1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "sysemu/cpu-timers.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 32 /* CSR function table public API */ 33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 34 { 35 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 36 } 37 38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 41 } 42 43 /* Predicates */ 44 #if !defined(CONFIG_USER_ONLY) 45 static RISCVException smstateen_acc_ok(CPURISCVState *env, int index, 46 uint64_t bit) 47 { 48 bool virt = riscv_cpu_virt_enabled(env); 49 50 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 51 return RISCV_EXCP_NONE; 52 } 53 54 if (!(env->mstateen[index] & bit)) { 55 return RISCV_EXCP_ILLEGAL_INST; 56 } 57 58 if (virt) { 59 if (!(env->hstateen[index] & bit)) { 60 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 61 } 62 63 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 64 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 65 } 66 } 67 68 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 69 if (!(env->sstateen[index] & bit)) { 70 return RISCV_EXCP_ILLEGAL_INST; 71 } 72 } 73 74 return RISCV_EXCP_NONE; 75 } 76 #endif 77 78 static RISCVException fs(CPURISCVState *env, int csrno) 79 { 80 #if !defined(CONFIG_USER_ONLY) 81 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 82 !riscv_cpu_cfg(env)->ext_zfinx) { 83 return RISCV_EXCP_ILLEGAL_INST; 84 } 85 #endif 86 return RISCV_EXCP_NONE; 87 } 88 89 static RISCVException vs(CPURISCVState *env, int csrno) 90 { 91 RISCVCPU *cpu = env_archcpu(env); 92 93 if (cpu->cfg.ext_zve32f) { 94 #if !defined(CONFIG_USER_ONLY) 95 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 96 return RISCV_EXCP_ILLEGAL_INST; 97 } 98 #endif 99 return RISCV_EXCP_NONE; 100 } 101 return RISCV_EXCP_ILLEGAL_INST; 102 } 103 104 static RISCVException ctr(CPURISCVState *env, int csrno) 105 { 106 #if !defined(CONFIG_USER_ONLY) 107 RISCVCPU *cpu = env_archcpu(env); 108 int ctr_index; 109 target_ulong ctr_mask; 110 int base_csrno = CSR_CYCLE; 111 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 112 113 if (rv32 && csrno >= CSR_CYCLEH) { 114 /* Offset for RV32 hpmcounternh counters */ 115 base_csrno += 0x80; 116 } 117 ctr_index = csrno - base_csrno; 118 ctr_mask = BIT(ctr_index); 119 120 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 121 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 122 goto skip_ext_pmu_check; 123 } 124 125 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 126 /* No counter is enabled in PMU or the counter is out of range */ 127 return RISCV_EXCP_ILLEGAL_INST; 128 } 129 130 skip_ext_pmu_check: 131 132 if (env->debugger) { 133 return RISCV_EXCP_NONE; 134 } 135 136 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 137 return RISCV_EXCP_ILLEGAL_INST; 138 } 139 140 if (riscv_cpu_virt_enabled(env)) { 141 if (!get_field(env->hcounteren, ctr_mask) || 142 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 143 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 144 } 145 } 146 147 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 148 !get_field(env->scounteren, ctr_mask)) { 149 return RISCV_EXCP_ILLEGAL_INST; 150 } 151 152 #endif 153 return RISCV_EXCP_NONE; 154 } 155 156 static RISCVException ctr32(CPURISCVState *env, int csrno) 157 { 158 if (riscv_cpu_mxl(env) != MXL_RV32) { 159 return RISCV_EXCP_ILLEGAL_INST; 160 } 161 162 return ctr(env, csrno); 163 } 164 165 #if !defined(CONFIG_USER_ONLY) 166 static RISCVException mctr(CPURISCVState *env, int csrno) 167 { 168 int pmu_num = riscv_cpu_cfg(env)->pmu_num; 169 int ctr_index; 170 int base_csrno = CSR_MHPMCOUNTER3; 171 172 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 173 /* Offset for RV32 mhpmcounternh counters */ 174 base_csrno += 0x80; 175 } 176 ctr_index = csrno - base_csrno; 177 if (!pmu_num || ctr_index >= pmu_num) { 178 /* The PMU is not enabled or counter is out of range*/ 179 return RISCV_EXCP_ILLEGAL_INST; 180 } 181 182 return RISCV_EXCP_NONE; 183 } 184 185 static RISCVException mctr32(CPURISCVState *env, int csrno) 186 { 187 if (riscv_cpu_mxl(env) != MXL_RV32) { 188 return RISCV_EXCP_ILLEGAL_INST; 189 } 190 191 return mctr(env, csrno); 192 } 193 194 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 195 { 196 RISCVCPU *cpu = env_archcpu(env); 197 198 if (!cpu->cfg.ext_sscofpmf) { 199 return RISCV_EXCP_ILLEGAL_INST; 200 } 201 202 return RISCV_EXCP_NONE; 203 } 204 205 static RISCVException any(CPURISCVState *env, int csrno) 206 { 207 return RISCV_EXCP_NONE; 208 } 209 210 static RISCVException any32(CPURISCVState *env, int csrno) 211 { 212 if (riscv_cpu_mxl(env) != MXL_RV32) { 213 return RISCV_EXCP_ILLEGAL_INST; 214 } 215 216 return any(env, csrno); 217 218 } 219 220 static int aia_any(CPURISCVState *env, int csrno) 221 { 222 if (!riscv_cpu_cfg(env)->ext_smaia) { 223 return RISCV_EXCP_ILLEGAL_INST; 224 } 225 226 return any(env, csrno); 227 } 228 229 static int aia_any32(CPURISCVState *env, int csrno) 230 { 231 if (!riscv_cpu_cfg(env)->ext_smaia) { 232 return RISCV_EXCP_ILLEGAL_INST; 233 } 234 235 return any32(env, csrno); 236 } 237 238 static RISCVException smode(CPURISCVState *env, int csrno) 239 { 240 if (riscv_has_ext(env, RVS)) { 241 return RISCV_EXCP_NONE; 242 } 243 244 return RISCV_EXCP_ILLEGAL_INST; 245 } 246 247 static int smode32(CPURISCVState *env, int csrno) 248 { 249 if (riscv_cpu_mxl(env) != MXL_RV32) { 250 return RISCV_EXCP_ILLEGAL_INST; 251 } 252 253 return smode(env, csrno); 254 } 255 256 static int aia_smode(CPURISCVState *env, int csrno) 257 { 258 if (!riscv_cpu_cfg(env)->ext_ssaia) { 259 return RISCV_EXCP_ILLEGAL_INST; 260 } 261 262 return smode(env, csrno); 263 } 264 265 static int aia_smode32(CPURISCVState *env, int csrno) 266 { 267 if (!riscv_cpu_cfg(env)->ext_ssaia) { 268 return RISCV_EXCP_ILLEGAL_INST; 269 } 270 271 return smode32(env, csrno); 272 } 273 274 static RISCVException hmode(CPURISCVState *env, int csrno) 275 { 276 if (riscv_has_ext(env, RVH)) { 277 return RISCV_EXCP_NONE; 278 } 279 280 return RISCV_EXCP_ILLEGAL_INST; 281 } 282 283 static RISCVException hmode32(CPURISCVState *env, int csrno) 284 { 285 if (riscv_cpu_mxl(env) != MXL_RV32) { 286 return RISCV_EXCP_ILLEGAL_INST; 287 } 288 289 return hmode(env, csrno); 290 291 } 292 293 static RISCVException umode(CPURISCVState *env, int csrno) 294 { 295 if (riscv_has_ext(env, RVU)) { 296 return RISCV_EXCP_NONE; 297 } 298 299 return RISCV_EXCP_ILLEGAL_INST; 300 } 301 302 static RISCVException umode32(CPURISCVState *env, int csrno) 303 { 304 if (riscv_cpu_mxl(env) != MXL_RV32) { 305 return RISCV_EXCP_ILLEGAL_INST; 306 } 307 308 return umode(env, csrno); 309 } 310 311 static RISCVException mstateen(CPURISCVState *env, int csrno) 312 { 313 RISCVCPU *cpu = env_archcpu(env); 314 315 if (!cpu->cfg.ext_smstateen) { 316 return RISCV_EXCP_ILLEGAL_INST; 317 } 318 319 return any(env, csrno); 320 } 321 322 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 323 { 324 RISCVCPU *cpu = env_archcpu(env); 325 326 if (!cpu->cfg.ext_smstateen) { 327 return RISCV_EXCP_ILLEGAL_INST; 328 } 329 330 RISCVException ret = hmode(env, csrno); 331 if (ret != RISCV_EXCP_NONE) { 332 return ret; 333 } 334 335 if (env->debugger) { 336 return RISCV_EXCP_NONE; 337 } 338 339 if (env->priv < PRV_M) { 340 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 341 return RISCV_EXCP_ILLEGAL_INST; 342 } 343 } 344 345 return RISCV_EXCP_NONE; 346 } 347 348 static RISCVException hstateen(CPURISCVState *env, int csrno) 349 { 350 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 351 } 352 353 static RISCVException hstateenh(CPURISCVState *env, int csrno) 354 { 355 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 356 } 357 358 static RISCVException sstateen(CPURISCVState *env, int csrno) 359 { 360 bool virt = riscv_cpu_virt_enabled(env); 361 int index = csrno - CSR_SSTATEEN0; 362 363 if (!riscv_cpu_cfg(env)->ext_smstateen) { 364 return RISCV_EXCP_ILLEGAL_INST; 365 } 366 367 RISCVException ret = smode(env, csrno); 368 if (ret != RISCV_EXCP_NONE) { 369 return ret; 370 } 371 372 if (env->debugger) { 373 return RISCV_EXCP_NONE; 374 } 375 376 if (env->priv < PRV_M) { 377 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 378 return RISCV_EXCP_ILLEGAL_INST; 379 } 380 381 if (virt) { 382 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 383 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 384 } 385 } 386 } 387 388 return RISCV_EXCP_NONE; 389 } 390 391 static RISCVException sstc(CPURISCVState *env, int csrno) 392 { 393 RISCVCPU *cpu = env_archcpu(env); 394 bool hmode_check = false; 395 396 if (!cpu->cfg.ext_sstc || !env->rdtime_fn) { 397 return RISCV_EXCP_ILLEGAL_INST; 398 } 399 400 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 401 hmode_check = true; 402 } 403 404 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 405 if (ret != RISCV_EXCP_NONE) { 406 return ret; 407 } 408 409 if (env->debugger) { 410 return RISCV_EXCP_NONE; 411 } 412 413 if (env->priv == PRV_M) { 414 return RISCV_EXCP_NONE; 415 } 416 417 /* 418 * No need of separate function for rv32 as menvcfg stores both menvcfg 419 * menvcfgh for RV32. 420 */ 421 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 422 get_field(env->menvcfg, MENVCFG_STCE))) { 423 return RISCV_EXCP_ILLEGAL_INST; 424 } 425 426 if (riscv_cpu_virt_enabled(env)) { 427 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 428 get_field(env->henvcfg, HENVCFG_STCE))) { 429 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 430 } 431 } 432 433 return RISCV_EXCP_NONE; 434 } 435 436 static RISCVException sstc_32(CPURISCVState *env, int csrno) 437 { 438 if (riscv_cpu_mxl(env) != MXL_RV32) { 439 return RISCV_EXCP_ILLEGAL_INST; 440 } 441 442 return sstc(env, csrno); 443 } 444 445 /* Checks if PointerMasking registers could be accessed */ 446 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 447 { 448 /* Check if j-ext is present */ 449 if (riscv_has_ext(env, RVJ)) { 450 return RISCV_EXCP_NONE; 451 } 452 return RISCV_EXCP_ILLEGAL_INST; 453 } 454 455 static int aia_hmode(CPURISCVState *env, int csrno) 456 { 457 if (!riscv_cpu_cfg(env)->ext_ssaia) { 458 return RISCV_EXCP_ILLEGAL_INST; 459 } 460 461 return hmode(env, csrno); 462 } 463 464 static int aia_hmode32(CPURISCVState *env, int csrno) 465 { 466 if (!riscv_cpu_cfg(env)->ext_ssaia) { 467 return RISCV_EXCP_ILLEGAL_INST; 468 } 469 470 return hmode32(env, csrno); 471 } 472 473 static RISCVException pmp(CPURISCVState *env, int csrno) 474 { 475 if (riscv_cpu_cfg(env)->pmp) { 476 if (csrno <= CSR_PMPCFG3) { 477 uint32_t reg_index = csrno - CSR_PMPCFG0; 478 479 /* TODO: RV128 restriction check */ 480 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 481 return RISCV_EXCP_ILLEGAL_INST; 482 } 483 } 484 485 return RISCV_EXCP_NONE; 486 } 487 488 return RISCV_EXCP_ILLEGAL_INST; 489 } 490 491 static RISCVException epmp(CPURISCVState *env, int csrno) 492 { 493 if (riscv_cpu_cfg(env)->epmp) { 494 return RISCV_EXCP_NONE; 495 } 496 497 return RISCV_EXCP_ILLEGAL_INST; 498 } 499 500 static RISCVException debug(CPURISCVState *env, int csrno) 501 { 502 if (riscv_cpu_cfg(env)->debug) { 503 return RISCV_EXCP_NONE; 504 } 505 506 return RISCV_EXCP_ILLEGAL_INST; 507 } 508 #endif 509 510 static RISCVException seed(CPURISCVState *env, int csrno) 511 { 512 if (!riscv_cpu_cfg(env)->ext_zkr) { 513 return RISCV_EXCP_ILLEGAL_INST; 514 } 515 516 #if !defined(CONFIG_USER_ONLY) 517 if (env->debugger) { 518 return RISCV_EXCP_NONE; 519 } 520 521 /* 522 * With a CSR read-write instruction: 523 * 1) The seed CSR is always available in machine mode as normal. 524 * 2) Attempted access to seed from virtual modes VS and VU always raises 525 * an exception(virtual instruction exception only if mseccfg.sseed=1). 526 * 3) Without the corresponding access control bit set to 1, any attempted 527 * access to seed from U, S or HS modes will raise an illegal instruction 528 * exception. 529 */ 530 if (env->priv == PRV_M) { 531 return RISCV_EXCP_NONE; 532 } else if (riscv_cpu_virt_enabled(env)) { 533 if (env->mseccfg & MSECCFG_SSEED) { 534 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 535 } else { 536 return RISCV_EXCP_ILLEGAL_INST; 537 } 538 } else { 539 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 540 return RISCV_EXCP_NONE; 541 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 542 return RISCV_EXCP_NONE; 543 } else { 544 return RISCV_EXCP_ILLEGAL_INST; 545 } 546 } 547 #else 548 return RISCV_EXCP_NONE; 549 #endif 550 } 551 552 /* User Floating-Point CSRs */ 553 static RISCVException read_fflags(CPURISCVState *env, int csrno, 554 target_ulong *val) 555 { 556 *val = riscv_cpu_get_fflags(env); 557 return RISCV_EXCP_NONE; 558 } 559 560 static RISCVException write_fflags(CPURISCVState *env, int csrno, 561 target_ulong val) 562 { 563 #if !defined(CONFIG_USER_ONLY) 564 if (riscv_has_ext(env, RVF)) { 565 env->mstatus |= MSTATUS_FS; 566 } 567 #endif 568 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 569 return RISCV_EXCP_NONE; 570 } 571 572 static RISCVException read_frm(CPURISCVState *env, int csrno, 573 target_ulong *val) 574 { 575 *val = env->frm; 576 return RISCV_EXCP_NONE; 577 } 578 579 static RISCVException write_frm(CPURISCVState *env, int csrno, 580 target_ulong val) 581 { 582 #if !defined(CONFIG_USER_ONLY) 583 if (riscv_has_ext(env, RVF)) { 584 env->mstatus |= MSTATUS_FS; 585 } 586 #endif 587 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 588 return RISCV_EXCP_NONE; 589 } 590 591 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 592 target_ulong *val) 593 { 594 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 595 | (env->frm << FSR_RD_SHIFT); 596 return RISCV_EXCP_NONE; 597 } 598 599 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 600 target_ulong val) 601 { 602 #if !defined(CONFIG_USER_ONLY) 603 if (riscv_has_ext(env, RVF)) { 604 env->mstatus |= MSTATUS_FS; 605 } 606 #endif 607 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 608 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 609 return RISCV_EXCP_NONE; 610 } 611 612 static RISCVException read_vtype(CPURISCVState *env, int csrno, 613 target_ulong *val) 614 { 615 uint64_t vill; 616 switch (env->xl) { 617 case MXL_RV32: 618 vill = (uint32_t)env->vill << 31; 619 break; 620 case MXL_RV64: 621 vill = (uint64_t)env->vill << 63; 622 break; 623 default: 624 g_assert_not_reached(); 625 } 626 *val = (target_ulong)vill | env->vtype; 627 return RISCV_EXCP_NONE; 628 } 629 630 static RISCVException read_vl(CPURISCVState *env, int csrno, 631 target_ulong *val) 632 { 633 *val = env->vl; 634 return RISCV_EXCP_NONE; 635 } 636 637 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 638 { 639 *val = riscv_cpu_cfg(env)->vlen >> 3; 640 return RISCV_EXCP_NONE; 641 } 642 643 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 644 target_ulong *val) 645 { 646 *val = env->vxrm; 647 return RISCV_EXCP_NONE; 648 } 649 650 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 651 target_ulong val) 652 { 653 #if !defined(CONFIG_USER_ONLY) 654 env->mstatus |= MSTATUS_VS; 655 #endif 656 env->vxrm = val; 657 return RISCV_EXCP_NONE; 658 } 659 660 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 661 target_ulong *val) 662 { 663 *val = env->vxsat; 664 return RISCV_EXCP_NONE; 665 } 666 667 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 668 target_ulong val) 669 { 670 #if !defined(CONFIG_USER_ONLY) 671 env->mstatus |= MSTATUS_VS; 672 #endif 673 env->vxsat = val; 674 return RISCV_EXCP_NONE; 675 } 676 677 static RISCVException read_vstart(CPURISCVState *env, int csrno, 678 target_ulong *val) 679 { 680 *val = env->vstart; 681 return RISCV_EXCP_NONE; 682 } 683 684 static RISCVException write_vstart(CPURISCVState *env, int csrno, 685 target_ulong val) 686 { 687 #if !defined(CONFIG_USER_ONLY) 688 env->mstatus |= MSTATUS_VS; 689 #endif 690 /* 691 * The vstart CSR is defined to have only enough writable bits 692 * to hold the largest element index, i.e. lg2(VLEN) bits. 693 */ 694 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlen)); 695 return RISCV_EXCP_NONE; 696 } 697 698 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 699 { 700 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 701 return RISCV_EXCP_NONE; 702 } 703 704 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 705 { 706 #if !defined(CONFIG_USER_ONLY) 707 env->mstatus |= MSTATUS_VS; 708 #endif 709 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 710 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 711 return RISCV_EXCP_NONE; 712 } 713 714 /* User Timers and Counters */ 715 static target_ulong get_ticks(bool shift) 716 { 717 int64_t val; 718 target_ulong result; 