1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "qemu/main-loop.h" 24 #include "exec/exec-all.h" 25 26 /* CSR function table public API */ 27 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 28 { 29 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 30 } 31 32 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 33 { 34 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 35 } 36 37 /* Predicates */ 38 static RISCVException fs(CPURISCVState *env, int csrno) 39 { 40 #if !defined(CONFIG_USER_ONLY) 41 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 42 return RISCV_EXCP_ILLEGAL_INST; 43 } 44 #endif 45 return RISCV_EXCP_NONE; 46 } 47 48 static RISCVException vs(CPURISCVState *env, int csrno) 49 { 50 CPUState *cs = env_cpu(env); 51 RISCVCPU *cpu = RISCV_CPU(cs); 52 53 if (env->misa_ext & RVV || 54 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 55 #if !defined(CONFIG_USER_ONLY) 56 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 57 return RISCV_EXCP_ILLEGAL_INST; 58 } 59 #endif 60 return RISCV_EXCP_NONE; 61 } 62 return RISCV_EXCP_ILLEGAL_INST; 63 } 64 65 static RISCVException ctr(CPURISCVState *env, int csrno) 66 { 67 #if !defined(CONFIG_USER_ONLY) 68 CPUState *cs = env_cpu(env); 69 RISCVCPU *cpu = RISCV_CPU(cs); 70 71 if (!cpu->cfg.ext_counters) { 72 /* The Counters extensions is not enabled */ 73 return RISCV_EXCP_ILLEGAL_INST; 74 } 75 76 if (riscv_cpu_virt_enabled(env)) { 77 switch (csrno) { 78 case CSR_CYCLE: 79 if (!get_field(env->hcounteren, COUNTEREN_CY) && 80 get_field(env->mcounteren, COUNTEREN_CY)) { 81 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 82 } 83 break; 84 case CSR_TIME: 85 if (!get_field(env->hcounteren, COUNTEREN_TM) && 86 get_field(env->mcounteren, COUNTEREN_TM)) { 87 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 88 } 89 break; 90 case CSR_INSTRET: 91 if (!get_field(env->hcounteren, COUNTEREN_IR) && 92 get_field(env->mcounteren, COUNTEREN_IR)) { 93 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 94 } 95 break; 96 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 97 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3)) && 98 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3))) { 99 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 100 } 101 break; 102 } 103 if (riscv_cpu_mxl(env) == MXL_RV32) { 104 switch (csrno) { 105 case CSR_CYCLEH: 106 if (!get_field(env->hcounteren, COUNTEREN_CY) && 107 get_field(env->mcounteren, COUNTEREN_CY)) { 108 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 109 } 110 break; 111 case CSR_TIMEH: 112 if (!get_field(env->hcounteren, COUNTEREN_TM) && 113 get_field(env->mcounteren, COUNTEREN_TM)) { 114 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 115 } 116 break; 117 case CSR_INSTRETH: 118 if (!get_field(env->hcounteren, COUNTEREN_IR) && 119 get_field(env->mcounteren, COUNTEREN_IR)) { 120 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 121 } 122 break; 123 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 124 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3H)) && 125 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3H))) { 126 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 127 } 128 break; 129 } 130 } 131 } 132 #endif 133 return RISCV_EXCP_NONE; 134 } 135 136 static RISCVException ctr32(CPURISCVState *env, int csrno) 137 { 138 if (riscv_cpu_mxl(env) != MXL_RV32) { 139 return RISCV_EXCP_ILLEGAL_INST; 140 } 141 142 return ctr(env, csrno); 143 } 144 145 #if !defined(CONFIG_USER_ONLY) 146 static RISCVException any(CPURISCVState *env, int csrno) 147 { 148 return RISCV_EXCP_NONE; 149 } 150 151 static RISCVException any32(CPURISCVState *env, int csrno) 152 { 153 if (riscv_cpu_mxl(env) != MXL_RV32) { 154 return RISCV_EXCP_ILLEGAL_INST; 155 } 156 157 return any(env, csrno); 158 159 } 160 161 static RISCVException smode(CPURISCVState *env, int csrno) 162 { 163 if (riscv_has_ext(env, RVS)) { 164 return RISCV_EXCP_NONE; 165 } 166 167 return RISCV_EXCP_ILLEGAL_INST; 168 } 169 170 static RISCVException hmode(CPURISCVState *env, int csrno) 171 { 172 if (riscv_has_ext(env, RVS) && 173 riscv_has_ext(env, RVH)) { 174 /* Hypervisor extension is supported */ 175 if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 176 env->priv == PRV_M) { 177 return RISCV_EXCP_NONE; 178 } else { 179 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 180 } 181 } 182 183 return RISCV_EXCP_ILLEGAL_INST; 184 } 185 186 static RISCVException hmode32(CPURISCVState *env, int csrno) 187 { 188 if (riscv_cpu_mxl(env) != MXL_RV32) { 189 if (riscv_cpu_virt_enabled(env)) { 190 return RISCV_EXCP_ILLEGAL_INST; 191 } else { 192 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 193 } 194 } 195 196 return hmode(env, csrno); 197 198 } 199 200 /* Checks if PointerMasking registers could be accessed */ 201 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 202 { 203 /* Check if j-ext is present */ 204 if (riscv_has_ext(env, RVJ)) { 205 return RISCV_EXCP_NONE; 206 } 207 return RISCV_EXCP_ILLEGAL_INST; 208 } 209 210 static RISCVException pmp(CPURISCVState *env, int csrno) 211 { 212 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 213 return RISCV_EXCP_NONE; 214 } 215 216 return RISCV_EXCP_ILLEGAL_INST; 217 } 218 219 static RISCVException epmp(CPURISCVState *env, int csrno) 220 { 221 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 222 return RISCV_EXCP_NONE; 223 } 224 225 return RISCV_EXCP_ILLEGAL_INST; 226 } 227 #endif 228 229 /* User Floating-Point CSRs */ 230 static RISCVException read_fflags(CPURISCVState *env, int csrno, 231 target_ulong *val) 232 { 233 *val = riscv_cpu_get_fflags(env); 234 return RISCV_EXCP_NONE; 235 } 236 237 static RISCVException write_fflags(CPURISCVState *env, int csrno, 238 target_ulong val) 239 { 240 #if !defined(CONFIG_USER_ONLY) 241 env->mstatus |= MSTATUS_FS; 242 #endif 243 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 244 return RISCV_EXCP_NONE; 245 } 246 247 static RISCVException read_frm(CPURISCVState *env, int csrno, 248 target_ulong *val) 249 { 250 *val = env->frm; 251 return RISCV_EXCP_NONE; 252 } 253 254 static RISCVException write_frm(CPURISCVState *env, int csrno, 255 target_ulong val) 256 { 257 #if !defined(CONFIG_USER_ONLY) 258 env->mstatus |= MSTATUS_FS; 259 #endif 260 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 261 return RISCV_EXCP_NONE; 262 } 263 264 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 265 target_ulong *val) 266 { 267 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 268 | (env->frm << FSR_RD_SHIFT); 269 return RISCV_EXCP_NONE; 270 } 271 272 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 273 target_ulong val) 274 { 275 #if !defined(CONFIG_USER_ONLY) 276 env->mstatus |= MSTATUS_FS; 277 #endif 278 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 279 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 280 return RISCV_EXCP_NONE; 281 } 282 283 static RISCVException read_vtype(CPURISCVState *env, int csrno, 284 target_ulong *val) 285 { 286 uint64_t vill; 287 switch (env->xl) { 288 case MXL_RV32: 289 vill = (uint32_t)env->vill << 31; 290 break; 291 case MXL_RV64: 292 vill = (uint64_t)env->vill << 63; 293 break; 294 default: 295 g_assert_not_reached(); 296 } 297 *val = (target_ulong)vill | env->vtype; 298 return RISCV_EXCP_NONE; 299 } 300 301 static RISCVException read_vl(CPURISCVState *env, int csrno, 302 target_ulong *val) 303 { 304 *val = env->vl; 305 return RISCV_EXCP_NONE; 306 } 307 308 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 309 { 310 *val = env_archcpu(env)->cfg.vlen >> 3; 311 return RISCV_EXCP_NONE; 312 } 313 314 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 315 target_ulong *val) 316 { 317 *val = env->vxrm; 318 return RISCV_EXCP_NONE; 319 } 320 321 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 322 target_ulong val) 323 { 324 #if !defined(CONFIG_USER_ONLY) 325 env->mstatus |= MSTATUS_VS; 326 #endif 327 env->vxrm = val; 328 return RISCV_EXCP_NONE; 329 } 330 331 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 332 target_ulong *val) 333 { 334 *val = env->vxsat; 335 return RISCV_EXCP_NONE; 336 } 337 338 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 339 target_ulong val) 340 { 341 #if !defined(CONFIG_USER_ONLY) 342 env->mstatus |= MSTATUS_VS; 343 #endif 344 env->vxsat = val; 345 return RISCV_EXCP_NONE; 346 } 347 348 static RISCVException read_vstart(CPURISCVState *env, int csrno, 349 target_ulong *val) 350 { 351 *val = env->vstart; 352 return RISCV_EXCP_NONE; 353 } 354 355 static RISCVException write_vstart(CPURISCVState *env, int csrno, 356 target_ulong val) 357 { 358 #if !defined(CONFIG_USER_ONLY) 359 env->mstatus |= MSTATUS_VS; 360 #endif 361 /* 362 * The vstart CSR is defined to have only enough writable bits 363 * to hold the largest element index, i.e. lg2(VLEN) bits. 364 */ 365 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 366 return RISCV_EXCP_NONE; 367 } 368 369 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 