1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "exec/tb-flush.h" 29 #include "sysemu/cpu-timers.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 33 /* CSR function table public API */ 34 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 35 { 36 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 37 } 38 39 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 40 { 41 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 42 } 43 44 /* Predicates */ 45 #if !defined(CONFIG_USER_ONLY) 46 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) 47 { 48 bool virt = env->virt_enabled; 49 50 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 51 return RISCV_EXCP_NONE; 52 } 53 54 if (!(env->mstateen[index] & bit)) { 55 return RISCV_EXCP_ILLEGAL_INST; 56 } 57 58 if (virt) { 59 if (!(env->hstateen[index] & bit)) { 60 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 61 } 62 63 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 64 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 65 } 66 } 67 68 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 69 if (!(env->sstateen[index] & bit)) { 70 return RISCV_EXCP_ILLEGAL_INST; 71 } 72 } 73 74 return RISCV_EXCP_NONE; 75 } 76 #endif 77 78 static RISCVException fs(CPURISCVState *env, int csrno) 79 { 80 #if !defined(CONFIG_USER_ONLY) 81 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 82 !riscv_cpu_cfg(env)->ext_zfinx) { 83 return RISCV_EXCP_ILLEGAL_INST; 84 } 85 #endif 86 return RISCV_EXCP_NONE; 87 } 88 89 static RISCVException vs(CPURISCVState *env, int csrno) 90 { 91 if (riscv_cpu_cfg(env)->ext_zve32f) { 92 #if !defined(CONFIG_USER_ONLY) 93 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 94 return RISCV_EXCP_ILLEGAL_INST; 95 } 96 #endif 97 return RISCV_EXCP_NONE; 98 } 99 return RISCV_EXCP_ILLEGAL_INST; 100 } 101 102 static RISCVException ctr(CPURISCVState *env, int csrno) 103 { 104 #if !defined(CONFIG_USER_ONLY) 105 RISCVCPU *cpu = env_archcpu(env); 106 int ctr_index; 107 target_ulong ctr_mask; 108 int base_csrno = CSR_CYCLE; 109 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 110 111 if (rv32 && csrno >= CSR_CYCLEH) { 112 /* Offset for RV32 hpmcounternh counters */ 113 base_csrno += 0x80; 114 } 115 ctr_index = csrno - base_csrno; 116 ctr_mask = BIT(ctr_index); 117 118 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 119 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 120 goto skip_ext_pmu_check; 121 } 122 123 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 124 /* No counter is enabled in PMU or the counter is out of range */ 125 return RISCV_EXCP_ILLEGAL_INST; 126 } 127 128 skip_ext_pmu_check: 129 130 if (env->debugger) { 131 return RISCV_EXCP_NONE; 132 } 133 134 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 135 return RISCV_EXCP_ILLEGAL_INST; 136 } 137 138 if (env->virt_enabled) { 139 if (!get_field(env->hcounteren, ctr_mask) || 140 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 141 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 142 } 143 } 144 145 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 146 !get_field(env->scounteren, ctr_mask)) { 147 return RISCV_EXCP_ILLEGAL_INST; 148 } 149 150 #endif 151 return RISCV_EXCP_NONE; 152 } 153 154 static RISCVException ctr32(CPURISCVState *env, int csrno) 155 { 156 if (riscv_cpu_mxl(env) != MXL_RV32) { 157 return RISCV_EXCP_ILLEGAL_INST; 158 } 159 160 return ctr(env, csrno); 161 } 162 163 static RISCVException zcmt(CPURISCVState *env, int csrno) 164 { 165 if (!riscv_cpu_cfg(env)->ext_zcmt) { 166 return RISCV_EXCP_ILLEGAL_INST; 167 } 168 169 #if !defined(CONFIG_USER_ONLY) 170 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); 171 if (ret != RISCV_EXCP_NONE) { 172 return ret; 173 } 174 #endif 175 176 return RISCV_EXCP_NONE; 177 } 178 179 #if !defined(CONFIG_USER_ONLY) 180 static RISCVException mctr(CPURISCVState *env, int csrno) 181 { 182 int pmu_num = riscv_cpu_cfg(env)->pmu_num; 183 int ctr_index; 184 int base_csrno = CSR_MHPMCOUNTER3; 185 186 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 187 /* Offset for RV32 mhpmcounternh counters */ 188 base_csrno += 0x80; 189 } 190 ctr_index = csrno - base_csrno; 191 if (!pmu_num || ctr_index >= pmu_num) { 192 /* The PMU is not enabled or counter is out of range */ 193 return RISCV_EXCP_ILLEGAL_INST; 194 } 195 196 return RISCV_EXCP_NONE; 197 } 198 199 static RISCVException mctr32(CPURISCVState *env, int csrno) 200 { 201 if (riscv_cpu_mxl(env) != MXL_RV32) { 202 return RISCV_EXCP_ILLEGAL_INST; 203 } 204 205 return mctr(env, csrno); 206 } 207 208 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 209 { 210 if (!riscv_cpu_cfg(env)->ext_sscofpmf) { 211 return RISCV_EXCP_ILLEGAL_INST; 212 } 213 214 return RISCV_EXCP_NONE; 215 } 216 217 static RISCVException any(CPURISCVState *env, int csrno) 218 { 219 return RISCV_EXCP_NONE; 220 } 221 222 static RISCVException any32(CPURISCVState *env, int csrno) 223 { 224 if (riscv_cpu_mxl(env) != MXL_RV32) { 225 return RISCV_EXCP_ILLEGAL_INST; 226 } 227 228 return any(env, csrno); 229 230 } 231 232 static int aia_any(CPURISCVState *env, int csrno) 233 { 234 if (!riscv_cpu_cfg(env)->ext_smaia) { 235 return RISCV_EXCP_ILLEGAL_INST; 236 } 237 238 return any(env, csrno); 239 } 240 241 static int aia_any32(CPURISCVState *env, int csrno) 242 { 243 if (!riscv_cpu_cfg(env)->ext_smaia) { 244 return RISCV_EXCP_ILLEGAL_INST; 245 } 246 247 return any32(env, csrno); 248 } 249 250 static RISCVException smode(CPURISCVState *env, int csrno) 251 { 252 if (riscv_has_ext(env, RVS)) { 253 return RISCV_EXCP_NONE; 254 } 255 256 return RISCV_EXCP_ILLEGAL_INST; 257 } 258 259 static int smode32(CPURISCVState *env, int csrno) 260 { 261 if (riscv_cpu_mxl(env) != MXL_RV32) { 262 return RISCV_EXCP_ILLEGAL_INST; 263 } 264 265 return smode(env, csrno); 266 } 267 268 static int aia_smode(CPURISCVState *env, int csrno) 269 { 270 if (!riscv_cpu_cfg(env)->ext_ssaia) { 271 return RISCV_EXCP_ILLEGAL_INST; 272 } 273 274 return smode(env, csrno); 275 } 276 277 static int aia_smode32(CPURISCVState *env, int csrno) 278 { 279 if (!riscv_cpu_cfg(env)->ext_ssaia) { 280 return RISCV_EXCP_ILLEGAL_INST; 281 } 282 283 return smode32(env, csrno); 284 } 285 286 static RISCVException hmode(CPURISCVState *env, int csrno) 287 { 288 if (riscv_has_ext(env, RVH)) { 289 return RISCV_EXCP_NONE; 290 } 291 292 return RISCV_EXCP_ILLEGAL_INST; 293 } 294 295 static RISCVException hmode32(CPURISCVState *env, int csrno) 296 { 297 if (riscv_cpu_mxl(env) != MXL_RV32) { 298 return RISCV_EXCP_ILLEGAL_INST; 299 } 300 301 return hmode(env, csrno); 302 303 } 304 305 static RISCVException umode(CPURISCVState *env, int csrno) 306 { 307 if (riscv_has_ext(env, RVU)) { 308 return RISCV_EXCP_NONE; 309 } 310 311 return RISCV_EXCP_ILLEGAL_INST; 312 } 313 314 static RISCVException umode32(CPURISCVState *env, int csrno) 315 { 316 if (riscv_cpu_mxl(env) != MXL_RV32) { 317 return RISCV_EXCP_ILLEGAL_INST; 318 } 319 320 return umode(env, csrno); 321 } 322 323 static RISCVException mstateen(CPURISCVState *env, int csrno) 324 { 325 if (!riscv_cpu_cfg(env)->ext_smstateen) { 326 return RISCV_EXCP_ILLEGAL_INST; 327 } 328 329 return any(env, csrno); 330 } 331 332 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 333 { 334 if (!riscv_cpu_cfg(env)->ext_smstateen) { 335 return RISCV_EXCP_ILLEGAL_INST; 336 } 337 338 RISCVException ret = hmode(env, csrno); 339 if (ret != RISCV_EXCP_NONE) { 340 return ret; 341 } 342 343 if (env->debugger) { 344 return RISCV_EXCP_NONE; 345 } 346 347 if (env->priv < PRV_M) { 348 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 349 return RISCV_EXCP_ILLEGAL_INST; 350 } 351 } 352 353 return RISCV_EXCP_NONE; 354 } 355 356 static RISCVException hstateen(CPURISCVState *env, int csrno) 357 { 358 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 359 } 360 361 static RISCVException hstateenh(CPURISCVState *env, int csrno) 362 { 363 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 364 } 365 366 static RISCVException sstateen(CPURISCVState *env, int csrno) 367 { 368 bool virt = env->virt_enabled; 369 int index = csrno - CSR_SSTATEEN0; 370 371 if (!riscv_cpu_cfg(env)->ext_smstateen) { 372 return RISCV_EXCP_ILLEGAL_INST; 373 } 374 375 RISCVException ret = smode(env, csrno); 376 if (ret != RISCV_EXCP_NONE) { 377 return ret; 378 } 379 380 if (env->debugger) { 381 return RISCV_EXCP_NONE; 382 } 383 384 if (env->priv < PRV_M) { 385 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 386 return RISCV_EXCP_ILLEGAL_INST; 387 } 388 389 if (virt) { 390 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 391 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 392 } 393 } 394 } 395 396 return RISCV_EXCP_NONE; 397 } 398 399 static RISCVException sstc(CPURISCVState *env, int csrno) 400 { 401 bool hmode_check = false; 402 403 if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { 404 return RISCV_EXCP_ILLEGAL_INST; 405 } 406 407 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 408 hmode_check = true; 409 } 410 411 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 412 if (ret != RISCV_EXCP_NONE) { 413 return ret; 414 } 415 416 if (env->debugger) { 417 return RISCV_EXCP_NONE; 418 } 419 420 if (env->priv == PRV_M) { 421 return RISCV_EXCP_NONE; 422 } 423 424 /* 425 * No need of separate function for rv32 as menvcfg stores both menvcfg 426 * menvcfgh for RV32. 427 */ 428 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 429 get_field(env->menvcfg, MENVCFG_STCE))) { 430 return RISCV_EXCP_ILLEGAL_INST; 431 } 432 433 if (env->virt_enabled) { 434 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 435 get_field(env->henvcfg, HENVCFG_STCE))) { 436 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 437 } 438 } 439 440 return RISCV_EXCP_NONE; 441 } 442 443 static RISCVException sstc_32(CPURISCVState *env, int csrno) 444 { 445 if (riscv_cpu_mxl(env) != MXL_RV32) { 446 return RISCV_EXCP_ILLEGAL_INST; 447 } 448 449 return sstc(env, csrno); 450 } 451 452 static RISCVException satp(CPURISCVState *env, int csrno) 453 { 454 if (env->priv == PRV_S && !env->virt_enabled && 455 get_field(env->mstatus, MSTATUS_TVM)) { 456 return RISCV_EXCP_ILLEGAL_INST; 457 } 458 if (env->priv == PRV_S && env->virt_enabled && 459 get_field(env->hstatus, HSTATUS_VTVM)) { 460 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 461 } 462 463 return smode(env, csrno); 464 } 465 466 static RISCVException hgatp(CPURISCVState *env, int csrno) 467 { 468 if (env->priv == PRV_S && !env->virt_enabled && 469 get_field(env->mstatus, MSTATUS_TVM)) { 470 return RISCV_EXCP_ILLEGAL_INST; 471 } 472 473 return hmode(env, csrno); 474 } 475 476 /* Checks if PointerMasking registers could be accessed */ 477 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 478 { 479 /* Check if j-ext is present */ 480 if (riscv_has_ext(env, RVJ)) { 481 return RISCV_EXCP_NONE; 482 } 483 return RISCV_EXCP_ILLEGAL_INST; 484 } 485 486 static int aia_hmode(CPURISCVState *env, int csrno) 487 { 488 if (!riscv_cpu_cfg(env)->ext_ssaia) { 489 return RISCV_EXCP_ILLEGAL_INST; 490 } 491 492 return hmode(env, csrno); 493 } 494 495 static int aia_hmode32(CPURISCVState *env, int csrno) 496 { 497 if (!riscv_cpu_cfg(env)->ext_ssaia) { 498 return RISCV_EXCP_ILLEGAL_INST; 499 } 500 501 return hmode32(env, csrno); 502 } 503 504 static RISCVException pmp(CPURISCVState *env, int csrno) 505 { 506 if (riscv_cpu_cfg(env)->pmp) { 507 if (csrno <= CSR_PMPCFG3) { 508 uint32_t reg_index = csrno - CSR_PMPCFG0; 509 510 /* TODO: RV128 restriction check */ 511 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 512 return RISCV_EXCP_ILLEGAL_INST; 513 } 514 } 515 516 return RISCV_EXCP_NONE; 517 } 518 519 return RISCV_EXCP_ILLEGAL_INST; 520 } 521 522 static RISCVException epmp(CPURISCVState *env, int csrno) 523 { 524 if (riscv_cpu_cfg(env)->epmp) { 525 return RISCV_EXCP_NONE; 526 } 527 528 return RISCV_EXCP_ILLEGAL_INST; 529 } 530 531 static RISCVException debug(CPURISCVState *env, int csrno) 532 { 533 if (riscv_cpu_cfg(env)->debug) { 534 return RISCV_EXCP_NONE; 535 } 536 537 return RISCV_EXCP_ILLEGAL_INST; 538 } 539 #endif 540 541 static RISCVException seed(CPURISCVState *env, int csrno) 542 { 543 if (!riscv_cpu_cfg(env)->ext_zkr) { 544 return RISCV_EXCP_ILLEGAL_INST; 545 } 546 547 #if !defined(CONFIG_USER_ONLY) 548 if (env->debugger) { 549 return RISCV_EXCP_NONE; 550 } 551 552 /* 553 * With a CSR read-write instruction: 554 * 1) The seed CSR is always available in machine mode as normal. 555 * 2) Attempted access to seed from virtual modes VS and VU always raises 556 * an exception(virtual instruction exception only if mseccfg.sseed=1). 557 * 3) Without the corresponding access control bit set to 1, any attempted 558 * access to seed from U, S or HS modes will raise an illegal instruction 559 * exception. 560 */ 561 if (env->priv == PRV_M) { 562 return RISCV_EXCP_NONE; 563 } else if (env->virt_enabled) { 564 if (env->mseccfg & MSECCFG_SSEED) { 565 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 566 } else { 567 return RISCV_EXCP_ILLEGAL_INST; 568 } 569 } else { 570 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 571 return RISCV_EXCP_NONE; 572 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 573 return RISCV_EXCP_NONE; 574 } else { 575 return RISCV_EXCP_ILLEGAL_INST; 576 } 577 } 578 #else 579 return RISCV_EXCP_NONE; 580 #endif 581 } 582 583 /* User Floating-Point CSRs */ 584 static RISCVException read_fflags(CPURISCVState *env, int csrno, 585 target_ulong *val) 586 { 587 *val = riscv_cpu_get_fflags(env); 588 return RISCV_EXCP_NONE; 589 } 590 591 static RISCVException write_fflags(CPURISCVState *env, int csrno, 592 target_ulong val) 593 { 594 #if !defined(CONFIG_USER_ONLY) 595 if (riscv_has_ext(env, RVF)) { 596 env->mstatus |= MSTATUS_FS; 597 } 598 #endif 599 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 600 return RISCV_EXCP_NONE; 601 } 602 603 static RISCVException read_frm(CPURISCVState *env, int csrno, 604 target_ulong *val) 605 { 606 *val = env->frm; 607 return RISCV_EXCP_NONE; 608 } 609 610 static RISCVException write_frm(CPURISCVState *env, int csrno, 611 target_ulong val) 612 { 613 #if !defined(CONFIG_USER_ONLY) 614 if (riscv_has_ext(env, RVF)) { 615 env->mstatus |= MSTATUS_FS; 616 } 617 #endif 618 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 619 return RISCV_EXCP_NONE; 620 } 621 622 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 623 target_ulong *val) 624 { 625 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 626 | (env->frm << FSR_RD_SHIFT); 627 return RISCV_EXCP_NONE; 628 } 629 630 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 631 target_ulong val) 632 { 633 #if !defined(CONFIG_USER_ONLY) 634 if (riscv_has_ext(env, RVF)) { 635 env->mstatus |= MSTATUS_FS; 636 } 637 #endif 638 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 639 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 640 return RISCV_EXCP_NONE; 641 } 642 643 static RISCVException read_vtype(CPURISCVState *env, int csrno, 644 target_ulong *val) 645 { 646 uint64_t vill; 647 switch (env->xl) { 648 case MXL_RV32: 649 vill = (uint32_t)env->vill << 31; 650 break; 651 case MXL_RV64: 652 vill = (uint64_t)env->vill << 63; 653 break; 654 default: 655 g_assert_not_reached(); 656 } 657 *val = (target_ulong)vill | env->vtype; 658 return RISCV_EXCP_NONE; 659 } 660 661 static RISCVException read_vl(CPURISCVState *env, int csrno, 662 target_ulong *val) 663 { 664 *val = env->vl; 665 return RISCV_EXCP_NONE; 666 } 667 668 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 669 { 670 *val = riscv_cpu_cfg(env)->vlen >> 3; 671 return RISCV_EXCP_NONE; 672 } 673 674 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 675 target_ulong *val) 676 { 677 *val = env->vxrm; 678 return RISCV_EXCP_NONE; 679 } 680 681 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 682 target_ulong val) 683 { 684 #if !defined(CONFIG_USER_ONLY) 685 env->mstatus |= MSTATUS_VS; 686 #endif 687 env->vxrm = val; 688 return RISCV_EXCP_NONE; 689 } 690 691 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 692 target_ulong *val) 693 { 694 *val = env->vxsat; 695 return RISCV_EXCP_NONE; 696 } 697 698 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 699 target_ulong val) 700 { 701 #if !defined(CONFIG_USER_ONLY) 702 env->mstatus |= MSTATUS_VS; 703 #endif 704 env->vxsat = val; 705 return RISCV_EXCP_NONE; 706 } 707 708 static RISCVException read_vstart(CPURISCVState *env, int csrno, 709 target_ulong *val) 710 { 711 *val = env->vstart; 712 return RISCV_EXCP_NONE; 713 } 714 715 static RISCVException write_vstart(CPURISCVState *env, int csrno, 716 target_ulong val) 717 { 718 #if !defined(CONFIG_USER_ONLY) 719 env->mstatus |= MSTATUS_VS; 720 #endif 721 /* 722 * The vstart CSR is defined to have only enough writable bits 723 * to hold the largest element index, i.e. lg2(VLEN) bits. 