1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "qemu/main-loop.h" 24 #include "exec/exec-all.h" 25 26 /* CSR function table public API */ 27 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 28 { 29 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 30 } 31 32 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 33 { 34 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 35 } 36 37 /* Predicates */ 38 static RISCVException fs(CPURISCVState *env, int csrno) 39 { 40 #if !defined(CONFIG_USER_ONLY) 41 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 42 return RISCV_EXCP_ILLEGAL_INST; 43 } 44 #endif 45 return RISCV_EXCP_NONE; 46 } 47 48 static RISCVException vs(CPURISCVState *env, int csrno) 49 { 50 CPUState *cs = env_cpu(env); 51 RISCVCPU *cpu = RISCV_CPU(cs); 52 53 if (env->misa_ext & RVV || 54 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 55 #if !defined(CONFIG_USER_ONLY) 56 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 57 return RISCV_EXCP_ILLEGAL_INST; 58 } 59 #endif 60 return RISCV_EXCP_NONE; 61 } 62 return RISCV_EXCP_ILLEGAL_INST; 63 } 64 65 static RISCVException ctr(CPURISCVState *env, int csrno) 66 { 67 #if !defined(CONFIG_USER_ONLY) 68 CPUState *cs = env_cpu(env); 69 RISCVCPU *cpu = RISCV_CPU(cs); 70 71 if (!cpu->cfg.ext_counters) { 72 /* The Counters extensions is not enabled */ 73 return RISCV_EXCP_ILLEGAL_INST; 74 } 75 76 if (riscv_cpu_virt_enabled(env)) { 77 switch (csrno) { 78 case CSR_CYCLE: 79 if (!get_field(env->hcounteren, COUNTEREN_CY) && 80 get_field(env->mcounteren, COUNTEREN_CY)) { 81 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 82 } 83 break; 84 case CSR_TIME: 85 if (!get_field(env->hcounteren, COUNTEREN_TM) && 86 get_field(env->mcounteren, COUNTEREN_TM)) { 87 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 88 } 89 break; 90 case CSR_INSTRET: 91 if (!get_field(env->hcounteren, COUNTEREN_IR) && 92 get_field(env->mcounteren, COUNTEREN_IR)) { 93 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 94 } 95 break; 96 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 97 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3)) && 98 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3))) { 99 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 100 } 101 break; 102 } 103 if (riscv_cpu_mxl(env) == MXL_RV32) { 104 switch (csrno) { 105 case CSR_CYCLEH: 106 if (!get_field(env->hcounteren, COUNTEREN_CY) && 107 get_field(env->mcounteren, COUNTEREN_CY)) { 108 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 109 } 110 break; 111 case CSR_TIMEH: 112 if (!get_field(env->hcounteren, COUNTEREN_TM) && 113 get_field(env->mcounteren, COUNTEREN_TM)) { 114 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 115 } 116 break; 117 case CSR_INSTRETH: 118 if (!get_field(env->hcounteren, COUNTEREN_IR) && 119 get_field(env->mcounteren, COUNTEREN_IR)) { 120 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 121 } 122 break; 123 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 124 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3H)) && 125 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3H))) { 126 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 127 } 128 break; 129 } 130 } 131 } 132 #endif 133 return RISCV_EXCP_NONE; 134 } 135 136 static RISCVException ctr32(CPURISCVState *env, int csrno) 137 { 138 if (riscv_cpu_mxl(env) != MXL_RV32) { 139 return RISCV_EXCP_ILLEGAL_INST; 140 } 141 142 return ctr(env, csrno); 143 } 144 145 #if !defined(CONFIG_USER_ONLY) 146 static RISCVException any(CPURISCVState *env, int csrno) 147 { 148 return RISCV_EXCP_NONE; 149 } 150 151 static RISCVException any32(CPURISCVState *env, int csrno) 152 { 153 if (riscv_cpu_mxl(env) != MXL_RV32) { 154 return RISCV_EXCP_ILLEGAL_INST; 155 } 156 157 return any(env, csrno); 158 159 } 160 161 static RISCVException smode(CPURISCVState *env, int csrno) 162 { 163 if (riscv_has_ext(env, RVS)) { 164 return RISCV_EXCP_NONE; 165 } 166 167 return RISCV_EXCP_ILLEGAL_INST; 168 } 169 170 static RISCVException hmode(CPURISCVState *env, int csrno) 171 { 172 if (riscv_has_ext(env, RVS) && 173 riscv_has_ext(env, RVH)) { 174 /* Hypervisor extension is supported */ 175 if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 176 env->priv == PRV_M) { 177 return RISCV_EXCP_NONE; 178 } else { 179 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 180 } 181 } 182 183 return RISCV_EXCP_ILLEGAL_INST; 184 } 185 186 static RISCVException hmode32(CPURISCVState *env, int csrno) 187 { 188 if (riscv_cpu_mxl(env) != MXL_RV32) { 189 if (!riscv_cpu_virt_enabled(env)) { 190 return RISCV_EXCP_ILLEGAL_INST; 191 } else { 192 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 193 } 194 } 195 196 return hmode(env, csrno); 197 198 } 199 200 /* Checks if PointerMasking registers could be accessed */ 201 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 202 { 203 /* Check if j-ext is present */ 204 if (riscv_has_ext(env, RVJ)) { 205 return RISCV_EXCP_NONE; 206 } 207 return RISCV_EXCP_ILLEGAL_INST; 208 } 209 210 static RISCVException pmp(CPURISCVState *env, int csrno) 211 { 212 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 213 return RISCV_EXCP_NONE; 214 } 215 216 return RISCV_EXCP_ILLEGAL_INST; 217 } 218 219 static RISCVException epmp(CPURISCVState *env, int csrno) 220 { 221 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 222 return RISCV_EXCP_NONE; 223 } 224 225 return RISCV_EXCP_ILLEGAL_INST; 226 } 227 #endif 228 229 /* User Floating-Point CSRs */ 230 static RISCVException read_fflags(CPURISCVState *env, int csrno, 231 target_ulong *val) 232 { 233 *val = riscv_cpu_get_fflags(env); 234 return RISCV_EXCP_NONE; 235 } 236 237 static RISCVException write_fflags(CPURISCVState *env, int csrno, 238 target_ulong val) 239 { 240 #if !defined(CONFIG_USER_ONLY) 241 env->mstatus |= MSTATUS_FS; 242 #endif 243 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 244 return RISCV_EXCP_NONE; 245 } 246 247 static RISCVException read_frm(CPURISCVState *env, int csrno, 248 target_ulong *val) 249 { 250 *val = env->frm; 251 return RISCV_EXCP_NONE; 252 } 253 254 static RISCVException write_frm(CPURISCVState *env, int csrno, 255 target_ulong val) 256 { 257 #if !defined(CONFIG_USER_ONLY) 258 env->mstatus |= MSTATUS_FS; 259 #endif 260 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 261 return RISCV_EXCP_NONE; 262 } 263 264 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 265 target_ulong *val) 266 { 267 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 268 | (env->frm << FSR_RD_SHIFT); 269 return RISCV_EXCP_NONE; 270 } 271 272 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 273 target_ulong val) 274 { 275 #if !defined(CONFIG_USER_ONLY) 276 env->mstatus |= MSTATUS_FS; 277 #endif 278 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 279 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 280 return RISCV_EXCP_NONE; 281 } 282 283 static RISCVException read_vtype(CPURISCVState *env, int csrno, 284 target_ulong *val) 285 { 286 uint64_t vill; 287 switch (env->xl) { 288 case MXL_RV32: 289 vill = (uint32_t)env->vill << 31; 290 break; 291 case MXL_RV64: 292 vill = (uint64_t)env->vill << 63; 293 break; 294 default: 295 g_assert_not_reached(); 296 } 297 *val = (target_ulong)vill | env->vtype; 298 return RISCV_EXCP_NONE; 299 } 300 301 static RISCVException read_vl(CPURISCVState *env, int csrno, 302 target_ulong *val) 303 { 304 *val = env->vl; 305 return RISCV_EXCP_NONE; 306 } 307 308 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 309 { 310 *val = env_archcpu(env)->cfg.vlen >> 3; 311 return RISCV_EXCP_NONE; 312 } 313 314 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 315 target_ulong *val) 316 { 317 *val = env->vxrm; 318 return RISCV_EXCP_NONE; 319 } 320 321 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 322 target_ulong val) 323 { 324 #if !defined(CONFIG_USER_ONLY) 325 env->mstatus |= MSTATUS_VS; 326 #endif 327 env->vxrm = val; 328 return RISCV_EXCP_NONE; 329 } 330 331 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 332 target_ulong *val) 333 { 334 *val = env->vxsat; 335 return RISCV_EXCP_NONE; 336 } 337 338 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 339 target_ulong val) 340 { 341 #if !defined(CONFIG_USER_ONLY) 342 env->mstatus |= MSTATUS_VS; 343 #endif 344 env->vxsat = val; 345 return RISCV_EXCP_NONE; 346 } 347 348 static RISCVException read_vstart(CPURISCVState *env, int csrno, 349 target_ulong *val) 350 { 351 *val = env->vstart; 352 return RISCV_EXCP_NONE; 353 } 354 355 static RISCVException write_vstart(CPURISCVState *env, int csrno, 356 target_ulong val) 357 { 358 #if !defined(CONFIG_USER_ONLY) 359 env->mstatus |= MSTATUS_VS; 360 #endif 361 /* 362 * The vstart CSR is defined to have only enough writable bits 363 * to hold the largest element index, i.e. lg2(VLEN) bits. 364 */ 365 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 366 return RISCV_EXCP_NONE; 367 } 368 369 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 370 { 371 