; 521 } 522 return RISCV_EXCP_ILLEGAL_INST; 523 } 524 525 static RISCVException aia_hmode(CPURISCVState *env, int csrno) 526 { 527 if (!riscv_cpu_cfg(env)->ext_ssaia) { 528 return RISCV_EXCP_ILLEGAL_INST; 529 } 530 531 return hmode(env, csrno); 532 } 533 534 static RISCVException aia_hmode32(CPURISCVState *env, int csrno) 535 { 536 if (!riscv_cpu_cfg(env)->ext_ssaia) { 537 return RISCV_EXCP_ILLEGAL_INST; 538 } 539 540 return hmode32(env, csrno); 541 } 542 543 static RISCVException pmp(CPURISCVState *env, int csrno) 544 { 545 if (riscv_cpu_cfg(env)->pmp) { 546 if (csrno <= CSR_PMPCFG3) { 547 uint32_t reg_index = csrno - CSR_PMPCFG0; 548 549 /* TODO: RV128 restriction check */ 550 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 551 return RISCV_EXCP_ILLEGAL_INST; 552 } 553 } 554 555 return RISCV_EXCP_NONE; 556 } 557 558 return RISCV_EXCP_ILLEGAL_INST; 559 } 560 561 static RISCVException have_mseccfg(CPURISCVState *env, int csrno) 562 { 563 if (riscv_cpu_cfg(env)->ext_smepmp) { 564 return RISCV_EXCP_NONE; 565 } 566 if (riscv_cpu_cfg(env)->ext_zkr) { 567 return RISCV_EXCP_NONE; 568 } 569 570 return RISCV_EXCP_ILLEGAL_INST; 571 } 572 573 static RISCVException debug(CPURISCVState *env, int csrno) 574 { 575 if (riscv_cpu_cfg(env)->debug) { 576 return RISCV_EXCP_NONE; 577 } 578 579 return RISCV_EXCP_ILLEGAL_INST; 580 } 581 #endif 582 583 static RISCVException seed(CPURISCVState *env, int csrno) 584 { 585 if (!riscv_cpu_cfg(env)->ext_zkr) { 586 return RISCV_EXCP_ILLEGAL_INST; 587 } 588 589 #if !defined(CONFIG_USER_ONLY) 590 if (env->debugger) { 591 return RISCV_EXCP_NONE; 592 } 593 594 /* 595 * With a CSR read-write instruction: 596 * 1) The seed CSR is always available in machine mode as normal. 597 * 2) Attempted access to seed from virtual modes VS and VU always raises 598 * an exception(virtual instruction exception only if mseccfg.sseed=1). 599 * 3) Without the corresponding access control bit set to 1, any attempted 600 * access to seed from U, S or HS modes will raise an illegal instruction 601 * exception. 602 */ 603 if (env->priv == PRV_M) { 604 return RISCV_EXCP_NONE; 605 } else if (env->virt_enabled) { 606 if (env->mseccfg & MSECCFG_SSEED) { 607 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 608 } else { 609 return RISCV_EXCP_ILLEGAL_INST; 610 } 611 } else { 612 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 613 return RISCV_EXCP_NONE; 614 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 615 return RISCV_EXCP_NONE; 616 } else { 617 return RISCV_EXCP_ILLEGAL_INST; 618 } 619 } 620 #else 621 return RISCV_EXCP_NONE; 622 #endif 623 } 624 625 /* User Floating-Point CSRs */ 626 static RISCVException read_fflags(CPURISCVState *env, int csrno, 627 target_ulong *val) 628 { 629 *val = riscv_cpu_get_fflags(env); 630 return RISCV_EXCP_NONE; 631 } 632 633 static RISCVException write_fflags(CPURISCVState *env, int csrno, 634 target_ulong val) 635 { 636 #if !defined(CONFIG_USER_ONLY) 637 if (riscv_has_ext(env, RVF)) { 638 env->mstatus |= MSTATUS_FS; 639 } 640 #endif 641 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 642 return RISCV_EXCP_NONE; 643 } 644 645 static RISCVException read_frm(CPURISCVState *env, int csrno, 646 target_ulong *val) 647 { 648 *val = env->frm; 649 return RISCV_EXCP_NONE; 650 } 651 652 static RISCVException write_frm(CPURISCVState *env, int csrno, 653 target_ulong val) 654 { 655 #if !defined(CONFIG_USER_ONLY) 656 if (riscv_has_ext(env, RVF)) { 657 env->mstatus |= MSTATUS_FS; 658 } 659 #endif 660 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 661 return RISCV_EXCP_NONE; 662 } 663 664 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 665 target_ulong *val) 666 { 667 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 668 | (env->frm << FSR_RD_SHIFT); 669 return RISCV_EXCP_NONE; 670 } 671 672 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 673 target_ulong val) 674 { 675 #if !defined(CONFIG_USER_ONLY) 676 if (riscv_has_ext(env, RVF)) { 677 env->mstatus |= MSTATUS_FS; 678 } 679 #endif 680 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 681 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 682 return RISCV_EXCP_NONE; 683 } 684 685 static RISCVException read_vtype(CPURISCVState *env, int csrno, 686 target_ulong *val) 687 { 688 uint64_t vill; 689 switch (env->xl) { 690 case MXL_RV32: 691 vill = (uint32_t)env->vill << 31; 692 break; 693 case MXL_RV64: 694 vill = (uint64_t)env->vill << 63; 695 break; 696 default: 697 g_assert_not_reached(); 698 } 699 *val = (target_ulong)vill | env->vtype; 700 return RISCV_EXCP_NONE; 701 } 702 703 static RISCVException read_vl(CPURISCVState *env, int csrno, 704 target_ulong *val) 705 { 706 *val = env->vl; 707 return RISCV_EXCP_NONE; 708 } 709 710 static RISCVException read_vlenb(CPURISCVState *env, int csrno, 711 target_ulong *val) 712 { 713 *val = riscv_cpu_cfg(env)->vlenb; 714 return RISCV_EXCP_NONE; 715 } 716 717 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 718 target_ulong *val) 719 { 720 *val = env->vxrm; 721 return RISCV_EXCP_NONE; 722 } 723 724 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 725 target_ulong val) 726 { 727 #if !defined(CONFIG_USER_ONLY) 728 env->mstatus |= MSTATUS_VS; 729 #endif 730 env->vxrm = val; 731 return RISCV_EXCP_NONE; 732 } 733 734 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 735 target_ulong *val) 736 { 737 *val = env->vxsat; 738 return RISCV_EXCP_NONE; 739 } 740 741 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 742 target_ulong val) 743 { 744 #if !defined(CONFIG_USER_ONLY) 745 env->mstatus |= MSTATUS_VS; 746 #endif 747 env->vxsat = val; 748 return RISCV_EXCP_NONE; 749 } 750 751 static RISCVException read_vstart(CPURISCVState *env, int csrno, 752 target_ulong *val) 753 { 754 *val = env->vstart; 755 return RISCV_EXCP_NONE; 756 } 757 758 static RISCVException write_vstart(CPURISCVState *env, int csrno, 759 target_ulong val) 760 { 761 #if !defined(CONFIG_USER_ONLY) 762 env->mstatus |= MSTATUS_VS; 763 #endif 764 /* 765 * The vstart CSR is defined to have only enough writable bits 766 * to hold the largest element index, i.e. lg2(VLEN) bits. 767 */ 768 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlenb << 3)); 769 return RISCV_EXCP_NONE; 770 } 771 772 static RISCVException read_vcsr(CPURISCVState *env, int csrno, 773 target_ulong *val) 774 { 775 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 776 return RISCV_EXCP_NONE; 777 } 778 779 static RISCVException write_vcsr(CPURISCVState *env, int csrno, 780 target_ulong val) 781 { 782 #if !defined(CONFIG_USER_ONLY) 783 env->mstatus |= MSTATUS_VS; 784 #endif 785 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 786 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 787 return RISCV_EXCP_NONE; 788 } 789 790 #if defined(CONFIG_USER_ONLY) 791 /* User Timers and Counters */ 792 static target_ulong get_ticks(bool shift) 793 { 794 int64_t val = cpu_get_host_ticks(); 795 target_ulong result = shift ? val >> 32 : val; 796 797 return result; 798 } 799 800 static RISCVException read_time(CPURISCVState *env, int csrno, 801 target_ulong *val) 802 { 803 *val = cpu_get_host_ticks(); 804 return RISCV_EXCP_NONE; 805 } 806 807 static RISCVException read_timeh(CPURISCVState *env, int csrno, 808 target_ulong *val) 809 { 810 *val = cpu_get_host_ticks() >> 32; 811 return RISCV_EXCP_NONE; 812 } 813 814 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 815 target_ulong *val) 816 { 817 *val = get_ticks(false); 818 return RISCV_EXCP_NONE; 819 } 820 821 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 822 target_ulong *val) 823 { 824 *val = get_ticks(true); 825 return RISCV_EXCP_NONE; 826 } 827 828 #else /* CONFIG_USER_ONLY */ 829 830 static RISCVException read_mcyclecfg(CPURISCVState *env, int csrno, 831 target_ulong *val) 832 { 833 *val = env->mcyclecfg; 834 return RISCV_EXCP_NONE; 835 } 836 837 static RISCVException write_mcyclecfg(CPURISCVState *env, int csrno, 838 target_ulong val) 839 { 840 uint64_t inh_avail_mask; 841 842 if (riscv_cpu_mxl(env) == MXL_RV32) { 843 env->mcyclecfg = val; 844 } else { 845 /* Set xINH fields if priv mode supported */ 846 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MCYCLECFG_BIT_MINH; 847 inh_avail_mask |= riscv_has_ext(env, RVU) ? MCYCLECFG_BIT_UINH : 0; 848 inh_avail_mask |= riscv_has_ext(env, RVS) ? MCYCLECFG_BIT_SINH : 0; 849 inh_avail_mask |= (riscv_has_ext(env, RVH) && 850 riscv_has_ext(env, RVU)) ? MCYCLECFG_BIT_VUINH : 0; 851 inh_avail_mask |= (riscv_has_ext(env, RVH) && 852 riscv_has_ext(env, RVS)) ? MCYCLECFG_BIT_VSINH : 0; 853 env->mcyclecfg = val & inh_avail_mask; 854 } 855 856 return RISCV_EXCP_NONE; 857 } 858 859 static RISCVException read_mcyclecfgh(CPURISCVState *env, int csrno, 860 target_ulong *val) 861 { 862 *val = env->mcyclecfgh; 863 return RISCV_EXCP_NONE; 864 } 865 866 static RISCVException write_mcyclecfgh(CPURISCVState *env, int csrno, 867 target_ulong val) 868 { 869 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 870 MCYCLECFGH_BIT_MINH); 871 872 /* Set xINH fields if priv mode supported */ 873 inh_avail_mask |= riscv_has_ext(env, RVU) ? MCYCLECFGH_BIT_UINH : 0; 874 inh_avail_mask |= riscv_has_ext(env, RVS) ? MCYCLECFGH_BIT_SINH : 0; 875 inh_avail_mask |= (riscv_has_ext(env, RVH) && 876 riscv_has_ext(env, RVU)) ? MCYCLECFGH_BIT_VUINH : 0; 877 inh_avail_mask |= (riscv_has_ext(env, RVH) && 878 riscv_has_ext(env, RVS)) ? MCYCLECFGH_BIT_VSINH : 0; 879 880 env->mcyclecfgh = val & inh_avail_mask; 881 return RISCV_EXCP_NONE; 882 } 883 884 static RISCVException read_minstretcfg(CPURISCVState *env, int csrno, 885 target_ulong *val) 886 { 887 *val = env->minstretcfg; 888 return RISCV_EXCP_NONE; 889 } 890 891 static RISCVException write_minstretcfg(CPURISCVState *env, int csrno, 892 target_ulong val) 893 { 894 uint64_t inh_avail_mask; 895 896 if (riscv_cpu_mxl(env) == MXL_RV32) { 897 env->minstretcfg = val; 898 } else { 899 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MINSTRETCFG_BIT_MINH; 900 inh_avail_mask |= riscv_has_ext(env, RVU) ? MINSTRETCFG_BIT_UINH : 0; 901 inh_avail_mask |= riscv_has_ext(env, RVS) ? MINSTRETCFG_BIT_SINH : 0; 902 inh_avail_mask |= (riscv_has_ext(env, RVH) && 903 riscv_has_ext(env, RVU)) ? MINSTRETCFG_BIT_VUINH : 0; 904 inh_avail_mask |= (riscv_has_ext(env, RVH) && 905 riscv_has_ext(env, RVS)) ? MINSTRETCFG_BIT_VSINH : 0; 906 env->minstretcfg = val & inh_avail_mask; 907 } 908 return RISCV_EXCP_NONE; 909 } 910 911 static RISCVException read_minstretcfgh(CPURISCVState *env, int csrno, 912 target_ulong *val) 913 { 914 *val = env->minstretcfgh; 915 return RISCV_EXCP_NONE; 916 } 917 918 static RISCVException write_minstretcfgh(CPURISCVState *env, int csrno, 919 target_ulong val) 920 { 921 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 922 MINSTRETCFGH_BIT_MINH); 923 924 inh_avail_mask |= riscv_has_ext(env, RVU) ? MINSTRETCFGH_BIT_UINH : 0; 925 inh_avail_mask |= riscv_has_ext(env, RVS) ? MINSTRETCFGH_BIT_SINH : 0; 926 inh_avail_mask |= (riscv_has_ext(env, RVH) && 927 riscv_has_ext(env, RVU)) ? MINSTRETCFGH_BIT_VUINH : 0; 928 inh_avail_mask |= (riscv_has_ext(env, RVH) && 929 riscv_has_ext(env, RVS)) ? MINSTRETCFGH_BIT_VSINH : 0; 930 931 env->minstretcfgh = val & inh_avail_mask; 932 return RISCV_EXCP_NONE; 933 } 934 935 static RISCVException read_mhpmevent(CPURISCVState *env, int csrno, 936 target_ulong *val) 937 { 938 int evt_index = csrno - CSR_MCOUNTINHIBIT; 939 940 *val = env->mhpmevent_val[evt_index]; 941 942 return RISCV_EXCP_NONE; 943 } 944 945 static RISCVException write_mhpmevent(CPURISCVState *env, int csrno, 946 target_ulong val) 947 { 948 int evt_index = csrno - CSR_MCOUNTINHIBIT; 949 uint64_t mhpmevt_val = val; 950 uint64_t inh_avail_mask; 951 952 if (riscv_cpu_mxl(env) == MXL_RV32) { 953 env->mhpmevent_val[evt_index] = val; 954 mhpmevt_val = mhpmevt_val | 955 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 956 } else { 957 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MHPMEVENT_BIT_MINH; 958 inh_avail_mask |= riscv_has_ext(env, RVU) ? MHPMEVENT_BIT_UINH : 0; 959 inh_avail_mask |= riscv_has_ext(env, RVS) ? MHPMEVENT_BIT_SINH : 0; 960 inh_avail_mask |= (riscv_has_ext(env, RVH) && 961 riscv_has_ext(env, RVU)) ? MHPMEVENT_BIT_VUINH : 0; 962 inh_avail_mask |= (riscv_has_ext(env, RVH) && 963 riscv_has_ext(env, RVS)) ? MHPMEVENT_BIT_VSINH : 0; 964 mhpmevt_val = val & inh_avail_mask; 965 env->mhpmevent_val[evt_index] = mhpmevt_val; 966 } 967 968 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 969 970 return RISCV_EXCP_NONE; 971 } 972 973 static RISCVException read_mhpmeventh(CPURISCVState *env, int csrno, 974 target_ulong *val) 975 { 976 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 977 978 *val = env->mhpmeventh_val[evt_index]; 979 980 return RISCV_EXCP_NONE; 981 } 982 983 static RISCVException write_mhpmeventh(CPURISCVState *env, int csrno, 984 target_ulong val) 985 { 986 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 987 uint64_t mhpmevth_val; 988 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 989 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 990 MHPMEVENTH_BIT_MINH); 991 992 inh_avail_mask |= riscv_has_ext(env, RVU) ? MHPMEVENTH_BIT_UINH : 0; 993 inh_avail_mask |= riscv_has_ext(env, RVS) ? MHPMEVENTH_BIT_SINH : 0; 994 inh_avail_mask |= (riscv_has_ext(env, RVH) && 995 riscv_has_ext(env, RVU)) ? MHPMEVENTH_BIT_VUINH : 0; 996 inh_avail_mask |= (riscv_has_ext(env, RVH) && 997 riscv_has_ext(env, RVS)) ? MHPMEVENTH_BIT_VSINH : 0; 998 999 mhpmevth_val = val & inh_avail_mask; 1000 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 1001 env->mhpmeventh_val[evt_index] = mhpmevth_val; 1002 1003 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1004 1005 return RISCV_EXCP_NONE; 1006 } 1007 1008 static target_ulong riscv_pmu_ctr_get_fixed_counters_val(CPURISCVState *env, 1009 int counter_idx, 1010 bool upper_half) 1011 { 1012 int inst = riscv_pmu_ctr_monitor_instructions(env, counter_idx); 1013 uint64_t *counter_arr_virt = env->pmu_fixed_ctrs[inst].counter_virt; 1014 uint64_t *counter_arr = env->pmu_fixed_ctrs[inst].counter; 1015 target_ulong result = 0; 1016 uint64_t curr_val = 0; 1017 uint64_t cfg_val = 0; 1018 1019 if (counter_idx == 0) { 1020 cfg_val = upper_half ? ((uint64_t)env->mcyclecfgh << 32) : 1021 env->mcyclecfg; 1022 } else if (counter_idx == 2) { 1023 cfg_val = upper_half ? ((uint64_t)env->minstretcfgh << 32) : 1024 env->minstretcfg; 1025 } else { 1026 cfg_val = upper_half ? 1027 ((uint64_t)env->mhpmeventh_val[counter_idx] << 32) : 1028 env->mhpmevent_val[counter_idx]; 1029 cfg_val &= MHPMEVENT_FILTER_MASK; 1030 } 1031 1032 if (!cfg_val) { 1033 if (icount_enabled()) { 1034 curr_val = inst ? icount_get_raw() : icount_get(); 1035 } else { 1036 curr_val = cpu_get_host_ticks(); 1037 } 1038 1039 goto done; 1040 } 1041 1042 /* Update counter before reading. */ 1043 riscv_pmu_update_fixed_ctrs(env, env->priv, env->virt_enabled); 1044 1045 if (!(cfg_val & MCYCLECFG_BIT_MINH)) { 1046 curr_val += counter_arr[PRV_M]; 1047 } 1048 1049 if (!(cfg_val & MCYCLECFG_BIT_SINH)) { 1050 curr_val += counter_arr[PRV_S]; 1051 } 1052 1053 if (!(cfg_val & MCYCLECFG_BIT_UINH)) { 1054 curr_val += counter_arr[PRV_U]; 1055 } 1056 1057 if (!(cfg_val & MCYCLECFG_BIT_VSINH)) { 1058 curr_val += counter_arr_virt[PRV_S]; 1059 } 1060 1061 if (!(cfg_val & MCYCLECFG_BIT_VUINH)) { 1062 curr_val += counter_arr_virt[PRV_U]; 1063 } 1064 1065 done: 1066 if (riscv_cpu_mxl(env) == MXL_RV32) { 1067 result = upper_half ? curr_val >> 32 : curr_val; 1068 } else { 1069 result = curr_val; 1070 } 1071 1072 return result; 1073 } 1074 1075 static RISCVException write_mhpmcounter(CPURISCVState *env, int csrno, 1076 target_ulong val) 1077 { 1078 int ctr_idx = csrno - CSR_MCYCLE; 1079 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1080 uint64_t mhpmctr_val = val; 1081 1082 counter->mhpmcounter_val = val; 1083 if (!get_field(env->mcountinhibit, BIT(ctr_idx)) && 1084 (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1085 riscv_pmu_ctr_monitor_instructions(env, ctr_idx))) { 1086 counter->mhpmcounter_prev = riscv_pmu_ctr_get_fixed_counters_val(env, 1087 ctr_idx, false); 1088 if (ctr_idx > 2) { 1089 if (riscv_cpu_mxl(env) == MXL_RV32) { 1090 mhpmctr_val = mhpmctr_val | 1091 ((uint64_t)counter->mhpmcounterh_val << 32); 1092 } 1093 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 1094 } 1095 } else { 1096 /* Other counters can keep incrementing from the given value */ 1097 counter->mhpmcounter_prev = val; 1098 } 1099 1100 return RISCV_EXCP_NONE; 1101 } 1102 1103 static RISCVException write_mhpmcounterh(CPURISCVState *env, int csrno, 1104 target_ulong val) 1105 { 1106 int ctr_idx = csrno - CSR_MCYCLEH; 1107 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1108 uint64_t mhpmctr_val = counter->mhpmcounter_val; 1109 uint64_t mhpmctrh_val = val; 1110 1111 counter->mhpmcounterh_val = val; 1112 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 1113 if (!get_field(env->mcountinhibit, BIT(ctr_idx)) && 1114 (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1115 riscv_pmu_ctr_monitor_instructions(env, ctr_idx))) { 1116 counter->mhpmcounterh_prev = riscv_pmu_ctr_get_fixed_counters_val(env, 1117 ctr_idx, true); 1118 if (ctr_idx > 2) { 1119 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 1120 } 1121 } else { 1122 counter->mhpmcounterh_prev = val; 1123 } 1124 1125 return RISCV_EXCP_NONE; 1126 } 1127 1128 RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 1129 bool upper_half, uint32_t ctr_idx) 1130 { 1131 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1132 target_ulong ctr_prev = upper_half ? counter->mhpmcounterh_prev : 1133 counter->mhpmcounter_prev; 1134 target_ulong ctr_val = upper_half ? counter->mhpmcounterh_val : 1135 counter->mhpmcounter_val; 1136 1137 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 1138 /* 1139 * Counter should not increment if inhibit bit is set. Just return the 1140 * current counter value. 1141 */ 1142 *val = ctr_val; 1143 return RISCV_EXCP_NONE; 1144 } 1145 1146 /* 1147 * The kernel computes the perf delta by subtracting the current value from 1148 * the value it initialized previously (ctr_val). 