1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "qemu/main-loop.h" 24 #include "exec/exec-all.h" 25 26 /* CSR function table public API */ 27 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 28 { 29 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 30 } 31 32 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 33 { 34 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 35 } 36 37 /* Predicates */ 38 static RISCVException fs(CPURISCVState *env, int csrno) 39 { 40 #if !defined(CONFIG_USER_ONLY) 41 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 42 return RISCV_EXCP_ILLEGAL_INST; 43 } 44 #endif 45 return RISCV_EXCP_NONE; 46 } 47 48 static RISCVException vs(CPURISCVState *env, int csrno) 49 { 50 CPUState *cs = env_cpu(env); 51 RISCVCPU *cpu = RISCV_CPU(cs); 52 53 if (env->misa_ext & RVV || 54 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 55 #if !defined(CONFIG_USER_ONLY) 56 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 57 return RISCV_EXCP_ILLEGAL_INST; 58 } 59 #endif 60 return RISCV_EXCP_NONE; 61 } 62 return RISCV_EXCP_ILLEGAL_INST; 63 } 64 65 static RISCVException ctr(CPURISCVState *env, int csrno) 66 { 67 #if !defined(CONFIG_USER_ONLY) 68 CPUState *cs = env_cpu(env); 69 RISCVCPU *cpu = RISCV_CPU(cs); 70 71 if (!cpu->cfg.ext_counters) { 72 /* The Counters extensions is not enabled */ 73 return RISCV_EXCP_ILLEGAL_INST; 74 } 75 76 if (riscv_cpu_virt_enabled(env)) { 77 switch (csrno) { 78 case CSR_CYCLE: 79 if (!get_field(env->hcounteren, COUNTEREN_CY) && 80 get_field(env->mcounteren, COUNTEREN_CY)) { 81 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 82 } 83 break; 84 case CSR_TIME: 85 if (!get_field(env->hcounteren, COUNTEREN_TM) && 86 get_field(env->mcounteren, COUNTEREN_TM)) { 87 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 88 } 89 break; 90 case CSR_INSTRET: 91 if (!get_field(env->hcounteren, COUNTEREN_IR) && 92 get_field(env->mcounteren, COUNTEREN_IR)) { 93 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 94 } 95 break; 96 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 97 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3)) && 98 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3))) { 99 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 100 } 101 break; 102 } 103 if (riscv_cpu_mxl(env) == MXL_RV32) { 104 switch (csrno) { 105 case CSR_CYCLEH: 106 if (!get_field(env->hcounteren, COUNTEREN_CY) && 107 get_field(env->mcounteren, COUNTEREN_CY)) { 108 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 109 } 110 break; 111 case CSR_TIMEH: 112 if (!get_field(env->hcounteren, COUNTEREN_TM) && 113 get_field(env->mcounteren, COUNTEREN_TM)) { 114 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 115 } 116 break; 117 case CSR_INSTRETH: 118 if (!get_field(env->hcounteren, COUNTEREN_IR) && 119 get_field(env->mcounteren, COUNTEREN_IR)) { 120 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 121 } 122 break; 123 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 124 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3H)) && 125 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3H))) { 126 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 127 } 128 break; 129 } 130 } 131 } 132 #endif 133 return RISCV_EXCP_NONE; 134 } 135 136 static RISCVException ctr32(CPURISCVState *env, int csrno) 137 { 138 if (riscv_cpu_mxl(env) != MXL_RV32) { 139 return RISCV_EXCP_ILLEGAL_INST; 140 } 141 142 return ctr(env, csrno); 143 } 144 145 #if !defined(CONFIG_USER_ONLY) 146 static RISCVException any(CPURISCVState *env, int csrno) 147 { 148 return RISCV_EXCP_NONE; 149 } 150 151 static RISCVException any32(CPURISCVState *env, int csrno) 152 { 153 if (riscv_cpu_mxl(env) != MXL_RV32) { 154 return RISCV_EXCP_ILLEGAL_INST; 155 } 156 157 return any(env, csrno); 158 159 } 160 161 static RISCVException smode(CPURISCVState *env, int csrno) 162 { 163 if (riscv_has_ext(env, RVS)) { 164 return RISCV_EXCP_NONE; 165 } 166 167 return RISCV_EXCP_ILLEGAL_INST; 168 } 169 170 static RISCVException hmode(CPURISCVState *env, int csrno) 171 { 172 if (riscv_has_ext(env, RVS) && 173 riscv_has_ext(env, RVH)) { 174 /* Hypervisor extension is supported */ 175 if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 176 env->priv == PRV_M) { 177 return RISCV_EXCP_NONE; 178 } else { 179 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 180 } 181 } 182 183 return RISCV_EXCP_ILLEGAL_INST; 184 } 185 186 static RISCVException hmode32(CPURISCVState *env, int csrno) 187 { 188 if (riscv_cpu_mxl(env) != MXL_RV32) { 189 if (!riscv_cpu_virt_enabled(env)) { 190 return RISCV_EXCP_ILLEGAL_INST; 191 } else { 192 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 193 } 194 } 195 196 return hmode(env, csrno); 197 198 } 199 200 /* Checks if PointerMasking registers could be accessed */ 201 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 202 { 203 /* Check if j-ext is present */ 204 if (riscv_has_ext(env, RVJ)) { 205 return RISCV_EXCP_NONE; 206 } 207 return RISCV_EXCP_ILLEGAL_INST; 208 } 209 210 static RISCVException pmp(CPURISCVState *env, int csrno) 211 { 212 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 213 return RISCV_EXCP_NONE; 214 } 215 216 return RISCV_EXCP_ILLEGAL_INST; 217 } 218 219 static RISCVException epmp(CPURISCVState *env, int csrno) 220 { 221 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 222 return RISCV_EXCP_NONE; 223 } 224 225 return RISCV_EXCP_ILLEGAL_INST; 226 } 227 #endif 228 229 /* User Floating-Point CSRs */ 230 static RISCVException read_fflags(CPURISCVState *env, int csrno, 231 target_ulong *val) 232 { 233 *val = riscv_cpu_get_fflags(env); 234 return RISCV_EXCP_NONE; 235 } 236 237 static RISCVException write_fflags(CPURISCVState *env, int csrno, 238 target_ulong val) 239 { 240 #if !defined(CONFIG_USER_ONLY) 241 env->mstatus |= MSTATUS_FS; 242 #endif 243 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 244 return RISCV_EXCP_NONE; 245 } 246 247 static RISCVException read_frm(CPURISCVState *env, int csrno, 248 target_ulong *val) 249 { 250 *val = env->frm; 251 return RISCV_EXCP_NONE; 252 } 253 254 static RISCVException write_frm(CPURISCVState *env, int csrno, 255 target_ulong val) 256 { 257 #if !defined(CONFIG_USER_ONLY) 258 env->mstatus |= MSTATUS_FS; 259 #endif 260 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 261 return RISCV_EXCP_NONE; 262 } 263 264 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 265 target_ulong *val) 266 { 267 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 268 | (env->frm << FSR_RD_SHIFT); 269 return RISCV_EXCP_NONE; 270 } 271 272 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 273 target_ulong val) 274 { 275 #if !defined(CONFIG_USER_ONLY) 276 env->mstatus |= MSTATUS_FS; 277 #endif 278 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 279 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 280 return RISCV_EXCP_NONE; 281 } 282 283 static RISCVException read_vtype(CPURISCVState *env, int csrno, 284 target_ulong *val) 285 { 286 uint64_t vill; 287 switch (env->xl) { 288 case MXL_RV32: 289 vill = (uint32_t)env->vill << 31; 290 break; 291 case MXL_RV64: 292 vill = (uint64_t)env->vill << 63; 293 break; 294 default: 295 g_assert_not_reached(); 296 } 297 *val = (target_ulong)vill | env->vtype; 298 return RISCV_EXCP_NONE; 299 } 300 301 static RISCVException read_vl(CPURISCVState *env, int csrno, 302 target_ulong *val) 303 { 304 *val = env->vl; 305 return RISCV_EXCP_NONE; 306 } 307 308 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 309 { 310 *val = env_archcpu(env)->cfg.vlen >> 3; 311 return RISCV_EXCP_NONE; 312 } 313 314 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 315 target_ulong *val) 316 { 317 *val = env->vxrm; 318 return RISCV_EXCP_NONE; 319 } 320 321 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 322 target_ulong val) 323 { 324 #if !defined(CONFIG_USER_ONLY) 325 env->mstatus |= MSTATUS_VS; 326 #endif 327 env->vxrm = val; 328 return RISCV_EXCP_NONE; 329 } 330 331 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 332 target_ulong *val) 333 { 334 *val = env->vxsat; 335 return RISCV_EXCP_NONE; 336 } 337 338 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 339 target_ulong val) 340 { 341 #if !defined(CONFIG_USER_ONLY) 342 env->mstatus |= MSTATUS_VS; 343 #endif 344 env->vxsat = val; 345 return RISCV_EXCP_NONE; 346 } 347 348 static RISCVException read_vstart(CPURISCVState *env, int csrno, 349 target_ulong *val) 350 { 351 *val = env->vstart; 352 return RISCV_EXCP_NONE; 353 } 354 355 static RISCVException write_vstart(CPURISCVState *env, int csrno, 356 target_ulong val) 357 { 358 #if !defined(CONFIG_USER_ONLY) 359 env->mstatus |= MSTATUS_VS; 360 #endif 361 /* 362 * The vstart CSR is defined to have only enough writable bits 363 * to hold the largest element index, i.e. lg2(VLEN) bits. 364 */ 365 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 366 return RISCV_EXCP_NONE; 367 } 368 369 