1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "sysemu/cpu-timers.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 32 /* CSR function table public API */ 33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 34 { 35 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 36 } 37 38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 41 } 42 43 /* Predicates */ 44 #if !defined(CONFIG_USER_ONLY) 45 static RISCVException smstateen_acc_ok(CPURISCVState *env, int index, 46 uint64_t bit) 47 { 48 bool virt = riscv_cpu_virt_enabled(env); 49 RISCVCPU *cpu = env_archcpu(env); 50 51 if (env->priv == PRV_M || !cpu->cfg.ext_smstateen) { 52 return RISCV_EXCP_NONE; 53 } 54 55 if (!(env->mstateen[index] & bit)) { 56 return RISCV_EXCP_ILLEGAL_INST; 57 } 58 59 if (virt) { 60 if (!(env->hstateen[index] & bit)) { 61 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 62 } 63 64 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 65 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 66 } 67 } 68 69 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 70 if (!(env->sstateen[index] & bit)) { 71 return RISCV_EXCP_ILLEGAL_INST; 72 } 73 } 74 75 return RISCV_EXCP_NONE; 76 } 77 #endif 78 79 static RISCVException fs(CPURISCVState *env, int csrno) 80 { 81 #if !defined(CONFIG_USER_ONLY) 82 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 83 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 84 return RISCV_EXCP_ILLEGAL_INST; 85 } 86 #endif 87 return RISCV_EXCP_NONE; 88 } 89 90 static RISCVException vs(CPURISCVState *env, int csrno) 91 { 92 RISCVCPU *cpu = env_archcpu(env); 93 94 if (env->misa_ext & RVV || 95 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 96 #if !defined(CONFIG_USER_ONLY) 97 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 98 return RISCV_EXCP_ILLEGAL_INST; 99 } 100 #endif 101 return RISCV_EXCP_NONE; 102 } 103 return RISCV_EXCP_ILLEGAL_INST; 104 } 105 106 static RISCVException ctr(CPURISCVState *env, int csrno) 107 { 108 #if !defined(CONFIG_USER_ONLY) 109 RISCVCPU *cpu = env_archcpu(env); 110 int ctr_index; 111 target_ulong ctr_mask; 112 int base_csrno = CSR_CYCLE; 113 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 114 115 if (rv32 && csrno >= CSR_CYCLEH) { 116 /* Offset for RV32 hpmcounternh counters */ 117 base_csrno += 0x80; 118 } 119 ctr_index = csrno - base_csrno; 120 ctr_mask = BIT(ctr_index); 121 122 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 123 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 124 goto skip_ext_pmu_check; 125 } 126 127 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 128 /* No counter is enabled in PMU or the counter is out of range */ 129 return RISCV_EXCP_ILLEGAL_INST; 130 } 131 132 skip_ext_pmu_check: 133 134 if (env->debugger) { 135 return RISCV_EXCP_NONE; 136 } 137 138 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 139 return RISCV_EXCP_ILLEGAL_INST; 140 } 141 142 if (riscv_cpu_virt_enabled(env)) { 143 if (!get_field(env->hcounteren, ctr_mask) || 144 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 145 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 146 } 147 } 148 149 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 150 !get_field(env->scounteren, ctr_mask)) { 151 return RISCV_EXCP_ILLEGAL_INST; 152 } 153 154 #endif 155 return RISCV_EXCP_NONE; 156 } 157 158 static RISCVException ctr32(CPURISCVState *env, int csrno) 159 { 160 if (riscv_cpu_mxl(env) != MXL_RV32) { 161 return RISCV_EXCP_ILLEGAL_INST; 162 } 163 164 return ctr(env, csrno); 165 } 166 167 #if !defined(CONFIG_USER_ONLY) 168 static RISCVException mctr(CPURISCVState *env, int csrno) 169 { 170 RISCVCPU *cpu = env_archcpu(env); 171 int ctr_index; 172 int base_csrno = CSR_MHPMCOUNTER3; 173 174 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 175 /* Offset for RV32 mhpmcounternh counters */ 176 base_csrno += 0x80; 177 } 178 ctr_index = csrno - base_csrno; 179 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 180 /* The PMU is not enabled or counter is out of range*/ 181 return RISCV_EXCP_ILLEGAL_INST; 182 } 183 184 return RISCV_EXCP_NONE; 185 } 186 187 static RISCVException mctr32(CPURISCVState *env, int csrno) 188 { 189 if (riscv_cpu_mxl(env) != MXL_RV32) { 190 return RISCV_EXCP_ILLEGAL_INST; 191 } 192 193 return mctr(env, csrno); 194 } 195 196 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 197 { 198 RISCVCPU *cpu = env_archcpu(env); 199 200 if (!cpu->cfg.ext_sscofpmf) { 201 return RISCV_EXCP_ILLEGAL_INST; 202 } 203 204 return RISCV_EXCP_NONE; 205 } 206 207 static RISCVException any(CPURISCVState *env, int csrno) 208 { 209 return RISCV_EXCP_NONE; 210 } 211 212 static RISCVException any32(CPURISCVState *env, int csrno) 213 { 214 if (riscv_cpu_mxl(env) != MXL_RV32) { 215 return RISCV_EXCP_ILLEGAL_INST; 216 } 217 218 return any(env, csrno); 219 220 } 221 222 static int aia_any(CPURISCVState *env, int csrno) 223 { 224 RISCVCPU *cpu = env_archcpu(env); 225 226 if (!cpu->cfg.ext_smaia) { 227 return RISCV_EXCP_ILLEGAL_INST; 228 } 229 230 return any(env, csrno); 231 } 232 233 static int aia_any32(CPURISCVState *env, int csrno) 234 { 235 RISCVCPU *cpu = env_archcpu(env); 236 237 if (!cpu->cfg.ext_smaia) { 238 return RISCV_EXCP_ILLEGAL_INST; 239 } 240 241 return any32(env, csrno); 242 } 243 244 static RISCVException smode(CPURISCVState *env, int csrno) 245 { 246 if (riscv_has_ext(env, RVS)) { 247 return RISCV_EXCP_NONE; 248 } 249 250 return RISCV_EXCP_ILLEGAL_INST; 251 } 252 253 static int smode32(CPURISCVState *env, int csrno) 254 { 255 if (riscv_cpu_mxl(env) != MXL_RV32) { 256 return RISCV_EXCP_ILLEGAL_INST; 257 } 258 259 return smode(env, csrno); 260 } 261 262 static int aia_smode(CPURISCVState *env, int csrno) 263 { 264 RISCVCPU *cpu = env_archcpu(env); 265 266 if (!cpu->cfg.ext_ssaia) { 267 return RISCV_EXCP_ILLEGAL_INST; 268 } 269 270 return smode(env, csrno); 271 } 272 273 static int aia_smode32(CPURISCVState *env, int csrno) 274 { 275 RISCVCPU *cpu = env_archcpu(env); 276 277 if (!cpu->cfg.ext_ssaia) { 278 return RISCV_EXCP_ILLEGAL_INST; 279 } 280 281 return smode32(env, csrno); 282 } 283 284 static RISCVException hmode(CPURISCVState *env, int csrno) 285 { 286 if (riscv_has_ext(env, RVH)) { 287 return RISCV_EXCP_NONE; 288 } 289 290 return RISCV_EXCP_ILLEGAL_INST; 291 } 292 293 static RISCVException hmode32(CPURISCVState *env, int csrno) 294 { 295 if (riscv_cpu_mxl(env) != MXL_RV32) { 296 return RISCV_EXCP_ILLEGAL_INST; 297 } 298 299 return hmode(env, csrno); 300 301 } 302 303 static RISCVException umode(CPURISCVState *env, int csrno) 304 { 305 if (riscv_has_ext(env, RVU)) { 306 return RISCV_EXCP_NONE; 307 } 308 309 return RISCV_EXCP_ILLEGAL_INST; 310 } 311 312 static RISCVException umode32(CPURISCVState *env, int csrno) 313 { 314 if (riscv_cpu_mxl(env) != MXL_RV32) { 315 return RISCV_EXCP_ILLEGAL_INST; 316 } 317 318 return umode(env, csrno); 319 } 320 321 static RISCVException mstateen(CPURISCVState *env, int csrno) 322 { 323 RISCVCPU *cpu = env_archcpu(env); 324 325 if (!cpu->cfg.ext_smstateen) { 326 return RISCV_EXCP_ILLEGAL_INST; 327 } 328 329 return any(env, csrno); 330 } 331 332 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 333 { 334 RISCVCPU *cpu = env_archcpu(env); 335 336 if (!cpu->cfg.ext_smstateen) { 337 return RISCV_EXCP_ILLEGAL_INST; 338 } 339 340 if (env->priv < PRV_M) { 341 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 342 return RISCV_EXCP_ILLEGAL_INST; 343 } 344 } 345 346 return hmode(env, csrno); 347 } 348 349 static RISCVException hstateen(CPURISCVState *env, int csrno) 350 { 351 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 352 } 353 354 static RISCVException hstateenh(CPURISCVState *env, int csrno) 355 { 356 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 357 } 358 359 static RISCVException sstateen(CPURISCVState *env, int csrno) 360 { 361 bool virt = riscv_cpu_virt_enabled(env); 362 int index = csrno - CSR_SSTATEEN0; 363 RISCVCPU *cpu = env_archcpu(env); 364 365 if (!cpu->cfg.ext_smstateen) { 366 return RISCV_EXCP_ILLEGAL_INST; 367 } 368 369 if (env->priv < PRV_M) { 370 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 371 return RISCV_EXCP_ILLEGAL_INST; 372 } 373 374 if (virt) { 375 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 376 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 377 } 378 } 379 } 380 381 return smode(env, csrno); 382 } 383 384 /* Checks if PointerMasking registers could be accessed */ 385 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 386 { 387 /* Check if j-ext is present */ 388 if (riscv_has_ext(env, RVJ)) { 389 return RISCV_EXCP_NONE; 390 } 391 return RISCV_EXCP_ILLEGAL_INST; 392 } 393 394 static int aia_hmode(CPURISCVState *env, int csrno) 395 { 396 RISCVCPU *cpu = env_archcpu(env); 397 398 if (!cpu->cfg.ext_ssaia) { 399 return RISCV_EXCP_ILLEGAL_INST; 400 } 401 402 return hmode(env, csrno); 403 } 404 405 static int aia_hmode32(CPURISCVState *env, int csrno) 406 { 407 RISCVCPU *cpu = env_archcpu(env); 408 409 if (!cpu->cfg.ext_ssaia) { 410 return RISCV_EXCP_ILLEGAL_INST; 411 } 412 413 return hmode32(env, csrno); 414 } 415 416 static RISCVException pmp(CPURISCVState *env, int csrno) 417 { 418 if (riscv_cpu_cfg(env)->pmp) { 419 if (csrno <= CSR_PMPCFG3) { 420 uint32_t reg_index = csrno - CSR_PMPCFG0; 421 422 /* TODO: RV128 restriction check */ 423 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 424 return RISCV_EXCP_ILLEGAL_INST; 425 } 426 } 427 428 return RISCV_EXCP_NONE; 429 } 430 431 return RISCV_EXCP_ILLEGAL_INST; 432 } 433 434 static RISCVException epmp(CPURISCVState *env, int csrno) 435 { 436 if (env->priv == PRV_M && riscv_cpu_cfg(env)->epmp) { 437 return RISCV_EXCP_NONE; 438 } 439 440 return RISCV_EXCP_ILLEGAL_INST; 441 } 442 443 static RISCVException debug(CPURISCVState *env, int csrno) 444 { 445 if (riscv_cpu_cfg(env)->debug) { 446 return RISCV_EXCP_NONE; 447 } 448 449 return RISCV_EXCP_ILLEGAL_INST; 450 } 451 #endif 452 453 static RISCVException seed(CPURISCVState *env, int csrno) 454 { 455 RISCVCPU *cpu = env_archcpu(env); 456 457 if (!cpu->cfg.ext_zkr) { 458 return RISCV_EXCP_ILLEGAL_INST; 459 } 460 461 #if !defined(CONFIG_USER_ONLY) 462 if (env->debugger) { 463 return RISCV_EXCP_NONE; 464 } 465 466 /* 467 * With a CSR read-write instruction: 468 * 1) The seed CSR is always available in machine mode as normal. 469 * 2) Attempted access to seed from virtual modes VS and VU always raises 470 * an exception(virtual instruction exception only if mseccfg.sseed=1). 471 * 3) Without the corresponding access control bit set to 1, any attempted 472 * access to seed from U, S or HS modes will raise an illegal instruction 473 * exception. 474 */ 475 if (env->priv == PRV_M) { 476 return RISCV_EXCP_NONE; 477 } else if (riscv_cpu_virt_enabled(env)) { 478 if (env->mseccfg & MSECCFG_SSEED) { 479 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 480 } else { 481 return RISCV_EXCP_ILLEGAL_INST; 482 } 483 } else { 484 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 485 return RISCV_EXCP_NONE; 486 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 487 return RISCV_EXCP_NONE; 488 } else { 489 return RISCV_EXCP_ILLEGAL_INST; 490 } 491 } 492 #else 493 return RISCV_EXCP_NONE; 494 #endif 495 } 496 497 /* User Floating-Point CSRs */ 498 static RISCVException read_fflags(CPURISCVState *env, int csrno, 499 target_ulong *val) 500 { 501 *val = riscv_cpu_get_fflags(env); 502 return RISCV_EXCP_NONE; 503 } 504 505 static RISCVException write_fflags(CPURISCVState *env, int csrno, 506 target_ulong val) 507 { 508 #if !defined(CONFIG_USER_ONLY) 509 if (riscv_has_ext(env, RVF)) { 510 env->mstatus |= MSTATUS_FS; 511 } 512 #endif 513 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 514 return RISCV_EXCP_NONE; 515 } 516 517 static RISCVException read_frm(CPURISCVState *env, int csrno, 518 target_ulong *val) 519 { 520 *val = env->frm; 521 return RISCV_EXCP_NONE; 522 } 523 524 static RISCVException write_frm(CPURISCVState *env, int csrno, 525 target_ulong val) 526 { 527 #if !defined(CONFIG_USER_ONLY) 528 if (riscv_has_ext(env, RVF)) { 529 env->mstatus |= MSTATUS_FS; 530 } 531 #endif 532 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 533 return RISCV_EXCP_NONE; 534 } 535 536 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 537 target_ulong *val) 538 { 539 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 540 | (env->frm << FSR_RD_SHIFT); 541 return RISCV_EXCP_NONE; 542 } 543 544 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 545 target_ulong val) 546 { 547 #if !defined(CONFIG_USER_ONLY) 548 if (riscv_has_ext(env, RVF)) { 549 env->mstatus |= MSTATUS_FS; 550 } 551 #endif 552 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 553 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 554 return RISCV_EXCP_NONE; 555 } 556 557 static RISCVException read_vtype(CPURISCVState *env, int csrno, 558 target_ulong *val) 559 { 560 uint64_t vill; 561 switch (env->xl) { 562 case MXL_RV32: 563 vill = (uint32_t)env->vill << 31; 564 break; 565 case MXL_RV64: 566 vill = (uint64_t)env->vill << 63; 567 break; 568 default: 569 g_assert_not_reached(); 570 } 571 *val = (target_ulong)vill | env->vtype; 572 return RISCV_EXCP_NONE; 573 } 574 575 static RISCVException read_vl(CPURISCVState *env, int csrno, 576 target_ulong *val) 577 { 578 *val = env->vl; 579 return RISCV_EXCP_NONE; 580 } 581 582 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 583 { 584 *val = env_archcpu(env)->cfg.vlen >> 3; 585 return RISCV_EXCP_NONE; 586 } 587 588 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 589 target_ulong *val) 590 { 591 *val = env->vxrm; 592 return RISCV_EXCP_NONE; 593 } 594 595 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 596 target_ulong val) 597 { 598 #if !defined(CONFIG_USER_ONLY) 599 env->mstatus |= MSTATUS_VS; 600 #endif 601 env->vxrm = val; 602 return RISCV_EXCP_NONE; 603 } 604 605 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 606 target_ulong *val) 607 { 608 *val = env->vxsat; 609 return RISCV_EXCP_NONE; 610 } 611 612 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 613 target_ulong val) 614 { 615 #if !defined(CONFIG_USER_ONLY) 616 env->mstatus |= MSTATUS_VS; 617 #endif 618 env->vxsat = val; 619 return RISCV_EXCP_NONE; 620 } 621 622 static RISCVException read_vstart(CPURISCVState *env, int csrno, 623 target_ulong *val) 624 { 625 *val = env->vstart; 626 return RISCV_EXCP_NONE; 627 } 628 629 static RISCVException write_vstart(CPURISCVState *env, int csrno, 630 target_ulong val) 631 { 632 #if !defined(CONFIG_USER_ONLY) 633 env->mstatus |= MSTATUS_VS; 634 #endif 635 /* 636 * The vstart CSR is defined to have only enough writable bits 637 * to hold the largest element index, i.e. lg2(VLEN) bits. 638 */ 639 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 640 return RISCV_EXCP_NONE; 641 } 642 643 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 644 { 645 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 646 return RISCV_EXCP_NONE; 647 } 648 649 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 650 { 651 #if !defined(CONFIG_USER_ONLY) 652 env->mstatus |= MSTATUS_VS; 653 #endif 654 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 655 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 656 return RISCV_EXCP_NONE; 657 } 658 659 /* User Timers and Counters */ 660 static target_ulong get_ticks(bool shift) 661 { 662 int64_t val; 663 target_ulong result; 664 665 #if !defined(CONFIG_USER_ONLY) 666 if (icount_enabled()) { 667 val = icount_get(); 668 } else { 669 val = cpu_get_host_ticks(); 670 } 671 #else 672 val = cpu_get_host_ticks(); 673 #endif 674 675 if (shift) { 676 result = val >> 32; 677 } else { 678 result = val; 679 } 680 681 return result; 682 } 683 684 #if defined(CONFIG_USER_ONLY) 685 static RISCVException read_time(CPURISCVState *env, int csrno, 686 target_ulong *val) 687 { 688 *val = cpu_get_host_ticks(); 689 return RISCV_EXCP_NONE; 690 } 691 692 static RISCVException read_timeh(CPURISCVState *env, int csrno, 693 target_ulong *val) 694 { 695 *val = cpu_get_host_ticks() >> 32; 696 return RISCV_EXCP_NONE; 697 } 698 699 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 700 { 701 *val = get_ticks(false); 702 return RISCV_EXCP_NONE; 703 } 704 705 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 706 { 707 *val = get_ticks(true); 708 return RISCV_EXCP_NONE; 709 } 710 711 #else /* CONFIG_USER_ONLY */ 712 713 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 714 { 715 int evt_index = csrno - CSR_MCOUNTINHIBIT; 716 717 *val = env->mhpmevent_val[evt_index]; 718 719 return