724 */ 725 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlen)); 726 return RISCV_EXCP_NONE; 727 } 728 729 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 730 { 731 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 732 return RISCV_EXCP_NONE; 733 } 734 735 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 736 { 737 #if !defined(CONFIG_USER_ONLY) 738 env->mstatus |= MSTATUS_VS; 739 #endif 740 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 741 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 742 return RISCV_EXCP_NONE; 743 } 744 745 /* User Timers and Counters */ 746 static target_ulong get_ticks(bool shift) 747 { 748 int64_t val; 749 target_ulong result; 750 751 #if !defined(CONFIG_USER_ONLY) 752 if (icount_enabled()) { 753 val = icount_get(); 754 } else { 755 val = cpu_get_host_ticks(); 756 } 757 #else 758 val = cpu_get_host_ticks(); 759 #endif 760 761 if (shift) { 762 result = val >> 32; 763 } else { 764 result = val; 765 } 766 767 return result; 768 } 769 770 #if defined(CONFIG_USER_ONLY) 771 static RISCVException read_time(CPURISCVState *env, int csrno, 772 target_ulong *val) 773 { 774 *val = cpu_get_host_ticks(); 775 return RISCV_EXCP_NONE; 776 } 777 778 static RISCVException read_timeh(CPURISCVState *env, int csrno, 779 target_ulong *val) 780 { 781 *val = cpu_get_host_ticks() >> 32; 782 return RISCV_EXCP_NONE; 783 } 784 785 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 786 { 787 *val = get_ticks(false); 788 return RISCV_EXCP_NONE; 789 } 790 791 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 792 { 793 *val = get_ticks(true); 794 return RISCV_EXCP_NONE; 795 } 796 797 #else /* CONFIG_USER_ONLY */ 798 799 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 800 { 801 int evt_index = csrno - CSR_MCOUNTINHIBIT; 802 803 *val = env->mhpmevent_val[evt_index]; 804 805 return RISCV_EXCP_NONE; 806 } 807 808 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 809 { 810 int evt_index = csrno - CSR_MCOUNTINHIBIT; 811 uint64_t mhpmevt_val = val; 812 813 env->mhpmevent_val[evt_index] = val; 814 815 if (riscv_cpu_mxl(env) == MXL_RV32) { 816 mhpmevt_val = mhpmevt_val | 817 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 818 } 819 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 820 821 return RISCV_EXCP_NONE; 822 } 823 824 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 825 { 826 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 827 828 *val = env->mhpmeventh_val[evt_index]; 829 830 return RISCV_EXCP_NONE; 831 } 832 833 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 834 { 835 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 836 uint64_t mhpmevth_val = val; 837 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 838 839 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 840 env->mhpmeventh_val[evt_index] = val; 841 842 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 843 844 return RISCV_EXCP_NONE; 845 } 846 847 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 848 { 849 int ctr_idx = csrno - CSR_MCYCLE; 850 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 851 uint64_t mhpmctr_val = val; 852 853 counter->mhpmcounter_val = val; 854 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 855 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 856 counter->mhpmcounter_prev = get_ticks(false); 857 if (ctr_idx > 2) { 858 if (riscv_cpu_mxl(env) == MXL_RV32) { 859 mhpmctr_val = mhpmctr_val | 860 ((uint64_t)counter->mhpmcounterh_val << 32); 861 } 862 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 863 } 864 } else { 865 /* Other counters can keep incrementing from the given value */ 866 counter->mhpmcounter_prev = val; 867 } 868 869 return RISCV_EXCP_NONE; 870 } 871 872 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 873 { 874 int ctr_idx = csrno - CSR_MCYCLEH; 875 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 876 uint64_t mhpmctr_val = counter->mhpmcounter_val; 877 uint64_t mhpmctrh_val = val; 878 879 counter->mhpmcounterh_val = val; 880 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 881 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 882 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 883 counter->mhpmcounterh_prev = get_ticks(true); 884 if (ctr_idx > 2) { 885 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 886 } 887 } else { 888 counter->mhpmcounterh_prev = val; 889 } 890 891 return RISCV_EXCP_NONE; 892 } 893 894 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 895 bool upper_half, uint32_t ctr_idx) 896 { 897 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 898 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 899 counter.mhpmcounter_prev; 900 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 901 counter.mhpmcounter_val; 902 903 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 904 /* 905 * Counter should not increment if inhibit bit is set. We can't really 906 * stop the icount counting. Just return the counter value written by 907 * the supervisor to indicate that counter was not incremented. 908 */ 909 if (!counter.started) { 910 *val = ctr_val; 911 return RISCV_EXCP_NONE; 912 } else { 913 /* Mark that the counter has been stopped */ 914 counter.started = false; 915 } 916 } 917 918 /* 919 * The kernel computes the perf delta by subtracting the current value from 920 * the value it initialized previously (ctr_val). 921 */ 922 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 923 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 924 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 925 } else { 926 *val = ctr_val; 927 } 928 929 return RISCV_EXCP_NONE; 930 } 931 932 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 933 { 934 uint16_t ctr_index; 935 936 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 937 ctr_index = csrno - CSR_MCYCLE; 938 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 939 ctr_index = csrno - CSR_CYCLE; 940 } else { 941 return RISCV_EXCP_ILLEGAL_INST; 942 } 943 944 return riscv_pmu_read_ctr(env, val, false, ctr_index); 945 } 946 947 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 948 { 949 uint16_t ctr_index; 950 951 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 952 ctr_index = csrno - CSR_MCYCLEH; 953 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 954 ctr_index = csrno - CSR_CYCLEH; 955 } else { 956 return RISCV_EXCP_ILLEGAL_INST; 957 } 958 959 return riscv_pmu_read_ctr(env, val, true, ctr_index); 960 } 961 962 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 963 { 964 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 965 int i; 966 *val = 0; 967 target_ulong *mhpm_evt_val; 968 uint64_t of_bit_mask; 969 970 if (riscv_cpu_mxl(env) == MXL_RV32) { 971 mhpm_evt_val = env->mhpmeventh_val; 972 of_bit_mask = MHPMEVENTH_BIT_OF; 973 } else { 974 mhpm_evt_val = env->mhpmevent_val; 975 of_bit_mask = MHPMEVENT_BIT_OF; 976 } 977 978 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 979 if ((get_field(env->mcounteren, BIT(i))) && 980 (mhpm_evt_val[i] & of_bit_mask)) { 981 *val |= BIT(i); 982 } 983 } 984 985 return RISCV_EXCP_NONE; 986 } 987 988 static RISCVException read_time(CPURISCVState *env, int csrno, 989 target_ulong *val) 990 { 991 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 992 993 if (!env->rdtime_fn) { 994 return RISCV_EXCP_ILLEGAL_INST; 995 } 996 997 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 998 return RISCV_EXCP_NONE; 999 } 1000 1001 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1002 target_ulong *val) 1003 { 1004 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1005 1006 if (!env->rdtime_fn) { 1007 return RISCV_EXCP_ILLEGAL_INST; 1008 } 1009 1010 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 1011 return RISCV_EXCP_NONE; 1012 } 1013 1014 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 1015 target_ulong *val) 1016 { 1017 *val = env->vstimecmp; 1018 1019 return RISCV_EXCP_NONE; 1020 } 1021 1022 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 1023 target_ulong *val) 1024 { 1025 *val = env->vstimecmp >> 32; 1026 1027 return RISCV_EXCP_NONE; 1028 } 1029 1030 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1031 target_ulong val) 1032 { 1033 if (riscv_cpu_mxl(env) == MXL_RV32) { 1034 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1035 } else { 1036 env->vstimecmp = val; 1037 } 1038 1039 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1040 env->htimedelta, MIP_VSTIP); 1041 1042 return RISCV_EXCP_NONE; 1043 } 1044 1045 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1046 target_ulong val) 1047 { 1048 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1049 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1050 env->htimedelta, MIP_VSTIP); 1051 1052 return RISCV_EXCP_NONE; 1053 } 1054 1055 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1056 target_ulong *val) 1057 { 1058 if (env->virt_enabled) { 1059 *val = env->vstimecmp; 1060 } else { 1061 *val = env->stimecmp; 1062 } 1063 1064 return RISCV_EXCP_NONE; 1065 } 1066 1067 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1068 target_ulong *val) 1069 { 1070 if (env->virt_enabled) { 1071 *val = env->vstimecmp >> 32; 1072 } else { 1073 *val = env->stimecmp >> 32; 1074 } 1075 1076 return RISCV_EXCP_NONE; 1077 } 1078 1079 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1080 target_ulong val) 1081 { 1082 if (env->virt_enabled) { 1083 if (env->hvictl & HVICTL_VTI) { 1084 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1085 } 1086 return write_vstimecmp(env, csrno, val); 1087 } 1088 1089 if (riscv_cpu_mxl(env) == MXL_RV32) { 1090 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1091 } else { 1092 env->stimecmp = val; 1093 } 1094 1095 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1096 1097 return RISCV_EXCP_NONE; 1098 } 1099 1100 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1101 target_ulong val) 1102 { 1103 if (env->virt_enabled) { 1104 if (env->hvictl & HVICTL_VTI) { 1105 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1106 } 1107 return write_vstimecmph(env, csrno, val); 1108 } 1109 1110 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1111 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1112 1113 return RISCV_EXCP_NONE; 1114 } 1115 1116 /* Machine constants */ 1117 1118 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1119 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1120 MIP_LCOFIP)) 1121 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1122 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1123 1124 #define VSTOPI_NUM_SRCS 5 1125 1126 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1127 VS_MODE_INTERRUPTS; 1128 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1129 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1130 HS_MODE_INTERRUPTS; 1131 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1132 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1133 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1134 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1135 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1136 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1137 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1138 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1139 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1140 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1141 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1142 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1143 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1144 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1145 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1146 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1147 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1148 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1149 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1150 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1151 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1152 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1153 (1ULL << (RISCV_EXCP_M_ECALL)) | 1154 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1155 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1156 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1157 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1158 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1159 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1160 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1161 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1162 SIP_LCOFIP; 1163 static const target_ulong hip_writable_mask = MIP_VSSIP; 1164 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | 1165 MIP_VSEIP; 1166 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1167 1168 const bool valid_vm_1_10_32[16] = { 1169 [VM_1_10_MBARE] = true, 1170 [VM_1_10_SV32] = true 1171 }; 1172 1173 const bool valid_vm_1_10_64[16] = { 1174 [VM_1_10_MBARE] = true, 1175 [VM_1_10_SV39] = true, 1176 [VM_1_10_SV48] = true, 1177 [VM_1_10_SV57] = true 1178 }; 1179 1180 /* Machine Information Registers */ 1181 static RISCVException read_zero(CPURISCVState *env, int csrno, 1182 target_ulong *val) 1183 { 1184 *val = 0; 1185 return RISCV_EXCP_NONE; 1186 } 1187 1188 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1189 target_ulong val) 1190 { 1191 return RISCV_EXCP_NONE; 1192 } 1193 1194 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1195 target_ulong *val) 1196 { 1197 *val = riscv_cpu_cfg(env)->mvendorid; 1198 return RISCV_EXCP_NONE; 1199 } 1200 1201 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1202 target_ulong *val) 1203 { 1204 *val = riscv_cpu_cfg(env)->marchid; 1205 return RISCV_EXCP_NONE; 1206 } 1207 1208 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1209 target_ulong *val) 1210 { 1211 *val = riscv_cpu_cfg(env)->mimpid; 1212 return RISCV_EXCP_NONE; 1213 } 1214 1215 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1216 target_ulong *val) 1217 { 1218 *val = env->mhartid; 1219 return RISCV_EXCP_NONE; 1220 } 1221 1222 /* Machine Trap Setup */ 1223 1224 /* We do not store SD explicitly, only compute it on demand. */ 1225 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1226 { 1227 if ((status & MSTATUS_FS) == MSTATUS_FS || 1228 (status & MSTATUS_VS) == MSTATUS_VS || 1229 (status & MSTATUS_XS) == MSTATUS_XS) { 1230 switch (xl) { 1231 case MXL_RV32: 1232 return status | MSTATUS32_SD; 1233 case MXL_RV64: 1234 return status | MSTATUS64_SD; 1235 case MXL_RV128: 1236 return MSTATUSH128_SD; 1237 default: 1238 g_assert_not_reached(); 1239 } 1240 } 1241 return status; 1242 } 1243 1244 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1245 target_ulong *val) 1246 { 1247 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1248 return RISCV_EXCP_NONE; 1249 } 1250 1251 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1252 { 1253 return (vm & 0xf) <= 1254 satp_mode_max_from_map(riscv_cpu_cfg(env)->satp_mode.map); 1255 } 1256 1257 static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp, 1258 target_ulong val) 1259 { 1260 bool valid = false; 1261 target_ulong new_mpp = get_field(val, MSTATUS_MPP); 1262 1263 switch (new_mpp) { 1264 case PRV_M: 1265 valid = true; 1266 break; 1267 case PRV_S: 1268 valid = riscv_has_ext(env, RVS); 1269 break; 1270 case PRV_U: 1271 valid = riscv_has_ext(env, RVU); 1272 break; 1273 } 1274 1275 /* Remain field unchanged if new_mpp value is invalid */ 1276 if (!valid) { 1277 val = set_field(val, MSTATUS_MPP, old_mpp); 1278 } 1279 1280 return val; 1281 } 1282 1283 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1284 target_ulong val) 1285 { 1286 uint64_t mstatus = env->mstatus; 1287 uint64_t mask = 0; 1288 RISCVMXL xl = riscv_cpu_mxl(env); 1289 1290 /* 1291 * MPP field have been made WARL since priv version 1.11. However, 1292 * legalization for it will not break any software running on 1.10. 