370 { 371 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 372 return RISCV_EXCP_NONE; 373 } 374 375 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 376 { 377 #if !defined(CONFIG_USER_ONLY) 378 env->mstatus |= MSTATUS_VS; 379 #endif 380 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 381 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 382 return RISCV_EXCP_NONE; 383 } 384 385 /* User Timers and Counters */ 386 static RISCVException read_instret(CPURISCVState *env, int csrno, 387 target_ulong *val) 388 { 389 #if !defined(CONFIG_USER_ONLY) 390 if (icount_enabled()) { 391 *val = icount_get(); 392 } else { 393 *val = cpu_get_host_ticks(); 394 } 395 #else 396 *val = cpu_get_host_ticks(); 397 #endif 398 return RISCV_EXCP_NONE; 399 } 400 401 static RISCVException read_instreth(CPURISCVState *env, int csrno, 402 target_ulong *val) 403 { 404 #if !defined(CONFIG_USER_ONLY) 405 if (icount_enabled()) { 406 *val = icount_get() >> 32; 407 } else { 408 *val = cpu_get_host_ticks() >> 32; 409 } 410 #else 411 *val = cpu_get_host_ticks() >> 32; 412 #endif 413 return RISCV_EXCP_NONE; 414 } 415 416 #if defined(CONFIG_USER_ONLY) 417 static RISCVException read_time(CPURISCVState *env, int csrno, 418 target_ulong *val) 419 { 420 *val = cpu_get_host_ticks(); 421 return RISCV_EXCP_NONE; 422 } 423 424 static RISCVException read_timeh(CPURISCVState *env, int csrno, 425 target_ulong *val) 426 { 427 *val = cpu_get_host_ticks() >> 32; 428 return RISCV_EXCP_NONE; 429 } 430 431 #else /* CONFIG_USER_ONLY */ 432 433 static RISCVException read_time(CPURISCVState *env, int csrno, 434 target_ulong *val) 435 { 436 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 437 438 if (!env->rdtime_fn) { 439 return RISCV_EXCP_ILLEGAL_INST; 440 } 441 442 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 443 return RISCV_EXCP_NONE; 444 } 445 446 static RISCVException read_timeh(CPURISCVState *env, int csrno, 447 target_ulong *val) 448 { 449 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 450 451 if (!env->rdtime_fn) { 452 return RISCV_EXCP_ILLEGAL_INST; 453 } 454 455 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 456 return RISCV_EXCP_NONE; 457 } 458 459 /* Machine constants */ 460 461 #define M_MODE_INTERRUPTS (MIP_MSIP | MIP_MTIP | MIP_MEIP) 462 #define S_MODE_INTERRUPTS (MIP_SSIP | MIP_STIP | MIP_SEIP) 463 #define VS_MODE_INTERRUPTS (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP) 464 465 static const target_ulong delegable_ints = S_MODE_INTERRUPTS | 466 VS_MODE_INTERRUPTS; 467 static const target_ulong vs_delegable_ints = VS_MODE_INTERRUPTS; 468 static const target_ulong all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 469 VS_MODE_INTERRUPTS; 470 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 471 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 472 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 473 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 474 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 475 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 476 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 477 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 478 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 479 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 480 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 481 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 482 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 483 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 484 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 485 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 486 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 487 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 488 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 489 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 490 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 491 (1ULL << (RISCV_EXCP_VS_ECALL)) | 492 (1ULL << (RISCV_EXCP_M_ECALL)) | 493 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 494 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 495 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 496 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 497 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 498 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 499 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS | (target_ulong)SSTATUS64_UXL; 500 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP; 501 static const target_ulong hip_writable_mask = MIP_VSSIP; 502 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 503 static const target_ulong vsip_writable_mask = MIP_VSSIP; 504 505 static const char valid_vm_1_10_32[16] = { 506 [VM_1_10_MBARE] = 1, 507 [VM_1_10_SV32] = 1 508 }; 509 510 static const char valid_vm_1_10_64[16] = { 511 [VM_1_10_MBARE] = 1, 512 [VM_1_10_SV39] = 1, 513 [VM_1_10_SV48] = 1, 514 [VM_1_10_SV57] = 1 515 }; 516 517 /* Machine Information Registers */ 518 static RISCVException read_zero(CPURISCVState *env, int csrno, 519 target_ulong *val) 520 { 521 *val = 0; 522 return RISCV_EXCP_NONE; 523 } 524 525 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 526 target_ulong *val) 527 { 528 *val = env->mhartid; 529 return RISCV_EXCP_NONE; 530 } 531 532 /* Machine Trap Setup */ 533 534 /* We do not store SD explicitly, only compute it on demand. */ 535 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 536 { 537 if ((status & MSTATUS_FS) == MSTATUS_FS || 538 (status & MSTATUS_VS) == MSTATUS_VS || 539 (status & MSTATUS_XS) == MSTATUS_XS) { 540 switch (xl) { 541 case MXL_RV32: 542 return status | MSTATUS32_SD; 543 case MXL_RV64: 544 return status | MSTATUS64_SD; 545 case MXL_RV128: 546 return MSTATUSH128_SD; 547 default: 548 g_assert_not_reached(); 549 } 550 } 551 return status; 552 } 553 554 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 555 target_ulong *val) 556 { 557 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 558 return RISCV_EXCP_NONE; 559 } 560 561 static int validate_vm(CPURISCVState *env, target_ulong vm) 562 { 563 if (riscv_cpu_mxl(env) == MXL_RV32) { 564 return valid_vm_1_10_32[vm & 0xf]; 565 } else { 566 return valid_vm_1_10_64[vm & 0xf]; 567 } 568 } 569 570 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 571 target_ulong val) 572 { 573 uint64_t mstatus = env->mstatus; 574 uint64_t mask = 0; 575 576 /* flush tlb on mstatus fields that affect VM */ 577 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 578 MSTATUS_MPRV | MSTATUS_SUM)) { 579 tlb_flush(env_cpu(env)); 580 } 581 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 582 MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM | 583 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 584 MSTATUS_TW | MSTATUS_VS; 585 586 if (riscv_cpu_mxl(env) != MXL_RV32) { 587 /* 588 * RV32: MPV and GVA are not in mstatus. The current plan is to 589 * add them to mstatush. For now, we just don't support it. 590 */ 591 mask |= MSTATUS_MPV | MSTATUS_GVA; 592 } 593 594 mstatus = (mstatus & ~mask) | (val & mask); 595 596 RISCVMXL xl = riscv_cpu_mxl(env); 597 if (xl > MXL_RV32) { 598 /* SXL and UXL fields are for now read only */ 599 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 600 mstatus = set_field(mstatus, MSTATUS64_UXL, xl); 601 } 602 env->mstatus = mstatus; 603 env->xl = cpu_recompute_xl(env); 604 605 return RISCV_EXCP_NONE; 606 } 607 608 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 609 target_ulong *val) 610 { 611 *val = env->mstatus >> 32; 612 return RISCV_EXCP_NONE; 613 } 614 615 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 616 target_ulong val) 617 { 618 uint64_t valh = (uint64_t)val << 32; 619 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 620 621 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 622 tlb_flush(env_cpu(env)); 623 } 624 625 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 626 627 return RISCV_EXCP_NONE; 628 } 629 630 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 631 Int128 *val) 632 { 633 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 634 return RISCV_EXCP_NONE; 635 } 636 637 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 638 Int128 *val) 639 { 640 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 641 return RISCV_EXCP_NONE; 642 } 643 644 static RISCVException read_misa(CPURISCVState *env, int csrno, 645 target_ulong *val) 646 { 647 target_ulong misa; 648 649 switch (env->misa_mxl) { 650 case MXL_RV32: 651 misa = (target_ulong)MXL_RV32 << 30; 652 break; 653 #ifdef TARGET_RISCV64 654 case MXL_RV64: 655 misa = (target_ulong)MXL_RV64 << 62; 656 break; 657 #endif 658 default: 659 g_assert_not_reached(); 660 } 661 662 *val = misa | env->misa_ext; 663 return RISCV_EXCP_NONE; 664 } 665 666 static RISCVException write_misa(CPURISCVState *env, int csrno, 667 target_ulong val) 668 { 669 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 670 /* drop write to misa */ 671 return RISCV_EXCP_NONE; 672 } 673 674 /* 'I' or 'E' must be present */ 675 if (!