RISCV_EXCP_NONE; 720 } 721 722 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 723 { 724 int evt_index = csrno - CSR_MCOUNTINHIBIT; 725 uint64_t mhpmevt_val = val; 726 727 env->mhpmevent_val[evt_index] = val; 728 729 if (riscv_cpu_mxl(env) == MXL_RV32) { 730 mhpmevt_val = mhpmevt_val | 731 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 732 } 733 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 734 735 return RISCV_EXCP_NONE; 736 } 737 738 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 739 { 740 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 741 742 *val = env->mhpmeventh_val[evt_index]; 743 744 return RISCV_EXCP_NONE; 745 } 746 747 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 748 { 749 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 750 uint64_t mhpmevth_val = val; 751 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 752 753 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 754 env->mhpmeventh_val[evt_index] = val; 755 756 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 757 758 return RISCV_EXCP_NONE; 759 } 760 761 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 762 { 763 int ctr_idx = csrno - CSR_MCYCLE; 764 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 765 uint64_t mhpmctr_val = val; 766 767 counter->mhpmcounter_val = val; 768 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 769 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 770 counter->mhpmcounter_prev = get_ticks(false); 771 if (ctr_idx > 2) { 772 if (riscv_cpu_mxl(env) == MXL_RV32) { 773 mhpmctr_val = mhpmctr_val | 774 ((uint64_t)counter->mhpmcounterh_val << 32); 775 } 776 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 777 } 778 } else { 779 /* Other counters can keep incrementing from the given value */ 780 counter->mhpmcounter_prev = val; 781 } 782 783 return RISCV_EXCP_NONE; 784 } 785 786 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 787 { 788 int ctr_idx = csrno - CSR_MCYCLEH; 789 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 790 uint64_t mhpmctr_val = counter->mhpmcounter_val; 791 uint64_t mhpmctrh_val = val; 792 793 counter->mhpmcounterh_val = val; 794 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 795 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 796 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 797 counter->mhpmcounterh_prev = get_ticks(true); 798 if (ctr_idx > 2) { 799 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 800 } 801 } else { 802 counter->mhpmcounterh_prev = val; 803 } 804 805 return RISCV_EXCP_NONE; 806 } 807 808 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 809 bool upper_half, uint32_t ctr_idx) 810 { 811 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 812 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 813 counter.mhpmcounter_prev; 814 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 815 counter.mhpmcounter_val; 816 817 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 818 /** 819 * Counter should not increment if inhibit bit is set. We can't really 820 * stop the icount counting. Just return the counter value written by 821 * the supervisor to indicate that counter was not incremented. 822 */ 823 if (!counter.started) { 824 *val = ctr_val; 825 return RISCV_EXCP_NONE; 826 } else { 827 /* Mark that the counter has been stopped */ 828 counter.started = false; 829 } 830 } 831 832 /** 833 * The kernel computes the perf delta by subtracting the current value from 834 * the value it initialized previously (ctr_val). 835 */ 836 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 837 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 838 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 839 } else { 840 *val = ctr_val; 841 } 842 843 return RISCV_EXCP_NONE; 844 } 845 846 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 847 { 848 uint16_t ctr_index; 849 850 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 851 ctr_index = csrno - CSR_MCYCLE; 852 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 853 ctr_index = csrno - CSR_CYCLE; 854 } else { 855 return RISCV_EXCP_ILLEGAL_INST; 856 } 857 858 return riscv_pmu_read_ctr(env, val, false, ctr_index); 859 } 860 861 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 862 { 863 uint16_t ctr_index; 864 865 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 866 ctr_index = csrno - CSR_MCYCLEH; 867 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 868 ctr_index = csrno - CSR_CYCLEH; 869 } else { 870 return RISCV_EXCP_ILLEGAL_INST; 871 } 872 873 return riscv_pmu_read_ctr(env, val, true, ctr_index); 874 } 875 876 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 877 { 878 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 879 int i; 880 *val = 0; 881 target_ulong *mhpm_evt_val; 882 uint64_t of_bit_mask; 883 884 if (riscv_cpu_mxl(env) == MXL_RV32) { 885 mhpm_evt_val = env->mhpmeventh_val; 886 of_bit_mask = MHPMEVENTH_BIT_OF; 887 } else { 888 mhpm_evt_val = env->mhpmevent_val; 889 of_bit_mask = MHPMEVENT_BIT_OF; 890 } 891 892 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 893 if ((get_field(env->mcounteren, BIT(i))) && 894 (mhpm_evt_val[i] & of_bit_mask)) { 895 *val |= BIT(i); 896 } 897 } 898 899 return RISCV_EXCP_NONE; 900 } 901 902 static RISCVException read_time(CPURISCVState *env, int csrno, 903 target_ulong *val) 904 { 905 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 906 907 if (!env->rdtime_fn) { 908 return RISCV_EXCP_ILLEGAL_INST; 909 } 910 911 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 912 return RISCV_EXCP_NONE; 913 } 914 915 static RISCVException read_timeh(CPURISCVState *env, int csrno, 916 target_ulong *val) 917 { 918 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 919 920 if (!env->rdtime_fn) { 921 return RISCV_EXCP_ILLEGAL_INST; 922 } 923 924 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 925 return RISCV_EXCP_NONE; 926 } 927 928 static RISCVException sstc(CPURISCVState *env, int csrno) 929 { 930 RISCVCPU *cpu = env_archcpu(env); 931 bool hmode_check = false; 932 933 if (!cpu->cfg.ext_sstc || !env->rdtime_fn) { 934 return RISCV_EXCP_ILLEGAL_INST; 935 } 936 937 if (env->priv == PRV_M) { 938 return RISCV_EXCP_NONE; 939 } 940 941 /* 942 * No need of separate function for rv32 as menvcfg stores both menvcfg 943 * menvcfgh for RV32. 944 */ 945 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 946 get_field(env->menvcfg, MENVCFG_STCE))) { 947 return RISCV_EXCP_ILLEGAL_INST; 948 } 949 950 if (riscv_cpu_virt_enabled(env)) { 951 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 952 get_field(env->henvcfg, HENVCFG_STCE))) { 953 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 954 } 955 } 956 957 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 958 hmode_check = true; 959 } 960 961 return hmode_check ? hmode(env, csrno) : smode(env, csrno); 962 } 963 964 static RISCVException sstc_32(CPURISCVState *env, int csrno) 965 { 966 if (riscv_cpu_mxl(env) != MXL_RV32) { 967 return RISCV_EXCP_ILLEGAL_INST; 968 } 969 970 return sstc(env, csrno); 971 } 972 973 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 974 target_ulong *val) 975 { 976 *val = env->vstimecmp; 977 978 return RISCV_EXCP_NONE; 979 } 980 981 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 982 target_ulong *val) 983 { 984 *val = env->vstimecmp >> 32; 985 986 return RISCV_EXCP_NONE; 987 } 988 989 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 990 target_ulong val) 991 { 992 RISCVCPU *cpu = env_archcpu(env); 993 994 if (riscv_cpu_mxl(env) == MXL_RV32) { 995 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 996 } else { 997 env->vstimecmp = val; 998 } 999 1000 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1001 env->htimedelta, MIP_VSTIP); 1002 1003 return RISCV_EXCP_NONE; 1004 } 1005 1006 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1007 target_ulong val) 1008 { 1009 RISCVCPU *cpu = env_archcpu(env); 1010 1011 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1012 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1013 env->htimedelta, MIP_VSTIP); 1014 1015 return RISCV_EXCP_NONE; 1016 } 1017 1018 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1019 target_ulong *val) 1020 { 1021 if (riscv_cpu_virt_enabled(env)) { 1022 *val = env->vstimecmp; 1023 } else { 1024 *val = env->stimecmp; 1025 } 1026 1027 return RISCV_EXCP_NONE; 1028 } 1029 1030 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1031 target_ulong *val) 1032 { 1033 if (riscv_cpu_virt_enabled(env)) { 1034 *val = env->vstimecmp >> 32; 1035 } else { 1036 *val = env->stimecmp >> 32; 1037 } 1038 1039 return RISCV_EXCP_NONE; 1040 } 1041 1042 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1043 target_ulong val) 1044 { 1045 RISCVCPU *cpu = env_archcpu(env); 1046 1047 if (riscv_cpu_virt_enabled(env)) { 1048 if (env->hvictl & HVICTL_VTI) { 1049 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1050 } 1051 return write_vstimecmp(env, csrno, val); 1052 } 1053 1054 if (riscv_cpu_mxl(env) == MXL_RV32) { 1055 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1056 } else { 1057 env->stimecmp = val; 1058 } 1059 1060 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1061 1062 return RISCV_EXCP_NONE; 1063 } 1064 1065 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1066 target_ulong val) 1067 { 1068 RISCVCPU *cpu = env_archcpu(env); 1069 1070 if (riscv_cpu_virt_enabled(env)) { 1071 if (env->hvictl & HVICTL_VTI) { 1072 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1073 } 1074 return write_vstimecmph(env, csrno, val); 1075 } 1076 1077 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1078 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1079 1080 return RISCV_EXCP_NONE; 1081 } 1082 1083 /* Machine constants */ 1084 1085 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1086 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1087 MIP_LCOFIP)) 1088 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1089 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1090 1091 #define VSTOPI_NUM_SRCS 5 1092 1093 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1094 VS_MODE_INTERRUPTS; 1095 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1096 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1097 HS_MODE_INTERRUPTS; 1098 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1099 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1100 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1101 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1102 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1103 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1104 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1105 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1106 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1107 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1108 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1109 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1110 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1111 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1112 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1113 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1114 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1115 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1116 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1117 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1118 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1119 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1120 (1ULL << (RISCV_EXCP_M_ECALL)) | 1121 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1122 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1123 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1124 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1125 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1126 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1127 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1128 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1129 SIP_LCOFIP; 1130 static const target_ulong hip_writable_mask = MIP_VSSIP; 1131 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1132 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1133 1134 static const char valid_vm_1_10_32[16] = { 1135 [VM_1_10_MBARE] = 1, 1136 [VM_1_10_SV32] = 1 1137 }; 1138 1139 static const char valid_vm_1_10_64[16] = { 1140 [VM_1_10_MBARE] = 1, 1141 [VM_1_10_SV39] = 1, 1142 [VM_1_10_SV48] = 1, 1143 [VM_1_10_SV57] = 1 1144 }; 1145 1146 /* Machine Information Registers */ 1147 static RISCVException read_zero(CPURISCVState *env, int csrno, 1148 target_ulong *val) 1149 { 1150 *val = 0; 1151 return RISCV_EXCP_NONE; 1152 } 1153 1154 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1155 target_ulong val) 1156 { 1157 return RISCV_EXCP_NONE; 1158 } 1159 1160 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1161 target_ulong *val) 1162 { 1163 RISCVCPU *cpu = env_archcpu(env); 1164 1165 *val = cpu->cfg.mvendorid; 1166 return RISCV_EXCP_NONE; 1167 } 1168 1169 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1170 target_ulong *val) 1171 { 1172 RISCVCPU *cpu = env_archcpu(env); 1173 1174 *val = cpu->cfg.marchid; 1175 return RISCV_EXCP_NONE; 1176 } 1177 1178 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1179 target_ulong *val) 1180 { 1181 RISCVCPU *cpu = env_archcpu(env); 1182 1183 *val = cpu->cfg.mimpid; 1184 return RISCV_EXCP_NONE; 1185 } 1186 1187 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1188 target_ulong *val) 1189 { 1190 *val = env->mhartid; 1191 return RISCV_EXCP_NONE; 1192 } 1193 1194 /* Machine Trap Setup */ 1195 1196 /* We do not store SD explicitly, only compute it on demand. */ 1197 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1198 { 1199 if ((status & MSTATUS_FS) == MSTATUS_FS || 1200 (status & MSTATUS_VS) == MSTATUS_VS || 1201 (status & MSTATUS_XS) == MSTATUS_XS) { 1202 switch (xl) { 1203 case MXL_RV32: 1204 return status | MSTATUS32_SD; 1205 case MXL_RV64: 1206 return status | MSTATUS64_SD; 1207 case MXL_RV128: 1208 return MSTATUSH128_SD; 1209 default: 1210 g_assert_not_reached(); 1211 } 1212 } 1213 return status; 1214 } 1215 1216 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1217 target_ulong *val) 1218 { 1219 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1220 return RISCV_EXCP_NONE; 1221 } 1222 1223 static int validate_vm(CPURISCVState *env, target_ulong vm) 1224 { 1225 if (riscv_cpu_mxl(env) == MXL_RV32) { 1226 return valid_vm_1_10_32[vm & 0xf]; 1227 } else { 1228 return valid_vm_1_10_64[vm & 0xf]; 1229 } 1230 } 1231 1232 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1233 target_ulong val) 1234 { 1235 uint64_t mstatus = env->mstatus; 1236 uint64_t mask = 0; 1237 RISCVMXL xl = riscv_cpu_mxl(env); 1238 1239 /* flush tlb on mstatus fields that affect VM */ 1240 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1241 MSTATUS_MPRV | MSTATUS_SUM)) { 1242 tlb_flush(env_cpu(env)); 1243 } 1244 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1245 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1246 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1247 MSTATUS_TW | MSTATUS_VS; 1248 1249 if (riscv_has_ext(env, RVF)) { 1250 mask |= MSTATUS_FS; 1251 } 1252 1253 if (xl != MXL_RV32 || env->debugger) { 1254 /* 1255 * RV32: MPV and GVA are not in mstatus. The current plan is to 1256 * add them to mstatush. For now, we just don't support it. 1257 */ 1258 mask |= MSTATUS_MPV | MSTATUS_GVA; 1259 if ((val & MSTATUS64_UXL) != 0) { 1260 mask |= MSTATUS64_UXL; 1261 } 1262 } 1263 1264 mstatus = (mstatus & ~mask) | (val & mask); 1265 1266 if (xl > MXL_RV32) { 1267 /* SXL field is for now read only */ 1268 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1269 } 1270 env->mstatus = mstatus; 1271 env->xl = cpu_recompute_xl(env); 1272 1273 return RISCV_EXCP_NONE; 1274 } 1275 1276 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1277 target_ulong *val) 1278 { 1279 *val = env->mstatus >> 32; 1280 return RISCV_EXCP_NONE; 1281 } 1282 1283 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1284 target_ulong val) 1285 { 1286 uint64_t valh = (uint64_t)val << 32; 1287 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1288 1289 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1290 tlb_flush(env_cpu(env)); 1291 } 1292 1293 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1294 1295 return RISCV_EXCP_NONE; 1296 } 1297 1298 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1299 Int128 *val) 1300 { 1301 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1302 return RISCV_EXCP_NONE; 1303 } 1304 1305 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1306 Int128 *val) 1307 { 1308 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1309 return RISCV_EXCP_NONE; 1310 } 1311 1312 static RISCVException read_misa(CPURISCVState *env, int csrno, 1313 target_ulong *val) 1314 { 1315 target_ulong misa; 1316 1317 switch (env->misa_mxl) { 1318 case MXL_RV32: 1319 misa = (target_ulong)MXL_RV32 << 30; 1320 break; 1321 #ifdef TARGET_RISCV64 1322 case MXL_RV64: 1323 misa = (target_ulong)MXL_RV64 << 62; 1324 break; 1325 #endif 1326 default: 1327 g_assert_not_reached(); 1328 } 1329 1330 *val = misa | env->misa_ext; 1331 return RISCV_EXCP_NONE; 1332 } 1333 1334 static RISCVException write_misa(CPURISCVState *env, int csrno, 1335 target_ulong val) 1336 { 1337 if (!riscv_cpu_cfg(env)->misa_w) { 1338 /* drop write to misa */ 1339 return RISCV_EXCP_NONE; 1340 } 1341 1342 /* 'I' or 'E' must be present */ 1343 if (!