1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "qemu/main-loop.h" 25 #include "exec/exec-all.h" 26 #include "sysemu/cpu-timers.h" 27 #include "qemu/guest-random.h" 28 #include "qapi/error.h" 29 30 /* CSR function table public API */ 31 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 32 { 33 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 34 } 35 36 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 37 { 38 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 39 } 40 41 /* Predicates */ 42 static RISCVException fs(CPURISCVState *env, int csrno) 43 { 44 #if !defined(CONFIG_USER_ONLY) 45 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 46 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 47 return RISCV_EXCP_ILLEGAL_INST; 48 } 49 #endif 50 return RISCV_EXCP_NONE; 51 } 52 53 static RISCVException vs(CPURISCVState *env, int csrno) 54 { 55 CPUState *cs = env_cpu(env); 56 RISCVCPU *cpu = RISCV_CPU(cs); 57 58 if (env->misa_ext & RVV || 59 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 60 #if !defined(CONFIG_USER_ONLY) 61 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 62 return RISCV_EXCP_ILLEGAL_INST; 63 } 64 #endif 65 return RISCV_EXCP_NONE; 66 } 67 return RISCV_EXCP_ILLEGAL_INST; 68 } 69 70 static RISCVException ctr(CPURISCVState *env, int csrno) 71 { 72 #if !defined(CONFIG_USER_ONLY) 73 CPUState *cs = env_cpu(env); 74 RISCVCPU *cpu = RISCV_CPU(cs); 75 76 if (!cpu->cfg.ext_counters) { 77 /* The Counters extensions is not enabled */ 78 return RISCV_EXCP_ILLEGAL_INST; 79 } 80 81 if (riscv_cpu_virt_enabled(env)) { 82 switch (csrno) { 83 case CSR_CYCLE: 84 if (!get_field(env->hcounteren, COUNTEREN_CY) && 85 get_field(env->mcounteren, COUNTEREN_CY)) { 86 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 87 } 88 break; 89 case CSR_TIME: 90 if (!get_field(env->hcounteren, COUNTEREN_TM) && 91 get_field(env->mcounteren, COUNTEREN_TM)) { 92 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 93 } 94 break; 95 case CSR_INSTRET: 96 if (!get_field(env->hcounteren, COUNTEREN_IR) && 97 get_field(env->mcounteren, COUNTEREN_IR)) { 98 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 99 } 100 break; 101 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 102 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3)) && 103 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3))) { 104 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 105 } 106 break; 107 } 108 if (riscv_cpu_mxl(env) == MXL_RV32) { 109 switch (csrno) { 110 case CSR_CYCLEH: 111 if (!get_field(env->hcounteren, COUNTEREN_CY) && 112 get_field(env->mcounteren, COUNTEREN_CY)) { 113 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 114 } 115 break; 116 case CSR_TIMEH: 117 if (!get_field(env->hcounteren, COUNTEREN_TM) && 118 get_field(env->mcounteren, COUNTEREN_TM)) { 119 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 120 } 121 break; 122 case CSR_INSTRETH: 123 if (!get_field(env->hcounteren, COUNTEREN_IR) && 124 get_field(env->mcounteren, COUNTEREN_IR)) { 125 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 126 } 127 break; 128 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 129 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3H)) && 130 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3H))) { 131 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 132 } 133 break; 134 } 135 } 136 } 137 #endif 138 return RISCV_EXCP_NONE; 139 } 140 141 static RISCVException ctr32(CPURISCVState *env, int csrno) 142 { 143 if (riscv_cpu_mxl(env) != MXL_RV32) { 144 return RISCV_EXCP_ILLEGAL_INST; 145 } 146 147 return ctr(env, csrno); 148 } 149 150 #if !defined(CONFIG_USER_ONLY) 151 static RISCVException any(CPURISCVState *env, int csrno) 152 { 153 return RISCV_EXCP_NONE; 154 } 155 156 static RISCVException any32(CPURISCVState *env, int csrno) 157 { 158 if (riscv_cpu_mxl(env) != MXL_RV32) { 159 return RISCV_EXCP_ILLEGAL_INST; 160 } 161 162 return any(env, csrno); 163 164 } 165 166 static int aia_any(CPURISCVState *env, int csrno) 167 { 168 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 169 return RISCV_EXCP_ILLEGAL_INST; 170 } 171 172 return any(env, csrno); 173 } 174 175 static int aia_any32(CPURISCVState *env, int csrno) 176 { 177 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 178 return RISCV_EXCP_ILLEGAL_INST; 179 } 180 181 return any32(env, csrno); 182 } 183 184 static RISCVException smode(CPURISCVState *env, int csrno) 185 { 186 if (riscv_has_ext(env, RVS)) { 187 return RISCV_EXCP_NONE; 188 } 189 190 return RISCV_EXCP_ILLEGAL_INST; 191 } 192 193 static int smode32(CPURISCVState *env, int csrno) 194 { 195 if (riscv_cpu_mxl(env) != MXL_RV32) { 196 return RISCV_EXCP_ILLEGAL_INST; 197 } 198 199 return smode(env, csrno); 200 } 201 202 static int aia_smode(CPURISCVState *env, int csrno) 203 { 204 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 205 return RISCV_EXCP_ILLEGAL_INST; 206 } 207 208 return smode(env, csrno); 209 } 210 211 static int aia_smode32(CPURISCVState *env, int csrno) 212 { 213 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 214 return RISCV_EXCP_ILLEGAL_INST; 215 } 216 217 return smode32(env, csrno); 218 } 219 220 static RISCVException hmode(CPURISCVState *env, int csrno) 221 { 222 if (riscv_has_ext(env, RVS) && 223 riscv_has_ext(env, RVH)) { 224 /* Hypervisor extension is supported */ 225 if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 226 env->priv == PRV_M) { 227 return RISCV_EXCP_NONE; 228 } else { 229 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 230 } 231 } 232 233 return RISCV_EXCP_ILLEGAL_INST; 234 } 235 236 static RISCVException hmode32(CPURISCVState *env, int csrno) 237 { 238 if (riscv_cpu_mxl(env) != MXL_RV32) { 239 if (!riscv_cpu_virt_enabled(env)) { 240 return RISCV_EXCP_ILLEGAL_INST; 241 } else { 242 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 243 } 244 } 245 246 return hmode(env, csrno); 247 248 } 249 250 /* Checks if PointerMasking registers could be accessed */ 251 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 252 { 253 /* Check if j-ext is present */ 254 if (riscv_has_ext(env, RVJ)) { 255 return RISCV_EXCP_NONE; 256 } 257 return RISCV_EXCP_ILLEGAL_INST; 258 } 259 260 static int aia_hmode(CPURISCVState *env, int csrno) 261 { 262 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 263 return RISCV_EXCP_ILLEGAL_INST; 264 } 265 266 return hmode(env, csrno); 267 } 268 269 static int aia_hmode32(CPURISCVState *env, int csrno) 270 { 271 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 272 return RISCV_EXCP_ILLEGAL_INST; 273 } 274 275 return hmode32(env, csrno); 276 } 277 278 static RISCVException pmp(CPURISCVState *env, int csrno) 279 { 280 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 281 return RISCV_EXCP_NONE; 282 } 283 284 return RISCV_EXCP_ILLEGAL_INST; 285 } 286 287 static RISCVException epmp(CPURISCVState *env, int csrno) 288 { 289 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 290 return RISCV_EXCP_NONE; 291 } 292 293 return RISCV_EXCP_ILLEGAL_INST; 294 } 295 296 static RISCVException debug(CPURISCVState *env, int csrno) 297 { 298 if (riscv_feature(env, RISCV_FEATURE_DEBUG)) { 299 return RISCV_EXCP_NONE; 300 } 301 302 return RISCV_EXCP_ILLEGAL_INST; 303 } 304 #endif 305 306 static RISCVException seed(CPURISCVState *env, int csrno) 307 { 308 RISCVCPU *cpu = env_archcpu(env); 309 310 if (!cpu->cfg.ext_zkr) { 311 return RISCV_EXCP_ILLEGAL_INST; 312 } 313 314 #if !defined(CONFIG_USER_ONLY) 315 /* 316 * With a CSR read-write instruction: 317 * 1) The seed CSR is always available in machine mode as normal. 318 * 2) Attempted access to seed from virtual modes VS and VU always raises 319 * an exception(virtual instruction exception only if mseccfg.sseed=1). 320 * 3) Without the corresponding access control bit set to 1, any attempted 321 * access to seed from U, S or HS modes will raise an illegal instruction 322 * exception. 323 */ 324 if (env->priv == PRV_M) { 325 return RISCV_EXCP_NONE; 326 } else if (riscv_cpu_virt_enabled(env)) { 327 if (env->mseccfg & MSECCFG_SSEED) { 328 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 329 } else { 330 return RISCV_EXCP_ILLEGAL_INST; 331 } 332 } else { 333 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 334 return RISCV_EXCP_NONE; 335 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 336 return RISCV_EXCP_NONE; 337 } else { 338 return RISCV_EXCP_ILLEGAL_INST; 339 } 340 } 341 #else 342 return RISCV_EXCP_NONE; 343 #endif 344 } 345 346 /* User Floating-Point CSRs */ 347 static RISCVException read_fflags(CPURISCVState *env, int csrno, 348 target_ulong *val) 349 { 350 *val = riscv_cpu_get_fflags(env); 351 return RISCV_EXCP_NONE; 352 } 353 354 static RISCVException write_fflags(CPURISCVState *env, int csrno, 355 target_ulong val) 356 { 357 #if !defined(CONFIG_USER_ONLY) 358 if (riscv_has_ext(env, RVF)) { 359 env->mstatus |= MSTATUS_FS; 360 } 361 #endif 362 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 363 return RISCV_EXCP_NONE; 364 } 365 366 static RISCVException read_frm(CPURISCVState *env, int csrno, 367 target_ulong *val) 368 { 369 *val = env->frm; 370 return RISCV_EXCP_NONE; 371 } 372 373 static RISCVException write_frm(CPURISCVState *env, int csrno, 374 target_ulong val) 375 { 376 #if !defined(CONFIG_USER_ONLY) 377 if (riscv_has_ext(env, RVF)) { 378 env->mstatus |= MSTATUS_FS; 379 } 380 #endif 381 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 382 return RISCV_EXCP_NONE; 383 } 384 385 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 386 target_ulong *val) 387 { 388 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 389 | (env->frm << FSR_RD_SHIFT); 390 return RISCV_EXCP_NONE; 391 } 392 393 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 394 target_ulong val) 395 { 396 #if !defined(CONFIG_USER_ONLY) 397 if (riscv_has_ext(env, RVF)) { 398 env->mstatus |= MSTATUS_FS; 399 } 400 #endif 401 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 402 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 403 return RISCV_EXCP_NONE; 404 } 405 406 static RISCVException read_vtype(CPURISCVState *env, int csrno, 407 target_ulong *val) 408 { 409 uint64_t vill; 410 switch (env->xl) { 411 case MXL_RV32: 412 vill = (uint32_t)env->vill << 31; 413 break; 414 case MXL_RV64: 415 vill = (uint64_t)env->vill << 63; 416 break; 417 default: 418 g_assert_not_reached(); 419 } 420 *val = (target_ulong)vill | env->vtype; 421 return RISCV_EXCP_NONE; 422 } 423 424 static RISCVException read_vl(CPURISCVState *env, int csrno, 425 target_ulong *val) 426 { 427 *val = env->vl; 428 return RISCV_EXCP_NONE; 429 } 430 431 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 432 { 433 *val = env_archcpu(env)->cfg.vlen >> 3; 434 return RISCV_EXCP_NONE; 435 } 436 437 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 438 target_ulong *val) 439 { 440 *val = env->vxrm; 441 return RISCV_EXCP_NONE; 442 } 443 444 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 445 target_ulong val) 446 { 447 #if !defined(CONFIG_USER_ONLY) 448 env->mstatus |= MSTATUS_VS; 449 #endif 450 env->vxrm = val; 451 return RISCV_EXCP_NONE; 452 } 453 454 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 455 target_ulong *val) 456 { 457 *val = env->vxsat; 458 return RISCV_EXCP_NONE; 459 } 460 461 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 462 target_ulong val) 463 { 464 #if !defined(CONFIG_USER_ONLY) 465 env->mstatus |= MSTATUS_VS; 466 #endif 467 env->vxsat = val; 468 return RISCV_EXCP_NONE; 469 } 470 471 static RISCVException read_vstart(CPURISCVState *env, int csrno, 472 target_ulong *val) 473 { 474 *val = env->vstart; 475 return RISCV_EXCP_NONE; 476 } 477 478 static RISCVException write_vstart(CPURISCVState *env, int csrno, 479 target_ulong val) 480 { 481 #if !defined(CONFIG_USER_ONLY) 482 env->mstatus |= MSTATUS_VS; 483 #endif 484 /* 485 * The vstart CSR is defined to have only enough writable bits 486 * to hold the largest element index, i.e. lg2(VLEN) bits. 487 */ 488 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 489 return RISCV_EXCP_NONE; 490 } 491 492 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 493 { 494 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 495 return RISCV_EXCP_NONE; 496 } 497 498 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 499 { 500 #if !defined(CONFIG_USER_ONLY) 501 env->mstatus |= MSTATUS_VS; 502 #endif 503 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 504 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 505 return RISCV_EXCP_NONE; 506 } 507 508 /* User Timers and Counters */ 509 static RISCVException read_instret(CPURISCVState *env, int csrno, 510 target_ulong *val) 511 { 512 #if !defined(CONFIG_USER_ONLY) 513 if (icount_enabled()) { 514 *val = icount_get(); 515 } else { 516 *val = cpu_get_host_ticks(); 517 } 518 #else 519 *val = cpu_get_host_ticks(); 520 #endif 521 return RISCV_EXCP_NONE; 522 } 523 524 static RISCVException read_instreth(CPURISCVState *env, int csrno, 525 target_ulong *val) 526 { 527 #if !defined(CONFIG_USER_ONLY) 528 if (icount_enabled()) { 529 *val = icount_get() >> 32; 530 } else { 531 *val = cpu_get_host_ticks() >> 32; 532 } 533 #else 534 *val = cpu_get_host_ticks() >> 32; 535 #endif 536 return RISCV_EXCP_NONE; 537 } 538 539 #if defined(CONFIG_USER_ONLY) 540 static RISCVException read_time(CPURISCVState *env, int csrno, 541 target_ulong *val) 542 { 543 *val = cpu_get_host_ticks(); 544 return RISCV_EXCP_NONE; 545 } 546 547 static RISCVException read_timeh(CPURISCVState *env, int csrno, 548 target_ulong *val) 549 { 550 *val = cpu_get_host_ticks() >> 32; 551 return RISCV_EXCP_NONE; 552 } 553 554 #else /* CONFIG_USER_ONLY */ 555 556 static RISCVException read_time(CPURISCVState *env, int csrno, 557 target_ulong *val) 558 { 559 