1149 */ 1150 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1151 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 1152 *val = riscv_pmu_ctr_get_fixed_counters_val(env, ctr_idx, upper_half) - 1153 ctr_prev + ctr_val; 1154 } else { 1155 *val = ctr_val; 1156 } 1157 1158 return RISCV_EXCP_NONE; 1159 } 1160 1161 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 1162 target_ulong *val) 1163 { 1164 uint16_t ctr_index; 1165 1166 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 1167 ctr_index = csrno - CSR_MCYCLE; 1168 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 1169 ctr_index = csrno - CSR_CYCLE; 1170 } else { 1171 return RISCV_EXCP_ILLEGAL_INST; 1172 } 1173 1174 return riscv_pmu_read_ctr(env, val, false, ctr_index); 1175 } 1176 1177 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 1178 target_ulong *val) 1179 { 1180 uint16_t ctr_index; 1181 1182 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 1183 ctr_index = csrno - CSR_MCYCLEH; 1184 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 1185 ctr_index = csrno - CSR_CYCLEH; 1186 } else { 1187 return RISCV_EXCP_ILLEGAL_INST; 1188 } 1189 1190 return riscv_pmu_read_ctr(env, val, true, ctr_index); 1191 } 1192 1193 static RISCVException read_scountovf(CPURISCVState *env, int csrno, 1194 target_ulong *val) 1195 { 1196 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 1197 int i; 1198 *val = 0; 1199 target_ulong *mhpm_evt_val; 1200 uint64_t of_bit_mask; 1201 1202 if (riscv_cpu_mxl(env) == MXL_RV32) { 1203 mhpm_evt_val = env->mhpmeventh_val; 1204 of_bit_mask = MHPMEVENTH_BIT_OF; 1205 } else { 1206 mhpm_evt_val = env->mhpmevent_val; 1207 of_bit_mask = MHPMEVENT_BIT_OF; 1208 } 1209 1210 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 1211 if ((get_field(env->mcounteren, BIT(i))) && 1212 (mhpm_evt_val[i] & of_bit_mask)) { 1213 *val |= BIT(i); 1214 } 1215 } 1216 1217 return RISCV_EXCP_NONE; 1218 } 1219 1220 static RISCVException read_time(CPURISCVState *env, int csrno, 1221 target_ulong *val) 1222 { 1223 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1224 1225 if (!env->rdtime_fn) { 1226 return RISCV_EXCP_ILLEGAL_INST; 1227 } 1228 1229 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 1230 return RISCV_EXCP_NONE; 1231 } 1232 1233 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1234 target_ulong *val) 1235 { 1236 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1237 1238 if (!env->rdtime_fn) { 1239 return RISCV_EXCP_ILLEGAL_INST; 1240 } 1241 1242 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 1243 return RISCV_EXCP_NONE; 1244 } 1245 1246 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 1247 target_ulong *val) 1248 { 1249 *val = env->vstimecmp; 1250 1251 return RISCV_EXCP_NONE; 1252 } 1253 1254 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 1255 target_ulong *val) 1256 { 1257 *val = env->vstimecmp >> 32; 1258 1259 return RISCV_EXCP_NONE; 1260 } 1261 1262 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1263 target_ulong val) 1264 { 1265 if (riscv_cpu_mxl(env) == MXL_RV32) { 1266 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1267 } else { 1268 env->vstimecmp = val; 1269 } 1270 1271 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1272 env->htimedelta, MIP_VSTIP); 1273 1274 return RISCV_EXCP_NONE; 1275 } 1276 1277 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1278 target_ulong val) 1279 { 1280 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1281 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1282 env->htimedelta, MIP_VSTIP); 1283 1284 return RISCV_EXCP_NONE; 1285 } 1286 1287 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1288 target_ulong *val) 1289 { 1290 if (env->virt_enabled) { 1291 *val = env->vstimecmp; 1292 } else { 1293 *val = env->stimecmp; 1294 } 1295 1296 return RISCV_EXCP_NONE; 1297 } 1298 1299 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1300 target_ulong *val) 1301 { 1302 if (env->virt_enabled) { 1303 *val = env->vstimecmp >> 32; 1304 } else { 1305 *val = env->stimecmp >> 32; 1306 } 1307 1308 return RISCV_EXCP_NONE; 1309 } 1310 1311 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1312 target_ulong val) 1313 { 1314 if (env->virt_enabled) { 1315 if (env->hvictl & HVICTL_VTI) { 1316 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1317 } 1318 return write_vstimecmp(env, csrno, val); 1319 } 1320 1321 if (riscv_cpu_mxl(env) == MXL_RV32) { 1322 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1323 } else { 1324 env->stimecmp = val; 1325 } 1326 1327 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1328 1329 return RISCV_EXCP_NONE; 1330 } 1331 1332 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1333 target_ulong val) 1334 { 1335 if (env->virt_enabled) { 1336 if (env->hvictl & HVICTL_VTI) { 1337 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1338 } 1339 return write_vstimecmph(env, csrno, val); 1340 } 1341 1342 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1343 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1344 1345 return RISCV_EXCP_NONE; 1346 } 1347 1348 #define VSTOPI_NUM_SRCS 5 1349 1350 /* 1351 * All core local interrupts except the fixed ones 0:12. This macro is for 1352 * virtual interrupts logic so please don't change this to avoid messing up 1353 * the whole support, For reference see AIA spec: `5.3 Interrupt filtering and 1354 * virtual interrupts for supervisor level` and `6.3.2 Virtual interrupts for 1355 * VS level`. 1356 */ 1357 #define LOCAL_INTERRUPTS (~0x1FFFULL) 1358 1359 static const uint64_t delegable_ints = 1360 S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS | MIP_LCOFIP; 1361 static const uint64_t vs_delegable_ints = 1362 (VS_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & ~MIP_LCOFIP; 1363 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1364 HS_MODE_INTERRUPTS | LOCAL_INTERRUPTS; 1365 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1366 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1367 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1368 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1369 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1370 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1371 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1372 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1373 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1374 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1375 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1376 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1377 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1378 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1379 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1380 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1381 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1382 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1383 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1384 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1385 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1386 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1387 (1ULL << (RISCV_EXCP_M_ECALL)) | 1388 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1389 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1390 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1391 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1392 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1393 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1394 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1395 1396 /* 1397 * Spec allows for bits 13:63 to be either read-only or writable. 1398 * So far we have interrupt LCOFIP in that region which is writable. 1399 * 1400 * Also, spec allows to inject virtual interrupts in this region even 1401 * without any hardware interrupts for that interrupt number. 1402 * 1403 * For now interrupt in 13:63 region are all kept writable. 13 being 1404 * LCOFIP and 14:63 being virtual only. Change this in future if we 1405 * introduce more interrupts that are not writable. 1406 */ 1407 1408 /* Bit STIP can be an alias of mip.STIP that's why it's writable in mvip. */ 1409 static const uint64_t mvip_writable_mask = MIP_SSIP | MIP_STIP | MIP_SEIP | 1410 LOCAL_INTERRUPTS; 1411 static const uint64_t mvien_writable_mask = MIP_SSIP | MIP_SEIP | 1412 LOCAL_INTERRUPTS; 1413 1414 static const uint64_t sip_writable_mask = SIP_SSIP | LOCAL_INTERRUPTS; 1415 static const uint64_t hip_writable_mask = MIP_VSSIP; 1416 static const uint64_t hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | 1417 MIP_VSEIP | LOCAL_INTERRUPTS; 1418 static const uint64_t hvien_writable_mask = LOCAL_INTERRUPTS; 1419 1420 static const uint64_t vsip_writable_mask = MIP_VSSIP | LOCAL_INTERRUPTS; 1421 1422 const bool valid_vm_1_10_32[16] = { 1423 [VM_1_10_MBARE] = true, 1424 [VM_1_10_SV32] = true 1425 }; 1426 1427 const bool valid_vm_1_10_64[16] = { 1428 [VM_1_10_MBARE] = true, 1429 [VM_1_10_SV39] = true, 1430 [VM_1_10_SV48] = true, 1431 [VM_1_10_SV57] = true 1432 }; 1433 1434 /* Machine Information Registers */ 1435 static RISCVException read_zero(CPURISCVState *env, int csrno, 1436 target_ulong *val) 1437 { 1438 *val = 0; 1439 return RISCV_EXCP_NONE; 1440 } 1441 1442 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1443 target_ulong val) 1444 { 1445 return RISCV_EXCP_NONE; 1446 } 1447 1448 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1449 target_ulong *val) 1450 { 1451 *val = riscv_cpu_cfg(env)->mvendorid; 1452 return RISCV_EXCP_NONE; 1453 } 1454 1455 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1456 target_ulong *val) 1457 { 1458 *val = riscv_cpu_cfg(env)->marchid; 1459 return RISCV_EXCP_NONE; 1460 } 1461 1462 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1463 target_ulong *val) 1464 { 1465 *val = riscv_cpu_cfg(env)->mimpid; 1466 return RISCV_EXCP_NONE; 1467 } 1468 1469 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1470 target_ulong *val) 1471 { 1472 *val = env->mhartid; 1473 return RISCV_EXCP_NONE; 1474 } 1475 1476 /* Machine Trap Setup */ 1477 1478 /* We do not store SD explicitly, only compute it on demand. */ 1479 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1480 { 1481 if ((status & MSTATUS_FS) == MSTATUS_FS || 1482 (status & MSTATUS_VS) == MSTATUS_VS || 1483 (status & MSTATUS_XS) == MSTATUS_XS) { 1484 switch (xl) { 1485 case MXL_RV32: 1486 return status | MSTATUS32_SD; 1487 case MXL_RV64: 1488 return status | MSTATUS64_SD; 1489 case MXL_RV128: 1490 return MSTATUSH128_SD; 1491 default: 1492 g_assert_not_reached(); 1493 } 1494 } 1495 return status; 1496 } 1497 1498 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1499 target_ulong *val) 1500 { 1501 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1502 return RISCV_EXCP_NONE; 1503 } 1504 1505 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1506 { 1507 uint64_t mode_supported = riscv_cpu_cfg(env)->satp_mode.map; 1508 return get_field(mode_supported, (1 << vm)); 1509 } 1510 1511 static target_ulong legalize_xatp(CPURISCVState *env, target_ulong old_xatp, 1512 target_ulong val) 1513 { 1514 target_ulong mask; 1515 bool vm; 1516 if (riscv_cpu_mxl(env) == MXL_RV32) { 1517 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1518 mask = (val ^ old_xatp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1519 } else { 1520 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1521 mask = (val ^ old_xatp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1522 } 1523 1524 if (vm && mask) { 1525 /* 1526 * The ISA defines SATP.MODE=Bare as "no translation", but we still 1527 * pass these through QEMU's TLB emulation as it improves 1528 * performance. Flushing the TLB on SATP writes with paging 1529 * enabled avoids leaking those invalid cached mappings. 1530 */ 1531 tlb_flush(env_cpu(env)); 1532 return val; 1533 } 1534 return old_xatp; 1535 } 1536 1537 static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp, 1538 target_ulong val) 1539 { 1540 bool valid = false; 1541 target_ulong new_mpp = get_field(val, MSTATUS_MPP); 1542 1543 switch (new_mpp) { 1544 case PRV_M: 1545 valid = true; 1546 break; 1547 case PRV_S: 1548 valid = riscv_has_ext(env, RVS); 1549 break; 1550 case PRV_U: 1551 valid = riscv_has_ext(env, RVU); 1552 break; 1553 } 1554 1555 /* Remain field unchanged if new_mpp value is invalid */ 1556 if (!valid) { 1557 val = set_field(val, MSTATUS_MPP, old_mpp); 1558 } 1559 1560 return val; 1561 } 1562 1563 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1564 target_ulong val) 1565 { 1566 uint64_t mstatus = env->mstatus; 1567 uint64_t mask = 0; 1568 RISCVMXL xl = riscv_cpu_mxl(env); 1569 1570 /* 1571 * MPP field have been made WARL since priv version 1.11. However, 1572 * legalization for it will not break any software running on 1.10. 1573 */ 1574 val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val); 1575 1576 /* flush tlb on mstatus fields that affect VM */ 1577 if ((val ^ mstatus) & MSTATUS_MXR) { 1578 tlb_flush(env_cpu(env)); 1579 } 1580 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1581 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1582 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1583 MSTATUS_TW; 1584 1585 if (riscv_has_ext(env, RVF)) { 1586 mask |= MSTATUS_FS; 1587 } 1588 if (riscv_has_ext(env, RVV)) { 1589 mask |= MSTATUS_VS; 1590 } 1591 1592 if (xl != MXL_RV32 || env->debugger) { 1593 if (riscv_has_ext(env, RVH)) { 1594 mask |= MSTATUS_MPV | MSTATUS_GVA; 1595 } 1596 if ((val & MSTATUS64_UXL) != 0) { 1597 mask |= MSTATUS64_UXL; 1598 } 1599 } 1600 1601 mstatus = (mstatus & ~mask) | (val & mask); 1602 1603 env->mstatus = mstatus; 1604 1605 /* 1606 * Except in debug mode, UXL/SXL can only be modified by higher 1607 * privilege mode. So xl will not be changed in normal mode. 1608 */ 1609 if (env->debugger) { 1610 env->xl = cpu_recompute_xl(env); 1611 } 1612 1613 riscv_cpu_update_mask(env); 1614 return RISCV_EXCP_NONE; 1615 } 1616 1617 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1618 target_ulong *val) 1619 { 1620 *val = env->mstatus >> 32; 1621 return RISCV_EXCP_NONE; 1622 } 1623 1624 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1625 target_ulong val) 1626 { 1627 uint64_t valh = (uint64_t)val << 32; 1628 uint64_t mask = riscv_has_ext(env, RVH) ? MSTATUS_MPV | MSTATUS_GVA : 0; 1629 1630 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1631 1632 return RISCV_EXCP_NONE; 1633 } 1634 1635 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1636 Int128 *val) 1637 { 1638 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, 1639 env->mstatus)); 1640 return RISCV_EXCP_NONE; 1641 } 1642 1643 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1644 Int128 *val) 1645 { 1646 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1647 return RISCV_EXCP_NONE; 1648 } 1649 1650 static RISCVException read_misa(CPURISCVState *env, int csrno, 1651 target_ulong *val) 1652 { 1653 target_ulong misa; 1654 1655 switch (env->misa_mxl) { 1656 case MXL_RV32: 1657 misa = (target_ulong)MXL_RV32 << 30; 1658 break; 1659 #ifdef TARGET_RISCV64 1660 case MXL_RV64: 1661 misa = (target_ulong)MXL_RV64 << 62; 1662 break; 1663 #endif 1664 default: 1665 g_assert_not_reached(); 1666 } 1667 1668 *val = misa | env->misa_ext; 1669 return RISCV_EXCP_NONE; 1670 } 1671 1672 static RISCVException write_misa(CPURISCVState *env, int csrno, 1673 target_ulong val) 1674 { 1675 RISCVCPU *cpu = env_archcpu(env); 1676 uint32_t orig_misa_ext = env->misa_ext; 1677 Error *local_err = NULL; 1678 1679 if (!riscv_cpu_cfg(env)->misa_w) { 1680 /* drop write to misa */ 1681 return RISCV_EXCP_NONE; 1682 } 1683 1684 /* Mask extensions that are not supported by this hart */ 1685 val &= env->misa_ext_mask; 1686 1687 /* 1688 * Suppress 'C' if next instruction is not aligned 1689 * TODO: this should check next_pc 1690 */ 1691 if ((val & RVC) && (GETPC() & ~3) != 0) { 1692 val &= ~RVC; 1693 } 1694 1695 /* Disable RVG if any of its dependencies are disabled */ 1696 if (!(val & RVI && val & RVM && val & RVA && 1697 val & RVF && val & RVD)) { 1698 val &= ~RVG; 1699 } 1700 1701 /* If nothing changed, do nothing. */ 1702 if (val == env->misa_ext) { 1703 return RISCV_EXCP_NONE; 1704 } 1705 1706 env->misa_ext = val; 1707 riscv_cpu_validate_set_extensions(cpu, &local_err); 1708 if (local_err != NULL) { 1709 /* Rollback on validation error */ 1710 qemu_log_mask(LOG_GUEST_ERROR, "Unable to write MISA ext value " 1711 "0x%x, keeping existing MISA ext 0x%x\n", 1712 env->misa_ext, orig_misa_ext); 1713 1714 env->misa_ext = orig_misa_ext; 1715 1716 return RISCV_EXCP_NONE; 1717 } 1718 1719 if (!(env->misa_ext & RVF)) { 1720 env->mstatus &= ~MSTATUS_FS; 1721 } 1722 1723 /* flush translation cache */ 1724 tb_flush(env_cpu(env)); 1725 env->xl = riscv_cpu_mxl(env); 1726 return RISCV_EXCP_NONE; 1727 } 1728 1729 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1730 target_ulong *val) 1731 { 1732 *val = env->medeleg; 1733 return RISCV_EXCP_NONE; 1734 } 1735 1736 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1737 target_ulong val) 1738 { 1739 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1740 return RISCV_EXCP_NONE; 1741 } 1742 1743 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1744 uint64_t *ret_val, 1745 uint64_t new_val, uint64_t wr_mask) 1746 { 1747 uint64_t mask = wr_mask & delegable_ints; 1748 1749 if (ret_val) { 1750 *ret_val = env->mideleg; 1751 } 1752 1753 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1754 1755 if (riscv_has_ext(env, RVH)) { 1756 env->mideleg |= HS_MODE_INTERRUPTS; 1757 } 1758 1759 return RISCV_EXCP_NONE; 1760 } 1761 1762 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1763 target_ulong *ret_val, 1764 target_ulong new_val, target_ulong wr_mask) 1765 { 1766 uint64_t rval; 1767 RISCVException ret; 1768 1769 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1770 if (ret_val) { 1771 *ret_val = rval; 1772 } 1773 1774 return ret; 1775 } 1776 1777 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1778 target_ulong *ret_val, 1779 target_ulong new_val, 1780 target_ulong wr_mask) 1781 { 1782 uint64_t rval; 1783 RISCVException ret; 1784 1785 ret = rmw_mideleg64(env, csrno, &rval, 1786 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1787 if (ret_val) { 1788 *ret_val = rval >> 32; 1789 } 1790 1791 return ret; 1792 } 1793 1794 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1795 uint64_t *ret_val, 1796 uint64_t new_val, uint64_t wr_mask) 1797 { 1798 uint64_t mask = wr_mask & all_ints; 1799 1800 if (ret_val) { 1801 *ret_val = env->mie; 1802 } 1803 1804 env->mie = (env->mie & ~mask) | (new_val & mask); 1805 1806 if (!riscv_has_ext(env, RVH)) { 1807 env->mie &= ~((uint64_t)HS_MODE_INTERRUPTS); 1808 } 1809 1810 return RISCV_EXCP_NONE; 1811 } 1812 1813 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1814 target_ulong *ret_val, 1815 target_ulong new_val, target_ulong wr_mask) 1816 { 1817 uint64_t rval; 1818 RISCVException ret; 1819 1820 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1821 if (ret_val) { 1822 *ret_val = rval; 1823 } 1824 1825 return ret; 1826 } 1827 1828 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1829 target_ulong *ret_val, 1830 target_ulong new_val, target_ulong wr_mask) 1831 { 1832 uint64_t rval; 1833 RISCVException ret; 1834 1835 ret = rmw_mie64(env, csrno, &rval, 1836 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1837 if (ret_val) { 1838 *ret_val = rval >> 32; 1839 } 1840 1841 return ret; 1842 } 1843 1844 static RISCVException rmw_mvien64(CPURISCVState *env, int csrno, 1845 uint64_t *ret_val, 1846 uint64_t new_val, uint64_t wr_mask) 1847 { 1848 uint64_t mask = wr_mask & mvien_writable_mask; 1849 1850 if (ret_val) { 1851 *ret_val = env->mvien; 1852 } 1853 1854 env->mvien = (env->mvien & ~mask) | (new_val & mask); 1855 1856 return RISCV_EXCP_NONE; 1857 } 1858 1859 static RISCVException rmw_mvien(CPURISCVState *env, int csrno, 1860 target_ulong *ret_val, 1861 target_ulong new_val, target_ulong wr_mask) 1862 { 1863 uint64_t rval; 1864 RISCVException ret; 1865 1866 ret = rmw_mvien64(env, csrno, &rval, new_val, wr_mask); 