(val & (RVI | RVE))) { 1344 /* It is not, drop write to misa */ 1345 return RISCV_EXCP_NONE; 1346 } 1347 1348 /* 'E' excludes all other extensions */ 1349 if (val & RVE) { 1350 /* 1351 * when we support 'E' we can do "val = RVE;" however 1352 * for now we just drop writes if 'E' is present. 1353 */ 1354 return RISCV_EXCP_NONE; 1355 } 1356 1357 /* 1358 * misa.MXL writes are not supported by QEMU. 1359 * Drop writes to those bits. 1360 */ 1361 1362 /* Mask extensions that are not supported by this hart */ 1363 val &= env->misa_ext_mask; 1364 1365 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1366 if ((val & RVD) && !(val & RVF)) { 1367 val &= ~RVD; 1368 } 1369 1370 /* 1371 * Suppress 'C' if next instruction is not aligned 1372 * TODO: this should check next_pc 1373 */ 1374 if ((val & RVC) && (GETPC() & ~3) != 0) { 1375 val &= ~RVC; 1376 } 1377 1378 /* If nothing changed, do nothing. */ 1379 if (val == env->misa_ext) { 1380 return RISCV_EXCP_NONE; 1381 } 1382 1383 if (!(val & RVF)) { 1384 env->mstatus &= ~MSTATUS_FS; 1385 } 1386 1387 /* flush translation cache */ 1388 tb_flush(env_cpu(env)); 1389 env->misa_ext = val; 1390 env->xl = riscv_cpu_mxl(env); 1391 return RISCV_EXCP_NONE; 1392 } 1393 1394 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1395 target_ulong *val) 1396 { 1397 *val = env->medeleg; 1398 return RISCV_EXCP_NONE; 1399 } 1400 1401 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1402 target_ulong val) 1403 { 1404 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1405 return RISCV_EXCP_NONE; 1406 } 1407 1408 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1409 uint64_t *ret_val, 1410 uint64_t new_val, uint64_t wr_mask) 1411 { 1412 uint64_t mask = wr_mask & delegable_ints; 1413 1414 if (ret_val) { 1415 *ret_val = env->mideleg; 1416 } 1417 1418 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1419 1420 if (riscv_has_ext(env, RVH)) { 1421 env->mideleg |= HS_MODE_INTERRUPTS; 1422 } 1423 1424 return RISCV_EXCP_NONE; 1425 } 1426 1427 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1428 target_ulong *ret_val, 1429 target_ulong new_val, target_ulong wr_mask) 1430 { 1431 uint64_t rval; 1432 RISCVException ret; 1433 1434 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1435 if (ret_val) { 1436 *ret_val = rval; 1437 } 1438 1439 return ret; 1440 } 1441 1442 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1443 target_ulong *ret_val, 1444 target_ulong new_val, 1445 target_ulong wr_mask) 1446 { 1447 uint64_t rval; 1448 RISCVException ret; 1449 1450 ret = rmw_mideleg64(env, csrno, &rval, 1451 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1452 if (ret_val) { 1453 *ret_val = rval >> 32; 1454 } 1455 1456 return ret; 1457 } 1458 1459 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1460 uint64_t *ret_val, 1461 uint64_t new_val, uint64_t wr_mask) 1462 { 1463 uint64_t mask = wr_mask & all_ints; 1464 1465 if (ret_val) { 1466 *ret_val = env->mie; 1467 } 1468 1469 env->mie = (env->mie & ~mask) | (new_val & mask); 1470 1471 if (!riscv_has_ext(env, RVH)) { 1472 env->mie &= ~((uint64_t)MIP_SGEIP); 1473 } 1474 1475 return RISCV_EXCP_NONE; 1476 } 1477 1478 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1479 target_ulong *ret_val, 1480 target_ulong new_val, target_ulong wr_mask) 1481 { 1482 uint64_t rval; 1483 RISCVException ret; 1484 1485 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1486 if (ret_val) { 1487 *ret_val = rval; 1488 } 1489 1490 return ret; 1491 } 1492 1493 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1494 target_ulong *ret_val, 1495 target_ulong new_val, target_ulong wr_mask) 1496 { 1497 uint64_t rval; 1498 RISCVException ret; 1499 1500 ret = rmw_mie64(env, csrno, &rval, 1501 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1502 if (ret_val) { 1503 *ret_val = rval >> 32; 1504 } 1505 1506 return ret; 1507 } 1508 1509 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1510 { 1511 int irq; 1512 uint8_t iprio; 1513 1514 irq = riscv_cpu_mirq_pending(env); 1515 if (irq <= 0 || irq > 63) { 1516 *val = 0; 1517 } else { 1518 iprio = env->miprio[irq]; 1519 if (!iprio) { 1520 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1521 iprio = IPRIO_MMAXIPRIO; 1522 } 1523 } 1524 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1525 *val |= iprio; 1526 } 1527 1528 return RISCV_EXCP_NONE; 1529 } 1530 1531 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1532 { 1533 if (!riscv_cpu_virt_enabled(env)) { 1534 return csrno; 1535 } 1536 1537 switch (csrno) { 1538 case CSR_SISELECT: 1539 return CSR_VSISELECT; 1540 case CSR_SIREG: 1541 return CSR_VSIREG; 1542 case CSR_STOPEI: 1543 return CSR_VSTOPEI; 1544 default: 1545 return csrno; 1546 }; 1547 } 1548 1549 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1550 target_ulong new_val, target_ulong wr_mask) 1551 { 1552 target_ulong *iselect; 1553 1554 /* Translate CSR number for VS-mode */ 1555 csrno = aia_xlate_vs_csrno(env, csrno); 1556 1557 /* Find the iselect CSR based on CSR number */ 1558 switch (csrno) { 1559 case CSR_MISELECT: 1560 iselect = &env->miselect; 1561 break; 1562 case CSR_SISELECT: 1563 iselect = &env->siselect; 1564 break; 1565 case CSR_VSISELECT: 1566 iselect = &env->vsiselect; 1567 break; 1568 default: 1569 return RISCV_EXCP_ILLEGAL_INST; 1570 }; 1571 1572 if (val) { 1573 *val = *iselect; 1574 } 1575 1576 wr_mask &= ISELECT_MASK; 1577 if (wr_mask) { 1578 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1579 } 1580 1581 return RISCV_EXCP_NONE; 1582 } 1583 1584 static int rmw_iprio(target_ulong xlen, 1585 target_ulong iselect, uint8_t *iprio, 1586 target_ulong *val, target_ulong new_val, 1587 target_ulong wr_mask, int ext_irq_no) 1588 { 1589 int i, firq, nirqs; 1590 target_ulong old_val; 1591 1592 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1593 return -EINVAL; 1594 } 1595 if (xlen != 32 && iselect & 0x1) { 1596 return -EINVAL; 1597 } 1598 1599 nirqs = 4 * (xlen / 32); 1600 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1601 1602 old_val = 0; 1603 for (i = 0; i < nirqs; i++) { 1604 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1605 } 1606 1607 if (val) { 1608 *val = old_val; 1609 } 1610 1611 if (wr_mask) { 1612 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1613 for (i = 0; i < nirqs; i++) { 1614 /* 1615 * M-level and S-level external IRQ priority always read-only 1616 * zero. This means default priority order is always preferred 1617 * for M-level and S-level external IRQs. 1618 */ 1619 if ((firq + i) == ext_irq_no) { 1620 continue; 1621 } 1622 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1623 } 1624 } 1625 1626 return 0; 1627 } 1628 1629 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1630 target_ulong new_val, target_ulong wr_mask) 1631 { 1632 bool virt; 1633 uint8_t *iprio; 1634 int ret = -EINVAL; 1635 target_ulong priv, isel, vgein; 1636 1637 /* Translate CSR number for VS-mode */ 1638 csrno = aia_xlate_vs_csrno(env, csrno); 1639 1640 /* Decode register details from CSR number */ 1641 virt = false; 1642 switch (csrno) { 1643 case CSR_MIREG: 1644 iprio = env->miprio; 1645 isel = env->miselect; 1646 priv = PRV_M; 1647 break; 1648 case CSR_SIREG: 1649 iprio = env->siprio; 1650 isel = env->siselect; 1651 priv = PRV_S; 1652 break; 1653 case CSR_VSIREG: 1654 iprio = env->hviprio; 1655 isel = env->vsiselect; 1656 priv = PRV_S; 1657 virt = true; 1658 break; 1659 default: 1660 goto done; 1661 }; 1662 1663 /* Find the selected guest interrupt file */ 1664 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1665 1666 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1667 /* Local interrupt priority registers not available for VS-mode */ 1668 if (!virt) { 1669 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1670 isel, iprio, val, new_val, wr_mask, 1671 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1672 } 1673 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1674 /* IMSIC registers only available when machine implements it. */ 1675 if (env->aia_ireg_rmw_fn[priv]) { 1676 /* Selected guest interrupt file should not be zero */ 1677 if (virt && (!vgein || env->geilen < vgein)) { 1678 goto done; 1679 } 1680 /* Call machine specific IMSIC register emulation */ 1681 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1682 AIA_MAKE_IREG(isel, priv, virt, vgein, 1683 riscv_cpu_mxl_bits(env)), 1684 val, new_val, wr_mask); 1685 } 1686 } 1687 1688 done: 1689 if (ret) { 1690 return (riscv_cpu_virt_enabled(env) && virt) ? 1691 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1692 } 1693 return RISCV_EXCP_NONE; 1694 } 1695 1696 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1697 target_ulong new_val, target_ulong wr_mask) 1698 { 1699 bool virt; 1700 int ret = -EINVAL; 1701 target_ulong priv, vgein; 1702 1703 /* Translate CSR number for VS-mode */ 1704 csrno = aia_xlate_vs_csrno(env, csrno); 1705 1706 /* Decode register details from CSR number */ 1707 virt = false; 1708 switch (csrno) { 1709 case CSR_MTOPEI: 1710 priv = PRV_M; 1711 break; 1712 case CSR_STOPEI: 1713 priv = PRV_S; 1714 break; 1715 case CSR_VSTOPEI: 1716 priv = PRV_S; 1717 virt = true; 1718 break; 1719 default: 1720 goto done; 1721 }; 1722 1723 /* IMSIC CSRs only available when machine implements IMSIC. */ 1724 if (!env->aia_ireg_rmw_fn[priv]) { 1725 goto done; 1726 } 1727 1728 /* Find the selected guest interrupt file */ 1729 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1730 1731 /* Selected guest interrupt file should be valid */ 1732 if (virt && (!vgein || env->geilen < vgein)) { 1733 goto done; 1734 } 1735 1736 /* Call machine specific IMSIC register emulation for TOPEI */ 1737 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1738 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1739 riscv_cpu_mxl_bits(env)), 1740 val, new_val, wr_mask); 1741 1742 done: 1743 if (ret) { 1744 return (riscv_cpu_virt_enabled(env) && virt) ? 1745 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1746 } 1747 return RISCV_EXCP_NONE; 1748 } 1749 1750 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1751 target_ulong *val) 1752 { 1753 *val = env->mtvec; 1754 return RISCV_EXCP_NONE; 1755 } 1756 1757 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1758 target_ulong val) 1759 { 1760 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1761 if ((val & 3) < 2) { 1762 env->mtvec = val; 1763 } else { 1764 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1765 } 1766 return RISCV_EXCP_NONE; 1767 } 1768 1769 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1770 target_ulong *val) 1771 { 1772 *val = env->mcountinhibit; 1773 return RISCV_EXCP_NONE; 1774 } 1775 1776 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1777 target_ulong val) 1778 { 1779 int cidx; 1780 PMUCTRState *counter; 1781 1782 env->mcountinhibit = val; 1783 1784 /* Check if any other counter is also monitoring cycles/instructions */ 1785 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1786 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1787 counter = &env->pmu_ctrs[cidx]; 1788 counter->started = true; 1789 } 1790 } 1791 1792 return RISCV_EXCP_NONE; 1793 } 1794 1795 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1796 target_ulong *val) 1797 { 1798 *val = env->mcounteren; 1799 return RISCV_EXCP_NONE; 1800 } 1801 1802 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1803 target_ulong val) 1804 { 1805 env->mcounteren = val; 1806 return RISCV_EXCP_NONE; 1807 } 1808 1809 /* Machine Trap Handling */ 1810 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1811 Int128 *val) 1812 { 1813 *val = int128_make128(env->mscratch, env->mscratchh); 1814 return RISCV_EXCP_NONE; 1815 } 1816 1817 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1818 Int128 val) 1819 { 1820 env->mscratch = int128_getlo(val); 1821 env->mscratchh = int128_gethi(val); 1822 return RISCV_EXCP_NONE; 1823 } 1824 1825 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1826 target_ulong *val) 1827 { 1828 *val = env->mscratch; 1829 return RISCV_EXCP_NONE; 1830 } 1831 1832 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1833 target_ulong val) 1834 { 1835 env->mscratch = val; 1836 return RISCV_EXCP_NONE; 1837 } 1838 1839 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1840 target_ulong *val) 1841 { 1842 *val = env->mepc; 1843 return RISCV_EXCP_NONE; 1844 } 1845 1846 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1847 target_ulong val) 1848 { 1849 env->mepc = val; 1850 return RISCV_EXCP_NONE; 1851 } 1852 1853 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1854 target_ulong *val) 1855 { 1856 *val = env->mcause; 1857 return RISCV_EXCP_NONE; 1858 } 1859 1860 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1861 target_ulong val) 1862 { 1863 env->mcause = val; 1864 return RISCV_EXCP_NONE; 1865 } 1866 1867 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1868 target_ulong *val) 1869 { 1870 *val = env->mtval; 1871 return RISCV_EXCP_NONE; 1872 } 1873 1874 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1875 target_ulong val) 1876 { 1877 env->mtval = val; 1878 return RISCV_EXCP_NONE; 1879 } 1880 1881 /* Execution environment configuration setup */ 1882 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1883 target_ulong *val) 1884 { 1885 *val = env->menvcfg; 1886 return RISCV_EXCP_NONE; 1887 } 1888 1889 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1890 target_ulong val) 1891 { 1892 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1893 1894 if (riscv_cpu_mxl(env) == MXL_RV64) { 1895 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1896 } 1897 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1898 1899 return RISCV_EXCP_NONE; 1900 } 1901 1902 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1903 target_ulong *val) 1904 { 1905 *val = env->menvcfg >> 32; 1906 return RISCV_EXCP_NONE; 1907 } 1908 1909 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1910 target_ulong val) 1911 { 1912 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1913 uint64_t valh = (uint64_t)val << 32; 1914 1915 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1916 1917 return RISCV_EXCP_NONE; 1918 } 1919 1920 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1921 target_ulong *val) 1922 { 1923 RISCVException ret; 1924 1925 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1926 if (ret != RISCV_EXCP_NONE) { 1927 return ret; 1928 } 1929 1930 *val = env->senvcfg; 1931 return RISCV_EXCP_NONE; 1932 } 1933 1934 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1935 target_ulong val) 1936 { 1937 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1938 RISCVException ret; 1939 1940 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1941 if (ret != RISCV_EXCP_NONE) { 1942 return ret; 1943 } 1944 1945 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1946 return RISCV_EXCP_NONE; 1947 } 1948 1949 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1950 target_ulong *val) 1951 { 1952 RISCVException ret; 1953 1954 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1955 if (ret != RISCV_EXCP_NONE) { 1956 return ret; 1957 } 1958 1959 *val = env->henvcfg; 1960 return RISCV_EXCP_NONE; 1961 } 1962 1963 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1964 target_ulong val) 1965 { 1966 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1967 RISCVException ret; 1968 1969 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1970 if (ret != RISCV_EXCP_NONE) { 1971 return ret; 1972 } 1973 1974 if (riscv_cpu_mxl(env) == MXL_RV64) { 1975 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 