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 560 561 if (!env->rdtime_fn) { 562 return RISCV_EXCP_ILLEGAL_INST; 563 } 564 565 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 566 return RISCV_EXCP_NONE; 567 } 568 569 static RISCVException read_timeh(CPURISCVState *env, int csrno, 570 target_ulong *val) 571 { 572 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 573 574 if (!env->rdtime_fn) { 575 return RISCV_EXCP_ILLEGAL_INST; 576 } 577 578 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 579 return RISCV_EXCP_NONE; 580 } 581 582 /* Machine constants */ 583 584 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 585 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP)) 586 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 587 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 588 589 #define VSTOPI_NUM_SRCS 5 590 591 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 592 VS_MODE_INTERRUPTS; 593 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 594 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 595 HS_MODE_INTERRUPTS; 596 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 597 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 598 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 599 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 600 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 601 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 602 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 603 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 604 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 605 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 606 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 607 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 608 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 609 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 610 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 611 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 612 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 613 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 614 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 615 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 616 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 617 (1ULL << (RISCV_EXCP_VS_ECALL)) | 618 (1ULL << (RISCV_EXCP_M_ECALL)) | 619 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 620 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 621 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 622 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 623 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 624 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 625 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 626 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP; 627 static const target_ulong hip_writable_mask = MIP_VSSIP; 628 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 629 static const target_ulong vsip_writable_mask = MIP_VSSIP; 630 631 static const char valid_vm_1_10_32[16] = { 632 [VM_1_10_MBARE] = 1, 633 [VM_1_10_SV32] = 1 634 }; 635 636 static const char valid_vm_1_10_64[16] = { 637 [VM_1_10_MBARE] = 1, 638 [VM_1_10_SV39] = 1, 639 [VM_1_10_SV48] = 1, 640 [VM_1_10_SV57] = 1 641 }; 642 643 /* Machine Information Registers */ 644 static RISCVException read_zero(CPURISCVState *env, int csrno, 645 target_ulong *val) 646 { 647 *val = 0; 648 return RISCV_EXCP_NONE; 649 } 650 651 static RISCVException write_ignore(CPURISCVState *env, int csrno, 652 target_ulong val) 653 { 654 return RISCV_EXCP_NONE; 655 } 656 657 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 658 target_ulong *val) 659 { 660 CPUState *cs = env_cpu(env); 661 RISCVCPU *cpu = RISCV_CPU(cs); 662 663 *val = cpu->cfg.mvendorid; 664 return RISCV_EXCP_NONE; 665 } 666 667 static RISCVException read_marchid(CPURISCVState *env, int csrno, 668 target_ulong *val) 669 { 670 CPUState *cs = env_cpu(env); 671 RISCVCPU *cpu = RISCV_CPU(cs); 672 673 *val = cpu->cfg.marchid; 674 return RISCV_EXCP_NONE; 675 } 676 677 static RISCVException read_mipid(CPURISCVState *env, int csrno, 678 target_ulong *val) 679 { 680 CPUState *cs = env_cpu(env); 681 RISCVCPU *cpu = RISCV_CPU(cs); 682 683 *val = cpu->cfg.mipid; 684 return RISCV_EXCP_NONE; 685 } 686 687 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 688 target_ulong *val) 689 { 690 *val = env->mhartid; 691 return RISCV_EXCP_NONE; 692 } 693 694 /* Machine Trap Setup */ 695 696 /* We do not store SD explicitly, only compute it on demand. */ 697 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 698 { 699 if ((status & MSTATUS_FS) == MSTATUS_FS || 700 (status & MSTATUS_VS) == MSTATUS_VS || 701 (status & MSTATUS_XS) == MSTATUS_XS) { 702 switch (xl) { 703 case MXL_RV32: 704 return status | MSTATUS32_SD; 705 case MXL_RV64: 706 return status | MSTATUS64_SD; 707 case MXL_RV128: 708 return MSTATUSH128_SD; 709 default: 710 g_assert_not_reached(); 711 } 712 } 713 return status; 714 } 715 716 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 717 target_ulong *val) 718 { 719 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 720 return RISCV_EXCP_NONE; 721 } 722 723 static int validate_vm(CPURISCVState *env, target_ulong vm) 724 { 725 if (riscv_cpu_mxl(env) == MXL_RV32) { 726 return valid_vm_1_10_32[vm & 0xf]; 727 } else { 728 return valid_vm_1_10_64[vm & 0xf]; 729 } 730 } 731 732 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 733 target_ulong val) 734 { 735 uint64_t mstatus = env->mstatus; 736 uint64_t mask = 0; 737 RISCVMXL xl = riscv_cpu_mxl(env); 738 739 /* flush tlb on mstatus fields that affect VM */ 740 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 741 MSTATUS_MPRV | MSTATUS_SUM)) { 742 tlb_flush(env_cpu(env)); 743 } 744 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 745 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 746 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 747 MSTATUS_TW | MSTATUS_VS; 748 749 if (riscv_has_ext(env, RVF)) { 750 mask |= MSTATUS_FS; 751 } 752 753 if (xl != MXL_RV32 || env->debugger) { 754 /* 755 * RV32: MPV and GVA are not in mstatus. The current plan is to 756 * add them to mstatush. For now, we just don't support it. 757 */ 758 mask |= MSTATUS_MPV | MSTATUS_GVA; 759 if ((val & MSTATUS64_UXL) != 0) { 760 mask |= MSTATUS64_UXL; 761 } 762 } 763 764 mstatus = (mstatus & ~mask) | (val & mask); 765 766 if (xl > MXL_RV32) { 767 /* SXL field is for now read only */ 768 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 769 } 770 env->mstatus = mstatus; 771 env->xl = cpu_recompute_xl(env); 772 773 return RISCV_EXCP_NONE; 774 } 775 776 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 777 target_ulong *val) 778 { 779 *val = env->mstatus >> 32; 780 return RISCV_EXCP_NONE; 781 } 782 783 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 784 target_ulong val) 785 { 786 uint64_t valh = (uint64_t)val << 32; 787 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 788 789 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 790 tlb_flush(env_cpu(env)); 791 } 792 793 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 794 795 return RISCV_EXCP_NONE; 796 } 797 798 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 799 Int128 *val) 800 { 801 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 802 return RISCV_EXCP_NONE; 803 } 804 805 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 806 Int128 *val) 807 { 808 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 809 return RISCV_EXCP_NONE; 810 } 811 812 static RISCVException read_misa(CPURISCVState *env, int csrno, 813 target_ulong *val) 814 { 815 target_ulong misa; 816 817 switch (env->misa_mxl) { 818 case MXL_RV32: 819 misa = (target_ulong)MXL_RV32 << 30; 820 break; 821 #ifdef TARGET_RISCV64 822 case MXL_RV64: 823 misa = (target_ulong)MXL_RV64 << 62; 824 break; 825 #endif 826 default: 827 g_assert_not_reached(); 828 } 829 830 *val = misa | env->misa_ext; 831 return RISCV_EXCP_NONE; 832 } 833 834 static RISCVException write_misa(CPURISCVState *env, int csrno, 835 target_ulong val) 836 { 837 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 838 /* drop write to misa */ 839 return RISCV_EXCP_NONE; 840 } 841 842 /* 'I' or 'E' must be present */ 843 if (!(val & (RVI | RVE))) { 844 /* It is not, drop write to misa */ 845 return RISCV_EXCP_NONE; 846 } 847 848 /* 'E' excludes all other extensions */ 849 if (val & RVE) { 850 /* when we support 'E' we can do "val = RVE;" however 851 * for now we just drop writes if 'E' is present. 852 */ 853 return RISCV_EXCP_NONE; 854 } 855 856 /* 857 * misa.MXL writes are not supported by QEMU. 858 * Drop writes to those bits. 859 */ 860 861 /* Mask extensions that are not supported by this hart */ 862 val &= env->misa_ext_mask; 863 864 /* Mask extensions that are not supported by QEMU */ 865 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 866 867 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 868 if ((val & RVD) && !(val & RVF)) { 869 val &= ~RVD; 870 } 871 872 /* Suppress 'C' if next instruction is not aligned 873 * TODO: this should check next_pc 874 */ 875 if ((val & RVC) && (GETPC() & ~3) != 0) { 876 val &= ~RVC; 877 } 878 879 /* If nothing changed, do nothing. */ 880 if (val == env->misa_ext) { 881 return RISCV_EXCP_NONE; 882 } 883 884 if (!(val & RVF)) { 885 env->mstatus &= ~MSTATUS_FS; 886 } 887 888 /* flush translation cache */ 889 tb_flush(env_cpu(env)); 890 env->misa_ext = val; 891 env->xl = riscv_cpu_mxl(env); 892 return RISCV_EXCP_NONE; 893 } 894 895 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 896 target_ulong *val) 897 { 898 *val = env->medeleg; 899 return RISCV_EXCP_NONE; 900 } 901 902 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 903 target_ulong val) 904 { 905 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 906 return RISCV_EXCP_NONE; 907 } 908 909 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 910 uint64_t *ret_val, 911 uint64_t new_val, uint64_t wr_mask) 912 { 913 uint64_t mask = wr_mask & delegable_ints; 914 915 if (ret_val) { 916 *ret_val = env->mideleg; 917 } 918 919 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 920 921 if (riscv_has_ext(env, RVH)) { 922 env->mideleg |= HS_MODE_INTERRUPTS; 923 } 924 925 return RISCV_EXCP_NONE; 926 } 927 928 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 929 target_ulong *ret_val, 930 target_ulong new_val, target_ulong wr_mask) 931 { 932 uint64_t rval; 933 RISCVException ret; 934 935 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 936 if (ret_val) { 937 *ret_val = rval; 938 } 939 940 return ret; 941 } 942 943 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 944 target_ulong *ret_val, 945 target_ulong new_val, 946 target_ulong wr_mask) 947 { 948 uint64_t rval; 949 RISCVException ret; 950 951 ret = rmw_mideleg64(env, csrno, &rval, 952 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 953 if (ret_val) { 954 *ret_val = rval >> 32; 955 } 956 957 return ret; 958 } 959 960 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 961 uint64_t *ret_val, 962 uint64_t new_val, uint64_t wr_mask) 963 { 964 uint64_t mask = wr_mask & all_ints; 965 966 if (ret_val) { 967 *ret_val = env->mie; 968 } 969 970 env->mie = (env->mie & ~mask) | (new_val & mask); 971 972 if (!riscv_has_ext(env, RVH)) { 973 env->mie &= ~((uint64_t)MIP_SGEIP); 974 } 975 976 return RISCV_EXCP_NONE; 977 } 978 979 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 980 target_ulong *ret_val, 981 target_ulong new_val, target_ulong wr_mask) 982 { 983 uint64_t rval; 984 RISCVException ret; 985 986 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 987 if (ret_val) { 988 *ret_val = rval; 989 } 990 991 return ret; 992 } 993 994 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 995 target_ulong *ret_val, 996 target_ulong new_val, target_ulong wr_mask) 997 { 998 uint64_t rval; 999 RISCVException ret; 1000 1001 ret = rmw_mie64(env, csrno, &rval, 1002 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1003 if (ret_val) { 1004 *ret_val = rval >> 32; 1005 } 1006 1007 return ret; 1008 } 1009 1010 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1011 { 1012 int irq; 1013 uint8_t iprio; 1014 1015 irq = riscv_cpu_mirq_pending(env); 1016 if (irq <= 0 || irq > 63) { 1017 *val = 0; 1018 } else { 1019 iprio = env->miprio[irq]; 1020 if (!iprio) { 1021 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1022 iprio = IPRIO_MMAXIPRIO; 1023 } 1024 } 1025 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1026 *val |= iprio; 1027 } 1028 1029 return RISCV_EXCP_NONE; 1030 } 1031 1032 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1033 { 1034 if (!riscv_cpu_virt_enabled(env)) { 1035 return csrno; 1036 } 1037 1038 switch (csrno) { 1039 case CSR_SISELECT: 1040 return CSR_VSISELECT; 1041 case CSR_SIREG: 1042 return CSR_VSIREG; 1043 case CSR_SSETEIPNUM: 1044 return CSR_VSSETEIPNUM; 1045 case CSR_SCLREIPNUM: 1046 return CSR_VSCLREIPNUM; 1047 case CSR_SSETEIENUM: 1048 return CSR_VSSETEIENUM; 1049 case CSR_SCLREIENUM: 1050 return CSR_VSCLREIENUM; 1051 case CSR_STOPEI: 1052 return CSR_VSTOPEI; 1053 default: 1054 return csrno; 1055 }; 1056 } 1057 1058 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1059 target_ulong new_val, target_ulong wr_mask) 1060 { 1061 target_ulong *iselect; 1062 1063 /* Translate CSR number for VS-mode */ 1064 csrno = aia_xlate_vs_csrno(env, csrno); 1065 1066 /* Find the iselect CSR based on CSR number */ 1067 switch (csrno) { 1068 case CSR_MISELECT: 1069 iselect = &env->miselect; 1070 break; 1071 case CSR_SISELECT: 1072 iselect = &env->siselect; 1073 break; 1074 case CSR_VSISELECT: 1075 iselect = &env->vsiselect; 1076 break; 1077 default: 1078 return RISCV_EXCP_ILLEGAL_INST; 1079 }; 1080 1081 if (val) { 1082 *val = *iselect; 1083 } 1084 1085 wr_mask &= ISELECT_MASK; 1086 if (wr_mask) { 1087 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1088 } 1089 1090 return RISCV_EXCP_NONE; 1091 } 1092 1093 static int rmw_iprio(target_ulong xlen, 1094 target_ulong iselect, uint8_t *iprio, 1095 target_ulong *val, target_ulong new_val, 1096 target_ulong wr_mask, int ext_irq_no) 1097 { 1098 int i, firq, nirqs; 1099 target_ulong old_val; 1100 1101 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1102 return -EINVAL; 1103 } 1104 if (xlen != 32 && iselect & 0x1) { 1105 return -EINVAL; 1106 } 1107 1108 nirqs = 4 * (xlen / 32); 1109 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1110 1111 old_val = 0; 1112 for (i = 0; i < nirqs; i++) { 1113 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1114 } 1115 1116 if (val) { 1117 *val = old_val; 1118 } 1119 1120 if (wr_mask) { 1121 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1122 for (i = 0; i < nirqs; i++) { 1123 /* 1124 * M-level and S-level external IRQ priority always read-only 1125 * zero. This means default priority order is always preferred 1126 * for M-level and S-level external IRQs. 1127 */ 1128 if ((firq + i) == ext_irq_no) { 1129 continue; 1130 } 1131 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1132 } 1133 } 1134 1135 return 0; 1136 } 1137 1138 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1139 target_ulong new_val, target_ulong wr_mask) 1140 { 1141 bool virt; 1142 uint8_t *iprio; 1143 int ret = -EINVAL; 1144 target_ulong priv, isel, vgein; 1145 1146 /* Translate CSR number for VS-mode */ 1147 csrno = aia_xlate_vs_csrno(env, csrno); 1148 1149 /* Decode register details from CSR number */ 1150 virt = false; 1151 switch (csrno) { 1152 case CSR_MIREG: 1153 iprio = env->miprio; 1154 isel = env->miselect; 1155 priv = PRV_M; 1156 break; 1157 case CSR_SIREG: 1158 iprio = env->siprio; 1159 isel = env->siselect; 1160 priv = PRV_S; 1161 break; 1162 case CSR_VSIREG: 1163 iprio = env->hviprio; 1164 isel = env->vsiselect; 1165 priv = PRV_S; 1166 virt = true; 1167 break; 1168 default: 1169 goto done; 1170 }; 1171 1172 /* Find the selected guest interrupt file */ 1173 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1174 1175 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1176 /* Local interrupt priority registers not available for VS-mode */ 1177 if (!virt) { 1178 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1179 isel, iprio, val, new_val, wr_mask, 1180 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1181 } 1182 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1183 /* IMSIC registers only available when machine implements it. */ 1184 if (env->aia_ireg_rmw_fn[priv]) { 1185 /* Selected guest interrupt file should not be zero */ 1186 if (virt && (!vgein || env->geilen < vgein)) { 1187 goto done; 1188 } 1189 /* Call machine specific IMSIC register emulation */ 1190 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1191 AIA_MAKE_IREG(isel, priv, virt, vgein, 1192 riscv_cpu_mxl_bits(env)), 1193 val, new_val, wr_mask); 1194 } 1195 } 1196 1197 done: 1198 if (ret) { 1199 return (riscv_cpu_virt_enabled(env) && virt) ? 1200 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1201 } 1202 return RISCV_EXCP_NONE; 1203 } 1204 1205 static int rmw_xsetclreinum(CPURISCVState *env, int csrno, target_ulong *val, 1206 target_ulong new_val, target_ulong wr_mask) 1207 { 1208 int ret = -EINVAL; 1209 bool set, pend, virt; 1210 target_ulong priv, isel, vgein, xlen, nval, wmask; 1211 1212 /* Translate CSR number for VS-mode */ 1213 csrno = aia_xlate_vs_csrno(env, csrno); 1214 1215 /* Decode register details from CSR number */ 1216 virt = set = pend = false; 1217 switch (csrno) { 1218 case CSR_MSETEIPNUM: 1219 priv = PRV_M; 1220 set = true; 1221 pend = true; 1222 break; 1223 case CSR_MCLREIPNUM: 1224 priv = PRV_M; 1225 pend = true; 1226 break; 1227 case CSR_MSETEIENUM: 1228 priv = PRV_M; 1229 set = true; 1230 break; 1231 case CSR_MCLREIENUM: 1232 priv = PRV_M; 1233 break; 1234 case CSR_SSETEIPNUM: 1235 priv = PRV_S; 1236 set = true; 1237 pend = true; 1238 break; 1239 case CSR_SCLREIPNUM: 1240 priv = PRV_S; 1241 pend = true; 1242 break; 1243 case CSR_SSETEIENUM: 1244 priv = PRV_S; 1245 set = true; 1246 break; 1247 case CSR_SCLREIENUM: 1248 priv = PRV_S; 1249 break; 1250 case CSR_VSSETEIPNUM: 1251 priv = PRV_S; 1252 virt = true; 1253 set = true; 1254 pend = true; 1255 break; 1256 case CSR_VSCLREIPNUM: 1257 priv = PRV_S; 1258 virt = true; 1259 pend = true; 1260 break; 1261 case CSR_VSSETEIENUM: 1262 priv = PRV_S; 1263 virt = true; 1264 set = true; 1265 break; 1266 case CSR_VSCLREIENUM: 1267 priv = PRV_S; 1268 virt = true; 1269 break; 1270 default: 1271 goto done; 1272 }; 1273 1274 /* IMSIC CSRs only available when machine implements IMSIC. */ 1275 if (!env->aia_ireg_rmw_fn[priv]) { 1276 goto done; 1277 } 1278 1279 /* Find the selected guest interrupt file */ 1280 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1281 1282 /* Selected guest interrupt file should be valid */ 1283 if (virt && (!vgein || env->geilen < vgein)) { 1284 goto done; 1285 } 1286 1287 /* Set/Clear CSRs always read zero */ 1288 if (val) { 1289 *val = 0; 1290 } 1291 1292 if (wr_mask) { 1293 /* Get interrupt number */ 1294 new_val &= wr_mask; 1295 1296 /* Find target interrupt pending/enable register */ 1297 xlen = riscv_cpu_mxl_bits(env); 1298 isel = (new_val / xlen); 1299 isel *= (xlen / IMSIC_EIPx_BITS); 1300 isel += (pend) ? ISELECT_IMSIC_EIP0 : ISELECT_IMSIC_EIE0; 1301 1302 /* Find the interrupt bit to be set/clear */ 1303 wmask = ((target_ulong)1) << (new_val % xlen); 1304 nval = (set) ? wmask : 0; 1305 1306 /* Call machine specific IMSIC register emulation */ 1307 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1308 AIA_MAKE_IREG(isel, priv, virt, 1309 vgein, xlen), 1310 NULL, nval, wmask); 1311 } else { 1312 ret = 0; 1313 } 1314 1315 done: 1316 if (ret) { 1317 return (riscv_cpu_virt_enabled(env) && virt) ? 1318 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1319 } 1320 return RISCV_EXCP_NONE; 1321 } 1322 1323 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1324 target_ulong new_val, target_ulong wr_mask) 1325 { 1326 bool virt; 1327 int ret = -EINVAL; 1328 target_ulong priv, vgein; 1329 1330 /* Translate CSR number for VS-mode */ 1331 csrno = aia_xlate_vs_csrno(env, csrno); 1332 1333 /* Decode register details from CSR number */ 1334 virt = false; 1335 switch (csrno) { 1336 case CSR_MTOPEI: 1337 priv = PRV_M; 1338 break; 1339 case CSR_STOPEI: 1340 priv = PRV_S; 1341 break; 1342 case CSR_VSTOPEI: 1343 priv = PRV_S; 1344 virt = true; 1345 break; 1346 default: 1347 goto done; 1348 }; 1349 1350 /* IMSIC CSRs only available when machine implements IMSIC. */ 1351 if (!env->aia_ireg_rmw_fn[priv]) { 1352 goto done; 1353 } 1354 1355 /* Find the selected guest interrupt file */ 1356 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1357 1358 /* Selected guest interrupt file should be valid */ 1359 if (virt && (!vgein || env->geilen < vgein)) { 1360 goto done; 1361 } 1362 1363 /* Call machine specific IMSIC register emulation for TOPEI */ 1364 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1365 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1366 riscv_cpu_mxl_bits(env)), 1367 val, new_val, wr_mask); 1368 1369 done: 1370 if (ret) { 1371 return (riscv_cpu_virt_enabled(env) && virt) ? 1372 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1373 } 1374 return RISCV_EXCP_NONE; 1375 } 1376 1377 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1378 target_ulong *val) 1379 { 1380 *val = env->mtvec; 1381 return RISCV_EXCP_NONE; 1382 } 1383 1384 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1385 target_ulong val) 1386 { 1387 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1388 if ((val & 3) < 2) { 1389 env->mtvec = val; 1390 } else { 1391 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1392 } 1393 return RISCV_EXCP_NONE; 1394 } 1395 1396 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1397 target_ulong *val) 1398 { 1399 *val = env->mcounteren; 1400 return RISCV_EXCP_NONE; 1401 } 1402 1403 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1404 target_ulong val) 1405 { 1406 env->mcounteren = val; 1407 return RISCV_EXCP_NONE; 1408 } 1409 1410 /* Machine Trap Handling */ 1411 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1412 Int128 *val) 1413 { 1414 *val = int128_make128(env->mscratch, env->mscratchh); 1415 return RISCV_EXCP_NONE; 1416 } 1417 1418 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1419 Int128 val) 1420 { 1421 env->mscratch = int128_getlo(val); 1422 env->mscratchh = int128_gethi(val); 1423 return RISCV_EXCP_NONE; 1424 } 1425 1426 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1427 target_ulong *val) 1428 { 1429 *val = env->mscratch; 1430 return RISCV_EXCP_NONE; 1431 } 1432 1433 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1434 target_ulong val) 1435 { 1436 env->mscratch = val; 1437 return RISCV_EXCP_NONE; 1438 } 1439 1440 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1441 target_ulong *val) 1442 { 1443 *val = env->mepc; 1444 return RISCV_EXCP_NONE; 1445 } 1446 1447 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1448 target_ulong val) 1449 { 1450 env->mepc = val; 1451 return RISCV_EXCP_NONE; 1452 } 1453 1454 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1455 target_ulong *val) 1456 { 1457 *val = env->mcause; 1458 return RISCV_EXCP_NONE; 1459 } 1460 1461 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1462 target_ulong val) 1463 { 1464 env->mcause = val; 1465 return RISCV_EXCP_NONE; 1466 } 1467 1468 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1469 target_ulong *val) 1470 { 1471 *val = env->mtval; 1472 return RISCV_EXCP_NONE; 1473 } 1474 1475 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1476 target_ulong val) 1477 { 1478 env->mtval = val; 1479 return RISCV_EXCP_NONE; 1480 } 1481 1482 /* Execution environment configuration setup */ 1483 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1484 target_ulong *val) 1485 { 1486 *val = env->menvcfg; 1487 return RISCV_EXCP_NONE; 1488 } 1489 1490 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1491 target_ulong val) 1492 { 1493 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1494 1495 if (riscv_cpu_mxl(env) == MXL_RV64) { 1496 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1497 } 1498 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1499 1500 return RISCV_EXCP_NONE; 1501 } 1502 1503 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1504 target_ulong *val) 1505 { 1506 *val = env->menvcfg >> 32; 1507 return RISCV_EXCP_NONE; 1508 } 1509 1510 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1511 target_ulong val) 1512 { 1513 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1514 uint64_t valh = (uint64_t)val << 32; 1515 1516 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1517 1518 return RISCV_EXCP_NONE; 1519 } 1520 1521 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1522 target_ulong *val) 1523 { 1524 *val = env->senvcfg; 1525 return RISCV_EXCP_NONE; 1526 } 1527 1528 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1529 target_ulong val) 1530 { 1531 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1532 1533 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1534 1535 return RISCV_EXCP_NONE; 1536 } 1537 1538 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1539 target_ulong *val) 1540 { 1541 *val = env->henvcfg; 1542 return RISCV_EXCP_NONE; 1543 } 1544 1545 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1546 target_ulong val) 1547 { 1548 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1549 1550 if (riscv_cpu_mxl(env) == MXL_RV64) { 1551 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 1552 } 1553 1554 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1555 1556 return RISCV_EXCP_NONE; 1557 } 1558 1559 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1560 target_ulong *val) 1561 { 1562 *val = env->henvcfg >> 32; 1563 return RISCV_EXCP_NONE; 1564 } 1565 1566 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 1567 target_ulong val) 1568 { 1569 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 1570 uint64_t valh = (uint64_t)val << 32; 1571 1572 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 1573 1574 return RISCV_EXCP_NONE; 1575 } 1576 1577 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 1578 uint64_t *ret_val, 1579 uint64_t new_val, uint64_t wr_mask) 1580 { 1581 RISCVCPU *cpu = env_archcpu(env); 1582 uint64_t old_mip, mask = wr_mask & delegable_ints; 1583 uint32_t gin; 1584 1585 if (mask & MIP_SEIP) { 1586 env->software_seip = new_val & MIP_SEIP; 1587 new_val |= env->external_seip * MIP_SEIP; 1588 } 1589 1590 if (mask) { 1591 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 1592 } else { 1593 old_mip = env->mip; 1594 } 1595 1596 if (csrno != CSR_HVIP) { 1597 gin = get_field(env->hstatus, HSTATUS_VGEIN); 1598 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 1599 } 1600 1601 if (ret_val) { 1602 *ret_val = old_mip; 1603 } 1604 1605 return RISCV_EXCP_NONE; 1606 } 1607 1608 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 1609 target_ulong *ret_val, 1610 target_ulong new_val, target_ulong wr_mask) 1611 { 1612 uint64_t rval; 1613 RISCVException ret; 1614 1615 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 1616 if (ret_val) { 1617 *ret_val = rval; 1618 } 1619 1620 return ret; 1621 } 1622 1623 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 1624 target_ulong *ret_val, 1625 target_ulong new_val, target_ulong wr_mask) 1626 { 1627 uint64_t rval; 1628 RISCVException ret; 1629 1630 ret = rmw_mip64(env, csrno, &rval, 1631 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1632 if (ret_val) { 