719 720 #if !defined(CONFIG_USER_ONLY) 721 if (icount_enabled()) { 722 val = icount_get(); 723 } else { 724 val = cpu_get_host_ticks(); 725 } 726 #else 727 val = cpu_get_host_ticks(); 728 #endif 729 730 if (shift) { 731 result = val >> 32; 732 } else { 733 result = val; 734 } 735 736 return result; 737 } 738 739 #if defined(CONFIG_USER_ONLY) 740 static RISCVException read_time(CPURISCVState *env, int csrno, 741 target_ulong *val) 742 { 743 *val = cpu_get_host_ticks(); 744 return RISCV_EXCP_NONE; 745 } 746 747 static RISCVException read_timeh(CPURISCVState *env, int csrno, 748 target_ulong *val) 749 { 750 *val = cpu_get_host_ticks() >> 32; 751 return RISCV_EXCP_NONE; 752 } 753 754 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 755 { 756 *val = get_ticks(false); 757 return RISCV_EXCP_NONE; 758 } 759 760 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 761 { 762 *val = get_ticks(true); 763 return RISCV_EXCP_NONE; 764 } 765 766 #else /* CONFIG_USER_ONLY */ 767 768 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 769 { 770 int evt_index = csrno - CSR_MCOUNTINHIBIT; 771 772 *val = env->mhpmevent_val[evt_index]; 773 774 return RISCV_EXCP_NONE; 775 } 776 777 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 778 { 779 int evt_index = csrno - CSR_MCOUNTINHIBIT; 780 uint64_t mhpmevt_val = val; 781 782 env->mhpmevent_val[evt_index] = val; 783 784 if (riscv_cpu_mxl(env) == MXL_RV32) { 785 mhpmevt_val = mhpmevt_val | 786 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 787 } 788 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 789 790 return RISCV_EXCP_NONE; 791 } 792 793 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 794 { 795 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 796 797 *val = env->mhpmeventh_val[evt_index]; 798 799 return RISCV_EXCP_NONE; 800 } 801 802 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 803 { 804 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 805 uint64_t mhpmevth_val = val; 806 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 807 808 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 809 env->mhpmeventh_val[evt_index] = val; 810 811 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 812 813 return RISCV_EXCP_NONE; 814 } 815 816 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 817 { 818 int ctr_idx = csrno - CSR_MCYCLE; 819 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 820 uint64_t mhpmctr_val = val; 821 822 counter->mhpmcounter_val = val; 823 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 824 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 825 counter->mhpmcounter_prev = get_ticks(false); 826 if (ctr_idx > 2) { 827 if (riscv_cpu_mxl(env) == MXL_RV32) { 828 mhpmctr_val = mhpmctr_val | 829 ((uint64_t)counter->mhpmcounterh_val << 32); 830 } 831 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 832 } 833 } else { 834 /* Other counters can keep incrementing from the given value */ 835 counter->mhpmcounter_prev = val; 836 } 837 838 return RISCV_EXCP_NONE; 839 } 840 841 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 842 { 843 int ctr_idx = csrno - CSR_MCYCLEH; 844 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 845 uint64_t mhpmctr_val = counter->mhpmcounter_val; 846 uint64_t mhpmctrh_val = val; 847 848 counter->mhpmcounterh_val = val; 849 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 850 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 851 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 852 counter->mhpmcounterh_prev = get_ticks(true); 853 if (ctr_idx > 2) { 854 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 855 } 856 } else { 857 counter->mhpmcounterh_prev = val; 858 } 859 860 return RISCV_EXCP_NONE; 861 } 862 863 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 864 bool upper_half, uint32_t ctr_idx) 865 { 866 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 867 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 868 counter.mhpmcounter_prev; 869 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 870 counter.mhpmcounter_val; 871 872 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 873 /** 874 * Counter should not increment if inhibit bit is set. We can't really 875 * stop the icount counting. Just return the counter value written by 876 * the supervisor to indicate that counter was not incremented. 877 */ 878 if (!counter.started) { 879 *val = ctr_val; 880 return RISCV_EXCP_NONE; 881 } else { 882 /* Mark that the counter has been stopped */ 883 counter.started = false; 884 } 885 } 886 887 /** 888 * The kernel computes the perf delta by subtracting the current value from 889 * the value it initialized previously (ctr_val). 890 */ 891 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 892 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 893 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 894 } else { 895 *val = ctr_val; 896 } 897 898 return RISCV_EXCP_NONE; 899 } 900 901 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 902 { 903 uint16_t ctr_index; 904 905 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 906 ctr_index = csrno - CSR_MCYCLE; 907 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 908 ctr_index = csrno - CSR_CYCLE; 909 } else { 910 return RISCV_EXCP_ILLEGAL_INST; 911 } 912 913 return riscv_pmu_read_ctr(env, val, false, ctr_index); 914 } 915 916 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 917 { 918 uint16_t ctr_index; 919 920 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 921 ctr_index = csrno - CSR_MCYCLEH; 922 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 923 ctr_index = csrno - CSR_CYCLEH; 924 } else { 925 return RISCV_EXCP_ILLEGAL_INST; 926 } 927 928 return riscv_pmu_read_ctr(env, val, true, ctr_index); 929 } 930 931 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 932 { 933 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 934 int i; 935 *val = 0; 936 target_ulong *mhpm_evt_val; 937 uint64_t of_bit_mask; 938 939 if (riscv_cpu_mxl(env) == MXL_RV32) { 940 mhpm_evt_val = env->mhpmeventh_val; 941 of_bit_mask = MHPMEVENTH_BIT_OF; 942 } else { 943 mhpm_evt_val = env->mhpmevent_val; 944 of_bit_mask = MHPMEVENT_BIT_OF; 945 } 946 947 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 948 if ((get_field(env->mcounteren, BIT(i))) && 949 (mhpm_evt_val[i] & of_bit_mask)) { 950 *val |= BIT(i); 951 } 952 } 953 954 return RISCV_EXCP_NONE; 955 } 956 957 static RISCVException read_time(CPURISCVState *env, int csrno, 958 target_ulong *val) 959 { 960 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 961 962 if (!env->rdtime_fn) { 963 return RISCV_EXCP_ILLEGAL_INST; 964 } 965 966 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 967 return RISCV_EXCP_NONE; 968 } 969 970 static RISCVException read_timeh(CPURISCVState *env, int csrno, 971 target_ulong *val) 972 { 973 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 974 975 if (!env->rdtime_fn) { 976 return RISCV_EXCP_ILLEGAL_INST; 977 } 978 979 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 980 return RISCV_EXCP_NONE; 981 } 982 983 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 984 target_ulong *val) 985 { 986 *val = env->vstimecmp; 987 988 return RISCV_EXCP_NONE; 989 } 990 991 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 992 target_ulong *val) 993 { 994 *val = env->vstimecmp >> 32; 995 996 return RISCV_EXCP_NONE; 997 } 998 999 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1000 target_ulong val) 1001 { 1002 RISCVCPU *cpu = env_archcpu(env); 1003 1004 if (riscv_cpu_mxl(env) == MXL_RV32) { 1005 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1006 } else { 1007 env->vstimecmp = val; 1008 } 1009 1010 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1011 env->htimedelta, MIP_VSTIP); 1012 1013 return RISCV_EXCP_NONE; 1014 } 1015 1016 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1017 target_ulong val) 1018 { 1019 RISCVCPU *cpu = env_archcpu(env); 1020 1021 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1022 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1023 env->htimedelta, MIP_VSTIP); 1024 1025 return RISCV_EXCP_NONE; 1026 } 1027 1028 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1029 target_ulong *val) 1030 { 1031 if (riscv_cpu_virt_enabled(env)) { 1032 *val = env->vstimecmp; 1033 } else { 1034 *val = env->stimecmp; 1035 } 1036 1037 return RISCV_EXCP_NONE; 1038 } 1039 1040 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1041 target_ulong *val) 1042 { 1043 if (riscv_cpu_virt_enabled(env)) { 1044 *val = env->vstimecmp >> 32; 1045 } else { 1046 *val = env->stimecmp >> 32; 1047 } 1048 1049 return RISCV_EXCP_NONE; 1050 } 1051 1052 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1053 target_ulong val) 1054 { 1055 RISCVCPU *cpu = env_archcpu(env); 1056 1057 if (riscv_cpu_virt_enabled(env)) { 1058 if (env->hvictl & HVICTL_VTI) { 1059 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1060 } 1061 return write_vstimecmp(env, csrno, val); 1062 } 1063 1064 if (riscv_cpu_mxl(env) == MXL_RV32) { 1065 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1066 } else { 1067 env->stimecmp = val; 1068 } 1069 1070 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1071 1072 return RISCV_EXCP_NONE; 1073 } 1074 1075 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1076 target_ulong val) 1077 { 1078 RISCVCPU *cpu = env_archcpu(env); 1079 1080 if (riscv_cpu_virt_enabled(env)) { 1081 if (env->hvictl & HVICTL_VTI) { 1082 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1083 } 1084 return write_vstimecmph(env, csrno, val); 1085 } 1086 1087 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1088 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1089 1090 return RISCV_EXCP_NONE; 1091 } 1092 1093 /* Machine constants */ 1094 1095 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1096 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1097 MIP_LCOFIP)) 1098 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1099 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1100 1101 #define VSTOPI_NUM_SRCS 5 1102 1103 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1104 VS_MODE_INTERRUPTS; 1105 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1106 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1107 HS_MODE_INTERRUPTS; 1108 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1109 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1110 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1111 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1112 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1113 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1114 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1115 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1116 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1117 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1118 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1119 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1120 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1121 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1122 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1123 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1124 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1125 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1126 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1127 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1128 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1129 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1130 (1ULL << (RISCV_EXCP_M_ECALL)) | 1131 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1132 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1133 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1134 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1135 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1136 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1137 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1138 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1139 SIP_LCOFIP; 1140 static const target_ulong hip_writable_mask = MIP_VSSIP; 1141 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1142 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1143 1144 const bool valid_vm_1_10_32[16] = { 1145 [VM_1_10_MBARE] = true, 1146 [VM_1_10_SV32] = true 1147 }; 1148 1149 const bool valid_vm_1_10_64[16] = { 1150 [VM_1_10_MBARE] = true, 1151 [VM_1_10_SV39] = true, 1152 [VM_1_10_SV48] = true, 1153 [VM_1_10_SV57] = true 1154 }; 1155 1156 /* Machine Information Registers */ 1157 static RISCVException read_zero(CPURISCVState *env, int csrno, 1158 target_ulong *val) 1159 { 1160 *val = 0; 1161 return RISCV_EXCP_NONE; 1162 } 1163 1164 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1165 target_ulong val) 1166 { 1167 return RISCV_EXCP_NONE; 1168 } 1169 1170 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1171 target_ulong *val) 1172 { 1173 RISCVCPU *cpu = env_archcpu(env); 1174 1175 *val = cpu->cfg.mvendorid; 1176 return RISCV_EXCP_NONE; 1177 } 1178 1179 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1180 target_ulong *val) 1181 { 1182 RISCVCPU *cpu = env_archcpu(env); 1183 1184 *val = cpu->cfg.marchid; 1185 return RISCV_EXCP_NONE; 1186 } 1187 1188 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1189 target_ulong *val) 1190 { 1191 RISCVCPU *cpu = env_archcpu(env); 1192 1193 *val = cpu->cfg.mimpid; 1194 return RISCV_EXCP_NONE; 1195 } 1196 1197 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1198 target_ulong *val) 1199 { 1200 *val = env->mhartid; 1201 return RISCV_EXCP_NONE; 1202 } 1203 1204 /* Machine Trap Setup */ 1205 1206 /* We do not store SD explicitly, only compute it on demand. */ 1207 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1208 { 1209 if ((status & MSTATUS_FS) == MSTATUS_FS || 1210 (status & MSTATUS_VS) == MSTATUS_VS || 1211 (status & MSTATUS_XS) == MSTATUS_XS) { 1212 switch (xl) { 1213 case MXL_RV32: 1214 return status | MSTATUS32_SD; 1215 case MXL_RV64: 1216 return status | MSTATUS64_SD; 1217 case MXL_RV128: 1218 return MSTATUSH128_SD; 1219 default: 1220 g_assert_not_reached(); 1221 } 1222 } 1223 return status; 1224 } 1225 1226 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1227 target_ulong *val) 1228 { 1229 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1230 return RISCV_EXCP_NONE; 1231 } 1232 1233 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1234 { 1235 RISCVCPU *cpu = RISCV_CPU(env_cpu(env)); 1236 1237 return (vm & 0xf) <= satp_mode_max_from_map(cpu->cfg.satp_mode.map); 1238 } 1239 1240 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1241 target_ulong val) 1242 { 1243 uint64_t mstatus = env->mstatus; 1244 uint64_t mask = 0; 1245 RISCVMXL xl = riscv_cpu_mxl(env); 1246 1247 /* flush tlb on mstatus fields that affect VM */ 1248 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1249 MSTATUS_MPRV | MSTATUS_SUM)) { 1250 tlb_flush(env_cpu(env)); 1251 } 1252 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1253 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1254 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1255 MSTATUS_TW | MSTATUS_VS; 1256 1257 if (riscv_has_ext(env, RVF)) { 1258 mask |= MSTATUS_FS; 1259 } 1260 1261 if (xl != MXL_RV32 || env->debugger) { 1262 /* 1263 * RV32: MPV and GVA are not in mstatus. The current plan is to 1264 * add them to mstatush. For now, we just don't support it. 1265 */ 1266 mask |= MSTATUS_MPV | MSTATUS_GVA; 1267 if ((val & MSTATUS64_UXL) != 0) { 1268 mask |= MSTATUS64_UXL; 1269 } 1270 } 1271 1272 mstatus = (mstatus & ~mask) | (val & mask); 1273 1274 if (xl > MXL_RV32) { 1275 /* SXL field is for now read only */ 1276 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1277 } 1278 env->mstatus = mstatus; 1279 env->xl = cpu_recompute_xl(env); 1280 1281 return RISCV_EXCP_NONE; 1282 } 1283 1284 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1285 target_ulong *val) 1286 { 1287 *val = env->mstatus >> 32; 1288 return RISCV_EXCP_NONE; 1289 } 1290 1291 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1292 target_ulong val) 1293 { 1294 uint64_t valh = (uint64_t)val << 32; 1295 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1296 1297 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1298 tlb_flush(env_cpu(env)); 1299 } 1300 1301 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1302 1303 return RISCV_EXCP_NONE; 1304 } 1305 1306 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1307 Int128 *val) 1308 { 1309 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1310 return RISCV_EXCP_NONE; 1311 } 1312 1313 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1314 Int128 *val) 1315 { 1316 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1317 return RISCV_EXCP_NONE; 1318 } 1319 1320 static RISCVException read_misa(CPURISCVState *env, int csrno, 1321 target_ulong *val) 1322 { 1323 target_ulong misa; 1324 1325 switch (env->misa_mxl) { 1326 case MXL_RV32: 1327 misa = (target_ulong)MXL_RV32 << 30; 1328 break; 1329 #ifdef TARGET_RISCV64 1330 case MXL_RV64: 1331 misa = (target_ulong)MXL_RV64 << 62; 1332 break; 1333 #endif 1334 default: 1335 g_assert_not_reached(); 1336 } 1337 1338 *val = misa | env->misa_ext; 1339 return RISCV_EXCP_NONE; 1340 } 1341 1342 static RISCVException write_misa(CPURISCVState *env, int csrno, 1343 target_ulong val) 1344 { 1345 if (!riscv_cpu_cfg(env)->misa_w) { 1346 /* drop write to misa */ 1347 return RISCV_EXCP_NONE; 1348 } 1349 1350 /* 'I' or 'E' must be present */ 1351 if (!