1976 } 1977 1978 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1979 1980 return RISCV_EXCP_NONE; 1981 } 1982 1983 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1984 target_ulong *val) 1985 { 1986 RISCVException ret; 1987 1988 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1989 if (ret != RISCV_EXCP_NONE) { 1990 return ret; 1991 } 1992 1993 *val = env->henvcfg >> 32; 1994 return RISCV_EXCP_NONE; 1995 } 1996 1997 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 1998 target_ulong val) 1999 { 2000 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 2001 uint64_t valh = (uint64_t)val << 32; 2002 RISCVException ret; 2003 2004 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2005 if (ret != RISCV_EXCP_NONE) { 2006 return ret; 2007 } 2008 2009 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2010 return RISCV_EXCP_NONE; 2011 } 2012 2013 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2014 target_ulong *val) 2015 { 2016 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2017 2018 return RISCV_EXCP_NONE; 2019 } 2020 2021 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2022 uint64_t wr_mask, target_ulong new_val) 2023 { 2024 uint64_t *reg; 2025 2026 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2027 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2028 2029 return RISCV_EXCP_NONE; 2030 } 2031 2032 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2033 target_ulong new_val) 2034 { 2035 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2036 2037 return write_mstateen(env, csrno, wr_mask, new_val); 2038 } 2039 2040 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2041 target_ulong new_val) 2042 { 2043 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2044 } 2045 2046 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2047 target_ulong *val) 2048 { 2049 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2050 2051 return RISCV_EXCP_NONE; 2052 } 2053 2054 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2055 uint64_t wr_mask, target_ulong new_val) 2056 { 2057 uint64_t *reg, val; 2058 2059 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2060 val = (uint64_t)new_val << 32; 2061 val |= *reg & 0xFFFFFFFF; 2062 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2063 2064 return RISCV_EXCP_NONE; 2065 } 2066 2067 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2068 target_ulong new_val) 2069 { 2070 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2071 2072 return write_mstateenh(env, csrno, wr_mask, new_val); 2073 } 2074 2075 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2076 target_ulong new_val) 2077 { 2078 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2079 } 2080 2081 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2082 target_ulong *val) 2083 { 2084 int index = csrno - CSR_HSTATEEN0; 2085 2086 *val = env->hstateen[index] & env->mstateen[index]; 2087 2088 return RISCV_EXCP_NONE; 2089 } 2090 2091 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2092 uint64_t mask, target_ulong new_val) 2093 { 2094 int index = csrno - CSR_HSTATEEN0; 2095 uint64_t *reg, wr_mask; 2096 2097 reg = &env->hstateen[index]; 2098 wr_mask = env->mstateen[index] & mask; 2099 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2100 2101 return RISCV_EXCP_NONE; 2102 } 2103 2104 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2105 target_ulong new_val) 2106 { 2107 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2108 2109 return write_hstateen(env, csrno, wr_mask, new_val); 2110 } 2111 2112 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2113 target_ulong new_val) 2114 { 2115 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2116 } 2117 2118 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2119 target_ulong *val) 2120 { 2121 int index = csrno - CSR_HSTATEEN0H; 2122 2123 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2124 2125 return RISCV_EXCP_NONE; 2126 } 2127 2128 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2129 uint64_t mask, target_ulong new_val) 2130 { 2131 int index = csrno - CSR_HSTATEEN0H; 2132 uint64_t *reg, wr_mask, val; 2133 2134 reg = &env->hstateen[index]; 2135 val = (uint64_t)new_val << 32; 2136 val |= *reg & 0xFFFFFFFF; 2137 wr_mask = env->mstateen[index] & mask; 2138 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2139 2140 return RISCV_EXCP_NONE; 2141 } 2142 2143 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2144 target_ulong new_val) 2145 { 2146 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2147 2148 return write_hstateenh(env, csrno, wr_mask, new_val); 2149 } 2150 2151 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2152 target_ulong new_val) 2153 { 2154 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2155 } 2156 2157 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2158 target_ulong *val) 2159 { 2160 bool virt = riscv_cpu_virt_enabled(env); 2161 int index = csrno - CSR_SSTATEEN0; 2162 2163 *val = env->sstateen[index] & env->mstateen[index]; 2164 if (virt) { 2165 *val &= env->hstateen[index]; 2166 } 2167 2168 return RISCV_EXCP_NONE; 2169 } 2170 2171 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2172 uint64_t mask, target_ulong new_val) 2173 { 2174 bool virt = riscv_cpu_virt_enabled(env); 2175 int index = csrno - CSR_SSTATEEN0; 2176 uint64_t wr_mask; 2177 uint64_t *reg; 2178 2179 wr_mask = env->mstateen[index] & mask; 2180 if (virt) { 2181 wr_mask &= env->hstateen[index]; 2182 } 2183 2184 reg = &env->sstateen[index]; 2185 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2186 2187 return RISCV_EXCP_NONE; 2188 } 2189 2190 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2191 target_ulong new_val) 2192 { 2193 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2194 2195 return write_sstateen(env, csrno, wr_mask, new_val); 2196 } 2197 2198 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2199 target_ulong new_val) 2200 { 2201 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2202 } 2203 2204 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2205 uint64_t *ret_val, 2206 uint64_t new_val, uint64_t wr_mask) 2207 { 2208 RISCVCPU *cpu = env_archcpu(env); 2209 uint64_t old_mip, mask = wr_mask & delegable_ints; 2210 uint32_t gin; 2211 2212 if (mask & MIP_SEIP) { 2213 env->software_seip = new_val & MIP_SEIP; 2214 new_val |= env->external_seip * MIP_SEIP; 2215 } 2216 2217 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2218 get_field(env->menvcfg, MENVCFG_STCE)) { 2219 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2220 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2221 } 2222 2223 if (mask) { 2224 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 2225 } else { 2226 old_mip = env->mip; 2227 } 2228 2229 if (csrno != CSR_HVIP) { 2230 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2231 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2232 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2233 } 2234 2235 if (ret_val) { 2236 *ret_val = old_mip; 2237 } 2238 2239 return RISCV_EXCP_NONE; 2240 } 2241 2242 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2243 target_ulong *ret_val, 2244 target_ulong new_val, target_ulong wr_mask) 2245 { 2246 uint64_t rval; 2247 RISCVException ret; 2248 2249 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2250 if (ret_val) { 2251 *ret_val = rval; 2252 } 2253 2254 return ret; 2255 } 2256 2257 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2258 target_ulong *ret_val, 2259 target_ulong new_val, target_ulong wr_mask) 2260 { 2261 uint64_t rval; 2262 RISCVException ret; 2263 2264 ret = rmw_mip64(env, csrno, &rval, 2265 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2266 if (ret_val) { 2267 *ret_val = rval >> 32; 2268 } 2269 2270 return ret; 2271 } 2272 2273 /* Supervisor Trap Setup */ 2274 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2275 Int128 *val) 2276 { 2277 uint64_t mask = sstatus_v1_10_mask; 2278 uint64_t sstatus = env->mstatus & mask; 2279 if (env->xl != MXL_RV32 || env->debugger) { 2280 mask |= SSTATUS64_UXL; 2281 } 2282 2283 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2284 return RISCV_EXCP_NONE; 2285 } 2286 2287 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2288 target_ulong *val) 2289 { 2290 target_ulong mask = (sstatus_v1_10_mask); 2291 if (env->xl != MXL_RV32 || env->debugger) { 2292 mask |= SSTATUS64_UXL; 2293 } 2294 /* TODO: Use SXL not MXL. */ 2295 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2296 return RISCV_EXCP_NONE; 2297 } 2298 2299 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2300 target_ulong val) 2301 { 2302 target_ulong mask = (sstatus_v1_10_mask); 2303 2304 if (env->xl != MXL_RV32 || env->debugger) { 2305 if ((val & SSTATUS64_UXL) != 0) { 2306 mask |= SSTATUS64_UXL; 2307 } 2308 } 2309 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2310 return write_mstatus(env, CSR_MSTATUS, newval); 2311 } 2312 2313 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2314 uint64_t *ret_val, 2315 uint64_t new_val, uint64_t wr_mask) 2316 { 2317 RISCVException ret; 2318 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2319 2320 /* Bring VS-level bits to correct position */ 2321 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2322 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2323 2324 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2325 if (ret_val) { 2326 *ret_val = (rval & mask) >> 1; 2327 } 2328 2329 return ret; 2330 } 2331 2332 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2333 target_ulong *ret_val, 2334 target_ulong new_val, target_ulong wr_mask) 2335 { 2336 uint64_t rval; 2337 RISCVException ret; 2338 2339 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2340 if (ret_val) { 2341 *ret_val = rval; 2342 } 2343 2344 return ret; 2345 } 2346 2347 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2348 target_ulong *ret_val, 2349 target_ulong new_val, target_ulong wr_mask) 2350 { 2351 uint64_t rval; 2352 RISCVException ret; 2353 2354 ret = rmw_vsie64(env, csrno, &rval, 2355 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2356 if (ret_val) { 2357 *ret_val = rval >> 32; 2358 } 2359 2360 return ret; 2361 } 2362 2363 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2364 uint64_t *ret_val, 2365 uint64_t new_val, uint64_t wr_mask) 2366 { 2367 RISCVException ret; 2368 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2369 2370 if (riscv_cpu_virt_enabled(env)) { 2371 if (env->hvictl & HVICTL_VTI) { 2372 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2373 } 2374 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2375 } else { 2376 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2377 } 2378 2379 if (ret_val) { 2380 *ret_val &= mask; 2381 } 2382 2383 return ret; 2384 } 2385 2386 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2387 target_ulong *ret_val, 2388 target_ulong new_val, target_ulong wr_mask) 2389 { 2390 uint64_t rval; 2391 RISCVException ret; 2392 2393 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2394 if (ret == RISCV_EXCP_NONE && ret_val) { 2395 *ret_val = rval; 2396 } 2397 2398 return ret; 2399 } 2400 2401 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2402 target_ulong *ret_val, 2403 target_ulong new_val, target_ulong wr_mask) 2404 { 2405 uint64_t rval; 2406 RISCVException ret; 2407 2408 ret = rmw_sie64(env, csrno, &rval, 2409 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2410 if (ret_val) { 2411 *ret_val = rval >> 32; 2412 } 2413 2414 return ret; 2415 } 2416 2417 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2418 target_ulong *val) 2419 { 2420 *val = env->stvec; 2421 return RISCV_EXCP_NONE; 2422 } 2423 2424 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2425 target_ulong val) 2426 { 2427 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2428 if ((val & 3) < 2) { 2429 env->stvec = val; 2430 } else { 2431 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2432 } 2433 return RISCV_EXCP_NONE; 2434 } 2435 2436 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2437 target_ulong *val) 2438 { 2439 *val = env->scounteren; 2440 return RISCV_EXCP_NONE; 2441 } 2442 2443 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2444 target_ulong val) 2445 { 2446 env->scounteren = val; 2447 return RISCV_EXCP_NONE; 2448 } 2449 2450 /* Supervisor Trap Handling */ 2451 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2452 Int128 *val) 2453 { 2454 *val = int128_make128(env->sscratch, env->sscratchh); 2455 return RISCV_EXCP_NONE; 2456 } 2457 2458 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2459 Int128 val) 2460 { 2461 env->sscratch = int128_getlo(val); 2462 env->sscratchh = int128_gethi(val); 2463 return RISCV_EXCP_NONE; 2464 } 2465 2466 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2467 target_ulong *val) 2468 { 2469 *val = env->sscratch; 2470 return RISCV_EXCP_NONE; 2471 } 2472 2473 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2474 target_ulong val) 2475 { 2476 env->sscratch = val; 2477 return RISCV_EXCP_NONE; 2478 } 2479 2480 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2481 target_ulong *val) 2482 { 2483 *val = env->sepc; 2484 return RISCV_EXCP_NONE; 2485 } 2486 2487 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2488 target_ulong val) 2489 { 2490 env->sepc = val; 2491 return RISCV_EXCP_NONE; 2492 } 2493 2494 static RISCVException read_scause(CPURISCVState *env, int csrno, 2495 target_ulong *val) 2496 { 2497 *val = env->scause; 2498 return RISCV_EXCP_NONE; 2499 } 2500 2501 static RISCVException write_scause(CPURISCVState *env, int csrno, 2502 target_ulong val) 2503 { 2504 env->scause = val; 2505 return RISCV_EXCP_NONE; 2506 } 2507 2508 static RISCVException read_stval(CPURISCVState *env, int csrno, 2509 target_ulong *val) 2510 { 2511 *val = env->stval; 2512 return RISCV_EXCP_NONE; 2513 } 2514 2515 static RISCVException write_stval(CPURISCVState *env, int csrno, 2516 target_ulong val) 2517 { 2518 env->stval = val; 2519 return RISCV_EXCP_NONE; 2520 } 2521 2522 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2523 uint64_t *ret_val, 2524 uint64_t new_val, uint64_t wr_mask) 2525 { 2526 RISCVException ret; 2527 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2528 2529 /* Bring VS-level bits to correct position */ 2530 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2531 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2532 2533 ret = rmw_mip64(env, csrno, &rval, new_val, 2534 wr_mask & mask & vsip_writable_mask); 2535 if (ret_val) { 2536 *ret_val = (rval & mask) >> 1; 2537 } 2538 2539 return ret; 2540 } 2541 2542 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2543 target_ulong *ret_val, 2544 target_ulong new_val, target_ulong wr_mask) 2545 { 2546 uint64_t rval; 2547 RISCVException ret; 2548 2549 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2550 if (ret_val) { 2551 *ret_val = rval; 2552 } 2553 2554 return ret; 2555 } 2556 2557 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2558 target_ulong *ret_val, 2559 target_ulong new_val, target_ulong wr_mask) 2560 { 2561 uint64_t rval; 2562 RISCVException ret; 2563 2564 ret = rmw_vsip64(env, csrno, &rval, 2565 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2566 if (ret_val) { 2567 *ret_val = rval >> 32; 2568 } 2569 2570 return ret; 2571 } 2572 2573 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2574 uint64_t *ret_val, 2575 uint64_t new_val, uint64_t wr_mask) 2576 { 2577 RISCVException ret; 2578 uint64_t mask = env->mideleg & sip_writable_mask; 2579 2580 if (riscv_cpu_virt_enabled(env)) { 2581 if (env->hvictl & HVICTL_VTI) { 2582 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2583 } 2584 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2585 } else { 2586 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2587 } 2588 2589 if (ret_val) { 2590 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2591 } 2592 2593 return ret; 2594 } 2595 2596 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2597 target_ulong *ret_val, 2598 target_ulong new_val, target_ulong wr_mask) 2599 { 2600 uint64_t rval; 2601 RISCVException ret; 2602 2603 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2604 if (ret_val) { 2605 *ret_val = rval; 2606 } 2607 2608 return ret; 2609 } 2610 2611 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2612 target_ulong *ret_val, 2613 target_ulong new_val, target_ulong wr_mask) 2614 { 2615 uint64_t rval; 2616 RISCVException ret; 2617 2618 ret = rmw_sip64(env, csrno, &rval, 2619 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2620 if (ret_val) { 2621 *ret_val = rval >> 32; 2622 } 2623 2624 return ret; 2625 } 2626 2627 /* Supervisor Protection and Translation */ 2628 static RISCVException read_satp(CPURISCVState *env, int csrno, 2629 target_ulong *val) 2630 { 2631 if (!riscv_cpu_cfg(env)->mmu) { 2632 *val = 0; 2633 return RISCV_EXCP_NONE; 2634 } 2635 2636 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2637 return RISCV_EXCP_ILLEGAL_INST; 2638 } else { 2639 *val = env->satp; 2640 } 2641 2642 return RISCV_EXCP_NONE; 2643 } 2644 2645 static RISCVException write_satp(CPURISCVState *env, int csrno, 2646 target_ulong val) 2647 { 2648 target_ulong vm, mask; 2649 2650 if (!riscv_cpu_cfg(env)->mmu) { 2651 return RISCV_EXCP_NONE; 2652 } 2653 2654 if (riscv_cpu_mxl(env) == MXL_RV32) { 2655 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2656 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2657 } else { 2658 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2659 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2660 } 2661 2662 if (vm && mask) { 2663 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2664 return RISCV_EXCP_ILLEGAL_INST; 2665 } else { 2666 /* 2667 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2668 * pass these through QEMU's TLB emulation as it improves 2669 * performance. Flushing the TLB on SATP writes with paging 2670 * enabled avoids leaking those invalid cached mappings. 