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 370 { 371 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 372 return RISCV_EXCP_NONE; 373 } 374 375 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 376 { 377 #if !defined(CONFIG_USER_ONLY) 378 env->mstatus |= MSTATUS_VS; 379 #endif 380 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 381 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 382 return RISCV_EXCP_NONE; 383 } 384 385 /* User Timers and Counters */ 386 static RISCVException read_instret(CPURISCVState *env, int csrno, 387 target_ulong *val) 388 { 389 #if !defined(CONFIG_USER_ONLY) 390 if (icount_enabled()) { 391 *val = icount_get(); 392 } else { 393 *val = cpu_get_host_ticks(); 394 } 395 #else 396 *val = cpu_get_host_ticks(); 397 #endif 398 return RISCV_EXCP_NONE; 399 } 400 401 static RISCVException read_instreth(CPURISCVState *env, int csrno, 402 target_ulong *val) 403 { 404 #if !defined(CONFIG_USER_ONLY) 405 if (icount_enabled()) { 406 *val = icount_get() >> 32; 407 } else { 408 *val = cpu_get_host_ticks() >> 32; 409 } 410 #else 411 *val = cpu_get_host_ticks() >> 32; 412 #endif 413 return RISCV_EXCP_NONE; 414 } 415 416 #if defined(CONFIG_USER_ONLY) 417 static RISCVException read_time(CPURISCVState *env, int csrno, 418 target_ulong *val) 419 { 420 *val = cpu_get_host_ticks(); 421 return RISCV_EXCP_NONE; 422 } 423 424 static RISCVException read_timeh(CPURISCVState *env, int csrno, 425 target_ulong *val) 426 { 427 *val = cpu_get_host_ticks() >> 32; 428 return RISCV_EXCP_NONE; 429 } 430 431 #else /* CONFIG_USER_ONLY */ 432 433 static RISCVException read_time(CPURISCVState *env, int csrno, 434 target_ulong *val) 435 { 436 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 437 438 if (!env->rdtime_fn) { 439 return RISCV_EXCP_ILLEGAL_INST; 440 } 441 442 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 443 return RISCV_EXCP_NONE; 444 } 445 446 static RISCVException read_timeh(CPURISCVState *env, int csrno, 447 target_ulong *val) 448 { 449 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 450 451 if (!env->rdtime_fn) { 452 return RISCV_EXCP_ILLEGAL_INST; 453 } 454 455 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 456 return RISCV_EXCP_NONE; 457 } 458 459 /* Machine constants */ 460 461 #define M_MODE_INTERRUPTS (MIP_MSIP | MIP_MTIP | MIP_MEIP) 462 #define S_MODE_INTERRUPTS (MIP_SSIP | MIP_STIP | MIP_SEIP) 463 #define VS_MODE_INTERRUPTS (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP) 464 #define HS_MODE_INTERRUPTS (MIP_SGEIP | VS_MODE_INTERRUPTS) 465 466 static const target_ulong delegable_ints = S_MODE_INTERRUPTS | 467 VS_MODE_INTERRUPTS; 468 static const target_ulong vs_delegable_ints = VS_MODE_INTERRUPTS; 469 static const target_ulong all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 470 HS_MODE_INTERRUPTS; 471 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 472 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 473 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 474 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 475 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 476 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 477 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 478 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 479 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 480 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 481 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 482 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 483 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 484 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 485 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 486 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 487 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 488 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 489 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 490 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 491 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 492 (1ULL << (RISCV_EXCP_VS_ECALL)) | 493 (1ULL << (RISCV_EXCP_M_ECALL)) | 494 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 495 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 496 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 497 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 498 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 499 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 500 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 501 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP; 502 static const target_ulong hip_writable_mask = MIP_VSSIP; 503 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 504 static const target_ulong vsip_writable_mask = MIP_VSSIP; 505 506 static const char valid_vm_1_10_32[16] = { 507 [VM_1_10_MBARE] = 1, 508 [VM_1_10_SV32] = 1 509 }; 510 511 static const char valid_vm_1_10_64[16] = { 512 [VM_1_10_MBARE] = 1, 513 [VM_1_10_SV39] = 1, 514 [VM_1_10_SV48] = 1, 515 [VM_1_10_SV57] = 1 516 }; 517 518 /* Machine Information Registers */ 519 static RISCVException read_zero(CPURISCVState *env, int csrno, 520 target_ulong *val) 521 { 522 *val = 0; 523 return RISCV_EXCP_NONE; 524 } 525 526 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 527 target_ulong *val) 528 { 529 *val = env->mhartid; 530 return RISCV_EXCP_NONE; 531 } 532 533 /* Machine Trap Setup */ 534 535 /* We do not store SD explicitly, only compute it on demand. */ 536 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 537 { 538 if ((status & MSTATUS_FS) == MSTATUS_FS || 539 (status & MSTATUS_VS) == MSTATUS_VS || 540 (status & MSTATUS_XS) == MSTATUS_XS) { 541 switch (xl) { 542 case MXL_RV32: 543 return status | MSTATUS32_SD; 544 case MXL_RV64: 545 return status | MSTATUS64_SD; 546 case MXL_RV128: 547 return MSTATUSH128_SD; 548 default: 549 g_assert_not_reached(); 550 } 551 } 552 return status; 553 } 554 555 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 556 target_ulong *val) 557 { 558 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 559 return RISCV_EXCP_NONE; 560 } 561 562 static int validate_vm(CPURISCVState *env, target_ulong vm) 563 { 564 if (riscv_cpu_mxl(env) == MXL_RV32) { 565 return valid_vm_1_10_32[vm & 0xf]; 566 } else { 567 return valid_vm_1_10_64[vm & 0xf]; 568 } 569 } 570 571 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 572 target_ulong val) 573 { 574 uint64_t mstatus = env->mstatus; 575 uint64_t mask = 0; 576 RISCVMXL xl = riscv_cpu_mxl(env); 577 578 /* flush tlb on mstatus fields that affect VM */ 579 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 580 MSTATUS_MPRV | MSTATUS_SUM)) { 581 tlb_flush(env_cpu(env)); 582 } 583 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 584 MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM | 585 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 586 MSTATUS_TW | MSTATUS_VS; 587 588 if (xl != MXL_RV32 || env->debugger) { 589 /* 590 * RV32: MPV and GVA are not in mstatus. The current plan is to 591 * add them to mstatush. For now, we just don't support it. 592 */ 593 mask |= MSTATUS_MPV | MSTATUS_GVA; 594 if ((val & MSTATUS64_UXL) != 0) { 595 mask |= MSTATUS64_UXL; 596 } 597 } 598 599 mstatus = (mstatus & ~mask) | (val & mask); 600 601 if (xl > MXL_RV32) { 602 /* SXL field is for now read only */ 603 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 604 } 605 env->mstatus = mstatus; 606 env->xl = cpu_recompute_xl(env); 607 608 return RISCV_EXCP_NONE; 609 } 610 611 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 612 target_ulong *val) 613 { 614 *val = env->mstatus >> 32; 615 return RISCV_EXCP_NONE; 616 } 617 618 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 619 target_ulong val) 620 { 621 uint64_t valh = (uint64_t)val << 32; 622 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 623 624 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 625 tlb_flush(env_cpu(env)); 626 } 627 628 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 629 630 return RISCV_EXCP_NONE; 631 } 632 633 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 634 Int128 *val) 635 { 636 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 637 return RISCV_EXCP_NONE; 638 } 639 640 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 641 Int128 *val) 642 { 643 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 644 return RISCV_EXCP_NONE; 645 } 646 647 static RISCVException read_misa(CPURISCVState *env, int csrno, 648 target_ulong *val) 649 { 650 target_ulong misa; 651 652 switch (env->misa_mxl) { 653 case MXL_RV32: 654 misa = (target_ulong)MXL_RV32 << 30; 655 break; 656 #ifdef TARGET_RISCV64 657 case MXL_RV64: 658 misa = (target_ulong)MXL_RV64 << 62; 659 break; 660 #endif 661 default: 662 g_assert_not_reached(); 663 } 664 665 *val = misa | env->misa_ext; 666 return RISCV_EXCP_NONE; 667 } 668 669 static RISCVException write_misa(CPURISCVState *env, int csrno, 670 target_ulong val) 671 { 672 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 673 /* drop write to misa */ 674 return RISCV_EXCP_NONE; 675 } 676 677 /* 'I' or 'E' must be present */ 678 if (!