(val & (RVI | RVE))) { 1352 /* It is not, drop write to misa */ 1353 return RISCV_EXCP_NONE; 1354 } 1355 1356 /* 'E' excludes all other extensions */ 1357 if (val & RVE) { 1358 /* 1359 * when we support 'E' we can do "val = RVE;" however 1360 * for now we just drop writes if 'E' is present. 1361 */ 1362 return RISCV_EXCP_NONE; 1363 } 1364 1365 /* 1366 * misa.MXL writes are not supported by QEMU. 1367 * Drop writes to those bits. 1368 */ 1369 1370 /* Mask extensions that are not supported by this hart */ 1371 val &= env->misa_ext_mask; 1372 1373 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1374 if ((val & RVD) && !(val & RVF)) { 1375 val &= ~RVD; 1376 } 1377 1378 /* 1379 * Suppress 'C' if next instruction is not aligned 1380 * TODO: this should check next_pc 1381 */ 1382 if ((val & RVC) && (GETPC() & ~3) != 0) { 1383 val &= ~RVC; 1384 } 1385 1386 /* If nothing changed, do nothing. */ 1387 if (val == env->misa_ext) { 1388 return RISCV_EXCP_NONE; 1389 } 1390 1391 if (!(val & RVF)) { 1392 env->mstatus &= ~MSTATUS_FS; 1393 } 1394 1395 /* flush translation cache */ 1396 tb_flush(env_cpu(env)); 1397 env->misa_ext = val; 1398 env->xl = riscv_cpu_mxl(env); 1399 return RISCV_EXCP_NONE; 1400 } 1401 1402 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1403 target_ulong *val) 1404 { 1405 *val = env->medeleg; 1406 return RISCV_EXCP_NONE; 1407 } 1408 1409 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1410 target_ulong val) 1411 { 1412 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1413 return RISCV_EXCP_NONE; 1414 } 1415 1416 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1417 uint64_t *ret_val, 1418 uint64_t new_val, uint64_t wr_mask) 1419 { 1420 uint64_t mask = wr_mask & delegable_ints; 1421 1422 if (ret_val) { 1423 *ret_val = env->mideleg; 1424 } 1425 1426 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1427 1428 if (riscv_has_ext(env, RVH)) { 1429 env->mideleg |= HS_MODE_INTERRUPTS; 1430 } 1431 1432 return RISCV_EXCP_NONE; 1433 } 1434 1435 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1436 target_ulong *ret_val, 1437 target_ulong new_val, target_ulong wr_mask) 1438 { 1439 uint64_t rval; 1440 RISCVException ret; 1441 1442 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1443 if (ret_val) { 1444 *ret_val = rval; 1445 } 1446 1447 return ret; 1448 } 1449 1450 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1451 target_ulong *ret_val, 1452 target_ulong new_val, 1453 target_ulong wr_mask) 1454 { 1455 uint64_t rval; 1456 RISCVException ret; 1457 1458 ret = rmw_mideleg64(env, csrno, &rval, 1459 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1460 if (ret_val) { 1461 *ret_val = rval >> 32; 1462 } 1463 1464 return ret; 1465 } 1466 1467 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1468 uint64_t *ret_val, 1469 uint64_t new_val, uint64_t wr_mask) 1470 { 1471 uint64_t mask = wr_mask & all_ints; 1472 1473 if (ret_val) { 1474 *ret_val = env->mie; 1475 } 1476 1477 env->mie = (env->mie & ~mask) | (new_val & mask); 1478 1479 if (!riscv_has_ext(env, RVH)) { 1480 env->mie &= ~((uint64_t)MIP_SGEIP); 1481 } 1482 1483 return RISCV_EXCP_NONE; 1484 } 1485 1486 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1487 target_ulong *ret_val, 1488 target_ulong new_val, target_ulong wr_mask) 1489 { 1490 uint64_t rval; 1491 RISCVException ret; 1492 1493 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1494 if (ret_val) { 1495 *ret_val = rval; 1496 } 1497 1498 return ret; 1499 } 1500 1501 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1502 target_ulong *ret_val, 1503 target_ulong new_val, target_ulong wr_mask) 1504 { 1505 uint64_t rval; 1506 RISCVException ret; 1507 1508 ret = rmw_mie64(env, csrno, &rval, 1509 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1510 if (ret_val) { 1511 *ret_val = rval >> 32; 1512 } 1513 1514 return ret; 1515 } 1516 1517 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1518 { 1519 int irq; 1520 uint8_t iprio; 1521 1522 irq = riscv_cpu_mirq_pending(env); 1523 if (irq <= 0 || irq > 63) { 1524 *val = 0; 1525 } else { 1526 iprio = env->miprio[irq]; 1527 if (!iprio) { 1528 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1529 iprio = IPRIO_MMAXIPRIO; 1530 } 1531 } 1532 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1533 *val |= iprio; 1534 } 1535 1536 return RISCV_EXCP_NONE; 1537 } 1538 1539 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1540 { 1541 if (!riscv_cpu_virt_enabled(env)) { 1542 return csrno; 1543 } 1544 1545 switch (csrno) { 1546 case CSR_SISELECT: 1547 return CSR_VSISELECT; 1548 case CSR_SIREG: 1549 return CSR_VSIREG; 1550 case CSR_STOPEI: 1551 return CSR_VSTOPEI; 1552 default: 1553 return csrno; 1554 }; 1555 } 1556 1557 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1558 target_ulong new_val, target_ulong wr_mask) 1559 { 1560 target_ulong *iselect; 1561 1562 /* Translate CSR number for VS-mode */ 1563 csrno = aia_xlate_vs_csrno(env, csrno); 1564 1565 /* Find the iselect CSR based on CSR number */ 1566 switch (csrno) { 1567 case CSR_MISELECT: 1568 iselect = &env->miselect; 1569 break; 1570 case CSR_SISELECT: 1571 iselect = &env->siselect; 1572 break; 1573 case CSR_VSISELECT: 1574 iselect = &env->vsiselect; 1575 break; 1576 default: 1577 return RISCV_EXCP_ILLEGAL_INST; 1578 }; 1579 1580 if (val) { 1581 *val = *iselect; 1582 } 1583 1584 wr_mask &= ISELECT_MASK; 1585 if (wr_mask) { 1586 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1587 } 1588 1589 return RISCV_EXCP_NONE; 1590 } 1591 1592 static int rmw_iprio(target_ulong xlen, 1593 target_ulong iselect, uint8_t *iprio, 1594 target_ulong *val, target_ulong new_val, 1595 target_ulong wr_mask, int ext_irq_no) 1596 { 1597 int i, firq, nirqs; 1598 target_ulong old_val; 1599 1600 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1601 return -EINVAL; 1602 } 1603 if (xlen != 32 && iselect & 0x1) { 1604 return -EINVAL; 1605 } 1606 1607 nirqs = 4 * (xlen / 32); 1608 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1609 1610 old_val = 0; 1611 for (i = 0; i < nirqs; i++) { 1612 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1613 } 1614 1615 if (val) { 1616 *val = old_val; 1617 } 1618 1619 if (wr_mask) { 1620 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1621 for (i = 0; i < nirqs; i++) { 1622 /* 1623 * M-level and S-level external IRQ priority always read-only 1624 * zero. This means default priority order is always preferred 1625 * for M-level and S-level external IRQs. 1626 */ 1627 if ((firq + i) == ext_irq_no) { 1628 continue; 1629 } 1630 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1631 } 1632 } 1633 1634 return 0; 1635 } 1636 1637 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1638 target_ulong new_val, target_ulong wr_mask) 1639 { 1640 bool virt; 1641 uint8_t *iprio; 1642 int ret = -EINVAL; 1643 target_ulong priv, isel, vgein; 1644 1645 /* Translate CSR number for VS-mode */ 1646 csrno = aia_xlate_vs_csrno(env, csrno); 1647 1648 /* Decode register details from CSR number */ 1649 virt = false; 1650 switch (csrno) { 1651 case CSR_MIREG: 1652 iprio = env->miprio; 1653 isel = env->miselect; 1654 priv = PRV_M; 1655 break; 1656 case CSR_SIREG: 1657 iprio = env->siprio; 1658 isel = env->siselect; 1659 priv = PRV_S; 1660 break; 1661 case CSR_VSIREG: 1662 iprio = env->hviprio; 1663 isel = env->vsiselect; 1664 priv = PRV_S; 1665 virt = true; 1666 break; 1667 default: 1668 goto done; 1669 }; 1670 1671 /* Find the selected guest interrupt file */ 1672 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1673 1674 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1675 /* Local interrupt priority registers not available for VS-mode */ 1676 if (!virt) { 1677 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1678 isel, iprio, val, new_val, wr_mask, 1679 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1680 } 1681 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1682 /* IMSIC registers only available when machine implements it. */ 1683 if (env->aia_ireg_rmw_fn[priv]) { 1684 /* Selected guest interrupt file should not be zero */ 1685 if (virt && (!vgein || env->geilen < vgein)) { 1686 goto done; 1687 } 1688 /* Call machine specific IMSIC register emulation */ 1689 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1690 AIA_MAKE_IREG(isel, priv, virt, vgein, 1691 riscv_cpu_mxl_bits(env)), 1692 val, new_val, wr_mask); 1693 } 1694 } 1695 1696 done: 1697 if (ret) { 1698 return (riscv_cpu_virt_enabled(env) && virt) ? 1699 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1700 } 1701 return RISCV_EXCP_NONE; 1702 } 1703 1704 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1705 target_ulong new_val, target_ulong wr_mask) 1706 { 1707 bool virt; 1708 int ret = -EINVAL; 1709 target_ulong priv, vgein; 1710 1711 /* Translate CSR number for VS-mode */ 1712 csrno = aia_xlate_vs_csrno(env, csrno); 1713 1714 /* Decode register details from CSR number */ 1715 virt = false; 1716 switch (csrno) { 1717 case CSR_MTOPEI: 1718 priv = PRV_M; 1719 break; 1720 case CSR_STOPEI: 1721 priv = PRV_S; 1722 break; 1723 case CSR_VSTOPEI: 1724 priv = PRV_S; 1725 virt = true; 1726 break; 1727 default: 1728 goto done; 1729 }; 1730 1731 /* IMSIC CSRs only available when machine implements IMSIC. */ 1732 if (!env->aia_ireg_rmw_fn[priv]) { 1733 goto done; 1734 } 1735 1736 /* Find the selected guest interrupt file */ 1737 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1738 1739 /* Selected guest interrupt file should be valid */ 1740 if (virt && (!vgein || env->geilen < vgein)) { 1741 goto done; 1742 } 1743 1744 /* Call machine specific IMSIC register emulation for TOPEI */ 1745 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1746 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1747 riscv_cpu_mxl_bits(env)), 1748 val, new_val, wr_mask); 1749 1750 done: 1751 if (ret) { 1752 return (riscv_cpu_virt_enabled(env) && virt) ? 1753 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1754 } 1755 return RISCV_EXCP_NONE; 1756 } 1757 1758 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1759 target_ulong *val) 1760 { 1761 *val = env->mtvec; 1762 return RISCV_EXCP_NONE; 1763 } 1764 1765 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1766 target_ulong val) 1767 { 1768 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1769 if ((val & 3) < 2) { 1770 env->mtvec = val; 1771 } else { 1772 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1773 } 1774 return RISCV_EXCP_NONE; 1775 } 1776 1777 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1778 target_ulong *val) 1779 { 1780 *val = env->mcountinhibit; 1781 return RISCV_EXCP_NONE; 1782 } 1783 1784 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1785 target_ulong val) 1786 { 1787 int cidx; 1788 PMUCTRState *counter; 1789 1790 env->mcountinhibit = val; 1791 1792 /* Check if any other counter is also monitoring cycles/instructions */ 1793 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1794 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1795 counter = &env->pmu_ctrs[cidx]; 1796 counter->started = true; 1797 } 1798 } 1799 1800 return RISCV_EXCP_NONE; 1801 } 1802 1803 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1804 target_ulong *val) 1805 { 1806 *val = env->mcounteren; 1807 return RISCV_EXCP_NONE; 1808 } 1809 1810 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1811 target_ulong val) 1812 { 1813 env->mcounteren = val; 1814 return RISCV_EXCP_NONE; 1815 } 1816 1817 /* Machine Trap Handling */ 1818 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1819 Int128 *val) 1820 { 1821 *val = int128_make128(env->mscratch, env->mscratchh); 1822 return RISCV_EXCP_NONE; 1823 } 1824 1825 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1826 Int128 val) 1827 { 1828 env->mscratch = int128_getlo(val); 1829 env->mscratchh = int128_gethi(val); 1830 return RISCV_EXCP_NONE; 1831 } 1832 1833 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1834 target_ulong *val) 1835 { 1836 *val = env->mscratch; 1837 return RISCV_EXCP_NONE; 1838 } 1839 1840 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1841 target_ulong val) 1842 { 1843 env->mscratch = val; 1844 return RISCV_EXCP_NONE; 1845 } 1846 1847 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1848 target_ulong *val) 1849 { 1850 *val = env->mepc; 1851 return RISCV_EXCP_NONE; 1852 } 1853 1854 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1855 target_ulong val) 1856 { 1857 env->mepc = val; 1858 return RISCV_EXCP_NONE; 1859 } 1860 1861 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1862 target_ulong *val) 1863 { 1864 *val = env->mcause; 1865 return RISCV_EXCP_NONE; 1866 } 1867 1868 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1869 target_ulong val) 1870 { 1871 env->mcause = val; 1872 return RISCV_EXCP_NONE; 1873 } 1874 1875 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1876 target_ulong *val) 1877 { 1878 *val = env->mtval; 1879 return RISCV_EXCP_NONE; 1880 } 1881 1882 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1883 target_ulong val) 1884 { 1885 env->mtval = val; 1886 return RISCV_EXCP_NONE; 1887 } 1888 1889 /* Execution environment configuration setup */ 1890 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1891 target_ulong *val) 1892 { 1893 *val = env->menvcfg; 1894 return RISCV_EXCP_NONE; 1895 } 1896 1897 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1898 target_ulong val) 1899 { 1900 RISCVCPUConfig *cfg = &env_archcpu(env)->cfg; 1901 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1902 1903 if (riscv_cpu_mxl(env) == MXL_RV64) { 1904 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1905 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 1906 (cfg->ext_svadu ? MENVCFG_HADE : 0); 1907 } 1908 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1909 1910 return RISCV_EXCP_NONE; 1911 } 1912 1913 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1914 target_ulong *val) 1915 { 1916 *val = env->menvcfg >> 32; 1917 return RISCV_EXCP_NONE; 1918 } 1919 1920 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1921 target_ulong val) 1922 { 1923 RISCVCPUConfig *cfg = &env_archcpu(env)->cfg; 1924 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1925 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 1926 (cfg->ext_svadu ? MENVCFG_HADE : 0); 1927 uint64_t valh = (uint64_t)val << 32; 1928 1929 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1930 1931 return RISCV_EXCP_NONE; 1932 } 1933 1934 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1935 target_ulong *val) 1936 { 1937 RISCVException ret; 1938 1939 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1940 if (ret != RISCV_EXCP_NONE) { 1941 return ret; 1942 } 1943 1944 *val = env->senvcfg; 1945 return RISCV_EXCP_NONE; 1946 } 1947 1948 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1949 target_ulong val) 1950 { 1951 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1952 RISCVException ret; 1953 1954 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1955 if (ret != RISCV_EXCP_NONE) { 1956 return ret; 1957 } 1958 1959 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1960 return RISCV_EXCP_NONE; 1961 } 1962 1963 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1964 target_ulong *val) 1965 { 1966 RISCVException ret; 1967 1968 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1969 if (ret != RISCV_EXCP_NONE) { 1970 return ret; 1971 } 1972 1973 /* 1974 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 1975 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 1976 * henvcfg.hade is read_only 0 when menvcfg.hade = 0 1977 */ 1978 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE) | 1979 env->menvcfg); 1980 return RISCV_EXCP_NONE; 1981 } 1982 1983 