(val & (RVI | RVE))) { 676 /* It is not, drop write to misa */ 677 return RISCV_EXCP_NONE; 678 } 679 680 /* 'E' excludes all other extensions */ 681 if (val & RVE) { 682 /* when we support 'E' we can do "val = RVE;" however 683 * for now we just drop writes if 'E' is present. 684 */ 685 return RISCV_EXCP_NONE; 686 } 687 688 /* 689 * misa.MXL writes are not supported by QEMU. 690 * Drop writes to those bits. 691 */ 692 693 /* Mask extensions that are not supported by this hart */ 694 val &= env->misa_ext_mask; 695 696 /* Mask extensions that are not supported by QEMU */ 697 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 698 699 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 700 if ((val & RVD) && !(val & RVF)) { 701 val &= ~RVD; 702 } 703 704 /* Suppress 'C' if next instruction is not aligned 705 * TODO: this should check next_pc 706 */ 707 if ((val & RVC) && (GETPC() & ~3) != 0) { 708 val &= ~RVC; 709 } 710 711 /* If nothing changed, do nothing. */ 712 if (val == env->misa_ext) { 713 return RISCV_EXCP_NONE; 714 } 715 716 /* flush translation cache */ 717 tb_flush(env_cpu(env)); 718 env->misa_ext = val; 719 env->xl = riscv_cpu_mxl(env); 720 return RISCV_EXCP_NONE; 721 } 722 723 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 724 target_ulong *val) 725 { 726 *val = env->medeleg; 727 return RISCV_EXCP_NONE; 728 } 729 730 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 731 target_ulong val) 732 { 733 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 734 return RISCV_EXCP_NONE; 735 } 736 737 static RISCVException read_mideleg(CPURISCVState *env, int csrno, 738 target_ulong *val) 739 { 740 *val = env->mideleg; 741 return RISCV_EXCP_NONE; 742 } 743 744 static RISCVException write_mideleg(CPURISCVState *env, int csrno, 745 target_ulong val) 746 { 747 env->mideleg = (env->mideleg & ~delegable_ints) | (val & delegable_ints); 748 if (riscv_has_ext(env, RVH)) { 749 env->mideleg |= VS_MODE_INTERRUPTS; 750 } 751 return RISCV_EXCP_NONE; 752 } 753 754 static RISCVException read_mie(CPURISCVState *env, int csrno, 755 target_ulong *val) 756 { 757 *val = env->mie; 758 return RISCV_EXCP_NONE; 759 } 760 761 static RISCVException write_mie(CPURISCVState *env, int csrno, 762 target_ulong val) 763 { 764 env->mie = (env->mie & ~all_ints) | (val & all_ints); 765 return RISCV_EXCP_NONE; 766 } 767 768 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 769 target_ulong *val) 770 { 771 *val = env->mtvec; 772 return RISCV_EXCP_NONE; 773 } 774 775 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 776 target_ulong val) 777 { 778 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 779 if ((val & 3) < 2) { 780 env->mtvec = val; 781 } else { 782 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 783 } 784 return RISCV_EXCP_NONE; 785 } 786 787 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 788 target_ulong *val) 789 { 790 *val = env->mcounteren; 791 return RISCV_EXCP_NONE; 792 } 793 794 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 795 target_ulong val) 796 { 797 env->mcounteren = val; 798 return RISCV_EXCP_NONE; 799 } 800 801 /* Machine Trap Handling */ 802 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 803 Int128 *val) 804 { 805 *val = int128_make128(env->mscratch, env->mscratchh); 806 return RISCV_EXCP_NONE; 807 } 808 809 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 810 Int128 val) 811 { 812 env->mscratch = int128_getlo(val); 813 env->mscratchh = int128_gethi(val); 814 return RISCV_EXCP_NONE; 815 } 816 817 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 818 target_ulong *val) 819 { 820 *val = env->mscratch; 821 return RISCV_EXCP_NONE; 822 } 823 824 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 825 target_ulong val) 826 { 827 env->mscratch = val; 828 return RISCV_EXCP_NONE; 829 } 830 831 static RISCVException read_mepc(CPURISCVState *env, int csrno, 832 target_ulong *val) 833 { 834 *val = env->mepc; 835 return RISCV_EXCP_NONE; 836 } 837 838 static RISCVException write_mepc(CPURISCVState *env, int csrno, 839 target_ulong val) 840 { 841 env->mepc = val; 842 return RISCV_EXCP_NONE; 843 } 844 845 static RISCVException read_mcause(CPURISCVState *env, int csrno, 846 target_ulong *val) 847 { 848 *val = env->mcause; 849 return RISCV_EXCP_NONE; 850 } 851 852 static RISCVException write_mcause(CPURISCVState *env, int csrno, 853 target_ulong val) 854 { 855 env->mcause = val; 856 return RISCV_EXCP_NONE; 857 } 858 859 static RISCVException read_mtval(CPURISCVState *env, int csrno, 860 target_ulong *val) 861 { 862 *val = env->mtval; 863 return RISCV_EXCP_NONE; 864 } 865 866 static RISCVException write_mtval(CPURISCVState *env, int csrno, 867 target_ulong val) 868 { 869 env->mtval = val; 870 return RISCV_EXCP_NONE; 871 } 872 873 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 874 target_ulong *ret_value, 875 target_ulong new_value, target_ulong write_mask) 876 { 877 RISCVCPU *cpu = env_archcpu(env); 878 /* Allow software control of delegable interrupts not claimed by hardware */ 879 target_ulong mask = write_mask & delegable_ints & ~env->miclaim; 880 uint32_t old_mip; 881 882 if (mask) { 883 old_mip = riscv_cpu_update_mip(cpu, mask, (new_value & mask)); 884 } else { 885 old_mip = env->mip; 886 } 887 888 if (ret_value) { 889 *ret_value = old_mip; 890 } 891 892 return RISCV_EXCP_NONE; 893 } 894 895 /* Supervisor Trap Setup */ 896 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 897 Int128 *val) 898 { 899 uint64_t mask = sstatus_v1_10_mask; 900 uint64_t sstatus = env->mstatus & mask; 901 902 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 903 return RISCV_EXCP_NONE; 904 } 905 906 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 907 target_ulong *val) 908 { 909 target_ulong mask = (sstatus_v1_10_mask); 910 911 /* TODO: Use SXL not MXL. */ 912 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 913 return RISCV_EXCP_NONE; 914 } 915 916 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 917 target_ulong val) 918 { 919 target_ulong mask = (sstatus_v1_10_mask); 920 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 921 return write_mstatus(env, CSR_MSTATUS, newval); 922 } 923 924 static RISCVException read_vsie(CPURISCVState *env, int csrno, 925 target_ulong *val) 926 { 927 /* Shift the VS bits to their S bit location in vsie */ 928 *val = (env->mie & env->hideleg & VS_MODE_INTERRUPTS) >> 1; 929 return RISCV_EXCP_NONE; 930 } 931 932 static RISCVException read_sie(CPURISCVState *env, int csrno, 933 target_ulong *val) 934 { 935 if (riscv_cpu_virt_enabled(env)) { 936 read_vsie(env, CSR_VSIE, val); 937 } else { 938 *val = env->mie & env->mideleg; 939 } 940 return RISCV_EXCP_NONE; 941 } 942 943 static RISCVException write_vsie(CPURISCVState *env, int csrno, 944 target_ulong val) 945 { 946 /* Shift the S bits to their VS bit location in mie */ 947 target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | 948 ((val << 1) & env->hideleg & VS_MODE_INTERRUPTS); 949 return write_mie(env, CSR_MIE, newval); 950 } 951 952 static int write_sie(CPURISCVState *env, int csrno, target_ulong val) 953 { 954 if (riscv_cpu_virt_enabled(env)) { 955 write_vsie(env, CSR_VSIE, val); 956 } else { 957 target_ulong newval = (env->mie & ~S_MODE_INTERRUPTS) | 958 (val & S_MODE_INTERRUPTS); 959 write_mie(env, CSR_MIE, newval); 960 } 961 962 return RISCV_EXCP_NONE; 963 } 964 965 static RISCVException read_stvec(CPURISCVState *env, int csrno, 966 target_ulong *val) 967 { 968 *val = env->stvec; 969 return RISCV_EXCP_NONE; 970 } 971 972 static RISCVException write_stvec(CPURISCVState *env, int csrno, 973 target_ulong val) 974 { 975 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 976 if ((val & 3) < 2) { 977 env->stvec = val; 978 } else { 979 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 980 } 981 return RISCV_EXCP_NONE; 982 } 983 984 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 985 target_ulong *val) 986 { 987 *val = env->scounteren; 988 return RISCV_EXCP_NONE; 989 } 990 991 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 992 target_ulong val) 993 { 994 env->scounteren = val; 995 return RISCV_EXCP_NONE; 996 } 997 998 /* Supervisor Trap Handling */ 999 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 1000 Int128 *val) 1001 { 1002 *val = int128_make128(env->sscratch, env->sscratchh); 1003 return RISCV_EXCP_NONE; 1004 } 1005 1006 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 1007 Int128 val) 1008 { 1009 env->sscratch = int128_getlo(val); 1010 env->sscratchh = int128_gethi(val); 1011 return RISCV_EXCP_NONE; 1012 } 1013 1014 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 1015 target_ulong *val) 1016 { 1017 *val = env->sscratch; 1018 return RISCV_EXCP_NONE; 1019 } 1020 1021 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 1022 target_ulong val) 1023 { 1024 env->sscratch = val; 