1867 if (ret_val) { 1868 *ret_val = rval; 1869 } 1870 1871 return ret; 1872 } 1873 1874 static RISCVException rmw_mvienh(CPURISCVState *env, int csrno, 1875 target_ulong *ret_val, 1876 target_ulong new_val, target_ulong wr_mask) 1877 { 1878 uint64_t rval; 1879 RISCVException ret; 1880 1881 ret = rmw_mvien64(env, csrno, &rval, 1882 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1883 if (ret_val) { 1884 *ret_val = rval >> 32; 1885 } 1886 1887 return ret; 1888 } 1889 1890 static RISCVException read_mtopi(CPURISCVState *env, int csrno, 1891 target_ulong *val) 1892 { 1893 int irq; 1894 uint8_t iprio; 1895 1896 irq = riscv_cpu_mirq_pending(env); 1897 if (irq <= 0 || irq > 63) { 1898 *val = 0; 1899 } else { 1900 iprio = env->miprio[irq]; 1901 if (!iprio) { 1902 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1903 iprio = IPRIO_MMAXIPRIO; 1904 } 1905 } 1906 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1907 *val |= iprio; 1908 } 1909 1910 return RISCV_EXCP_NONE; 1911 } 1912 1913 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1914 { 1915 if (!env->virt_enabled) { 1916 return csrno; 1917 } 1918 1919 switch (csrno) { 1920 case CSR_SISELECT: 1921 return CSR_VSISELECT; 1922 case CSR_SIREG: 1923 return CSR_VSIREG; 1924 case CSR_STOPEI: 1925 return CSR_VSTOPEI; 1926 default: 1927 return csrno; 1928 }; 1929 } 1930 1931 static RISCVException rmw_xiselect(CPURISCVState *env, int csrno, 1932 target_ulong *val, target_ulong new_val, 1933 target_ulong wr_mask) 1934 { 1935 target_ulong *iselect; 1936 1937 /* Translate CSR number for VS-mode */ 1938 csrno = aia_xlate_vs_csrno(env, csrno); 1939 1940 /* Find the iselect CSR based on CSR number */ 1941 switch (csrno) { 1942 case CSR_MISELECT: 1943 iselect = &env->miselect; 1944 break; 1945 case CSR_SISELECT: 1946 iselect = &env->siselect; 1947 break; 1948 case CSR_VSISELECT: 1949 iselect = &env->vsiselect; 1950 break; 1951 default: 1952 return RISCV_EXCP_ILLEGAL_INST; 1953 }; 1954 1955 if (val) { 1956 *val = *iselect; 1957 } 1958 1959 wr_mask &= ISELECT_MASK; 1960 if (wr_mask) { 1961 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1962 } 1963 1964 return RISCV_EXCP_NONE; 1965 } 1966 1967 static int rmw_iprio(target_ulong xlen, 1968 target_ulong iselect, uint8_t *iprio, 1969 target_ulong *val, target_ulong new_val, 1970 target_ulong wr_mask, int ext_irq_no) 1971 { 1972 int i, firq, nirqs; 1973 target_ulong old_val; 1974 1975 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1976 return -EINVAL; 1977 } 1978 if (xlen != 32 && iselect & 0x1) { 1979 return -EINVAL; 1980 } 1981 1982 nirqs = 4 * (xlen / 32); 1983 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1984 1985 old_val = 0; 1986 for (i = 0; i < nirqs; i++) { 1987 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1988 } 1989 1990 if (val) { 1991 *val = old_val; 1992 } 1993 1994 if (wr_mask) { 1995 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1996 for (i = 0; i < nirqs; i++) { 1997 /* 1998 * M-level and S-level external IRQ priority always read-only 1999 * zero. This means default priority order is always preferred 2000 * for M-level and S-level external IRQs. 2001 */ 2002 if ((firq + i) == ext_irq_no) { 2003 continue; 2004 } 2005 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 2006 } 2007 } 2008 2009 return 0; 2010 } 2011 2012 static RISCVException rmw_xireg(CPURISCVState *env, int csrno, 2013 target_ulong *val, target_ulong new_val, 2014 target_ulong wr_mask) 2015 { 2016 bool virt, isel_reserved; 2017 uint8_t *iprio; 2018 int ret = -EINVAL; 2019 target_ulong priv, isel, vgein; 2020 2021 /* Translate CSR number for VS-mode */ 2022 csrno = aia_xlate_vs_csrno(env, csrno); 2023 2024 /* Decode register details from CSR number */ 2025 virt = false; 2026 isel_reserved = false; 2027 switch (csrno) { 2028 case CSR_MIREG: 2029 iprio = env->miprio; 2030 isel = env->miselect; 2031 priv = PRV_M; 2032 break; 2033 case CSR_SIREG: 2034 if (env->priv == PRV_S && env->mvien & MIP_SEIP && 2035 env->siselect >= ISELECT_IMSIC_EIDELIVERY && 2036 env->siselect <= ISELECT_IMSIC_EIE63) { 2037 goto done; 2038 } 2039 iprio = env->siprio; 2040 isel = env->siselect; 2041 priv = PRV_S; 2042 break; 2043 case CSR_VSIREG: 2044 iprio = env->hviprio; 2045 isel = env->vsiselect; 2046 priv = PRV_S; 2047 virt = true; 2048 break; 2049 default: 2050 goto done; 2051 }; 2052 2053 /* Find the selected guest interrupt file */ 2054 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 2055 2056 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 2057 /* Local interrupt priority registers not available for VS-mode */ 2058 if (!virt) { 2059 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 2060 isel, iprio, val, new_val, wr_mask, 2061 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 2062 } 2063 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 2064 /* IMSIC registers only available when machine implements it. */ 2065 if (env->aia_ireg_rmw_fn[priv]) { 2066 /* Selected guest interrupt file should not be zero */ 2067 if (virt && (!vgein || env->geilen < vgein)) { 2068 goto done; 2069 } 2070 /* Call machine specific IMSIC register emulation */ 2071 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 2072 AIA_MAKE_IREG(isel, priv, virt, vgein, 2073 riscv_cpu_mxl_bits(env)), 2074 val, new_val, wr_mask); 2075 } 2076 } else { 2077 isel_reserved = true; 2078 } 2079 2080 done: 2081 if (ret) { 2082 return (env->virt_enabled && virt && !isel_reserved) ? 2083 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2084 } 2085 return RISCV_EXCP_NONE; 2086 } 2087 2088 static RISCVException rmw_xtopei(CPURISCVState *env, int csrno, 2089 target_ulong *val, target_ulong new_val, 2090 target_ulong wr_mask) 2091 { 2092 bool virt; 2093 int ret = -EINVAL; 2094 target_ulong priv, vgein; 2095 2096 /* Translate CSR number for VS-mode */ 2097 csrno = aia_xlate_vs_csrno(env, csrno); 2098 2099 /* Decode register details from CSR number */ 2100 virt = false; 2101 switch (csrno) { 2102 case CSR_MTOPEI: 2103 priv = PRV_M; 2104 break; 2105 case CSR_STOPEI: 2106 if (env->mvien & MIP_SEIP && env->priv == PRV_S) { 2107 goto done; 2108 } 2109 priv = PRV_S; 2110 break; 2111 case CSR_VSTOPEI: 2112 priv = PRV_S; 2113 virt = true; 2114 break; 2115 default: 2116 goto done; 2117 }; 2118 2119 /* IMSIC CSRs only available when machine implements IMSIC. */ 2120 if (!env->aia_ireg_rmw_fn[priv]) { 2121 goto done; 2122 } 2123 2124 /* Find the selected guest interrupt file */ 2125 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 2126 2127 /* Selected guest interrupt file should be valid */ 2128 if (virt && (!vgein || env->geilen < vgein)) { 2129 goto done; 2130 } 2131 2132 /* Call machine specific IMSIC register emulation for TOPEI */ 2133 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 2134 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 2135 riscv_cpu_mxl_bits(env)), 2136 val, new_val, wr_mask); 2137 2138 done: 2139 if (ret) { 2140 return (env->virt_enabled && virt) ? 2141 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2142 } 2143 return RISCV_EXCP_NONE; 2144 } 2145 2146 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 2147 target_ulong *val) 2148 { 2149 *val = env->mtvec; 2150 return RISCV_EXCP_NONE; 2151 } 2152 2153 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 2154 target_ulong val) 2155 { 2156 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2157 if ((val & 3) < 2) { 2158 env->mtvec = val; 2159 } else { 2160 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 2161 } 2162 return RISCV_EXCP_NONE; 2163 } 2164 2165 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 2166 target_ulong *val) 2167 { 2168 *val = env->mcountinhibit; 2169 return RISCV_EXCP_NONE; 2170 } 2171 2172 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 2173 target_ulong val) 2174 { 2175 int cidx; 2176 PMUCTRState *counter; 2177 RISCVCPU *cpu = env_archcpu(env); 2178 uint32_t present_ctrs = cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_IR; 2179 target_ulong updated_ctrs = (env->mcountinhibit ^ val) & present_ctrs; 2180 uint64_t mhpmctr_val, prev_count, curr_count; 2181 2182 /* WARL register - disable unavailable counters; TM bit is always 0 */ 2183 env->mcountinhibit = val & present_ctrs; 2184 2185 /* Check if any other counter is also monitoring cycles/instructions */ 2186 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 2187 if (!(updated_ctrs & BIT(cidx)) || 2188 (!riscv_pmu_ctr_monitor_cycles(env, cidx) && 2189 !riscv_pmu_ctr_monitor_instructions(env, cidx))) { 2190 continue; 2191 } 2192 2193 counter = &env->pmu_ctrs[cidx]; 2194 2195 if (!get_field(env->mcountinhibit, BIT(cidx))) { 2196 counter->mhpmcounter_prev = 2197 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, false); 2198 if (riscv_cpu_mxl(env) == MXL_RV32) { 2199 counter->mhpmcounterh_prev = 2200 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, true); 2201 } 2202 2203 if (cidx > 2) { 2204 mhpmctr_val = counter->mhpmcounter_val; 2205 if (riscv_cpu_mxl(env) == MXL_RV32) { 2206 mhpmctr_val = mhpmctr_val | 2207 ((uint64_t)counter->mhpmcounterh_val << 32); 2208 } 2209 riscv_pmu_setup_timer(env, mhpmctr_val, cidx); 2210 } 2211 } else { 2212 curr_count = riscv_pmu_ctr_get_fixed_counters_val(env, cidx, false); 2213 2214 mhpmctr_val = counter->mhpmcounter_val; 2215 prev_count = counter->mhpmcounter_prev; 2216 if (riscv_cpu_mxl(env) == MXL_RV32) { 2217 uint64_t tmp = 2218 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, true); 2219 2220 curr_count = curr_count | (tmp << 32); 2221 mhpmctr_val = mhpmctr_val | 2222 ((uint64_t)counter->mhpmcounterh_val << 32); 2223 prev_count = prev_count | 2224 ((uint64_t)counter->mhpmcounterh_prev << 32); 2225 } 2226 2227 /* Adjust the counter for later reads. */ 2228 mhpmctr_val = curr_count - prev_count + mhpmctr_val; 2229 counter->mhpmcounter_val = mhpmctr_val; 2230 if (riscv_cpu_mxl(env) == MXL_RV32) { 2231 counter->mhpmcounterh_val = mhpmctr_val >> 32; 2232 } 2233 } 2234 } 2235 2236 return RISCV_EXCP_NONE; 2237 } 2238 2239 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 2240 target_ulong *val) 2241 { 2242 *val = env->mcounteren; 2243 return RISCV_EXCP_NONE; 2244 } 2245 2246 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 2247 target_ulong val) 2248 { 2249 RISCVCPU *cpu = env_archcpu(env); 2250 2251 /* WARL register - disable unavailable counters */ 2252 env->mcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 2253 COUNTEREN_IR); 2254 return RISCV_EXCP_NONE; 2255 } 2256 2257 /* Machine Trap Handling */ 2258 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 2259 Int128 *val) 2260 { 2261 *val = int128_make128(env->mscratch, env->mscratchh); 2262 return RISCV_EXCP_NONE; 2263 } 2264 2265 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 2266 Int128 val) 2267 { 2268 env->mscratch = int128_getlo(val); 2269 env->mscratchh = int128_gethi(val); 2270 return RISCV_EXCP_NONE; 2271 } 2272 2273 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 2274 target_ulong *val) 2275 { 2276 *val = env->mscratch; 2277 return RISCV_EXCP_NONE; 2278 } 2279 2280 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 2281 target_ulong val) 2282 { 2283 env->mscratch = val; 2284 return RISCV_EXCP_NONE; 2285 } 2286 2287 static RISCVException read_mepc(CPURISCVState *env, int csrno, 2288 target_ulong *val) 2289 { 2290 *val = env->mepc; 2291 return RISCV_EXCP_NONE; 2292 } 2293 2294 static RISCVException write_mepc(CPURISCVState *env, int csrno, 2295 target_ulong val) 2296 { 2297 env->mepc = val; 2298 return RISCV_EXCP_NONE; 2299 } 2300 2301 static RISCVException read_mcause(CPURISCVState *env, int csrno, 2302 target_ulong *val) 2303 { 2304 *val = env->mcause; 2305 return RISCV_EXCP_NONE; 2306 } 2307 2308 static RISCVException write_mcause(CPURISCVState *env, int csrno, 2309 target_ulong val) 2310 { 2311 env->mcause = val; 2312 return RISCV_EXCP_NONE; 2313 } 2314 2315 static RISCVException read_mtval(CPURISCVState *env, int csrno, 2316 target_ulong *val) 2317 { 2318 *val = env->mtval; 2319 return RISCV_EXCP_NONE; 2320 } 2321 2322 static RISCVException write_mtval(CPURISCVState *env, int csrno, 2323 target_ulong val) 2324 { 2325 env->mtval = val; 2326 return RISCV_EXCP_NONE; 2327 } 2328 2329 /* Execution environment configuration setup */ 2330 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 2331 target_ulong *val) 2332 { 2333 *val = env->menvcfg; 2334 return RISCV_EXCP_NONE; 2335 } 2336 2337 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 2338 target_ulong val) 2339 { 2340 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 2341 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 2342 2343 if (riscv_cpu_mxl(env) == MXL_RV64) { 2344 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 2345 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 2346 (cfg->ext_svadu ? MENVCFG_ADUE : 0); 2347 } 2348 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 2349 2350 return RISCV_EXCP_NONE; 2351 } 2352 2353 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 2354 target_ulong *val) 2355 { 2356 *val = env->menvcfg >> 32; 2357 return RISCV_EXCP_NONE; 2358 } 2359 2360 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 2361 target_ulong val) 2362 { 2363 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 2364 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 2365 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 2366 (cfg->ext_svadu ? MENVCFG_ADUE : 0); 2367 uint64_t valh = (uint64_t)val << 32; 2368 2369 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 2370 2371 return RISCV_EXCP_NONE; 2372 } 2373 2374 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 2375 target_ulong *val) 2376 { 2377 RISCVException ret; 2378 2379 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2380 if (ret != RISCV_EXCP_NONE) { 2381 return ret; 2382 } 2383 2384 *val = env->senvcfg; 2385 return RISCV_EXCP_NONE; 2386 } 2387 2388 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 2389 target_ulong val) 2390 { 2391 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 2392 RISCVException ret; 2393 2394 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2395 if (ret != RISCV_EXCP_NONE) { 2396 return ret; 2397 } 2398 2399 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 2400 return RISCV_EXCP_NONE; 2401 } 2402 2403 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 2404 target_ulong *val) 2405 { 2406 RISCVException ret; 2407 2408 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2409 if (ret != RISCV_EXCP_NONE) { 2410 return ret; 2411 } 2412 2413 /* 2414 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 2415 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 2416 * henvcfg.adue is read_only 0 when menvcfg.adue = 0 2417 */ 2418 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | 2419 env->menvcfg); 2420 return RISCV_EXCP_NONE; 2421 } 2422 2423 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 2424 target_ulong val) 2425 { 2426 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 2427 RISCVException ret; 2428 2429 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2430 if (ret != RISCV_EXCP_NONE) { 2431 return ret; 2432 } 2433 2434 if (riscv_cpu_mxl(env) == MXL_RV64) { 2435 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE); 2436 } 2437 2438 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 2439 2440 return RISCV_EXCP_NONE; 2441 } 2442 2443 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 2444 target_ulong *val) 2445 { 2446 RISCVException ret; 2447 2448 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2449 if (ret != RISCV_EXCP_NONE) { 2450 return ret; 2451 } 2452 2453 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | 2454 env->menvcfg)) >> 32; 2455 return RISCV_EXCP_NONE; 2456 } 2457 2458 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2459 target_ulong val) 2460 { 2461 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 2462 HENVCFG_ADUE); 2463 uint64_t valh = (uint64_t)val << 32; 2464 RISCVException ret; 2465 2466 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2467 if (ret != RISCV_EXCP_NONE) { 2468 return ret; 2469 } 2470 2471 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2472 return RISCV_EXCP_NONE; 2473 } 2474 2475 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2476 target_ulong *val) 2477 { 2478 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2479 2480 return RISCV_EXCP_NONE; 2481 } 2482 2483 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2484 uint64_t wr_mask, target_ulong new_val) 2485 { 2486 uint64_t *reg; 2487 2488 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2489 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2490 2491 return RISCV_EXCP_NONE; 2492 } 2493 2494 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2495 target_ulong new_val) 2496 { 2497 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2498 if (!riscv_has_ext(env, RVF)) { 2499 wr_mask |= SMSTATEEN0_FCSR; 2500 } 2501 2502 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 2503 wr_mask |= SMSTATEEN0_P1P13; 2504 } 2505 2506 return write_mstateen(env, csrno, wr_mask, new_val); 2507 } 2508 2509 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2510 target_ulong new_val) 2511 { 2512 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2513 } 2514 2515 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2516 target_ulong *val) 2517 { 2518 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2519 2520 return RISCV_EXCP_NONE; 2521 } 2522 2523 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2524 uint64_t wr_mask, target_ulong new_val) 2525 { 2526 uint64_t *reg, val; 2527 2528 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2529 val = (uint64_t)new_val << 32; 2530 val |= *reg & 0xFFFFFFFF; 2531 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2532 2533 return RISCV_EXCP_NONE; 2534 } 2535 2536 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2537 target_ulong new_val) 2538 { 2539 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2540 2541 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 2542 wr_mask |= SMSTATEEN0_P1P13; 2543 } 2544 2545 return write_mstateenh(env, csrno, wr_mask, new_val); 2546 } 2547 2548 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2549 target_ulong new_val) 2550 { 2551 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2552 } 2553 2554 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2555 target_ulong *val) 2556 { 2557 int index = csrno - CSR_HSTATEEN0; 2558 2559 *val = env->hstateen[index] & env->mstateen[index]; 2560 2561 return RISCV_EXCP_NONE; 2562 } 2563 2564 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2565 uint64_t mask, target_ulong new_val) 2566 { 2567 int index = csrno - CSR_HSTATEEN0; 2568 uint64_t *reg, wr_mask; 2569 2570 reg = &env->hstateen[index]; 2571 wr_mask = env->mstateen[index] & mask; 2572 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2573 2574 return RISCV_EXCP_NONE; 2575 } 2576 2577 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2578 target_ulong new_val) 2579 { 2580 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2581 2582 if (!riscv_has_ext(env, RVF)) { 