1293 */ 1294 val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val); 1295 1296 /* flush tlb on mstatus fields that affect VM */ 1297 if ((val ^ mstatus) & MSTATUS_MXR) { 1298 tlb_flush(env_cpu(env)); 1299 } 1300 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1301 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1302 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1303 MSTATUS_TW | MSTATUS_VS; 1304 1305 if (riscv_has_ext(env, RVF)) { 1306 mask |= MSTATUS_FS; 1307 } 1308 1309 if (xl != MXL_RV32 || env->debugger) { 1310 /* 1311 * RV32: MPV and GVA are not in mstatus. The current plan is to 1312 * add them to mstatush. For now, we just don't support it. 1313 */ 1314 mask |= MSTATUS_MPV | MSTATUS_GVA; 1315 if ((val & MSTATUS64_UXL) != 0) { 1316 mask |= MSTATUS64_UXL; 1317 } 1318 } 1319 1320 mstatus = (mstatus & ~mask) | (val & mask); 1321 1322 if (xl > MXL_RV32) { 1323 /* SXL field is for now read only */ 1324 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1325 } 1326 env->mstatus = mstatus; 1327 env->xl = cpu_recompute_xl(env); 1328 1329 return RISCV_EXCP_NONE; 1330 } 1331 1332 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1333 target_ulong *val) 1334 { 1335 *val = env->mstatus >> 32; 1336 return RISCV_EXCP_NONE; 1337 } 1338 1339 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1340 target_ulong val) 1341 { 1342 uint64_t valh = (uint64_t)val << 32; 1343 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1344 1345 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1346 1347 return RISCV_EXCP_NONE; 1348 } 1349 1350 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1351 Int128 *val) 1352 { 1353 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, 1354 env->mstatus)); 1355 return RISCV_EXCP_NONE; 1356 } 1357 1358 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1359 Int128 *val) 1360 { 1361 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1362 return RISCV_EXCP_NONE; 1363 } 1364 1365 static RISCVException read_misa(CPURISCVState *env, int csrno, 1366 target_ulong *val) 1367 { 1368 target_ulong misa; 1369 1370 switch (env->misa_mxl) { 1371 case MXL_RV32: 1372 misa = (target_ulong)MXL_RV32 << 30; 1373 break; 1374 #ifdef TARGET_RISCV64 1375 case MXL_RV64: 1376 misa = (target_ulong)MXL_RV64 << 62; 1377 break; 1378 #endif 1379 default: 1380 g_assert_not_reached(); 1381 } 1382 1383 *val = misa | env->misa_ext; 1384 return RISCV_EXCP_NONE; 1385 } 1386 1387 static RISCVException write_misa(CPURISCVState *env, int csrno, 1388 target_ulong val) 1389 { 1390 if (!riscv_cpu_cfg(env)->misa_w) { 1391 /* drop write to misa */ 1392 return RISCV_EXCP_NONE; 1393 } 1394 1395 /* 'I' or 'E' must be present */ 1396 if (!(val & (RVI | RVE))) { 1397 /* It is not, drop write to misa */ 1398 return RISCV_EXCP_NONE; 1399 } 1400 1401 /* 'E' excludes all other extensions */ 1402 if (val & RVE) { 1403 /* 1404 * when we support 'E' we can do "val = RVE;" however 1405 * for now we just drop writes if 'E' is present. 1406 */ 1407 return RISCV_EXCP_NONE; 1408 } 1409 1410 /* 1411 * misa.MXL writes are not supported by QEMU. 1412 * Drop writes to those bits. 1413 */ 1414 1415 /* Mask extensions that are not supported by this hart */ 1416 val &= env->misa_ext_mask; 1417 1418 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1419 if ((val & RVD) && !(val & RVF)) { 1420 val &= ~RVD; 1421 } 1422 1423 /* 1424 * Suppress 'C' if next instruction is not aligned 1425 * TODO: this should check next_pc 1426 */ 1427 if ((val & RVC) && (GETPC() & ~3) != 0) { 1428 val &= ~RVC; 1429 } 1430 1431 /* If nothing changed, do nothing. */ 1432 if (val == env->misa_ext) { 1433 return RISCV_EXCP_NONE; 1434 } 1435 1436 if (!(val & RVF)) { 1437 env->mstatus &= ~MSTATUS_FS; 1438 } 1439 1440 /* flush translation cache */ 1441 tb_flush(env_cpu(env)); 1442 env->misa_ext = val; 1443 env->xl = riscv_cpu_mxl(env); 1444 return RISCV_EXCP_NONE; 1445 } 1446 1447 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1448 target_ulong *val) 1449 { 1450 *val = env->medeleg; 1451 return RISCV_EXCP_NONE; 1452 } 1453 1454 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1455 target_ulong val) 1456 { 1457 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1458 return RISCV_EXCP_NONE; 1459 } 1460 1461 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1462 uint64_t *ret_val, 1463 uint64_t new_val, uint64_t wr_mask) 1464 { 1465 uint64_t mask = wr_mask & delegable_ints; 1466 1467 if (ret_val) { 1468 *ret_val = env->mideleg; 1469 } 1470 1471 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1472 1473 if (riscv_has_ext(env, RVH)) { 1474 env->mideleg |= HS_MODE_INTERRUPTS; 1475 } 1476 1477 return RISCV_EXCP_NONE; 1478 } 1479 1480 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1481 target_ulong *ret_val, 1482 target_ulong new_val, target_ulong wr_mask) 1483 { 1484 uint64_t rval; 1485 RISCVException ret; 1486 1487 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1488 if (ret_val) { 1489 *ret_val = rval; 1490 } 1491 1492 return ret; 1493 } 1494 1495 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1496 target_ulong *ret_val, 1497 target_ulong new_val, 1498 target_ulong wr_mask) 1499 { 1500 uint64_t rval; 1501 RISCVException ret; 1502 1503 ret = rmw_mideleg64(env, csrno, &rval, 1504 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1505 if (ret_val) { 1506 *ret_val = rval >> 32; 1507 } 1508 1509 return ret; 1510 } 1511 1512 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1513 uint64_t *ret_val, 1514 uint64_t new_val, uint64_t wr_mask) 1515 { 1516 uint64_t mask = wr_mask & all_ints; 1517 1518 if (ret_val) { 1519 *ret_val = env->mie; 1520 } 1521 1522 env->mie = (env->mie & ~mask) | (new_val & mask); 1523 1524 if (!riscv_has_ext(env, RVH)) { 1525 env->mie &= ~((uint64_t)MIP_SGEIP); 1526 } 1527 1528 return RISCV_EXCP_NONE; 1529 } 1530 1531 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1532 target_ulong *ret_val, 1533 target_ulong new_val, target_ulong wr_mask) 1534 { 1535 uint64_t rval; 1536 RISCVException ret; 1537 1538 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1539 if (ret_val) { 1540 *ret_val = rval; 1541 } 1542 1543 return ret; 1544 } 1545 1546 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1547 target_ulong *ret_val, 1548 target_ulong new_val, target_ulong wr_mask) 1549 { 1550 uint64_t rval; 1551 RISCVException ret; 1552 1553 ret = rmw_mie64(env, csrno, &rval, 1554 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1555 if (ret_val) { 1556 *ret_val = rval >> 32; 1557 } 1558 1559 return ret; 1560 } 1561 1562 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1563 { 1564 int irq; 1565 uint8_t iprio; 1566 1567 irq = riscv_cpu_mirq_pending(env); 1568 if (irq <= 0 || irq > 63) { 1569 *val = 0; 1570 } else { 1571 iprio = env->miprio[irq]; 1572 if (!iprio) { 1573 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1574 iprio = IPRIO_MMAXIPRIO; 1575 } 1576 } 1577 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1578 *val |= iprio; 1579 } 1580 1581 return RISCV_EXCP_NONE; 1582 } 1583 1584 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1585 { 1586 if (!env->virt_enabled) { 1587 return csrno; 1588 } 1589 1590 switch (csrno) { 1591 case CSR_SISELECT: 1592 return CSR_VSISELECT; 1593 case CSR_SIREG: 1594 return CSR_VSIREG; 1595 case CSR_STOPEI: 1596 return CSR_VSTOPEI; 1597 default: 1598 return csrno; 1599 }; 1600 } 1601 1602 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1603 target_ulong new_val, target_ulong wr_mask) 1604 { 1605 target_ulong *iselect; 1606 1607 /* Translate CSR number for VS-mode */ 1608 csrno = aia_xlate_vs_csrno(env, csrno); 1609 1610 /* Find the iselect CSR based on CSR number */ 1611 switch (csrno) { 1612 case CSR_MISELECT: 1613 iselect = &env->miselect; 1614 break; 1615 case CSR_SISELECT: 1616 iselect = &env->siselect; 1617 break; 1618 case CSR_VSISELECT: 1619 iselect = &env->vsiselect; 1620 break; 1621 default: 1622 return RISCV_EXCP_ILLEGAL_INST; 1623 }; 1624 1625 if (val) { 1626 *val = *iselect; 1627 } 1628 1629 wr_mask &= ISELECT_MASK; 1630 if (wr_mask) { 1631 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1632 } 1633 1634 return RISCV_EXCP_NONE; 1635 } 1636 1637 static int rmw_iprio(target_ulong xlen, 1638 target_ulong iselect, uint8_t *iprio, 1639 target_ulong *val, target_ulong new_val, 1640 target_ulong wr_mask, int ext_irq_no) 1641 { 1642 int i, firq, nirqs; 1643 target_ulong old_val; 1644 1645 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1646 return -EINVAL; 1647 } 1648 if (xlen != 32 && iselect & 0x1) { 1649 return -EINVAL; 1650 } 1651 1652 nirqs = 4 * (xlen / 32); 1653 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1654 1655 old_val = 0; 1656 for (i = 0; i < nirqs; i++) { 1657 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1658 } 1659 1660 if (val) { 1661 *val = old_val; 1662 } 1663 1664 if (wr_mask) { 1665 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1666 for (i = 0; i < nirqs; i++) { 1667 /* 1668 * M-level and S-level external IRQ priority always read-only 1669 * zero. This means default priority order is always preferred 1670 * for M-level and S-level external IRQs. 1671 */ 1672 if ((firq + i) == ext_irq_no) { 1673 continue; 1674 } 1675 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1676 } 1677 } 1678 1679 return 0; 1680 } 1681 1682 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1683 target_ulong new_val, target_ulong wr_mask) 1684 { 1685 bool virt; 1686 uint8_t *iprio; 1687 int ret = -EINVAL; 1688 target_ulong priv, isel, vgein; 1689 1690 /* Translate CSR number for VS-mode */ 1691 csrno = aia_xlate_vs_csrno(env, csrno); 1692 1693 /* Decode register details from CSR number */ 1694 virt = false; 1695 switch (csrno) { 1696 case CSR_MIREG: 1697 iprio = env->miprio; 1698 isel = env->miselect; 1699 priv = PRV_M; 1700 break; 1701 case CSR_SIREG: 1702 iprio = env->siprio; 1703 isel = env->siselect; 1704 priv = PRV_S; 1705 break; 1706 case CSR_VSIREG: 1707 iprio = env->hviprio; 1708 isel = env->vsiselect; 1709 priv = PRV_S; 1710 virt = true; 1711 break; 1712 default: 1713 goto done; 1714 }; 1715 1716 /* Find the selected guest interrupt file */ 1717 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1718 1719 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1720 /* Local interrupt priority registers not available for VS-mode */ 1721 if (!virt) { 1722 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1723 isel, iprio, val, new_val, wr_mask, 1724 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1725 } 1726 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1727 /* IMSIC registers only available when machine implements it. */ 1728 if (env->aia_ireg_rmw_fn[priv]) { 1729 /* Selected guest interrupt file should not be zero */ 1730 if (virt && (!vgein || env->geilen < vgein)) { 1731 goto done; 1732 } 1733 /* Call machine specific IMSIC register emulation */ 1734 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1735 AIA_MAKE_IREG(isel, priv, virt, vgein, 1736 riscv_cpu_mxl_bits(env)), 1737 val, new_val, wr_mask); 1738 } 1739 } 1740 1741 done: 1742 if (ret) { 1743 return (env->virt_enabled && virt) ? 1744 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1745 } 1746 return RISCV_EXCP_NONE; 1747 } 1748 1749 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1750 target_ulong new_val, target_ulong wr_mask) 1751 { 1752 bool virt; 1753 int ret = -EINVAL; 1754 target_ulong priv, vgein; 1755 1756 /* Translate CSR number for VS-mode */ 1757 csrno = aia_xlate_vs_csrno(env, csrno); 1758 1759 /* Decode register details from CSR number */ 1760 virt = false; 1761 switch (csrno) { 1762 case CSR_MTOPEI: 1763 priv = PRV_M; 1764 break; 1765 case CSR_STOPEI: 1766 priv = PRV_S; 1767 break; 1768 case CSR_VSTOPEI: 1769 priv = PRV_S; 1770 virt = true; 1771 break; 1772 default: 1773 goto done; 1774 }; 1775 1776 /* IMSIC CSRs only available when machine implements IMSIC. */ 1777 if (!env->aia_ireg_rmw_fn[priv]) { 1778 goto done; 1779 } 1780 1781 /* Find the selected guest interrupt file */ 1782 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1783 1784 /* Selected guest interrupt file should be valid */ 1785 if (virt && (!vgein || env->geilen < vgein)) { 1786 goto done; 1787 } 1788 1789 /* Call machine specific IMSIC register emulation for TOPEI */ 1790 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1791 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1792 riscv_cpu_mxl_bits(env)), 1793 val, new_val, wr_mask); 1794 1795 done: 1796 if (ret) { 1797 return (env->virt_enabled && virt) ? 1798 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1799 } 1800 return RISCV_EXCP_NONE; 1801 } 1802 1803 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1804 target_ulong *val) 1805 { 1806 *val = env->mtvec; 1807 return RISCV_EXCP_NONE; 1808 } 1809 1810 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1811 target_ulong val) 1812 { 1813 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1814 if ((val & 3) < 2) { 1815 env->mtvec = val; 1816 } else { 1817 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1818 } 1819 return RISCV_EXCP_NONE; 1820 } 1821 1822 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1823 target_ulong *val) 1824 { 1825 *val = env->mcountinhibit; 1826 return RISCV_EXCP_NONE; 1827 } 1828 1829 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1830 target_ulong val) 1831 { 1832 int cidx; 1833 PMUCTRState *counter; 1834 1835 env->mcountinhibit = val; 1836 1837 /* Check if any other counter is also monitoring cycles/instructions */ 1838 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1839 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1840 counter = &env->pmu_ctrs[cidx]; 1841 counter->started = true; 1842 } 1843 } 1844 1845 return RISCV_EXCP_NONE; 1846 } 1847 1848 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1849 target_ulong *val) 1850 { 1851 *val = env->mcounteren; 1852 return RISCV_EXCP_NONE; 1853 } 1854 1855 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1856 target_ulong val) 1857 { 1858 env->mcounteren = val; 1859 return RISCV_EXCP_NONE; 1860 } 1861 1862 /* Machine Trap Handling */ 1863 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1864 Int128 *val) 1865 { 1866 *val = int128_make128(env->mscratch, env->mscratchh); 1867 return RISCV_EXCP_NONE; 1868 } 1869 1870 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1871 Int128 val) 1872 { 1873 env->mscratch = int128_getlo(val); 1874 env->mscratchh = int128_gethi(val); 1875 return RISCV_EXCP_NONE; 1876 } 1877 1878 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1879 target_ulong *val) 1880 { 1881 *val = env->mscratch; 1882 return RISCV_EXCP_NONE; 1883 } 1884 1885 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1886 target_ulong val) 1887 { 1888 env->mscratch = val; 1889 return RISCV_EXCP_NONE; 1890 } 1891 1892 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1893 target_ulong *val) 1894 { 1895 *val = env->mepc; 1896 return RISCV_EXCP_NONE; 1897 } 1898 1899 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1900 target_ulong val) 1901 { 1902 env->mepc = val; 1903 return RISCV_EXCP_NONE; 1904 } 1905 1906 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1907 target_ulong *val) 1908 { 1909 *val = env->mcause; 1910 return RISCV_EXCP_NONE; 1911 } 1912 1913 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1914 target_ulong val) 1915 { 1916 env->mcause = val; 1917 return RISCV_EXCP_NONE; 1918 } 1919 1920 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1921 target_ulong *val) 1922 { 1923 *val = env->mtval; 1924 return RISCV_EXCP_NONE; 1925 } 1926 1927 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1928 target_ulong val) 1929 { 1930 env->mtval = val; 1931 return RISCV_EXCP_NONE; 1932 } 1933 1934 /* Execution environment configuration setup */ 1935 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1936 target_ulong *val) 1937 { 1938 *val = env->menvcfg; 1939 return RISCV_EXCP_NONE; 1940 } 1941 1942 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1943 target_ulong val) 1944 { 1945 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 1946 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1947 1948 if (riscv_cpu_mxl(env) == MXL_RV64) { 1949 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1950 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 1951 (cfg->ext_svadu ? MENVCFG_HADE : 0); 1952 } 1953 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1954 1955 return RISCV_EXCP_NONE; 1956 } 1957 1958 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1959 target_ulong *val) 1960 { 1961 *val = env->menvcfg >> 32; 1962 return RISCV_EXCP_NONE; 1963 } 1964 1965 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1966 target_ulong val) 1967 { 1968 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 1969 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1970 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 1971 (cfg->ext_svadu ? MENVCFG_HADE : 0); 1972 uint64_t valh = (uint64_t)val << 32; 1973 1974 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1975 1976 return RISCV_EXCP_NONE; 1977 } 1978 1979 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1980 target_ulong *val) 1981 { 1982 RISCVException ret; 1983 1984 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1985 if (ret != RISCV_EXCP_NONE) { 1986 return ret; 1987 } 1988 1989 *val = env->senvcfg; 1990 return RISCV_EXCP_NONE; 1991 } 1992 1993 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1994 target_ulong val) 1995 { 1996 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1997 RISCVException ret; 1998 1999 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2000 if (ret != RISCV_EXCP_NONE) { 2001 