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 372 return RISCV_EXCP_NONE; 373 } 374 375 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 376 { 377 #if !defined(CONFIG_USER_ONLY) 378 env->mstatus |= MSTATUS_VS; 379 #endif 380 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 381 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 382 return RISCV_EXCP_NONE; 383 } 384 385 /* User Timers and Counters */ 386 static RISCVException read_instret(CPURISCVState *env, int csrno, 387 target_ulong *val) 388 { 389 #if !defined(CONFIG_USER_ONLY) 390 if (icount_enabled()) { 391 *val = icount_get(); 392 } else { 393 *val = cpu_get_host_ticks(); 394 } 395 #else 396 *val = cpu_get_host_ticks(); 397 #endif 398 return RISCV_EXCP_NONE; 399 } 400 401 static RISCVException read_instreth(CPURISCVState *env, int csrno, 402 target_ulong *val) 403 { 404 #if !defined(CONFIG_USER_ONLY) 405 if (icount_enabled()) { 406 *val = icount_get() >> 32; 407 } else { 408 *val = cpu_get_host_ticks() >> 32; 409 } 410 #else 411 *val = cpu_get_host_ticks() >> 32; 412 #endif 413 return RISCV_EXCP_NONE; 414 } 415 416 #if defined(CONFIG_USER_ONLY) 417 static RISCVException read_time(CPURISCVState *env, int csrno, 418 target_ulong *val) 419 { 420 *val = cpu_get_host_ticks(); 421 return RISCV_EXCP_NONE; 422 } 423 424 static RISCVException read_timeh(CPURISCVState *env, int csrno, 425 target_ulong *val) 426 { 427 *val = cpu_get_host_ticks() >> 32; 428 return RISCV_EXCP_NONE; 429 } 430 431 #else /* CONFIG_USER_ONLY */ 432 433 static RISCVException read_time(CPURISCVState *env, int csrno, 434 target_ulong *val) 435 { 436 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 437 438 if (!env->rdtime_fn) { 439 return RISCV_EXCP_ILLEGAL_INST; 440 } 441 442 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 443 return RISCV_EXCP_NONE; 444 } 445 446 static RISCVException read_timeh(CPURISCVState *env, int csrno, 447 target_ulong *val) 448 { 449 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 450 451 if (!env->rdtime_fn) { 452 return RISCV_EXCP_ILLEGAL_INST; 453 } 454 455 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 456 return RISCV_EXCP_NONE; 457 } 458 459 /* Machine constants */ 460 461 #define M_MODE_INTERRUPTS (MIP_MSIP | MIP_MTIP | MIP_MEIP) 462 #define S_MODE_INTERRUPTS (MIP_SSIP | MIP_STIP | MIP_SEIP) 463 #define VS_MODE_INTERRUPTS (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP) 464 465 static const target_ulong delegable_ints = S_MODE_INTERRUPTS | 466 VS_MODE_INTERRUPTS; 467 static const target_ulong vs_delegable_ints = VS_MODE_INTERRUPTS; 468 static const target_ulong all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 469 VS_MODE_INTERRUPTS; 470 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 471 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 472 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 473 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 474 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 475 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 476 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 477 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 478 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 479 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 480 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 481 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 482 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 483 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 484 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 485 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 486 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 487 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 488 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 489 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 490 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 491 (1ULL << (RISCV_EXCP_VS_ECALL)) | 492 (1ULL << (RISCV_EXCP_M_ECALL)) | 493 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 494 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 495 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 496 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 497 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 498 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 499 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 500 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP; 501 static const target_ulong hip_writable_mask = MIP_VSSIP; 502 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 503 static const target_ulong vsip_writable_mask = MIP_VSSIP; 504 505 static const char valid_vm_1_10_32[16] = { 506 [VM_1_10_MBARE] = 1, 507 [VM_1_10_SV32] = 1 508 }; 509 510 static const char valid_vm_1_10_64[16] = { 511 [VM_1_10_MBARE] = 1, 512 [VM_1_10_SV39] = 1, 513 [VM_1_10_SV48] = 1, 514 [VM_1_10_SV57] = 1 515 }; 516 517 /* Machine Information Registers */ 518 static RISCVException read_zero(CPURISCVState *env, int csrno, 519 target_ulong *val) 520 { 521 *val = 0; 522 return RISCV_EXCP_NONE; 523 } 524 525 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 526 target_ulong *val) 527 { 528 *val = env->mhartid; 529 return RISCV_EXCP_NONE; 530 } 531 532 /* Machine Trap Setup */ 533 534 /* We do not store SD explicitly, only compute it on demand. */ 535 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 536 { 537 if ((status & MSTATUS_FS) == MSTATUS_FS || 538 (status & MSTATUS_VS) == MSTATUS_VS || 539 (status & MSTATUS_XS) == MSTATUS_XS) { 540 switch (xl) { 541 case MXL_RV32: 542 return status | MSTATUS32_SD; 543 case MXL_RV64: 544 return status | MSTATUS64_SD; 545 case MXL_RV128: 546 return MSTATUSH128_SD; 547 default: 548 g_assert_not_reached(); 549 } 550 } 551 return status; 552 } 553 554 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 555 target_ulong *val) 556 { 557 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 558 return RISCV_EXCP_NONE; 559 } 560 561 static int validate_vm(CPURISCVState *env, target_ulong vm) 562 { 563 if (riscv_cpu_mxl(env) == MXL_RV32) { 564 return valid_vm_1_10_32[vm & 0xf]; 565 } else { 566 return valid_vm_1_10_64[vm & 0xf]; 567 } 568 } 569 570 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 571 target_ulong val) 572 { 573 uint64_t mstatus = env->mstatus; 574 uint64_t mask = 0; 575 RISCVMXL xl = riscv_cpu_mxl(env); 576 577 /* flush tlb on mstatus fields that affect VM */ 578 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 579 MSTATUS_MPRV | MSTATUS_SUM)) { 580 tlb_flush(env_cpu(env)); 581 } 582 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 583 MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM | 584 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 585 MSTATUS_TW | MSTATUS_VS; 586 587 if (xl != MXL_RV32 || env->debugger) { 588 /* 589 * RV32: MPV and GVA are not in mstatus. The current plan is to 590 * add them to mstatush. For now, we just don't support it. 591 */ 592 mask |= MSTATUS_MPV | MSTATUS_GVA; 593 if ((val & MSTATUS64_UXL) != 0) { 594 mask |= MSTATUS64_UXL; 595 } 596 } 597 598 mstatus = (mstatus & ~mask) | (val & mask); 599 600 if (xl > MXL_RV32) { 601 /* SXL field is for now read only */ 602 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 603 } 604 env->mstatus = mstatus; 605 env->xl = cpu_recompute_xl(env); 606 607 return RISCV_EXCP_NONE; 608 } 609 610 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 611 target_ulong *val) 612 { 613 *val = env->mstatus >> 32; 614 return RISCV_EXCP_NONE; 615 } 616 617 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 618 target_ulong val) 619 { 620 uint64_t valh = (uint64_t)val << 32; 621 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 622 623 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 624 tlb_flush(env_cpu(env)); 625 } 626 627 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 628 629 return RISCV_EXCP_NONE; 630 } 631 632 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 633 Int128 *val) 634 { 635 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 636 return RISCV_EXCP_NONE; 637 } 638 639 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 640 Int128 *val) 641 { 642 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 643 return RISCV_EXCP_NONE; 644 } 645 646 static RISCVException read_misa(CPURISCVState *env, int csrno, 647 target_ulong *val) 648 { 649 target_ulong misa; 650 651 switch (env->misa_mxl) { 652 case MXL_RV32: 653 misa = (target_ulong)MXL_RV32 << 30; 654 break; 655 #ifdef TARGET_RISCV64 656 case MXL_RV64: 657 misa = (target_ulong)MXL_RV64 << 62; 658 break; 659 #endif 660 default: 661 g_assert_not_reached(); 662 } 663 664 *val = misa | env->misa_ext; 665 return RISCV_EXCP_NONE; 666 } 667 668 static RISCVException write_misa(CPURISCVState *env, int csrno, 669 target_ulong val) 670 { 671 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 672 /* drop write to misa */ 673 return RISCV_EXCP_NONE; 674 } 675 676 /* 'I' or 'E' must be present */ 677 if (!