(val & (RVI | RVE))) { 679 /* It is not, drop write to misa */ 680 return RISCV_EXCP_NONE; 681 } 682 683 /* 'E' excludes all other extensions */ 684 if (val & RVE) { 685 /* when we support 'E' we can do "val = RVE;" however 686 * for now we just drop writes if 'E' is present. 687 */ 688 return RISCV_EXCP_NONE; 689 } 690 691 /* 692 * misa.MXL writes are not supported by QEMU. 693 * Drop writes to those bits. 694 */ 695 696 /* Mask extensions that are not supported by this hart */ 697 val &= env->misa_ext_mask; 698 699 /* Mask extensions that are not supported by QEMU */ 700 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 701 702 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 703 if ((val & RVD) && !(val & RVF)) { 704 val &= ~RVD; 705 } 706 707 /* Suppress 'C' if next instruction is not aligned 708 * TODO: this should check next_pc 709 */ 710 if ((val & RVC) && (GETPC() & ~3) != 0) { 711 val &= ~RVC; 712 } 713 714 /* If nothing changed, do nothing. */ 715 if (val == env->misa_ext) { 716 return RISCV_EXCP_NONE; 717 } 718 719 /* flush translation cache */ 720 tb_flush(env_cpu(env)); 721 env->misa_ext = val; 722 env->xl = riscv_cpu_mxl(env); 723 return RISCV_EXCP_NONE; 724 } 725 726 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 727 target_ulong *val) 728 { 729 *val = env->medeleg; 730 return RISCV_EXCP_NONE; 731 } 732 733 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 734 target_ulong val) 735 { 736 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 737 return RISCV_EXCP_NONE; 738 } 739 740 static RISCVException read_mideleg(CPURISCVState *env, int csrno, 741 target_ulong *val) 742 { 743 *val = env->mideleg; 744 return RISCV_EXCP_NONE; 745 } 746 747 static RISCVException write_mideleg(CPURISCVState *env, int csrno, 748 target_ulong val) 749 { 750 env->mideleg = (env->mideleg & ~delegable_ints) | (val & delegable_ints); 751 if (riscv_has_ext(env, RVH)) { 752 env->mideleg |= HS_MODE_INTERRUPTS; 753 } 754 return RISCV_EXCP_NONE; 755 } 756 757 static RISCVException read_mie(CPURISCVState *env, int csrno, 758 target_ulong *val) 759 { 760 *val = env->mie; 761 return RISCV_EXCP_NONE; 762 } 763 764 static RISCVException write_mie(CPURISCVState *env, int csrno, 765 target_ulong val) 766 { 767 env->mie = (env->mie & ~all_ints) | (val & all_ints); 768 if (!riscv_has_ext(env, RVH)) { 769 env->mie &= ~MIP_SGEIP; 770 } 771 return RISCV_EXCP_NONE; 772 } 773 774 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 775 target_ulong *val) 776 { 777 *val = env->mtvec; 778 return RISCV_EXCP_NONE; 779 } 780 781 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 782 target_ulong val) 783 { 784 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 785 if ((val & 3) < 2) { 786 env->mtvec = val; 787 } else { 788 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 789 } 790 return RISCV_EXCP_NONE; 791 } 792 793 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 794 target_ulong *val) 795 { 796 *val = env->mcounteren; 797 return RISCV_EXCP_NONE; 798 } 799 800 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 801 target_ulong val) 802 { 803 env->mcounteren = val; 804 return RISCV_EXCP_NONE; 805 } 806 807 /* Machine Trap Handling */ 808 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 809 Int128 *val) 810 { 811 *val = int128_make128(env->mscratch, env->mscratchh); 812 return RISCV_EXCP_NONE; 813 } 814 815 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 816 Int128 val) 817 { 818 env->mscratch = int128_getlo(val); 819 env->mscratchh = int128_gethi(val); 820 return RISCV_EXCP_NONE; 821 } 822 823 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 824 target_ulong *val) 825 { 826 *val = env->mscratch; 827 return RISCV_EXCP_NONE; 828 } 829 830 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 831 target_ulong val) 832 { 833 env->mscratch = val; 834 return RISCV_EXCP_NONE; 835 } 836 837 static RISCVException read_mepc(CPURISCVState *env, int csrno, 838 target_ulong *val) 839 { 840 *val = env->mepc; 841 return RISCV_EXCP_NONE; 842 } 843 844 static RISCVException write_mepc(CPURISCVState *env, int csrno, 845 target_ulong val) 846 { 847 env->mepc = val; 848 return RISCV_EXCP_NONE; 849 } 850 851 static RISCVException read_mcause(CPURISCVState *env, int csrno, 852 target_ulong *val) 853 { 854 *val = env->mcause; 855 return RISCV_EXCP_NONE; 856 } 857 858 static RISCVException write_mcause(CPURISCVState *env, int csrno, 859 target_ulong val) 860 { 861 env->mcause = val; 862 return RISCV_EXCP_NONE; 863 } 864 865 static RISCVException read_mtval(CPURISCVState *env, int csrno, 866 target_ulong *val) 867 { 868 *val = env->mtval; 869 return RISCV_EXCP_NONE; 870 } 871 872 static RISCVException write_mtval(CPURISCVState *env, int csrno, 873 target_ulong val) 874 { 875 env->mtval = val; 876 return RISCV_EXCP_NONE; 877 } 878 879 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 880 target_ulong *ret_value, 881 target_ulong new_value, target_ulong write_mask) 882 { 883 RISCVCPU *cpu = env_archcpu(env); 884 /* Allow software control of delegable interrupts not claimed by hardware */ 885 target_ulong mask = write_mask & delegable_ints & ~env->miclaim; 886 uint32_t gin, old_mip; 887 888 if (mask) { 889 old_mip = riscv_cpu_update_mip(cpu, mask, (new_value & mask)); 890 } else { 891 old_mip = env->mip; 892 } 893 894 if (csrno != CSR_HVIP) { 895 gin = get_field(env->hstatus, HSTATUS_VGEIN); 896 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 897 } 898 899 if (ret_value) { 900 *ret_value = old_mip; 901 } 902 903 return RISCV_EXCP_NONE; 904 } 905 906 /* Supervisor Trap Setup */ 907 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 908 Int128 *val) 909 { 910 uint64_t mask = sstatus_v1_10_mask; 911 uint64_t sstatus = env->mstatus & mask; 912 if (env->xl != MXL_RV32 || env->debugger) { 913 mask |= SSTATUS64_UXL; 914 } 915 916 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 917 return RISCV_EXCP_NONE; 918 } 919 920 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 921 target_ulong *val) 922 { 923 target_ulong mask = (sstatus_v1_10_mask); 924 if (env->xl != MXL_RV32 || env->debugger) { 925 mask |= SSTATUS64_UXL; 926 } 927 /* TODO: Use SXL not MXL. */ 928 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 929 return RISCV_EXCP_NONE; 930 } 931 932 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 933 target_ulong val) 934 { 935 target_ulong mask = (sstatus_v1_10_mask); 936 937 if (env->xl != MXL_RV32 || env->debugger) { 938 if ((val & SSTATUS64_UXL) != 0) { 939 mask |= SSTATUS64_UXL; 940 } 941 } 942 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 943 return write_mstatus(env, CSR_MSTATUS, newval); 944 } 945 946 static RISCVException read_vsie(CPURISCVState *env, int csrno, 947 target_ulong *val) 948 { 949 /* Shift the VS bits to their S bit location in vsie */ 950 *val = (env->mie & env->hideleg & VS_MODE_INTERRUPTS) >> 1; 951 return RISCV_EXCP_NONE; 952 } 953 954 static RISCVException read_sie(CPURISCVState *env, int csrno, 955 target_ulong *val) 956 { 957 if (riscv_cpu_virt_enabled(env)) { 958 read_vsie(env, CSR_VSIE, val); 959 } else { 960 *val = env->mie & env->mideleg; 961 } 962 return RISCV_EXCP_NONE; 963 } 964 965 static RISCVException write_vsie(CPURISCVState *env, int csrno, 966 target_ulong val) 967 { 968 /* Shift the S bits to their VS bit location in mie */ 969 target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | 970 ((val << 1) & env->hideleg & VS_MODE_INTERRUPTS); 971 return write_mie(env, CSR_MIE, newval); 972 } 973 974 static int write_sie(CPURISCVState *env, int csrno, target_ulong val) 975 { 976 if (riscv_cpu_virt_enabled(env)) { 977 write_vsie(env, CSR_VSIE, val); 978 } else { 979 target_ulong newval = (env->mie & ~S_MODE_INTERRUPTS) | 980 (val & S_MODE_INTERRUPTS); 981 write_mie(env, CSR_MIE, newval); 982 } 983 984 return RISCV_EXCP_NONE; 985 } 986 987 static RISCVException read_stvec(CPURISCVState *env, int csrno, 988 target_ulong *val) 989 { 990 *val = env->stvec; 991 return RISCV_EXCP_NONE; 992 } 993 994 static RISCVException write_stvec(CPURISCVState *env, int csrno, 995 target_ulong val) 996 { 997 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 998 if ((val & 3) < 2) { 999 env->stvec = val; 1000 } else { 1001 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 1002 } 1003 return RISCV_EXCP_NONE; 1004 } 1005 1006 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 1007 target_ulong *val) 1008 { 1009 *val = env->scounteren; 1010 return RISCV_EXCP_NONE; 1011 } 1012 1013 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 1014 target_ulong val) 1015 { 1016 env->scounteren = val; 1017 return RISCV_EXCP_NONE; 1018 } 1019 1020 /* Supervisor Trap Handling */ 1021 