1025 return RISCV_EXCP_NONE; 1026 } 1027 1028 static RISCVException read_sepc(CPURISCVState *env, int csrno, 1029 target_ulong *val) 1030 { 1031 *val = env->sepc; 1032 return RISCV_EXCP_NONE; 1033 } 1034 1035 static RISCVException write_sepc(CPURISCVState *env, int csrno, 1036 target_ulong val) 1037 { 1038 env->sepc = val; 1039 return RISCV_EXCP_NONE; 1040 } 1041 1042 static RISCVException read_scause(CPURISCVState *env, int csrno, 1043 target_ulong *val) 1044 { 1045 *val = env->scause; 1046 return RISCV_EXCP_NONE; 1047 } 1048 1049 static RISCVException write_scause(CPURISCVState *env, int csrno, 1050 target_ulong val) 1051 { 1052 env->scause = val; 1053 return RISCV_EXCP_NONE; 1054 } 1055 1056 static RISCVException read_stval(CPURISCVState *env, int csrno, 1057 target_ulong *val) 1058 { 1059 *val = env->stval; 1060 return RISCV_EXCP_NONE; 1061 } 1062 1063 static RISCVException write_stval(CPURISCVState *env, int csrno, 1064 target_ulong val) 1065 { 1066 env->stval = val; 1067 return RISCV_EXCP_NONE; 1068 } 1069 1070 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 1071 target_ulong *ret_value, 1072 target_ulong new_value, target_ulong write_mask) 1073 { 1074 /* Shift the S bits to their VS bit location in mip */ 1075 int ret = rmw_mip(env, 0, ret_value, new_value << 1, 1076 (write_mask << 1) & vsip_writable_mask & env->hideleg); 1077 1078 if (ret_value) { 1079 *ret_value &= VS_MODE_INTERRUPTS; 1080 /* Shift the VS bits to their S bit location in vsip */ 1081 *ret_value >>= 1; 1082 } 1083 return ret; 1084 } 1085 1086 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 1087 target_ulong *ret_value, 1088 target_ulong new_value, target_ulong write_mask) 1089 { 1090 int ret; 1091 1092 if (riscv_cpu_virt_enabled(env)) { 1093 ret = rmw_vsip(env, CSR_VSIP, ret_value, new_value, write_mask); 1094 } else { 1095 ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value, 1096 write_mask & env->mideleg & sip_writable_mask); 1097 } 1098 1099 if (ret_value) { 1100 *ret_value &= env->mideleg; 1101 } 1102 return ret; 1103 } 1104 1105 /* Supervisor Protection and Translation */ 1106 static RISCVException read_satp(CPURISCVState *env, int csrno, 1107 target_ulong *val) 1108 { 1109 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 1110 *val = 0; 1111 return RISCV_EXCP_NONE; 1112 } 1113 1114 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 1115 return RISCV_EXCP_ILLEGAL_INST; 1116 } else { 1117 *val = env->satp; 1118 } 1119 1120 return RISCV_EXCP_NONE; 1121 } 1122 1123 static RISCVException write_satp(CPURISCVState *env, int csrno, 1124 target_ulong val) 1125 { 1126 target_ulong vm, mask, asid; 1127 1128 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 1129 return RISCV_EXCP_NONE; 1130 } 1131 1132 if (riscv_cpu_mxl(env) == MXL_RV32) { 1133 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1134 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1135 asid = (val ^ env->satp) & SATP32_ASID; 1136 } else { 1137 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1138 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1139 asid = (val ^ env->satp) & SATP64_ASID; 1140 } 1141 1142 if (vm && mask) { 1143 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 1144 return RISCV_EXCP_ILLEGAL_INST; 1145 } else { 1146 if (asid) { 1147 tlb_flush(env_cpu(env)); 1148 } 1149 env->satp = val; 1150 } 1151 } 1152 return RISCV_EXCP_NONE; 1153 } 1154 1155 /* Hypervisor Extensions */ 1156 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 1157 target_ulong *val) 1158 { 1159 *val = env->hstatus; 1160 if (riscv_cpu_mxl(env) != MXL_RV32) { 1161 /* We only support 64-bit VSXL */ 1162 *val = set_field(*val, HSTATUS_VSXL, 2); 1163 } 1164 /* We only support little endian */ 1165 *val = set_field(*val, HSTATUS_VSBE, 0); 1166 return RISCV_EXCP_NONE; 1167 } 1168 1169 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 1170 target_ulong val) 1171 { 1172 env->hstatus = val; 1173 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 1174 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 1175 } 1176 if (get_field(val, HSTATUS_VSBE) != 0) { 1177 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 1178 } 1179 return RISCV_EXCP_NONE; 1180 } 1181 1182 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 1183 target_ulong *val) 1184 { 1185 *val = env->hedeleg; 1186 return RISCV_EXCP_NONE; 1187 } 1188 1189 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 1190 target_ulong val) 1191 { 1192 env->hedeleg = val & vs_delegable_excps; 1193 return RISCV_EXCP_NONE; 1194 } 1195 1196 static RISCVException read_hideleg(CPURISCVState *env, int csrno, 1197 target_ulong *val) 1198 { 1199 *val = env->hideleg; 1200 return RISCV_EXCP_NONE; 1201 } 1202 1203 static RISCVException write_hideleg(CPURISCVState *env, int csrno, 1204 target_ulong val) 1205 { 1206 env->hideleg = val & vs_delegable_ints; 1207 return RISCV_EXCP_NONE; 1208 } 1209 1210 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 1211 target_ulong *ret_value, 1212 target_ulong new_value, target_ulong write_mask) 1213 { 1214 int ret = rmw_mip(env, 0, ret_value, new_value, 1215 write_mask & hvip_writable_mask); 1216 1217 if (ret_value) { 1218 *ret_value &= hvip_writable_mask; 1219 } 1220 return ret; 1221 } 1222 1223 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 1224 target_ulong *ret_value, 1225 target_ulong new_value, target_ulong write_mask) 1226 { 1227 int ret = rmw_mip(env, 0, ret_value, new_value, 1228 write_mask & hip_writable_mask); 1229 1230 if (ret_value) { 1231 *ret_value &= hip_writable_mask; 1232 } 1233 return ret; 1234 } 1235 1236 static RISCVException read_hie(CPURISCVState *env, int csrno, 1237 target_ulong *val) 1238 { 1239 *val = env->mie & VS_MODE_INTERRUPTS; 1240 return RISCV_EXCP_NONE; 1241 } 1242 1243 static RISCVException write_hie(CPURISCVState *env, int csrno, 1244 target_ulong val) 1245 { 1246 target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | (val & VS_MODE_INTERRUPTS); 1247 return write_mie(env, CSR_MIE, newval); 1248 } 1249 1250 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 1251 target_ulong *val) 1252 { 1253 *val = env->hcounteren; 1254 return RISCV_EXCP_NONE; 1255 } 1256 1257 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 1258 target_ulong val) 1259 { 1260 env->hcounteren = val; 1261 return RISCV_EXCP_NONE; 1262 } 1263 1264 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 1265 target_ulong val) 1266 { 1267 if (val) { 1268 qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN."); 1269 } 1270 return RISCV_EXCP_NONE; 1271 } 1272 1273 static RISCVException read_htval(CPURISCVState *env, int csrno, 1274 target_ulong *val) 1275 { 1276 *val = env->htval; 1277 return RISCV_EXCP_NONE; 1278 } 1279 1280 static RISCVException write_htval(CPURISCVState *env, int csrno, 1281 target_ulong val) 1282 { 1283 env->htval = val; 1284 return RISCV_EXCP_NONE; 1285 } 1286 1287 static RISCVException read_htinst(CPURISCVState *env, int csrno, 1288 target_ulong *val) 1289 { 1290 *val = env->htinst; 1291 return RISCV_EXCP_NONE; 1292 } 1293 1294 static RISCVException write_htinst(CPURISCVState *env, int csrno, 1295 target_ulong val) 1296 { 1297 return RISCV_EXCP_NONE; 1298 } 1299 1300 static RISCVException write_hgeip(CPURISCVState *env, int csrno, 1301 target_ulong val) 1302 { 1303 if (val) { 1304 qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN."); 1305 } 1306 return RISCV_EXCP_NONE; 1307 } 1308 1309 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 1310 target_ulong *val) 1311 { 1312 *val = env->hgatp; 1313 return RISCV_EXCP_NONE; 1314 } 1315 1316 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 1317 target_ulong val) 1318 { 1319 env->hgatp = val; 1320 return RISCV_EXCP_NONE; 1321 } 1322 1323 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 1324 target_ulong *val) 1325 { 1326 if (!env->rdtime_fn) { 1327 return RISCV_EXCP_ILLEGAL_INST; 1328 } 1329 1330 *val = env->htimedelta; 1331 return RISCV_EXCP_NONE; 1332 } 1333 1334 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 1335 target_ulong val) 1336 { 1337 if (!env->rdtime_fn) { 1338 return RISCV_EXCP_ILLEGAL_INST; 1339 } 1340 1341 if (riscv_cpu_mxl(env) == MXL_RV32) { 1342 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 1343 } else { 1344 env->htimedelta = val; 1345 } 1346 return RISCV_EXCP_NONE; 1347 } 1348 1349 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 1350 target_ulong *val) 1351 { 1352 if (!env->rdtime_fn) { 1353 return RISCV_EXCP_ILLEGAL_INST; 1354 } 1355 1356 *val = env->htimedelta >> 32; 1357 return RISCV_EXCP_NONE; 1358 } 1359 1360 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 1361 target_ulong val) 1362 { 1363 if (!env->rdtime_fn) { 1364 return RISCV_EXCP_ILLEGAL_INST; 1365 } 1366 1367 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 1368 return RISCV_EXCP_NONE; 1369 } 1370 1371 /* Virtual CSR Registers */ 1372 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 1373 