(val & (RVI | RVE))) { 678 /* It is not, drop write to misa */ 679 return RISCV_EXCP_NONE; 680 } 681 682 /* 'E' excludes all other extensions */ 683 if (val & RVE) { 684 /* when we support 'E' we can do "val = RVE;" however 685 * for now we just drop writes if 'E' is present. 686 */ 687 return RISCV_EXCP_NONE; 688 } 689 690 /* 691 * misa.MXL writes are not supported by QEMU. 692 * Drop writes to those bits. 693 */ 694 695 /* Mask extensions that are not supported by this hart */ 696 val &= env->misa_ext_mask; 697 698 /* Mask extensions that are not supported by QEMU */ 699 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 700 701 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 702 if ((val & RVD) && !(val & RVF)) { 703 val &= ~RVD; 704 } 705 706 /* Suppress 'C' if next instruction is not aligned 707 * TODO: this should check next_pc 708 */ 709 if ((val & RVC) && (GETPC() & ~3) != 0) { 710 val &= ~RVC; 711 } 712 713 /* If nothing changed, do nothing. */ 714 if (val == env->misa_ext) { 715 return RISCV_EXCP_NONE; 716 } 717 718 /* flush translation cache */ 719 tb_flush(env_cpu(env)); 720 env->misa_ext = val; 721 env->xl = riscv_cpu_mxl(env); 722 return RISCV_EXCP_NONE; 723 } 724 725 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 726 target_ulong *val) 727 { 728 *val = env->medeleg; 729 return RISCV_EXCP_NONE; 730 } 731 732 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 733 target_ulong val) 734 { 735 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 736 return RISCV_EXCP_NONE; 737 } 738 739 static RISCVException read_mideleg(CPURISCVState *env, int csrno, 740 target_ulong *val) 741 { 742 *val = env->mideleg; 743 return RISCV_EXCP_NONE; 744 } 745 746 static RISCVException write_mideleg(CPURISCVState *env, int csrno, 747 target_ulong val) 748 { 749 env->mideleg = (env->mideleg & ~delegable_ints) | (val & delegable_ints); 750 if (riscv_has_ext(env, RVH)) { 751 env->mideleg |= VS_MODE_INTERRUPTS; 752 } 753 return RISCV_EXCP_NONE; 754 } 755 756 static RISCVException read_mie(CPURISCVState *env, int csrno, 757 target_ulong *val) 758 { 759 *val = env->mie; 760 return RISCV_EXCP_NONE; 761 } 762 763 static RISCVException write_mie(CPURISCVState *env, int csrno, 764 target_ulong val) 765 { 766 env->mie = (env->mie & ~all_ints) | (val & all_ints); 767 return RISCV_EXCP_NONE; 768 } 769 770 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 771 target_ulong *val) 772 { 773 *val = env->mtvec; 774 return RISCV_EXCP_NONE; 775 } 776 777 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 778 target_ulong val) 779 { 780 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 781 if ((val & 3) < 2) { 782 env->mtvec = val; 783 } else { 784 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 785 } 786 return RISCV_EXCP_NONE; 787 } 788 789 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 790 target_ulong *val) 791 { 792 *val = env->mcounteren; 793 return RISCV_EXCP_NONE; 794 } 795 796 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 797 target_ulong val) 798 { 799 env->mcounteren = val; 800 return RISCV_EXCP_NONE; 801 } 802 803 /* Machine Trap Handling */ 804 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 805 Int128 *val) 806 { 807 *val = int128_make128(env->mscratch, env->mscratchh); 808 return RISCV_EXCP_NONE; 809 } 810 811 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 812 Int128 val) 813 { 814 env->mscratch = int128_getlo(val); 815 env->mscratchh = int128_gethi(val); 816 return RISCV_EXCP_NONE; 817 } 818 819 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 820 target_ulong *val) 821 { 822 *val = env->mscratch; 823 return RISCV_EXCP_NONE; 824 } 825 826 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 827 target_ulong val) 828 { 829 env->mscratch = val; 830 return RISCV_EXCP_NONE; 831 } 832 833 static RISCVException read_mepc(CPURISCVState *env, int csrno, 834 target_ulong *val) 835 { 836 *val = env->mepc; 837 return RISCV_EXCP_NONE; 838 } 839 840 static RISCVException write_mepc(CPURISCVState *env, int csrno, 841 target_ulong val) 842 { 843 env->mepc = val; 844 return RISCV_EXCP_NONE; 845 } 846 847 static RISCVException read_mcause(CPURISCVState *env, int csrno, 848 target_ulong *val) 849 { 850 *val = env->mcause; 851 return RISCV_EXCP_NONE; 852 } 853 854 static RISCVException write_mcause(CPURISCVState *env, int csrno, 855 target_ulong val) 856 { 857 env->mcause = val; 858 return RISCV_EXCP_NONE; 859 } 860 861 static RISCVException read_mtval(CPURISCVState *env, int csrno, 862 target_ulong *val) 863 { 864 *val = env->mtval; 865 return RISCV_EXCP_NONE; 866 } 867 868 static RISCVException write_mtval(CPURISCVState *env, int csrno, 869 target_ulong val) 870 { 871 env->mtval = val; 872 return RISCV_EXCP_NONE; 873 } 874 875 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 876 target_ulong *ret_value, 877 target_ulong new_value, target_ulong write_mask) 878 { 879 RISCVCPU *cpu = env_archcpu(env); 880 /* Allow software control of delegable interrupts not claimed by hardware */ 881 target_ulong mask = write_mask & delegable_ints & ~env->miclaim; 882 uint32_t old_mip; 883 884 if (mask) { 885 old_mip = riscv_cpu_update_mip(cpu, mask, (new_value & mask)); 886 } else { 887 old_mip = env->mip; 888 } 889 890 if (ret_value) { 891 *ret_value = old_mip; 892 } 893 894 return RISCV_EXCP_NONE; 895 } 896 897 /* Supervisor Trap Setup */ 898 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 899 Int128 *val) 900 { 901 uint64_t mask = sstatus_v1_10_mask; 902 uint64_t sstatus = env->mstatus & mask; 903 if (env->xl != MXL_RV32 || env->debugger) { 904 mask |= SSTATUS64_UXL; 905 } 906 907 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 908 return RISCV_EXCP_NONE; 909 } 910 911 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 912 target_ulong *val) 913 { 914 target_ulong mask = (sstatus_v1_10_mask); 915 if (env->xl != MXL_RV32 || env->debugger) { 916 mask |= SSTATUS64_UXL; 917 } 918 /* TODO: Use SXL not MXL. */ 919 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 920 return RISCV_EXCP_NONE; 921 } 922 923 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 924 target_ulong val) 925 { 926 target_ulong mask = (sstatus_v1_10_mask); 927 928 if (env->xl != MXL_RV32 || env->debugger) { 929 if ((val & SSTATUS64_UXL) != 0) { 930 mask |= SSTATUS64_UXL; 931 } 932 } 933 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 934 return write_mstatus(env, CSR_MSTATUS, newval); 935 } 936 937 static RISCVException read_vsie(CPURISCVState *env, int csrno, 938 target_ulong *val) 939 { 940 /* Shift the VS bits to their S bit location in vsie */ 941 *val = (env->mie & env->hideleg & VS_MODE_INTERRUPTS) >> 1; 942 return RISCV_EXCP_NONE; 943 } 944 945 static RISCVException read_sie(CPURISCVState *env, int csrno, 946 target_ulong *val) 947 { 948 if (riscv_cpu_virt_enabled(env)) { 949 read_vsie(env, CSR_VSIE, val); 950 } else { 951 *val = env->mie & env->mideleg; 952 } 953 return RISCV_EXCP_NONE; 954 } 955 956 static RISCVException write_vsie(CPURISCVState *env, int csrno, 957 target_ulong val) 958 { 959 /* Shift the S bits to their VS bit location in mie */ 960 target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | 961 ((val << 1) & env->hideleg & VS_MODE_INTERRUPTS); 962 return write_mie(env, CSR_MIE, newval); 963 } 964 965 static int write_sie(CPURISCVState *env, int csrno, target_ulong val) 966 { 967 if (riscv_cpu_virt_enabled(env)) { 968 write_vsie(env, CSR_VSIE, val); 969 } else { 970 target_ulong newval = (env->mie & ~S_MODE_INTERRUPTS) | 971 (val & S_MODE_INTERRUPTS); 972 write_mie(env, CSR_MIE, newval); 973 } 974 975 return RISCV_EXCP_NONE; 976 } 977 978 static RISCVException read_stvec(CPURISCVState *env, int csrno, 979 target_ulong *val) 980 { 981 *val = env->stvec; 982 return RISCV_EXCP_NONE; 983 } 984 985 static RISCVException write_stvec(CPURISCVState *env, int csrno, 986 target_ulong val) 987 { 988 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 989 if ((val & 3) < 2) { 990 env->stvec = val; 991 } else { 992 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 993 } 994 return RISCV_EXCP_NONE; 995 } 996 997 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 998 target_ulong *val) 999 { 1000 *val = env->scounteren; 1001 return RISCV_EXCP_NONE; 1002 } 1003 1004 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 1005 target_ulong val) 1006 { 1007 env->scounteren = val; 1008 return RISCV_EXCP_NONE; 1009 } 1010 1011 /* Supervisor Trap Handling */ 1012 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 1013 Int128 *val) 1014 { 1015 *val = int128_make128(env->sscratch, env->sscratchh); 1016 return RISCV_EXCP_NONE; 1017 } 1018 1019 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 1020 Int128 val) 1021 { 1022 env->sscratch = int128_getlo(val); 1023 env->sscratchh = int128_gethi(val); 1024 return RISCV_EXCP_NONE; 1025 } 1026 1027 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 1028 target_ulong *val) 1029 { 1030 *val = env->sscratch; 1031 return