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 1022 Int128 *val) 1023 { 1024 *val = int128_make128(env->sscratch, env->sscratchh); 1025 return RISCV_EXCP_NONE; 1026 } 1027 1028 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 1029 Int128 val) 1030 { 1031 env->sscratch = int128_getlo(val); 1032 env->sscratchh = int128_gethi(val); 1033 return RISCV_EXCP_NONE; 1034 } 1035 1036 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 1037 target_ulong *val) 1038 { 1039 *val = env->sscratch; 1040 return RISCV_EXCP_NONE; 1041 } 1042 1043 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 1044 target_ulong val) 1045 { 1046 env->sscratch = val; 1047 return RISCV_EXCP_NONE; 1048 } 1049 1050 static RISCVException read_sepc(CPURISCVState *env, int csrno, 1051 target_ulong *val) 1052 { 1053 *val = env->sepc; 1054 return RISCV_EXCP_NONE; 1055 } 1056 1057 static RISCVException write_sepc(CPURISCVState *env, int csrno, 1058 target_ulong val) 1059 { 1060 env->sepc = val; 1061 return RISCV_EXCP_NONE; 1062 } 1063 1064 static RISCVException read_scause(CPURISCVState *env, int csrno, 1065 target_ulong *val) 1066 { 1067 *val = env->scause; 1068 return RISCV_EXCP_NONE; 1069 } 1070 1071 static RISCVException write_scause(CPURISCVState *env, int csrno, 1072 target_ulong val) 1073 { 1074 env->scause = val; 1075 return RISCV_EXCP_NONE; 1076 } 1077 1078 static RISCVException read_stval(CPURISCVState *env, int csrno, 1079 target_ulong *val) 1080 { 1081 *val = env->stval; 1082 return RISCV_EXCP_NONE; 1083 } 1084 1085 static RISCVException write_stval(CPURISCVState *env, int csrno, 1086 target_ulong val) 1087 { 1088 env->stval = val; 1089 return RISCV_EXCP_NONE; 1090 } 1091 1092 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 1093 target_ulong *ret_value, 1094 target_ulong new_value, target_ulong write_mask) 1095 { 1096 /* Shift the S bits to their VS bit location in mip */ 1097 int ret = rmw_mip(env, csrno, ret_value, new_value << 1, 1098 (write_mask << 1) & vsip_writable_mask & env->hideleg); 1099 1100 if (ret_value) { 1101 *ret_value &= VS_MODE_INTERRUPTS; 1102 /* Shift the VS bits to their S bit location in vsip */ 1103 *ret_value >>= 1; 1104 } 1105 return ret; 1106 } 1107 1108 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 1109 target_ulong *ret_value, 1110 target_ulong new_value, target_ulong write_mask) 1111 { 1112 int ret; 1113 1114 if (riscv_cpu_virt_enabled(env)) { 1115 ret = rmw_vsip(env, CSR_VSIP, ret_value, new_value, write_mask); 1116 } else { 1117 ret = rmw_mip(env, csrno, ret_value, new_value, 1118 write_mask & env->mideleg & sip_writable_mask); 1119 } 1120 1121 if (ret_value) { 1122 *ret_value &= env->mideleg & S_MODE_INTERRUPTS; 1123 } 1124 return ret; 1125 } 1126 1127 /* Supervisor Protection and Translation */ 1128 static RISCVException read_satp(CPURISCVState *env, int csrno, 1129 target_ulong *val) 1130 { 1131 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 1132 *val = 0; 1133 return RISCV_EXCP_NONE; 1134 } 1135 1136 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 1137 return RISCV_EXCP_ILLEGAL_INST; 1138 } else { 1139 *val = env->satp; 1140 } 1141 1142 return RISCV_EXCP_NONE; 1143 } 1144 1145 static RISCVException write_satp(CPURISCVState *env, int csrno, 1146 target_ulong val) 1147 { 1148 target_ulong vm, mask, asid; 1149 1150 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 1151 return RISCV_EXCP_NONE; 1152 } 1153 1154 if (riscv_cpu_mxl(env) == MXL_RV32) { 1155 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1156 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1157 asid = (val ^ env->satp) & SATP32_ASID; 1158 } else { 1159 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1160 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1161 asid = (val ^ env->satp) & SATP64_ASID; 1162 } 1163 1164 if (vm && mask) { 1165 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 1166 return RISCV_EXCP_ILLEGAL_INST; 1167 } else { 1168 if (asid) { 1169 tlb_flush(env_cpu(env)); 1170 } 1171 env->satp = val; 1172 } 1173 } 1174 return RISCV_EXCP_NONE; 1175 } 1176 1177 /* Hypervisor Extensions */ 1178 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 1179 target_ulong *val) 1180 { 1181 *val = env->hstatus; 1182 if (riscv_cpu_mxl(env) != MXL_RV32) { 1183 /* We only support 64-bit VSXL */ 1184 *val = set_field(*val, HSTATUS_VSXL, 2); 1185 } 1186 /* We only support little endian */ 1187 *val = set_field(*val, HSTATUS_VSBE, 0); 1188 return RISCV_EXCP_NONE; 1189 } 1190 1191 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 1192 target_ulong val) 1193 { 1194 env->hstatus = val; 1195 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 1196 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 1197 } 1198 if (get_field(val, HSTATUS_VSBE) != 0) { 1199 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 1200 } 1201 return RISCV_EXCP_NONE; 1202 } 1203 1204 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 1205 target_ulong *val) 1206 { 1207 *val = env->hedeleg; 1208 return RISCV_EXCP_NONE; 1209 } 1210 1211 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 1212 target_ulong val) 1213 { 1214 env->hedeleg = val & vs_delegable_excps; 1215 return RISCV_EXCP_NONE; 1216 } 1217 1218 static RISCVException read_hideleg(CPURISCVState *env, int csrno, 1219 target_ulong *val) 1220 { 1221 *val = env->hideleg; 1222 return RISCV_EXCP_NONE; 1223 } 1224 1225 static RISCVException write_hideleg(CPURISCVState *env, int csrno, 1226 target_ulong val) 1227 { 1228 env->hideleg = val & vs_delegable_ints; 1229 return RISCV_EXCP_NONE; 1230 } 1231 1232 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 1233 target_ulong *ret_value, 1234 target_ulong new_value, target_ulong write_mask) 1235 { 1236 int ret = rmw_mip(env, csrno, ret_value, new_value, 1237 write_mask & hvip_writable_mask); 1238 1239 if (ret_value) { 1240 *ret_value &= VS_MODE_INTERRUPTS; 1241 } 1242 return ret; 1243 } 1244 1245 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 1246 target_ulong *ret_value, 1247 target_ulong new_value, target_ulong write_mask) 1248 { 1249 int ret = rmw_mip(env, csrno, ret_value, new_value, 1250 write_mask & hip_writable_mask); 1251 1252 if (ret_value) { 1253 *ret_value &= HS_MODE_INTERRUPTS; 1254 } 1255 return ret; 1256 } 1257 1258 static RISCVException read_hie(CPURISCVState *env, int csrno, 1259 target_ulong *val) 1260 { 1261 *val = env->mie & HS_MODE_INTERRUPTS; 1262 return RISCV_EXCP_NONE; 1263 } 1264 1265 static RISCVException write_hie(CPURISCVState *env, int csrno, 1266 target_ulong val) 1267 { 1268 target_ulong newval = (env->mie & ~HS_MODE_INTERRUPTS) | (val & HS_MODE_INTERRUPTS); 1269 return write_mie(env, CSR_MIE, newval); 1270 } 1271 1272 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 1273 target_ulong *val) 1274 { 1275 *val = env->hcounteren; 1276 return RISCV_EXCP_NONE; 1277 } 1278 1279 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 1280 target_ulong val) 1281 { 1282 env->hcounteren = val; 1283 return RISCV_EXCP_NONE; 1284 } 1285 1286 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 1287 target_ulong *val) 1288 { 1289 if (val) { 1290 *val = env->hgeie; 1291 } 1292 return RISCV_EXCP_NONE; 1293 } 1294 1295 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 1296 target_ulong val) 1297 { 1298 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 1299 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 1300 env->hgeie = val; 1301 /* Update mip.SGEIP bit */ 1302 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 1303 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 1304 return RISCV_EXCP_NONE; 1305 } 1306 1307 static RISCVException read_htval(CPURISCVState *env, int csrno, 1308 target_ulong *val) 1309 { 1310 *val = env->htval; 1311 return RISCV_EXCP_NONE; 1312 } 1313 1314 static RISCVException write_htval(CPURISCVState *env, int csrno, 1315 target_ulong val) 1316 { 1317 env->htval = val; 1318 return RISCV_EXCP_NONE; 1319 } 1320 1321 static RISCVException read_htinst(CPURISCVState *env, int csrno, 1322 target_ulong *val) 1323 { 1324 *val = env->htinst; 1325 return RISCV_EXCP_NONE; 1326 } 1327 1328 static RISCVException write_htinst(CPURISCVState *env, int csrno, 1329 target_ulong val) 1330 { 1331 return RISCV_EXCP_NONE; 1332 } 1333 1334 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 1335 target_ulong *val) 1336 { 1337 if (val) { 1338 *val = env->hgeip; 1339 } 1340 return RISCV_EXCP_NONE; 1341 } 1342 1343 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 1344 target_ulong *val) 1345 { 1346 *val = env->hgatp; 1347 return RISCV_EXCP_NONE; 1348 } 1349 1350 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 1351 target_ulong val) 1352 { 1353 env->hgatp = val; 1354 return RISCV_EXCP_NONE; 1355 } 1356 1357 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 1358 target_ulong *val) 1359 { 1360 if (!env->rdtime_fn) { 1361 return RISCV_EXCP_ILLEGAL_INST; 1362 } 1363 1364 *val = env->htimedelta; 