2671 */ 2672 tlb_flush(env_cpu(env)); 2673 env->satp = val; 2674 } 2675 } 2676 return RISCV_EXCP_NONE; 2677 } 2678 2679 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2680 { 2681 int irq, ret; 2682 target_ulong topei; 2683 uint64_t vseip, vsgein; 2684 uint32_t iid, iprio, hviid, hviprio, gein; 2685 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2686 2687 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2688 hviid = get_field(env->hvictl, HVICTL_IID); 2689 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2690 2691 if (gein) { 2692 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2693 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2694 if (gein <= env->geilen && vseip) { 2695 siid[scount] = IRQ_S_EXT; 2696 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2697 if (env->aia_ireg_rmw_fn[PRV_S]) { 2698 /* 2699 * Call machine specific IMSIC register emulation for 2700 * reading TOPEI. 2701 */ 2702 ret = env->aia_ireg_rmw_fn[PRV_S]( 2703 env->aia_ireg_rmw_fn_arg[PRV_S], 2704 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2705 riscv_cpu_mxl_bits(env)), 2706 &topei, 0, 0); 2707 if (!ret && topei) { 2708 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2709 } 2710 } 2711 scount++; 2712 } 2713 } else { 2714 if (hviid == IRQ_S_EXT && hviprio) { 2715 siid[scount] = IRQ_S_EXT; 2716 siprio[scount] = hviprio; 2717 scount++; 2718 } 2719 } 2720 2721 if (env->hvictl & HVICTL_VTI) { 2722 if (hviid != IRQ_S_EXT) { 2723 siid[scount] = hviid; 2724 siprio[scount] = hviprio; 2725 scount++; 2726 } 2727 } else { 2728 irq = riscv_cpu_vsirq_pending(env); 2729 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2730 siid[scount] = irq; 2731 siprio[scount] = env->hviprio[irq]; 2732 scount++; 2733 } 2734 } 2735 2736 iid = 0; 2737 iprio = UINT_MAX; 2738 for (s = 0; s < scount; s++) { 2739 if (siprio[s] < iprio) { 2740 iid = siid[s]; 2741 iprio = siprio[s]; 2742 } 2743 } 2744 2745 if (iid) { 2746 if (env->hvictl & HVICTL_IPRIOM) { 2747 if (iprio > IPRIO_MMAXIPRIO) { 2748 iprio = IPRIO_MMAXIPRIO; 2749 } 2750 if (!iprio) { 2751 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2752 iprio = IPRIO_MMAXIPRIO; 2753 } 2754 } 2755 } else { 2756 iprio = 1; 2757 } 2758 } else { 2759 iprio = 0; 2760 } 2761 2762 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2763 *val |= iprio; 2764 return RISCV_EXCP_NONE; 2765 } 2766 2767 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2768 { 2769 int irq; 2770 uint8_t iprio; 2771 2772 if (riscv_cpu_virt_enabled(env)) { 2773 return read_vstopi(env, CSR_VSTOPI, val); 2774 } 2775 2776 irq = riscv_cpu_sirq_pending(env); 2777 if (irq <= 0 || irq > 63) { 2778 *val = 0; 2779 } else { 2780 iprio = env->siprio[irq]; 2781 if (!iprio) { 2782 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2783 iprio = IPRIO_MMAXIPRIO; 2784 } 2785 } 2786 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2787 *val |= iprio; 2788 } 2789 2790 return RISCV_EXCP_NONE; 2791 } 2792 2793 /* Hypervisor Extensions */ 2794 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2795 target_ulong *val) 2796 { 2797 *val = env->hstatus; 2798 if (riscv_cpu_mxl(env) != MXL_RV32) { 2799 /* We only support 64-bit VSXL */ 2800 *val = set_field(*val, HSTATUS_VSXL, 2); 2801 } 2802 /* We only support little endian */ 2803 *val = set_field(*val, HSTATUS_VSBE, 0); 2804 return RISCV_EXCP_NONE; 2805 } 2806 2807 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2808 target_ulong val) 2809 { 2810 env->hstatus = val; 2811 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2812 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2813 } 2814 if (get_field(val, HSTATUS_VSBE) != 0) { 2815 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2816 } 2817 return RISCV_EXCP_NONE; 2818 } 2819 2820 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2821 target_ulong *val) 2822 { 2823 *val = env->hedeleg; 2824 return RISCV_EXCP_NONE; 2825 } 2826 2827 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2828 target_ulong val) 2829 { 2830 env->hedeleg = val & vs_delegable_excps; 2831 return RISCV_EXCP_NONE; 2832 } 2833 2834 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2835 uint64_t *ret_val, 2836 uint64_t new_val, uint64_t wr_mask) 2837 { 2838 uint64_t mask = wr_mask & vs_delegable_ints; 2839 2840 if (ret_val) { 2841 *ret_val = env->hideleg & vs_delegable_ints; 2842 } 2843 2844 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2845 return RISCV_EXCP_NONE; 2846 } 2847 2848 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2849 target_ulong *ret_val, 2850 target_ulong new_val, target_ulong wr_mask) 2851 { 2852 uint64_t rval; 2853 RISCVException ret; 2854 2855 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2856 if (ret_val) { 2857 *ret_val = rval; 2858 } 2859 2860 return ret; 2861 } 2862 2863 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2864 target_ulong *ret_val, 2865 target_ulong new_val, target_ulong wr_mask) 2866 { 2867 uint64_t rval; 2868 RISCVException ret; 2869 2870 ret = rmw_hideleg64(env, csrno, &rval, 2871 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2872 if (ret_val) { 2873 *ret_val = rval >> 32; 2874 } 2875 2876 return ret; 2877 } 2878 2879 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2880 uint64_t *ret_val, 2881 uint64_t new_val, uint64_t wr_mask) 2882 { 2883 RISCVException ret; 2884 2885 ret = rmw_mip64(env, csrno, ret_val, new_val, 2886 wr_mask & hvip_writable_mask); 2887 if (ret_val) { 2888 *ret_val &= VS_MODE_INTERRUPTS; 2889 } 2890 2891 return ret; 2892 } 2893 2894 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2895 target_ulong *ret_val, 2896 target_ulong new_val, target_ulong wr_mask) 2897 { 2898 uint64_t rval; 2899 RISCVException ret; 2900 2901 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2902 if (ret_val) { 2903 *ret_val = rval; 2904 } 2905 2906 return ret; 2907 } 2908 2909 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2910 target_ulong *ret_val, 2911 target_ulong new_val, target_ulong wr_mask) 2912 { 2913 uint64_t rval; 2914 RISCVException ret; 2915 2916 ret = rmw_hvip64(env, csrno, &rval, 2917 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2918 if (ret_val) { 2919 *ret_val = rval >> 32; 2920 } 2921 2922 return ret; 2923 } 2924 2925 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2926 target_ulong *ret_value, 2927 target_ulong new_value, target_ulong write_mask) 2928 { 2929 int ret = rmw_mip(env, csrno, ret_value, new_value, 2930 write_mask & hip_writable_mask); 2931 2932 if (ret_value) { 2933 *ret_value &= HS_MODE_INTERRUPTS; 2934 } 2935 return ret; 2936 } 2937 2938 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2939 target_ulong *ret_val, 2940 target_ulong new_val, target_ulong wr_mask) 2941 { 2942 uint64_t rval; 2943 RISCVException ret; 2944 2945 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2946 if (ret_val) { 2947 *ret_val = rval & HS_MODE_INTERRUPTS; 2948 } 2949 2950 return ret; 2951 } 2952 2953 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2954 target_ulong *val) 2955 { 2956 *val = env->hcounteren; 2957 return RISCV_EXCP_NONE; 2958 } 2959 2960 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2961 target_ulong val) 2962 { 2963 env->hcounteren = val; 2964 return RISCV_EXCP_NONE; 2965 } 2966 2967 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2968 target_ulong *val) 2969 { 2970 if (val) { 2971 *val = env->hgeie; 2972 } 2973 return RISCV_EXCP_NONE; 2974 } 2975 2976 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2977 target_ulong val) 2978 { 2979 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2980 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2981 env->hgeie = val; 2982 /* Update mip.SGEIP bit */ 2983 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2984 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2985 return RISCV_EXCP_NONE; 2986 } 2987 2988 static RISCVException read_htval(CPURISCVState *env, int csrno, 2989 target_ulong *val) 2990 { 2991 *val = env->htval; 2992 return RISCV_EXCP_NONE; 2993 } 2994 2995 static RISCVException write_htval(CPURISCVState *env, int csrno, 2996 target_ulong val) 2997 { 2998 env->htval = val; 2999 return RISCV_EXCP_NONE; 3000 } 3001 3002 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3003 target_ulong *val) 3004 { 3005 *val = env->htinst; 3006 return RISCV_EXCP_NONE; 3007 } 3008 3009 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3010 target_ulong val) 3011 { 3012 return RISCV_EXCP_NONE; 3013 } 3014 3015 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3016 target_ulong *val) 3017 { 3018 if (val) { 3019 *val = env->hgeip; 3020 } 3021 return RISCV_EXCP_NONE; 3022 } 3023 3024 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3025 target_ulong *val) 3026 { 3027 *val = env->hgatp; 3028 return RISCV_EXCP_NONE; 3029 } 3030 3031 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3032 target_ulong val) 3033 { 3034 env->hgatp = val; 3035 return RISCV_EXCP_NONE; 3036 } 3037 3038 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3039 target_ulong *val) 3040 { 3041 if (!env->rdtime_fn) { 3042 return RISCV_EXCP_ILLEGAL_INST; 3043 } 3044 3045 *val = env->htimedelta; 3046 return RISCV_EXCP_NONE; 3047 } 3048 3049 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3050 target_ulong val) 3051 { 3052 RISCVCPU *cpu = env_archcpu(env); 3053 3054 if (!env->rdtime_fn) { 3055 return RISCV_EXCP_ILLEGAL_INST; 3056 } 3057 3058 if (riscv_cpu_mxl(env) == MXL_RV32) { 3059 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3060 } else { 3061 env->htimedelta = val; 3062 } 3063 3064 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3065 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3066 env->htimedelta, MIP_VSTIP); 3067 } 3068 3069 return RISCV_EXCP_NONE; 3070 } 3071 3072 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3073 target_ulong *val) 3074 { 3075 if (!env->rdtime_fn) { 3076 return RISCV_EXCP_ILLEGAL_INST; 3077 } 3078 3079 *val = env->htimedelta >> 32; 3080 return RISCV_EXCP_NONE; 3081 } 3082 3083 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3084 target_ulong val) 3085 { 3086 RISCVCPU *cpu = env_archcpu(env); 3087 3088 if (!env->rdtime_fn) { 3089 return RISCV_EXCP_ILLEGAL_INST; 3090 } 3091 3092 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3093 3094 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3095 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3096 env->htimedelta, MIP_VSTIP); 3097 } 3098 3099 return RISCV_EXCP_NONE; 3100 } 3101 3102 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3103 { 3104 *val = env->hvictl; 3105 return RISCV_EXCP_NONE; 3106 } 3107 3108 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3109 { 3110 env->hvictl = val & HVICTL_VALID_MASK; 3111 return RISCV_EXCP_NONE; 3112 } 3113 3114 static int read_hvipriox(CPURISCVState *env, int first_index, 3115 uint8_t *iprio, target_ulong *val) 3116 { 3117 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3118 3119 /* First index has to be a multiple of number of irqs per register */ 3120 if (first_index % num_irqs) { 3121 return (riscv_cpu_virt_enabled(env)) ? 3122 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3123 } 3124 3125 /* Fill-up return value */ 3126 *val = 0; 3127 for (i = 0; i < num_irqs; i++) { 3128 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3129 continue; 3130 } 3131 if (rdzero) { 3132 continue; 3133 } 3134 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3135 } 3136 3137 return RISCV_EXCP_NONE; 3138 } 3139 3140 static int write_hvipriox(CPURISCVState *env, int first_index, 3141 uint8_t *iprio, target_ulong val) 3142 { 3143 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3144 3145 /* First index has to be a multiple of number of irqs per register */ 3146 if (first_index % num_irqs) { 3147 return (riscv_cpu_virt_enabled(env)) ? 3148 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3149 } 3150 3151 /* Fill-up priority arrary */ 3152 for (i = 0; i < num_irqs; i++) { 3153 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3154 continue; 3155 } 3156 if (rdzero) { 3157 iprio[irq] = 0; 3158 } else { 3159 iprio[irq] = (val >> (i * 8)) & 0xff; 3160 } 3161 } 3162 3163 return RISCV_EXCP_NONE; 3164 } 3165 3166 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3167 { 3168 return read_hvipriox(env, 0, env->hviprio, val); 3169 } 3170 3171 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3172 { 3173 return write_hvipriox(env, 0, env->hviprio, val); 3174 } 3175 3176 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3177 { 3178 return read_hvipriox(env, 4, env->hviprio, val); 3179 } 3180 3181 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3182 { 3183 return write_hvipriox(env, 4, env->hviprio, val); 3184 } 3185 3186 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3187 { 3188 return read_hvipriox(env, 8, env->hviprio, val); 3189 } 3190 3191 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3192 { 3193 return write_hvipriox(env, 8, env->hviprio, val); 3194 } 3195 3196 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3197 { 3198 return read_hvipriox(env, 12, env->hviprio, val); 3199 } 3200 3201 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3202 { 3203 return write_hvipriox(env, 12, env->hviprio, val); 3204 } 3205 3206 /* Virtual CSR Registers */ 3207 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3208 target_ulong *val) 3209 { 3210 *val = env->vsstatus; 3211 return RISCV_EXCP_NONE; 3212 } 3213 3214 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3215 target_ulong val) 3216 { 3217 uint64_t mask = (target_ulong)-1; 3218 if ((val & VSSTATUS64_UXL) == 0) { 3219 mask &= ~VSSTATUS64_UXL; 3220 } 3221 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3222 return RISCV_EXCP_NONE; 3223 } 3224 3225 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3226 { 3227 *val = env->vstvec; 3228 return RISCV_EXCP_NONE; 3229 } 3230 3231 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3232 target_ulong val) 3233 { 3234 env->vstvec = val; 3235 return RISCV_EXCP_NONE; 3236 } 3237 3238 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3239 target_ulong *val) 3240 { 3241 *val = env->vsscratch; 3242 return RISCV_EXCP_NONE; 3243 } 3244 3245 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3246 target_ulong val) 3247 { 3248 env->vsscratch = val; 3249 return RISCV_EXCP_NONE; 3250 } 3251 3252 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3253 target_ulong *val) 3254 { 3255 *val = env->vsepc; 3256 return RISCV_EXCP_NONE; 3257 } 3258 3259 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3260 target_ulong val) 3261 { 3262 env->vsepc = val; 3263 return RISCV_EXCP_NONE; 3264 } 3265 3266 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3267 target_ulong *val) 3268 { 3269 *val = env->vscause; 3270 return RISCV_EXCP_NONE; 3271 } 3272 3273 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3274 target_ulong val) 3275 { 3276 env->vscause = val; 3277 return RISCV_EXCP_NONE; 3278 } 3279 3280 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3281 target_ulong *val) 3282 { 3283 *val = env->vstval; 3284 return RISCV_EXCP_NONE; 3285 } 3286 3287 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3288 