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1984 target_ulong val) 1985 { 1986 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1987 RISCVException ret; 1988 1989 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1990 if (ret != RISCV_EXCP_NONE) { 1991 return ret; 1992 } 1993 1994 if (riscv_cpu_mxl(env) == MXL_RV64) { 1995 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE); 1996 } 1997 1998 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1999 2000 return RISCV_EXCP_NONE; 2001 } 2002 2003 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 2004 target_ulong *val) 2005 { 2006 RISCVException ret; 2007 2008 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2009 if (ret != RISCV_EXCP_NONE) { 2010 return ret; 2011 } 2012 2013 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE) | 2014 env->menvcfg)) >> 32; 2015 return RISCV_EXCP_NONE; 2016 } 2017 2018 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2019 target_ulong val) 2020 { 2021 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 2022 HENVCFG_HADE); 2023 uint64_t valh = (uint64_t)val << 32; 2024 RISCVException ret; 2025 2026 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2027 if (ret != RISCV_EXCP_NONE) { 2028 return ret; 2029 } 2030 2031 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2032 return RISCV_EXCP_NONE; 2033 } 2034 2035 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2036 target_ulong *val) 2037 { 2038 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2039 2040 return RISCV_EXCP_NONE; 2041 } 2042 2043 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2044 uint64_t wr_mask, target_ulong new_val) 2045 { 2046 uint64_t *reg; 2047 2048 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2049 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2050 2051 return RISCV_EXCP_NONE; 2052 } 2053 2054 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2055 target_ulong new_val) 2056 { 2057 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2058 2059 return write_mstateen(env, csrno, wr_mask, new_val); 2060 } 2061 2062 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2063 target_ulong new_val) 2064 { 2065 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2066 } 2067 2068 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2069 target_ulong *val) 2070 { 2071 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2072 2073 return RISCV_EXCP_NONE; 2074 } 2075 2076 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2077 uint64_t wr_mask, target_ulong new_val) 2078 { 2079 uint64_t *reg, val; 2080 2081 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2082 val = (uint64_t)new_val << 32; 2083 val |= *reg & 0xFFFFFFFF; 2084 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2085 2086 return RISCV_EXCP_NONE; 2087 } 2088 2089 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2090 target_ulong new_val) 2091 { 2092 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2093 2094 return write_mstateenh(env, csrno, wr_mask, new_val); 2095 } 2096 2097 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2098 target_ulong new_val) 2099 { 2100 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2101 } 2102 2103 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2104 target_ulong *val) 2105 { 2106 int index = csrno - CSR_HSTATEEN0; 2107 2108 *val = env->hstateen[index] & env->mstateen[index]; 2109 2110 return RISCV_EXCP_NONE; 2111 } 2112 2113 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2114 uint64_t mask, target_ulong new_val) 2115 { 2116 int index = csrno - CSR_HSTATEEN0; 2117 uint64_t *reg, wr_mask; 2118 2119 reg = &env->hstateen[index]; 2120 wr_mask = env->mstateen[index] & mask; 2121 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2122 2123 return RISCV_EXCP_NONE; 2124 } 2125 2126 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2127 target_ulong new_val) 2128 { 2129 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2130 2131 return write_hstateen(env, csrno, wr_mask, new_val); 2132 } 2133 2134 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2135 target_ulong new_val) 2136 { 2137 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2138 } 2139 2140 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2141 target_ulong *val) 2142 { 2143 int index = csrno - CSR_HSTATEEN0H; 2144 2145 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2146 2147 return RISCV_EXCP_NONE; 2148 } 2149 2150 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2151 uint64_t mask, target_ulong new_val) 2152 { 2153 int index = csrno - CSR_HSTATEEN0H; 2154 uint64_t *reg, wr_mask, val; 2155 2156 reg = &env->hstateen[index]; 2157 val = (uint64_t)new_val << 32; 2158 val |= *reg & 0xFFFFFFFF; 2159 wr_mask = env->mstateen[index] & mask; 2160 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2161 2162 return RISCV_EXCP_NONE; 2163 } 2164 2165 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2166 target_ulong new_val) 2167 { 2168 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2169 2170 return write_hstateenh(env, csrno, wr_mask, new_val); 2171 } 2172 2173 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2174 target_ulong new_val) 2175 { 2176 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2177 } 2178 2179 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2180 target_ulong *val) 2181 { 2182 bool virt = riscv_cpu_virt_enabled(env); 2183 int index = csrno - CSR_SSTATEEN0; 2184 2185 *val = env->sstateen[index] & env->mstateen[index]; 2186 if (virt) { 2187 *val &= env->hstateen[index]; 2188 } 2189 2190 return RISCV_EXCP_NONE; 2191 } 2192 2193 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2194 uint64_t mask, target_ulong new_val) 2195 { 2196 bool virt = riscv_cpu_virt_enabled(env); 2197 int index = csrno - CSR_SSTATEEN0; 2198 uint64_t wr_mask; 2199 uint64_t *reg; 2200 2201 wr_mask = env->mstateen[index] & mask; 2202 if (virt) { 2203 wr_mask &= env->hstateen[index]; 2204 } 2205 2206 reg = &env->sstateen[index]; 2207 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2208 2209 return RISCV_EXCP_NONE; 2210 } 2211 2212 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2213 target_ulong new_val) 2214 { 2215 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2216 2217 return write_sstateen(env, csrno, wr_mask, new_val); 2218 } 2219 2220 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2221 target_ulong new_val) 2222 { 2223 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2224 } 2225 2226 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2227 uint64_t *ret_val, 2228 uint64_t new_val, uint64_t wr_mask) 2229 { 2230 RISCVCPU *cpu = env_archcpu(env); 2231 uint64_t old_mip, mask = wr_mask & delegable_ints; 2232 uint32_t gin; 2233 2234 if (mask & MIP_SEIP) { 2235 env->software_seip = new_val & MIP_SEIP; 2236 new_val |= env->external_seip * MIP_SEIP; 2237 } 2238 2239 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2240 get_field(env->menvcfg, MENVCFG_STCE)) { 2241 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2242 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2243 } 2244 2245 if (mask) { 2246 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 2247 } else { 2248 old_mip = env->mip; 2249 } 2250 2251 if (csrno != CSR_HVIP) { 2252 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2253 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2254 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2255 } 2256 2257 if (ret_val) { 2258 *ret_val = old_mip; 2259 } 2260 2261 return RISCV_EXCP_NONE; 2262 } 2263 2264 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2265 target_ulong *ret_val, 2266 target_ulong new_val, target_ulong wr_mask) 2267 { 2268 uint64_t rval; 2269 RISCVException ret; 2270 2271 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2272 if (ret_val) { 2273 *ret_val = rval; 2274 } 2275 2276 return ret; 2277 } 2278 2279 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2280 target_ulong *ret_val, 2281 target_ulong new_val, target_ulong wr_mask) 2282 { 2283 uint64_t rval; 2284 RISCVException ret; 2285 2286 ret = rmw_mip64(env, csrno, &rval, 2287 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2288 if (ret_val) { 2289 *ret_val = rval >> 32; 2290 } 2291 2292 return ret; 2293 } 2294 2295 /* Supervisor Trap Setup */ 2296 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2297 Int128 *val) 2298 { 2299 uint64_t mask = sstatus_v1_10_mask; 2300 uint64_t sstatus = env->mstatus & mask; 2301 if (env->xl != MXL_RV32 || env->debugger) { 2302 mask |= SSTATUS64_UXL; 2303 } 2304 2305 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2306 return RISCV_EXCP_NONE; 2307 } 2308 2309 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2310 target_ulong *val) 2311 { 2312 target_ulong mask = (sstatus_v1_10_mask); 2313 if (env->xl != MXL_RV32 || env->debugger) { 2314 mask |= SSTATUS64_UXL; 2315 } 2316 /* TODO: Use SXL not MXL. */ 2317 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2318 return RISCV_EXCP_NONE; 2319 } 2320 2321 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2322 target_ulong val) 2323 { 2324 target_ulong mask = (sstatus_v1_10_mask); 2325 2326 if (env->xl != MXL_RV32 || env->debugger) { 2327 if ((val & SSTATUS64_UXL) != 0) { 2328 mask |= SSTATUS64_UXL; 2329 } 2330 } 2331 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2332 return write_mstatus(env, CSR_MSTATUS, newval); 2333 } 2334 2335 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2336 uint64_t *ret_val, 2337 uint64_t new_val, uint64_t wr_mask) 2338 { 2339 RISCVException ret; 2340 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2341 2342 /* Bring VS-level bits to correct position */ 2343 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2344 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2345 2346 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2347 if (ret_val) { 2348 *ret_val = (rval & mask) >> 1; 2349 } 2350 2351 return ret; 2352 } 2353 2354 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2355 target_ulong *ret_val, 2356 target_ulong new_val, target_ulong wr_mask) 2357 { 2358 uint64_t rval; 2359 RISCVException ret; 2360 2361 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2362 if (ret_val) { 2363 *ret_val = rval; 2364 } 2365 2366 return ret; 2367 } 2368 2369 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2370 target_ulong *ret_val, 2371 target_ulong new_val, target_ulong wr_mask) 2372 { 2373 uint64_t rval; 2374 RISCVException ret; 2375 2376 ret = rmw_vsie64(env, csrno, &rval, 2377 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2378 if (ret_val) { 2379 *ret_val = rval >> 32; 2380 } 2381 2382 return ret; 2383 } 2384 2385 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2386 uint64_t *ret_val, 2387 uint64_t new_val, uint64_t wr_mask) 2388 { 2389 RISCVException ret; 2390 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2391 2392 if (riscv_cpu_virt_enabled(env)) { 2393 if (env->hvictl & HVICTL_VTI) { 2394 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2395 } 2396 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2397 } else { 2398 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2399 } 2400 2401 if (ret_val) { 2402 *ret_val &= mask; 2403 } 2404 2405 return ret; 2406 } 2407 2408 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2409 target_ulong *ret_val, 2410 target_ulong new_val, target_ulong wr_mask) 2411 { 2412 uint64_t rval; 2413 RISCVException ret; 2414 2415 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2416 if (ret == RISCV_EXCP_NONE && ret_val) { 2417 *ret_val = rval; 2418 } 2419 2420 return ret; 2421 } 2422 2423 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2424 target_ulong *ret_val, 2425 target_ulong new_val, target_ulong wr_mask) 2426 { 2427 uint64_t rval; 2428 RISCVException ret; 2429 2430 ret = rmw_sie64(env, csrno, &rval, 2431 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2432 if (ret_val) { 2433 *ret_val = rval >> 32; 2434 } 2435 2436 return ret; 2437 } 2438 2439 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2440 target_ulong *val) 2441 { 2442 *val = env->stvec; 2443 return RISCV_EXCP_NONE; 2444 } 2445 2446 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2447 target_ulong val) 2448 { 2449 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2450 if ((val & 3) < 2) { 2451 env->stvec = val; 2452 } else { 2453 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2454 } 2455 return RISCV_EXCP_NONE; 2456 } 2457 2458 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2459 target_ulong *val) 2460 { 2461 *val = env->scounteren; 2462 return RISCV_EXCP_NONE; 2463 } 2464 2465 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2466 target_ulong val) 2467 { 2468 env->scounteren = val; 2469 return RISCV_EXCP_NONE; 2470 } 2471 2472 /* Supervisor Trap Handling */ 2473 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2474 Int128 *val) 2475 { 2476 *val = int128_make128(env->sscratch, env->sscratchh); 2477 return RISCV_EXCP_NONE; 2478 } 2479 2480 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2481 Int128 val) 2482 { 2483 env->sscratch = int128_getlo(val); 2484 env->sscratchh = int128_gethi(val); 2485 return RISCV_EXCP_NONE; 2486 } 2487 2488 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2489 target_ulong *val) 2490 { 2491 *val = env->sscratch; 2492 return RISCV_EXCP_NONE; 2493 } 2494 2495 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2496 target_ulong val) 2497 { 2498 env->sscratch = val; 2499 return RISCV_EXCP_NONE; 2500 } 2501 2502 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2503 target_ulong *val) 2504 { 2505 *val = env->sepc; 2506 return RISCV_EXCP_NONE; 2507 } 2508 2509 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2510 target_ulong val) 2511 { 2512 env->sepc = val; 2513 return RISCV_EXCP_NONE; 2514 } 2515 2516 static RISCVException read_scause(CPURISCVState *env, int csrno, 2517 target_ulong *val) 2518 { 2519 *val = env->scause; 2520 return RISCV_EXCP_NONE; 2521 } 2522 2523 static RISCVException write_scause(CPURISCVState *env, int csrno, 2524 target_ulong val) 2525 { 2526 env->scause = val; 2527 return RISCV_EXCP_NONE; 2528 } 2529 2530 static RISCVException read_stval(CPURISCVState *env, int csrno, 2531 target_ulong *val) 2532 { 2533 *val = env->stval; 2534 return RISCV_EXCP_NONE; 2535 } 2536 2537 static RISCVException write_stval(CPURISCVState *env, int csrno, 2538 target_ulong val) 2539 { 2540 env->stval = val; 2541 return RISCV_EXCP_NONE; 2542 } 2543 2544 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2545 uint64_t *ret_val, 2546 uint64_t new_val, uint64_t wr_mask) 2547 { 2548 RISCVException ret; 2549 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2550 2551 /* Bring VS-level bits to correct position */ 2552 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2553 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2554 2555 ret = rmw_mip64(env, csrno, &rval, new_val, 2556 wr_mask & mask & vsip_writable_mask); 2557 if (ret_val) { 2558 *ret_val = (rval & mask) >> 1; 2559 } 2560 2561 return ret; 2562 } 2563 2564 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2565 target_ulong *ret_val, 2566 target_ulong new_val, target_ulong wr_mask) 2567 { 2568 uint64_t rval; 2569 RISCVException ret; 2570 2571 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2572 if (ret_val) { 2573 *ret_val = rval; 2574 } 2575 2576 return ret; 2577 } 2578 2579 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2580 target_ulong *ret_val, 2581 target_ulong new_val, target_ulong wr_mask) 2582 { 2583 uint64_t rval; 2584 RISCVException ret; 2585 2586 ret = rmw_vsip64(env, csrno, &rval, 2587 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2588 if (ret_val) { 2589 *ret_val = rval >> 32; 2590 } 2591 2592 return ret; 2593 } 2594 2595 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2596 uint64_t *ret_val, 2597 uint64_t new_val, uint64_t wr_mask) 2598 { 2599 RISCVException ret; 2600 uint64_t mask = env->mideleg & sip_writable_mask; 2601 2602 if (riscv_cpu_virt_enabled(env)) { 2603 if (env->hvictl & HVICTL_VTI) { 2604 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2605 } 2606 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2607 } else { 2608 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2609 } 2610 2611 if (ret_val) { 2612 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2613 } 2614 2615 return ret; 2616 } 2617 2618 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2619 target_ulong *ret_val, 2620 target_ulong new_val, target_ulong wr_mask) 2621 { 2622 uint64_t rval; 2623 RISCVException ret; 2624 2625 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2626 if (ret_val) { 2627 *ret_val = rval; 2628 } 2629 2630 return ret; 2631 } 2632 2633 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2634 target_ulong *ret_val, 2635 target_ulong new_val, target_ulong wr_mask) 2636 { 2637 uint64_t rval; 2638 RISCVException ret; 2639 2640 ret = rmw_sip64(env, csrno, &rval, 2641 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2642 if (ret_val) { 2643 *ret_val = rval >> 32; 2644 } 2645 2646 return ret; 2647 } 2648 2649 /* Supervisor Protection and Translation */ 2650 static RISCVException read_satp(CPURISCVState *env, int csrno, 2651 target_ulong *val) 2652 { 2653 if (!riscv_cpu_cfg(env)->mmu) { 2654 *val = 0; 2655 return RISCV_EXCP_NONE; 2656 } 2657 2658 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2659 return RISCV_EXCP_ILLEGAL_INST; 2660 } else { 2661 *val = env->satp; 2662 } 2663 2664 return RISCV_EXCP_NONE; 2665 } 2666 2667 static RISCVException write_satp(CPURISCVState *env, int csrno, 2668 target_ulong val) 2669 { 2670 target_ulong mask; 2671 bool vm; 2672 2673 if (!riscv_cpu_cfg(env)->mmu) { 2674 return RISCV_EXCP_NONE; 2675 } 2676 2677 if (riscv_cpu_mxl(env) == MXL_RV32) { 2678 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2679 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2680 } else { 2681 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2682 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2683 } 2684 2685 if (vm && mask) { 2686 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2687 return RISCV_EXCP_ILLEGAL_INST; 2688 } else { 2689 /* 2690 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2691 * pass these through QEMU's TLB emulation as it improves 2692 * performance. Flushing the TLB on SATP writes with paging 2693 * enabled avoids leaking those invalid cached mappings. 