RISCV_EXCP_NONE; 1032 } 1033 1034 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 1035 target_ulong val) 1036 { 1037 env->sscratch = val; 1038 return RISCV_EXCP_NONE; 1039 } 1040 1041 static RISCVException read_sepc(CPURISCVState *env, int csrno, 1042 target_ulong *val) 1043 { 1044 *val = env->sepc; 1045 return RISCV_EXCP_NONE; 1046 } 1047 1048 static RISCVException write_sepc(CPURISCVState *env, int csrno, 1049 target_ulong val) 1050 { 1051 env->sepc = val; 1052 return RISCV_EXCP_NONE; 1053 } 1054 1055 static RISCVException read_scause(CPURISCVState *env, int csrno, 1056 target_ulong *val) 1057 { 1058 *val = env->scause; 1059 return RISCV_EXCP_NONE; 1060 } 1061 1062 static RISCVException write_scause(CPURISCVState *env, int csrno, 1063 target_ulong val) 1064 { 1065 env->scause = val; 1066 return RISCV_EXCP_NONE; 1067 } 1068 1069 static RISCVException read_stval(CPURISCVState *env, int csrno, 1070 target_ulong *val) 1071 { 1072 *val = env->stval; 1073 return RISCV_EXCP_NONE; 1074 } 1075 1076 static RISCVException write_stval(CPURISCVState *env, int csrno, 1077 target_ulong val) 1078 { 1079 env->stval = val; 1080 return RISCV_EXCP_NONE; 1081 } 1082 1083 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 1084 target_ulong *ret_value, 1085 target_ulong new_value, target_ulong write_mask) 1086 { 1087 /* Shift the S bits to their VS bit location in mip */ 1088 int ret = rmw_mip(env, 0, ret_value, new_value << 1, 1089 (write_mask << 1) & vsip_writable_mask & env->hideleg); 1090 1091 if (ret_value) { 1092 *ret_value &= VS_MODE_INTERRUPTS; 1093 /* Shift the VS bits to their S bit location in vsip */ 1094 *ret_value >>= 1; 1095 } 1096 return ret; 1097 } 1098 1099 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 1100 target_ulong *ret_value, 1101 target_ulong new_value, target_ulong write_mask) 1102 { 1103 int ret; 1104 1105 if (riscv_cpu_virt_enabled(env)) { 1106 ret = rmw_vsip(env, CSR_VSIP, ret_value, new_value, write_mask); 1107 } else { 1108 ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value, 1109 write_mask & env->mideleg & sip_writable_mask); 1110 } 1111 1112 if (ret_value) { 1113 *ret_value &= env->mideleg; 1114 } 1115 return ret; 1116 } 1117 1118 /* Supervisor Protection and Translation */ 1119 static RISCVException read_satp(CPURISCVState *env, int csrno, 1120 target_ulong *val) 1121 { 1122 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 1123 *val = 0; 1124 return RISCV_EXCP_NONE; 1125 } 1126 1127 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 1128 return RISCV_EXCP_ILLEGAL_INST; 1129 } else { 1130 *val = env->satp; 1131 } 1132 1133 return RISCV_EXCP_NONE; 1134 } 1135 1136 static RISCVException write_satp(CPURISCVState *env, int csrno, 1137 target_ulong val) 1138 { 1139 target_ulong vm, mask, asid; 1140 1141 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 1142 return RISCV_EXCP_NONE; 1143 } 1144 1145 if (riscv_cpu_mxl(env) == MXL_RV32) { 1146 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1147 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1148 asid = (val ^ env->satp) & SATP32_ASID; 1149 } else { 1150 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1151 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1152 asid = (val ^ env->satp) & SATP64_ASID; 1153 } 1154 1155 if (vm && mask) { 1156 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 1157 return RISCV_EXCP_ILLEGAL_INST; 1158 } else { 1159 if (asid) { 1160 tlb_flush(env_cpu(env)); 1161 } 1162 env->satp = val; 1163 } 1164 } 1165 return RISCV_EXCP_NONE; 1166 } 1167 1168 /* Hypervisor Extensions */ 1169 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 1170 target_ulong *val) 1171 { 1172 *val = env->hstatus; 1173 if (riscv_cpu_mxl(env) != MXL_RV32) { 1174 /* We only support 64-bit VSXL */ 1175 *val = set_field(*val, HSTATUS_VSXL, 2); 1176 } 1177 /* We only support little endian */ 1178 *val = set_field(*val, HSTATUS_VSBE, 0); 1179 return RISCV_EXCP_NONE; 1180 } 1181 1182 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 1183 target_ulong val) 1184 { 1185 env->hstatus = val; 1186 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 1187 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 1188 } 1189 if (get_field(val, HSTATUS_VSBE) != 0) { 1190 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 1191 } 1192 return RISCV_EXCP_NONE; 1193 } 1194 1195 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 1196 target_ulong *val) 1197 { 1198 *val = env->hedeleg; 1199 return RISCV_EXCP_NONE; 1200 } 1201 1202 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 1203 target_ulong val) 1204 { 1205 env->hedeleg = val & vs_delegable_excps; 1206 return RISCV_EXCP_NONE; 1207 } 1208 1209 static RISCVException read_hideleg(CPURISCVState *env, int csrno, 1210 target_ulong *val) 1211 { 1212 *val = env->hideleg; 1213 return RISCV_EXCP_NONE; 1214 } 1215 1216 static RISCVException write_hideleg(CPURISCVState *env, int csrno, 1217 target_ulong val) 1218 { 1219 env->hideleg = val & vs_delegable_ints; 1220 return RISCV_EXCP_NONE; 1221 } 1222 1223 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 1224 target_ulong *ret_value, 1225 target_ulong new_value, target_ulong write_mask) 1226 { 1227 int ret = rmw_mip(env, 0, ret_value, new_value, 1228 write_mask & hvip_writable_mask); 1229 1230 if (ret_value) { 1231 *ret_value &= hvip_writable_mask; 1232 } 1233 return ret; 1234 } 1235 1236 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 1237 target_ulong *ret_value, 1238 target_ulong new_value, target_ulong write_mask) 1239 { 1240 int ret = rmw_mip(env, 0, ret_value, new_value, 1241 write_mask & hip_writable_mask); 1242 1243 if (ret_value) { 1244 *ret_value &= hip_writable_mask; 1245 } 1246 return ret; 1247 } 1248 1249 static RISCVException read_hie(CPURISCVState *env, int csrno, 1250 target_ulong *val) 1251 { 1252 *val = env->mie & VS_MODE_INTERRUPTS; 1253 return RISCV_EXCP_NONE; 1254 } 1255 1256 static RISCVException write_hie(CPURISCVState *env, int csrno, 1257 target_ulong val) 1258 { 1259 target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | (val & VS_MODE_INTERRUPTS); 1260 return write_mie(env, CSR_MIE, newval); 1261 } 1262 1263 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 1264 target_ulong *val) 1265 { 1266 *val = env->hcounteren; 1267 return RISCV_EXCP_NONE; 1268 } 1269 1270 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 1271 target_ulong val) 1272 { 1273 env->hcounteren = val; 1274 return RISCV_EXCP_NONE; 1275 } 1276 1277 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 1278 target_ulong val) 1279 { 1280 if (val) { 1281 qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN."); 1282 } 1283 return RISCV_EXCP_NONE; 1284 } 1285 1286 static RISCVException read_htval(CPURISCVState *env, int csrno, 1287 target_ulong *val) 1288 { 1289 *val = env->htval; 1290 return RISCV_EXCP_NONE; 1291 } 1292 1293 static RISCVException write_htval(CPURISCVState *env, int csrno, 1294 target_ulong val) 1295 { 1296 env->htval = val; 1297 return RISCV_EXCP_NONE; 1298 } 1299 1300 static RISCVException read_htinst(CPURISCVState *env, int csrno, 1301 target_ulong *val) 1302 { 1303 *val = env->htinst; 1304 return RISCV_EXCP_NONE; 1305 } 1306 1307 static RISCVException write_htinst(CPURISCVState *env, int csrno, 1308 target_ulong val) 1309 { 1310 return RISCV_EXCP_NONE; 1311 } 1312 1313 static RISCVException write_hgeip(CPURISCVState *env, int csrno, 1314 target_ulong val) 1315 { 1316 if (val) { 1317 qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN."); 1318 } 1319 return RISCV_EXCP_NONE; 1320 } 1321 1322 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 1323 target_ulong *val) 1324 { 1325 *val = env->hgatp; 1326 return RISCV_EXCP_NONE; 1327 } 1328 1329 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 1330 target_ulong val) 1331 { 1332 env->hgatp = val; 1333 return RISCV_EXCP_NONE; 1334 } 1335 1336 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 1337 target_ulong *val) 1338 { 1339 if (!env->rdtime_fn) { 1340 return RISCV_EXCP_ILLEGAL_INST; 1341 } 1342 1343 *val = env->htimedelta; 1344 return RISCV_EXCP_NONE; 1345 } 1346 1347 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 1348 target_ulong val) 1349 { 1350 if (!env->rdtime_fn) { 1351 return RISCV_EXCP_ILLEGAL_INST; 1352 } 1353 1354 if (riscv_cpu_mxl(env) == MXL_RV32) { 1355 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 1356 } else { 1357 env->htimedelta = val; 1358 } 1359 return RISCV_EXCP_NONE; 1360 } 1361 1362 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 1363 target_ulong *val) 1364 { 1365 if (!env->rdtime_fn) { 1366 return RISCV_EXCP_ILLEGAL_INST; 1367 } 1368 1369 *val = env->htimedelta >> 32; 1370 return RISCV_EXCP_NONE; 1371 } 1372 1373 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 1374 target_ulong val) 1375 { 1376 if (!env->rdtime_fn) { 1377 return RISCV_EXCP_ILLEGAL_INST; 1378 } 1379 1380 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 1381 return RISCV_EXCP_NONE; 1382 } 1383 