target_ulong val) 3289 { 3290 env->vstval = val; 3291 return RISCV_EXCP_NONE; 3292 } 3293 3294 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3295 target_ulong *val) 3296 { 3297 *val = env->vsatp; 3298 return RISCV_EXCP_NONE; 3299 } 3300 3301 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3302 target_ulong val) 3303 { 3304 env->vsatp = val; 3305 return RISCV_EXCP_NONE; 3306 } 3307 3308 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3309 target_ulong *val) 3310 { 3311 *val = env->mtval2; 3312 return RISCV_EXCP_NONE; 3313 } 3314 3315 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3316 target_ulong val) 3317 { 3318 env->mtval2 = val; 3319 return RISCV_EXCP_NONE; 3320 } 3321 3322 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3323 target_ulong *val) 3324 { 3325 *val = env->mtinst; 3326 return RISCV_EXCP_NONE; 3327 } 3328 3329 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3330 target_ulong val) 3331 { 3332 env->mtinst = val; 3333 return RISCV_EXCP_NONE; 3334 } 3335 3336 /* Physical Memory Protection */ 3337 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3338 target_ulong *val) 3339 { 3340 *val = mseccfg_csr_read(env); 3341 return RISCV_EXCP_NONE; 3342 } 3343 3344 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3345 target_ulong val) 3346 { 3347 mseccfg_csr_write(env, val); 3348 return RISCV_EXCP_NONE; 3349 } 3350 3351 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3352 target_ulong *val) 3353 { 3354 uint32_t reg_index = csrno - CSR_PMPCFG0; 3355 3356 *val = pmpcfg_csr_read(env, reg_index); 3357 return RISCV_EXCP_NONE; 3358 } 3359 3360 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3361 target_ulong val) 3362 { 3363 uint32_t reg_index = csrno - CSR_PMPCFG0; 3364 3365 pmpcfg_csr_write(env, reg_index, val); 3366 return RISCV_EXCP_NONE; 3367 } 3368 3369 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3370 target_ulong *val) 3371 { 3372 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3373 return RISCV_EXCP_NONE; 3374 } 3375 3376 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3377 target_ulong val) 3378 { 3379 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3380 return RISCV_EXCP_NONE; 3381 } 3382 3383 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3384 target_ulong *val) 3385 { 3386 *val = tselect_csr_read(env); 3387 return RISCV_EXCP_NONE; 3388 } 3389 3390 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3391 target_ulong val) 3392 { 3393 tselect_csr_write(env, val); 3394 return RISCV_EXCP_NONE; 3395 } 3396 3397 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3398 target_ulong *val) 3399 { 3400 /* return 0 in tdata1 to end the trigger enumeration */ 3401 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3402 *val = 0; 3403 return RISCV_EXCP_NONE; 3404 } 3405 3406 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3407 return RISCV_EXCP_ILLEGAL_INST; 3408 } 3409 3410 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3411 return RISCV_EXCP_NONE; 3412 } 3413 3414 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3415 target_ulong val) 3416 { 3417 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3418 return RISCV_EXCP_ILLEGAL_INST; 3419 } 3420 3421 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3422 return RISCV_EXCP_NONE; 3423 } 3424 3425 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3426 target_ulong *val) 3427 { 3428 *val = tinfo_csr_read(env); 3429 return RISCV_EXCP_NONE; 3430 } 3431 3432 /* 3433 * Functions to access Pointer Masking feature registers 3434 * We have to check if current priv lvl could modify 3435 * csr in given mode 3436 */ 3437 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3438 { 3439 int csr_priv = get_field(csrno, 0x300); 3440 int pm_current; 3441 3442 if (env->debugger) { 3443 return false; 3444 } 3445 /* 3446 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3447 * so allow the access 3448 */ 3449 if (env->priv != csr_priv) { 3450 return false; 3451 } 3452 switch (env->priv) { 3453 case PRV_M: 3454 pm_current = get_field(env->mmte, M_PM_CURRENT); 3455 break; 3456 case PRV_S: 3457 pm_current = get_field(env->mmte, S_PM_CURRENT); 3458 break; 3459 case PRV_U: 3460 pm_current = get_field(env->mmte, U_PM_CURRENT); 3461 break; 3462 default: 3463 g_assert_not_reached(); 3464 } 3465 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3466 return !pm_current; 3467 } 3468 3469 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3470 target_ulong *val) 3471 { 3472 *val = env->mmte & MMTE_MASK; 3473 return RISCV_EXCP_NONE; 3474 } 3475 3476 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3477 target_ulong val) 3478 { 3479 uint64_t mstatus; 3480 target_ulong wpri_val = val & MMTE_MASK; 3481 3482 if (val != wpri_val) { 3483 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3484 "MMTE: WPRI violation written 0x", val, 3485 "vs expected 0x", wpri_val); 3486 } 3487 /* for machine mode pm.current is hardwired to 1 */ 3488 wpri_val |= MMTE_M_PM_CURRENT; 3489 3490 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3491 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3492 env->mmte = wpri_val | PM_EXT_DIRTY; 3493 riscv_cpu_update_mask(env); 3494 3495 /* Set XS and SD bits, since PM CSRs are dirty */ 3496 mstatus = env->mstatus | MSTATUS_XS; 3497 write_mstatus(env, csrno, mstatus); 3498 return RISCV_EXCP_NONE; 3499 } 3500 3501 static RISCVException read_smte(CPURISCVState *env, int csrno, 3502 target_ulong *val) 3503 { 3504 *val = env->mmte & SMTE_MASK; 3505 return RISCV_EXCP_NONE; 3506 } 3507 3508 static RISCVException write_smte(CPURISCVState *env, int csrno, 3509 target_ulong val) 3510 { 3511 target_ulong wpri_val = val & SMTE_MASK; 3512 3513 if (val != wpri_val) { 3514 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3515 "SMTE: WPRI violation written 0x", val, 3516 "vs expected 0x", wpri_val); 3517 } 3518 3519 /* if pm.current==0 we can't modify current PM CSRs */ 3520 if (check_pm_current_disabled(env, csrno)) { 3521 return RISCV_EXCP_NONE; 3522 } 3523 3524 wpri_val |= (env->mmte & ~SMTE_MASK); 3525 write_mmte(env, csrno, wpri_val); 3526 return RISCV_EXCP_NONE; 3527 } 3528 3529 static RISCVException read_umte(CPURISCVState *env, int csrno, 3530 target_ulong *val) 3531 { 3532 *val = env->mmte & UMTE_MASK; 3533 return RISCV_EXCP_NONE; 3534 } 3535 3536 static RISCVException write_umte(CPURISCVState *env, int csrno, 3537 target_ulong val) 3538 { 3539 target_ulong wpri_val = val & UMTE_MASK; 3540 3541 if (val != wpri_val) { 3542 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3543 "UMTE: WPRI violation written 0x", val, 3544 "vs expected 0x", wpri_val); 3545 } 3546 3547 if (check_pm_current_disabled(env, csrno)) { 3548 return RISCV_EXCP_NONE; 3549 } 3550 3551 wpri_val |= (env->mmte & ~UMTE_MASK); 3552 write_mmte(env, csrno, wpri_val); 3553 return RISCV_EXCP_NONE; 3554 } 3555 3556 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3557 target_ulong *val) 3558 { 3559 *val = env->mpmmask; 3560 return RISCV_EXCP_NONE; 3561 } 3562 3563 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3564 target_ulong val) 3565 { 3566 uint64_t mstatus; 3567 3568 env->mpmmask = val; 3569 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3570 env->cur_pmmask = val; 3571 } 3572 env->mmte |= PM_EXT_DIRTY; 3573 3574 /* Set XS and SD bits, since PM CSRs are dirty */ 3575 mstatus = env->mstatus | MSTATUS_XS; 3576 write_mstatus(env, csrno, mstatus); 3577 return RISCV_EXCP_NONE; 3578 } 3579 3580 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3581 target_ulong *val) 3582 { 3583 *val = env->spmmask; 3584 return RISCV_EXCP_NONE; 3585 } 3586 3587 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3588 target_ulong val) 3589 { 3590 uint64_t mstatus; 3591 3592 /* if pm.current==0 we can't modify current PM CSRs */ 3593 if (check_pm_current_disabled(env, csrno)) { 3594 return RISCV_EXCP_NONE; 3595 } 3596 env->spmmask = val; 3597 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3598 env->cur_pmmask = val; 3599 } 3600 env->mmte |= PM_EXT_DIRTY; 3601 3602 /* Set XS and SD bits, since PM CSRs are dirty */ 3603 mstatus = env->mstatus | MSTATUS_XS; 3604 write_mstatus(env, csrno, mstatus); 3605 return RISCV_EXCP_NONE; 3606 } 3607 3608 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3609 target_ulong *val) 3610 { 3611 *val = env->upmmask; 3612 return RISCV_EXCP_NONE; 3613 } 3614 3615 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3616 target_ulong val) 3617 { 3618 uint64_t mstatus; 3619 3620 /* if pm.current==0 we can't modify current PM CSRs */ 3621 if (check_pm_current_disabled(env, csrno)) { 3622 return RISCV_EXCP_NONE; 3623 } 3624 env->upmmask = val; 3625 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3626 env->cur_pmmask = val; 3627 } 3628 env->mmte |= PM_EXT_DIRTY; 3629 3630 /* Set XS and SD bits, since PM CSRs are dirty */ 3631 mstatus = env->mstatus | MSTATUS_XS; 3632 write_mstatus(env, csrno, mstatus); 3633 return RISCV_EXCP_NONE; 3634 } 3635 3636 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3637 target_ulong *val) 3638 { 3639 *val = env->mpmbase; 3640 return RISCV_EXCP_NONE; 3641 } 3642 3643 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3644 target_ulong val) 3645 { 3646 uint64_t mstatus; 3647 3648 env->mpmbase = val; 3649 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3650 env->cur_pmbase = val; 3651 } 3652 env->mmte |= PM_EXT_DIRTY; 3653 3654 /* Set XS and SD bits, since PM CSRs are dirty */ 3655 mstatus = env->mstatus | MSTATUS_XS; 3656 write_mstatus(env, csrno, mstatus); 3657 return RISCV_EXCP_NONE; 3658 } 3659 3660 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3661 target_ulong *val) 3662 { 3663 *val = env->spmbase; 3664 return RISCV_EXCP_NONE; 3665 } 3666 3667 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3668 target_ulong val) 3669 { 3670 uint64_t mstatus; 3671 3672 /* if pm.current==0 we can't modify current PM CSRs */ 3673 if (check_pm_current_disabled(env, csrno)) { 3674 return RISCV_EXCP_NONE; 3675 } 3676 env->spmbase = val; 3677 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3678 env->cur_pmbase = val; 3679 } 3680 env->mmte |= PM_EXT_DIRTY; 3681 3682 /* Set XS and SD bits, since PM CSRs are dirty */ 3683 mstatus = env->mstatus | MSTATUS_XS; 3684 write_mstatus(env, csrno, mstatus); 3685 return RISCV_EXCP_NONE; 3686 } 3687 3688 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3689 target_ulong *val) 3690 { 3691 *val = env->upmbase; 3692 return RISCV_EXCP_NONE; 3693 } 3694 3695 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3696 target_ulong val) 3697 { 3698 uint64_t mstatus; 3699 3700 /* if pm.current==0 we can't modify current PM CSRs */ 3701 if (check_pm_current_disabled(env, csrno)) { 3702 return RISCV_EXCP_NONE; 3703 } 3704 env->upmbase = val; 3705 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3706 env->cur_pmbase = val; 3707 } 3708 env->mmte |= PM_EXT_DIRTY; 3709 3710 /* Set XS and SD bits, since PM CSRs are dirty */ 3711 mstatus = env->mstatus | MSTATUS_XS; 3712 write_mstatus(env, csrno, mstatus); 3713 return RISCV_EXCP_NONE; 3714 } 3715 3716 #endif 3717 3718 /* Crypto Extension */ 3719 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3720 target_ulong *ret_value, 3721 target_ulong new_value, 3722 target_ulong write_mask) 3723 { 3724 uint16_t random_v; 3725 Error *random_e = NULL; 3726 int random_r; 3727 target_ulong rval; 3728 3729 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3730 if (unlikely(random_r < 0)) { 3731 /* 3732 * Failed, for unknown reasons in the crypto subsystem. 3733 * The best we can do is log the reason and return a 3734 * failure indication to the guest. There is no reason 3735 * we know to expect the failure to be transitory, so 3736 * indicate DEAD to avoid having the guest spin on WAIT. 3737 */ 3738 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3739 __func__, error_get_pretty(random_e)); 3740 error_free(random_e); 3741 rval = SEED_OPST_DEAD; 3742 } else { 3743 rval = random_v | SEED_OPST_ES16; 3744 } 3745 3746 if (ret_value) { 3747 *ret_value = rval; 3748 } 3749 3750 return RISCV_EXCP_NONE; 3751 } 3752 3753 /* 3754 * riscv_csrrw - read and/or update control and status register 3755 * 3756 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3757 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3758 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3759 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3760 */ 3761 3762 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3763 int csrno, 3764 bool write_mask, 3765 RISCVCPU *cpu) 3766 { 3767 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3768 bool read_only = get_field(csrno, 0xC00) == 3; 3769 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3770 3771 /* ensure the CSR extension is enabled */ 3772 if (!cpu->cfg.ext_icsr) { 3773 return RISCV_EXCP_ILLEGAL_INST; 3774 } 3775 3776 /* privileged spec version check */ 3777 if (env->priv_ver < csr_min_priv) { 3778 return RISCV_EXCP_ILLEGAL_INST; 3779 } 3780 3781 /* read / write check */ 3782 if (write_mask && read_only) { 3783 return RISCV_EXCP_ILLEGAL_INST; 3784 } 3785 3786 /* 3787 * The predicate() not only does existence check but also does some 3788 * access control check which triggers for example virtual instruction 3789 * exception in some cases. When writing read-only CSRs in those cases 3790 * illegal instruction exception should be triggered instead of virtual 3791 * instruction exception. Hence this comes after the read / write check. 3792 */ 3793 g_assert(csr_ops[csrno].predicate != NULL); 3794 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3795 if (ret != RISCV_EXCP_NONE) { 3796 return ret; 3797 } 3798 3799 #if !defined(CONFIG_USER_ONLY) 3800 int csr_priv, effective_priv = env->priv; 3801 3802 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3803 !riscv_cpu_virt_enabled(env)) { 3804 /* 3805 * We are in HS mode. Add 1 to the effective privledge level to 3806 * allow us to access the Hypervisor CSRs. 3807 */ 3808 effective_priv++; 3809 } 3810 3811 csr_priv = get_field(csrno, 0x300); 3812 if (!env->debugger && (effective_priv < csr_priv)) { 3813 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3814 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3815 } 3816 return RISCV_EXCP_ILLEGAL_INST; 3817 } 3818 #endif 3819 return RISCV_EXCP_NONE; 3820 } 3821 3822 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3823 target_ulong *ret_value, 3824 target_ulong new_value, 3825 target_ulong write_mask) 3826 { 3827 RISCVException ret; 3828 target_ulong old_value; 3829 3830 /* execute combined read/write operation if it exists */ 3831 if (csr_ops[csrno].op) { 3832 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3833 } 3834 3835 /* if no accessor exists then return failure */ 3836 if (!csr_ops[csrno].read) { 3837 return RISCV_EXCP_ILLEGAL_INST; 3838 } 3839 /* read old value */ 3840 ret = csr_ops[csrno].read(env, csrno, &old_value); 3841 if (ret != RISCV_EXCP_NONE) { 3842 return ret; 3843 } 3844 3845 /* write value if writable and write mask set, otherwise drop writes */ 3846 if (write_mask) { 3847 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3848 if (csr_ops[csrno].write) { 3849 ret = csr_ops[csrno].write(env, csrno, new_value); 3850 if (ret != RISCV_EXCP_NONE) { 3851 return ret; 3852 } 3853 } 3854 } 3855 3856 /* return old value */ 3857 if (ret_value) { 3858 *ret_value = old_value; 3859 } 3860 3861 return RISCV_EXCP_NONE; 3862 } 3863 3864 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3865 target_ulong *ret_value, 3866 target_ulong new_value, target_ulong write_mask) 3867 { 3868 RISCVCPU *cpu = env_archcpu(env); 3869 3870 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3871 if (ret != RISCV_EXCP_NONE) { 3872 return ret; 3873 } 3874 3875 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3876 } 3877 3878 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3879 Int128 *ret_value, 3880 Int128 new_value, 3881 Int128 write_mask) 3882 { 3883 RISCVException ret; 3884 Int128 old_value; 3885 3886 /* read old value */ 3887 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3888 if (ret != RISCV_EXCP_NONE) { 3889 return ret; 3890 } 3891 3892 /* write value if writable and write mask set, otherwise drop writes */ 3893 if (int128_nz(write_mask)) { 3894 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3895 int128_and(new_value, write_mask)); 3896 if (csr_ops[csrno].write128) { 3897 ret = csr_ops[csrno].write128(env, csrno, new_value); 3898 if (ret != RISCV_EXCP_NONE) { 3899 return ret; 3900 } 3901 } else if (csr_ops[csrno].write) { 3902 /* avoids having to write wrappers for all registers */ 3903 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3904 if (ret != RISCV_EXCP_NONE) { 3905 return ret; 3906 } 3907 } 3908 } 3909 3910 /* return old value */ 3911 if (ret_value) { 3912 *ret_value = old_value; 3913 } 3914 3915 return RISCV_EXCP_NONE; 3916 } 3917 3918 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3919 Int128 *ret_value, 3920 Int128 new_value, Int128 write_mask) 3921 { 3922 RISCVException ret; 3923 RISCVCPU *cpu = env_archcpu(env); 3924 3925 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3926 if (ret != RISCV_EXCP_NONE) { 3927 return ret; 3928 } 3929 3930 if (csr_ops[csrno].read128) { 3931 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3932 } 3933 3934 /* 3935 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3936 * at all defined. 