target_ulong *val) 1374 { 1375 *val = env->vsstatus; 1376 return RISCV_EXCP_NONE; 1377 } 1378 1379 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 1380 target_ulong val) 1381 { 1382 uint64_t mask = (target_ulong)-1; 1383 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 1384 return RISCV_EXCP_NONE; 1385 } 1386 1387 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 1388 { 1389 *val = env->vstvec; 1390 return RISCV_EXCP_NONE; 1391 } 1392 1393 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 1394 target_ulong val) 1395 { 1396 env->vstvec = val; 1397 return RISCV_EXCP_NONE; 1398 } 1399 1400 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 1401 target_ulong *val) 1402 { 1403 *val = env->vsscratch; 1404 return RISCV_EXCP_NONE; 1405 } 1406 1407 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 1408 target_ulong val) 1409 { 1410 env->vsscratch = val; 1411 return RISCV_EXCP_NONE; 1412 } 1413 1414 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 1415 target_ulong *val) 1416 { 1417 *val = env->vsepc; 1418 return RISCV_EXCP_NONE; 1419 } 1420 1421 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 1422 target_ulong val) 1423 { 1424 env->vsepc = val; 1425 return RISCV_EXCP_NONE; 1426 } 1427 1428 static RISCVException read_vscause(CPURISCVState *env, int csrno, 1429 target_ulong *val) 1430 { 1431 *val = env->vscause; 1432 return RISCV_EXCP_NONE; 1433 } 1434 1435 static RISCVException write_vscause(CPURISCVState *env, int csrno, 1436 target_ulong val) 1437 { 1438 env->vscause = val; 1439 return RISCV_EXCP_NONE; 1440 } 1441 1442 static RISCVException read_vstval(CPURISCVState *env, int csrno, 1443 target_ulong *val) 1444 { 1445 *val = env->vstval; 1446 return RISCV_EXCP_NONE; 1447 } 1448 1449 static RISCVException write_vstval(CPURISCVState *env, int csrno, 1450 target_ulong val) 1451 { 1452 env->vstval = val; 1453 return RISCV_EXCP_NONE; 1454 } 1455 1456 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 1457 target_ulong *val) 1458 { 1459 *val = env->vsatp; 1460 return RISCV_EXCP_NONE; 1461 } 1462 1463 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 1464 target_ulong val) 1465 { 1466 env->vsatp = val; 1467 return RISCV_EXCP_NONE; 1468 } 1469 1470 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 1471 target_ulong *val) 1472 { 1473 *val = env->mtval2; 1474 return RISCV_EXCP_NONE; 1475 } 1476 1477 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 1478 target_ulong val) 1479 { 1480 env->mtval2 = val; 1481 return RISCV_EXCP_NONE; 1482 } 1483 1484 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 1485 target_ulong *val) 1486 { 1487 *val = env->mtinst; 1488 return RISCV_EXCP_NONE; 1489 } 1490 1491 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 1492 target_ulong val) 1493 { 1494 env->mtinst = val; 1495 return RISCV_EXCP_NONE; 1496 } 1497 1498 /* Physical Memory Protection */ 1499 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 1500 target_ulong *val) 1501 { 1502 *val = mseccfg_csr_read(env); 1503 return RISCV_EXCP_NONE; 1504 } 1505 1506 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 1507 target_ulong val) 1508 { 1509 mseccfg_csr_write(env, val); 1510 return RISCV_EXCP_NONE; 1511 } 1512 1513 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 1514 { 1515 /* TODO: RV128 restriction check */ 1516 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 1517 return false; 1518 } 1519 return true; 1520 } 1521 1522 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 1523 target_ulong *val) 1524 { 1525 uint32_t reg_index = csrno - CSR_PMPCFG0; 1526 1527 if (!check_pmp_reg_index(env, reg_index)) { 1528 return RISCV_EXCP_ILLEGAL_INST; 1529 } 1530 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 1531 return RISCV_EXCP_NONE; 1532 } 1533 1534 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 1535 target_ulong val) 1536 { 1537 uint32_t reg_index = csrno - CSR_PMPCFG0; 1538 1539 if (!check_pmp_reg_index(env, reg_index)) { 1540 return RISCV_EXCP_ILLEGAL_INST; 1541 } 1542 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 1543 return RISCV_EXCP_NONE; 1544 } 1545 1546 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 1547 target_ulong *val) 1548 { 1549 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 1550 return RISCV_EXCP_NONE; 1551 } 1552 1553 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 1554 target_ulong val) 1555 { 1556 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 1557 return RISCV_EXCP_NONE; 1558 } 1559 1560 /* 1561 * Functions to access Pointer Masking feature registers 1562 * We have to check if current priv lvl could modify 1563 * csr in given mode 1564 */ 1565 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 1566 { 1567 int csr_priv = get_field(csrno, 0x300); 1568 int pm_current; 1569 1570 if (env->debugger) { 1571 return false; 1572 } 1573 /* 1574 * If priv lvls differ that means we're accessing csr from higher priv lvl, 1575 * so allow the access 1576 */ 1577 if (env->priv != csr_priv) { 1578 return false; 1579 } 1580 switch (env->priv) { 1581 case PRV_M: 1582 pm_current = get_field(env->mmte, M_PM_CURRENT); 1583 break; 1584 case PRV_S: 1585 pm_current = get_field(env->mmte, S_PM_CURRENT); 1586 break; 1587 case PRV_U: 1588 pm_current = get_field(env->mmte, U_PM_CURRENT); 1589 break; 1590 default: 1591 g_assert_not_reached(); 1592 } 1593 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 1594 return !pm_current; 1595 } 1596 1597 static RISCVException read_mmte(CPURISCVState *env, int csrno, 1598 target_ulong *val) 1599 { 1600 *val = env->mmte & MMTE_MASK; 1601 return RISCV_EXCP_NONE; 1602 } 1603 1604 static RISCVException write_mmte(CPURISCVState *env, int csrno, 1605 target_ulong val) 1606 { 1607 uint64_t mstatus; 1608 target_ulong wpri_val = val & MMTE_MASK; 1609 1610 if (val != wpri_val) { 1611 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1612 "MMTE: WPRI violation written 0x", val, 1613 "vs expected 0x", wpri_val); 1614 } 1615 /* for machine mode pm.current is hardwired to 1 */ 1616 wpri_val |= MMTE_M_PM_CURRENT; 1617 1618 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 1619 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 1620 env->mmte = wpri_val | PM_EXT_DIRTY; 1621 riscv_cpu_update_mask(env); 1622 1623 /* Set XS and SD bits, since PM CSRs are dirty */ 1624 mstatus = env->mstatus | MSTATUS_XS; 1625 write_mstatus(env, csrno, mstatus); 1626 return RISCV_EXCP_NONE; 1627 } 1628 1629 static RISCVException read_smte(CPURISCVState *env, int csrno, 1630 target_ulong *val) 1631 { 1632 *val = env->mmte & SMTE_MASK; 1633 return RISCV_EXCP_NONE; 1634 } 1635 1636 static RISCVException write_smte(CPURISCVState *env, int csrno, 1637 target_ulong val) 1638 { 1639 target_ulong wpri_val = val & SMTE_MASK; 1640 1641 if (val != wpri_val) { 1642 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1643 "SMTE: WPRI violation written 0x", val, 1644 "vs expected 0x", wpri_val); 1645 } 1646 1647 /* if pm.current==0 we can't modify current PM CSRs */ 1648 if (check_pm_current_disabled(env, csrno)) { 1649 return RISCV_EXCP_NONE; 1650 } 1651 1652 wpri_val |= (env->mmte & ~SMTE_MASK); 1653 write_mmte(env, csrno, wpri_val); 1654 return RISCV_EXCP_NONE; 1655 } 1656 1657 static RISCVException read_umte(CPURISCVState *env, int csrno, 1658 target_ulong *val) 1659 { 1660 *val = env->mmte & UMTE_MASK; 1661 return RISCV_EXCP_NONE; 1662 } 1663 1664 static RISCVException write_umte(CPURISCVState *env, int csrno, 1665 target_ulong val) 1666 { 1667 target_ulong wpri_val = val & UMTE_MASK; 1668 1669 if (val != wpri_val) { 1670 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1671 "UMTE: WPRI violation written 0x", val, 1672 "vs expected 0x", wpri_val); 1673 } 1674 1675 if (check_pm_current_disabled(env, csrno)) { 1676 return RISCV_EXCP_NONE; 1677 } 1678 1679 wpri_val |= (env->mmte & ~UMTE_MASK); 1680 write_mmte(env, csrno, wpri_val); 1681 return RISCV_EXCP_NONE; 1682 } 1683 1684 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 1685 target_ulong *val) 1686 { 1687 *val = env->mpmmask; 1688 return RISCV_EXCP_NONE; 1689 } 1690 1691 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 1692 target_ulong val) 1693 { 1694 uint64_t mstatus; 1695 1696 env->mpmmask = val; 1697 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 1698 env->cur_pmmask = val; 1699 } 1700 env->mmte |= PM_EXT_DIRTY; 1701 1702 /* Set XS and SD bits, since PM CSRs are dirty */ 1703 mstatus = env->mstatus | MSTATUS_XS; 1704 write_mstatus(env, csrno, mstatus); 1705 return RISCV_EXCP_NONE; 1706 } 1707 1708 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 1709 target_ulong *val) 1710 { 1711 *val = env->spmmask; 1712 return RISCV_EXCP_NONE; 1713 } 1714 1715 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 1716 target_ulong val) 1717 { 1718 uint64_t mstatus; 1719 1720 /* if pm.current==0 we can't modify current PM CSRs */ 1721 if (check_pm_current_disabled(env, csrno)) { 1722 return RISCV_EXCP_NONE; 