1384 /* Virtual CSR Registers */ 1385 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 1386 target_ulong *val) 1387 { 1388 *val = env->vsstatus; 1389 return RISCV_EXCP_NONE; 1390 } 1391 1392 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 1393 target_ulong val) 1394 { 1395 uint64_t mask = (target_ulong)-1; 1396 if ((val & VSSTATUS64_UXL) == 0) { 1397 mask &= ~VSSTATUS64_UXL; 1398 } 1399 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 1400 return RISCV_EXCP_NONE; 1401 } 1402 1403 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 1404 { 1405 *val = env->vstvec; 1406 return RISCV_EXCP_NONE; 1407 } 1408 1409 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 1410 target_ulong val) 1411 { 1412 env->vstvec = val; 1413 return RISCV_EXCP_NONE; 1414 } 1415 1416 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 1417 target_ulong *val) 1418 { 1419 *val = env->vsscratch; 1420 return RISCV_EXCP_NONE; 1421 } 1422 1423 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 1424 target_ulong val) 1425 { 1426 env->vsscratch = val; 1427 return RISCV_EXCP_NONE; 1428 } 1429 1430 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 1431 target_ulong *val) 1432 { 1433 *val = env->vsepc; 1434 return RISCV_EXCP_NONE; 1435 } 1436 1437 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 1438 target_ulong val) 1439 { 1440 env->vsepc = val; 1441 return RISCV_EXCP_NONE; 1442 } 1443 1444 static RISCVException read_vscause(CPURISCVState *env, int csrno, 1445 target_ulong *val) 1446 { 1447 *val = env->vscause; 1448 return RISCV_EXCP_NONE; 1449 } 1450 1451 static RISCVException write_vscause(CPURISCVState *env, int csrno, 1452 target_ulong val) 1453 { 1454 env->vscause = val; 1455 return RISCV_EXCP_NONE; 1456 } 1457 1458 static RISCVException read_vstval(CPURISCVState *env, int csrno, 1459 target_ulong *val) 1460 { 1461 *val = env->vstval; 1462 return RISCV_EXCP_NONE; 1463 } 1464 1465 static RISCVException write_vstval(CPURISCVState *env, int csrno, 1466 target_ulong val) 1467 { 1468 env->vstval = val; 1469 return RISCV_EXCP_NONE; 1470 } 1471 1472 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 1473 target_ulong *val) 1474 { 1475 *val = env->vsatp; 1476 return RISCV_EXCP_NONE; 1477 } 1478 1479 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 1480 target_ulong val) 1481 { 1482 env->vsatp = val; 1483 return RISCV_EXCP_NONE; 1484 } 1485 1486 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 1487 target_ulong *val) 1488 { 1489 *val = env->mtval2; 1490 return RISCV_EXCP_NONE; 1491 } 1492 1493 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 1494 target_ulong val) 1495 { 1496 env->mtval2 = val; 1497 return RISCV_EXCP_NONE; 1498 } 1499 1500 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 1501 target_ulong *val) 1502 { 1503 *val = env->mtinst; 1504 return RISCV_EXCP_NONE; 1505 } 1506 1507 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 1508 target_ulong val) 1509 { 1510 env->mtinst = val; 1511 return RISCV_EXCP_NONE; 1512 } 1513 1514 /* Physical Memory Protection */ 1515 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 1516 target_ulong *val) 1517 { 1518 *val = mseccfg_csr_read(env); 1519 return RISCV_EXCP_NONE; 1520 } 1521 1522 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 1523 target_ulong val) 1524 { 1525 mseccfg_csr_write(env, val); 1526 return RISCV_EXCP_NONE; 1527 } 1528 1529 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 1530 { 1531 /* TODO: RV128 restriction check */ 1532 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 1533 return false; 1534 } 1535 return true; 1536 } 1537 1538 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 1539 target_ulong *val) 1540 { 1541 uint32_t reg_index = csrno - CSR_PMPCFG0; 1542 1543 if (!check_pmp_reg_index(env, reg_index)) { 1544 return RISCV_EXCP_ILLEGAL_INST; 1545 } 1546 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 1547 return RISCV_EXCP_NONE; 1548 } 1549 1550 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 1551 target_ulong val) 1552 { 1553 uint32_t reg_index = csrno - CSR_PMPCFG0; 1554 1555 if (!check_pmp_reg_index(env, reg_index)) { 1556 return RISCV_EXCP_ILLEGAL_INST; 1557 } 1558 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 1559 return RISCV_EXCP_NONE; 1560 } 1561 1562 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 1563 target_ulong *val) 1564 { 1565 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 1566 return RISCV_EXCP_NONE; 1567 } 1568 1569 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 1570 target_ulong val) 1571 { 1572 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 1573 return RISCV_EXCP_NONE; 1574 } 1575 1576 /* 1577 * Functions to access Pointer Masking feature registers 1578 * We have to check if current priv lvl could modify 1579 * csr in given mode 1580 */ 1581 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 1582 { 1583 int csr_priv = get_field(csrno, 0x300); 1584 int pm_current; 1585 1586 if (env->debugger) { 1587 return false; 1588 } 1589 /* 1590 * If priv lvls differ that means we're accessing csr from higher priv lvl, 1591 * so allow the access 1592 */ 1593 if (env->priv != csr_priv) { 1594 return false; 1595 } 1596 switch (env->priv) { 1597 case PRV_M: 1598 pm_current = get_field(env->mmte, M_PM_CURRENT); 1599 break; 1600 case PRV_S: 1601 pm_current = get_field(env->mmte, S_PM_CURRENT); 1602 break; 1603 case PRV_U: 1604 pm_current = get_field(env->mmte, U_PM_CURRENT); 1605 break; 1606 default: 1607 g_assert_not_reached(); 1608 } 1609 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 1610 return !pm_current; 1611 } 1612 1613 static RISCVException read_mmte(CPURISCVState *env, int csrno, 1614 target_ulong *val) 1615 { 1616 *val = env->mmte & MMTE_MASK; 1617 return RISCV_EXCP_NONE; 1618 } 1619 1620 static RISCVException write_mmte(CPURISCVState *env, int csrno, 1621 target_ulong val) 1622 { 1623 uint64_t mstatus; 1624 target_ulong wpri_val = val & MMTE_MASK; 1625 1626 if (val != wpri_val) { 1627 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1628 "MMTE: WPRI violation written 0x", val, 1629 "vs expected 0x", wpri_val); 1630 } 1631 /* for machine mode pm.current is hardwired to 1 */ 1632 wpri_val |= MMTE_M_PM_CURRENT; 1633 1634 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 1635 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 1636 env->mmte = wpri_val | PM_EXT_DIRTY; 1637 riscv_cpu_update_mask(env); 1638 1639 /* Set XS and SD bits, since PM CSRs are dirty */ 1640 mstatus = env->mstatus | MSTATUS_XS; 1641 write_mstatus(env, csrno, mstatus); 1642 return RISCV_EXCP_NONE; 1643 } 1644 1645 static RISCVException read_smte(CPURISCVState *env, int csrno, 1646 target_ulong *val) 1647 { 1648 *val = env->mmte & SMTE_MASK; 1649 return RISCV_EXCP_NONE; 1650 } 1651 1652 static RISCVException write_smte(CPURISCVState *env, int csrno, 1653 target_ulong val) 1654 { 1655 target_ulong wpri_val = val & SMTE_MASK; 1656 1657 if (val != wpri_val) { 1658 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1659 "SMTE: WPRI violation written 0x", val, 1660 "vs expected 0x", wpri_val); 1661 } 1662 1663 /* if pm.current==0 we can't modify current PM CSRs */ 1664 if (check_pm_current_disabled(env, csrno)) { 1665 return RISCV_EXCP_NONE; 1666 } 1667 1668 wpri_val |= (env->mmte & ~SMTE_MASK); 1669 write_mmte(env, csrno, wpri_val); 1670 return RISCV_EXCP_NONE; 1671 } 1672 1673 static RISCVException read_umte(CPURISCVState *env, int csrno, 1674 target_ulong *val) 1675 { 1676 *val = env->mmte & UMTE_MASK; 1677 return RISCV_EXCP_NONE; 1678 } 1679 1680 static RISCVException write_umte(CPURISCVState *env, int csrno, 1681 target_ulong val) 1682 { 1683 target_ulong wpri_val = val & UMTE_MASK; 1684 1685 if (val != wpri_val) { 1686 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1687 "UMTE: WPRI violation written 0x", val, 1688 "vs expected 0x", wpri_val); 1689 } 1690 1691 if (check_pm_current_disabled(env, csrno)) { 1692 return RISCV_EXCP_NONE; 1693 } 1694 1695 wpri_val |= (env->mmte & ~UMTE_MASK); 1696 write_mmte(env, csrno, wpri_val); 1697 return RISCV_EXCP_NONE; 1698 } 1699 1700 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 1701 target_ulong *val) 1702 { 1703 *val = env->mpmmask; 1704 return RISCV_EXCP_NONE; 1705 } 1706 1707 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 1708 target_ulong val) 1709 { 1710 uint64_t mstatus; 1711 1712 env->mpmmask = val; 1713 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 1714 env->cur_pmmask = val; 1715 } 1716 env->mmte |= PM_EXT_DIRTY; 1717 1718 /* Set XS and SD bits, since PM CSRs are dirty */ 1719 mstatus = env->mstatus | MSTATUS_XS; 1720 write_mstatus(env, csrno, mstatus); 1721 return RISCV_EXCP_NONE; 1722 } 1723 1724 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 1725 target_ulong *val) 1726 { 1727 *val = env->spmmask; 1728 return RISCV_EXCP_NONE; 1729 } 1730 1731 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 1732 target_ulong val) 1733 { 1734 uint64_t mstatus; 1735 1736 /* if pm.current==0 we can't modify current PM CSRs */ 1737 if (check_pm_current_disabled(env, csrno)) { 1738 return RISCV_EXCP_NONE; 1739 } 1740 env->spmmask = val; 1741 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 1742 env->cur_pmmask = val; 1743 } 1744 env->mmte |= PM_EXT_DIRTY; 1745 1746 /* Set XS and SD bits, since PM CSRs are dirty */ 1747 mstatus = env->mstatus | MSTATUS_XS; 1748 write_mstatus(env, csrno, mstatus); 1749 return RISCV_EXCP_NONE; 1750 } 1751 1752 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 1753 target_ulong *val) 1754 { 1755 *val = env->upmmask; 1756 return RISCV_EXCP_NONE; 1757 } 1758 1759 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 1760 target_ulong val) 1761 { 1762 uint64_t mstatus; 1763 1764 /* if pm.current==0 we can't modify current PM CSRs */ 1765 if (check_pm_current_disabled(env, csrno)) { 1766 return RISCV_EXCP_NONE; 1767 } 1768 env->upmmask = val; 1769 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 1770 env->cur_pmmask = val; 1771 } 1772 env->mmte |= PM_EXT_DIRTY; 1773 1774 /* Set XS and SD bits, since PM CSRs are dirty */ 1775 mstatus = env->mstatus | MSTATUS_XS; 1776 write_mstatus(env, csrno, mstatus); 1777 return RISCV_EXCP_NONE; 1778 } 1779 1780 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 1781 target_ulong *val) 1782 { 1783 *val = env->mpmbase; 1784 return RISCV_EXCP_NONE; 1785 } 1786 1787 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 1788 target_ulong val) 1789 { 1790 uint64_t mstatus; 1791 1792 env->mpmbase = val; 1793 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 1794 env->cur_pmbase = val; 1795 } 1796 env->mmte |= PM_EXT_DIRTY; 1797 1798 /* Set XS and SD bits, since PM CSRs are dirty */ 1799 mstatus = env->mstatus | MSTATUS_XS; 1800 write_mstatus(env, csrno, mstatus); 1801 return RISCV_EXCP_NONE; 1802 } 1803 1804 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 1805 target_ulong *val) 1806 { 1807 *val = env->spmbase; 1808 return RISCV_EXCP_NONE; 1809 } 1810 1811 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 1812 target_ulong val) 1813 { 1814 uint64_t mstatus; 1815 1816 /* if pm.current==0 we can't modify current PM CSRs */ 1817 if (check_pm_current_disabled(env, csrno)) { 1818 return RISCV_EXCP_NONE; 1819 } 1820 env->spmbase = val; 1821 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 1822 env->cur_pmbase = val; 1823 } 1824 env->mmte |= PM_EXT_DIRTY; 1825 1826 /* Set XS and SD bits, since PM CSRs are dirty */ 1827 mstatus = env->mstatus | MSTATUS_XS; 1828 write_mstatus(env, csrno, mstatus); 1829 return RISCV_EXCP_NONE; 1830 } 1831 1832 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 1833 target_ulong *val) 1834 { 1835 *val = env->upmbase; 1836 return RISCV_EXCP_NONE; 1837 } 1838 1839 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 1840 target_ulong val) 1841 { 1842 uint64_t mstatus; 1843 1844 /* if pm.current==0 we can't modify current PM CSRs */ 1845 if (check_pm_current_disabled(env, csrno)) { 1846 return RISCV_EXCP_NONE; 1847 } 1848 env->upmbase = val; 1849 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 1850 env->cur_pmbase = val; 1851 } 1852 env->mmte |= PM_EXT_DIRTY; 1853 1854 /* Set XS and SD bits, since PM CSRs are dirty */ 1855 mstatus = env->mstatus | MSTATUS_XS; 1856 write_mstatus(env, csrno, mstatus); 1857 return RISCV_EXCP_NONE; 1858 } 1859 1860 #endif 1861 1862 /* 1863 * riscv_csrrw - read and/or update control and status register 1864 * 1865 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 1866 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 1867 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 1868 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 1869 */ 1870 1871 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 1872 int csrno, 1873 bool write_mask, 1874 RISCVCPU *cpu) 1875 { 1876 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 1877 int read_only = get_field(csrno, 0xC00) == 3; 1878 #if !defined(CONFIG_USER_ONLY) 1879 int effective_priv = env->priv; 1880 1881 if (riscv_has_ext(env, RVH) && 1882 env->priv == PRV_S && 1883 !riscv_cpu_virt_enabled(env)) { 1884 /* 1885 * We are in S mode without virtualisation, therefore we are in HS Mode. 1886 * Add 1 to the effective privledge level to allow us to access the 1887 * Hypervisor CSRs. 1888 */ 1889 effective_priv++; 1890 } 1891 1892 if (!env->debugger && (effective_priv < get_field(csrno, 0x300))) { 1893 return RISCV_EXCP_ILLEGAL_INST; 1894 } 1895 #endif 1896 if (write_mask && read_only) { 1897 return RISCV_EXCP_ILLEGAL_INST; 1898 } 1899 1900 /* ensure the CSR extension is enabled. */ 1901 if (!cpu->cfg.ext_icsr) { 1902 return RISCV_EXCP_ILLEGAL_INST; 1903 } 1904 1905 /* check predicate */ 1906 if (!csr_ops[csrno].predicate) { 1907 return RISCV_EXCP_ILLEGAL_INST; 1908 } 1909 1910 return csr_ops[csrno].predicate(env, csrno); 1911 } 1912 1913 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 1914 target_ulong *ret_value, 1915 target_ulong new_value, 1916 target_ulong write_mask) 1917 { 1918 RISCVException ret; 1919 target_ulong old_value; 1920 1921 /* execute combined read/write operation if it exists */ 1922 if (csr_ops[csrno].op) { 1923 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 1924 } 1925 1926 /* if no accessor exists then return failure */ 1927 if (!csr_ops[csrno].read) { 1928 return RISCV_EXCP_ILLEGAL_INST; 1929 } 1930 /* read old value */ 1931 ret = csr_ops[csrno].read(env, csrno, &old_value); 1932 if (ret != RISCV_EXCP_NONE) { 1933 return ret; 1934 } 1935 1936 /* write value if writable and write mask set, otherwise drop writes */ 1937 if (write_mask) { 1938 new_value = (old_value & ~write_mask) | (new_value & write_mask); 1939 if (csr_ops[csrno].write) { 1940 ret = csr_ops[csrno].write(env, csrno, new_value); 1941 if (ret != RISCV_EXCP_NONE) { 1942 return ret; 1943 } 1944 } 1945 } 1946 1947 /* return old value */ 1948 if (ret_value) { 1949 *ret_value = old_value; 1950 } 1951 1952 return RISCV_EXCP_NONE; 1953 } 1954 1955 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 1956 target_ulong *ret_value, 1957 target_ulong new_value, target_ulong write_mask) 1958 { 1959 RISCVCPU *cpu = env_archcpu(env); 1960 1961 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 1962 if (ret != RISCV_EXCP_NONE) { 1963 return ret; 1964 } 1965 1966 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 1967 } 1968 1969 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 1970 Int128 *ret_value, 1971 Int128 new_value, 1972 Int128 write_mask) 1973 { 1974 RISCVException ret; 1975 Int128 old_value; 1976 1977 /* read old value */ 1978 ret = csr_ops[csrno].read128(env, csrno, &old_value); 1979 if (ret != RISCV_EXCP_NONE) { 1980 return ret; 1981 } 1982 1983 /* write value if writable and write mask set, otherwise drop writes */ 1984 if (int128_nz(write_mask)) { 1985 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 1986 int128_and(new_value, write_mask)); 1987 if (csr_ops[csrno].write128) { 1988 ret = csr_ops[csrno].write128(env, csrno, new_value); 1989 if (ret != RISCV_EXCP_NONE) { 1990 return ret; 1991 } 1992 } else if (csr_ops[csrno].write) { 1993 /* avoids having to write wrappers for all registers */ 1994 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 1995 if (ret != RISCV_EXCP_NONE) { 1996 return ret; 1997 } 1998 } 1999 } 2000 2001 /* return old value */ 2002 if (ret_value) { 2003 *ret_value = old_value; 2004 } 2005 2006 return RISCV_EXCP_NONE; 2007 } 2008 2009 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 2010 Int128 *ret_value, 2011 Int128 new_value, Int128 write_mask) 2012 { 2013 RISCVException ret; 2014 RISCVCPU *cpu = env_archcpu(env); 2015 2016 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 2017 if (ret != RISCV_EXCP_NONE) { 2018 return ret; 2019 } 2020 2021 if (csr_ops[csrno].read128) { 2022 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 2023 } 2024 2025 /* 2026 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 2027 * at all defined. 