2694 */ 2695 tlb_flush(env_cpu(env)); 2696 env->satp = val; 2697 } 2698 } 2699 return RISCV_EXCP_NONE; 2700 } 2701 2702 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2703 { 2704 int irq, ret; 2705 target_ulong topei; 2706 uint64_t vseip, vsgein; 2707 uint32_t iid, iprio, hviid, hviprio, gein; 2708 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2709 2710 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2711 hviid = get_field(env->hvictl, HVICTL_IID); 2712 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2713 2714 if (gein) { 2715 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2716 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2717 if (gein <= env->geilen && vseip) { 2718 siid[scount] = IRQ_S_EXT; 2719 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2720 if (env->aia_ireg_rmw_fn[PRV_S]) { 2721 /* 2722 * Call machine specific IMSIC register emulation for 2723 * reading TOPEI. 2724 */ 2725 ret = env->aia_ireg_rmw_fn[PRV_S]( 2726 env->aia_ireg_rmw_fn_arg[PRV_S], 2727 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2728 riscv_cpu_mxl_bits(env)), 2729 &topei, 0, 0); 2730 if (!ret && topei) { 2731 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2732 } 2733 } 2734 scount++; 2735 } 2736 } else { 2737 if (hviid == IRQ_S_EXT && hviprio) { 2738 siid[scount] = IRQ_S_EXT; 2739 siprio[scount] = hviprio; 2740 scount++; 2741 } 2742 } 2743 2744 if (env->hvictl & HVICTL_VTI) { 2745 if (hviid != IRQ_S_EXT) { 2746 siid[scount] = hviid; 2747 siprio[scount] = hviprio; 2748 scount++; 2749 } 2750 } else { 2751 irq = riscv_cpu_vsirq_pending(env); 2752 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2753 siid[scount] = irq; 2754 siprio[scount] = env->hviprio[irq]; 2755 scount++; 2756 } 2757 } 2758 2759 iid = 0; 2760 iprio = UINT_MAX; 2761 for (s = 0; s < scount; s++) { 2762 if (siprio[s] < iprio) { 2763 iid = siid[s]; 2764 iprio = siprio[s]; 2765 } 2766 } 2767 2768 if (iid) { 2769 if (env->hvictl & HVICTL_IPRIOM) { 2770 if (iprio > IPRIO_MMAXIPRIO) { 2771 iprio = IPRIO_MMAXIPRIO; 2772 } 2773 if (!iprio) { 2774 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2775 iprio = IPRIO_MMAXIPRIO; 2776 } 2777 } 2778 } else { 2779 iprio = 1; 2780 } 2781 } else { 2782 iprio = 0; 2783 } 2784 2785 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2786 *val |= iprio; 2787 return RISCV_EXCP_NONE; 2788 } 2789 2790 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2791 { 2792 int irq; 2793 uint8_t iprio; 2794 2795 if (riscv_cpu_virt_enabled(env)) { 2796 return read_vstopi(env, CSR_VSTOPI, val); 2797 } 2798 2799 irq = riscv_cpu_sirq_pending(env); 2800 if (irq <= 0 || irq > 63) { 2801 *val = 0; 2802 } else { 2803 iprio = env->siprio[irq]; 2804 if (!iprio) { 2805 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2806 iprio = IPRIO_MMAXIPRIO; 2807 } 2808 } 2809 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2810 *val |= iprio; 2811 } 2812 2813 return RISCV_EXCP_NONE; 2814 } 2815 2816 /* Hypervisor Extensions */ 2817 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2818 target_ulong *val) 2819 { 2820 *val = env->hstatus; 2821 if (riscv_cpu_mxl(env) != MXL_RV32) { 2822 /* We only support 64-bit VSXL */ 2823 *val = set_field(*val, HSTATUS_VSXL, 2); 2824 } 2825 /* We only support little endian */ 2826 *val = set_field(*val, HSTATUS_VSBE, 0); 2827 return RISCV_EXCP_NONE; 2828 } 2829 2830 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2831 target_ulong val) 2832 { 2833 env->hstatus = val; 2834 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2835 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2836 } 2837 if (get_field(val, HSTATUS_VSBE) != 0) { 2838 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2839 } 2840 return RISCV_EXCP_NONE; 2841 } 2842 2843 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2844 target_ulong *val) 2845 { 2846 *val = env->hedeleg; 2847 return RISCV_EXCP_NONE; 2848 } 2849 2850 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2851 target_ulong val) 2852 { 2853 env->hedeleg = val & vs_delegable_excps; 2854 return RISCV_EXCP_NONE; 2855 } 2856 2857 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2858 uint64_t *ret_val, 2859 uint64_t new_val, uint64_t wr_mask) 2860 { 2861 uint64_t mask = wr_mask & vs_delegable_ints; 2862 2863 if (ret_val) { 2864 *ret_val = env->hideleg & vs_delegable_ints; 2865 } 2866 2867 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2868 return RISCV_EXCP_NONE; 2869 } 2870 2871 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2872 target_ulong *ret_val, 2873 target_ulong new_val, target_ulong wr_mask) 2874 { 2875 uint64_t rval; 2876 RISCVException ret; 2877 2878 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2879 if (ret_val) { 2880 *ret_val = rval; 2881 } 2882 2883 return ret; 2884 } 2885 2886 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2887 target_ulong *ret_val, 2888 target_ulong new_val, target_ulong wr_mask) 2889 { 2890 uint64_t rval; 2891 RISCVException ret; 2892 2893 ret = rmw_hideleg64(env, csrno, &rval, 2894 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2895 if (ret_val) { 2896 *ret_val = rval >> 32; 2897 } 2898 2899 return ret; 2900 } 2901 2902 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2903 uint64_t *ret_val, 2904 uint64_t new_val, uint64_t wr_mask) 2905 { 2906 RISCVException ret; 2907 2908 ret = rmw_mip64(env, csrno, ret_val, new_val, 2909 wr_mask & hvip_writable_mask); 2910 if (ret_val) { 2911 *ret_val &= VS_MODE_INTERRUPTS; 2912 } 2913 2914 return ret; 2915 } 2916 2917 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2918 target_ulong *ret_val, 2919 target_ulong new_val, target_ulong wr_mask) 2920 { 2921 uint64_t rval; 2922 RISCVException ret; 2923 2924 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2925 if (ret_val) { 2926 *ret_val = rval; 2927 } 2928 2929 return ret; 2930 } 2931 2932 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2933 target_ulong *ret_val, 2934 target_ulong new_val, target_ulong wr_mask) 2935 { 2936 uint64_t rval; 2937 RISCVException ret; 2938 2939 ret = rmw_hvip64(env, csrno, &rval, 2940 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2941 if (ret_val) { 2942 *ret_val = rval >> 32; 2943 } 2944 2945 return ret; 2946 } 2947 2948 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2949 target_ulong *ret_value, 2950 target_ulong new_value, target_ulong write_mask) 2951 { 2952 int ret = rmw_mip(env, csrno, ret_value, new_value, 2953 write_mask & hip_writable_mask); 2954 2955 if (ret_value) { 2956 *ret_value &= HS_MODE_INTERRUPTS; 2957 } 2958 return ret; 2959 } 2960 2961 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2962 target_ulong *ret_val, 2963 target_ulong new_val, target_ulong wr_mask) 2964 { 2965 uint64_t rval; 2966 RISCVException ret; 2967 2968 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2969 if (ret_val) { 2970 *ret_val = rval & HS_MODE_INTERRUPTS; 2971 } 2972 2973 return ret; 2974 } 2975 2976 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2977 target_ulong *val) 2978 { 2979 *val = env->hcounteren; 2980 return RISCV_EXCP_NONE; 2981 } 2982 2983 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2984 target_ulong val) 2985 { 2986 env->hcounteren = val; 2987 return RISCV_EXCP_NONE; 2988 } 2989 2990 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2991 target_ulong *val) 2992 { 2993 if (val) { 2994 *val = env->hgeie; 2995 } 2996 return RISCV_EXCP_NONE; 2997 } 2998 2999 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 3000 target_ulong val) 3001 { 3002 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 3003 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 3004 env->hgeie = val; 3005 /* Update mip.SGEIP bit */ 3006 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 3007 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 3008 return RISCV_EXCP_NONE; 3009 } 3010 3011 static RISCVException read_htval(CPURISCVState *env, int csrno, 3012 target_ulong *val) 3013 { 3014 *val = env->htval; 3015 return RISCV_EXCP_NONE; 3016 } 3017 3018 static RISCVException write_htval(CPURISCVState *env, int csrno, 3019 target_ulong val) 3020 { 3021 env->htval = val; 3022 return RISCV_EXCP_NONE; 3023 } 3024 3025 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3026 target_ulong *val) 3027 { 3028 *val = env->htinst; 3029 return RISCV_EXCP_NONE; 3030 } 3031 3032 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3033 target_ulong val) 3034 { 3035 return RISCV_EXCP_NONE; 3036 } 3037 3038 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3039 target_ulong *val) 3040 { 3041 if (val) { 3042 *val = env->hgeip; 3043 } 3044 return RISCV_EXCP_NONE; 3045 } 3046 3047 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3048 target_ulong *val) 3049 { 3050 *val = env->hgatp; 3051 return RISCV_EXCP_NONE; 3052 } 3053 3054 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3055 target_ulong val) 3056 { 3057 env->hgatp = val; 3058 return RISCV_EXCP_NONE; 3059 } 3060 3061 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3062 target_ulong *val) 3063 { 3064 if (!env->rdtime_fn) { 3065 return RISCV_EXCP_ILLEGAL_INST; 3066 } 3067 3068 *val = env->htimedelta; 3069 return RISCV_EXCP_NONE; 3070 } 3071 3072 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3073 target_ulong val) 3074 { 3075 RISCVCPU *cpu = env_archcpu(env); 3076 3077 if (!env->rdtime_fn) { 3078 return RISCV_EXCP_ILLEGAL_INST; 3079 } 3080 3081 if (riscv_cpu_mxl(env) == MXL_RV32) { 3082 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3083 } else { 3084 env->htimedelta = val; 3085 } 3086 3087 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3088 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3089 env->htimedelta, MIP_VSTIP); 3090 } 3091 3092 return RISCV_EXCP_NONE; 3093 } 3094 3095 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3096 target_ulong *val) 3097 { 3098 if (!env->rdtime_fn) { 3099 return RISCV_EXCP_ILLEGAL_INST; 3100 } 3101 3102 *val = env->htimedelta >> 32; 3103 return RISCV_EXCP_NONE; 3104 } 3105 3106 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3107 target_ulong val) 3108 { 3109 RISCVCPU *cpu = env_archcpu(env); 3110 3111 if (!env->rdtime_fn) { 3112 return RISCV_EXCP_ILLEGAL_INST; 3113 } 3114 3115 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3116 3117 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3118 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3119 env->htimedelta, MIP_VSTIP); 3120 } 3121 3122 return RISCV_EXCP_NONE; 3123 } 3124 3125 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3126 { 3127 *val = env->hvictl; 3128 return RISCV_EXCP_NONE; 3129 } 3130 3131 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3132 { 3133 env->hvictl = val & HVICTL_VALID_MASK; 3134 return RISCV_EXCP_NONE; 3135 } 3136 3137 static int read_hvipriox(CPURISCVState *env, int first_index, 3138 uint8_t *iprio, target_ulong *val) 3139 { 3140 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3141 3142 /* First index has to be a multiple of number of irqs per register */ 3143 if (first_index % num_irqs) { 3144 return (riscv_cpu_virt_enabled(env)) ? 3145 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3146 } 3147 3148 /* Fill-up return value */ 3149 *val = 0; 3150 for (i = 0; i < num_irqs; i++) { 3151 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3152 continue; 3153 } 3154 if (rdzero) { 3155 continue; 3156 } 3157 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3158 } 3159 3160 return RISCV_EXCP_NONE; 3161 } 3162 3163 static int write_hvipriox(CPURISCVState *env, int first_index, 3164 uint8_t *iprio, target_ulong val) 3165 { 3166 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3167 3168 /* First index has to be a multiple of number of irqs per register */ 3169 if (first_index % num_irqs) { 3170 return (riscv_cpu_virt_enabled(env)) ? 3171 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3172 } 3173 3174 /* Fill-up priority arrary */ 3175 for (i = 0; i < num_irqs; i++) { 3176 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3177 continue; 3178 } 3179 if (rdzero) { 3180 iprio[irq] = 0; 3181 } else { 3182 iprio[irq] = (val >> (i * 8)) & 0xff; 3183 } 3184 } 3185 3186 return RISCV_EXCP_NONE; 3187 } 3188 3189 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3190 { 3191 return read_hvipriox(env, 0, env->hviprio, val); 3192 } 3193 3194 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3195 { 3196 return write_hvipriox(env, 0, env->hviprio, val); 3197 } 3198 3199 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3200 { 3201 return read_hvipriox(env, 4, env->hviprio, val); 3202 } 3203 3204 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3205 { 3206 return write_hvipriox(env, 4, env->hviprio, val); 3207 } 3208 3209 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3210 { 3211 return read_hvipriox(env, 8, env->hviprio, val); 3212 } 3213 3214 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3215 { 3216 return write_hvipriox(env, 8, env->hviprio, val); 3217 } 3218 3219 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3220 { 3221 return read_hvipriox(env, 12, env->hviprio, val); 3222 } 3223 3224 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3225 { 3226 return write_hvipriox(env, 12, env->hviprio, val); 3227 } 3228 3229 /* Virtual CSR Registers */ 3230 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3231 target_ulong *val) 3232 { 3233 *val = env->vsstatus; 3234 return RISCV_EXCP_NONE; 3235 } 3236 3237 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3238 target_ulong val) 3239 { 3240 uint64_t mask = (target_ulong)-1; 3241 if ((val & VSSTATUS64_UXL) == 0) { 3242 mask &= ~VSSTATUS64_UXL; 3243 } 3244 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3245 return RISCV_EXCP_NONE; 3246 } 3247 3248 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3249 { 3250 *val = env->vstvec; 3251 return RISCV_EXCP_NONE; 3252 } 3253 3254 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3255 target_ulong val) 3256 { 3257 env->vstvec = val; 3258 return RISCV_EXCP_NONE; 3259 } 3260 3261 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3262 target_ulong *val) 3263 { 3264 *val = env->vsscratch; 3265 return RISCV_EXCP_NONE; 3266 } 3267 3268 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3269 target_ulong val) 3270 { 3271 env->vsscratch = val; 3272 return RISCV_EXCP_NONE; 3273 } 3274 3275 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3276 target_ulong *val) 3277 { 3278 *val = env->vsepc; 3279 return RISCV_EXCP_NONE; 3280 } 3281 3282 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3283 target_ulong val) 3284 { 3285 env->vsepc = val; 3286 return RISCV_EXCP_NONE; 3287 } 3288 3289 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3290 target_ulong *val) 3291 { 3292 *val = env->vscause; 3293 return RISCV_EXCP_NONE; 3294 } 3295 3296 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3297 