1633 *ret_val = rval >> 32; 1634 } 1635 1636 return ret; 1637 } 1638 1639 /* Supervisor Trap Setup */ 1640 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 1641 Int128 *val) 1642 { 1643 uint64_t mask = sstatus_v1_10_mask; 1644 uint64_t sstatus = env->mstatus & mask; 1645 if (env->xl != MXL_RV32 || env->debugger) { 1646 mask |= SSTATUS64_UXL; 1647 } 1648 1649 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 1650 return RISCV_EXCP_NONE; 1651 } 1652 1653 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 1654 target_ulong *val) 1655 { 1656 target_ulong mask = (sstatus_v1_10_mask); 1657 if (env->xl != MXL_RV32 || env->debugger) { 1658 mask |= SSTATUS64_UXL; 1659 } 1660 /* TODO: Use SXL not MXL. */ 1661 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 1662 return RISCV_EXCP_NONE; 1663 } 1664 1665 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 1666 target_ulong val) 1667 { 1668 target_ulong mask = (sstatus_v1_10_mask); 1669 1670 if (env->xl != MXL_RV32 || env->debugger) { 1671 if ((val & SSTATUS64_UXL) != 0) { 1672 mask |= SSTATUS64_UXL; 1673 } 1674 } 1675 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 1676 return write_mstatus(env, CSR_MSTATUS, newval); 1677 } 1678 1679 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 1680 uint64_t *ret_val, 1681 uint64_t new_val, uint64_t wr_mask) 1682 { 1683 RISCVException ret; 1684 uint64_t rval, vsbits, mask = env->hideleg & VS_MODE_INTERRUPTS; 1685 1686 /* Bring VS-level bits to correct position */ 1687 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 1688 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 1689 new_val |= vsbits << 1; 1690 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 1691 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 1692 wr_mask |= vsbits << 1; 1693 1694 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 1695 if (ret_val) { 1696 rval &= mask; 1697 vsbits = rval & VS_MODE_INTERRUPTS; 1698 rval &= ~VS_MODE_INTERRUPTS; 1699 *ret_val = rval | (vsbits >> 1); 1700 } 1701 1702 return ret; 1703 } 1704 1705 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 1706 target_ulong *ret_val, 1707 target_ulong new_val, target_ulong wr_mask) 1708 { 1709 uint64_t rval; 1710 RISCVException ret; 1711 1712 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 1713 if (ret_val) { 1714 *ret_val = rval; 1715 } 1716 1717 return ret; 1718 } 1719 1720 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 1721 target_ulong *ret_val, 1722 target_ulong new_val, target_ulong wr_mask) 1723 { 1724 uint64_t rval; 1725 RISCVException ret; 1726 1727 ret = rmw_vsie64(env, csrno, &rval, 1728 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1729 if (ret_val) { 1730 *ret_val = rval >> 32; 1731 } 1732 1733 return ret; 1734 } 1735 1736 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 1737 uint64_t *ret_val, 1738 uint64_t new_val, uint64_t wr_mask) 1739 { 1740 RISCVException ret; 1741 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 1742 1743 if (riscv_cpu_virt_enabled(env)) { 1744 if (env->hvictl & HVICTL_VTI) { 1745 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1746 } 1747 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 1748 } else { 1749 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 1750 } 1751 1752 if (ret_val) { 1753 *ret_val &= mask; 1754 } 1755 1756 return ret; 1757 } 1758 1759 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 1760 target_ulong *ret_val, 1761 target_ulong new_val, target_ulong wr_mask) 1762 { 1763 uint64_t rval; 1764 RISCVException ret; 1765 1766 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 1767 if (ret == RISCV_EXCP_NONE && ret_val) { 1768 *ret_val = rval; 1769 } 1770 1771 return ret; 1772 } 1773 1774 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 1775 target_ulong *ret_val, 1776 target_ulong new_val, target_ulong wr_mask) 1777 { 1778 uint64_t rval; 1779 RISCVException ret; 1780 1781 ret = rmw_sie64(env, csrno, &rval, 1782 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1783 if (ret_val) { 1784 *ret_val = rval >> 32; 1785 } 1786 1787 return ret; 1788 } 1789 1790 static RISCVException read_stvec(CPURISCVState *env, int csrno, 1791 target_ulong *val) 1792 { 1793 *val = env->stvec; 1794 return RISCV_EXCP_NONE; 1795 } 1796 1797 static RISCVException write_stvec(CPURISCVState *env, int csrno, 1798 target_ulong val) 1799 { 1800 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1801 if ((val & 3) < 2) { 1802 env->stvec = val; 1803 } else { 1804 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 1805 } 1806 return RISCV_EXCP_NONE; 1807 } 1808 1809 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 1810 target_ulong *val) 1811 { 1812 *val = env->scounteren; 1813 return RISCV_EXCP_NONE; 1814 } 1815 1816 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 1817 target_ulong val) 1818 { 1819 env->scounteren = val; 1820 return RISCV_EXCP_NONE; 1821 } 1822 1823 /* Supervisor Trap Handling */ 1824 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 1825 Int128 *val) 1826 { 1827 *val = int128_make128(env->sscratch, env->sscratchh); 1828 return RISCV_EXCP_NONE; 1829 } 1830 1831 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 1832 Int128 val) 1833 { 1834 env->sscratch = int128_getlo(val); 1835 env->sscratchh = int128_gethi(val); 1836 return RISCV_EXCP_NONE; 1837 } 1838 1839 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 1840 target_ulong *val) 1841 { 1842 *val = env->sscratch; 1843 return RISCV_EXCP_NONE; 1844 } 1845 1846 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 1847 target_ulong val) 1848 { 1849 env->sscratch = val; 1850 return RISCV_EXCP_NONE; 1851 } 1852 1853 static RISCVException read_sepc(CPURISCVState *env, int csrno, 1854 target_ulong *val) 1855 { 1856 *val = env->sepc; 1857 return RISCV_EXCP_NONE; 1858 } 1859 1860 static RISCVException write_sepc(CPURISCVState *env, int csrno, 1861 target_ulong val) 1862 { 1863 env->sepc = val; 1864 return RISCV_EXCP_NONE; 1865 } 1866 1867 static RISCVException read_scause(CPURISCVState *env, int csrno, 1868 target_ulong *val) 1869 { 1870 *val = env->scause; 1871 return RISCV_EXCP_NONE; 1872 } 1873 1874 static RISCVException write_scause(CPURISCVState *env, int csrno, 1875 target_ulong val) 1876 { 1877 env->scause = val; 1878 return RISCV_EXCP_NONE; 1879 } 1880 1881 static RISCVException read_stval(CPURISCVState *env, int csrno, 1882 target_ulong *val) 1883 { 1884 *val = env->stval; 1885 return RISCV_EXCP_NONE; 1886 } 1887 1888 static RISCVException write_stval(CPURISCVState *env, int csrno, 1889 target_ulong val) 1890 { 1891 env->stval = val; 1892 return RISCV_EXCP_NONE; 1893 } 1894 1895 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 1896 uint64_t *ret_val, 1897 uint64_t new_val, uint64_t wr_mask) 1898 { 1899 RISCVException ret; 1900 uint64_t rval, vsbits, mask = env->hideleg & vsip_writable_mask; 1901 1902 /* Bring VS-level bits to correct position */ 1903 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 1904 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 1905 new_val |= vsbits << 1; 1906 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 1907 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 1908 wr_mask |= vsbits << 1; 1909 1910 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask & mask); 1911 if (ret_val) { 1912 rval &= mask; 1913 vsbits = rval & VS_MODE_INTERRUPTS; 1914 rval &= ~VS_MODE_INTERRUPTS; 1915 *ret_val = rval | (vsbits >> 1); 1916 } 1917 1918 return ret; 1919 } 1920 1921 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 1922 target_ulong *ret_val, 1923 target_ulong new_val, target_ulong wr_mask) 1924 { 1925 uint64_t rval; 1926 RISCVException ret; 1927 1928 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 1929 if (ret_val) { 1930 *ret_val = rval; 1931 } 1932 1933 return ret; 1934 } 1935 1936 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 1937 target_ulong *ret_val, 1938 target_ulong new_val, target_ulong wr_mask) 1939 { 1940 uint64_t rval; 1941 RISCVException ret; 1942 1943 ret = rmw_vsip64(env, csrno, &rval, 1944 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1945 if (ret_val) { 1946 *ret_val = rval >> 32; 1947 } 1948 1949 return ret; 1950 } 1951 1952 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 1953 uint64_t *ret_val, 1954 uint64_t new_val, uint64_t wr_mask) 1955 { 1956 RISCVException ret; 1957 uint64_t mask = env->mideleg & sip_writable_mask; 1958 1959 if (riscv_cpu_virt_enabled(env)) { 1960 if (env->hvictl & HVICTL_VTI) { 1961 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1962 } 1963 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 1964 } else { 1965 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 1966 } 1967 1968 if (ret_val) { 1969 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 1970 } 1971 1972 return ret; 1973 } 1974 1975 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 1976 target_ulong *ret_val, 1977 target_ulong new_val, target_ulong wr_mask) 1978 { 1979 uint64_t rval; 1980 RISCVException ret; 1981 1982 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 1983 if (ret_val) { 1984 *ret_val = rval; 1985 } 1986 1987 return ret; 1988 } 1989 1990 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 1991 target_ulong *ret_val, 1992 target_ulong new_val, target_ulong wr_mask) 1993 { 1994 uint64_t rval; 1995 RISCVException ret; 1996 1997 ret = rmw_sip64(env, csrno, &rval, 1998 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1999 if (ret_val) { 2000 *ret_val = rval >> 32; 2001 } 2002 2003 return ret; 2004 } 2005 2006 /* Supervisor Protection and Translation */ 2007 static RISCVException read_satp(CPURISCVState *env, int csrno, 2008 target_ulong *val) 2009 { 2010 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2011 *val = 0; 2012 return RISCV_EXCP_NONE; 2013 } 2014 2015 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2016 return RISCV_EXCP_ILLEGAL_INST; 2017 } else { 2018 *val = env->satp; 2019 } 2020 2021 return RISCV_EXCP_NONE; 2022 } 2023 2024 static RISCVException write_satp(CPURISCVState *env, int csrno, 2025 target_ulong val) 2026 { 2027 target_ulong vm, mask; 2028 2029 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2030 return RISCV_EXCP_NONE; 2031 } 2032 2033 if (riscv_cpu_mxl(env) == MXL_RV32) { 2034 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2035 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2036 } else { 2037 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2038 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2039 } 2040 2041 if (vm && mask) { 2042 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2043 return RISCV_EXCP_ILLEGAL_INST; 2044 } else { 2045 /* 2046 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2047 * pass these through QEMU's TLB emulation as it improves 2048 * performance. Flushing the TLB on SATP writes with paging 2049 * enabled avoids leaking those invalid cached mappings. 2050 */ 2051 tlb_flush(env_cpu(env)); 2052 env->satp = val; 2053 } 2054 } 2055 return RISCV_EXCP_NONE; 2056 } 2057 2058 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2059 { 2060 int irq, ret; 2061 target_ulong topei; 2062 uint64_t vseip, vsgein; 2063 uint32_t iid, iprio, hviid, hviprio, gein; 2064 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2065 2066 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2067 hviid = get_field(env->hvictl, HVICTL_IID); 2068 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2069 2070 if (gein) { 2071 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2072 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2073 if (gein <= env->geilen && vseip) { 2074 siid[scount] = IRQ_S_EXT; 2075 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2076 if (env->aia_ireg_rmw_fn[PRV_S]) { 2077 /* 2078 * Call machine specific IMSIC register emulation for 2079 * reading TOPEI. 