2028 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 2029 * significant), for those, this fallback is correctly handling the accesses 2030 */ 2031 target_ulong old_value; 2032 ret = riscv_csrrw_do64(env, csrno, &old_value, 2033 int128_getlo(new_value), 2034 int128_getlo(write_mask)); 2035 if (ret == RISCV_EXCP_NONE && ret_value) { 2036 *ret_value = int128_make64(old_value); 2037 } 2038 return ret; 2039 } 2040 2041 /* 2042 * Debugger support. If not in user mode, set env->debugger before the 2043 * riscv_csrrw call and clear it after the call. 2044 */ 2045 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 2046 target_ulong *ret_value, 2047 target_ulong new_value, 2048 target_ulong write_mask) 2049 { 2050 RISCVException ret; 2051 #if !defined(CONFIG_USER_ONLY) 2052 env->debugger = true; 2053 #endif 2054 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 2055 #if !defined(CONFIG_USER_ONLY) 2056 env->debugger = false; 2057 #endif 2058 return ret; 2059 } 2060 2061 /* Control and Status Register function table */ 2062 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 2063 /* User Floating-Point CSRs */ 2064 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 2065 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 2066 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 2067 /* Vector CSRs */ 2068 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 2069 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 2070 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 2071 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 2072 [CSR_VL] = { "vl", vs, read_vl }, 2073 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 2074 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 2075 /* User Timers and Counters */ 2076 [CSR_CYCLE] = { "cycle", ctr, read_instret }, 2077 [CSR_INSTRET] = { "instret", ctr, read_instret }, 2078 [CSR_CYCLEH] = { "cycleh", ctr32, read_instreth }, 2079 [CSR_INSTRETH] = { "instreth", ctr32, read_instreth }, 2080 2081 /* 2082 * In privileged mode, the monitor will have to emulate TIME CSRs only if 2083 * rdtime callback is not provided by machine/platform emulation. 2084 */ 2085 [CSR_TIME] = { "time", ctr, read_time }, 2086 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 2087 2088 #if !defined(CONFIG_USER_ONLY) 2089 /* Machine Timers and Counters */ 2090 [CSR_MCYCLE] = { "mcycle", any, read_instret }, 2091 [CSR_MINSTRET] = { "minstret", any, read_instret }, 2092 [CSR_MCYCLEH] = { "mcycleh", any32, read_instreth }, 2093 [CSR_MINSTRETH] = { "minstreth", any32, read_instreth }, 2094 2095 /* Machine Information Registers */ 2096 [CSR_MVENDORID] = { "mvendorid", any, read_zero }, 2097 [CSR_MARCHID] = { "marchid", any, read_zero }, 2098 [CSR_MIMPID] = { "mimpid", any, read_zero }, 2099 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 2100 2101 /* Machine Trap Setup */ 2102 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, NULL, 2103 read_mstatus_i128 }, 2104 [CSR_MISA] = { "misa", any, read_misa, write_misa, NULL, 2105 read_misa_i128 }, 2106 [CSR_MIDELEG] = { "mideleg", any, read_mideleg, write_mideleg }, 2107 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 2108 [CSR_MIE] = { "mie", any, read_mie, write_mie }, 2109 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 2110 [CSR_MCOUNTEREN] = { "mcounteren", any, read_mcounteren, write_mcounteren }, 2111 2112 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, write_mstatush }, 2113 2114 /* Machine Trap Handling */ 2115 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, NULL, 2116 read_mscratch_i128, write_mscratch_i128 }, 2117 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 2118 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 2119 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 2120 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 2121 2122 /* Supervisor Trap Setup */ 2123 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, NULL, 2124 read_sstatus_i128 }, 2125 [CSR_SIE] = { "sie", smode, read_sie, write_sie }, 2126 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 2127 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, write_scounteren }, 2128 2129 /* Supervisor Trap Handling */ 2130 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, NULL, 2131 read_sscratch_i128, write_sscratch_i128 }, 2132 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 2133 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 2134 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 2135 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 2136 2137 /* Supervisor Protection and Translation */ 2138 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 2139 2140 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus }, 2141 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg }, 2142 [CSR_HIDELEG] = { "hideleg", hmode, read_hideleg, write_hideleg }, 2143 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip }, 2144 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip }, 2145 [CSR_HIE] = { "hie", hmode, read_hie, write_hie }, 2146 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, write_hcounteren }, 2147 [CSR_HGEIE] = { "hgeie", hmode, read_zero, write_hgeie }, 2148 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval }, 2149 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst }, 2150 [CSR_HGEIP] = { "hgeip", hmode, read_zero, write_hgeip }, 2151 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp }, 2152 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, write_htimedelta }, 2153 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, write_htimedeltah }, 2154 2155 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, write_vsstatus }, 2156 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip }, 2157 [CSR_VSIE] = { "vsie", hmode, read_vsie, write_vsie }, 2158 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec }, 2159 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, write_vsscratch }, 2160 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc }, 2161 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause }, 2162 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval }, 2163 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp }, 2164 2165 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2 }, 2166 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst }, 2167 2168 /* Physical Memory Protection */ 2169 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg }, 2170 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 2171 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 2172 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 2173 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 2174 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 2175 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 2176 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 2177 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 2178 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 2179 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 2180 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 2181 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 2182 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 2183 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 2184 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 2185 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 2186 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 2187 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 2188 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 2189 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 2190 2191 /* User Pointer Masking */ 2192 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 2193 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, write_upmmask }, 2194 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, write_upmbase }, 2195 /* Machine Pointer Masking */ 2196 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 2197 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, write_mpmmask }, 2198 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, write_mpmbase }, 2199 /* Supervisor Pointer Masking */ 2200 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 2201 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, write_spmmask }, 2202 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, write_spmbase }, 2203 2204 /* Performance Counters */ 2205 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_zero }, 2206 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_zero }, 2207 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_zero }, 2208 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_zero }, 2209 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_zero }, 2210 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_zero }, 2211 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_zero }, 2212 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_zero }, 2213 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_zero }, 2214 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_zero }, 2215 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_zero }, 2216 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_zero }, 2217 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_zero }, 2218 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_zero }, 2219 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_zero }, 2220 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_zero }, 2221 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_zero }, 2222 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_zero }, 2223 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_zero }, 2224 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_zero }, 2225 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_zero }, 2226 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_zero }, 2227 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_zero }, 2228 