3937 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3938 * significant), for those, this fallback is correctly handling the accesses 3939 */ 3940 target_ulong old_value; 3941 ret = riscv_csrrw_do64(env, csrno, &old_value, 3942 int128_getlo(new_value), 3943 int128_getlo(write_mask)); 3944 if (ret == RISCV_EXCP_NONE && ret_value) { 3945 *ret_value = int128_make64(old_value); 3946 } 3947 return ret; 3948 } 3949 3950 /* 3951 * Debugger support. If not in user mode, set env->debugger before the 3952 * riscv_csrrw call and clear it after the call. 3953 */ 3954 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3955 target_ulong *ret_value, 3956 target_ulong new_value, 3957 target_ulong write_mask) 3958 { 3959 RISCVException ret; 3960 #if !defined(CONFIG_USER_ONLY) 3961 env->debugger = true; 3962 #endif 3963 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3964 #if !defined(CONFIG_USER_ONLY) 3965 env->debugger = false; 3966 #endif 3967 return ret; 3968 } 3969 3970 /* Control and Status Register function table */ 3971 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3972 /* User Floating-Point CSRs */ 3973 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3974 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3975 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3976 /* Vector CSRs */ 3977 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 3978 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 3979 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 3980 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 3981 [CSR_VL] = { "vl", vs, read_vl }, 3982 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 3983 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 3984 /* User Timers and Counters */ 3985 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 3986 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 3987 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 3988 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 3989 3990 /* 3991 * In privileged mode, the monitor will have to emulate TIME CSRs only if 3992 * rdtime callback is not provided by machine/platform emulation. 3993 */ 3994 [CSR_TIME] = { "time", ctr, read_time }, 3995 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 3996 3997 /* Crypto Extension */ 3998 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 3999 4000 #if !defined(CONFIG_USER_ONLY) 4001 /* Machine Timers and Counters */ 4002 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4003 write_mhpmcounter }, 4004 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4005 write_mhpmcounter }, 4006 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4007 write_mhpmcounterh }, 4008 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4009 write_mhpmcounterh }, 4010 4011 /* Machine Information Registers */ 4012 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4013 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4014 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4015 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4016 4017 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4018 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4019 /* Machine Trap Setup */ 4020 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4021 NULL, read_mstatus_i128 }, 4022 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4023 NULL, read_misa_i128 }, 4024 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4025 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4026 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4027 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4028 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4029 write_mcounteren }, 4030 4031 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4032 write_mstatush }, 4033 4034 /* Machine Trap Handling */ 4035 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4036 NULL, read_mscratch_i128, write_mscratch_i128 }, 4037 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4038 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4039 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4040 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4041 4042 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4043 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4044 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4045 4046 /* Machine-Level Interrupts (AIA) */ 4047 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4048 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4049 4050 /* Virtual Interrupts for Supervisor Level (AIA) */ 4051 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4052 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4053 4054 /* Machine-Level High-Half CSRs (AIA) */ 4055 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4056 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4057 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4058 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4059 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4060 4061 /* Execution environment configuration */ 4062 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4063 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4064 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4065 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4066 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4067 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4068 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4069 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4070 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4071 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4072 4073 /* Smstateen extension CSRs */ 4074 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4075 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4076 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4077 write_mstateen0h, 4078 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4079 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4080 write_mstateen_1_3, 4081 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4082 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4083 write_mstateenh_1_3, 4084 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4085 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4086 write_mstateen_1_3, 4087 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4088 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4089 write_mstateenh_1_3, 4090 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4091 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4092 write_mstateen_1_3, 4093 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4094 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4095 write_mstateenh_1_3, 4096 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4097 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4098 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4099 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4100 write_hstateen0h, 4101 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4102 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4103 write_hstateen_1_3, 4104 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4105 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4106 write_hstateenh_1_3, 4107 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4108 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4109 write_hstateen_1_3, 4110 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4111 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4112 write_hstateenh_1_3, 4113 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4114 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4115 write_hstateen_1_3, 4116 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4117 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4118 write_hstateenh_1_3, 4119 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4120 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4121 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4122 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4123 write_sstateen_1_3, 4124 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4125 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4126 write_sstateen_1_3, 4127 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4128 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4129 write_sstateen_1_3, 4130 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4131 4132 /* Supervisor Trap Setup */ 4133 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4134 NULL, read_sstatus_i128 }, 4135 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4136 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4137 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4138 write_scounteren }, 4139 4140 /* Supervisor Trap Handling */ 4141 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4142 NULL, read_sscratch_i128, write_sscratch_i128 }, 4143 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4144 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4145 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4146 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4147 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4148 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4149 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4150 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4151 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4152 write_vstimecmp, 4153 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4154 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4155 write_vstimecmph, 4156 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4157 4158 /* Supervisor Protection and Translation */ 4159 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 4160 4161 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4162 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4163 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4164 4165 /* Supervisor-Level Interrupts (AIA) */ 4166 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4167 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4168 4169 /* Supervisor-Level High-Half CSRs (AIA) */ 4170 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4171 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4172 4173 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4174 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4175 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4176 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4177 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4178 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4179 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4180 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4181 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4182 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4183 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4184 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4185 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4186 write_hcounteren, 4187 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4188 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4189 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4190 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4191 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4192 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4193 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4194 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4195 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4196 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 4197 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4198 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4199 write_htimedelta, 4200 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4201 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4202 write_htimedeltah, 4203 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4204 4205 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4206 write_vsstatus, 4207 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4208 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4209 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4210 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4211 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4212 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4213 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4214 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4215 write_vsscratch, 4216 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4217 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4218 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4219 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4220 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4221 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4222 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4223 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4224 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4225 4226 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4227 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4228 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4229 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4230 4231 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4232 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4233 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4234 write_hvictl }, 4235 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4236 write_hviprio1 }, 4237 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4238 write_hviprio2 }, 4239 4240 /* 4241 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4242 */ 4243 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4244 rmw_xiselect }, 4245 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4246 4247 /* VS-Level Interrupts (H-extension with AIA) */ 4248 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4249 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4250 4251 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4252 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4253 rmw_hidelegh }, 4254 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4255 write_ignore }, 4256 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4257 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4258 write_hviprio1h }, 4259 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4260 write_hviprio2h }, 4261 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4262 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4263 4264 /* Physical Memory Protection */ 4265 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4266 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4267 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4268 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4269 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4270 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4271 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4272 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4273 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4274 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4275 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4276 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4277 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4278 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4279 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4280 