return ret; 2002 } 2003 2004 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 2005 return RISCV_EXCP_NONE; 2006 } 2007 2008 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 2009 target_ulong *val) 2010 { 2011 RISCVException ret; 2012 2013 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2014 if (ret != RISCV_EXCP_NONE) { 2015 return ret; 2016 } 2017 2018 /* 2019 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 2020 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 2021 * henvcfg.hade is read_only 0 when menvcfg.hade = 0 2022 */ 2023 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE) | 2024 env->menvcfg); 2025 return RISCV_EXCP_NONE; 2026 } 2027 2028 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 2029 target_ulong val) 2030 { 2031 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 2032 RISCVException ret; 2033 2034 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2035 if (ret != RISCV_EXCP_NONE) { 2036 return ret; 2037 } 2038 2039 if (riscv_cpu_mxl(env) == MXL_RV64) { 2040 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE); 2041 } 2042 2043 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 2044 2045 return RISCV_EXCP_NONE; 2046 } 2047 2048 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 2049 target_ulong *val) 2050 { 2051 RISCVException ret; 2052 2053 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2054 if (ret != RISCV_EXCP_NONE) { 2055 return ret; 2056 } 2057 2058 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE) | 2059 env->menvcfg)) >> 32; 2060 return RISCV_EXCP_NONE; 2061 } 2062 2063 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2064 target_ulong val) 2065 { 2066 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 2067 HENVCFG_HADE); 2068 uint64_t valh = (uint64_t)val << 32; 2069 RISCVException ret; 2070 2071 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2072 if (ret != RISCV_EXCP_NONE) { 2073 return ret; 2074 } 2075 2076 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2077 return RISCV_EXCP_NONE; 2078 } 2079 2080 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2081 target_ulong *val) 2082 { 2083 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2084 2085 return RISCV_EXCP_NONE; 2086 } 2087 2088 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2089 uint64_t wr_mask, target_ulong new_val) 2090 { 2091 uint64_t *reg; 2092 2093 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2094 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2095 2096 return RISCV_EXCP_NONE; 2097 } 2098 2099 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2100 target_ulong new_val) 2101 { 2102 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2103 2104 return write_mstateen(env, csrno, wr_mask, new_val); 2105 } 2106 2107 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2108 target_ulong new_val) 2109 { 2110 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2111 } 2112 2113 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2114 target_ulong *val) 2115 { 2116 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2117 2118 return RISCV_EXCP_NONE; 2119 } 2120 2121 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2122 uint64_t wr_mask, target_ulong new_val) 2123 { 2124 uint64_t *reg, val; 2125 2126 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2127 val = (uint64_t)new_val << 32; 2128 val |= *reg & 0xFFFFFFFF; 2129 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2130 2131 return RISCV_EXCP_NONE; 2132 } 2133 2134 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2135 target_ulong new_val) 2136 { 2137 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2138 2139 return write_mstateenh(env, csrno, wr_mask, new_val); 2140 } 2141 2142 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2143 target_ulong new_val) 2144 { 2145 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2146 } 2147 2148 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2149 target_ulong *val) 2150 { 2151 int index = csrno - CSR_HSTATEEN0; 2152 2153 *val = env->hstateen[index] & env->mstateen[index]; 2154 2155 return RISCV_EXCP_NONE; 2156 } 2157 2158 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2159 uint64_t mask, target_ulong new_val) 2160 { 2161 int index = csrno - CSR_HSTATEEN0; 2162 uint64_t *reg, wr_mask; 2163 2164 reg = &env->hstateen[index]; 2165 wr_mask = env->mstateen[index] & mask; 2166 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2167 2168 return RISCV_EXCP_NONE; 2169 } 2170 2171 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2172 target_ulong new_val) 2173 { 2174 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2175 2176 return write_hstateen(env, csrno, wr_mask, new_val); 2177 } 2178 2179 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2180 target_ulong new_val) 2181 { 2182 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2183 } 2184 2185 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2186 target_ulong *val) 2187 { 2188 int index = csrno - CSR_HSTATEEN0H; 2189 2190 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2191 2192 return RISCV_EXCP_NONE; 2193 } 2194 2195 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2196 uint64_t mask, target_ulong new_val) 2197 { 2198 int index = csrno - CSR_HSTATEEN0H; 2199 uint64_t *reg, wr_mask, val; 2200 2201 reg = &env->hstateen[index]; 2202 val = (uint64_t)new_val << 32; 2203 val |= *reg & 0xFFFFFFFF; 2204 wr_mask = env->mstateen[index] & mask; 2205 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2206 2207 return RISCV_EXCP_NONE; 2208 } 2209 2210 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2211 target_ulong new_val) 2212 { 2213 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2214 2215 return write_hstateenh(env, csrno, wr_mask, new_val); 2216 } 2217 2218 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2219 target_ulong new_val) 2220 { 2221 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2222 } 2223 2224 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2225 target_ulong *val) 2226 { 2227 bool virt = env->virt_enabled; 2228 int index = csrno - CSR_SSTATEEN0; 2229 2230 *val = env->sstateen[index] & env->mstateen[index]; 2231 if (virt) { 2232 *val &= env->hstateen[index]; 2233 } 2234 2235 return RISCV_EXCP_NONE; 2236 } 2237 2238 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2239 uint64_t mask, target_ulong new_val) 2240 { 2241 bool virt = env->virt_enabled; 2242 int index = csrno - CSR_SSTATEEN0; 2243 uint64_t wr_mask; 2244 uint64_t *reg; 2245 2246 wr_mask = env->mstateen[index] & mask; 2247 if (virt) { 2248 wr_mask &= env->hstateen[index]; 2249 } 2250 2251 reg = &env->sstateen[index]; 2252 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2253 2254 return RISCV_EXCP_NONE; 2255 } 2256 2257 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2258 target_ulong new_val) 2259 { 2260 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2261 2262 return write_sstateen(env, csrno, wr_mask, new_val); 2263 } 2264 2265 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2266 target_ulong new_val) 2267 { 2268 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2269 } 2270 2271 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2272 uint64_t *ret_val, 2273 uint64_t new_val, uint64_t wr_mask) 2274 { 2275 uint64_t old_mip, mask = wr_mask & delegable_ints; 2276 uint32_t gin; 2277 2278 if (mask & MIP_SEIP) { 2279 env->software_seip = new_val & MIP_SEIP; 2280 new_val |= env->external_seip * MIP_SEIP; 2281 } 2282 2283 if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && 2284 get_field(env->menvcfg, MENVCFG_STCE)) { 2285 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2286 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2287 } 2288 2289 if (mask) { 2290 old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); 2291 } else { 2292 old_mip = env->mip; 2293 } 2294 2295 if (csrno != CSR_HVIP) { 2296 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2297 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2298 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2299 } 2300 2301 if (ret_val) { 2302 *ret_val = old_mip; 2303 } 2304 2305 return RISCV_EXCP_NONE; 2306 } 2307 2308 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2309 target_ulong *ret_val, 2310 target_ulong new_val, target_ulong wr_mask) 2311 { 2312 uint64_t rval; 2313 RISCVException ret; 2314 2315 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2316 if (ret_val) { 2317 *ret_val = rval; 2318 } 2319 2320 return ret; 2321 } 2322 2323 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2324 target_ulong *ret_val, 2325 target_ulong new_val, target_ulong wr_mask) 2326 { 2327 uint64_t rval; 2328 RISCVException ret; 2329 2330 ret = rmw_mip64(env, csrno, &rval, 2331 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2332 if (ret_val) { 2333 *ret_val = rval >> 32; 2334 } 2335 2336 return ret; 2337 } 2338 2339 /* Supervisor Trap Setup */ 2340 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2341 Int128 *val) 2342 { 2343 uint64_t mask = sstatus_v1_10_mask; 2344 uint64_t sstatus = env->mstatus & mask; 2345 if (env->xl != MXL_RV32 || env->debugger) { 2346 mask |= SSTATUS64_UXL; 2347 } 2348 2349 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2350 return RISCV_EXCP_NONE; 2351 } 2352 2353 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2354 target_ulong *val) 2355 { 2356 target_ulong mask = (sstatus_v1_10_mask); 2357 if (env->xl != MXL_RV32 || env->debugger) { 2358 mask |= SSTATUS64_UXL; 2359 } 2360 /* TODO: Use SXL not MXL. */ 2361 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2362 return RISCV_EXCP_NONE; 2363 } 2364 2365 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2366 target_ulong val) 2367 { 2368 target_ulong mask = (sstatus_v1_10_mask); 2369 2370 if (env->xl != MXL_RV32 || env->debugger) { 2371 if ((val & SSTATUS64_UXL) != 0) { 2372 mask |= SSTATUS64_UXL; 2373 } 2374 } 2375 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2376 return write_mstatus(env, CSR_MSTATUS, newval); 2377 } 2378 2379 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2380 uint64_t *ret_val, 2381 uint64_t new_val, uint64_t wr_mask) 2382 { 2383 RISCVException ret; 2384 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2385 2386 /* Bring VS-level bits to correct position */ 2387 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2388 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2389 2390 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2391 if (ret_val) { 2392 *ret_val = (rval & mask) >> 1; 2393 } 2394 2395 return ret; 2396 } 2397 2398 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2399 target_ulong *ret_val, 2400 target_ulong new_val, target_ulong wr_mask) 2401 { 2402 uint64_t rval; 2403 RISCVException ret; 2404 2405 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2406 if (ret_val) { 2407 *ret_val = rval; 2408 } 2409 2410 return ret; 2411 } 2412 2413 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2414 target_ulong *ret_val, 2415 target_ulong new_val, target_ulong wr_mask) 2416 { 2417 uint64_t rval; 2418 RISCVException ret; 2419 2420 ret = rmw_vsie64(env, csrno, &rval, 2421 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2422 if (ret_val) { 2423 *ret_val = rval >> 32; 2424 } 2425 2426 return ret; 2427 } 2428 2429 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2430 uint64_t *ret_val, 2431 uint64_t new_val, uint64_t wr_mask) 2432 { 2433 RISCVException ret; 2434 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2435 2436 if (env->virt_enabled) { 2437 if (env->hvictl & HVICTL_VTI) { 2438 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2439 } 2440 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2441 } else { 2442 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2443 } 2444 2445 if (ret_val) { 2446 *ret_val &= mask; 2447 } 2448 2449 return ret; 2450 } 2451 2452 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2453 target_ulong *ret_val, 2454 target_ulong new_val, target_ulong wr_mask) 2455 { 2456 uint64_t rval; 2457 RISCVException ret; 2458 2459 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2460 if (ret == RISCV_EXCP_NONE && ret_val) { 2461 *ret_val = rval; 2462 } 2463 2464 return ret; 2465 } 2466 2467 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2468 target_ulong *ret_val, 2469 target_ulong new_val, target_ulong wr_mask) 2470 { 2471 uint64_t rval; 2472 RISCVException ret; 2473 2474 ret = rmw_sie64(env, csrno, &rval, 2475 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2476 if (ret_val) { 2477 *ret_val = rval >> 32; 2478 } 2479 2480 return ret; 2481 } 2482 2483 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2484 target_ulong *val) 2485 { 2486 *val = env->stvec; 2487 return RISCV_EXCP_NONE; 2488 } 2489 2490 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2491 target_ulong val) 2492 { 2493 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2494 if ((val & 3) < 2) { 2495 env->stvec = val; 2496 } else { 2497 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2498 } 2499 return RISCV_EXCP_NONE; 2500 } 2501 2502 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2503 target_ulong *val) 2504 { 2505 *val = env->scounteren; 2506 return RISCV_EXCP_NONE; 2507 } 2508 2509 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2510 target_ulong val) 2511 { 2512 env->scounteren = val; 2513 return RISCV_EXCP_NONE; 2514 } 2515 2516 /* Supervisor Trap Handling */ 2517 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2518 Int128 *val) 2519 { 2520 *val = int128_make128(env->sscratch, env->sscratchh); 2521 return RISCV_EXCP_NONE; 2522 } 2523 2524 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2525 Int128 val) 2526 { 2527 env->sscratch = int128_getlo(val); 2528 env->sscratchh = int128_gethi(val); 2529 return RISCV_EXCP_NONE; 2530 } 2531 2532 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2533 target_ulong *val) 2534 { 2535 *val = env->sscratch; 2536 return RISCV_EXCP_NONE; 2537 } 2538 2539 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2540 target_ulong val) 2541 { 2542 env->sscratch = val; 2543 return RISCV_EXCP_NONE; 2544 } 2545 2546 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2547 target_ulong *val) 2548 { 2549 *val = env->sepc; 2550 return RISCV_EXCP_NONE; 2551 } 2552 2553 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2554 target_ulong val) 2555 { 2556 env->sepc = val; 2557 return RISCV_EXCP_NONE; 2558 } 2559 2560 static RISCVException read_scause(CPURISCVState *env, int csrno, 2561 target_ulong *val) 2562 { 2563 *val = env->scause; 2564 return RISCV_EXCP_NONE; 2565 } 2566 2567 static RISCVException write_scause(CPURISCVState *env, int csrno, 2568 target_ulong val) 2569 { 2570 env->scause = val; 2571 return RISCV_EXCP_NONE; 2572 } 2573 2574 static RISCVException read_stval(CPURISCVState *env, int csrno, 2575 target_ulong *val) 2576 { 2577 *val = env->stval; 2578 return RISCV_EXCP_NONE; 2579 } 2580 2581 static RISCVException write_stval(CPURISCVState *env, int csrno, 2582 target_ulong val) 2583 { 2584 env->stval = val; 2585 return RISCV_EXCP_NONE; 2586 } 2587 2588 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2589 uint64_t *ret_val, 2590 uint64_t new_val, uint64_t wr_mask) 2591 { 2592 RISCVException ret; 2593 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2594 2595 /* Bring VS-level bits to correct position */ 2596 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2597 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2598 2599 ret = rmw_mip64(env, csrno, &rval, new_val, 2600 wr_mask & mask & vsip_writable_mask); 2601 if (ret_val) { 2602 *ret_val = (rval & mask) >> 1; 2603 } 2604 2605 return ret; 2606 } 2607 2608 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2609 target_ulong *ret_val, 2610 target_ulong new_val, target_ulong wr_mask) 2611 { 2612 uint64_t rval; 2613 RISCVException ret; 2614 2615 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2616 if (ret_val) { 2617 *ret_val = rval; 2618 } 2619 2620 return ret; 2621 } 2622 2623 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2624 target_ulong *ret_val, 2625 target_ulong new_val, target_ulong wr_mask) 2626 { 2627 uint64_t rval; 2628 RISCVException ret; 2629 2630 ret = rmw_vsip64(env, csrno, &rval, 2631 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2632 if (ret_val) { 2633 *ret_val = rval >> 32; 2634 } 2635 2636 return ret; 2637 } 2638 2639 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2640 uint64_t *ret_val, 2641 uint64_t new_val, uint64_t wr_mask) 2642 { 2643 RISCVException ret; 2644 uint64_t mask = env->mideleg & sip_writable_mask; 2645 2646 if (env->virt_enabled) { 2647 if (env->hvictl & HVICTL_VTI) { 2648 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2649 } 2650 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2651 } else { 2652 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2653 } 2654 2655 if (ret_val) { 2656 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2657 } 2658 2659 return ret; 2660 } 2661 2662 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2663 target_ulong *ret_val, 2664 target_ulong new_val, target_ulong wr_mask) 2665 { 2666 uint64_t rval; 2667 RISCVException ret; 2668 2669 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2670 if (ret_val) { 2671 *ret_val = rval; 2672 } 2673 2674 return ret; 2675 } 2676 2677 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2678 target_ulong *ret_val, 2679 target_ulong new_val, target_ulong wr_mask) 2680 { 2681 uint64_t rval; 2682 RISCVException ret; 2683 2684 ret = rmw_sip64(env, csrno, &rval, 2685 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2686 if (ret_val) { 2687 *ret_val = rval >> 32; 2688 } 2689 2690 return ret; 2691 } 2692 2693 /* Supervisor Protection and Translation */ 2694 static RISCVException read_satp(CPURISCVState *env, int csrno, 2695 target_ulong *val) 2696 { 2697 if (!riscv_cpu_cfg(env)->mmu) { 2698 *val = 0; 2699 return RISCV_EXCP_NONE; 2700 } 2701 *val = env->satp; 2702 return RISCV_EXCP_NONE; 2703 } 2704 2705 static RISCVException write_satp(CPURISCVState *env, int csrno, 2706 target_ulong val) 2707 { 2708 target_ulong mask; 2709 bool vm; 2710 2711 if (!riscv_cpu_cfg(env)->mmu) { 2712 return RISCV_EXCP_NONE; 2713 } 2714 2715 if (riscv_cpu_mxl(env) == MXL_RV32) { 2716 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2717 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2718 } else { 2719 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2720 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2721 } 2722 2723 if (vm && mask) { 2724 /* 2725 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2726 * pass these through QEMU's TLB emulation as it improves 2727 * performance. Flushing the TLB on SATP writes with paging 2728 * enabled avoids leaking those invalid cached mappings. 