target_ulong val) 3298 { 3299 env->vscause = val; 3300 return RISCV_EXCP_NONE; 3301 } 3302 3303 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3304 target_ulong *val) 3305 { 3306 *val = env->vstval; 3307 return RISCV_EXCP_NONE; 3308 } 3309 3310 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3311 target_ulong val) 3312 { 3313 env->vstval = val; 3314 return RISCV_EXCP_NONE; 3315 } 3316 3317 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3318 target_ulong *val) 3319 { 3320 *val = env->vsatp; 3321 return RISCV_EXCP_NONE; 3322 } 3323 3324 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3325 target_ulong val) 3326 { 3327 env->vsatp = val; 3328 return RISCV_EXCP_NONE; 3329 } 3330 3331 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3332 target_ulong *val) 3333 { 3334 *val = env->mtval2; 3335 return RISCV_EXCP_NONE; 3336 } 3337 3338 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3339 target_ulong val) 3340 { 3341 env->mtval2 = val; 3342 return RISCV_EXCP_NONE; 3343 } 3344 3345 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3346 target_ulong *val) 3347 { 3348 *val = env->mtinst; 3349 return RISCV_EXCP_NONE; 3350 } 3351 3352 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3353 target_ulong val) 3354 { 3355 env->mtinst = val; 3356 return RISCV_EXCP_NONE; 3357 } 3358 3359 /* Physical Memory Protection */ 3360 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3361 target_ulong *val) 3362 { 3363 *val = mseccfg_csr_read(env); 3364 return RISCV_EXCP_NONE; 3365 } 3366 3367 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3368 target_ulong val) 3369 { 3370 mseccfg_csr_write(env, val); 3371 return RISCV_EXCP_NONE; 3372 } 3373 3374 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3375 target_ulong *val) 3376 { 3377 uint32_t reg_index = csrno - CSR_PMPCFG0; 3378 3379 *val = pmpcfg_csr_read(env, reg_index); 3380 return RISCV_EXCP_NONE; 3381 } 3382 3383 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3384 target_ulong val) 3385 { 3386 uint32_t reg_index = csrno - CSR_PMPCFG0; 3387 3388 pmpcfg_csr_write(env, reg_index, val); 3389 return RISCV_EXCP_NONE; 3390 } 3391 3392 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3393 target_ulong *val) 3394 { 3395 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3396 return RISCV_EXCP_NONE; 3397 } 3398 3399 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3400 target_ulong val) 3401 { 3402 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3403 return RISCV_EXCP_NONE; 3404 } 3405 3406 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3407 target_ulong *val) 3408 { 3409 *val = tselect_csr_read(env); 3410 return RISCV_EXCP_NONE; 3411 } 3412 3413 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3414 target_ulong val) 3415 { 3416 tselect_csr_write(env, val); 3417 return RISCV_EXCP_NONE; 3418 } 3419 3420 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3421 target_ulong *val) 3422 { 3423 /* return 0 in tdata1 to end the trigger enumeration */ 3424 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3425 *val = 0; 3426 return RISCV_EXCP_NONE; 3427 } 3428 3429 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3430 return RISCV_EXCP_ILLEGAL_INST; 3431 } 3432 3433 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3434 return RISCV_EXCP_NONE; 3435 } 3436 3437 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3438 target_ulong val) 3439 { 3440 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3441 return RISCV_EXCP_ILLEGAL_INST; 3442 } 3443 3444 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3445 return RISCV_EXCP_NONE; 3446 } 3447 3448 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3449 target_ulong *val) 3450 { 3451 *val = tinfo_csr_read(env); 3452 return RISCV_EXCP_NONE; 3453 } 3454 3455 /* 3456 * Functions to access Pointer Masking feature registers 3457 * We have to check if current priv lvl could modify 3458 * csr in given mode 3459 */ 3460 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3461 { 3462 int csr_priv = get_field(csrno, 0x300); 3463 int pm_current; 3464 3465 if (env->debugger) { 3466 return false; 3467 } 3468 /* 3469 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3470 * so allow the access 3471 */ 3472 if (env->priv != csr_priv) { 3473 return false; 3474 } 3475 switch (env->priv) { 3476 case PRV_M: 3477 pm_current = get_field(env->mmte, M_PM_CURRENT); 3478 break; 3479 case PRV_S: 3480 pm_current = get_field(env->mmte, S_PM_CURRENT); 3481 break; 3482 case PRV_U: 3483 pm_current = get_field(env->mmte, U_PM_CURRENT); 3484 break; 3485 default: 3486 g_assert_not_reached(); 3487 } 3488 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3489 return !pm_current; 3490 } 3491 3492 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3493 target_ulong *val) 3494 { 3495 *val = env->mmte & MMTE_MASK; 3496 return RISCV_EXCP_NONE; 3497 } 3498 3499 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3500 target_ulong val) 3501 { 3502 uint64_t mstatus; 3503 target_ulong wpri_val = val & MMTE_MASK; 3504 3505 if (val != wpri_val) { 3506 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3507 "MMTE: WPRI violation written 0x", val, 3508 "vs expected 0x", wpri_val); 3509 } 3510 /* for machine mode pm.current is hardwired to 1 */ 3511 wpri_val |= MMTE_M_PM_CURRENT; 3512 3513 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3514 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3515 env->mmte = wpri_val | PM_EXT_DIRTY; 3516 riscv_cpu_update_mask(env); 3517 3518 /* Set XS and SD bits, since PM CSRs are dirty */ 3519 mstatus = env->mstatus | MSTATUS_XS; 3520 write_mstatus(env, csrno, mstatus); 3521 return RISCV_EXCP_NONE; 3522 } 3523 3524 static RISCVException read_smte(CPURISCVState *env, int csrno, 3525 target_ulong *val) 3526 { 3527 *val = env->mmte & SMTE_MASK; 3528 return RISCV_EXCP_NONE; 3529 } 3530 3531 static RISCVException write_smte(CPURISCVState *env, int csrno, 3532 target_ulong val) 3533 { 3534 target_ulong wpri_val = val & SMTE_MASK; 3535 3536 if (val != wpri_val) { 3537 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3538 "SMTE: WPRI violation written 0x", val, 3539 "vs expected 0x", wpri_val); 3540 } 3541 3542 /* if pm.current==0 we can't modify current PM CSRs */ 3543 if (check_pm_current_disabled(env, csrno)) { 3544 return RISCV_EXCP_NONE; 3545 } 3546 3547 wpri_val |= (env->mmte & ~SMTE_MASK); 3548 write_mmte(env, csrno, wpri_val); 3549 return RISCV_EXCP_NONE; 3550 } 3551 3552 static RISCVException read_umte(CPURISCVState *env, int csrno, 3553 target_ulong *val) 3554 { 3555 *val = env->mmte & UMTE_MASK; 3556 return RISCV_EXCP_NONE; 3557 } 3558 3559 static RISCVException write_umte(CPURISCVState *env, int csrno, 3560 target_ulong val) 3561 { 3562 target_ulong wpri_val = val & UMTE_MASK; 3563 3564 if (val != wpri_val) { 3565 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3566 "UMTE: WPRI violation written 0x", val, 3567 "vs expected 0x", wpri_val); 3568 } 3569 3570 if (check_pm_current_disabled(env, csrno)) { 3571 return RISCV_EXCP_NONE; 3572 } 3573 3574 wpri_val |= (env->mmte & ~UMTE_MASK); 3575 write_mmte(env, csrno, wpri_val); 3576 return RISCV_EXCP_NONE; 3577 } 3578 3579 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3580 target_ulong *val) 3581 { 3582 *val = env->mpmmask; 3583 return RISCV_EXCP_NONE; 3584 } 3585 3586 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3587 target_ulong val) 3588 { 3589 uint64_t mstatus; 3590 3591 env->mpmmask = val; 3592 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3593 env->cur_pmmask = val; 3594 } 3595 env->mmte |= PM_EXT_DIRTY; 3596 3597 /* Set XS and SD bits, since PM CSRs are dirty */ 3598 mstatus = env->mstatus | MSTATUS_XS; 3599 write_mstatus(env, csrno, mstatus); 3600 return RISCV_EXCP_NONE; 3601 } 3602 3603 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3604 target_ulong *val) 3605 { 3606 *val = env->spmmask; 3607 return RISCV_EXCP_NONE; 3608 } 3609 3610 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3611 target_ulong val) 3612 { 3613 uint64_t mstatus; 3614 3615 /* if pm.current==0 we can't modify current PM CSRs */ 3616 if (check_pm_current_disabled(env, csrno)) { 3617 return RISCV_EXCP_NONE; 3618 } 3619 env->spmmask = val; 3620 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3621 env->cur_pmmask = val; 3622 } 3623 env->mmte |= PM_EXT_DIRTY; 3624 3625 /* Set XS and SD bits, since PM CSRs are dirty */ 3626 mstatus = env->mstatus | MSTATUS_XS; 3627 write_mstatus(env, csrno, mstatus); 3628 return RISCV_EXCP_NONE; 3629 } 3630 3631 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3632 target_ulong *val) 3633 { 3634 *val = env->upmmask; 3635 return RISCV_EXCP_NONE; 3636 } 3637 3638 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3639 target_ulong val) 3640 { 3641 uint64_t mstatus; 3642 3643 /* if pm.current==0 we can't modify current PM CSRs */ 3644 if (check_pm_current_disabled(env, csrno)) { 3645 return RISCV_EXCP_NONE; 3646 } 3647 env->upmmask = val; 3648 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3649 env->cur_pmmask = val; 3650 } 3651 env->mmte |= PM_EXT_DIRTY; 3652 3653 /* Set XS and SD bits, since PM CSRs are dirty */ 3654 mstatus = env->mstatus | MSTATUS_XS; 3655 write_mstatus(env, csrno, mstatus); 3656 return RISCV_EXCP_NONE; 3657 } 3658 3659 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3660 target_ulong *val) 3661 { 3662 *val = env->mpmbase; 3663 return RISCV_EXCP_NONE; 3664 } 3665 3666 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3667 target_ulong val) 3668 { 3669 uint64_t mstatus; 3670 3671 env->mpmbase = val; 3672 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3673 env->cur_pmbase = val; 3674 } 3675 env->mmte |= PM_EXT_DIRTY; 3676 3677 /* Set XS and SD bits, since PM CSRs are dirty */ 3678 mstatus = env->mstatus | MSTATUS_XS; 3679 write_mstatus(env, csrno, mstatus); 3680 return RISCV_EXCP_NONE; 3681 } 3682 3683 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3684 target_ulong *val) 3685 { 3686 *val = env->spmbase; 3687 return RISCV_EXCP_NONE; 3688 } 3689 3690 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3691 target_ulong val) 3692 { 3693 uint64_t mstatus; 3694 3695 /* if pm.current==0 we can't modify current PM CSRs */ 3696 if (check_pm_current_disabled(env, csrno)) { 3697 return RISCV_EXCP_NONE; 3698 } 3699 env->spmbase = val; 3700 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3701 env->cur_pmbase = val; 3702 } 3703 env->mmte |= PM_EXT_DIRTY; 3704 3705 /* Set XS and SD bits, since PM CSRs are dirty */ 3706 mstatus = env->mstatus | MSTATUS_XS; 3707 write_mstatus(env, csrno, mstatus); 3708 return RISCV_EXCP_NONE; 3709 } 3710 3711 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3712 target_ulong *val) 3713 { 3714 *val = env->upmbase; 3715 return RISCV_EXCP_NONE; 3716 } 3717 3718 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3719 target_ulong val) 3720 { 3721 uint64_t mstatus; 3722 3723 /* if pm.current==0 we can't modify current PM CSRs */ 3724 if (check_pm_current_disabled(env, csrno)) { 3725 return RISCV_EXCP_NONE; 3726 } 3727 env->upmbase = val; 3728 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3729 env->cur_pmbase = val; 3730 } 3731 env->mmte |= PM_EXT_DIRTY; 3732 3733 /* Set XS and SD bits, since PM CSRs are dirty */ 3734 mstatus = env->mstatus | MSTATUS_XS; 3735 write_mstatus(env, csrno, mstatus); 3736 return RISCV_EXCP_NONE; 3737 } 3738 3739 #endif 3740 3741 /* Crypto Extension */ 3742 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3743 target_ulong *ret_value, 3744 target_ulong new_value, 3745 target_ulong write_mask) 3746 { 3747 uint16_t random_v; 3748 Error *random_e = NULL; 3749 int random_r; 3750 target_ulong rval; 3751 3752 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3753 if (unlikely(random_r < 0)) { 3754 /* 3755 * Failed, for unknown reasons in the crypto subsystem. 3756 * The best we can do is log the reason and return a 3757 * failure indication to the guest. There is no reason 3758 * we know to expect the failure to be transitory, so 3759 * indicate DEAD to avoid having the guest spin on WAIT. 3760 */ 3761 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3762 __func__, error_get_pretty(random_e)); 3763 error_free(random_e); 3764 rval = SEED_OPST_DEAD; 3765 } else { 3766 rval = random_v | SEED_OPST_ES16; 3767 } 3768 3769 if (ret_value) { 3770 *ret_value = rval; 3771 } 3772 3773 return RISCV_EXCP_NONE; 3774 } 3775 3776 /* 3777 * riscv_csrrw - read and/or update control and status register 3778 * 3779 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3780 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3781 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3782 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3783 */ 3784 3785 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3786 int csrno, 3787 bool write_mask, 3788 RISCVCPU *cpu) 3789 { 3790 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3791 bool read_only = get_field(csrno, 0xC00) == 3; 3792 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3793 3794 /* ensure the CSR extension is enabled */ 3795 if (!cpu->cfg.ext_icsr) { 3796 return RISCV_EXCP_ILLEGAL_INST; 3797 } 3798 3799 /* privileged spec version check */ 3800 if (env->priv_ver < csr_min_priv) { 3801 return RISCV_EXCP_ILLEGAL_INST; 3802 } 3803 3804 /* read / write check */ 3805 if (write_mask && read_only) { 3806 return RISCV_EXCP_ILLEGAL_INST; 3807 } 3808 3809 /* 3810 * The predicate() not only does existence check but also does some 3811 * access control check which triggers for example virtual instruction 3812 * exception in some cases. When writing read-only CSRs in those cases 3813 * illegal instruction exception should be triggered instead of virtual 3814 * instruction exception. Hence this comes after the read / write check. 3815 */ 3816 g_assert(csr_ops[csrno].predicate != NULL); 3817 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3818 if (ret != RISCV_EXCP_NONE) { 3819 return ret; 3820 } 3821 3822 #if !defined(CONFIG_USER_ONLY) 3823 int csr_priv, effective_priv = env->priv; 3824 3825 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3826 !riscv_cpu_virt_enabled(env)) { 3827 /* 3828 * We are in HS mode. Add 1 to the effective privledge level to 3829 * allow us to access the Hypervisor CSRs. 3830 */ 3831 effective_priv++; 3832 } 3833 3834 csr_priv = get_field(csrno, 0x300); 3835 if (!env->debugger && (effective_priv < csr_priv)) { 3836 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3837 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3838 } 3839 return RISCV_EXCP_ILLEGAL_INST; 3840 } 3841 #endif 3842 return RISCV_EXCP_NONE; 3843 } 3844 3845 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3846 target_ulong *ret_value, 3847 target_ulong new_value, 3848 target_ulong write_mask) 3849 { 3850 RISCVException ret; 3851 target_ulong old_value; 3852 3853 /* execute combined read/write operation if it exists */ 3854 if (csr_ops[csrno].op) { 3855 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3856 } 3857 3858 /* if no accessor exists then return failure */ 3859 if (!csr_ops[csrno].read) { 3860 return RISCV_EXCP_ILLEGAL_INST; 3861 } 3862 /* read old value */ 3863 ret = csr_ops[csrno].read(env, csrno, &old_value); 3864 if (ret != RISCV_EXCP_NONE) { 3865 return ret; 3866 } 3867 3868 /* write value if writable and write mask set, otherwise drop writes */ 3869 if (write_mask) { 3870 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3871 if (csr_ops[csrno].write) { 3872 ret = csr_ops[csrno].write(env, csrno, new_value); 3873 if (ret != RISCV_EXCP_NONE) { 3874 return ret; 3875 } 3876 } 3877 } 3878 3879 /* return old value */ 3880 if (ret_value) { 3881 *ret_value = old_value; 3882 } 3883 3884 return RISCV_EXCP_NONE; 3885 } 3886 3887 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3888 target_ulong *ret_value, 3889 target_ulong new_value, target_ulong write_mask) 3890 { 3891 RISCVCPU *cpu = env_archcpu(env); 3892 3893 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3894 if (ret != RISCV_EXCP_NONE) { 3895 return ret; 3896 } 3897 3898 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3899 } 3900 3901 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3902 Int128 *ret_value, 3903 Int128 new_value, 3904 Int128 write_mask) 3905 { 3906 RISCVException ret; 3907 Int128 old_value; 3908 3909 /* read old value */ 3910 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3911 if (ret != RISCV_EXCP_NONE) { 3912 return ret; 3913 } 3914 3915 /* write value if writable and write mask set, otherwise drop writes */ 3916 if (int128_nz(write_mask)) { 3917 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3918 int128_and(new_value, write_mask)); 3919 if (csr_ops[csrno].write128) { 3920 ret = csr_ops[csrno].write128(env, csrno, new_value); 3921 if (ret != RISCV_EXCP_NONE) { 3922 return ret; 3923 } 3924 } else if (csr_ops[csrno].write) { 3925 /* avoids having to write wrappers for all registers */ 3926 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3927 if (ret != RISCV_EXCP_NONE) { 3928 return ret; 3929 } 3930 } 3931 } 3932 3933 /* return old value */ 3934 if (ret_value) { 3935 *ret_value = old_value; 3936 } 3937 3938 return RISCV_EXCP_NONE; 3939 } 3940 3941 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3942 Int128 *ret_value, 3943 Int128 new_value, Int128 write_mask) 3944 { 3945 RISCVException ret; 3946 RISCVCPU *cpu = env_archcpu(env); 3947 3948 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3949 if (ret != RISCV_EXCP_NONE) { 3950 return ret; 3951 } 3952 3953 if (csr_ops[csrno].read128) { 3954 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3955 } 3956 3957 /* 3958 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3959 * at all defined. 