1723 } 1724 env->spmmask = val; 1725 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 1726 env->cur_pmmask = val; 1727 } 1728 env->mmte |= PM_EXT_DIRTY; 1729 1730 /* Set XS and SD bits, since PM CSRs are dirty */ 1731 mstatus = env->mstatus | MSTATUS_XS; 1732 write_mstatus(env, csrno, mstatus); 1733 return RISCV_EXCP_NONE; 1734 } 1735 1736 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 1737 target_ulong *val) 1738 { 1739 *val = env->upmmask; 1740 return RISCV_EXCP_NONE; 1741 } 1742 1743 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 1744 target_ulong val) 1745 { 1746 uint64_t mstatus; 1747 1748 /* if pm.current==0 we can't modify current PM CSRs */ 1749 if (check_pm_current_disabled(env, csrno)) { 1750 return RISCV_EXCP_NONE; 1751 } 1752 env->upmmask = val; 1753 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 1754 env->cur_pmmask = val; 1755 } 1756 env->mmte |= PM_EXT_DIRTY; 1757 1758 /* Set XS and SD bits, since PM CSRs are dirty */ 1759 mstatus = env->mstatus | MSTATUS_XS; 1760 write_mstatus(env, csrno, mstatus); 1761 return RISCV_EXCP_NONE; 1762 } 1763 1764 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 1765 target_ulong *val) 1766 { 1767 *val = env->mpmbase; 1768 return RISCV_EXCP_NONE; 1769 } 1770 1771 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 1772 target_ulong val) 1773 { 1774 uint64_t mstatus; 1775 1776 env->mpmbase = val; 1777 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 1778 env->cur_pmbase = val; 1779 } 1780 env->mmte |= PM_EXT_DIRTY; 1781 1782 /* Set XS and SD bits, since PM CSRs are dirty */ 1783 mstatus = env->mstatus | MSTATUS_XS; 1784 write_mstatus(env, csrno, mstatus); 1785 return RISCV_EXCP_NONE; 1786 } 1787 1788 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 1789 target_ulong *val) 1790 { 1791 *val = env->spmbase; 1792 return RISCV_EXCP_NONE; 1793 } 1794 1795 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 1796 target_ulong val) 1797 { 1798 uint64_t mstatus; 1799 1800 /* if pm.current==0 we can't modify current PM CSRs */ 1801 if (check_pm_current_disabled(env, csrno)) { 1802 return RISCV_EXCP_NONE; 1803 } 1804 env->spmbase = val; 1805 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 1806 env->cur_pmbase = val; 1807 } 1808 env->mmte |= PM_EXT_DIRTY; 1809 1810 /* Set XS and SD bits, since PM CSRs are dirty */ 1811 mstatus = env->mstatus | MSTATUS_XS; 1812 write_mstatus(env, csrno, mstatus); 1813 return RISCV_EXCP_NONE; 1814 } 1815 1816 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 1817 target_ulong *val) 1818 { 1819 *val = env->upmbase; 1820 return RISCV_EXCP_NONE; 1821 } 1822 1823 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 1824 target_ulong val) 1825 { 1826 uint64_t mstatus; 1827 1828 /* if pm.current==0 we can't modify current PM CSRs */ 1829 if (check_pm_current_disabled(env, csrno)) { 1830 return RISCV_EXCP_NONE; 1831 } 1832 env->upmbase = val; 1833 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 1834 env->cur_pmbase = val; 1835 } 1836 env->mmte |= PM_EXT_DIRTY; 1837 1838 /* Set XS and SD bits, since PM CSRs are dirty */ 1839 mstatus = env->mstatus | MSTATUS_XS; 1840 write_mstatus(env, csrno, mstatus); 1841 return RISCV_EXCP_NONE; 1842 } 1843 1844 #endif 1845 1846 /* 1847 * riscv_csrrw - read and/or update control and status register 1848 * 1849 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 1850 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 1851 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 1852 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 1853 */ 1854 1855 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 1856 int csrno, 1857 bool write_mask, 1858 RISCVCPU *cpu) 1859 { 1860 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 1861 int read_only = get_field(csrno, 0xC00) == 3; 1862 #if !defined(CONFIG_USER_ONLY) 1863 int effective_priv = env->priv; 1864 1865 if (riscv_has_ext(env, RVH) && 1866 env->priv == PRV_S && 1867 !riscv_cpu_virt_enabled(env)) { 1868 /* 1869 * We are in S mode without virtualisation, therefore we are in HS Mode. 1870 * Add 1 to the effective privledge level to allow us to access the 1871 * Hypervisor CSRs. 1872 */ 1873 effective_priv++; 1874 } 1875 1876 if (!env->debugger && (effective_priv < get_field(csrno, 0x300))) { 1877 return RISCV_EXCP_ILLEGAL_INST; 1878 } 1879 #endif 1880 if (write_mask && read_only) { 1881 return RISCV_EXCP_ILLEGAL_INST; 1882 } 1883 1884 /* ensure the CSR extension is enabled. */ 1885 if (!cpu->cfg.ext_icsr) { 1886 return RISCV_EXCP_ILLEGAL_INST; 1887 } 1888 1889 /* check predicate */ 1890 if (!csr_ops[csrno].predicate) { 1891 return RISCV_EXCP_ILLEGAL_INST; 1892 } 1893 1894 return csr_ops[csrno].predicate(env, csrno); 1895 } 1896 1897 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 1898 target_ulong *ret_value, 1899 target_ulong new_value, 1900 target_ulong write_mask) 1901 { 1902 RISCVException ret; 1903 target_ulong old_value; 1904 1905 /* execute combined read/write operation if it exists */ 1906 if (csr_ops[csrno].op) { 1907 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 1908 } 1909 1910 /* if no accessor exists then return failure */ 1911 if (!csr_ops[csrno].read) { 1912 return RISCV_EXCP_ILLEGAL_INST; 1913 } 1914 /* read old value */ 1915 ret = csr_ops[csrno].read(env, csrno, &old_value); 1916 if (ret != RISCV_EXCP_NONE) { 1917 return ret; 1918 } 1919 1920 /* write value if writable and write mask set, otherwise drop writes */ 1921 if (write_mask) { 1922 new_value = (old_value & ~write_mask) | (new_value & write_mask); 1923 if (csr_ops[csrno].write) { 1924 ret = csr_ops[csrno].write(env, csrno, new_value); 1925 if (ret != RISCV_EXCP_NONE) { 1926 return ret; 1927 } 1928 } 1929 } 1930 1931 /* return old value */ 1932 if (ret_value) { 1933 *ret_value = old_value; 1934 } 1935 1936 return RISCV_EXCP_NONE; 1937 } 1938 1939 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 1940 target_ulong *ret_value, 1941 target_ulong new_value, target_ulong write_mask) 1942 { 1943 RISCVCPU *cpu = env_archcpu(env); 1944 1945 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 1946 if (ret != RISCV_EXCP_NONE) { 1947 return ret; 1948 } 1949 1950 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 1951 } 1952 1953 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 1954 Int128 *ret_value, 1955 Int128 new_value, 1956 Int128 write_mask) 1957 { 1958 RISCVException ret; 1959 Int128 old_value; 1960 1961 /* read old value */ 1962 ret = csr_ops[csrno].read128(env, csrno, &old_value); 1963 if (ret != RISCV_EXCP_NONE) { 1964 return ret; 1965 } 1966 1967 /* write value if writable and write mask set, otherwise drop writes */ 1968 if (int128_nz(write_mask)) { 1969 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 1970 int128_and(new_value, write_mask)); 1971 if (csr_ops[csrno].write128) { 1972 ret = csr_ops[csrno].write128(env, csrno, new_value); 1973 if (ret != RISCV_EXCP_NONE) { 1974 return ret; 1975 } 1976 } else if (csr_ops[csrno].write) { 1977 /* avoids having to write wrappers for all registers */ 1978 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 1979 if (ret != RISCV_EXCP_NONE) { 1980 return ret; 1981 } 1982 } 1983 } 1984 1985 /* return old value */ 1986 if (ret_value) { 1987 *ret_value = old_value; 1988 } 1989 1990 return RISCV_EXCP_NONE; 1991 } 1992 1993 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 1994 Int128 *ret_value, 1995 Int128 new_value, Int128 write_mask) 1996 { 1997 RISCVException ret; 1998 RISCVCPU *cpu = env_archcpu(env); 1999 2000 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 2001 if (ret != RISCV_EXCP_NONE) { 2002 return ret; 2003 } 2004 2005 if (csr_ops[csrno].read128) { 2006 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 2007 } 2008 2009 /* 2010 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 2011 * at all defined. 2012 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 2013 * significant), for those, this fallback is correctly handling the accesses 2014 */ 2015 target_ulong old_value; 2016 ret = riscv_csrrw_do64(env, csrno, &old_value, 2017 int128_getlo(new_value), 2018 int128_getlo(write_mask)); 2019 if (ret == RISCV_EXCP_NONE && ret_value) { 2020 *ret_value = int128_make64(old_value); 2021 } 2022 return ret; 2023 } 2024 2025 /* 2026 * Debugger support. If not in user mode, set env->debugger before the 2027 * riscv_csrrw call and clear it after the call. 2028 */ 2029 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 2030 target_ulong *ret_value, 2031 target_ulong new_value, 2032 target_ulong write_mask) 2033 { 2034 RISCVException ret; 2035 #if !defined(CONFIG_USER_ONLY) 2036 env->debugger = true; 2037 #endif 2038 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 2039 #if !defined(CONFIG_USER_ONLY) 2040 env->debugger = false; 2041 #endif 2042 return ret; 2043 } 2044 2045 /* Control and Status Register function table */ 2046 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 2047 /* User Floating-Point CSRs */ 2048 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 2049 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 2050 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 2051 /* Vector CSRs */ 2052 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 2053 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 2054 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 2055 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 2056 [CSR_VL] = { "vl", vs, read_vl }, 2057 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 2058 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 2059 /* User Timers and Counters */ 2060 [CSR_CYCLE] = { "cycle", ctr, read_instret }, 2061 [CSR_INSTRET] = { "instret", ctr, read_instret }, 2062 [CSR_CYCLEH] = { "cycleh", ctr32, read_instreth }, 2063 [CSR_INSTRETH] = { "instreth", ctr32, read_instreth }, 2064 2065 /* 2066 * In privileged mode, the monitor will have to emulate TIME CSRs only if 2067 * rdtime callback is not provided by machine/platform emulation. 