2729 */ 2730 tlb_flush(env_cpu(env)); 2731 env->satp = val; 2732 } 2733 return RISCV_EXCP_NONE; 2734 } 2735 2736 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2737 { 2738 int irq, ret; 2739 target_ulong topei; 2740 uint64_t vseip, vsgein; 2741 uint32_t iid, iprio, hviid, hviprio, gein; 2742 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2743 2744 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2745 hviid = get_field(env->hvictl, HVICTL_IID); 2746 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2747 2748 if (gein) { 2749 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2750 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2751 if (gein <= env->geilen && vseip) { 2752 siid[scount] = IRQ_S_EXT; 2753 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2754 if (env->aia_ireg_rmw_fn[PRV_S]) { 2755 /* 2756 * Call machine specific IMSIC register emulation for 2757 * reading TOPEI. 2758 */ 2759 ret = env->aia_ireg_rmw_fn[PRV_S]( 2760 env->aia_ireg_rmw_fn_arg[PRV_S], 2761 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2762 riscv_cpu_mxl_bits(env)), 2763 &topei, 0, 0); 2764 if (!ret && topei) { 2765 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2766 } 2767 } 2768 scount++; 2769 } 2770 } else { 2771 if (hviid == IRQ_S_EXT && hviprio) { 2772 siid[scount] = IRQ_S_EXT; 2773 siprio[scount] = hviprio; 2774 scount++; 2775 } 2776 } 2777 2778 if (env->hvictl & HVICTL_VTI) { 2779 if (hviid != IRQ_S_EXT) { 2780 siid[scount] = hviid; 2781 siprio[scount] = hviprio; 2782 scount++; 2783 } 2784 } else { 2785 irq = riscv_cpu_vsirq_pending(env); 2786 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2787 siid[scount] = irq; 2788 siprio[scount] = env->hviprio[irq]; 2789 scount++; 2790 } 2791 } 2792 2793 iid = 0; 2794 iprio = UINT_MAX; 2795 for (s = 0; s < scount; s++) { 2796 if (siprio[s] < iprio) { 2797 iid = siid[s]; 2798 iprio = siprio[s]; 2799 } 2800 } 2801 2802 if (iid) { 2803 if (env->hvictl & HVICTL_IPRIOM) { 2804 if (iprio > IPRIO_MMAXIPRIO) { 2805 iprio = IPRIO_MMAXIPRIO; 2806 } 2807 if (!iprio) { 2808 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2809 iprio = IPRIO_MMAXIPRIO; 2810 } 2811 } 2812 } else { 2813 iprio = 1; 2814 } 2815 } else { 2816 iprio = 0; 2817 } 2818 2819 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2820 *val |= iprio; 2821 return RISCV_EXCP_NONE; 2822 } 2823 2824 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2825 { 2826 int irq; 2827 uint8_t iprio; 2828 2829 if (env->virt_enabled) { 2830 return read_vstopi(env, CSR_VSTOPI, val); 2831 } 2832 2833 irq = riscv_cpu_sirq_pending(env); 2834 if (irq <= 0 || irq > 63) { 2835 *val = 0; 2836 } else { 2837 iprio = env->siprio[irq]; 2838 if (!iprio) { 2839 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2840 iprio = IPRIO_MMAXIPRIO; 2841 } 2842 } 2843 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2844 *val |= iprio; 2845 } 2846 2847 return RISCV_EXCP_NONE; 2848 } 2849 2850 /* Hypervisor Extensions */ 2851 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2852 target_ulong *val) 2853 { 2854 *val = env->hstatus; 2855 if (riscv_cpu_mxl(env) != MXL_RV32) { 2856 /* We only support 64-bit VSXL */ 2857 *val = set_field(*val, HSTATUS_VSXL, 2); 2858 } 2859 /* We only support little endian */ 2860 *val = set_field(*val, HSTATUS_VSBE, 0); 2861 return RISCV_EXCP_NONE; 2862 } 2863 2864 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2865 target_ulong val) 2866 { 2867 env->hstatus = val; 2868 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2869 qemu_log_mask(LOG_UNIMP, 2870 "QEMU does not support mixed HSXLEN options."); 2871 } 2872 if (get_field(val, HSTATUS_VSBE) != 0) { 2873 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2874 } 2875 return RISCV_EXCP_NONE; 2876 } 2877 2878 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2879 target_ulong *val) 2880 { 2881 *val = env->hedeleg; 2882 return RISCV_EXCP_NONE; 2883 } 2884 2885 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2886 target_ulong val) 2887 { 2888 env->hedeleg = val & vs_delegable_excps; 2889 return RISCV_EXCP_NONE; 2890 } 2891 2892 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2893 uint64_t *ret_val, 2894 uint64_t new_val, uint64_t wr_mask) 2895 { 2896 uint64_t mask = wr_mask & vs_delegable_ints; 2897 2898 if (ret_val) { 2899 *ret_val = env->hideleg & vs_delegable_ints; 2900 } 2901 2902 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2903 return RISCV_EXCP_NONE; 2904 } 2905 2906 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2907 target_ulong *ret_val, 2908 target_ulong new_val, target_ulong wr_mask) 2909 { 2910 uint64_t rval; 2911 RISCVException ret; 2912 2913 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2914 if (ret_val) { 2915 *ret_val = rval; 2916 } 2917 2918 return ret; 2919 } 2920 2921 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2922 target_ulong *ret_val, 2923 target_ulong new_val, target_ulong wr_mask) 2924 { 2925 uint64_t rval; 2926 RISCVException ret; 2927 2928 ret = rmw_hideleg64(env, csrno, &rval, 2929 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2930 if (ret_val) { 2931 *ret_val = rval >> 32; 2932 } 2933 2934 return ret; 2935 } 2936 2937 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2938 uint64_t *ret_val, 2939 uint64_t new_val, uint64_t wr_mask) 2940 { 2941 RISCVException ret; 2942 2943 ret = rmw_mip64(env, csrno, ret_val, new_val, 2944 wr_mask & hvip_writable_mask); 2945 if (ret_val) { 2946 *ret_val &= VS_MODE_INTERRUPTS; 2947 } 2948 2949 return ret; 2950 } 2951 2952 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2953 target_ulong *ret_val, 2954 target_ulong new_val, target_ulong wr_mask) 2955 { 2956 uint64_t rval; 2957 RISCVException ret; 2958 2959 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2960 if (ret_val) { 2961 *ret_val = rval; 2962 } 2963 2964 return ret; 2965 } 2966 2967 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2968 target_ulong *ret_val, 2969 target_ulong new_val, target_ulong wr_mask) 2970 { 2971 uint64_t rval; 2972 RISCVException ret; 2973 2974 ret = rmw_hvip64(env, csrno, &rval, 2975 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2976 if (ret_val) { 2977 *ret_val = rval >> 32; 2978 } 2979 2980 return ret; 2981 } 2982 2983 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2984 target_ulong *ret_value, 2985 target_ulong new_value, target_ulong write_mask) 2986 { 2987 int ret = rmw_mip(env, csrno, ret_value, new_value, 2988 write_mask & hip_writable_mask); 2989 2990 if (ret_value) { 2991 *ret_value &= HS_MODE_INTERRUPTS; 2992 } 2993 return ret; 2994 } 2995 2996 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2997 target_ulong *ret_val, 2998 target_ulong new_val, target_ulong wr_mask) 2999 { 3000 uint64_t rval; 3001 RISCVException ret; 3002 3003 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 3004 if (ret_val) { 3005 *ret_val = rval & HS_MODE_INTERRUPTS; 3006 } 3007 3008 return ret; 3009 } 3010 3011 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 3012 target_ulong *val) 3013 { 3014 *val = env->hcounteren; 3015 return RISCV_EXCP_NONE; 3016 } 3017 3018 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 3019 target_ulong val) 3020 { 3021 env->hcounteren = val; 3022 return RISCV_EXCP_NONE; 3023 } 3024 3025 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 3026 target_ulong *val) 3027 { 3028 if (val) { 3029 *val = env->hgeie; 3030 } 3031 return RISCV_EXCP_NONE; 3032 } 3033 3034 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 3035 target_ulong val) 3036 { 3037 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 3038 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 3039 env->hgeie = val; 3040 /* Update mip.SGEIP bit */ 3041 riscv_cpu_update_mip(env, MIP_SGEIP, 3042 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 3043 return RISCV_EXCP_NONE; 3044 } 3045 3046 static RISCVException read_htval(CPURISCVState *env, int csrno, 3047 target_ulong *val) 3048 { 3049 *val = env->htval; 3050 return RISCV_EXCP_NONE; 3051 } 3052 3053 static RISCVException write_htval(CPURISCVState *env, int csrno, 3054 target_ulong val) 3055 { 3056 env->htval = val; 3057 return RISCV_EXCP_NONE; 3058 } 3059 3060 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3061 target_ulong *val) 3062 { 3063 *val = env->htinst; 3064 return RISCV_EXCP_NONE; 3065 } 3066 3067 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3068 target_ulong val) 3069 { 3070 return RISCV_EXCP_NONE; 3071 } 3072 3073 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3074 target_ulong *val) 3075 { 3076 if (val) { 3077 *val = env->hgeip; 3078 } 3079 return RISCV_EXCP_NONE; 3080 } 3081 3082 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3083 target_ulong *val) 3084 { 3085 *val = env->hgatp; 3086 return RISCV_EXCP_NONE; 3087 } 3088 3089 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3090 target_ulong val) 3091 { 3092 env->hgatp = val; 3093 return RISCV_EXCP_NONE; 3094 } 3095 3096 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3097 target_ulong *val) 3098 { 3099 if (!env->rdtime_fn) { 3100 return RISCV_EXCP_ILLEGAL_INST; 3101 } 3102 3103 *val = env->htimedelta; 3104 return RISCV_EXCP_NONE; 3105 } 3106 3107 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3108 target_ulong val) 3109 { 3110 if (!env->rdtime_fn) { 3111 return RISCV_EXCP_ILLEGAL_INST; 3112 } 3113 3114 if (riscv_cpu_mxl(env) == MXL_RV32) { 3115 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3116 } else { 3117 env->htimedelta = val; 3118 } 3119 3120 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3121 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3122 env->htimedelta, MIP_VSTIP); 3123 } 3124 3125 return RISCV_EXCP_NONE; 3126 } 3127 3128 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3129 target_ulong *val) 3130 { 3131 if (!env->rdtime_fn) { 3132 return RISCV_EXCP_ILLEGAL_INST; 3133 } 3134 3135 *val = env->htimedelta >> 32; 3136 return RISCV_EXCP_NONE; 3137 } 3138 3139 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3140 target_ulong val) 3141 { 3142 if (!env->rdtime_fn) { 3143 return RISCV_EXCP_ILLEGAL_INST; 3144 } 3145 3146 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3147 3148 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3149 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3150 env->htimedelta, MIP_VSTIP); 3151 } 3152 3153 return RISCV_EXCP_NONE; 3154 } 3155 3156 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3157 { 3158 *val = env->hvictl; 3159 return RISCV_EXCP_NONE; 3160 } 3161 3162 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3163 { 3164 env->hvictl = val & HVICTL_VALID_MASK; 3165 return RISCV_EXCP_NONE; 3166 } 3167 3168 static int read_hvipriox(CPURISCVState *env, int first_index, 3169 uint8_t *iprio, target_ulong *val) 3170 { 3171 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3172 3173 /* First index has to be a multiple of number of irqs per register */ 3174 if (first_index % num_irqs) { 3175 return (env->virt_enabled) ? 3176 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3177 } 3178 3179 /* Fill-up return value */ 3180 *val = 0; 3181 for (i = 0; i < num_irqs; i++) { 3182 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3183 continue; 3184 } 3185 if (rdzero) { 3186 continue; 3187 } 3188 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3189 } 3190 3191 return RISCV_EXCP_NONE; 3192 } 3193 3194 static int write_hvipriox(CPURISCVState *env, int first_index, 3195 uint8_t *iprio, target_ulong val) 3196 { 3197 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3198 3199 /* First index has to be a multiple of number of irqs per register */ 3200 if (first_index % num_irqs) { 3201 return (env->virt_enabled) ? 3202 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3203 } 3204 3205 /* Fill-up priority arrary */ 3206 for (i = 0; i < num_irqs; i++) { 3207 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3208 continue; 3209 } 3210 if (rdzero) { 3211 iprio[irq] = 0; 3212 } else { 3213 iprio[irq] = (val >> (i * 8)) & 0xff; 3214 } 3215 } 3216 3217 return RISCV_EXCP_NONE; 3218 } 3219 3220 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3221 { 3222 return read_hvipriox(env, 0, env->hviprio, val); 3223 } 3224 3225 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3226 { 3227 return write_hvipriox(env, 0, env->hviprio, val); 3228 } 3229 3230 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3231 { 3232 return read_hvipriox(env, 4, env->hviprio, val); 3233 } 3234 3235 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3236 { 3237 return write_hvipriox(env, 4, env->hviprio, val); 3238 } 3239 3240 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3241 { 3242 return read_hvipriox(env, 8, env->hviprio, val); 3243 } 3244 3245 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3246 { 3247 return write_hvipriox(env, 8, env->hviprio, val); 3248 } 3249 3250 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3251 { 3252 return read_hvipriox(env, 12, env->hviprio, val); 3253 } 3254 3255 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3256 { 3257 return write_hvipriox(env, 12, env->hviprio, val); 3258 } 3259 3260 /* Virtual CSR Registers */ 3261 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3262 target_ulong *val) 3263 { 3264 *val = env->vsstatus; 3265 return RISCV_EXCP_NONE; 3266 } 3267 3268 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3269 target_ulong val) 3270 { 3271 uint64_t mask = (target_ulong)-1; 3272 if ((val & VSSTATUS64_UXL) == 0) { 3273 mask &= ~VSSTATUS64_UXL; 3274 } 3275 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3276 return RISCV_EXCP_NONE; 3277 } 3278 3279 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3280 { 3281 *val = env->vstvec; 3282 return RISCV_EXCP_NONE; 3283 } 3284 3285 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3286 target_ulong val) 3287 { 3288 env->vstvec = val; 3289 return RISCV_EXCP_NONE; 3290 } 3291 3292 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3293 target_ulong *val) 3294 { 3295 *val = env->vsscratch; 3296 return RISCV_EXCP_NONE; 3297 } 3298 3299 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3300 target_ulong val) 3301 { 3302 env->vsscratch = val; 3303 return RISCV_EXCP_NONE; 3304 } 3305 3306 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3307 target_ulong *val) 3308 { 3309 *val = env->vsepc; 3310 return RISCV_EXCP_NONE; 3311 } 3312 3313 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3314 target_ulong val) 3315 { 3316 env->vsepc = val; 3317 return RISCV_EXCP_NONE; 3318 } 3319 3320 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3321 target_ulong *val) 3322 { 3323 *val = env->vscause; 3324 return RISCV_EXCP_NONE; 3325 } 3326 3327 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3328 target_ulong val) 3329 { 3330 env->vscause = val; 3331 return RISCV_EXCP_NONE; 