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4281 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4282 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4283 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4284 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4285 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4286 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4287 4288 /* Debug CSRs */ 4289 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4290 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4291 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4292 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4293 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4294 4295 /* User Pointer Masking */ 4296 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4297 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4298 write_upmmask }, 4299 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4300 write_upmbase }, 4301 /* Machine Pointer Masking */ 4302 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4303 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4304 write_mpmmask }, 4305 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4306 write_mpmbase }, 4307 /* Supervisor Pointer Masking */ 4308 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4309 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4310 write_spmmask }, 4311 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4312 write_spmbase }, 4313 4314 /* Performance Counters */ 4315 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4316 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4317 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4318 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4319 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4320 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4321 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4322 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4323 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4324 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4325 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4326 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4327 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4328 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4329 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4330 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4331 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4332 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4333 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4334 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4335 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4336 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4337 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4338 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4339 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4340 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4341 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4342 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4343 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4344 4345 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4346 write_mhpmcounter }, 4347 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4348 write_mhpmcounter }, 4349 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4350 write_mhpmcounter }, 4351 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4352 write_mhpmcounter }, 4353 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4354 write_mhpmcounter }, 4355 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4356 write_mhpmcounter }, 4357 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4358 write_mhpmcounter }, 4359 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4360 write_mhpmcounter }, 4361 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4362 write_mhpmcounter }, 4363 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4364 write_mhpmcounter }, 4365 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4366 write_mhpmcounter }, 4367 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4368 write_mhpmcounter }, 4369 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4370 write_mhpmcounter }, 4371 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4372 write_mhpmcounter }, 4373 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4374 write_mhpmcounter }, 4375 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4376 write_mhpmcounter }, 4377 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4378 write_mhpmcounter }, 4379 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4380 write_mhpmcounter }, 4381 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4382 write_mhpmcounter }, 4383 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4384 write_mhpmcounter }, 4385 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4386 write_mhpmcounter }, 4387 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4388 write_mhpmcounter }, 4389 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4390 write_mhpmcounter }, 4391 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4392 write_mhpmcounter }, 4393 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4394 write_mhpmcounter }, 4395 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4396 write_mhpmcounter }, 4397 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4398 write_mhpmcounter }, 4399 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4400 write_mhpmcounter }, 4401 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4402 write_mhpmcounter }, 4403 4404 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4405 write_mcountinhibit, 4406 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4407 4408 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4409 write_mhpmevent }, 4410 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4411 write_mhpmevent }, 4412 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4413 write_mhpmevent }, 4414 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4415 write_mhpmevent }, 4416 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4417 write_mhpmevent }, 4418 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4419 write_mhpmevent }, 4420 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4421 write_mhpmevent }, 4422 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4423 write_mhpmevent }, 4424 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4425 write_mhpmevent }, 4426 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4427 write_mhpmevent }, 4428 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4429 write_mhpmevent }, 4430 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4431 write_mhpmevent }, 4432 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4433 write_mhpmevent }, 4434 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4435 write_mhpmevent }, 4436 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4437 write_mhpmevent }, 4438 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4439 write_mhpmevent }, 4440 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4441 write_mhpmevent }, 4442 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4443 write_mhpmevent }, 4444 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4445 write_mhpmevent }, 4446 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4447 write_mhpmevent }, 4448 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4449 write_mhpmevent }, 4450 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4451 write_mhpmevent }, 4452 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4453 write_mhpmevent }, 4454 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4455 write_mhpmevent }, 4456 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4457 write_mhpmevent }, 4458 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4459 write_mhpmevent }, 4460 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4461 write_mhpmevent }, 4462 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4463 write_mhpmevent }, 4464 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4465 write_mhpmevent }, 4466 4467 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4468 write_mhpmeventh, 4469 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4470 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4471 write_mhpmeventh, 4472 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4473 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4474 write_mhpmeventh, 4475 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4476 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4477 write_mhpmeventh, 4478 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4479 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4480 write_mhpmeventh, 4481 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4482 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4483 write_mhpmeventh, 4484 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4485 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4486 write_mhpmeventh, 4487 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4488 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4489 write_mhpmeventh, 4490 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4491 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4492 write_mhpmeventh, 4493 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4494 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4495 write_mhpmeventh, 4496 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4497 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4498 write_mhpmeventh, 4499 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4500 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4501 write_mhpmeventh, 4502 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4503 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4504 write_mhpmeventh, 4505 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4506 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4507 write_mhpmeventh, 4508 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4509 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4510 write_mhpmeventh, 4511 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4512 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4513 write_mhpmeventh, 4514 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4515 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4516 write_mhpmeventh, 4517 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4518 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4519 write_mhpmeventh, 4520 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4521 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4522 write_mhpmeventh, 4523 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4524 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4525 write_mhpmeventh, 4526 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4527 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4528 write_mhpmeventh, 4529 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4530 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4531 write_mhpmeventh, 4532 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4533 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4534 write_mhpmeventh, 4535 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4536 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4537 write_mhpmeventh, 4538 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4539 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4540 write_mhpmeventh, 4541 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4542 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4543 write_mhpmeventh, 4544 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4545 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4546 write_mhpmeventh, 4547 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4548 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4549 write_mhpmeventh, 4550 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4551 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4552 write_mhpmeventh, 4553 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4554 4555 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4556 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4557 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4558 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4559 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4560 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4561 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4562 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4563 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4564 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4565 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4566 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4567 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4568 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4569 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4570 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4571 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4572 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4573 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4574 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4575 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4576 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4577 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4578 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4579 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4580 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4581 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4582 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4583 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4584 4585 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4586 write_mhpmcounterh }, 4587 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4588 write_mhpmcounterh }, 4589 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4590 write_mhpmcounterh }, 4591 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4592 write_mhpmcounterh }, 4593 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4594 write_mhpmcounterh }, 4595 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4596 write_mhpmcounterh }, 4597 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4598 write_mhpmcounterh }, 4599 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4600 write_mhpmcounterh }, 4601 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4602 write_mhpmcounterh }, 4603 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4604 write_mhpmcounterh }, 4605 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4606 write_mhpmcounterh }, 4607 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4608 write_mhpmcounterh }, 4609 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4610 write_mhpmcounterh }, 4611 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4612 write_mhpmcounterh }, 4613 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4614 write_mhpmcounterh }, 4615 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4616 write_mhpmcounterh }, 4617 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4618 write_mhpmcounterh }, 4619 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4620 write_mhpmcounterh }, 4621 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4622 write_mhpmcounterh }, 4623 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4624 write_mhpmcounterh }, 4625 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4626 write_mhpmcounterh }, 4627 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4628 write_mhpmcounterh }, 4629 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4630 write_mhpmcounterh }, 4631 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4632 write_mhpmcounterh }, 4633 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4634 write_mhpmcounterh }, 4635 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4636 write_mhpmcounterh }, 4637 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4638 write_mhpmcounterh }, 4639 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4640 write_mhpmcounterh }, 4641 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4642 write_mhpmcounterh }, 4643 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4644 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4645 4646 #endif /* !CONFIG_USER_ONLY */ 4647 }; 4648