2583 wr_mask |= SMSTATEEN0_FCSR; 2584 } 2585 2586 return write_hstateen(env, csrno, wr_mask, new_val); 2587 } 2588 2589 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2590 target_ulong new_val) 2591 { 2592 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2593 } 2594 2595 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2596 target_ulong *val) 2597 { 2598 int index = csrno - CSR_HSTATEEN0H; 2599 2600 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2601 2602 return RISCV_EXCP_NONE; 2603 } 2604 2605 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2606 uint64_t mask, target_ulong new_val) 2607 { 2608 int index = csrno - CSR_HSTATEEN0H; 2609 uint64_t *reg, wr_mask, val; 2610 2611 reg = &env->hstateen[index]; 2612 val = (uint64_t)new_val << 32; 2613 val |= *reg & 0xFFFFFFFF; 2614 wr_mask = env->mstateen[index] & mask; 2615 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2616 2617 return RISCV_EXCP_NONE; 2618 } 2619 2620 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2621 target_ulong new_val) 2622 { 2623 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2624 2625 return write_hstateenh(env, csrno, wr_mask, new_val); 2626 } 2627 2628 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2629 target_ulong new_val) 2630 { 2631 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2632 } 2633 2634 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2635 target_ulong *val) 2636 { 2637 bool virt = env->virt_enabled; 2638 int index = csrno - CSR_SSTATEEN0; 2639 2640 *val = env->sstateen[index] & env->mstateen[index]; 2641 if (virt) { 2642 *val &= env->hstateen[index]; 2643 } 2644 2645 return RISCV_EXCP_NONE; 2646 } 2647 2648 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2649 uint64_t mask, target_ulong new_val) 2650 { 2651 bool virt = env->virt_enabled; 2652 int index = csrno - CSR_SSTATEEN0; 2653 uint64_t wr_mask; 2654 uint64_t *reg; 2655 2656 wr_mask = env->mstateen[index] & mask; 2657 if (virt) { 2658 wr_mask &= env->hstateen[index]; 2659 } 2660 2661 reg = &env->sstateen[index]; 2662 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2663 2664 return RISCV_EXCP_NONE; 2665 } 2666 2667 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2668 target_ulong new_val) 2669 { 2670 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2671 2672 if (!riscv_has_ext(env, RVF)) { 2673 wr_mask |= SMSTATEEN0_FCSR; 2674 } 2675 2676 return write_sstateen(env, csrno, wr_mask, new_val); 2677 } 2678 2679 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2680 target_ulong new_val) 2681 { 2682 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2683 } 2684 2685 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2686 uint64_t *ret_val, 2687 uint64_t new_val, uint64_t wr_mask) 2688 { 2689 uint64_t old_mip, mask = wr_mask & delegable_ints; 2690 uint32_t gin; 2691 2692 if (mask & MIP_SEIP) { 2693 env->software_seip = new_val & MIP_SEIP; 2694 new_val |= env->external_seip * MIP_SEIP; 2695 } 2696 2697 if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && 2698 get_field(env->menvcfg, MENVCFG_STCE)) { 2699 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2700 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2701 } 2702 2703 if (mask) { 2704 old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); 2705 } else { 2706 old_mip = env->mip; 2707 } 2708 2709 if (csrno != CSR_HVIP) { 2710 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2711 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2712 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2713 } 2714 2715 if (ret_val) { 2716 *ret_val = old_mip; 2717 } 2718 2719 return RISCV_EXCP_NONE; 2720 } 2721 2722 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2723 target_ulong *ret_val, 2724 target_ulong new_val, target_ulong wr_mask) 2725 { 2726 uint64_t rval; 2727 RISCVException ret; 2728 2729 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2730 if (ret_val) { 2731 *ret_val = rval; 2732 } 2733 2734 return ret; 2735 } 2736 2737 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2738 target_ulong *ret_val, 2739 target_ulong new_val, target_ulong wr_mask) 2740 { 2741 uint64_t rval; 2742 RISCVException ret; 2743 2744 ret = rmw_mip64(env, csrno, &rval, 2745 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2746 if (ret_val) { 2747 *ret_val = rval >> 32; 2748 } 2749 2750 return ret; 2751 } 2752 2753 /* 2754 * The function is written for two use-cases: 2755 * 1- To access mvip csr as is for m-mode access. 2756 * 2- To access sip as a combination of mip and mvip for s-mode. 2757 * 2758 * Both report bits 1, 5, 9 and 13:63 but with the exception of 2759 * STIP being read-only zero in case of mvip when sstc extension 2760 * is present. 2761 * Also, sip needs to be read-only zero when both mideleg[i] and 2762 * mvien[i] are zero but mvip needs to be an alias of mip. 2763 */ 2764 static RISCVException rmw_mvip64(CPURISCVState *env, int csrno, 2765 uint64_t *ret_val, 2766 uint64_t new_val, uint64_t wr_mask) 2767 { 2768 RISCVCPU *cpu = env_archcpu(env); 2769 target_ulong ret_mip = 0; 2770 RISCVException ret; 2771 uint64_t old_mvip; 2772 2773 /* 2774 * mideleg[i] mvien[i] 2775 * 0 0 No delegation. mvip[i] is alias of mip[i]. 2776 * 0 1 mvip[i] becomes source of interrupt, mip bypassed. 2777 * 1 X mip[i] is source of interrupt and mvip[i] aliases 2778 * mip[i]. 2779 * 2780 * So alias condition would be for bits: 2781 * ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (mideleg | ~mvien)) | 2782 * (!sstc & MIP_STIP) 2783 * 2784 * Non-alias condition will be for bits: 2785 * (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~mideleg & mvien) 2786 * 2787 * alias_mask denotes the bits that come from mip nalias_mask denotes bits 2788 * that come from hvip. 2789 */ 2790 uint64_t alias_mask = ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2791 (env->mideleg | ~env->mvien)) | MIP_STIP; 2792 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2793 (~env->mideleg & env->mvien); 2794 uint64_t wr_mask_mvip; 2795 uint64_t wr_mask_mip; 2796 2797 /* 2798 * mideleg[i] mvien[i] 2799 * 0 0 sip[i] read-only zero. 2800 * 0 1 sip[i] alias of mvip[i]. 2801 * 1 X sip[i] alias of mip[i]. 2802 * 2803 * Both alias and non-alias mask remain same for sip except for bits 2804 * which are zero in both mideleg and mvien. 2805 */ 2806 if (csrno == CSR_SIP) { 2807 /* Remove bits that are zero in both mideleg and mvien. */ 2808 alias_mask &= (env->mideleg | env->mvien); 2809 nalias_mask &= (env->mideleg | env->mvien); 2810 } 2811 2812 /* 2813 * If sstc is present, mvip.STIP is not an alias of mip.STIP so clear 2814 * that our in mip returned value. 2815 */ 2816 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2817 get_field(env->menvcfg, MENVCFG_STCE)) { 2818 alias_mask &= ~MIP_STIP; 2819 } 2820 2821 wr_mask_mip = wr_mask & alias_mask & mvip_writable_mask; 2822 wr_mask_mvip = wr_mask & nalias_mask & mvip_writable_mask; 2823 2824 /* 2825 * For bits set in alias_mask, mvip needs to be alias of mip, so forward 2826 * this to rmw_mip. 2827 */ 2828 ret = rmw_mip(env, CSR_MIP, &ret_mip, new_val, wr_mask_mip); 2829 if (ret != RISCV_EXCP_NONE) { 2830 return ret; 2831 } 2832 2833 old_mvip = env->mvip; 2834 2835 /* 2836 * Write to mvip. Update only non-alias bits. Alias bits were updated 2837 * in mip in rmw_mip above. 2838 */ 2839 if (wr_mask_mvip) { 2840 env->mvip = (env->mvip & ~wr_mask_mvip) | (new_val & wr_mask_mvip); 2841 2842 /* 2843 * Given mvip is separate source from mip, we need to trigger interrupt 2844 * from here separately. Normally this happen from riscv_cpu_update_mip. 2845 */ 2846 riscv_cpu_interrupt(env); 2847 } 2848 2849 if (ret_val) { 2850 ret_mip &= alias_mask; 2851 old_mvip &= nalias_mask; 2852 2853 *ret_val = old_mvip | ret_mip; 2854 } 2855 2856 return RISCV_EXCP_NONE; 2857 } 2858 2859 static RISCVException rmw_mvip(CPURISCVState *env, int csrno, 2860 target_ulong *ret_val, 2861 target_ulong new_val, target_ulong wr_mask) 2862 { 2863 uint64_t rval; 2864 RISCVException ret; 2865 2866 ret = rmw_mvip64(env, csrno, &rval, new_val, wr_mask); 2867 if (ret_val) { 2868 *ret_val = rval; 2869 } 2870 2871 return ret; 2872 } 2873 2874 static RISCVException rmw_mviph(CPURISCVState *env, int csrno, 2875 target_ulong *ret_val, 2876 target_ulong new_val, target_ulong wr_mask) 2877 { 2878 uint64_t rval; 2879 RISCVException ret; 2880 2881 ret = rmw_mvip64(env, csrno, &rval, 2882 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2883 if (ret_val) { 2884 *ret_val = rval >> 32; 2885 } 2886 2887 return ret; 2888 } 2889 2890 /* Supervisor Trap Setup */ 2891 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2892 Int128 *val) 2893 { 2894 uint64_t mask = sstatus_v1_10_mask; 2895 uint64_t sstatus = env->mstatus & mask; 2896 if (env->xl != MXL_RV32 || env->debugger) { 2897 mask |= SSTATUS64_UXL; 2898 } 2899 2900 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2901 return RISCV_EXCP_NONE; 2902 } 2903 2904 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2905 target_ulong *val) 2906 { 2907 target_ulong mask = (sstatus_v1_10_mask); 2908 if (env->xl != MXL_RV32 || env->debugger) { 2909 mask |= SSTATUS64_UXL; 2910 } 2911 /* TODO: Use SXL not MXL. */ 2912 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2913 return RISCV_EXCP_NONE; 2914 } 2915 2916 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2917 target_ulong val) 2918 { 2919 target_ulong mask = (sstatus_v1_10_mask); 2920 2921 if (env->xl != MXL_RV32 || env->debugger) { 2922 if ((val & SSTATUS64_UXL) != 0) { 2923 mask |= SSTATUS64_UXL; 2924 } 2925 } 2926 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2927 return write_mstatus(env, CSR_MSTATUS, newval); 2928 } 2929 2930 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2931 uint64_t *ret_val, 2932 uint64_t new_val, uint64_t wr_mask) 2933 { 2934 uint64_t alias_mask = (LOCAL_INTERRUPTS | VS_MODE_INTERRUPTS) & 2935 env->hideleg; 2936 uint64_t nalias_mask = LOCAL_INTERRUPTS & (~env->hideleg & env->hvien); 2937 uint64_t rval, rval_vs, vsbits; 2938 uint64_t wr_mask_vsie; 2939 uint64_t wr_mask_mie; 2940 RISCVException ret; 2941 2942 /* Bring VS-level bits to correct position */ 2943 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2944 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2945 new_val |= vsbits << 1; 2946 2947 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2948 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2949 wr_mask |= vsbits << 1; 2950 2951 wr_mask_mie = wr_mask & alias_mask; 2952 wr_mask_vsie = wr_mask & nalias_mask; 2953 2954 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask_mie); 2955 2956 rval_vs = env->vsie & nalias_mask; 2957 env->vsie = (env->vsie & ~wr_mask_vsie) | (new_val & wr_mask_vsie); 2958 2959 if (ret_val) { 2960 rval &= alias_mask; 2961 vsbits = rval & VS_MODE_INTERRUPTS; 2962 rval &= ~VS_MODE_INTERRUPTS; 2963 *ret_val = rval | (vsbits >> 1) | rval_vs; 2964 } 2965 2966 return ret; 2967 } 2968 2969 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2970 target_ulong *ret_val, 2971 target_ulong new_val, target_ulong wr_mask) 2972 { 2973 uint64_t rval; 2974 RISCVException ret; 2975 2976 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2977 if (ret_val) { 2978 *ret_val = rval; 2979 } 2980 2981 return ret; 2982 } 2983 2984 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2985 target_ulong *ret_val, 2986 target_ulong new_val, target_ulong wr_mask) 2987 { 2988 uint64_t rval; 2989 RISCVException ret; 2990 2991 ret = rmw_vsie64(env, csrno, &rval, 2992 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2993 if (ret_val) { 2994 *ret_val = rval >> 32; 2995 } 2996 2997 return ret; 2998 } 2999 3000 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 3001 uint64_t *ret_val, 3002 uint64_t new_val, uint64_t wr_mask) 3003 { 3004 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 3005 (~env->mideleg & env->mvien); 3006 uint64_t alias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & env->mideleg; 3007 uint64_t sie_mask = wr_mask & nalias_mask; 3008 RISCVException ret; 3009 3010 /* 3011 * mideleg[i] mvien[i] 3012 * 0 0 sie[i] read-only zero. 3013 * 0 1 sie[i] is a separate writable bit. 3014 * 1 X sie[i] alias of mie[i]. 3015 * 3016 * Both alias and non-alias mask remain same for sip except for bits 3017 * which are zero in both mideleg and mvien. 3018 */ 3019 if (env->virt_enabled) { 3020 if (env->hvictl & HVICTL_VTI) { 3021 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3022 } 3023 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 3024 if (ret_val) { 3025 *ret_val &= alias_mask; 3026 } 3027 } else { 3028 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & alias_mask); 3029 if (ret_val) { 3030 *ret_val &= alias_mask; 3031 *ret_val |= env->sie & nalias_mask; 3032 } 3033 3034 env->sie = (env->sie & ~sie_mask) | (new_val & sie_mask); 3035 } 3036 3037 return ret; 3038 } 3039 3040 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 3041 target_ulong *ret_val, 3042 target_ulong new_val, target_ulong wr_mask) 3043 { 3044 uint64_t rval; 3045 RISCVException ret; 3046 3047 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 3048 if (ret == RISCV_EXCP_NONE && ret_val) { 3049 *ret_val = rval; 3050 } 3051 3052 return ret; 3053 } 3054 3055 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 3056 target_ulong *ret_val, 3057 target_ulong new_val, target_ulong wr_mask) 3058 { 3059 uint64_t rval; 3060 RISCVException ret; 3061 3062 ret = rmw_sie64(env, csrno, &rval, 3063 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3064 if (ret_val) { 3065 *ret_val = rval >> 32; 3066 } 3067 3068 return ret; 3069 } 3070 3071 static RISCVException read_stvec(CPURISCVState *env, int csrno, 3072 target_ulong *val) 3073 { 3074 *val = env->stvec; 3075 return RISCV_EXCP_NONE; 3076 } 3077 3078 static RISCVException write_stvec(CPURISCVState *env, int csrno, 3079 target_ulong val) 3080 { 3081 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 3082 if ((val & 3) < 2) { 3083 env->stvec = val; 3084 } else { 3085 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 3086 } 3087 return RISCV_EXCP_NONE; 3088 } 3089 3090 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 3091 target_ulong *val) 3092 { 3093 *val = env->scounteren; 3094 return RISCV_EXCP_NONE; 3095 } 3096 3097 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 3098 target_ulong val) 3099 { 3100 RISCVCPU *cpu = env_archcpu(env); 3101 3102 /* WARL register - disable unavailable counters */ 3103 env->scounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 3104 COUNTEREN_IR); 3105 return RISCV_EXCP_NONE; 3106 } 3107 3108 /* Supervisor Trap Handling */ 3109 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 3110 Int128 *val) 3111 { 3112 *val = int128_make128(env->sscratch, env->sscratchh); 3113 return RISCV_EXCP_NONE; 3114 } 3115 3116 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 3117 Int128 val) 3118 { 3119 env->sscratch = int128_getlo(val); 3120 env->sscratchh = int128_gethi(val); 3121 return RISCV_EXCP_NONE; 3122 } 3123 3124 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 3125 target_ulong *val) 3126 { 3127 *val = env->sscratch; 3128 return RISCV_EXCP_NONE; 3129 } 3130 3131 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 3132 target_ulong val) 3133 { 3134 env->sscratch = val; 3135 return RISCV_EXCP_NONE; 3136 } 3137 3138 static RISCVException read_sepc(CPURISCVState *env, int csrno, 3139 target_ulong *val) 3140 { 3141 *val = env->sepc; 3142 return RISCV_EXCP_NONE; 3143 } 3144 3145 static RISCVException write_sepc(CPURISCVState *env, int csrno, 3146 target_ulong val) 3147 { 3148 env->sepc = val; 3149 return RISCV_EXCP_NONE; 3150 } 3151 3152 static RISCVException read_scause(CPURISCVState *env, int csrno, 3153 target_ulong *val) 3154 { 3155 *val = env->scause; 3156 return RISCV_EXCP_NONE; 3157 } 3158 3159 static RISCVException write_scause(CPURISCVState *env, int csrno, 3160 target_ulong val) 3161 { 3162 env->scause = val; 3163 return RISCV_EXCP_NONE; 3164 } 3165 3166 static RISCVException read_stval(CPURISCVState *env, int csrno, 3167 target_ulong *val) 3168 { 3169 *val = env->stval; 3170 return RISCV_EXCP_NONE; 3171 } 3172 3173 static RISCVException write_stval(CPURISCVState *env, int csrno, 3174 target_ulong val) 3175 { 3176 env->stval = val; 3177 return RISCV_EXCP_NONE; 3178 } 3179 3180 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 3181 uint64_t *ret_val, 3182 uint64_t new_val, uint64_t wr_mask); 3183 3184 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 3185 uint64_t *ret_val, 3186 uint64_t new_val, uint64_t wr_mask) 3187 { 3188 RISCVException ret; 3189 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 3190 uint64_t vsbits; 3191 3192 /* Add virtualized bits into vsip mask. */ 3193 mask |= env->hvien & ~env->hideleg; 3194 3195 /* Bring VS-level bits to correct position */ 3196 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 3197 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 3198 new_val |= vsbits << 1; 3199 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 3200 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 3201 wr_mask |= vsbits << 1; 3202 3203 ret = rmw_hvip64(env, csrno, &rval, new_val, 3204 wr_mask & mask & vsip_writable_mask); 3205 if (ret_val) { 3206 rval &= mask; 3207 vsbits = rval & VS_MODE_INTERRUPTS; 3208 rval &= ~VS_MODE_INTERRUPTS; 3209 *ret_val = rval | (vsbits >> 1); 3210 } 3211 3212 return ret; 3213 } 3214 3215 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 3216 target_ulong *ret_val, 3217 target_ulong new_val, target_ulong wr_mask) 3218 { 3219 uint64_t rval; 3220 RISCVException ret; 3221 3222 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 3223 if (ret_val) { 3224 *ret_val = rval; 3225 } 3226 3227 return ret; 3228 } 3229 3230 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 3231 target_ulong *ret_val, 3232 target_ulong new_val, target_ulong wr_mask) 3233 { 3234 uint64_t rval; 3235 RISCVException ret; 3236 3237 ret = rmw_vsip64(env, csrno, &rval, 3238 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3239 if (ret_val) { 3240 *ret_val = rval >> 32; 3241 } 3242 3243 return ret; 3244 } 3245 3246 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 3247 uint64_t *ret_val, 3248 uint64_t new_val, uint64_t wr_mask) 3249 { 3250 RISCVException ret; 3251 uint64_t mask = (env->mideleg | env->mvien) & sip_writable_mask; 3252 3253 if (env->virt_enabled) { 3254 if (env->hvictl & HVICTL_VTI) { 3255 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3256 } 3257 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 3258 } else { 3259 ret = rmw_mvip64(env, csrno, ret_val, new_val, wr_mask & mask); 3260 } 3261 3262 if (ret_val) { 3263 *ret_val &= (env->mideleg | env->mvien) & 3264 (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS); 3265 } 3266 3267 return ret; 3268 } 3269 3270 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 3271 target_ulong *ret_val, 3272 target_ulong new_val, target_ulong wr_mask) 3273 { 3274 uint64_t rval; 3275 RISCVException ret; 3276 3277 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 3278 if (ret_val) { 3279 *ret_val = rval; 3280 } 3281 3282 return ret; 3283 } 3284 3285 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 3286 target_ulong *ret_val, 3287 target_ulong new_val, target_ulong wr_mask) 3288 { 3289 uint64_t rval; 3290 RISCVException ret; 3291 3292 ret = rmw_sip64(env, csrno, &rval, 3293 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3294 if (ret_val) { 3295 *ret_val = rval >> 32; 3296 } 3297 3298 return ret; 3299 } 3300 3301 /* Supervisor Protection and Translation */ 3302 static RISCVException read_satp(CPURISCVState *env, int csrno, 3303 target_ulong *val) 3304 { 3305 if (!riscv_cpu_cfg(env)->mmu) { 3306 *val = 0; 3307 return RISCV_EXCP_NONE; 3308 } 3309 *val = env->satp; 3310 return RISCV_EXCP_NONE; 3311 } 3312 3313 static RISCVException write_satp(CPURISCVState *env, int csrno, 3314 target_ulong val) 3315 { 3316 if (!riscv_cpu_cfg(env)->mmu) { 3317 return RISCV_EXCP_NONE; 3318 } 3319 3320 env->satp = legalize_xatp(env, env->satp, val); 3321 return RISCV_EXCP_NONE; 3322 } 3323 3324 static RISCVException read_vstopi(CPURISCVState *env, int csrno, 3325 target_ulong *val) 3326 { 3327 int irq, ret; 3328 target_ulong topei; 3329 uint64_t vseip, vsgein; 3330 uint32_t iid, iprio, hviid, hviprio, gein; 3331 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 3332 3333 gein = get_field(env->hstatus, HSTATUS_VGEIN); 3334 hviid = get_field(env->hvictl, HVICTL_IID); 3335 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 3336 3337 if (gein) { 3338 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 3339 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 3340 if (gein <= env->geilen && vseip) { 3341 siid[scount] = IRQ_S_EXT; 3342 siprio[scount] = IPRIO_MMAXIPRIO + 1; 3343 if (env->aia_ireg_rmw_fn[PRV_S]) { 3344 /* 3345 * Call machine specific IMSIC register emulation for 3346 * reading TOPEI. 