3332 } 3333 3334 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3335 target_ulong *val) 3336 { 3337 *val = env->vstval; 3338 return RISCV_EXCP_NONE; 3339 } 3340 3341 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3342 target_ulong val) 3343 { 3344 env->vstval = val; 3345 return RISCV_EXCP_NONE; 3346 } 3347 3348 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3349 target_ulong *val) 3350 { 3351 *val = env->vsatp; 3352 return RISCV_EXCP_NONE; 3353 } 3354 3355 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3356 target_ulong val) 3357 { 3358 env->vsatp = val; 3359 return RISCV_EXCP_NONE; 3360 } 3361 3362 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3363 target_ulong *val) 3364 { 3365 *val = env->mtval2; 3366 return RISCV_EXCP_NONE; 3367 } 3368 3369 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3370 target_ulong val) 3371 { 3372 env->mtval2 = val; 3373 return RISCV_EXCP_NONE; 3374 } 3375 3376 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3377 target_ulong *val) 3378 { 3379 *val = env->mtinst; 3380 return RISCV_EXCP_NONE; 3381 } 3382 3383 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3384 target_ulong val) 3385 { 3386 env->mtinst = val; 3387 return RISCV_EXCP_NONE; 3388 } 3389 3390 /* Physical Memory Protection */ 3391 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3392 target_ulong *val) 3393 { 3394 *val = mseccfg_csr_read(env); 3395 return RISCV_EXCP_NONE; 3396 } 3397 3398 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3399 target_ulong val) 3400 { 3401 mseccfg_csr_write(env, val); 3402 return RISCV_EXCP_NONE; 3403 } 3404 3405 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3406 target_ulong *val) 3407 { 3408 uint32_t reg_index = csrno - CSR_PMPCFG0; 3409 3410 *val = pmpcfg_csr_read(env, reg_index); 3411 return RISCV_EXCP_NONE; 3412 } 3413 3414 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3415 target_ulong val) 3416 { 3417 uint32_t reg_index = csrno - CSR_PMPCFG0; 3418 3419 pmpcfg_csr_write(env, reg_index, val); 3420 return RISCV_EXCP_NONE; 3421 } 3422 3423 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3424 target_ulong *val) 3425 { 3426 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3427 return RISCV_EXCP_NONE; 3428 } 3429 3430 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3431 target_ulong val) 3432 { 3433 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3434 return RISCV_EXCP_NONE; 3435 } 3436 3437 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3438 target_ulong *val) 3439 { 3440 *val = tselect_csr_read(env); 3441 return RISCV_EXCP_NONE; 3442 } 3443 3444 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3445 target_ulong val) 3446 { 3447 tselect_csr_write(env, val); 3448 return RISCV_EXCP_NONE; 3449 } 3450 3451 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3452 target_ulong *val) 3453 { 3454 /* return 0 in tdata1 to end the trigger enumeration */ 3455 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3456 *val = 0; 3457 return RISCV_EXCP_NONE; 3458 } 3459 3460 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3461 return RISCV_EXCP_ILLEGAL_INST; 3462 } 3463 3464 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3465 return RISCV_EXCP_NONE; 3466 } 3467 3468 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3469 target_ulong val) 3470 { 3471 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3472 return RISCV_EXCP_ILLEGAL_INST; 3473 } 3474 3475 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3476 return RISCV_EXCP_NONE; 3477 } 3478 3479 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3480 target_ulong *val) 3481 { 3482 *val = tinfo_csr_read(env); 3483 return RISCV_EXCP_NONE; 3484 } 3485 3486 /* 3487 * Functions to access Pointer Masking feature registers 3488 * We have to check if current priv lvl could modify 3489 * csr in given mode 3490 */ 3491 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3492 { 3493 int csr_priv = get_field(csrno, 0x300); 3494 int pm_current; 3495 3496 if (env->debugger) { 3497 return false; 3498 } 3499 /* 3500 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3501 * so allow the access 3502 */ 3503 if (env->priv != csr_priv) { 3504 return false; 3505 } 3506 switch (env->priv) { 3507 case PRV_M: 3508 pm_current = get_field(env->mmte, M_PM_CURRENT); 3509 break; 3510 case PRV_S: 3511 pm_current = get_field(env->mmte, S_PM_CURRENT); 3512 break; 3513 case PRV_U: 3514 pm_current = get_field(env->mmte, U_PM_CURRENT); 3515 break; 3516 default: 3517 g_assert_not_reached(); 3518 } 3519 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3520 return !pm_current; 3521 } 3522 3523 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3524 target_ulong *val) 3525 { 3526 *val = env->mmte & MMTE_MASK; 3527 return RISCV_EXCP_NONE; 3528 } 3529 3530 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3531 target_ulong val) 3532 { 3533 uint64_t mstatus; 3534 target_ulong wpri_val = val & MMTE_MASK; 3535 3536 if (val != wpri_val) { 3537 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 3538 TARGET_FMT_lx "\n", "MMTE: WPRI violation written 0x", 3539 val, "vs expected 0x", wpri_val); 3540 } 3541 /* for machine mode pm.current is hardwired to 1 */ 3542 wpri_val |= MMTE_M_PM_CURRENT; 3543 3544 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3545 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3546 env->mmte = wpri_val | EXT_STATUS_DIRTY; 3547 riscv_cpu_update_mask(env); 3548 3549 /* Set XS and SD bits, since PM CSRs are dirty */ 3550 mstatus = env->mstatus | MSTATUS_XS; 3551 write_mstatus(env, csrno, mstatus); 3552 return RISCV_EXCP_NONE; 3553 } 3554 3555 static RISCVException read_smte(CPURISCVState *env, int csrno, 3556 target_ulong *val) 3557 { 3558 *val = env->mmte & SMTE_MASK; 3559 return RISCV_EXCP_NONE; 3560 } 3561 3562 static RISCVException write_smte(CPURISCVState *env, int csrno, 3563 target_ulong val) 3564 { 3565 target_ulong wpri_val = val & SMTE_MASK; 3566 3567 if (val != wpri_val) { 3568 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 3569 TARGET_FMT_lx "\n", "SMTE: WPRI violation written 0x", 3570 val, "vs expected 0x", wpri_val); 3571 } 3572 3573 /* if pm.current==0 we can't modify current PM CSRs */ 3574 if (check_pm_current_disabled(env, csrno)) { 3575 return RISCV_EXCP_NONE; 3576 } 3577 3578 wpri_val |= (env->mmte & ~SMTE_MASK); 3579 write_mmte(env, csrno, wpri_val); 3580 return RISCV_EXCP_NONE; 3581 } 3582 3583 static RISCVException read_umte(CPURISCVState *env, int csrno, 3584 target_ulong *val) 3585 { 3586 *val = env->mmte & UMTE_MASK; 3587 return RISCV_EXCP_NONE; 3588 } 3589 3590 static RISCVException write_umte(CPURISCVState *env, int csrno, 3591 target_ulong val) 3592 { 3593 target_ulong wpri_val = val & UMTE_MASK; 3594 3595 if (val != wpri_val) { 3596 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 3597 TARGET_FMT_lx "\n", "UMTE: WPRI violation written 0x", 3598 val, "vs expected 0x", wpri_val); 3599 } 3600 3601 if (check_pm_current_disabled(env, csrno)) { 3602 return RISCV_EXCP_NONE; 3603 } 3604 3605 wpri_val |= (env->mmte & ~UMTE_MASK); 3606 write_mmte(env, csrno, wpri_val); 3607 return RISCV_EXCP_NONE; 3608 } 3609 3610 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3611 target_ulong *val) 3612 { 3613 *val = env->mpmmask; 3614 return RISCV_EXCP_NONE; 3615 } 3616 3617 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3618 target_ulong val) 3619 { 3620 uint64_t mstatus; 3621 3622 env->mpmmask = val; 3623 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3624 env->cur_pmmask = val; 3625 } 3626 env->mmte |= EXT_STATUS_DIRTY; 3627 3628 /* Set XS and SD bits, since PM CSRs are dirty */ 3629 mstatus = env->mstatus | MSTATUS_XS; 3630 write_mstatus(env, csrno, mstatus); 3631 return RISCV_EXCP_NONE; 3632 } 3633 3634 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3635 target_ulong *val) 3636 { 3637 *val = env->spmmask; 3638 return RISCV_EXCP_NONE; 3639 } 3640 3641 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3642 target_ulong val) 3643 { 3644 uint64_t mstatus; 3645 3646 /* if pm.current==0 we can't modify current PM CSRs */ 3647 if (check_pm_current_disabled(env, csrno)) { 3648 return RISCV_EXCP_NONE; 3649 } 3650 env->spmmask = val; 3651 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3652 env->cur_pmmask = val; 3653 } 3654 env->mmte |= EXT_STATUS_DIRTY; 3655 3656 /* Set XS and SD bits, since PM CSRs are dirty */ 3657 mstatus = env->mstatus | MSTATUS_XS; 3658 write_mstatus(env, csrno, mstatus); 3659 return RISCV_EXCP_NONE; 3660 } 3661 3662 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3663 target_ulong *val) 3664 { 3665 *val = env->upmmask; 3666 return RISCV_EXCP_NONE; 3667 } 3668 3669 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3670 target_ulong val) 3671 { 3672 uint64_t mstatus; 3673 3674 /* if pm.current==0 we can't modify current PM CSRs */ 3675 if (check_pm_current_disabled(env, csrno)) { 3676 return RISCV_EXCP_NONE; 3677 } 3678 env->upmmask = val; 3679 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3680 env->cur_pmmask = val; 3681 } 3682 env->mmte |= EXT_STATUS_DIRTY; 3683 3684 /* Set XS and SD bits, since PM CSRs are dirty */ 3685 mstatus = env->mstatus | MSTATUS_XS; 3686 write_mstatus(env, csrno, mstatus); 3687 return RISCV_EXCP_NONE; 3688 } 3689 3690 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3691 target_ulong *val) 3692 { 3693 *val = env->mpmbase; 3694 return RISCV_EXCP_NONE; 3695 } 3696 3697 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3698 target_ulong val) 3699 { 3700 uint64_t mstatus; 3701 3702 env->mpmbase = val; 3703 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3704 env->cur_pmbase = val; 3705 } 3706 env->mmte |= EXT_STATUS_DIRTY; 3707 3708 /* Set XS and SD bits, since PM CSRs are dirty */ 3709 mstatus = env->mstatus | MSTATUS_XS; 3710 write_mstatus(env, csrno, mstatus); 3711 return RISCV_EXCP_NONE; 3712 } 3713 3714 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3715 target_ulong *val) 3716 { 3717 *val = env->spmbase; 3718 return RISCV_EXCP_NONE; 3719 } 3720 3721 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3722 target_ulong val) 3723 { 3724 uint64_t mstatus; 3725 3726 /* if pm.current==0 we can't modify current PM CSRs */ 3727 if (check_pm_current_disabled(env, csrno)) { 3728 return RISCV_EXCP_NONE; 3729 } 3730 env->spmbase = val; 3731 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3732 env->cur_pmbase = val; 3733 } 3734 env->mmte |= EXT_STATUS_DIRTY; 3735 3736 /* Set XS and SD bits, since PM CSRs are dirty */ 3737 mstatus = env->mstatus | MSTATUS_XS; 3738 write_mstatus(env, csrno, mstatus); 3739 return RISCV_EXCP_NONE; 3740 } 3741 3742 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3743 target_ulong *val) 3744 { 3745 *val = env->upmbase; 3746 return RISCV_EXCP_NONE; 3747 } 3748 3749 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3750 target_ulong val) 3751 { 3752 uint64_t mstatus; 3753 3754 /* if pm.current==0 we can't modify current PM CSRs */ 3755 if (check_pm_current_disabled(env, csrno)) { 3756 return RISCV_EXCP_NONE; 3757 } 3758 env->upmbase = val; 3759 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3760 env->cur_pmbase = val; 3761 } 3762 env->mmte |= EXT_STATUS_DIRTY; 3763 3764 /* Set XS and SD bits, since PM CSRs are dirty */ 3765 mstatus = env->mstatus | MSTATUS_XS; 3766 write_mstatus(env, csrno, mstatus); 3767 return RISCV_EXCP_NONE; 3768 } 3769 3770 #endif 3771 3772 /* Crypto Extension */ 3773 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3774 target_ulong *ret_value, 3775 target_ulong new_value, 3776 target_ulong write_mask) 3777 { 3778 uint16_t random_v; 3779 Error *random_e = NULL; 3780 int random_r; 3781 target_ulong rval; 3782 3783 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3784 if (unlikely(random_r < 0)) { 3785 /* 3786 * Failed, for unknown reasons in the crypto subsystem. 3787 * The best we can do is log the reason and return a 3788 * failure indication to the guest. There is no reason 3789 * we know to expect the failure to be transitory, so 3790 * indicate DEAD to avoid having the guest spin on WAIT. 3791 */ 3792 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3793 __func__, error_get_pretty(random_e)); 3794 error_free(random_e); 3795 rval = SEED_OPST_DEAD; 3796 } else { 3797 rval = random_v | SEED_OPST_ES16; 3798 } 3799 3800 if (ret_value) { 3801 *ret_value = rval; 3802 } 3803 3804 return RISCV_EXCP_NONE; 3805 } 3806 3807 /* 3808 * riscv_csrrw - read and/or update control and status register 3809 * 3810 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3811 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3812 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3813 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3814 */ 3815 3816 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3817 int csrno, 3818 bool write_mask) 3819 { 3820 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3821 bool read_only = get_field(csrno, 0xC00) == 3; 3822 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3823 3824 /* ensure the CSR extension is enabled */ 3825 if (!riscv_cpu_cfg(env)->ext_icsr) { 3826 return RISCV_EXCP_ILLEGAL_INST; 3827 } 3828 3829 /* ensure CSR is implemented by checking predicate */ 3830 if (!csr_ops[csrno].predicate) { 3831 return RISCV_EXCP_ILLEGAL_INST; 3832 } 3833 3834 /* privileged spec version check */ 3835 if (env->priv_ver < csr_min_priv) { 3836 return RISCV_EXCP_ILLEGAL_INST; 3837 } 3838 3839 /* read / write check */ 3840 if (write_mask && read_only) { 3841 return RISCV_EXCP_ILLEGAL_INST; 3842 } 3843 3844 /* 3845 * The predicate() not only does existence check but also does some 3846 * access control check which triggers for example virtual instruction 3847 * exception in some cases. When writing read-only CSRs in those cases 3848 * illegal instruction exception should be triggered instead of virtual 3849 * instruction exception. Hence this comes after the read / write check. 3850 */ 3851 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3852 if (ret != RISCV_EXCP_NONE) { 3853 return ret; 3854 } 3855 3856 #if !defined(CONFIG_USER_ONLY) 3857 int csr_priv, effective_priv = env->priv; 3858 3859 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3860 !env->virt_enabled) { 3861 /* 3862 * We are in HS mode. Add 1 to the effective privledge level to 3863 * allow us to access the Hypervisor CSRs. 3864 */ 3865 effective_priv++; 3866 } 3867 3868 csr_priv = get_field(csrno, 0x300); 3869 if (!env->debugger && (effective_priv < csr_priv)) { 3870 if (csr_priv == (PRV_S + 1) && env->virt_enabled) { 3871 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3872 } 3873 return RISCV_EXCP_ILLEGAL_INST; 3874 } 3875 #endif 3876 return RISCV_EXCP_NONE; 3877 } 3878 3879 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3880 target_ulong *ret_value, 3881 target_ulong new_value, 3882 target_ulong write_mask) 3883 { 3884 RISCVException ret; 3885 target_ulong old_value; 3886 3887 /* execute combined read/write operation if it exists */ 3888 if (csr_ops[csrno].op) { 3889 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3890 } 3891 3892 /* if no accessor exists then return failure */ 3893 if (!csr_ops[csrno].read) { 3894 return RISCV_EXCP_ILLEGAL_INST; 3895 } 3896 /* read old value */ 3897 ret = csr_ops[csrno].read(env, csrno, &old_value); 3898 if (ret != RISCV_EXCP_NONE) { 3899 return ret; 3900 } 3901 3902 /* write value if writable and write mask set, otherwise drop writes */ 3903 if (write_mask) { 3904 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3905 if (csr_ops[csrno].write) { 3906 ret = csr_ops[csrno].write(env, csrno, new_value); 3907 if (ret != RISCV_EXCP_NONE) { 3908 return ret; 3909 } 3910 } 3911 } 3912 3913 /* return old value */ 3914 if (ret_value) { 3915 *ret_value = old_value; 3916 } 3917 3918 return RISCV_EXCP_NONE; 3919 } 3920 3921 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3922 target_ulong *ret_value, 3923 target_ulong new_value, target_ulong write_mask) 3924 { 3925 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask); 3926 if (ret != RISCV_EXCP_NONE) { 3927 return ret; 3928 } 3929 3930 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3931 } 3932 3933 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3934 Int128 *ret_value, 3935 Int128 new_value, 3936 Int128 write_mask) 3937 { 3938 RISCVException ret; 3939 Int128 old_value; 3940 3941 /* read old value */ 3942 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3943 if (ret != RISCV_EXCP_NONE) { 3944 return ret; 3945 } 3946 3947 /* write value if writable and write mask set, otherwise drop writes */ 3948 if (int128_nz(write_mask)) { 3949 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3950 int128_and(new_value, write_mask)); 3951 if (csr_ops[csrno].write128) { 3952 ret = csr_ops[csrno].write128(env, csrno, new_value); 3953 if (ret != RISCV_EXCP_NONE) { 3954 return ret; 3955 } 3956 } else if (csr_ops[csrno].write) { 3957 /* avoids having to write wrappers for all registers */ 3958 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3959 if (ret != RISCV_EXCP_NONE) { 3960 return ret; 3961 } 3962 } 3963 } 3964 3965 /* return old value */ 3966 if (ret_value) { 3967 *ret_value = old_value; 3968 } 3969 3970 return RISCV_EXCP_NONE; 3971 } 3972 3973 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3974 Int128 *ret_value, 3975 Int128 new_value, Int128 write_mask) 3976 { 3977 RISCVException ret; 3978 3979 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask)); 3980 if (ret != RISCV_EXCP_NONE) { 3981 return ret; 3982 } 3983 3984 if (csr_ops[csrno].read128) { 3985 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3986 } 3987 3988 /* 3989 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3990 * at all defined. 