3960 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3961 * significant), for those, this fallback is correctly handling the accesses 3962 */ 3963 target_ulong old_value; 3964 ret = riscv_csrrw_do64(env, csrno, &old_value, 3965 int128_getlo(new_value), 3966 int128_getlo(write_mask)); 3967 if (ret == RISCV_EXCP_NONE && ret_value) { 3968 *ret_value = int128_make64(old_value); 3969 } 3970 return ret; 3971 } 3972 3973 /* 3974 * Debugger support. If not in user mode, set env->debugger before the 3975 * riscv_csrrw call and clear it after the call. 3976 */ 3977 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3978 target_ulong *ret_value, 3979 target_ulong new_value, 3980 target_ulong write_mask) 3981 { 3982 RISCVException ret; 3983 #if !defined(CONFIG_USER_ONLY) 3984 env->debugger = true; 3985 #endif 3986 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3987 #if !defined(CONFIG_USER_ONLY) 3988 env->debugger = false; 3989 #endif 3990 return ret; 3991 } 3992 3993 /* Control and Status Register function table */ 3994 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3995 /* User Floating-Point CSRs */ 3996 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3997 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3998 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3999 /* Vector CSRs */ 4000 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 4001 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 4002 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4003 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4004 [CSR_VL] = { "vl", vs, read_vl }, 4005 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4006 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4007 /* User Timers and Counters */ 4008 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4009 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4010 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4011 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4012 4013 /* 4014 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4015 * rdtime callback is not provided by machine/platform emulation. 4016 */ 4017 [CSR_TIME] = { "time", ctr, read_time }, 4018 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4019 4020 /* Crypto Extension */ 4021 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4022 4023 #if !defined(CONFIG_USER_ONLY) 4024 /* Machine Timers and Counters */ 4025 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4026 write_mhpmcounter }, 4027 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4028 write_mhpmcounter }, 4029 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4030 write_mhpmcounterh }, 4031 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4032 write_mhpmcounterh }, 4033 4034 /* Machine Information Registers */ 4035 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4036 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4037 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4038 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4039 4040 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4041 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4042 /* Machine Trap Setup */ 4043 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4044 NULL, read_mstatus_i128 }, 4045 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4046 NULL, read_misa_i128 }, 4047 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4048 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4049 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4050 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4051 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4052 write_mcounteren }, 4053 4054 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4055 write_mstatush }, 4056 4057 /* Machine Trap Handling */ 4058 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4059 NULL, read_mscratch_i128, write_mscratch_i128 }, 4060 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4061 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4062 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4063 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4064 4065 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4066 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4067 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4068 4069 /* Machine-Level Interrupts (AIA) */ 4070 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4071 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4072 4073 /* Virtual Interrupts for Supervisor Level (AIA) */ 4074 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4075 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4076 4077 /* Machine-Level High-Half CSRs (AIA) */ 4078 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4079 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4080 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4081 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4082 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4083 4084 /* Execution environment configuration */ 4085 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4086 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4087 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4088 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4089 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4090 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4091 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4092 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4093 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4094 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4095 4096 /* Smstateen extension CSRs */ 4097 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4098 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4099 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4100 write_mstateen0h, 4101 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4102 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4103 write_mstateen_1_3, 4104 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4105 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4106 write_mstateenh_1_3, 4107 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4108 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4109 write_mstateen_1_3, 4110 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4111 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4112 write_mstateenh_1_3, 4113 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4114 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4115 write_mstateen_1_3, 4116 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4117 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4118 write_mstateenh_1_3, 4119 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4120 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4121 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4122 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4123 write_hstateen0h, 4124 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4125 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4126 write_hstateen_1_3, 4127 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4128 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4129 write_hstateenh_1_3, 4130 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4131 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4132 write_hstateen_1_3, 4133 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4134 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4135 write_hstateenh_1_3, 4136 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4137 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4138 write_hstateen_1_3, 4139 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4140 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4141 write_hstateenh_1_3, 4142 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4143 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4144 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4145 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4146 write_sstateen_1_3, 4147 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4148 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4149 write_sstateen_1_3, 4150 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4151 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4152 write_sstateen_1_3, 4153 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4154 4155 /* Supervisor Trap Setup */ 4156 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4157 NULL, read_sstatus_i128 }, 4158 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4159 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4160 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4161 write_scounteren }, 4162 4163 /* Supervisor Trap Handling */ 4164 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4165 NULL, read_sscratch_i128, write_sscratch_i128 }, 4166 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4167 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4168 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4169 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4170 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4171 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4172 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4173 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4174 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4175 write_vstimecmp, 4176 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4177 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4178 write_vstimecmph, 4179 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4180 4181 /* Supervisor Protection and Translation */ 4182 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 4183 4184 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4185 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4186 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4187 4188 /* Supervisor-Level Interrupts (AIA) */ 4189 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4190 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4191 4192 /* Supervisor-Level High-Half CSRs (AIA) */ 4193 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4194 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4195 4196 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4197 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4198 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4199 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4200 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4201 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4202 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4203 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4204 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4205 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4206 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4207 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4208 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4209 write_hcounteren, 4210 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4211 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4212 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4213 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4214 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4215 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4216 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4217 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4218 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4219 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 4220 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4221 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4222 write_htimedelta, 4223 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4224 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4225 write_htimedeltah, 4226 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4227 4228 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4229 write_vsstatus, 4230 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4231 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4232 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4233 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4234 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4235 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4236 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4237 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4238 write_vsscratch, 4239 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4240 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4241 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4242 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4243 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4244 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4245 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4246 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4247 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4248 4249 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4250 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4251 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4252 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4253 4254 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4255 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4256 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4257 write_hvictl }, 4258 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4259 write_hviprio1 }, 4260 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4261 write_hviprio2 }, 4262 4263 /* 4264 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4265 */ 4266 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4267 rmw_xiselect }, 4268 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4269 4270 /* VS-Level Interrupts (H-extension with AIA) */ 4271 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4272 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4273 4274 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4275 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4276 rmw_hidelegh }, 4277 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4278 write_ignore }, 4279 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4280 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4281 write_hviprio1h }, 4282 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4283 write_hviprio2h }, 4284 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4285 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4286 4287 /* Physical Memory Protection */ 4288 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4289 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4290 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4291 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4292 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4293 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4294 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4295 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4296 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4297 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4298 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4299 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4300 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4301 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4302 