3347 */ 3348 ret = env->aia_ireg_rmw_fn[PRV_S]( 3349 env->aia_ireg_rmw_fn_arg[PRV_S], 3350 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 3351 riscv_cpu_mxl_bits(env)), 3352 &topei, 0, 0); 3353 if (!ret && topei) { 3354 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 3355 } 3356 } 3357 scount++; 3358 } 3359 } else { 3360 if (hviid == IRQ_S_EXT && hviprio) { 3361 siid[scount] = IRQ_S_EXT; 3362 siprio[scount] = hviprio; 3363 scount++; 3364 } 3365 } 3366 3367 if (env->hvictl & HVICTL_VTI) { 3368 if (hviid != IRQ_S_EXT) { 3369 siid[scount] = hviid; 3370 siprio[scount] = hviprio; 3371 scount++; 3372 } 3373 } else { 3374 irq = riscv_cpu_vsirq_pending(env); 3375 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 3376 siid[scount] = irq; 3377 siprio[scount] = env->hviprio[irq]; 3378 scount++; 3379 } 3380 } 3381 3382 iid = 0; 3383 iprio = UINT_MAX; 3384 for (s = 0; s < scount; s++) { 3385 if (siprio[s] < iprio) { 3386 iid = siid[s]; 3387 iprio = siprio[s]; 3388 } 3389 } 3390 3391 if (iid) { 3392 if (env->hvictl & HVICTL_IPRIOM) { 3393 if (iprio > IPRIO_MMAXIPRIO) { 3394 iprio = IPRIO_MMAXIPRIO; 3395 } 3396 if (!iprio) { 3397 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 3398 iprio = IPRIO_MMAXIPRIO; 3399 } 3400 } 3401 } else { 3402 iprio = 1; 3403 } 3404 } else { 3405 iprio = 0; 3406 } 3407 3408 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 3409 *val |= iprio; 3410 3411 return RISCV_EXCP_NONE; 3412 } 3413 3414 static RISCVException read_stopi(CPURISCVState *env, int csrno, 3415 target_ulong *val) 3416 { 3417 int irq; 3418 uint8_t iprio; 3419 3420 if (env->virt_enabled) { 3421 return read_vstopi(env, CSR_VSTOPI, val); 3422 } 3423 3424 irq = riscv_cpu_sirq_pending(env); 3425 if (irq <= 0 || irq > 63) { 3426 *val = 0; 3427 } else { 3428 iprio = env->siprio[irq]; 3429 if (!iprio) { 3430 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 3431 iprio = IPRIO_MMAXIPRIO; 3432 } 3433 } 3434 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 3435 *val |= iprio; 3436 } 3437 3438 return RISCV_EXCP_NONE; 3439 } 3440 3441 /* Hypervisor Extensions */ 3442 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 3443 target_ulong *val) 3444 { 3445 *val = env->hstatus; 3446 if (riscv_cpu_mxl(env) != MXL_RV32) { 3447 /* We only support 64-bit VSXL */ 3448 *val = set_field(*val, HSTATUS_VSXL, 2); 3449 } 3450 /* We only support little endian */ 3451 *val = set_field(*val, HSTATUS_VSBE, 0); 3452 return RISCV_EXCP_NONE; 3453 } 3454 3455 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 3456 target_ulong val) 3457 { 3458 env->hstatus = val; 3459 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 3460 qemu_log_mask(LOG_UNIMP, 3461 "QEMU does not support mixed HSXLEN options."); 3462 } 3463 if (get_field(val, HSTATUS_VSBE) != 0) { 3464 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 3465 } 3466 return RISCV_EXCP_NONE; 3467 } 3468 3469 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 3470 target_ulong *val) 3471 { 3472 *val = env->hedeleg; 3473 return RISCV_EXCP_NONE; 3474 } 3475 3476 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 3477 target_ulong val) 3478 { 3479 env->hedeleg = val & vs_delegable_excps; 3480 return RISCV_EXCP_NONE; 3481 } 3482 3483 static RISCVException read_hedelegh(CPURISCVState *env, int csrno, 3484 target_ulong *val) 3485 { 3486 RISCVException ret; 3487 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 3488 if (ret != RISCV_EXCP_NONE) { 3489 return ret; 3490 } 3491 3492 /* Reserved, now read zero */ 3493 *val = 0; 3494 return RISCV_EXCP_NONE; 3495 } 3496 3497 static RISCVException write_hedelegh(CPURISCVState *env, int csrno, 3498 target_ulong val) 3499 { 3500 RISCVException ret; 3501 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 3502 if (ret != RISCV_EXCP_NONE) { 3503 return ret; 3504 } 3505 3506 /* Reserved, now write ignore */ 3507 return RISCV_EXCP_NONE; 3508 } 3509 3510 static RISCVException rmw_hvien64(CPURISCVState *env, int csrno, 3511 uint64_t *ret_val, 3512 uint64_t new_val, uint64_t wr_mask) 3513 { 3514 uint64_t mask = wr_mask & hvien_writable_mask; 3515 3516 if (ret_val) { 3517 *ret_val = env->hvien; 3518 } 3519 3520 env->hvien = (env->hvien & ~mask) | (new_val & mask); 3521 3522 return RISCV_EXCP_NONE; 3523 } 3524 3525 static RISCVException rmw_hvien(CPURISCVState *env, int csrno, 3526 target_ulong *ret_val, 3527 target_ulong new_val, target_ulong wr_mask) 3528 { 3529 uint64_t rval; 3530 RISCVException ret; 3531 3532 ret = rmw_hvien64(env, csrno, &rval, new_val, wr_mask); 3533 if (ret_val) { 3534 *ret_val = rval; 3535 } 3536 3537 return ret; 3538 } 3539 3540 static RISCVException rmw_hvienh(CPURISCVState *env, int csrno, 3541 target_ulong *ret_val, 3542 target_ulong new_val, target_ulong wr_mask) 3543 { 3544 uint64_t rval; 3545 RISCVException ret; 3546 3547 ret = rmw_hvien64(env, csrno, &rval, 3548 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3549 if (ret_val) { 3550 *ret_val = rval >> 32; 3551 } 3552 3553 return ret; 3554 } 3555 3556 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 3557 uint64_t *ret_val, 3558 uint64_t new_val, uint64_t wr_mask) 3559 { 3560 uint64_t mask = wr_mask & vs_delegable_ints; 3561 3562 if (ret_val) { 3563 *ret_val = env->hideleg & vs_delegable_ints; 3564 } 3565 3566 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 3567 return RISCV_EXCP_NONE; 3568 } 3569 3570 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 3571 target_ulong *ret_val, 3572 target_ulong new_val, target_ulong wr_mask) 3573 { 3574 uint64_t rval; 3575 RISCVException ret; 3576 3577 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 3578 if (ret_val) { 3579 *ret_val = rval; 3580 } 3581 3582 return ret; 3583 } 3584 3585 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 3586 target_ulong *ret_val, 3587 target_ulong new_val, target_ulong wr_mask) 3588 { 3589 uint64_t rval; 3590 RISCVException ret; 3591 3592 ret = rmw_hideleg64(env, csrno, &rval, 3593 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3594 if (ret_val) { 3595 *ret_val = rval >> 32; 3596 } 3597 3598 return ret; 3599 } 3600 3601 /* 3602 * The function is written for two use-cases: 3603 * 1- To access hvip csr as is for HS-mode access. 3604 * 2- To access vsip as a combination of hvip, and mip for vs-mode. 3605 * 3606 * Both report bits 2, 6, 10 and 13:63. 3607 * vsip needs to be read-only zero when both hideleg[i] and 3608 * hvien[i] are zero. 3609 */ 3610 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 3611 uint64_t *ret_val, 3612 uint64_t new_val, uint64_t wr_mask) 3613 { 3614 RISCVException ret; 3615 uint64_t old_hvip; 3616 uint64_t ret_mip; 3617 3618 /* 3619 * For bits 10, 6 and 2, vsip[i] is an alias of hip[i]. These bits are 3620 * present in hip, hvip and mip. Where mip[i] is alias of hip[i] and hvip[i] 3621 * is OR'ed in hip[i] to inject virtual interrupts from hypervisor. These 3622 * bits are actually being maintained in mip so we read them from there. 3623 * This way we have a single source of truth and allows for easier 3624 * implementation. 3625 * 3626 * For bits 13:63 we have: 3627 * 3628 * hideleg[i] hvien[i] 3629 * 0 0 No delegation. vsip[i] readonly zero. 3630 * 0 1 vsip[i] is alias of hvip[i], sip bypassed. 3631 * 1 X vsip[i] is alias of sip[i], hvip bypassed. 3632 * 3633 * alias_mask denotes the bits that come from sip (mip here given we 3634 * maintain all bits there). nalias_mask denotes bits that come from 3635 * hvip. 3636 */ 3637 uint64_t alias_mask = (env->hideleg | ~env->hvien) | VS_MODE_INTERRUPTS; 3638 uint64_t nalias_mask = (~env->hideleg & env->hvien); 3639 uint64_t wr_mask_hvip; 3640 uint64_t wr_mask_mip; 3641 3642 /* 3643 * Both alias and non-alias mask remain same for vsip except: 3644 * 1- For VS* bits if they are zero in hideleg. 3645 * 2- For 13:63 bits if they are zero in both hideleg and hvien. 3646 */ 3647 if (csrno == CSR_VSIP) { 3648 /* zero-out VS* bits that are not delegated to VS mode. */ 3649 alias_mask &= (env->hideleg | ~VS_MODE_INTERRUPTS); 3650 3651 /* 3652 * zero-out 13:63 bits that are zero in both hideleg and hvien. 3653 * nalias_mask mask can not contain any VS* bits so only second 3654 * condition applies on it. 3655 */ 3656 nalias_mask &= (env->hideleg | env->hvien); 3657 alias_mask &= (env->hideleg | env->hvien); 3658 } 3659 3660 wr_mask_hvip = wr_mask & nalias_mask & hvip_writable_mask; 3661 wr_mask_mip = wr_mask & alias_mask & hvip_writable_mask; 3662 3663 /* Aliased bits, bits 10, 6, 2 need to come from mip. */ 3664 ret = rmw_mip64(env, csrno, &ret_mip, new_val, wr_mask_mip); 3665 if (ret != RISCV_EXCP_NONE) { 3666 return ret; 3667 } 3668 3669 old_hvip = env->hvip; 3670 3671 if (wr_mask_hvip) { 3672 env->hvip = (env->hvip & ~wr_mask_hvip) | (new_val & wr_mask_hvip); 3673 3674 /* 3675 * Given hvip is separate source from mip, we need to trigger interrupt 3676 * from here separately. Normally this happen from riscv_cpu_update_mip. 3677 */ 3678 riscv_cpu_interrupt(env); 3679 } 3680 3681 if (ret_val) { 3682 /* Only take VS* bits from mip. */ 3683 ret_mip &= alias_mask; 3684 3685 /* Take in non-delegated 13:63 bits from hvip. */ 3686 old_hvip &= nalias_mask; 3687 3688 *ret_val = ret_mip | old_hvip; 3689 } 3690 3691 return ret; 3692 } 3693 3694 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 3695 target_ulong *ret_val, 3696 target_ulong new_val, target_ulong wr_mask) 3697 { 3698 uint64_t rval; 3699 RISCVException ret; 3700 3701 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 3702 if (ret_val) { 3703 *ret_val = rval; 3704 } 3705 3706 return ret; 3707 } 3708 3709 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 3710 target_ulong *ret_val, 3711 target_ulong new_val, target_ulong wr_mask) 3712 { 3713 uint64_t rval; 3714 RISCVException ret; 3715 3716 ret = rmw_hvip64(env, csrno, &rval, 3717 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3718 if (ret_val) { 3719 *ret_val = rval >> 32; 3720 } 3721 3722 return ret; 3723 } 3724 3725 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 3726 target_ulong *ret_value, 3727 target_ulong new_value, target_ulong write_mask) 3728 { 3729 int ret = rmw_mip(env, csrno, ret_value, new_value, 3730 write_mask & hip_writable_mask); 3731 3732 if (ret_value) { 3733 *ret_value &= HS_MODE_INTERRUPTS; 3734 } 3735 return ret; 3736 } 3737 3738 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 3739 target_ulong *ret_val, 3740 target_ulong new_val, target_ulong wr_mask) 3741 { 3742 uint64_t rval; 3743 RISCVException ret; 3744 3745 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 3746 if (ret_val) { 3747 *ret_val = rval & HS_MODE_INTERRUPTS; 3748 } 3749 3750 return ret; 3751 } 3752 3753 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 3754 target_ulong *val) 3755 { 3756 *val = env->hcounteren; 3757 return RISCV_EXCP_NONE; 3758 } 3759 3760 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 3761 target_ulong val) 3762 { 3763 RISCVCPU *cpu = env_archcpu(env); 3764 3765 /* WARL register - disable unavailable counters */ 3766 env->hcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 3767 COUNTEREN_IR); 3768 return RISCV_EXCP_NONE; 3769 } 3770 3771 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 3772 target_ulong *val) 3773 { 3774 if (val) { 3775 *val = env->hgeie; 3776 } 3777 return RISCV_EXCP_NONE; 3778 } 3779 3780 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 3781 target_ulong val) 3782 { 3783 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 3784 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 3785 env->hgeie = val; 3786 /* Update mip.SGEIP bit */ 3787 riscv_cpu_update_mip(env, MIP_SGEIP, 3788 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 3789 return RISCV_EXCP_NONE; 3790 } 3791 3792 static RISCVException read_htval(CPURISCVState *env, int csrno, 3793 target_ulong *val) 3794 { 3795 *val = env->htval; 3796 return RISCV_EXCP_NONE; 3797 } 3798 3799 static RISCVException write_htval(CPURISCVState *env, int csrno, 3800 target_ulong val) 3801 { 3802 env->htval = val; 3803 return RISCV_EXCP_NONE; 3804 } 3805 3806 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3807 target_ulong *val) 3808 { 3809 *val = env->htinst; 3810 return RISCV_EXCP_NONE; 3811 } 3812 3813 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3814 target_ulong val) 3815 { 3816 return RISCV_EXCP_NONE; 3817 } 3818 3819 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3820 target_ulong *val) 3821 { 3822 if (val) { 3823 *val = env->hgeip; 3824 } 3825 return RISCV_EXCP_NONE; 3826 } 3827 3828 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3829 target_ulong *val) 3830 { 3831 *val = env->hgatp; 3832 return RISCV_EXCP_NONE; 3833 } 3834 3835 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3836 target_ulong val) 3837 { 3838 env->hgatp = legalize_xatp(env, env->hgatp, val); 3839 return RISCV_EXCP_NONE; 3840 } 3841 3842 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3843 target_ulong *val) 3844 { 3845 if (!env->rdtime_fn) { 3846 return RISCV_EXCP_ILLEGAL_INST; 3847 } 3848 3849 *val = env->htimedelta; 3850 return RISCV_EXCP_NONE; 3851 } 3852 3853 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3854 target_ulong val) 3855 { 3856 if (!env->rdtime_fn) { 3857 return RISCV_EXCP_ILLEGAL_INST; 3858 } 3859 3860 if (riscv_cpu_mxl(env) == MXL_RV32) { 3861 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3862 } else { 3863 env->htimedelta = val; 3864 } 3865 3866 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3867 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3868 env->htimedelta, MIP_VSTIP); 3869 } 3870 3871 return RISCV_EXCP_NONE; 3872 } 3873 3874 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3875 target_ulong *val) 3876 { 3877 if (!env->rdtime_fn) { 3878 return RISCV_EXCP_ILLEGAL_INST; 3879 } 3880 3881 *val = env->htimedelta >> 32; 3882 return RISCV_EXCP_NONE; 3883 } 3884 3885 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3886 target_ulong val) 3887 { 3888 if (!env->rdtime_fn) { 3889 return RISCV_EXCP_ILLEGAL_INST; 3890 } 3891 3892 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3893 3894 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3895 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3896 env->htimedelta, MIP_VSTIP); 3897 } 3898 3899 return RISCV_EXCP_NONE; 3900 } 3901 3902 static RISCVException read_hvictl(CPURISCVState *env, int csrno, 3903 target_ulong *val) 3904 { 3905 *val = env->hvictl; 3906 return RISCV_EXCP_NONE; 3907 } 3908 3909 static RISCVException write_hvictl(CPURISCVState *env, int csrno, 3910 target_ulong val) 3911 { 3912 env->hvictl = val & HVICTL_VALID_MASK; 3913 return RISCV_EXCP_NONE; 3914 } 3915 3916 static RISCVException read_hvipriox(CPURISCVState *env, int first_index, 3917 uint8_t *iprio, target_ulong *val) 3918 { 3919 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3920 3921 /* First index has to be a multiple of number of irqs per register */ 3922 if (first_index % num_irqs) { 3923 return (env->virt_enabled) ? 3924 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3925 } 3926 3927 /* Fill-up return value */ 3928 *val = 0; 3929 for (i = 0; i < num_irqs; i++) { 3930 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3931 continue; 3932 } 3933 if (rdzero) { 3934 continue; 3935 } 3936 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3937 } 3938 3939 return RISCV_EXCP_NONE; 3940 } 3941 3942 static RISCVException write_hvipriox(CPURISCVState *env, int first_index, 3943 uint8_t *iprio, target_ulong val) 3944 { 3945 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3946 3947 /* First index has to be a multiple of number of irqs per register */ 3948 if (first_index % num_irqs) { 3949 return (env->virt_enabled) ? 