2068 */ 2069 [CSR_TIME] = { "time", ctr, read_time }, 2070 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 2071 2072 #if !defined(CONFIG_USER_ONLY) 2073 /* Machine Timers and Counters */ 2074 [CSR_MCYCLE] = { "mcycle", any, read_instret }, 2075 [CSR_MINSTRET] = { "minstret", any, read_instret }, 2076 [CSR_MCYCLEH] = { "mcycleh", any32, read_instreth }, 2077 [CSR_MINSTRETH] = { "minstreth", any32, read_instreth }, 2078 2079 /* Machine Information Registers */ 2080 [CSR_MVENDORID] = { "mvendorid", any, read_zero }, 2081 [CSR_MARCHID] = { "marchid", any, read_zero }, 2082 [CSR_MIMPID] = { "mimpid", any, read_zero }, 2083 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 2084 2085 /* Machine Trap Setup */ 2086 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, NULL, 2087 read_mstatus_i128 }, 2088 [CSR_MISA] = { "misa", any, read_misa, write_misa, NULL, 2089 read_misa_i128 }, 2090 [CSR_MIDELEG] = { "mideleg", any, read_mideleg, write_mideleg }, 2091 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 2092 [CSR_MIE] = { "mie", any, read_mie, write_mie }, 2093 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 2094 [CSR_MCOUNTEREN] = { "mcounteren", any, read_mcounteren, write_mcounteren }, 2095 2096 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, write_mstatush }, 2097 2098 /* Machine Trap Handling */ 2099 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, NULL, 2100 read_mscratch_i128, write_mscratch_i128 }, 2101 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 2102 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 2103 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 2104 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 2105 2106 /* Supervisor Trap Setup */ 2107 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, NULL, 2108 read_sstatus_i128 }, 2109 [CSR_SIE] = { "sie", smode, read_sie, write_sie }, 2110 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 2111 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, write_scounteren }, 2112 2113 /* Supervisor Trap Handling */ 2114 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, NULL, 2115 read_sscratch_i128, write_sscratch_i128 }, 2116 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 2117 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 2118 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 2119 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 2120 2121 /* Supervisor Protection and Translation */ 2122 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 2123 2124 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus }, 2125 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg }, 2126 [CSR_HIDELEG] = { "hideleg", hmode, read_hideleg, write_hideleg }, 2127 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip }, 2128 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip }, 2129 [CSR_HIE] = { "hie", hmode, read_hie, write_hie }, 2130 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, write_hcounteren }, 2131 [CSR_HGEIE] = { "hgeie", hmode, read_zero, write_hgeie }, 2132 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval }, 2133 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst }, 2134 [CSR_HGEIP] = { "hgeip", hmode, read_zero, write_hgeip }, 2135 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp }, 2136 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, write_htimedelta }, 2137 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, write_htimedeltah }, 2138 2139 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, write_vsstatus }, 2140 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip }, 2141 [CSR_VSIE] = { "vsie", hmode, read_vsie, write_vsie }, 2142 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec }, 2143 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, write_vsscratch }, 2144 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc }, 2145 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause }, 2146 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval }, 2147 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp }, 2148 2149 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2 }, 2150 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst }, 2151 2152 /* Physical Memory Protection */ 2153 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg }, 2154 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 2155 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 2156 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 2157 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 2158 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 2159 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 2160 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 2161 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 2162 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 2163 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 2164 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 2165 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 2166 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 2167 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 2168 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 2169 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 2170 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 2171 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 2172 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 2173 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 2174 2175 /* User Pointer Masking */ 2176 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 2177 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, write_upmmask }, 2178 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, write_upmbase }, 2179 /* Machine Pointer Masking */ 2180 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 2181 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, write_mpmmask }, 2182 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, write_mpmbase }, 2183 /* Supervisor Pointer Masking */ 2184 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 2185 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, write_spmmask }, 2186 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, write_spmbase }, 2187 2188 /* Performance Counters */ 2189 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_zero }, 2190 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_zero }, 2191 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_zero }, 2192 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_zero }, 2193 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_zero }, 2194 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_zero }, 2195 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_zero }, 2196 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_zero }, 2197 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_zero }, 2198 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_zero }, 2199 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_zero }, 2200 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_zero }, 2201 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_zero }, 2202 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_zero }, 2203 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_zero }, 2204 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_zero }, 2205 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_zero }, 2206 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_zero }, 2207 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_zero }, 2208 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_zero }, 2209 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_zero }, 2210 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_zero }, 2211 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_zero }, 2212 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_zero }, 