3991 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3992 * significant), for those, this fallback is correctly handling the 3993 * accesses 3994 */ 3995 target_ulong old_value; 3996 ret = riscv_csrrw_do64(env, csrno, &old_value, 3997 int128_getlo(new_value), 3998 int128_getlo(write_mask)); 3999 if (ret == RISCV_EXCP_NONE && ret_value) { 4000 *ret_value = int128_make64(old_value); 4001 } 4002 return ret; 4003 } 4004 4005 /* 4006 * Debugger support. If not in user mode, set env->debugger before the 4007 * riscv_csrrw call and clear it after the call. 4008 */ 4009 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 4010 target_ulong *ret_value, 4011 target_ulong new_value, 4012 target_ulong write_mask) 4013 { 4014 RISCVException ret; 4015 #if !defined(CONFIG_USER_ONLY) 4016 env->debugger = true; 4017 #endif 4018 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 4019 #if !defined(CONFIG_USER_ONLY) 4020 env->debugger = false; 4021 #endif 4022 return ret; 4023 } 4024 4025 static RISCVException read_jvt(CPURISCVState *env, int csrno, 4026 target_ulong *val) 4027 { 4028 *val = env->jvt; 4029 return RISCV_EXCP_NONE; 4030 } 4031 4032 static RISCVException write_jvt(CPURISCVState *env, int csrno, 4033 target_ulong val) 4034 { 4035 env->jvt = val; 4036 return RISCV_EXCP_NONE; 4037 } 4038 4039 /* 4040 * Control and Status Register function table 4041 * riscv_csr_operations::predicate() must be provided for an implemented CSR 4042 */ 4043 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 4044 /* User Floating-Point CSRs */ 4045 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 4046 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 4047 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 4048 /* Vector CSRs */ 4049 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 4050 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 4051 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4052 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4053 [CSR_VL] = { "vl", vs, read_vl }, 4054 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4055 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4056 /* User Timers and Counters */ 4057 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4058 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4059 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4060 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4061 4062 /* 4063 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4064 * rdtime callback is not provided by machine/platform emulation. 4065 */ 4066 [CSR_TIME] = { "time", ctr, read_time }, 4067 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4068 4069 /* Crypto Extension */ 4070 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4071 4072 /* Zcmt Extension */ 4073 [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, 4074 4075 #if !defined(CONFIG_USER_ONLY) 4076 /* Machine Timers and Counters */ 4077 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4078 write_mhpmcounter }, 4079 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4080 write_mhpmcounter }, 4081 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4082 write_mhpmcounterh }, 4083 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4084 write_mhpmcounterh }, 4085 4086 /* Machine Information Registers */ 4087 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4088 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4089 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4090 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4091 4092 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4093 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4094 /* Machine Trap Setup */ 4095 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4096 NULL, read_mstatus_i128 }, 4097 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4098 NULL, read_misa_i128 }, 4099 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4100 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4101 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4102 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4103 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4104 write_mcounteren }, 4105 4106 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4107 write_mstatush }, 4108 4109 /* Machine Trap Handling */ 4110 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4111 NULL, read_mscratch_i128, write_mscratch_i128 }, 4112 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4113 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4114 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4115 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4116 4117 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4118 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4119 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4120 4121 /* Machine-Level Interrupts (AIA) */ 4122 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4123 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4124 4125 /* Virtual Interrupts for Supervisor Level (AIA) */ 4126 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4127 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4128 4129 /* Machine-Level High-Half CSRs (AIA) */ 4130 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4131 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4132 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4133 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4134 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4135 4136 /* Execution environment configuration */ 4137 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4138 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4139 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4140 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4141 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4142 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4143 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4144 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4145 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4146 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4147 4148 /* Smstateen extension CSRs */ 4149 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4150 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4151 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4152 write_mstateen0h, 4153 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4154 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4155 write_mstateen_1_3, 4156 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4157 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4158 write_mstateenh_1_3, 4159 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4160 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4161 write_mstateen_1_3, 4162 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4163 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4164 write_mstateenh_1_3, 4165 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4166 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4167 write_mstateen_1_3, 4168 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4169 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4170 write_mstateenh_1_3, 4171 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4172 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4173 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4174 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4175 write_hstateen0h, 4176 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4177 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4178 write_hstateen_1_3, 4179 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4180 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4181 write_hstateenh_1_3, 4182 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4183 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4184 write_hstateen_1_3, 4185 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4186 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4187 write_hstateenh_1_3, 4188 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4189 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4190 write_hstateen_1_3, 4191 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4192 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4193 write_hstateenh_1_3, 4194 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4195 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4196 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4197 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4198 write_sstateen_1_3, 4199 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4200 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4201 write_sstateen_1_3, 4202 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4203 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4204 write_sstateen_1_3, 4205 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4206 4207 /* Supervisor Trap Setup */ 4208 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4209 NULL, read_sstatus_i128 }, 4210 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4211 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4212 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4213 write_scounteren }, 4214 4215 /* Supervisor Trap Handling */ 4216 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4217 NULL, read_sscratch_i128, write_sscratch_i128 }, 4218 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4219 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4220 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4221 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4222 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4223 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4224 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4225 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4226 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4227 write_vstimecmp, 4228 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4229 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4230 write_vstimecmph, 4231 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4232 4233 /* Supervisor Protection and Translation */ 4234 [CSR_SATP] = { "satp", satp, read_satp, write_satp }, 4235 4236 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4237 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4238 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4239 4240 /* Supervisor-Level Interrupts (AIA) */ 4241 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4242 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4243 4244 /* Supervisor-Level High-Half CSRs (AIA) */ 4245 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4246 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4247 4248 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4249 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4250 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4251 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4252 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4253 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4254 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4255 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4256 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4257 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4258 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4259 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4260 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4261 write_hcounteren, 4262 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4263 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4264 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4265 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4266 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4267 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4268 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4269 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4270 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4271 [CSR_HGATP] = { "hgatp", hgatp, read_hgatp, write_hgatp, 4272 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4273 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4274 write_htimedelta, 4275 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4276 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4277 write_htimedeltah, 4278 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4279 4280 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4281 write_vsstatus, 4282 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4283 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4284 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4285 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4286 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4287 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4288 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4289 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4290 write_vsscratch, 4291 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4292 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4293 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4294 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4295 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4296 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4297 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4298 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4299 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4300 4301 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4302 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4303 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4304 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4305 4306 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4307 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4308 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4309 write_hvictl }, 4310 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4311 write_hviprio1 }, 4312 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4313 write_hviprio2 }, 4314 4315 /* 4316 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4317 */ 4318 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4319 rmw_xiselect }, 4320 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4321 4322 /* VS-Level Interrupts (H-extension with AIA) */ 4323 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4324 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4325 4326 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4327 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4328 rmw_hidelegh }, 4329 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4330 write_ignore }, 4331 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4332 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4333 write_hviprio1h }, 4334 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4335 write_hviprio2h }, 4336 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4337 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4338 4339 /* Physical Memory Protection */ 4340 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4341 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4342 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4343 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4344 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4345 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4346 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4347 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4348 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4349 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4350 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4351 