3950 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3951 } 3952 3953 /* Fill-up priority array */ 3954 for (i = 0; i < num_irqs; i++) { 3955 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3956 continue; 3957 } 3958 if (rdzero) { 3959 iprio[irq] = 0; 3960 } else { 3961 iprio[irq] = (val >> (i * 8)) & 0xff; 3962 } 3963 } 3964 3965 return RISCV_EXCP_NONE; 3966 } 3967 3968 static RISCVException read_hviprio1(CPURISCVState *env, int csrno, 3969 target_ulong *val) 3970 { 3971 return read_hvipriox(env, 0, env->hviprio, val); 3972 } 3973 3974 static RISCVException write_hviprio1(CPURISCVState *env, int csrno, 3975 target_ulong val) 3976 { 3977 return write_hvipriox(env, 0, env->hviprio, val); 3978 } 3979 3980 static RISCVException read_hviprio1h(CPURISCVState *env, int csrno, 3981 target_ulong *val) 3982 { 3983 return read_hvipriox(env, 4, env->hviprio, val); 3984 } 3985 3986 static RISCVException write_hviprio1h(CPURISCVState *env, int csrno, 3987 target_ulong val) 3988 { 3989 return write_hvipriox(env, 4, env->hviprio, val); 3990 } 3991 3992 static RISCVException read_hviprio2(CPURISCVState *env, int csrno, 3993 target_ulong *val) 3994 { 3995 return read_hvipriox(env, 8, env->hviprio, val); 3996 } 3997 3998 static RISCVException write_hviprio2(CPURISCVState *env, int csrno, 3999 target_ulong val) 4000 { 4001 return write_hvipriox(env, 8, env->hviprio, val); 4002 } 4003 4004 static RISCVException read_hviprio2h(CPURISCVState *env, int csrno, 4005 target_ulong *val) 4006 { 4007 return read_hvipriox(env, 12, env->hviprio, val); 4008 } 4009 4010 static RISCVException write_hviprio2h(CPURISCVState *env, int csrno, 4011 target_ulong val) 4012 { 4013 return write_hvipriox(env, 12, env->hviprio, val); 4014 } 4015 4016 /* Virtual CSR Registers */ 4017 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 4018 target_ulong *val) 4019 { 4020 *val = env->vsstatus; 4021 return RISCV_EXCP_NONE; 4022 } 4023 4024 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 4025 target_ulong val) 4026 { 4027 uint64_t mask = (target_ulong)-1; 4028 if ((val & VSSTATUS64_UXL) == 0) { 4029 mask &= ~VSSTATUS64_UXL; 4030 } 4031 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 4032 return RISCV_EXCP_NONE; 4033 } 4034 4035 static RISCVException read_vstvec(CPURISCVState *env, int csrno, 4036 target_ulong *val) 4037 { 4038 *val = env->vstvec; 4039 return RISCV_EXCP_NONE; 4040 } 4041 4042 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 4043 target_ulong val) 4044 { 4045 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 4046 if ((val & 3) < 2) { 4047 env->vstvec = val; 4048 } else { 4049 qemu_log_mask(LOG_UNIMP, "CSR_VSTVEC: reserved mode not supported\n"); 4050 } 4051 return RISCV_EXCP_NONE; 4052 } 4053 4054 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 4055 target_ulong *val) 4056 { 4057 *val = env->vsscratch; 4058 return RISCV_EXCP_NONE; 4059 } 4060 4061 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 4062 target_ulong val) 4063 { 4064 env->vsscratch = val; 4065 return RISCV_EXCP_NONE; 4066 } 4067 4068 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 4069 target_ulong *val) 4070 { 4071 *val = env->vsepc; 4072 return RISCV_EXCP_NONE; 4073 } 4074 4075 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 4076 target_ulong val) 4077 { 4078 env->vsepc = val; 4079 return RISCV_EXCP_NONE; 4080 } 4081 4082 static RISCVException read_vscause(CPURISCVState *env, int csrno, 4083 target_ulong *val) 4084 { 4085 *val = env->vscause; 4086 return RISCV_EXCP_NONE; 4087 } 4088 4089 static RISCVException write_vscause(CPURISCVState *env, int csrno, 4090 target_ulong val) 4091 { 4092 env->vscause = val; 4093 return RISCV_EXCP_NONE; 4094 } 4095 4096 static RISCVException read_vstval(CPURISCVState *env, int csrno, 4097 target_ulong *val) 4098 { 4099 *val = env->vstval; 4100 return RISCV_EXCP_NONE; 4101 } 4102 4103 static RISCVException write_vstval(CPURISCVState *env, int csrno, 4104 target_ulong val) 4105 { 4106 env->vstval = val; 4107 return RISCV_EXCP_NONE; 4108 } 4109 4110 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 4111 target_ulong *val) 4112 { 4113 *val = env->vsatp; 4114 return RISCV_EXCP_NONE; 4115 } 4116 4117 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 4118 target_ulong val) 4119 { 4120 env->vsatp = legalize_xatp(env, env->vsatp, val); 4121 return RISCV_EXCP_NONE; 4122 } 4123 4124 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 4125 target_ulong *val) 4126 { 4127 *val = env->mtval2; 4128 return RISCV_EXCP_NONE; 4129 } 4130 4131 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 4132 target_ulong val) 4133 { 4134 env->mtval2 = val; 4135 return RISCV_EXCP_NONE; 4136 } 4137 4138 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 4139 target_ulong *val) 4140 { 4141 *val = env->mtinst; 4142 return RISCV_EXCP_NONE; 4143 } 4144 4145 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 4146 target_ulong val) 4147 { 4148 env->mtinst = val; 4149 return RISCV_EXCP_NONE; 4150 } 4151 4152 /* Physical Memory Protection */ 4153 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 4154 target_ulong *val) 4155 { 4156 *val = mseccfg_csr_read(env); 4157 return RISCV_EXCP_NONE; 4158 } 4159 4160 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 4161 target_ulong val) 4162 { 4163 mseccfg_csr_write(env, val); 4164 return RISCV_EXCP_NONE; 4165 } 4166 4167 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 4168 target_ulong *val) 4169 { 4170 uint32_t reg_index = csrno - CSR_PMPCFG0; 4171 4172 *val = pmpcfg_csr_read(env, reg_index); 4173 return RISCV_EXCP_NONE; 4174 } 4175 4176 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 4177 target_ulong val) 4178 { 4179 uint32_t reg_index = csrno - CSR_PMPCFG0; 4180 4181 pmpcfg_csr_write(env, reg_index, val); 4182 return RISCV_EXCP_NONE; 4183 } 4184 4185 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 4186 target_ulong *val) 4187 { 4188 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 4189 return RISCV_EXCP_NONE; 4190 } 4191 4192 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 4193 target_ulong val) 4194 { 4195 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 4196 return RISCV_EXCP_NONE; 4197 } 4198 4199 static RISCVException read_tselect(CPURISCVState *env, int csrno, 4200 target_ulong *val) 4201 { 4202 *val = tselect_csr_read(env); 4203 return RISCV_EXCP_NONE; 4204 } 4205 4206 static RISCVException write_tselect(CPURISCVState *env, int csrno, 4207 target_ulong val) 4208 { 4209 tselect_csr_write(env, val); 4210 return RISCV_EXCP_NONE; 4211 } 4212 4213 static RISCVException read_tdata(CPURISCVState *env, int csrno, 4214 target_ulong *val) 4215 { 4216 /* return 0 in tdata1 to end the trigger enumeration */ 4217 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 4218 *val = 0; 4219 return RISCV_EXCP_NONE; 4220 } 4221 4222 if (!tdata_available(env, csrno - CSR_TDATA1)) { 4223 return RISCV_EXCP_ILLEGAL_INST; 4224 } 4225 4226 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 4227 return RISCV_EXCP_NONE; 4228 } 4229 4230 static RISCVException write_tdata(CPURISCVState *env, int csrno, 4231 target_ulong val) 4232 { 4233 if (!tdata_available(env, csrno - CSR_TDATA1)) { 4234 return RISCV_EXCP_ILLEGAL_INST; 4235 } 4236 4237 tdata_csr_write(env, csrno - CSR_TDATA1, val); 4238 return RISCV_EXCP_NONE; 4239 } 4240 4241 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 4242 target_ulong *val) 4243 { 4244 *val = tinfo_csr_read(env); 4245 return RISCV_EXCP_NONE; 4246 } 4247 4248 static RISCVException read_mcontext(CPURISCVState *env, int csrno, 4249 target_ulong *val) 4250 { 4251 *val = env->mcontext; 4252 return RISCV_EXCP_NONE; 4253 } 4254 4255 static RISCVException write_mcontext(CPURISCVState *env, int csrno, 4256 target_ulong val) 4257 { 4258 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 4259 int32_t mask; 4260 4261 if (riscv_has_ext(env, RVH)) { 4262 /* Spec suggest 7-bit for RV32 and 14-bit for RV64 w/ H extension */ 4263 mask = rv32 ? MCONTEXT32_HCONTEXT : MCONTEXT64_HCONTEXT; 4264 } else { 4265 /* Spec suggest 6-bit for RV32 and 13-bit for RV64 w/o H extension */ 4266 mask = rv32 ? MCONTEXT32 : MCONTEXT64; 4267 } 4268 4269 env->mcontext = val & mask; 4270 return RISCV_EXCP_NONE; 4271 } 4272 4273 /* 4274 * Functions to access Pointer Masking feature registers 4275 * We have to check if current priv lvl could modify 4276 * csr in given mode 4277 */ 4278 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 4279 { 4280 int csr_priv = get_field(csrno, 0x300); 4281 int pm_current; 4282 4283 if (env->debugger) { 4284 return false; 4285 } 4286 /* 4287 * If priv lvls differ that means we're accessing csr from higher priv lvl, 4288 * so allow the access 4289 */ 4290 if (env->priv != csr_priv) { 4291 return false; 4292 } 4293 switch (env->priv) { 4294 case PRV_M: 4295 pm_current = get_field(env->mmte, M_PM_CURRENT); 4296 break; 4297 case PRV_S: 4298 pm_current = get_field(env->mmte, S_PM_CURRENT); 4299 break; 4300 case PRV_U: 4301 pm_current = get_field(env->mmte, U_PM_CURRENT); 4302 break; 4303 default: 4304 g_assert_not_reached(); 4305 } 4306 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 4307 return !pm_current; 4308 } 4309 4310 static RISCVException read_mmte(CPURISCVState *env, int csrno, 4311 target_ulong *val) 4312 { 4313 *val = env->mmte & MMTE_MASK; 4314 return RISCV_EXCP_NONE; 4315 } 4316 4317 static RISCVException write_mmte(CPURISCVState *env, int csrno, 4318 target_ulong val) 4319 { 4320 uint64_t mstatus; 4321 target_ulong wpri_val = val & MMTE_MASK; 4322 4323 if (val != wpri_val) { 4324 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4325 TARGET_FMT_lx "\n", "MMTE: WPRI violation written 0x", 4326 val, "vs expected 0x", wpri_val); 4327 } 4328 /* for machine mode pm.current is hardwired to 1 */ 4329 wpri_val |= MMTE_M_PM_CURRENT; 4330 4331 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 4332 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 4333 env->mmte = wpri_val | EXT_STATUS_DIRTY; 4334 riscv_cpu_update_mask(env); 4335 4336 /* Set XS and SD bits, since PM CSRs are dirty */ 4337 mstatus = env->mstatus | MSTATUS_XS; 4338 write_mstatus(env, csrno, mstatus); 4339 return RISCV_EXCP_NONE; 4340 } 4341 4342 static RISCVException read_smte(CPURISCVState *env, int csrno, 4343 target_ulong *val) 4344 { 4345 *val = env->mmte & SMTE_MASK; 4346 return RISCV_EXCP_NONE; 4347 } 4348 4349 static RISCVException write_smte(CPURISCVState *env, int csrno, 4350 target_ulong val) 4351 { 4352 target_ulong wpri_val = val & SMTE_MASK; 4353 4354 if (val != wpri_val) { 4355 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4356 TARGET_FMT_lx "\n", "SMTE: WPRI violation written 0x", 4357 val, "vs expected 0x", wpri_val); 4358 } 4359 4360 /* if pm.current==0 we can't modify current PM CSRs */ 4361 if (check_pm_current_disabled(env, csrno)) { 4362 return RISCV_EXCP_NONE; 4363 } 4364 4365 wpri_val |= (env->mmte & ~SMTE_MASK); 4366 write_mmte(env, csrno, wpri_val); 4367 return RISCV_EXCP_NONE; 4368 } 4369 4370 static RISCVException read_umte(CPURISCVState *env, int csrno, 4371 target_ulong *val) 4372 { 4373 *val = env->mmte & UMTE_MASK; 4374 return RISCV_EXCP_NONE; 4375 } 4376 4377 static RISCVException write_umte(CPURISCVState *env, int csrno, 4378 target_ulong val) 4379 { 4380 target_ulong wpri_val = val & UMTE_MASK; 4381 4382 if (val != wpri_val) { 4383 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4384 TARGET_FMT_lx "\n", "UMTE: WPRI violation written 0x", 4385 val, "vs expected 0x", wpri_val); 4386 } 4387 4388 if (check_pm_current_disabled(env, csrno)) { 4389 return RISCV_EXCP_NONE; 4390 } 4391 4392 wpri_val |= (env->mmte & ~UMTE_MASK); 4393 write_mmte(env, csrno, wpri_val); 4394 return RISCV_EXCP_NONE; 4395 } 4396 4397 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 4398 target_ulong *val) 4399 { 4400 *val = env->mpmmask; 4401 return RISCV_EXCP_NONE; 4402 } 4403 4404 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 4405 target_ulong val) 4406 { 4407 uint64_t mstatus; 4408 4409 env->mpmmask = val; 4410 if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { 4411 env->cur_pmmask = val; 4412 } 4413 env->mmte |= EXT_STATUS_DIRTY; 4414 4415 /* Set XS and SD bits, since PM CSRs are dirty */ 4416 mstatus = env->mstatus | MSTATUS_XS; 4417 write_mstatus(env, csrno, mstatus); 4418 return RISCV_EXCP_NONE; 4419 } 4420 4421 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 4422 target_ulong *val) 4423 { 4424 *val = env->spmmask; 4425 return RISCV_EXCP_NONE; 4426 } 4427 4428 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 4429 target_ulong val) 4430 { 4431 uint64_t mstatus; 4432 4433 /* if pm.current==0 we can't modify current PM CSRs */ 4434 if (check_pm_current_disabled(env, csrno)) { 4435 return RISCV_EXCP_NONE; 4436 } 4437 env->spmmask = val; 4438 if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { 4439 env->cur_pmmask = val; 4440 if (cpu_get_xl(env, PRV_S) == MXL_RV32) { 4441 env->cur_pmmask &= UINT32_MAX; 4442 } 4443 } 4444 env->mmte |= EXT_STATUS_DIRTY; 4445 4446 /* Set XS and SD bits, since PM CSRs are dirty */ 4447 mstatus = env->mstatus | MSTATUS_XS; 4448 write_mstatus(env, csrno, mstatus); 4449 return RISCV_EXCP_NONE; 4450 } 4451 4452 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 4453 target_ulong *val) 4454 { 4455 *val = env->upmmask; 4456 return RISCV_EXCP_NONE; 4457 } 4458 4459 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 4460 target_ulong val) 4461 { 4462 uint64_t mstatus; 4463 4464 /* if pm.current==0 we can't modify current PM CSRs */ 4465 if (check_pm_current_disabled(env, csrno)) { 4466 return RISCV_EXCP_NONE; 4467 } 4468 env->upmmask = val; 4469 if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { 4470 env->cur_pmmask = val; 4471 if (cpu_get_xl(env, PRV_U) == MXL_RV32) { 4472 env->cur_pmmask &= UINT32_MAX; 4473 } 4474 } 4475 env->mmte |= EXT_STATUS_DIRTY; 4476 4477 /* Set XS and SD bits, since PM CSRs are dirty */ 4478 mstatus = env->mstatus | MSTATUS_XS; 4479 write_mstatus(env, csrno, mstatus); 4480 return RISCV_EXCP_NONE; 4481 } 4482 4483 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 4484 target_ulong *val) 4485 { 4486 *val = env->mpmbase; 4487 return RISCV_EXCP_NONE; 4488 } 4489 4490 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 4491 target_ulong val) 4492 { 4493 uint64_t mstatus; 4494 4495 env->mpmbase = val; 4496 if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { 4497 env->cur_pmbase = val; 4498 } 4499 env->mmte |= EXT_STATUS_DIRTY; 4500 4501 /* Set XS and SD bits, since PM CSRs are dirty */ 4502 mstatus = env->mstatus | MSTATUS_XS; 4503 write_mstatus(env, csrno, mstatus); 4504 return RISCV_EXCP_NONE; 4505 } 4506 4507 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 4508 target_ulong *val) 4509 { 4510 *val = env->spmbase; 4511 return RISCV_EXCP_NONE; 4512 } 4513 4514 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 4515 target_ulong val) 4516 { 4517 uint64_t mstatus; 4518 4519 /* if pm.current==0 we can't modify current PM CSRs */ 4520 if (check_pm_current_disabled(env, csrno)) { 4521 return RISCV_EXCP_NONE; 4522 } 4523 env->spmbase = val; 4524 if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { 4525 env->cur_pmbase = val; 4526 if (cpu_get_xl(env, PRV_S) == MXL_RV32) { 4527 env->cur_pmbase &= UINT32_MAX; 4528 } 4529 } 4530 env->mmte |= EXT_STATUS_DIRTY; 4531 4532 /* Set XS and SD bits, since PM CSRs are dirty */ 4533 mstatus = env->mstatus | MSTATUS_XS; 4534 write_mstatus(env, csrno, mstatus); 4535 return RISCV_EXCP_NONE; 4536 } 4537 4538 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 4539 target_ulong *val) 4540 { 4541 *val = env->upmbase; 4542 return RISCV_EXCP_NONE; 4543 } 4544 4545 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 4546 target_ulong val) 4547 { 4548 uint64_t mstatus; 4549 4550 /* if pm.current==0 we can't modify current PM CSRs */ 4551 if (check_pm_current_disabled(env, csrno)) { 4552 return RISCV_EXCP_NONE; 4553 } 4554 env->upmbase = val; 4555 if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { 4556 env->cur_pmbase = val; 4557 if (cpu_get_xl(env, PRV_U) == MXL_RV32) { 4558 env->cur_pmbase &= UINT32_MAX; 4559 } 4560 } 4561 env->mmte |= EXT_STATUS_DIRTY; 4562 4563 /* Set XS and SD bits, since PM CSRs are dirty */ 4564 mstatus = env->mstatus | MSTATUS_XS; 4565 write_mstatus(env, csrno, mstatus); 4566 return RISCV_EXCP_NONE; 4567 } 4568 4569 #endif 4570 4571 /* Crypto Extension */ 4572 target_ulong riscv_new_csr_seed(target_ulong new_value, 4573 target_ulong write_mask) 4574 { 4575 uint16_t random_v; 4576 Error *random_e = NULL; 4577 int random_r; 4578 target_ulong rval; 4579 4580 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 4581 if (unlikely(random_r < 0)) { 4582 /* 4583 * Failed, for unknown reasons in the crypto subsystem. 4584 * The best we can do is log the reason and return a 4585 * failure indication to the guest. There is no reason 4586 * we know to expect the failure to be transitory, so 4587 * indicate DEAD to avoid having the guest spin on WAIT. 4588 */ 4589 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 4590 __func__, error_get_pretty(random_e)); 4591 error_free(random_e); 4592 rval = SEED_OPST_DEAD; 4593 } else { 4594 rval = random_v | SEED_OPST_ES16; 4595 } 4596 4597 return rval; 4598 } 4599 4600 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 4601 target_ulong *ret_value, 4602 target_ulong new_value, 4603 target_ulong write_mask) 4604 { 4605 target_ulong rval; 4606 4607 rval = riscv_new_csr_seed(new_value, write_mask); 4608 4609 if (ret_value) { 4610 *ret_value = rval; 4611 } 4612 4613 return RISCV_EXCP_NONE; 4614 } 4615 4616 /* 4617 * riscv_csrrw - read and/or update control and status register 4618 * 4619 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 4620 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 4621 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 4622 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 4623 */ 4624 4625 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 4626 int csrno, 4627 bool write) 4628 { 4629 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 4630 bool read_only = get_field(csrno, 0xC00) == 3; 4631 int csr_min_priv = csr_ops[csrno].min_priv_ver; 4632 4633 /* ensure the CSR extension is enabled */ 4634 if (!riscv_cpu_cfg(env)->ext_zicsr) { 4635 return RISCV_EXCP_ILLEGAL_INST; 4636 } 4637 4638 /* ensure CSR is implemented by checking predicate */ 4639 if (!csr_ops[csrno].predicate) { 4640 return RISCV_EXCP_ILLEGAL_INST; 4641 } 4642 4643 /* privileged spec version check */ 4644 if (env->priv_ver < csr_min_priv) { 4645 return RISCV_EXCP_ILLEGAL_INST; 4646 } 4647 4648 /* read / write check */ 4649 if (write && read_only) { 4650 return RISCV_EXCP_ILLEGAL_INST; 4651 } 4652 4653 /* 4654 * The predicate() not only does existence check but also does some 4655 * access control check which triggers for example virtual instruction 4656 * exception in some cases. When writing read-only CSRs in those cases 4657 * illegal instruction exception should be triggered instead of virtual 4658 * instruction exception. Hence this comes after the read / write check. 4659 */ 4660 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 4661 if (ret != RISCV_EXCP_NONE) { 4662 return ret; 4663 } 4664 4665 #if !defined(CONFIG_USER_ONLY) 4666 int csr_priv, effective_priv = env->priv; 4667 4668 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 4669 !env->virt_enabled) { 4670 /* 4671 * We are in HS mode. Add 1 to the effective privilege level to 4672 * allow us to access the Hypervisor CSRs. 4673 */ 4674 effective_priv++; 4675 } 4676 4677 csr_priv = get_field(csrno, 0x300); 4678 if (!env->debugger && (effective_priv < csr_priv)) { 4679 if (csr_priv == (PRV_S + 1) && env->virt_enabled) { 4680 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 4681 } 4682 return RISCV_EXCP_ILLEGAL_INST; 4683 } 4684 #endif 4685 return RISCV_EXCP_NONE; 4686 } 4687 4688 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 4689 target_ulong *ret_value, 4690 target_ulong new_value, 4691 target_ulong write_mask) 4692 { 4693 RISCVException ret; 4694 target_ulong old_value = 0; 4695 4696 /* execute combined read/write operation if it exists */ 4697 if (csr_ops[csrno].op) { 4698 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 4699 } 4700 4701 /* 4702 * ret_value == NULL means that rd=x0 and we're coming from helper_csrw() 4703 * and we can't throw side effects caused by CSR reads. 