1365 return RISCV_EXCP_NONE; 1366 } 1367 1368 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 1369 target_ulong val) 1370 { 1371 if (!env->rdtime_fn) { 1372 return RISCV_EXCP_ILLEGAL_INST; 1373 } 1374 1375 if (riscv_cpu_mxl(env) == MXL_RV32) { 1376 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 1377 } else { 1378 env->htimedelta = val; 1379 } 1380 return RISCV_EXCP_NONE; 1381 } 1382 1383 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 1384 target_ulong *val) 1385 { 1386 if (!env->rdtime_fn) { 1387 return RISCV_EXCP_ILLEGAL_INST; 1388 } 1389 1390 *val = env->htimedelta >> 32; 1391 return RISCV_EXCP_NONE; 1392 } 1393 1394 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 1395 target_ulong val) 1396 { 1397 if (!env->rdtime_fn) { 1398 return RISCV_EXCP_ILLEGAL_INST; 1399 } 1400 1401 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 1402 return RISCV_EXCP_NONE; 1403 } 1404 1405 /* Virtual CSR Registers */ 1406 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 1407 target_ulong *val) 1408 { 1409 *val = env->vsstatus; 1410 return RISCV_EXCP_NONE; 1411 } 1412 1413 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 1414 target_ulong val) 1415 { 1416 uint64_t mask = (target_ulong)-1; 1417 if ((val & VSSTATUS64_UXL) == 0) { 1418 mask &= ~VSSTATUS64_UXL; 1419 } 1420 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 1421 return RISCV_EXCP_NONE; 1422 } 1423 1424 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 1425 { 1426 *val = env->vstvec; 1427 return RISCV_EXCP_NONE; 1428 } 1429 1430 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 1431 target_ulong val) 1432 { 1433 env->vstvec = val; 1434 return RISCV_EXCP_NONE; 1435 } 1436 1437 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 1438 target_ulong *val) 1439 { 1440 *val = env->vsscratch; 1441 return RISCV_EXCP_NONE; 1442 } 1443 1444 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 1445 target_ulong val) 1446 { 1447 env->vsscratch = val; 1448 return RISCV_EXCP_NONE; 1449 } 1450 1451 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 1452 target_ulong *val) 1453 { 1454 *val = env->vsepc; 1455 return RISCV_EXCP_NONE; 1456 } 1457 1458 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 1459 target_ulong val) 1460 { 1461 env->vsepc = val; 1462 return RISCV_EXCP_NONE; 1463 } 1464 1465 static RISCVException read_vscause(CPURISCVState *env, int csrno, 1466 target_ulong *val) 1467 { 1468 *val = env->vscause; 1469 return RISCV_EXCP_NONE; 1470 } 1471 1472 static RISCVException write_vscause(CPURISCVState *env, int csrno, 1473 target_ulong val) 1474 { 1475 env->vscause = val; 1476 return RISCV_EXCP_NONE; 1477 } 1478 1479 static RISCVException read_vstval(CPURISCVState *env, int csrno, 1480 target_ulong *val) 1481 { 1482 *val = env->vstval; 1483 return RISCV_EXCP_NONE; 1484 } 1485 1486 static RISCVException write_vstval(CPURISCVState *env, int csrno, 1487 target_ulong val) 1488 { 1489 env->vstval = val; 1490 return RISCV_EXCP_NONE; 1491 } 1492 1493 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 1494 target_ulong *val) 1495 { 1496 *val = env->vsatp; 1497 return RISCV_EXCP_NONE; 1498 } 1499 1500 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 1501 target_ulong val) 1502 { 1503 env->vsatp = val; 1504 return RISCV_EXCP_NONE; 1505 } 1506 1507 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 1508 target_ulong *val) 1509 { 1510 *val = env->mtval2; 1511 return RISCV_EXCP_NONE; 1512 } 1513 1514 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 1515 target_ulong val) 1516 { 1517 env->mtval2 = val; 1518 return RISCV_EXCP_NONE; 1519 } 1520 1521 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 1522 target_ulong *val) 1523 { 1524 *val = env->mtinst; 1525 return RISCV_EXCP_NONE; 1526 } 1527 1528 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 1529 target_ulong val) 1530 { 1531 env->mtinst = val; 1532 return RISCV_EXCP_NONE; 1533 } 1534 1535 /* Physical Memory Protection */ 1536 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 1537 target_ulong *val) 1538 { 1539 *val = mseccfg_csr_read(env); 1540 return RISCV_EXCP_NONE; 1541 } 1542 1543 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 1544 target_ulong val) 1545 { 1546 mseccfg_csr_write(env, val); 1547 return RISCV_EXCP_NONE; 1548 } 1549 1550 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 1551 { 1552 /* TODO: RV128 restriction check */ 1553 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 1554 return false; 1555 } 1556 return true; 1557 } 1558 1559 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 1560 target_ulong *val) 1561 { 1562 uint32_t reg_index = csrno - CSR_PMPCFG0; 1563 1564 if (!check_pmp_reg_index(env, reg_index)) { 1565 return RISCV_EXCP_ILLEGAL_INST; 1566 } 1567 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 1568 return RISCV_EXCP_NONE; 1569 } 1570 1571 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 1572 target_ulong val) 1573 { 1574 uint32_t reg_index = csrno - CSR_PMPCFG0; 1575 1576 if (!check_pmp_reg_index(env, reg_index)) { 1577 return RISCV_EXCP_ILLEGAL_INST; 1578 } 1579 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 1580 return RISCV_EXCP_NONE; 1581 } 1582 1583 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 1584 target_ulong *val) 1585 { 1586 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 1587 return RISCV_EXCP_NONE; 1588 } 1589 1590 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 1591 target_ulong val) 1592 { 1593 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 1594 return RISCV_EXCP_NONE; 1595 } 1596 1597 /* 1598 * Functions to access Pointer Masking feature registers 1599 * We have to check if current priv lvl could modify 1600 * csr in given mode 1601 */ 1602 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 1603 { 1604 int csr_priv = get_field(csrno, 0x300); 1605 int pm_current; 1606 1607 if (env->debugger) { 1608 return false; 1609 } 1610 /* 1611 * If priv lvls differ that means we're accessing csr from higher priv lvl, 1612 * so allow the access 1613 */ 1614 if (env->priv != csr_priv) { 1615 return false; 1616 } 1617 switch (env->priv) { 1618 case PRV_M: 1619 pm_current = get_field(env->mmte, M_PM_CURRENT); 1620 break; 1621 case PRV_S: 1622 pm_current = get_field(env->mmte, S_PM_CURRENT); 1623 break; 1624 case PRV_U: 1625 pm_current = get_field(env->mmte, U_PM_CURRENT); 1626 break; 1627 default: 1628 g_assert_not_reached(); 1629 } 1630 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 1631 return !pm_current; 1632 } 1633 1634 static RISCVException read_mmte(CPURISCVState *env, int csrno, 1635 target_ulong *val) 1636 { 1637 *val = env->mmte & MMTE_MASK; 1638 return RISCV_EXCP_NONE; 1639 } 1640 1641 static RISCVException write_mmte(CPURISCVState *env, int csrno, 1642 target_ulong val) 1643 { 1644 uint64_t mstatus; 1645 target_ulong wpri_val = val & MMTE_MASK; 1646 1647 if (val != wpri_val) { 1648 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1649 "MMTE: WPRI violation written 0x", val, 1650 "vs expected 0x", wpri_val); 1651 } 1652 /* for machine mode pm.current is hardwired to 1 */ 1653 wpri_val |= MMTE_M_PM_CURRENT; 1654 1655 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 1656 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 1657 env->mmte = wpri_val | PM_EXT_DIRTY; 1658 riscv_cpu_update_mask(env); 1659 1660 /* Set XS and SD bits, since PM CSRs are dirty */ 1661 mstatus = env->mstatus | MSTATUS_XS; 1662 write_mstatus(env, csrno, mstatus); 1663 return RISCV_EXCP_NONE; 1664 } 1665 1666 static RISCVException read_smte(CPURISCVState *env, int csrno, 1667 target_ulong *val) 1668 { 1669 *val = env->mmte & SMTE_MASK; 1670 return RISCV_EXCP_NONE; 1671 } 1672 1673 static RISCVException write_smte(CPURISCVState *env, int csrno, 1674 target_ulong val) 1675 { 1676 target_ulong wpri_val = val & SMTE_MASK; 1677 1678 if (val != wpri_val) { 1679 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1680 "SMTE: WPRI violation written 0x", val, 1681 "vs expected 0x", wpri_val); 1682 } 1683 1684 /* if pm.current==0 we can't modify current PM CSRs */ 1685 if (check_pm_current_disabled(env, csrno)) { 1686 return RISCV_EXCP_NONE; 1687 } 1688 1689 wpri_val |= (env->mmte & ~SMTE_MASK); 1690 write_mmte(env, csrno, wpri_val); 1691 return RISCV_EXCP_NONE; 1692 } 1693 1694 static RISCVException read_umte(CPURISCVState *env, int csrno, 1695 target_ulong *val) 1696 { 1697 *val = env->mmte & UMTE_MASK; 1698 return RISCV_EXCP_NONE; 1699 } 1700 1701 static RISCVException write_umte(CPURISCVState *env, int csrno, 1702 target_ulong val) 1703 { 1704 target_ulong wpri_val = val & UMTE_MASK; 1705 1706 if (val != wpri_val) { 1707 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1708 "UMTE: WPRI violation written 0x", val, 1709 "vs expected 0x", wpri_val); 1710 } 1711 1712 if (check_pm_current_disabled(env, csrno)) { 1713 return RISCV_EXCP_NONE; 1714 } 1715 1716 wpri_val |= (env->mmte & ~UMTE_MASK); 1717 write_mmte(env, csrno, wpri_val); 1718 return RISCV_EXCP_NONE; 1719 } 1720 1721 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 1722 target_ulong *val) 1723 { 1724 *val = env->mpmmask; 1725 return RISCV_EXCP_NONE; 1726 } 1727 1728 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 1729 target_ulong val) 1730 { 1731 uint64_t mstatus; 1732 1733 env->mpmmask = val; 1734 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 1735 env->cur_pmmask = val; 1736 } 1737 env->mmte |= PM_EXT_DIRTY; 1738 1739 /* Set XS and SD bits, since PM CSRs are dirty */ 1740 mstatus = env->mstatus | MSTATUS_XS; 1741 write_mstatus(env, csrno, mstatus); 1742 return RISCV_EXCP_NONE; 1743 } 1744 1745 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 1746 target_ulong *val) 1747 { 1748 *val = env->spmmask; 1749 return RISCV_EXCP_NONE; 1750 } 1751 1752 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 1753 target_ulong val) 1754 { 1755 uint64_t mstatus; 1756 1757 /* if pm.current==0 we can't modify current PM CSRs */ 1758 if (check_pm_current_disabled(env, csrno)) { 1759 return RISCV_EXCP_NONE; 1760 } 1761 env->spmmask = val; 1762 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 1763 env->cur_pmmask = val; 1764 } 1765 env->mmte |= PM_EXT_DIRTY; 1766 1767 /* Set XS and SD bits, since PM CSRs are dirty */ 1768 mstatus = env->mstatus | MSTATUS_XS; 1769 write_mstatus(env, csrno, mstatus); 1770 return RISCV_EXCP_NONE; 1771 } 1772 1773 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 1774 target_ulong *val) 1775 { 1776 *val = env->upmmask; 1777 return RISCV_EXCP_NONE; 1778 } 1779 1780 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 1781 target_ulong val) 1782 { 1783 uint64_t mstatus; 1784 1785 /* if pm.current==0 we can't modify current PM CSRs */ 1786 if (check_pm_current_disabled(env, csrno)) { 1787 return RISCV_EXCP_NONE; 1788 } 1789 env->upmmask = val; 1790 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 1791 env->cur_pmmask = val; 1792 } 1793 env->mmte |= PM_EXT_DIRTY; 1794 1795 /* Set XS and SD bits, since PM CSRs are dirty */ 1796 mstatus = env->mstatus | MSTATUS_XS; 1797 write_mstatus(env, csrno, mstatus); 1798 return RISCV_EXCP_NONE; 1799 } 1800 1801 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 1802 target_ulong *val) 1803 { 1804 *val = env->mpmbase; 1805 return RISCV_EXCP_NONE; 1806 } 1807 1808 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 1809 target_ulong val) 1810 { 1811 uint64_t mstatus; 1812 1813 env->mpmbase = val; 1814 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 1815 env->cur_pmbase = val; 1816 } 1817 env->mmte |= PM_EXT_DIRTY; 1818 1819 /* Set XS and SD bits, since PM CSRs are dirty */ 1820 mstatus = env->mstatus | MSTATUS_XS; 1821 write_mstatus(env, csrno, mstatus); 1822 return RISCV_EXCP_NONE; 1823 } 1824 1825 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 1826 target_ulong *val) 1827 { 1828 *val = env->spmbase; 1829 return RISCV_EXCP_NONE; 1830 } 1831 1832 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 1833 target_ulong val) 1834 { 1835 uint64_t mstatus; 1836 1837 /* if pm.current==0 we can't modify current PM CSRs */ 1838 if (check_pm_current_disabled(env, csrno)) { 1839 return RISCV_EXCP_NONE; 1840 } 1841 env->spmbase = val; 1842 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 1843 env->cur_pmbase = val; 1844 } 1845 env->mmte |= PM_EXT_DIRTY; 1846 1847 /* Set XS and SD bits, since PM CSRs are dirty */ 1848 mstatus = env->mstatus | MSTATUS_XS; 1849 write_mstatus(env, csrno, mstatus); 1850 return RISCV_EXCP_NONE; 1851 } 1852 1853 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 1854 target_ulong *val) 1855 { 1856 *val = env->upmbase; 1857 return RISCV_EXCP_NONE; 1858 } 1859 1860 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 1861 target_ulong val) 1862 { 1863 uint64_t mstatus; 1864 1865 /* if pm.current==0 we can't modify current PM CSRs */ 1866 if (check_pm_current_disabled(env, csrno)) { 1867 return RISCV_EXCP_NONE; 1868 } 1869 env->upmbase = val; 1870 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 1871 env->cur_pmbase = val; 1872 } 1873 env->mmte |= PM_EXT_DIRTY; 1874 1875 /* Set XS and SD bits, since PM CSRs are dirty */ 1876 mstatus = env->mstatus | MSTATUS_XS; 1877 write_mstatus(env, csrno, mstatus); 1878 return RISCV_EXCP_NONE; 1879 } 1880 1881 #endif 1882 1883 /* 1884 * riscv_csrrw - read and/or update control and status register 1885 * 1886 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 1887 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 1888 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 1889 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 1890 */ 1891 1892 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 1893 int csrno, 1894 bool write_mask, 1895 RISCVCPU *cpu) 1896 { 1897 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 1898 int read_only = get_field(csrno, 0xC00) == 3; 1899 #if !defined(CONFIG_USER_ONLY) 1900 int effective_priv = env->priv; 1901 1902 if (riscv_has_ext(env, RVH) && 1903 env->priv == PRV_S && 1904 !riscv_cpu_virt_enabled(env)) { 1905 /* 1906 * We are in S mode without virtualisation, therefore we are in HS Mode. 1907 * Add 1 to the effective privledge level to allow us to access the 1908 * Hypervisor CSRs. 1909 */ 1910 effective_priv++; 1911 } 1912 1913 if (!env->debugger && (effective_priv < get_field(csrno, 0x300))) { 1914 return RISCV_EXCP_ILLEGAL_INST; 1915 } 1916 #endif 1917 if (write_mask && read_only) { 1918 return RISCV_EXCP_ILLEGAL_INST; 1919 } 1920 1921 /* ensure the CSR extension is enabled. */ 1922 if (!cpu->cfg.ext_icsr) { 1923 return RISCV_EXCP_ILLEGAL_INST; 1924 } 1925 1926 /* check predicate */ 1927 if (!csr_ops[csrno].predicate) { 1928 return RISCV_EXCP_ILLEGAL_INST; 1929 } 1930 1931 return csr_ops[csrno].predicate(env, csrno); 1932 } 1933 1934 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 1935 target_ulong *ret_value, 1936 target_ulong new_value, 1937 target_ulong write_mask) 1938 { 1939 RISCVException ret; 1940 target_ulong old_value; 1941 1942 /* execute combined read/write operation if it exists */ 1943 if (csr_ops[csrno].op) { 1944 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 1945 } 1946 1947 /* if no accessor exists then return failure */ 1948 if (!csr_ops[csrno].read) { 1949 return RISCV_EXCP_ILLEGAL_INST; 1950 } 1951 /* read old value */ 1952 ret = csr_ops[csrno].read(env, csrno, &old_value); 1953 if (ret != RISCV_EXCP_NONE) { 1954 return ret; 1955 } 1956 1957 /* write value if writable and write mask set, otherwise drop writes */ 1958 if (write_mask) { 1959 new_value = (old_value & ~write_mask) | (new_value & write_mask); 1960 if (csr_ops[csrno].write) { 1961 ret = csr_ops[csrno].write(env, csrno, new_value); 1962 if (ret != RISCV_EXCP_NONE) { 1963 return ret; 1964 } 1965 } 1966 } 1967 1968 /* return old value */ 1969 if (ret_value) { 1970 *ret_value = old_value; 1971 } 1972 1973 return RISCV_EXCP_NONE; 1974 } 1975 1976 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 1977 target_ulong *ret_value, 1978 target_ulong new_value, target_ulong write_mask) 1979 { 1980 RISCVCPU *cpu = env_archcpu(env); 1981 1982 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 1983 if (ret != RISCV_EXCP_NONE) { 1984 return ret; 1985 } 1986 1987 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 1988 } 1989 1990 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 1991 Int128 *ret_value, 1992 Int128 new_value, 1993 Int128 write_mask) 1994 { 1995 RISCVException ret; 1996 Int128 old_value; 1997 1998 /* read old value */ 1999 ret = csr_ops[csrno].read128(env, csrno, &old_value); 2000 if (ret != RISCV_EXCP_NONE) { 2001 return ret; 2002 } 2003 2004 /* write value if writable and write mask set, otherwise drop writes */ 2005 if (int128_nz(write_mask)) { 2006 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 2007 int128_and(new_value, write_mask)); 2008 if (csr_ops[csrno].write128) { 2009 ret = csr_ops[csrno].write128(env, csrno, new_value); 2010 if (ret != RISCV_EXCP_NONE) { 2011 return ret; 2012 } 2013 } else if (csr_ops[csrno].write) { 2014 /* avoids having to write wrappers for all registers */ 2015 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 2016 if (ret != RISCV_EXCP_NONE) { 2017 return ret; 2018 } 2019 } 2020 } 2021 2022 /* return old value */ 2023 if (ret_value) { 2024 *ret_value = old_value; 2025 } 2026 2027 return RISCV_EXCP_NONE; 2028 } 2029 2030 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 2031 Int128 *ret_value, 2032 Int128 new_value, Int128 write_mask) 2033 { 2034 RISCVException ret; 2035 RISCVCPU *cpu = env_archcpu(env); 2036 2037 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 2038 if (ret != RISCV_EXCP_NONE) { 2039 return ret; 2040 } 2041 2042 if (csr_ops[csrno].read128) { 2043 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 2044 } 2045 2046 /* 2047 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 2048 * at all defined. 