2213 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_zero }, 2214 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_zero }, 2215 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_zero }, 2216 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_zero }, 2217 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_zero }, 2218 2219 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", any, read_zero }, 2220 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", any, read_zero }, 2221 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", any, read_zero }, 2222 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", any, read_zero }, 2223 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", any, read_zero }, 2224 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", any, read_zero }, 2225 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", any, read_zero }, 2226 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", any, read_zero }, 2227 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", any, read_zero }, 2228 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", any, read_zero }, 2229 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", any, read_zero }, 2230 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", any, read_zero }, 2231 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", any, read_zero }, 2232 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", any, read_zero }, 2233 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", any, read_zero }, 2234 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", any, read_zero }, 2235 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", any, read_zero }, 2236 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", any, read_zero }, 2237 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", any, read_zero }, 2238 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", any, read_zero }, 2239 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", any, read_zero }, 2240 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", any, read_zero }, 2241 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", any, read_zero }, 2242 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", any, read_zero }, 2243 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", any, read_zero }, 2244 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", any, read_zero }, 2245 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", any, read_zero }, 2246 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", any, read_zero }, 2247 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", any, read_zero }, 2248 2249 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_zero }, 2250 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_zero }, 2251 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_zero }, 2252 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_zero }, 2253 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_zero }, 2254 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_zero }, 2255 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_zero }, 2256 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_zero }, 2257 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_zero }, 2258 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_zero }, 2259 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_zero }, 2260 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_zero }, 2261 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_zero }, 2262 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_zero }, 2263 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_zero }, 2264 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_zero }, 2265 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_zero }, 2266 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_zero }, 2267 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_zero }, 2268 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_zero }, 2269 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_zero }, 2270 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_zero }, 2271 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_zero }, 2272 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_zero }, 2273 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_zero }, 2274 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_zero }, 2275 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_zero }, 2276 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_zero }, 2277 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_zero }, 2278 2279 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_zero }, 2280 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_zero }, 2281 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_zero }, 2282 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_zero }, 2283 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_zero }, 2284 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_zero }, 2285 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_zero }, 2286 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_zero }, 2287 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_zero }, 2288 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_zero }, 2289 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_zero }, 2290 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_zero }, 2291 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_zero }, 2292 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_zero }, 2293 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_zero }, 2294 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_zero }, 2295 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_zero }, 2296 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_zero }, 2297 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_zero }, 2298 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_zero }, 2299 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_zero }, 2300 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_zero }, 2301 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_zero }, 2302 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_zero }, 2303 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_zero }, 2304 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_zero }, 2305 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_zero }, 2306 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_zero }, 2307 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_zero }, 2308 2309 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", any32, read_zero }, 2310 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", any32, read_zero }, 2311 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", any32, read_zero }, 2312 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", any32, read_zero }, 2313 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", any32, read_zero }, 2314 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", any32, read_zero }, 2315 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", any32, read_zero }, 2316 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", any32, read_zero }, 2317 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", any32, read_zero }, 2318 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", any32, read_zero }, 2319 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", any32, read_zero }, 2320 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", any32, read_zero }, 2321 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", any32, read_zero }, 2322 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", any32, read_zero }, 2323 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", any32, read_zero }, 2324 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", any32, read_zero }, 2325 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", any32, read_zero }, 2326 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", any32, read_zero }, 2327 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", any32, read_zero }, 2328 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", any32, read_zero }, 2329 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", any32, read_zero }, 2330 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", any32, read_zero }, 2331 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", any32, read_zero }, 2332 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", any32, read_zero }, 2333 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", any32, read_zero }, 2334 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", any32, read_zero }, 2335 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", any32, read_zero }, 2336 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", any32, read_zero }, 2337 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", any32, read_zero }, 2338 #endif /* !CONFIG_USER_ONLY */ 2339 }; 2340