4704 */ 4705 if (ret_value) { 4706 /* if no accessor exists then return failure */ 4707 if (!csr_ops[csrno].read) { 4708 return RISCV_EXCP_ILLEGAL_INST; 4709 } 4710 /* read old value */ 4711 ret = csr_ops[csrno].read(env, csrno, &old_value); 4712 if (ret != RISCV_EXCP_NONE) { 4713 return ret; 4714 } 4715 } 4716 4717 /* write value if writable and write mask set, otherwise drop writes */ 4718 if (write_mask) { 4719 new_value = (old_value & ~write_mask) | (new_value & write_mask); 4720 if (csr_ops[csrno].write) { 4721 ret = csr_ops[csrno].write(env, csrno, new_value); 4722 if (ret != RISCV_EXCP_NONE) { 4723 return ret; 4724 } 4725 } 4726 } 4727 4728 /* return old value */ 4729 if (ret_value) { 4730 *ret_value = old_value; 4731 } 4732 4733 return RISCV_EXCP_NONE; 4734 } 4735 4736 RISCVException riscv_csrr(CPURISCVState *env, int csrno, 4737 target_ulong *ret_value) 4738 { 4739 RISCVException ret = riscv_csrrw_check(env, csrno, false); 4740 if (ret != RISCV_EXCP_NONE) { 4741 return ret; 4742 } 4743 4744 return riscv_csrrw_do64(env, csrno, ret_value, 0, 0); 4745 } 4746 4747 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 4748 target_ulong *ret_value, 4749 target_ulong new_value, target_ulong write_mask) 4750 { 4751 RISCVException ret = riscv_csrrw_check(env, csrno, true); 4752 if (ret != RISCV_EXCP_NONE) { 4753 return ret; 4754 } 4755 4756 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 4757 } 4758 4759 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 4760 Int128 *ret_value, 4761 Int128 new_value, 4762 Int128 write_mask) 4763 { 4764 RISCVException ret; 4765 Int128 old_value; 4766 4767 /* read old value */ 4768 ret = csr_ops[csrno].read128(env, csrno, &old_value); 4769 if (ret != RISCV_EXCP_NONE) { 4770 return ret; 4771 } 4772 4773 /* write value if writable and write mask set, otherwise drop writes */ 4774 if (int128_nz(write_mask)) { 4775 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 4776 int128_and(new_value, write_mask)); 4777 if (csr_ops[csrno].write128) { 4778 ret = csr_ops[csrno].write128(env, csrno, new_value); 4779 if (ret != RISCV_EXCP_NONE) { 4780 return ret; 4781 } 4782 } else if (csr_ops[csrno].write) { 4783 /* avoids having to write wrappers for all registers */ 4784 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 4785 if (ret != RISCV_EXCP_NONE) { 4786 return ret; 4787 } 4788 } 4789 } 4790 4791 /* return old value */ 4792 if (ret_value) { 4793 *ret_value = old_value; 4794 } 4795 4796 return RISCV_EXCP_NONE; 4797 } 4798 4799 RISCVException riscv_csrr_i128(CPURISCVState *env, int csrno, 4800 Int128 *ret_value) 4801 { 4802 RISCVException ret; 4803 4804 ret = riscv_csrrw_check(env, csrno, false); 4805 if (ret != RISCV_EXCP_NONE) { 4806 return ret; 4807 } 4808 4809 if (csr_ops[csrno].read128) { 4810 return riscv_csrrw_do128(env, csrno, ret_value, 4811 int128_zero(), int128_zero()); 4812 } 4813 4814 /* 4815 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 4816 * at all defined. 4817 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 4818 * significant), for those, this fallback is correctly handling the 4819 * accesses 4820 */ 4821 target_ulong old_value; 4822 ret = riscv_csrrw_do64(env, csrno, &old_value, 4823 (target_ulong)0, 4824 (target_ulong)0); 4825 if (ret == RISCV_EXCP_NONE && ret_value) { 4826 *ret_value = int128_make64(old_value); 4827 } 4828 return ret; 4829 } 4830 4831 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 4832 Int128 *ret_value, 4833 Int128 new_value, Int128 write_mask) 4834 { 4835 RISCVException ret; 4836 4837 ret = riscv_csrrw_check(env, csrno, true); 4838 if (ret != RISCV_EXCP_NONE) { 4839 return ret; 4840 } 4841 4842 if (csr_ops[csrno].read128) { 4843 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 4844 } 4845 4846 /* 4847 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 4848 * at all defined. 4849 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 4850 * significant), for those, this fallback is correctly handling the 4851 * accesses 4852 */ 4853 target_ulong old_value; 4854 ret = riscv_csrrw_do64(env, csrno, &old_value, 4855 int128_getlo(new_value), 4856 int128_getlo(write_mask)); 4857 if (ret == RISCV_EXCP_NONE && ret_value) { 4858 *ret_value = int128_make64(old_value); 4859 } 4860 return ret; 4861 } 4862 4863 /* 4864 * Debugger support. If not in user mode, set env->debugger before the 4865 * riscv_csrrw call and clear it after the call. 4866 */ 4867 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 4868 target_ulong *ret_value, 4869 target_ulong new_value, 4870 target_ulong write_mask) 4871 { 4872 RISCVException ret; 4873 #if !defined(CONFIG_USER_ONLY) 4874 env->debugger = true; 4875 #endif 4876 if (!write_mask) { 4877 ret = riscv_csrr(env, csrno, ret_value); 4878 } else { 4879 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 4880 } 4881 #if !defined(CONFIG_USER_ONLY) 4882 env->debugger = false; 4883 #endif 4884 return ret; 4885 } 4886 4887 static RISCVException read_jvt(CPURISCVState *env, int csrno, 4888 target_ulong *val) 4889 { 4890 *val = env->jvt; 4891 return RISCV_EXCP_NONE; 4892 } 4893 4894 static RISCVException write_jvt(CPURISCVState *env, int csrno, 4895 target_ulong val) 4896 { 4897 env->jvt = val; 4898 return RISCV_EXCP_NONE; 4899 } 4900 4901 /* 4902 * Control and Status Register function table 4903 * riscv_csr_operations::predicate() must be provided for an implemented CSR 4904 */ 4905 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 4906 /* User Floating-Point CSRs */ 4907 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 4908 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 4909 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 4910 /* Vector CSRs */ 4911 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 4912 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 4913 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4914 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4915 [CSR_VL] = { "vl", vs, read_vl }, 4916 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4917 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4918 /* User Timers and Counters */ 4919 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4920 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4921 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4922 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4923 4924 /* 4925 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4926 * rdtime callback is not provided by machine/platform emulation. 4927 */ 4928 [CSR_TIME] = { "time", ctr, read_time }, 4929 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4930 4931 /* Crypto Extension */ 4932 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4933 4934 /* Zcmt Extension */ 4935 [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, 4936 4937 #if !defined(CONFIG_USER_ONLY) 4938 /* Machine Timers and Counters */ 4939 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4940 write_mhpmcounter }, 4941 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4942 write_mhpmcounter }, 4943 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4944 write_mhpmcounterh }, 4945 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4946 write_mhpmcounterh }, 4947 4948 /* Machine Information Registers */ 4949 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4950 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4951 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4952 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4953 4954 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4955 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4956 /* Machine Trap Setup */ 4957 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4958 NULL, read_mstatus_i128 }, 4959 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4960 NULL, read_misa_i128 }, 4961 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4962 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4963 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4964 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4965 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4966 write_mcounteren }, 4967 4968 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4969 write_mstatush }, 4970 [CSR_MEDELEGH] = { "medelegh", any32, read_zero, write_ignore, 4971 .min_priv_ver = PRIV_VERSION_1_13_0 }, 4972 [CSR_HEDELEGH] = { "hedelegh", hmode32, read_hedelegh, write_hedelegh, 4973 .min_priv_ver = PRIV_VERSION_1_13_0 }, 4974 4975 /* Machine Trap Handling */ 4976 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4977 NULL, read_mscratch_i128, write_mscratch_i128 }, 4978 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4979 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4980 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4981 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4982 4983 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4984 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4985 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4986 4987 /* Machine-Level Interrupts (AIA) */ 4988 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4989 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4990 4991 /* Virtual Interrupts for Supervisor Level (AIA) */ 4992 [CSR_MVIEN] = { "mvien", aia_any, NULL, NULL, rmw_mvien }, 4993 [CSR_MVIP] = { "mvip", aia_any, NULL, NULL, rmw_mvip }, 4994 4995 /* Machine-Level High-Half CSRs (AIA) */ 4996 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4997 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4998 [CSR_MVIENH] = { "mvienh", aia_any32, NULL, NULL, rmw_mvienh }, 4999 [CSR_MVIPH] = { "mviph", aia_any32, NULL, NULL, rmw_mviph }, 5000 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 5001 5002 /* Execution environment configuration */ 5003 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 5004 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5005 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 5006 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5007 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 5008 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5009 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 5010 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5011 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 5012 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5013 5014 /* Smstateen extension CSRs */ 5015 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 5016 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5017 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 5018 write_mstateen0h, 5019 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5020 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 5021 write_mstateen_1_3, 5022 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5023 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 5024 write_mstateenh_1_3, 5025 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5026 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 5027 write_mstateen_1_3, 5028 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5029 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 5030 write_mstateenh_1_3, 5031 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5032 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 5033 write_mstateen_1_3, 5034 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5035 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 5036 write_mstateenh_1_3, 5037 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5038 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 5039 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5040 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 5041 write_hstateen0h, 5042 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5043 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 5044 write_hstateen_1_3, 5045 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5046 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 5047 write_hstateenh_1_3, 5048 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5049 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 5050 write_hstateen_1_3, 5051 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5052 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 5053 write_hstateenh_1_3, 5054 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5055 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 5056 write_hstateen_1_3, 5057 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5058 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 5059 write_hstateenh_1_3, 5060 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5061 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 5062 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5063 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 5064 write_sstateen_1_3, 5065 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5066 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 5067 write_sstateen_1_3, 5068 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5069 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 5070 write_sstateen_1_3, 5071 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5072 5073 /* Supervisor Trap Setup */ 5074 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 5075 NULL, read_sstatus_i128 }, 5076 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 5077 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 5078 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 5079 write_scounteren }, 5080 5081 /* Supervisor Trap Handling */ 5082 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 5083 NULL, read_sscratch_i128, write_sscratch_i128 }, 5084 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 5085 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 5086 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 5087 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 5088 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 5089 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5090 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 5091 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5092 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 5093 write_vstimecmp, 5094 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5095 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 5096 write_vstimecmph, 5097 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5098 5099 /* Supervisor Protection and Translation */ 5100 [CSR_SATP] = { "satp", satp, read_satp, write_satp }, 5101 5102 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 5103 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 5104 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 5105 5106 /* Supervisor-Level Interrupts (AIA) */ 5107 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 5108 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 5109 5110 /* Supervisor-Level High-Half CSRs (AIA) */ 5111 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 5112 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 5113 5114 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 5115 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5116 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 5117 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5118 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 5119 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5120 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 5121 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5122 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 5123 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5124 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 5125 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5126 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 5127 write_hcounteren, 5128 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5129 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 5130 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5131 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 5132 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5133 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 5134 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5135 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 5136 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5137 [CSR_HGATP] = { "hgatp", hgatp, read_hgatp, write_hgatp, 5138 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5139 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 5140 write_htimedelta, 5141 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5142 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 5143 write_htimedeltah, 5144 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5145 5146 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 5147 write_vsstatus, 5148 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5149 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 5150 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5151 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 5152 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5153 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 5154 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5155 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 5156 write_vsscratch, 5157 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5158 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 5159 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5160 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 5161 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5162 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 5163 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5164 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 5165 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5166 5167 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 5168 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5169 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 5170 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5171 5172 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 5173 [CSR_HVIEN] = { "hvien", aia_hmode, NULL, NULL, rmw_hvien }, 5174 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 5175 write_hvictl }, 5176 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 5177 write_hviprio1 }, 5178 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 5179 write_hviprio2 }, 5180 /* 5181 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 5182 */ 5183 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 5184 rmw_xiselect }, 5185 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 5186 5187 /* VS-Level Interrupts (H-extension with AIA) */ 5188 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 5189 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 5190 5191 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 5192 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 5193 rmw_hidelegh }, 5194 [CSR_HVIENH] = { "hvienh", aia_hmode32, NULL, NULL, rmw_hvienh }, 5195 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 5196 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 5197 write_hviprio1h }, 5198 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 5199 write_hviprio2h }, 5200 