2080 */ 2081 ret = env->aia_ireg_rmw_fn[PRV_S]( 2082 env->aia_ireg_rmw_fn_arg[PRV_S], 2083 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2084 riscv_cpu_mxl_bits(env)), 2085 &topei, 0, 0); 2086 if (!ret && topei) { 2087 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2088 } 2089 } 2090 scount++; 2091 } 2092 } else { 2093 if (hviid == IRQ_S_EXT && hviprio) { 2094 siid[scount] = IRQ_S_EXT; 2095 siprio[scount] = hviprio; 2096 scount++; 2097 } 2098 } 2099 2100 if (env->hvictl & HVICTL_VTI) { 2101 if (hviid != IRQ_S_EXT) { 2102 siid[scount] = hviid; 2103 siprio[scount] = hviprio; 2104 scount++; 2105 } 2106 } else { 2107 irq = riscv_cpu_vsirq_pending(env); 2108 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2109 siid[scount] = irq; 2110 siprio[scount] = env->hviprio[irq]; 2111 scount++; 2112 } 2113 } 2114 2115 iid = 0; 2116 iprio = UINT_MAX; 2117 for (s = 0; s < scount; s++) { 2118 if (siprio[s] < iprio) { 2119 iid = siid[s]; 2120 iprio = siprio[s]; 2121 } 2122 } 2123 2124 if (iid) { 2125 if (env->hvictl & HVICTL_IPRIOM) { 2126 if (iprio > IPRIO_MMAXIPRIO) { 2127 iprio = IPRIO_MMAXIPRIO; 2128 } 2129 if (!iprio) { 2130 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2131 iprio = IPRIO_MMAXIPRIO; 2132 } 2133 } 2134 } else { 2135 iprio = 1; 2136 } 2137 } else { 2138 iprio = 0; 2139 } 2140 2141 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2142 *val |= iprio; 2143 return RISCV_EXCP_NONE; 2144 } 2145 2146 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2147 { 2148 int irq; 2149 uint8_t iprio; 2150 2151 if (riscv_cpu_virt_enabled(env)) { 2152 return read_vstopi(env, CSR_VSTOPI, val); 2153 } 2154 2155 irq = riscv_cpu_sirq_pending(env); 2156 if (irq <= 0 || irq > 63) { 2157 *val = 0; 2158 } else { 2159 iprio = env->siprio[irq]; 2160 if (!iprio) { 2161 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2162 iprio = IPRIO_MMAXIPRIO; 2163 } 2164 } 2165 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2166 *val |= iprio; 2167 } 2168 2169 return RISCV_EXCP_NONE; 2170 } 2171 2172 /* Hypervisor Extensions */ 2173 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2174 target_ulong *val) 2175 { 2176 *val = env->hstatus; 2177 if (riscv_cpu_mxl(env) != MXL_RV32) { 2178 /* We only support 64-bit VSXL */ 2179 *val = set_field(*val, HSTATUS_VSXL, 2); 2180 } 2181 /* We only support little endian */ 2182 *val = set_field(*val, HSTATUS_VSBE, 0); 2183 return RISCV_EXCP_NONE; 2184 } 2185 2186 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2187 target_ulong val) 2188 { 2189 env->hstatus = val; 2190 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2191 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2192 } 2193 if (get_field(val, HSTATUS_VSBE) != 0) { 2194 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2195 } 2196 return RISCV_EXCP_NONE; 2197 } 2198 2199 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2200 target_ulong *val) 2201 { 2202 *val = env->hedeleg; 2203 return RISCV_EXCP_NONE; 2204 } 2205 2206 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2207 target_ulong val) 2208 { 2209 env->hedeleg = val & vs_delegable_excps; 2210 return RISCV_EXCP_NONE; 2211 } 2212 2213 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2214 uint64_t *ret_val, 2215 uint64_t new_val, uint64_t wr_mask) 2216 { 2217 uint64_t mask = wr_mask & vs_delegable_ints; 2218 2219 if (ret_val) { 2220 *ret_val = env->hideleg & vs_delegable_ints; 2221 } 2222 2223 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2224 return RISCV_EXCP_NONE; 2225 } 2226 2227 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2228 target_ulong *ret_val, 2229 target_ulong new_val, target_ulong wr_mask) 2230 { 2231 uint64_t rval; 2232 RISCVException ret; 2233 2234 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2235 if (ret_val) { 2236 *ret_val = rval; 2237 } 2238 2239 return ret; 2240 } 2241 2242 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2243 target_ulong *ret_val, 2244 target_ulong new_val, target_ulong wr_mask) 2245 { 2246 uint64_t rval; 2247 RISCVException ret; 2248 2249 ret = rmw_hideleg64(env, csrno, &rval, 2250 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2251 if (ret_val) { 2252 *ret_val = rval >> 32; 2253 } 2254 2255 return ret; 2256 } 2257 2258 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2259 uint64_t *ret_val, 2260 uint64_t new_val, uint64_t wr_mask) 2261 { 2262 RISCVException ret; 2263 2264 ret = rmw_mip64(env, csrno, ret_val, new_val, 2265 wr_mask & hvip_writable_mask); 2266 if (ret_val) { 2267 *ret_val &= VS_MODE_INTERRUPTS; 2268 } 2269 2270 return ret; 2271 } 2272 2273 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2274 target_ulong *ret_val, 2275 target_ulong new_val, target_ulong wr_mask) 2276 { 2277 uint64_t rval; 2278 RISCVException ret; 2279 2280 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2281 if (ret_val) { 2282 *ret_val = rval; 2283 } 2284 2285 return ret; 2286 } 2287 2288 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2289 target_ulong *ret_val, 2290 target_ulong new_val, target_ulong wr_mask) 2291 { 2292 uint64_t rval; 2293 RISCVException ret; 2294 2295 ret = rmw_hvip64(env, csrno, &rval, 2296 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2297 if (ret_val) { 2298 *ret_val = rval >> 32; 2299 } 2300 2301 return ret; 2302 } 2303 2304 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2305 target_ulong *ret_value, 2306 target_ulong new_value, target_ulong write_mask) 2307 { 2308 int ret = rmw_mip(env, csrno, ret_value, new_value, 2309 write_mask & hip_writable_mask); 2310 2311 if (ret_value) { 2312 *ret_value &= HS_MODE_INTERRUPTS; 2313 } 2314 return ret; 2315 } 2316 2317 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2318 target_ulong *ret_val, 2319 target_ulong new_val, target_ulong wr_mask) 2320 { 2321 uint64_t rval; 2322 RISCVException ret; 2323 2324 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2325 if (ret_val) { 2326 *ret_val = rval & HS_MODE_INTERRUPTS; 2327 } 2328 2329 return ret; 2330 } 2331 2332 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2333 target_ulong *val) 2334 { 2335 *val = env->hcounteren; 2336 return RISCV_EXCP_NONE; 2337 } 2338 2339 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2340 target_ulong val) 2341 { 2342 env->hcounteren = val; 2343 return RISCV_EXCP_NONE; 2344 } 2345 2346 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2347 target_ulong *val) 2348 { 2349 if (val) { 2350 *val = env->hgeie; 2351 } 2352 return RISCV_EXCP_NONE; 2353 } 2354 2355 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2356 target_ulong val) 2357 { 2358 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2359 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2360 env->hgeie = val; 2361 /* Update mip.SGEIP bit */ 2362 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2363 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2364 return RISCV_EXCP_NONE; 2365 } 2366 2367 static RISCVException read_htval(CPURISCVState *env, int csrno, 2368 target_ulong *val) 2369 { 2370 *val = env->htval; 2371 return RISCV_EXCP_NONE; 2372 } 2373 2374 static RISCVException write_htval(CPURISCVState *env, int csrno, 2375 target_ulong val) 2376 { 2377 env->htval = val; 2378 return RISCV_EXCP_NONE; 2379 } 2380 2381 static RISCVException read_htinst(CPURISCVState *env, int csrno, 2382 target_ulong *val) 2383 { 2384 *val = env->htinst; 2385 return RISCV_EXCP_NONE; 2386 } 2387 2388 static RISCVException write_htinst(CPURISCVState *env, int csrno, 2389 target_ulong val) 2390 { 2391 return RISCV_EXCP_NONE; 2392 } 2393 2394 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 2395 target_ulong *val) 2396 { 2397 if (val) { 2398 *val = env->hgeip; 2399 } 2400 return RISCV_EXCP_NONE; 2401 } 2402 2403 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 2404 target_ulong *val) 2405 { 2406 *val = env->hgatp; 2407 return RISCV_EXCP_NONE; 2408 } 2409 2410 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 2411 target_ulong val) 2412 { 2413 env->hgatp = val; 2414 return RISCV_EXCP_NONE; 2415 } 2416 2417 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 2418 target_ulong *val) 2419 { 2420 if (!env->rdtime_fn) { 2421 return RISCV_EXCP_ILLEGAL_INST; 2422 } 2423 2424 *val = env->htimedelta; 2425 return RISCV_EXCP_NONE; 2426 } 2427 2428 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 2429 target_ulong val) 2430 { 2431 if (!env->rdtime_fn) { 2432 return RISCV_EXCP_ILLEGAL_INST; 2433 } 2434 2435 if (riscv_cpu_mxl(env) == MXL_RV32) { 2436 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 2437 } else { 2438 env->htimedelta = val; 2439 } 2440 return RISCV_EXCP_NONE; 2441 } 2442 2443 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 2444 target_ulong *val) 2445 { 2446 if (!env->rdtime_fn) { 2447 return RISCV_EXCP_ILLEGAL_INST; 2448 } 2449 2450 *val = env->htimedelta >> 32; 2451 return RISCV_EXCP_NONE; 2452 } 2453 2454 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 2455 target_ulong val) 2456 { 2457 if (!env->rdtime_fn) { 2458 return RISCV_EXCP_ILLEGAL_INST; 2459 } 2460 2461 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 2462 return RISCV_EXCP_NONE; 2463 } 2464 2465 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 2466 { 2467 *val = env->hvictl; 2468 return RISCV_EXCP_NONE; 2469 } 2470 2471 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 2472 { 2473 env->hvictl = val & HVICTL_VALID_MASK; 2474 return RISCV_EXCP_NONE; 2475 } 2476 2477 static int read_hvipriox(CPURISCVState *env, int first_index, 2478 uint8_t *iprio, target_ulong *val) 2479 { 2480 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2481 2482 /* First index has to be a multiple of number of irqs per register */ 2483 if (first_index % num_irqs) { 2484 return (riscv_cpu_virt_enabled(env)) ? 2485 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2486 } 2487 2488 /* Fill-up return value */ 2489 *val = 0; 2490 for (i = 0; i < num_irqs; i++) { 2491 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2492 continue; 2493 } 2494 if (rdzero) { 2495 continue; 2496 } 2497 *val |= ((target_ulong)iprio[irq]) << (i * 8); 2498 } 2499 2500 return RISCV_EXCP_NONE; 2501 } 2502 2503 static int write_hvipriox(CPURISCVState *env, int first_index, 2504 uint8_t *iprio, target_ulong val) 2505 { 2506 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2507 2508 /* First index has to be a multiple of number of irqs per register */ 2509 if (first_index % num_irqs) { 2510 return (riscv_cpu_virt_enabled(env)) ? 2511 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2512 } 2513 2514 /* Fill-up priority arrary */ 2515 for (i = 0; i < num_irqs; i++) { 2516 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2517 continue; 2518 } 2519 if (rdzero) { 2520 iprio[irq] = 0; 2521 } else { 2522 iprio[irq] = (val >> (i * 8)) & 0xff; 2523 } 2524 } 2525 2526 return RISCV_EXCP_NONE; 2527 } 2528 2529 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 2530 { 2531 return read_hvipriox(env, 0, env->hviprio, val); 2532 } 2533 2534 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 2535 { 2536 return write_hvipriox(env, 0, env->hviprio, val); 2537 } 2538 2539 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 2540 { 2541 return read_hvipriox(env, 4, env->hviprio, val); 2542 } 2543 2544 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 2545 { 2546 return write_hvipriox(env, 4, env->hviprio, val); 2547 } 2548 2549 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 2550 { 2551 return read_hvipriox(env, 8, env->hviprio, val); 2552 } 2553 2554 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 2555 { 2556 return write_hvipriox(env, 8, env->hviprio, val); 2557 } 2558 2559 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 2560 { 2561 return read_hvipriox(env, 12, env->hviprio, val); 2562 } 2563 2564 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 2565 { 2566 return write_hvipriox(env, 12, env->hviprio, val); 2567 } 2568 2569 /* Virtual CSR Registers */ 2570 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 2571 target_ulong *val) 2572 { 2573 *val = env->vsstatus; 2574 return RISCV_EXCP_NONE; 2575 } 2576 2577 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 2578 target_ulong val) 2579 { 2580 uint64_t mask = (target_ulong)-1; 2581 if ((val & VSSTATUS64_UXL) == 0) { 2582 mask &= ~VSSTATUS64_UXL; 2583 } 2584 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 2585 return RISCV_EXCP_NONE; 2586 } 2587 2588 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 2589 { 2590 *val = env->vstvec; 2591 return RISCV_EXCP_NONE; 2592 } 2593 2594 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 2595 target_ulong val) 2596 { 2597 env->vstvec = val; 2598 return RISCV_EXCP_NONE; 2599 } 2600 2601 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 2602 target_ulong *val) 2603 { 2604 *val = env->vsscratch; 2605 return RISCV_EXCP_NONE; 2606 } 2607 2608 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 2609 target_ulong val) 2610 { 2611 env->vsscratch = val; 2612 return RISCV_EXCP_NONE; 2613 } 2614 2615 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 2616 target_ulong *val) 2617 { 2618 *val = env->vsepc; 2619 return RISCV_EXCP_NONE; 2620 } 2621 2622 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 2623 target_ulong val) 2624 { 2625 env->vsepc = val; 2626 return RISCV_EXCP_NONE; 2627 } 2628 2629 static RISCVException read_vscause(CPURISCVState *env, int csrno, 2630 target_ulong *val) 2631 { 2632 *val = env->vscause; 2633 return RISCV_EXCP_NONE; 2634 } 2635 2636 static RISCVException write_vscause(CPURISCVState *env, int csrno, 2637 target_ulong val) 2638 { 2639 env->vscause = val; 2640 return RISCV_EXCP_NONE; 2641 } 2642 2643 static RISCVException read_vstval(CPURISCVState *env, int csrno, 2644 target_ulong *val) 2645 { 2646 *val = env->vstval; 2647 return RISCV_EXCP_NONE; 2648 } 2649 2650 static RISCVException write_vstval(CPURISCVState *env, int csrno, 2651 target_ulong val) 2652 { 2653 env->vstval = val; 2654 return RISCV_EXCP_NONE; 2655 } 2656 2657 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 2658 target_ulong *val) 2659 { 2660 *val = env->vsatp; 2661 return RISCV_EXCP_NONE; 2662 } 2663 2664 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 2665 target_ulong val) 2666 { 2667 env->vsatp = val; 2668 return RISCV_EXCP_NONE; 2669 } 2670 2671 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 2672 target_ulong *val) 2673 { 2674 *val = env->mtval2; 2675 return RISCV_EXCP_NONE; 2676 } 2677 2678 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 2679 target_ulong val) 2680 { 2681 env->mtval2 = val; 2682 return RISCV_EXCP_NONE; 2683 } 2684 2685 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 2686 target_ulong *val) 2687 { 2688 *val = env->mtinst; 2689 return RISCV_EXCP_NONE; 2690 } 2691 2692 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 2693 target_ulong val) 2694 { 2695 env->mtinst = val; 2696 return RISCV_EXCP_NONE; 2697 } 2698 2699 /* Physical Memory Protection */ 2700 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 2701 target_ulong *val) 2702 { 2703 *val = mseccfg_csr_read(env); 2704 return RISCV_EXCP_NONE; 2705 } 2706 2707 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 2708 target_ulong val) 2709 { 2710 mseccfg_csr_write(env, val); 2711 return RISCV_EXCP_NONE; 2712 } 2713 2714 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 2715 { 2716 /* TODO: RV128 restriction check */ 2717 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 2718 return false; 2719 } 2720 return true; 2721 } 2722 2723 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 2724 target_ulong *val) 2725 { 2726 uint32_t reg_index = csrno - CSR_PMPCFG0; 2727 2728 if (!check_pmp_reg_index(env, reg_index)) { 2729 return RISCV_EXCP_ILLEGAL_INST; 2730 } 2731 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 2732 return RISCV_EXCP_NONE; 2733 } 2734 2735 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 2736 target_ulong val) 2737 { 2738 uint32_t reg_index = csrno - CSR_PMPCFG0; 2739 2740 if (!check_pmp_reg_index(env, reg_index)) { 2741 return RISCV_EXCP_ILLEGAL_INST; 2742 } 2743 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 2744 return RISCV_EXCP_NONE; 2745 } 2746 2747 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 2748 target_ulong *val) 2749 { 2750 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 2751 return RISCV_EXCP_NONE; 2752 } 2753 2754 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 2755 target_ulong val) 2756 { 2757 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 2758 return RISCV_EXCP_NONE; 2759 } 2760 2761 static RISCVException read_tselect(CPURISCVState *env, int csrno, 2762 target_ulong *val) 2763 { 2764 *val = tselect_csr_read(env); 2765 return RISCV_EXCP_NONE; 2766 } 2767 2768 static RISCVException write_tselect(CPURISCVState *env, int csrno, 2769 target_ulong val) 2770 { 2771 tselect_csr_write(env, val); 2772 return RISCV_EXCP_NONE; 2773 } 2774 2775 static RISCVException read_tdata(CPURISCVState *env, int csrno, 2776 target_ulong *val) 2777 { 2778 /* return 0 in tdata1 to end the trigger enumeration */ 2779 if (env->trigger_cur >= TRIGGER_NUM && csrno == CSR_TDATA1) { 2780 *val = 0; 2781 return RISCV_EXCP_NONE; 2782 } 2783 2784 if (!tdata_available(env, csrno - CSR_TDATA1)) { 2785 return RISCV_EXCP_ILLEGAL_INST; 2786 } 2787 2788 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 2789 return RISCV_EXCP_NONE; 2790 } 2791 2792 static RISCVException write_tdata(CPURISCVState *env, int csrno, 2793 target_ulong val) 2794 { 2795 if (!tdata_available(env, csrno - CSR_TDATA1)) { 2796 return RISCV_EXCP_ILLEGAL_INST; 2797 } 2798 2799 tdata_csr_write(env, csrno - CSR_TDATA1, val); 2800 return RISCV_EXCP_NONE; 2801 } 2802 2803 /* 2804 * Functions to access Pointer Masking feature registers 2805 * We have to check if current priv lvl could modify 2806 * csr in given mode 2807 */ 2808 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 2809 { 2810 int csr_priv = get_field(csrno, 0x300); 2811 int pm_current; 2812 2813 if (env->debugger) { 2814 return false; 2815 } 2816 /* 2817 * If priv lvls differ that means we're accessing csr from higher priv lvl, 2818 * so allow the access 2819 */ 2820 if (env->priv != csr_priv) { 2821 return false; 2822 } 2823 switch (env->priv) { 2824 case PRV_M: 2825 pm_current = get_field(env->mmte, M_PM_CURRENT); 2826 break; 2827 case PRV_S: 2828 pm_current = get_field(env->mmte, S_PM_CURRENT); 2829 break; 2830 case PRV_U: 2831 pm_current = get_field(env->mmte, U_PM_CURRENT); 2832 break; 2833 default: 2834 g_assert_not_reached(); 2835 } 2836 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 2837 return !pm_current; 2838 } 2839 2840 static RISCVException read_mmte(CPURISCVState *env, int csrno, 2841 target_ulong *val) 2842 { 2843 *val = env->mmte & MMTE_MASK; 2844 return RISCV_EXCP_NONE; 2845 } 2846 2847 static RISCVException write_mmte(CPURISCVState *env, int csrno, 2848 target_ulong val) 2849 { 2850 uint64_t mstatus; 2851 target_ulong wpri_val = val & MMTE_MASK; 2852 2853 if (val != wpri_val) { 2854 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 2855 "MMTE: WPRI violation written 0x", val, 2856 "vs expected 0x", wpri_val); 2857 } 2858 /* for machine mode pm.current is hardwired to 1 */ 2859 wpri_val |= MMTE_M_PM_CURRENT; 2860 2861 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 2862 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 2863 env->mmte = wpri_val | PM_EXT_DIRTY; 2864 riscv_cpu_update_mask(env); 2865 2866 /* Set XS and SD bits, since PM CSRs are dirty */ 2867 mstatus = env->mstatus | MSTATUS_XS; 2868 write_mstatus(env, csrno, mstatus); 2869 return RISCV_EXCP_NONE; 2870 } 2871 2872 static RISCVException read_smte(CPURISCVState *env, int csrno, 2873 target_ulong *val) 2874 { 2875 *val = env->mmte & SMTE_MASK; 2876 return RISCV_EXCP_NONE; 2877 } 2878 2879 static RISCVException write_smte(CPURISCVState *env, int csrno, 2880 target_ulong val) 2881 { 2882 target_ulong wpri_val = val & SMTE_MASK; 2883 2884 if (val != wpri_val) { 2885 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 2886 "SMTE: WPRI violation written 0x", val, 2887 "vs expected 0x", wpri_val); 2888 } 2889 2890 /* if pm.current==0 we can't modify current PM CSRs */ 2891 if (check_pm_current_disabled(env, csrno)) { 2892 return RISCV_EXCP_NONE; 2893 } 2894 2895 wpri_val |= (env->mmte & ~SMTE_MASK); 2896 write_mmte(env, csrno, wpri_val); 2897 return RISCV_EXCP_NONE; 2898 } 2899 2900 static RISCVException read_umte(CPURISCVState *env, int csrno, 2901 target_ulong *val) 2902 { 2903 *val = env->mmte & UMTE_MASK; 2904 return RISCV_EXCP_NONE; 2905 } 2906 2907 static RISCVException write_umte(CPURISCVState *env, int csrno, 2908 target_ulong val) 2909 { 2910 target_ulong wpri_val = val & UMTE_MASK; 2911 2912 if (val != wpri_val) { 2913 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 2914 "UMTE: WPRI violation written 0x", val, 2915 "vs expected 0x", wpri_val); 2916 } 2917 2918 if (check_pm_current_disabled(env, csrno)) { 2919 return RISCV_EXCP_NONE; 2920 } 2921 2922 wpri_val |= (env->mmte & ~UMTE_MASK); 2923 write_mmte(env, csrno, wpri_val); 2924 return RISCV_EXCP_NONE; 2925 } 2926 2927 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 2928 target_ulong *val) 2929 { 2930 *val = env->mpmmask; 2931 return RISCV_EXCP_NONE; 2932 } 2933 2934 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 2935 target_ulong val) 2936 { 2937 uint64_t mstatus; 2938 2939 env->mpmmask = val; 2940 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 2941 env->cur_pmmask = val; 2942 } 2943 env->mmte |= PM_EXT_DIRTY; 2944 2945 /* Set XS and SD bits, since PM CSRs are dirty */ 2946 mstatus = env->mstatus | MSTATUS_XS; 2947 write_mstatus(env, csrno, mstatus); 2948 return RISCV_EXCP_NONE; 2949 } 2950 2951 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 2952 target_ulong *val) 2953 { 2954 *val = env->spmmask; 2955 return RISCV_EXCP_NONE; 2956 } 2957 2958 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 2959 target_ulong val) 2960 { 2961 uint64_t mstatus; 2962 2963 /* if pm.current==0 we can't modify current PM CSRs */ 2964 if (check_pm_current_disabled(env, csrno)) { 2965 return RISCV_EXCP_NONE; 2966 } 2967 env->spmmask = val; 2968 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 2969 env->cur_pmmask = val; 2970 } 2971 env->mmte |= PM_EXT_DIRTY; 2972 2973 /* Set XS and SD bits, since PM CSRs are dirty */ 2974 mstatus = env->mstatus | MSTATUS_XS; 2975 write_mstatus(env, csrno, mstatus); 2976 return RISCV_EXCP_NONE; 2977 } 2978 2979 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 2980 target_ulong *val) 2981 { 2982 *val = env->upmmask; 2983 return RISCV_EXCP_NONE; 2984 } 2985 2986 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 2987 target_ulong val) 2988 { 2989 uint64_t mstatus; 2990 2991 /* if pm.current==0 we can't modify current PM CSRs */ 2992 if (check_pm_current_disabled(env, csrno)) { 2993 return RISCV_EXCP_NONE; 2994 } 2995 env->upmmask = val; 2996 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 2997 env->cur_pmmask = val; 2998 } 2999 env->mmte |= PM_EXT_DIRTY; 3000 3001 /* Set XS and SD bits, since PM CSRs are dirty */ 3002 mstatus = env->mstatus | MSTATUS_XS; 3003 write_mstatus(env, csrno, mstatus); 3004 return RISCV_EXCP_NONE; 3005 } 3006 3007 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3008 target_ulong *val) 3009 { 3010 *val = env->mpmbase; 3011 return RISCV_EXCP_NONE; 3012 } 3013 3014 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3015 target_ulong val) 3016 { 3017 uint64_t mstatus; 3018 3019 env->mpmbase = val; 3020 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3021 env->cur_pmbase = val; 3022 } 3023 env->mmte |= PM_EXT_DIRTY; 3024 3025 /* Set XS and SD bits, since PM CSRs are dirty */ 3026 mstatus = env->mstatus | MSTATUS_XS; 3027 write_mstatus(env, csrno, mstatus); 3028 return RISCV_EXCP_NONE; 3029 } 3030 3031 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3032 target_ulong *val) 3033 { 3034 *val = env->spmbase; 3035 return RISCV_EXCP_NONE; 3036 } 3037 3038 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3039 target_ulong val) 3040 { 3041 uint64_t mstatus; 3042 3043 /* if pm.current==0 we can't modify current PM CSRs */ 3044 if (check_pm_current_disabled(env, csrno)) { 3045 return RISCV_EXCP_NONE; 3046 } 3047 env->spmbase = val; 3048 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3049 env->cur_pmbase = val; 3050 } 3051 env->mmte |= PM_EXT_DIRTY; 3052 3053 /* Set XS and SD bits, since PM CSRs are dirty */ 3054 mstatus = env->mstatus | MSTATUS_XS; 3055 write_mstatus(env, csrno, mstatus); 3056 return RISCV_EXCP_NONE; 3057 } 3058 3059 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3060 target_ulong *val) 3061 { 3062 *val = env->upmbase; 3063 return RISCV_EXCP_NONE; 3064 } 3065 3066 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3067 target_ulong val) 3068 { 3069 uint64_t mstatus; 3070 3071 /* if pm.current==0 we can't modify current PM CSRs */ 3072 if (check_pm_current_disabled(env, csrno)) { 3073 return RISCV_EXCP_NONE; 3074 } 3075 env->upmbase = val; 3076 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3077 env->cur_pmbase = val; 3078 } 3079 env->mmte |= PM_EXT_DIRTY; 3080 3081 /* Set XS and SD bits, since PM CSRs are dirty */ 3082 mstatus = env->mstatus | MSTATUS_XS; 3083 write_mstatus(env, csrno, mstatus); 3084 return RISCV_EXCP_NONE; 3085 } 3086 3087 #endif 3088 3089 /* Crypto Extension */ 3090 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3091 target_ulong *ret_value, 3092 target_ulong new_value, 3093 target_ulong write_mask) 3094 { 3095 uint16_t random_v; 3096 Error *random_e = NULL; 3097 int random_r; 3098 target_ulong rval; 3099 3100 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3101 if (unlikely(random_r < 0)) { 3102 /* 3103 * Failed, for unknown reasons in the crypto subsystem. 3104 * The best we can do is log the reason and return a 3105 * failure indication to the guest. There is no reason 3106 * we know to expect the failure to be transitory, so 3107 * indicate DEAD to avoid having the guest spin on WAIT. 3108 */ 3109 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3110 __func__, error_get_pretty(random_e)); 3111 error_free(random_e); 3112 rval = SEED_OPST_DEAD; 3113 } else { 3114 rval = random_v | SEED_OPST_ES16; 3115 } 3116 3117 if (ret_value) { 3118 *ret_value = rval; 3119 } 3120 3121 return RISCV_EXCP_NONE; 3122 } 3123 3124 /* 3125 * riscv_csrrw - read and/or update control and status register 3126 * 3127 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3128 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3129 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3130 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3131 */ 3132 3133 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3134 int csrno, 3135 bool write_mask, 3136 RISCVCPU *cpu) 3137 { 3138 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3139 int read_only = get_field(csrno, 0xC00) == 3; 3140 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3141 #if !defined(CONFIG_USER_ONLY) 3142 int effective_priv = env->priv; 3143 3144 if (riscv_has_ext(env, RVH) && env->priv == PRV_S) { 3145 /* 3146 * We are in either HS or VS mode. 3147 * Add 1 to the effective privledge level to allow us to access the 3148 * Hypervisor CSRs. The `hmode` predicate will determine if access 3149 * should be allowed(HS) or if a virtual instruction exception should be 3150 * raised(VS). 3151 */ 3152 effective_priv++; 3153 } 3154 3155 if (!env->debugger && (effective_priv < get_field(csrno, 0x300))) { 3156 return RISCV_EXCP_ILLEGAL_INST; 3157 } 3158 #endif 3159 if (write_mask && read_only) { 3160 return RISCV_EXCP_ILLEGAL_INST; 3161 } 3162 3163 /* ensure the CSR extension is enabled. */ 3164 if (!cpu->cfg.ext_icsr) { 3165 return RISCV_EXCP_ILLEGAL_INST; 3166 } 3167 3168 /* check predicate */ 3169 if (!csr_ops[csrno].predicate) { 3170 return RISCV_EXCP_ILLEGAL_INST; 3171 } 3172 3173 if (env->priv_ver < csr_min_priv) { 3174 return RISCV_EXCP_ILLEGAL_INST; 3175 } 3176 3177 return csr_ops[csrno].predicate(env, csrno); 3178 } 3179 3180 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3181 target_ulong *ret_value, 3182 target_ulong new_value, 3183 target_ulong write_mask) 3184 { 3185 RISCVException ret; 3186 target_ulong old_value; 3187 3188 /* execute combined read/write operation if it exists */ 3189 if (csr_ops[csrno].op) { 3190 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3191 } 3192 3193 /* if no accessor exists then return failure */ 3194 if (!csr_ops[csrno].read) { 3195 return RISCV_EXCP_ILLEGAL_INST; 3196 } 3197 /* read old value */ 3198 ret = csr_ops[csrno].read(env, csrno, &old_value); 3199 if (ret != RISCV_EXCP_NONE) { 3200 return ret; 3201 } 3202 3203 /* write value if writable and write mask set, otherwise drop writes */ 3204 if (write_mask) { 3205 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3206 if (csr_ops[csrno].write) { 3207 ret = csr_ops[csrno].write(env, csrno, new_value); 3208 if (ret != RISCV_EXCP_NONE) { 3209 return ret; 3210 } 3211 } 3212 } 3213 3214 /* return old value */ 3215 if (ret_value) { 3216 *ret_value = old_value; 3217 } 3218 3219 return RISCV_EXCP_NONE; 3220 } 3221 3222 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3223 target_ulong *ret_value, 3224 target_ulong new_value, target_ulong write_mask) 3225 { 3226 RISCVCPU *cpu = env_archcpu(env); 3227 3228 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3229 if (ret != RISCV_EXCP_NONE) { 3230 return ret; 3231 } 3232 3233 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3234 } 3235 3236 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3237 Int128 *ret_value, 3238 Int128 new_value, 3239 Int128 write_mask) 3240 { 3241 RISCVException ret; 3242 Int128 old_value; 3243 3244 /* read old value */ 3245 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3246 if (ret != RISCV_EXCP_NONE) { 3247 return ret; 3248 } 3249 3250 /* write value if writable and write mask set, otherwise drop writes */ 3251 if (int128_nz(write_mask)) { 3252 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3253 int128_and(new_value, write_mask)); 3254 if (csr_ops[csrno].write128) { 3255 ret = csr_ops[csrno].write128(env, csrno, new_value); 3256 if (ret != RISCV_EXCP_NONE) { 3257 return ret; 3258 } 3259 } else if (csr_ops[csrno].write) { 3260 /* avoids having to write wrappers for all registers */ 3261 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3262 if (ret != RISCV_EXCP_NONE) { 3263 return ret; 3264 } 3265 } 3266 } 3267 3268 /* return old value */ 3269 if (ret_value) { 3270 *ret_value = old_value; 3271 } 3272 3273 return RISCV_EXCP_NONE; 3274 } 3275 3276 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3277 Int128 *ret_value, 3278 Int128 new_value, Int128 write_mask) 3279 { 3280 RISCVException ret; 3281 RISCVCPU *cpu = env_archcpu(env); 3282 3283 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3284 if (ret != RISCV_EXCP_NONE) { 3285 return ret; 3286 } 3287 3288 if (csr_ops[csrno].read128) { 3289 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3290 } 3291 3292 /* 3293 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3294 * at all defined. 