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4303 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4304 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4305 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4306 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4307 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4308 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4309 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4310 4311 /* Debug CSRs */ 4312 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4313 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4314 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4315 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4316 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4317 4318 /* User Pointer Masking */ 4319 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4320 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4321 write_upmmask }, 4322 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4323 write_upmbase }, 4324 /* Machine Pointer Masking */ 4325 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4326 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4327 write_mpmmask }, 4328 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4329 write_mpmbase }, 4330 /* Supervisor Pointer Masking */ 4331 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4332 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4333 write_spmmask }, 4334 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4335 write_spmbase }, 4336 4337 /* Performance Counters */ 4338 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4339 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4340 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4341 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4342 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4343 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4344 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4345 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4346 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4347 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4348 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4349 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4350 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4351 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4352 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4353 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4354 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4355 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4356 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4357 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4358 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4359 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4360 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4361 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4362 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4363 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4364 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4365 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4366 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4367 4368 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4369 write_mhpmcounter }, 4370 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4371 write_mhpmcounter }, 4372 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4373 write_mhpmcounter }, 4374 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4375 write_mhpmcounter }, 4376 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4377 write_mhpmcounter }, 4378 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4379 write_mhpmcounter }, 4380 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4381 write_mhpmcounter }, 4382 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4383 write_mhpmcounter }, 4384 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4385 write_mhpmcounter }, 4386 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4387 write_mhpmcounter }, 4388 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4389 write_mhpmcounter }, 4390 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4391 write_mhpmcounter }, 4392 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4393 write_mhpmcounter }, 4394 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4395 write_mhpmcounter }, 4396 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4397 write_mhpmcounter }, 4398 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4399 write_mhpmcounter }, 4400 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4401 write_mhpmcounter }, 4402 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4403 write_mhpmcounter }, 4404 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4405 write_mhpmcounter }, 4406 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4407 write_mhpmcounter }, 4408 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4409 write_mhpmcounter }, 4410 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4411 write_mhpmcounter }, 4412 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4413 write_mhpmcounter }, 4414 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4415 write_mhpmcounter }, 4416 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4417 write_mhpmcounter }, 4418 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4419 write_mhpmcounter }, 4420 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4421 write_mhpmcounter }, 4422 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4423 write_mhpmcounter }, 4424 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4425 write_mhpmcounter }, 4426 4427 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4428 write_mcountinhibit, 4429 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4430 4431 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4432 write_mhpmevent }, 4433 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4434 write_mhpmevent }, 4435 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4436 write_mhpmevent }, 4437 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4438 write_mhpmevent }, 4439 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4440 write_mhpmevent }, 4441 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4442 write_mhpmevent }, 4443 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4444 write_mhpmevent }, 4445 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4446 write_mhpmevent }, 4447 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4448 write_mhpmevent }, 4449 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4450 write_mhpmevent }, 4451 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4452 write_mhpmevent }, 4453 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4454 write_mhpmevent }, 4455 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4456 write_mhpmevent }, 4457 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4458 write_mhpmevent }, 4459 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4460 write_mhpmevent }, 4461 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4462 write_mhpmevent }, 4463 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4464 write_mhpmevent }, 4465 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4466 write_mhpmevent }, 4467 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4468 write_mhpmevent }, 4469 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4470 write_mhpmevent }, 4471 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4472 write_mhpmevent }, 4473 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4474 write_mhpmevent }, 4475 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4476 write_mhpmevent }, 4477 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4478 write_mhpmevent }, 4479 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4480 write_mhpmevent }, 4481 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4482 write_mhpmevent }, 4483 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4484 write_mhpmevent }, 4485 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4486 write_mhpmevent }, 4487 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4488 write_mhpmevent }, 4489 4490 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4491 write_mhpmeventh, 4492 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4493 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4494 write_mhpmeventh, 4495 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4496 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4497 write_mhpmeventh, 4498 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4499 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4500 write_mhpmeventh, 4501 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4502 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4503 write_mhpmeventh, 4504 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4505 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4506 write_mhpmeventh, 4507 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4508 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4509 write_mhpmeventh, 4510 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4511 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4512 write_mhpmeventh, 4513 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4514 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4515 write_mhpmeventh, 4516 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4517 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4518 write_mhpmeventh, 4519 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4520 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4521 write_mhpmeventh, 4522 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4523 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4524 write_mhpmeventh, 4525 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4526 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4527 write_mhpmeventh, 4528 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4529 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4530 write_mhpmeventh, 4531 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4532 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4533 write_mhpmeventh, 4534 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4535 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4536 write_mhpmeventh, 4537 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4538 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4539 write_mhpmeventh, 4540 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4541 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4542 write_mhpmeventh, 4543 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4544 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4545 write_mhpmeventh, 4546 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4547 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4548 write_mhpmeventh, 4549 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4550 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4551 write_mhpmeventh, 4552 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4553 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4554 write_mhpmeventh, 4555 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4556 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4557 write_mhpmeventh, 4558 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4559 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4560 write_mhpmeventh, 4561 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4562 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4563 write_mhpmeventh, 4564 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4565 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4566 write_mhpmeventh, 4567 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4568 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4569 write_mhpmeventh, 4570 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4571 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4572 write_mhpmeventh, 4573 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4574 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4575 write_mhpmeventh, 4576 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4577 4578 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4579 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4580 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4581 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4582 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4583 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4584 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4585 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4586 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4587 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4588 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4589 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4590 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4591 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4592 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4593 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4594 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4595 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4596 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4597 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4598 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4599 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4600 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4601 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4602 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4603 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4604 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4605 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4606 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4607 4608 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4609 write_mhpmcounterh }, 4610 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4611 write_mhpmcounterh }, 4612 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4613 write_mhpmcounterh }, 4614 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4615 write_mhpmcounterh }, 4616 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4617 write_mhpmcounterh }, 4618 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4619 write_mhpmcounterh }, 4620 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4621 write_mhpmcounterh }, 4622 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4623 write_mhpmcounterh }, 4624 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4625 write_mhpmcounterh }, 4626 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4627 write_mhpmcounterh }, 4628 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4629 write_mhpmcounterh }, 4630 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4631 write_mhpmcounterh }, 4632 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4633 write_mhpmcounterh }, 4634 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4635 write_mhpmcounterh }, 4636 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4637 write_mhpmcounterh }, 4638 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4639 write_mhpmcounterh }, 4640 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4641 write_mhpmcounterh }, 4642 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4643 write_mhpmcounterh }, 4644 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4645 write_mhpmcounterh }, 4646 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4647 write_mhpmcounterh }, 4648 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4649 write_mhpmcounterh }, 4650 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4651 write_mhpmcounterh }, 4652 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4653 write_mhpmcounterh }, 4654 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4655 write_mhpmcounterh }, 4656 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4657 write_mhpmcounterh }, 4658 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4659 write_mhpmcounterh }, 4660 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4661 write_mhpmcounterh }, 4662 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4663 write_mhpmcounterh }, 4664 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4665 write_mhpmcounterh }, 4666 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4667 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4668 4669 #endif /* !CONFIG_USER_ONLY */ 4670 }; 4671