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 5201 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 5202 5203 /* Physical Memory Protection */ 5204 [CSR_MSECCFG] = { "mseccfg", have_mseccfg, read_mseccfg, write_mseccfg, 5205 .min_priv_ver = PRIV_VERSION_1_11_0 }, 5206 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 5207 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 5208 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 5209 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 5210 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 5211 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 5212 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 5213 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 5214 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 5215 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 5216 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 5217 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 5218 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 5219 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 5220 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 5221 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 5222 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 5223 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 5224 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 5225 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 5226 5227 /* Debug CSRs */ 5228 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 5229 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 5230 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 5231 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 5232 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 5233 [CSR_MCONTEXT] = { "mcontext", debug, read_mcontext, write_mcontext }, 5234 5235 /* User Pointer Masking */ 5236 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 5237 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 5238 write_upmmask }, 5239 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 5240 write_upmbase }, 5241 /* Machine Pointer Masking */ 5242 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 5243 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 5244 write_mpmmask }, 5245 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 5246 write_mpmbase }, 5247 /* Supervisor Pointer Masking */ 5248 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 5249 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 5250 write_spmmask }, 5251 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 5252 write_spmbase }, 5253 5254 /* Performance Counters */ 5255 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 5256 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 5257 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 5258 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 5259 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 5260 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 5261 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 5262 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 5263 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 5264 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 5265 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 5266 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 5267 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 5268 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 5269 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 5270 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 5271 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 5272 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 5273 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 5274 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 5275 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 5276 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 5277 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 5278 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 5279 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 5280 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 5281 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 5282 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 5283 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 5284 5285 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 5286 write_mhpmcounter }, 5287 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 5288 write_mhpmcounter }, 5289 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 5290 write_mhpmcounter }, 5291 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 5292 write_mhpmcounter }, 5293 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 5294 write_mhpmcounter }, 5295 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 5296 write_mhpmcounter }, 5297 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 5298 write_mhpmcounter }, 5299 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 5300 write_mhpmcounter }, 5301 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 5302 write_mhpmcounter }, 5303 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 5304 write_mhpmcounter }, 5305 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 5306 write_mhpmcounter }, 5307 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 5308 write_mhpmcounter }, 5309 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 5310 write_mhpmcounter }, 5311 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 5312 write_mhpmcounter }, 5313 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 5314 write_mhpmcounter }, 5315 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 5316 write_mhpmcounter }, 5317 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 5318 write_mhpmcounter }, 5319 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 5320 write_mhpmcounter }, 5321 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 5322 write_mhpmcounter }, 5323 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 5324 write_mhpmcounter }, 5325 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 5326 write_mhpmcounter }, 5327 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 5328 write_mhpmcounter }, 5329 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 5330 write_mhpmcounter }, 5331 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 5332 write_mhpmcounter }, 5333 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 5334 write_mhpmcounter }, 5335 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 5336 write_mhpmcounter }, 5337 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 5338 write_mhpmcounter }, 5339 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 5340 write_mhpmcounter }, 5341 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 5342 write_mhpmcounter }, 5343 5344 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 5345 write_mcountinhibit, 5346 .min_priv_ver = PRIV_VERSION_1_11_0 }, 5347 5348 [CSR_MCYCLECFG] = { "mcyclecfg", smcntrpmf, read_mcyclecfg, 5349 write_mcyclecfg, 5350 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5351 [CSR_MINSTRETCFG] = { "minstretcfg", smcntrpmf, read_minstretcfg, 5352 write_minstretcfg, 5353 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5354 5355 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 5356 write_mhpmevent }, 5357 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 5358 write_mhpmevent }, 5359 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 5360 write_mhpmevent }, 5361 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 5362 write_mhpmevent }, 5363 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 5364 write_mhpmevent }, 5365 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 5366 write_mhpmevent }, 5367 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 5368 write_mhpmevent }, 5369 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 5370 write_mhpmevent }, 5371 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 5372 write_mhpmevent }, 5373 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 5374 write_mhpmevent }, 5375 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 5376 write_mhpmevent }, 5377 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 5378 write_mhpmevent }, 5379 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 5380 write_mhpmevent }, 5381 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 5382 write_mhpmevent }, 5383 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 5384 write_mhpmevent }, 5385 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 5386 write_mhpmevent }, 5387 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 5388 write_mhpmevent }, 5389 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 5390 write_mhpmevent }, 5391 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 5392 write_mhpmevent }, 5393 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 5394 write_mhpmevent }, 5395 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 5396 write_mhpmevent }, 5397 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 5398 write_mhpmevent }, 5399 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 5400 write_mhpmevent }, 5401 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 5402 write_mhpmevent }, 5403 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 5404 write_mhpmevent }, 5405 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 5406 write_mhpmevent }, 5407 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 5408 write_mhpmevent }, 5409 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 5410 write_mhpmevent }, 5411 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 5412 write_mhpmevent }, 5413 5414 [CSR_MCYCLECFGH] = { "mcyclecfgh", smcntrpmf_32, read_mcyclecfgh, 5415 write_mcyclecfgh, 5416 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5417 [CSR_MINSTRETCFGH] = { "minstretcfgh", smcntrpmf_32, read_minstretcfgh, 5418 write_minstretcfgh, 5419 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5420 5421 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf_32, read_mhpmeventh, 5422 write_mhpmeventh, 5423 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5424 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf_32, read_mhpmeventh, 5425 write_mhpmeventh, 5426 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5427 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf_32, read_mhpmeventh, 5428 write_mhpmeventh, 5429 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5430 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf_32, read_mhpmeventh, 5431 write_mhpmeventh, 5432 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5433 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf_32, read_mhpmeventh, 5434 write_mhpmeventh, 5435 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5436 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf_32, read_mhpmeventh, 5437 write_mhpmeventh, 5438 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5439 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf_32, read_mhpmeventh, 5440 write_mhpmeventh, 5441 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5442 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf_32, read_mhpmeventh, 5443 write_mhpmeventh, 5444 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5445 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf_32, read_mhpmeventh, 5446 write_mhpmeventh, 5447 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5448 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf_32, read_mhpmeventh, 5449 write_mhpmeventh, 5450 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5451 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf_32, read_mhpmeventh, 5452 write_mhpmeventh, 5453 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5454 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf_32, read_mhpmeventh, 5455 write_mhpmeventh, 5456 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5457 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf_32, read_mhpmeventh, 5458 write_mhpmeventh, 5459 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5460 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf_32, read_mhpmeventh, 5461 write_mhpmeventh, 5462 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5463 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf_32, read_mhpmeventh, 5464 write_mhpmeventh, 5465 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5466 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf_32, read_mhpmeventh, 5467 write_mhpmeventh, 5468 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5469 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf_32, read_mhpmeventh, 5470 write_mhpmeventh, 5471 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5472 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf_32, read_mhpmeventh, 5473 write_mhpmeventh, 5474 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5475 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf_32, read_mhpmeventh, 5476 write_mhpmeventh, 5477 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5478 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf_32, read_mhpmeventh, 5479 write_mhpmeventh, 5480 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5481 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf_32, read_mhpmeventh, 5482 write_mhpmeventh, 5483 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5484 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf_32, read_mhpmeventh, 5485 write_mhpmeventh, 5486 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5487 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf_32, read_mhpmeventh, 5488 write_mhpmeventh, 5489 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5490 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf_32, read_mhpmeventh, 5491 write_mhpmeventh, 5492 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5493 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf_32, read_mhpmeventh, 5494 write_mhpmeventh, 5495 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5496 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf_32, read_mhpmeventh, 5497 write_mhpmeventh, 5498 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5499 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf_32, read_mhpmeventh, 5500 write_mhpmeventh, 5501 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5502 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf_32, read_mhpmeventh, 5503 write_mhpmeventh, 5504 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5505 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf_32, read_mhpmeventh, 5506 write_mhpmeventh, 5507 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5508 5509 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 5510 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 5511 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 5512 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 5513 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 5514 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 5515 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 5516 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 5517 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 5518 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 5519 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 5520 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 5521 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 5522 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 5523 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 5524 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 5525 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 5526 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 5527 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 5528 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 5529 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 5530 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 5531 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 5532 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 5533 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 5534 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 5535 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 5536 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 5537 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 5538 5539 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 5540 write_mhpmcounterh }, 5541 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 5542 write_mhpmcounterh }, 5543 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 5544 write_mhpmcounterh }, 5545 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 5546 write_mhpmcounterh }, 5547 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 5548 write_mhpmcounterh }, 5549 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 5550 write_mhpmcounterh }, 5551 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 5552 write_mhpmcounterh }, 5553 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 5554 write_mhpmcounterh }, 5555 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 5556 write_mhpmcounterh }, 5557 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 5558 write_mhpmcounterh }, 5559 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 5560 write_mhpmcounterh }, 5561 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 5562 write_mhpmcounterh }, 5563 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 5564 write_mhpmcounterh }, 5565 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 5566 write_mhpmcounterh }, 5567 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 5568 write_mhpmcounterh }, 5569 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 5570 write_mhpmcounterh }, 5571 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 5572 write_mhpmcounterh }, 5573 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 5574 write_mhpmcounterh }, 5575 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 5576 write_mhpmcounterh }, 5577 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 5578 write_mhpmcounterh }, 5579 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 5580 write_mhpmcounterh }, 5581 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 5582 write_mhpmcounterh }, 5583 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 5584 write_mhpmcounterh }, 5585 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 5586 write_mhpmcounterh }, 5587 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 5588 write_mhpmcounterh }, 5589 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 5590 write_mhpmcounterh }, 5591 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 5592 write_mhpmcounterh }, 5593 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 5594 write_mhpmcounterh }, 5595 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 5596 write_mhpmcounterh }, 5597 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 5598 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5599 5600 #endif /* !CONFIG_USER_ONLY */ 5601 }; 5602