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_zero }, 2229 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_zero }, 2230 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_zero }, 2231 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_zero }, 2232 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_zero }, 2233 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_zero }, 2234 2235 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", any, read_zero }, 2236 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", any, read_zero }, 2237 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", any, read_zero }, 2238 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", any, read_zero }, 2239 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", any, read_zero }, 2240 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", any, read_zero }, 2241 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", any, read_zero }, 2242 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", any, read_zero }, 2243 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", any, read_zero }, 2244 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", any, read_zero }, 2245 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", any, read_zero }, 2246 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", any, read_zero }, 2247 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", any, read_zero }, 2248 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", any, read_zero }, 2249 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", any, read_zero }, 2250 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", any, read_zero }, 2251 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", any, read_zero }, 2252 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", any, read_zero }, 2253 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", any, read_zero }, 2254 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", any, read_zero }, 2255 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", any, read_zero }, 2256 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", any, read_zero }, 2257 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", any, read_zero }, 2258 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", any, read_zero }, 2259 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", any, read_zero }, 2260 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", any, read_zero }, 2261 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", any, read_zero }, 2262 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", any, read_zero }, 2263 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", any, read_zero }, 2264 2265 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_zero }, 2266 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_zero }, 2267 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_zero }, 2268 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_zero }, 2269 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_zero }, 2270 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_zero }, 2271 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_zero }, 2272 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_zero }, 2273 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_zero }, 2274 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_zero }, 2275 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_zero }, 2276 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_zero }, 2277 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_zero }, 2278 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_zero }, 2279 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_zero }, 2280 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_zero }, 2281 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_zero }, 2282 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_zero }, 2283 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_zero }, 2284 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_zero }, 2285 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_zero }, 2286 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_zero }, 2287 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_zero }, 2288 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_zero }, 2289 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_zero }, 2290 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_zero }, 2291 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_zero }, 2292 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_zero }, 2293 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_zero }, 2294 2295 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_zero }, 2296 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_zero }, 2297 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_zero }, 2298 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_zero }, 2299 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_zero }, 2300 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_zero }, 2301 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_zero }, 2302 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_zero }, 2303 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_zero }, 2304 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_zero }, 2305 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_zero }, 2306 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_zero }, 2307 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_zero }, 2308 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_zero }, 2309 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_zero }, 2310 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_zero }, 2311 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_zero }, 2312 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_zero }, 2313 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_zero }, 2314 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_zero }, 2315 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_zero }, 2316 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_zero }, 2317 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_zero }, 2318 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_zero }, 2319 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_zero }, 2320 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_zero }, 2321 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_zero }, 2322 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_zero }, 2323 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_zero }, 2324 2325 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", any32, read_zero }, 2326 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", any32, read_zero }, 2327 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", any32, read_zero }, 2328 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", any32, read_zero }, 2329 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", any32, read_zero }, 2330 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", any32, read_zero }, 2331 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", any32, read_zero }, 2332 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", any32, read_zero }, 2333 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", any32, read_zero }, 2334 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", any32, read_zero }, 2335 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", any32, read_zero }, 2336 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", any32, read_zero }, 2337 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", any32, read_zero }, 2338 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", any32, read_zero }, 2339 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", any32, read_zero }, 2340 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", any32, read_zero }, 2341 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", any32, read_zero }, 2342 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", any32, read_zero }, 2343 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", any32, read_zero }, 2344 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", any32, read_zero }, 2345 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", any32, read_zero }, 2346 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", any32, read_zero }, 2347 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", any32, read_zero }, 2348 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", any32, read_zero }, 2349 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", any32, read_zero }, 2350 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", any32, read_zero }, 2351 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", any32, read_zero }, 2352 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", any32, read_zero }, 2353 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", any32, read_zero }, 2354 #endif /* !CONFIG_USER_ONLY */ 2355 }; 2356