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4352 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4353 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4354 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4355 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4356 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4357 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4358 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4359 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4360 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4361 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4362 4363 /* Debug CSRs */ 4364 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4365 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4366 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4367 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4368 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4369 4370 /* User Pointer Masking */ 4371 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4372 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4373 write_upmmask }, 4374 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4375 write_upmbase }, 4376 /* Machine Pointer Masking */ 4377 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4378 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4379 write_mpmmask }, 4380 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4381 write_mpmbase }, 4382 /* Supervisor Pointer Masking */ 4383 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4384 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4385 write_spmmask }, 4386 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4387 write_spmbase }, 4388 4389 /* Performance Counters */ 4390 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4391 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4392 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4393 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4394 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4395 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4396 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4397 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4398 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4399 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4400 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4401 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4402 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4403 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4404 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4405 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4406 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4407 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4408 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4409 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4410 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4411 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4412 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4413 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4414 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4415 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4416 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4417 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4418 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4419 4420 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4421 write_mhpmcounter }, 4422 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4423 write_mhpmcounter }, 4424 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4425 write_mhpmcounter }, 4426 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4427 write_mhpmcounter }, 4428 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4429 write_mhpmcounter }, 4430 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4431 write_mhpmcounter }, 4432 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4433 write_mhpmcounter }, 4434 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4435 write_mhpmcounter }, 4436 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4437 write_mhpmcounter }, 4438 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4439 write_mhpmcounter }, 4440 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4441 write_mhpmcounter }, 4442 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4443 write_mhpmcounter }, 4444 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4445 write_mhpmcounter }, 4446 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4447 write_mhpmcounter }, 4448 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4449 write_mhpmcounter }, 4450 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4451 write_mhpmcounter }, 4452 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4453 write_mhpmcounter }, 4454 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4455 write_mhpmcounter }, 4456 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4457 write_mhpmcounter }, 4458 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4459 write_mhpmcounter }, 4460 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4461 write_mhpmcounter }, 4462 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4463 write_mhpmcounter }, 4464 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4465 write_mhpmcounter }, 4466 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4467 write_mhpmcounter }, 4468 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4469 write_mhpmcounter }, 4470 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4471 write_mhpmcounter }, 4472 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4473 write_mhpmcounter }, 4474 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4475 write_mhpmcounter }, 4476 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4477 write_mhpmcounter }, 4478 4479 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4480 write_mcountinhibit, 4481 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4482 4483 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4484 write_mhpmevent }, 4485 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4486 write_mhpmevent }, 4487 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4488 write_mhpmevent }, 4489 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4490 write_mhpmevent }, 4491 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4492 write_mhpmevent }, 4493 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4494 write_mhpmevent }, 4495 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4496 write_mhpmevent }, 4497 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4498 write_mhpmevent }, 4499 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4500 write_mhpmevent }, 4501 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4502 write_mhpmevent }, 4503 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4504 write_mhpmevent }, 4505 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4506 write_mhpmevent }, 4507 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4508 write_mhpmevent }, 4509 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4510 write_mhpmevent }, 4511 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4512 write_mhpmevent }, 4513 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4514 write_mhpmevent }, 4515 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4516 write_mhpmevent }, 4517 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4518 write_mhpmevent }, 4519 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4520 write_mhpmevent }, 4521 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4522 write_mhpmevent }, 4523 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4524 write_mhpmevent }, 4525 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4526 write_mhpmevent }, 4527 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4528 write_mhpmevent }, 4529 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4530 write_mhpmevent }, 4531 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4532 write_mhpmevent }, 4533 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4534 write_mhpmevent }, 4535 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4536 write_mhpmevent }, 4537 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4538 write_mhpmevent }, 4539 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4540 write_mhpmevent }, 4541 4542 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4543 write_mhpmeventh, 4544 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4545 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4546 write_mhpmeventh, 4547 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4548 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4549 write_mhpmeventh, 4550 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4551 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4552 write_mhpmeventh, 4553 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4554 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4555 write_mhpmeventh, 4556 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4557 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4558 write_mhpmeventh, 4559 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4560 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4561 write_mhpmeventh, 4562 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4563 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4564 write_mhpmeventh, 4565 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4566 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4567 write_mhpmeventh, 4568 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4569 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4570 write_mhpmeventh, 4571 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4572 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4573 write_mhpmeventh, 4574 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4575 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4576 write_mhpmeventh, 4577 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4578 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4579 write_mhpmeventh, 4580 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4581 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4582 write_mhpmeventh, 4583 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4584 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4585 write_mhpmeventh, 4586 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4587 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4588 write_mhpmeventh, 4589 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4590 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4591 write_mhpmeventh, 4592 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4593 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4594 write_mhpmeventh, 4595 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4596 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4597 write_mhpmeventh, 4598 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4599 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4600 write_mhpmeventh, 4601 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4602 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4603 write_mhpmeventh, 4604 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4605 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4606 write_mhpmeventh, 4607 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4608 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4609 write_mhpmeventh, 4610 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4611 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4612 write_mhpmeventh, 4613 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4614 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4615 write_mhpmeventh, 4616 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4617 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4618 write_mhpmeventh, 4619 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4620 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4621 write_mhpmeventh, 4622 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4623 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4624 write_mhpmeventh, 4625 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4626 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4627 write_mhpmeventh, 4628 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4629 4630 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4631 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4632 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4633 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4634 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4635 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4636 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4637 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4638 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4639 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4640 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4641 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4642 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4643 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4644 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4645 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4646 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4647 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4648 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4649 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4650 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4651 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4652 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4653 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4654 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4655 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4656 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4657 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4658 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4659 4660 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4661 write_mhpmcounterh }, 4662 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4663 write_mhpmcounterh }, 4664 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4665 write_mhpmcounterh }, 4666 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4667 write_mhpmcounterh }, 4668 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4669 write_mhpmcounterh }, 4670 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4671 write_mhpmcounterh }, 4672 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4673 write_mhpmcounterh }, 4674 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4675 write_mhpmcounterh }, 4676 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4677 write_mhpmcounterh }, 4678 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4679 write_mhpmcounterh }, 4680 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4681 write_mhpmcounterh }, 4682 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4683 write_mhpmcounterh }, 4684 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4685 write_mhpmcounterh }, 4686 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4687 write_mhpmcounterh }, 4688 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4689 write_mhpmcounterh }, 4690 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4691 write_mhpmcounterh }, 4692 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4693 write_mhpmcounterh }, 4694 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4695 write_mhpmcounterh }, 4696 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4697 write_mhpmcounterh }, 4698 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4699 write_mhpmcounterh }, 4700 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4701 write_mhpmcounterh }, 4702 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4703 write_mhpmcounterh }, 4704 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4705 write_mhpmcounterh }, 4706 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4707 write_mhpmcounterh }, 4708 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4709 write_mhpmcounterh }, 4710 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4711 write_mhpmcounterh }, 4712 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4713 write_mhpmcounterh }, 4714 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4715 write_mhpmcounterh }, 4716 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4717 write_mhpmcounterh }, 4718 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4719 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4720 4721 #endif /* !CONFIG_USER_ONLY */ 4722 }; 4723