3295 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3296 * significant), for those, this fallback is correctly handling the accesses 3297 */ 3298 target_ulong old_value; 3299 ret = riscv_csrrw_do64(env, csrno, &old_value, 3300 int128_getlo(new_value), 3301 int128_getlo(write_mask)); 3302 if (ret == RISCV_EXCP_NONE && ret_value) { 3303 *ret_value = int128_make64(old_value); 3304 } 3305 return ret; 3306 } 3307 3308 /* 3309 * Debugger support. If not in user mode, set env->debugger before the 3310 * riscv_csrrw call and clear it after the call. 3311 */ 3312 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3313 target_ulong *ret_value, 3314 target_ulong new_value, 3315 target_ulong write_mask) 3316 { 3317 RISCVException ret; 3318 #if !defined(CONFIG_USER_ONLY) 3319 env->debugger = true; 3320 #endif 3321 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3322 #if !defined(CONFIG_USER_ONLY) 3323 env->debugger = false; 3324 #endif 3325 return ret; 3326 } 3327 3328 /* Control and Status Register function table */ 3329 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3330 /* User Floating-Point CSRs */ 3331 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3332 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3333 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3334 /* Vector CSRs */ 3335 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart, 3336 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3337 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat, 3338 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3339 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm, 3340 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3341 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr, 3342 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3343 [CSR_VL] = { "vl", vs, read_vl, 3344 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3345 [CSR_VTYPE] = { "vtype", vs, read_vtype, 3346 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3347 [CSR_VLENB] = { "vlenb", vs, read_vlenb, 3348 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3349 /* User Timers and Counters */ 3350 [CSR_CYCLE] = { "cycle", ctr, read_instret }, 3351 [CSR_INSTRET] = { "instret", ctr, read_instret }, 3352 [CSR_CYCLEH] = { "cycleh", ctr32, read_instreth }, 3353 [CSR_INSTRETH] = { "instreth", ctr32, read_instreth }, 3354 3355 /* 3356 * In privileged mode, the monitor will have to emulate TIME CSRs only if 3357 * rdtime callback is not provided by machine/platform emulation. 3358 */ 3359 [CSR_TIME] = { "time", ctr, read_time }, 3360 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 3361 3362 /* Crypto Extension */ 3363 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 3364 3365 #if !defined(CONFIG_USER_ONLY) 3366 /* Machine Timers and Counters */ 3367 [CSR_MCYCLE] = { "mcycle", any, read_instret }, 3368 [CSR_MINSTRET] = { "minstret", any, read_instret }, 3369 [CSR_MCYCLEH] = { "mcycleh", any32, read_instreth }, 3370 [CSR_MINSTRETH] = { "minstreth", any32, read_instreth }, 3371 3372 /* Machine Information Registers */ 3373 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 3374 [CSR_MARCHID] = { "marchid", any, read_marchid }, 3375 [CSR_MIMPID] = { "mimpid", any, read_mipid }, 3376 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 3377 3378 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 3379 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3380 /* Machine Trap Setup */ 3381 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, NULL, 3382 read_mstatus_i128 }, 3383 [CSR_MISA] = { "misa", any, read_misa, write_misa, NULL, 3384 read_misa_i128 }, 3385 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 3386 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 3387 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 3388 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 3389 [CSR_MCOUNTEREN] = { "mcounteren", any, read_mcounteren, write_mcounteren }, 3390 3391 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, write_mstatush }, 3392 3393 /* Machine Trap Handling */ 3394 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, NULL, 3395 read_mscratch_i128, write_mscratch_i128 }, 3396 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 3397 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 3398 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 3399 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 3400 3401 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 3402 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 3403 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 3404 3405 /* Machine-Level Interrupts (AIA) */ 3406 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 3407 3408 /* Machine-Level IMSIC Interface (AIA) */ 3409 [CSR_MSETEIPNUM] = { "mseteipnum", aia_any, NULL, NULL, rmw_xsetclreinum }, 3410 [CSR_MCLREIPNUM] = { "mclreipnum", aia_any, NULL, NULL, rmw_xsetclreinum }, 3411 [CSR_MSETEIENUM] = { "mseteienum", aia_any, NULL, NULL, rmw_xsetclreinum }, 3412 [CSR_MCLREIENUM] = { "mclreienum", aia_any, NULL, NULL, rmw_xsetclreinum }, 3413 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 3414 3415 /* Virtual Interrupts for Supervisor Level (AIA) */ 3416 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 3417 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 3418 3419 /* Machine-Level High-Half CSRs (AIA) */ 3420 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 3421 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 3422 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 3423 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 3424 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 3425 3426 /* Execution environment configuration */ 3427 [CSR_MENVCFG] = { "menvcfg", any, read_menvcfg, write_menvcfg, 3428 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3429 [CSR_MENVCFGH] = { "menvcfgh", any32, read_menvcfgh, write_menvcfgh, 3430 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3431 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 3432 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3433 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 3434 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3435 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 3436 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3437 3438 /* Supervisor Trap Setup */ 3439 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, NULL, 3440 read_sstatus_i128 }, 3441 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 3442 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 3443 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, write_scounteren }, 3444 3445 /* Supervisor Trap Handling */ 3446 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, NULL, 3447 read_sscratch_i128, write_sscratch_i128 }, 3448 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 3449 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 3450 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 3451 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 3452 3453 /* Supervisor Protection and Translation */ 3454 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 3455 3456 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 3457 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 3458 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 3459 3460 /* Supervisor-Level Interrupts (AIA) */ 3461 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 3462 3463 /* Supervisor-Level IMSIC Interface (AIA) */ 3464 [CSR_SSETEIPNUM] = { "sseteipnum", aia_smode, NULL, NULL, rmw_xsetclreinum }, 3465 [CSR_SCLREIPNUM] = { "sclreipnum", aia_smode, NULL, NULL, rmw_xsetclreinum }, 3466 [CSR_SSETEIENUM] = { "sseteienum", aia_smode, NULL, NULL, rmw_xsetclreinum }, 3467 [CSR_SCLREIENUM] = { "sclreienum", aia_smode, NULL, NULL, rmw_xsetclreinum }, 3468 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 3469 3470 /* Supervisor-Level High-Half CSRs (AIA) */ 3471 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 3472 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 3473 3474 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 3475 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3476 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 3477 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3478 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 3479 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3480 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 3481 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3482 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 3483 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3484 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 3485 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3486 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, write_hcounteren, 3487 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3488 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 3489 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3490 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 3491 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3492 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 3493 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3494 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 3495 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3496 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 3497 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3498 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, write_htimedelta, 3499 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3500 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, write_htimedeltah, 3501 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3502 3503 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, write_vsstatus, 3504 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3505 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 3506 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3507 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 3508 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3509 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 3510 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3511 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, write_vsscratch, 3512 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3513 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 3514 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3515 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 3516 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3517 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 3518 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3519 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 3520 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3521 3522 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 3523 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3524 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 3525 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3526 3527 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 3528 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 3529 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, write_hvictl }, 3530 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, write_hviprio1 }, 3531 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, write_hviprio2 }, 3532 3533 /* 3534 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 3535 */ 3536 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, rmw_xiselect }, 3537 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 3538 3539 /* VS-Level Interrupts (H-extension with AIA) */ 3540 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 3541 3542 /* VS-Level IMSIC Interface (H-extension with AIA) */ 3543 [CSR_VSSETEIPNUM] = { "vsseteipnum", aia_hmode, NULL, NULL, rmw_xsetclreinum }, 3544 [CSR_VSCLREIPNUM] = { "vsclreipnum", aia_hmode, NULL, NULL, rmw_xsetclreinum }, 3545 [CSR_VSSETEIENUM] = { "vsseteienum", aia_hmode, NULL, NULL, rmw_xsetclreinum }, 3546 [CSR_VSCLREIENUM] = { "vsclreienum", aia_hmode, NULL, NULL, rmw_xsetclreinum }, 3547 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 3548 3549 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 3550 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, rmw_hidelegh }, 3551 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, write_ignore }, 3552 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 3553 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, write_hviprio1h }, 3554 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, write_hviprio2h }, 3555 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 3556 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 3557 3558 /* Physical Memory Protection */ 3559 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 3560 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3561 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 3562 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 3563 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 3564 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 3565 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 3566 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 3567 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 3568 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 3569 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 3570 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 3571 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 3572 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 3573 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 3574 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 3575 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 3576 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 3577 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 3578 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 3579 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 3580 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 3581 3582 /* Debug CSRs */ 3583 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 3584 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 3585 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 3586 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 3587 3588 /* User Pointer Masking */ 3589 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 3590 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, write_upmmask }, 3591 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, write_upmbase }, 3592 /* Machine Pointer Masking */ 3593 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 3594 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, write_mpmmask }, 3595 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, write_mpmbase }, 3596 /* Supervisor Pointer Masking */ 3597 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 3598 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, write_spmmask }, 3599 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, write_spmbase }, 3600 3601 /* Performance Counters */ 3602 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_zero }, 3603 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_zero }, 3604 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_zero }, 3605 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_zero }, 3606 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_zero }, 3607 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_zero }, 3608 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_zero }, 3609 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_zero }, 3610 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_zero }, 3611 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_zero }, 3612 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_zero }, 3613 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_zero }, 3614 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_zero }, 3615 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_zero }, 3616 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_zero }, 3617 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_zero }, 3618 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_zero }, 3619 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_zero }, 3620 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_zero }, 3621 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_zero }, 3622 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_zero }, 3623 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_zero }, 3624 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_zero }, 3625 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_zero }, 3626 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_zero }, 3627 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_zero }, 3628 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_zero }, 3629 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_zero }, 3630 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_zero }, 3631 3632 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", any, read_zero }, 3633 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", any, read_zero }, 3634 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", any, read_zero }, 3635 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", any, read_zero }, 3636 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", any, read_zero }, 3637 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", any, read_zero }, 3638 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", any, read_zero }, 3639 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", any, read_zero }, 3640 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", any, read_zero }, 3641 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", any, read_zero }, 3642 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", any, read_zero }, 3643 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", any, read_zero }, 3644 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", any, read_zero }, 3645 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", any, read_zero }, 3646 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", any, read_zero }, 3647 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", any, read_zero }, 3648 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", any, read_zero }, 3649 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", any, read_zero }, 3650 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", any, read_zero }, 3651 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", any, read_zero }, 3652 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", any, read_zero }, 3653 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", any, read_zero }, 3654 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", any, read_zero }, 3655 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", any, read_zero }, 3656 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", any, read_zero }, 3657 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", any, read_zero }, 3658 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", any, read_zero }, 3659 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", any, read_zero }, 3660 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", any, read_zero }, 3661 3662 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_zero }, 3663 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_zero }, 3664 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_zero }, 3665 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_zero }, 3666 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_zero }, 3667 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_zero }, 3668 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_zero }, 3669 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_zero }, 3670 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_zero }, 3671 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_zero }, 3672 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_zero }, 3673 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_zero }, 3674 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_zero }, 3675 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_zero }, 3676 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_zero }, 3677 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_zero }, 3678 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_zero }, 3679 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_zero }, 3680 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_zero }, 3681 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_zero }, 3682 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_zero }, 3683 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_zero }, 3684 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_zero }, 3685 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_zero }, 3686 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_zero }, 3687 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_zero }, 3688 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_zero }, 3689 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_zero }, 3690 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_zero }, 3691 3692 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_zero }, 3693 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_zero }, 3694 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_zero }, 3695 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_zero }, 3696 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_zero }, 3697 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_zero }, 3698 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_zero }, 3699 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_zero }, 3700 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_zero }, 3701 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_zero }, 3702 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_zero }, 3703 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_zero }, 3704 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_zero }, 3705 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_zero }, 3706 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_zero }, 3707 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_zero }, 3708 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_zero }, 3709 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_zero }, 3710 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_zero }, 3711 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_zero }, 3712 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_zero }, 3713 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_zero }, 3714 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_zero }, 3715 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_zero }, 3716 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_zero }, 3717 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_zero }, 3718 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_zero }, 3719 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_zero }, 3720 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_zero }, 3721 3722 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", any32, read_zero }, 3723 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", any32, read_zero }, 3724 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", any32, read_zero }, 3725 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", any32, read_zero }, 3726 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", any32, read_zero }, 3727 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", any32, read_zero }, 3728 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", any32, read_zero }, 3729 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", any32, read_zero }, 3730 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", any32, read_zero }, 3731 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", any32, read_zero }, 3732 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", any32, read_zero }, 3733 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", any32, read_zero }, 3734 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", any32, read_zero }, 3735 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", any32, read_zero }, 3736 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", any32, read_zero }, 3737 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", any32, read_zero }, 3738 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", any32, read_zero }, 3739 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", any32, read_zero }, 3740 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", any32, read_zero }, 3741 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", any32, read_zero }, 3742 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", any32, read_zero }, 3743 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", any32, read_zero }, 3744 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", any32, read_zero }, 3745 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", any32, read_zero }, 3746 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", any32, read_zero }, 3747 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", any32, read_zero }, 3748 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", any32, read_zero }, 3749 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", any32, read_zero }, 3750 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", any32, read_zero }, 3751 #endif /* !CONFIG_USER_ONLY */ 3752 }; 3753