2049 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 2050 * significant), for those, this fallback is correctly handling the accesses 2051 */ 2052 target_ulong old_value; 2053 ret = riscv_csrrw_do64(env, csrno, &old_value, 2054 int128_getlo(new_value), 2055 int128_getlo(write_mask)); 2056 if (ret == RISCV_EXCP_NONE && ret_value) { 2057 *ret_value = int128_make64(old_value); 2058 } 2059 return ret; 2060 } 2061 2062 /* 2063 * Debugger support. If not in user mode, set env->debugger before the 2064 * riscv_csrrw call and clear it after the call. 2065 */ 2066 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 2067 target_ulong *ret_value, 2068 target_ulong new_value, 2069 target_ulong write_mask) 2070 { 2071 RISCVException ret; 2072 #if !defined(CONFIG_USER_ONLY) 2073 env->debugger = true; 2074 #endif 2075 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 2076 #if !defined(CONFIG_USER_ONLY) 2077 env->debugger = false; 2078 #endif 2079 return ret; 2080 } 2081 2082 /* Control and Status Register function table */ 2083 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 2084 /* User Floating-Point CSRs */ 2085 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 2086 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 2087 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 2088 /* Vector CSRs */ 2089 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 2090 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 2091 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 2092 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 2093 [CSR_VL] = { "vl", vs, read_vl }, 2094 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 2095 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 2096 /* User Timers and Counters */ 2097 [CSR_CYCLE] = { "cycle", ctr, read_instret }, 2098 [CSR_INSTRET] = { "instret", ctr, read_instret }, 2099 [CSR_CYCLEH] = { "cycleh", ctr32, read_instreth }, 2100 [CSR_INSTRETH] = { "instreth", ctr32, read_instreth }, 2101 2102 /* 2103 * In privileged mode, the monitor will have to emulate TIME CSRs only if 2104 * rdtime callback is not provided by machine/platform emulation. 2105 */ 2106 [CSR_TIME] = { "time", ctr, read_time }, 2107 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 2108 2109 #if !defined(CONFIG_USER_ONLY) 2110 /* Machine Timers and Counters */ 2111 [CSR_MCYCLE] = { "mcycle", any, read_instret }, 2112 [CSR_MINSTRET] = { "minstret", any, read_instret }, 2113 [CSR_MCYCLEH] = { "mcycleh", any32, read_instreth }, 2114 [CSR_MINSTRETH] = { "minstreth", any32, read_instreth }, 2115 2116 /* Machine Information Registers */ 2117 [CSR_MVENDORID] = { "mvendorid", any, read_zero }, 2118 [CSR_MARCHID] = { "marchid", any, read_zero }, 2119 [CSR_MIMPID] = { "mimpid", any, read_zero }, 2120 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 2121 2122 /* Machine Trap Setup */ 2123 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, NULL, 2124 read_mstatus_i128 }, 2125 [CSR_MISA] = { "misa", any, read_misa, write_misa, NULL, 2126 read_misa_i128 }, 2127 [CSR_MIDELEG] = { "mideleg", any, read_mideleg, write_mideleg }, 2128 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 2129 [CSR_MIE] = { "mie", any, read_mie, write_mie }, 2130 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 2131 [CSR_MCOUNTEREN] = { "mcounteren", any, read_mcounteren, write_mcounteren }, 2132 2133 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, write_mstatush }, 2134 2135 /* Machine Trap Handling */ 2136 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, NULL, 2137 read_mscratch_i128, write_mscratch_i128 }, 2138 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 2139 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 2140 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 2141 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 2142 2143 /* Supervisor Trap Setup */ 2144 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, NULL, 2145 read_sstatus_i128 }, 2146 [CSR_SIE] = { "sie", smode, read_sie, write_sie }, 2147 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 2148 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, write_scounteren }, 2149 2150 /* Supervisor Trap Handling */ 2151 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, NULL, 2152 read_sscratch_i128, write_sscratch_i128 }, 2153 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 2154 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 2155 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 2156 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 2157 2158 /* Supervisor Protection and Translation */ 2159 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 2160 2161 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus }, 2162 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg }, 2163 [CSR_HIDELEG] = { "hideleg", hmode, read_hideleg, write_hideleg }, 2164 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip }, 2165 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip }, 2166 [CSR_HIE] = { "hie", hmode, read_hie, write_hie }, 2167 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, write_hcounteren }, 2168 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie }, 2169 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval }, 2170 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst }, 2171 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, NULL }, 2172 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp }, 2173 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, write_htimedelta }, 2174 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, write_htimedeltah }, 2175 2176 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, write_vsstatus }, 2177 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip }, 2178 [CSR_VSIE] = { "vsie", hmode, read_vsie, write_vsie }, 2179 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec }, 2180 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, write_vsscratch }, 2181 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc }, 2182 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause }, 2183 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval }, 2184 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp }, 2185 2186 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2 }, 2187 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst }, 2188 2189 /* Physical Memory Protection */ 2190 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg }, 2191 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 2192 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 2193 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 2194 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 2195 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 2196 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 2197 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 2198 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 2199 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 2200 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 2201 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 2202 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 2203 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 2204 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 2205 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 2206 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 2207 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 2208 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 2209 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 2210 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 2211 2212 /* User Pointer Masking */ 2213 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 2214 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, write_upmmask }, 2215 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, write_upmbase }, 2216 /* Machine Pointer Masking */ 2217 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 2218 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, write_mpmmask }, 2219 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, write_mpmbase }, 2220 /* Supervisor Pointer Masking */ 2221 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 2222 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, write_spmmask }, 2223 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, write_spmbase }, 2224 2225 /* Performance Counters */ 2226 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_zero }, 2227 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_zero }, 2228 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_zero }, 2229 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_zero }, 2230 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_zero }, 2231 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_zero }, 2232 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_zero }, 2233 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_zero }, 2234 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_zero }, 2235 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_zero }, 2236 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_zero }, 2237 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_zero }, 2238 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_zero }, 2239 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_zero }, 2240 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_zero }, 2241 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_zero }, 2242 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_zero }, 2243 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_zero }, 2244 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_zero }, 2245 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_zero }, 2246 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_zero }, 2247 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_zero }, 2248 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_zero }, 2249 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_zero }, 2250 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_zero }, 2251 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_zero }, 2252 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_zero }, 2253 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_zero }, 2254 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_zero }, 2255 2256 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", any, read_zero }, 2257 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", any, read_zero }, 2258 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", any, read_zero }, 2259 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", any, read_zero }, 2260 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", any, read_zero }, 2261 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", any, read_zero }, 2262 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", any, read_zero }, 2263 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", any, read_zero }, 2264 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", any, read_zero }, 2265 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", any, read_zero }, 2266 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", any, read_zero }, 2267 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", any, read_zero }, 2268 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", any, read_zero }, 2269 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", any, read_zero }, 2270 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", any, read_zero }, 2271 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", any, read_zero }, 2272 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", any, read_zero }, 2273 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", any, read_zero }, 2274 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", any, read_zero }, 2275 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", any, read_zero }, 2276 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", any, read_zero }, 2277 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", any, read_zero }, 2278 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", any, read_zero }, 2279 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", any, read_zero }, 2280 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", any, read_zero }, 2281 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", any, read_zero }, 2282 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", any, read_zero }, 2283 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", any, read_zero }, 2284 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", any, read_zero }, 2285 2286 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_zero }, 2287 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_zero }, 2288 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_zero }, 2289 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_zero }, 2290 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_zero }, 2291 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_zero }, 2292 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_zero }, 2293 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_zero }, 2294 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_zero }, 2295 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_zero }, 2296 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_zero }, 2297 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_zero }, 2298 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_zero }, 2299 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_zero }, 2300 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_zero }, 2301 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_zero }, 2302 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_zero }, 2303 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_zero }, 2304 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_zero }, 2305 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_zero }, 2306 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_zero }, 2307 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_zero }, 2308 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_zero }, 2309 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_zero }, 2310 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_zero }, 2311 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_zero }, 2312 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_zero }, 2313 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_zero }, 2314 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_zero }, 2315 2316 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_zero }, 2317 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_zero }, 2318 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_zero }, 2319 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_zero }, 2320 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_zero }, 2321 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_zero }, 2322 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_zero }, 2323 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_zero }, 2324 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_zero }, 2325 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_zero }, 2326 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_zero }, 2327 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_zero }, 2328 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_zero }, 2329 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_zero }, 2330 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_zero }, 2331 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_zero }, 2332 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_zero }, 2333 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_zero }, 2334 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_zero }, 2335 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_zero }, 2336 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_zero }, 2337 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_zero }, 2338 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_zero }, 2339 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_zero }, 2340 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_zero }, 2341 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_zero }, 2342 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_zero }, 2343 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_zero }, 2344 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_zero }, 2345 2346 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", any32, read_zero }, 2347 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", any32, read_zero }, 2348 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", any32, read_zero }, 2349 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", any32, read_zero }, 2350 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", any32, read_zero }, 2351 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", any32, read_zero }, 2352 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", any32, read_zero }, 2353 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", any32, read_zero }, 2354 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", any32, read_zero }, 2355 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", any32, read_zero }, 2356 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", any32, read_zero }, 2357 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", any32, read_zero }, 2358 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", any32, read_zero }, 2359 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", any32, read_zero }, 2360 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", any32, read_zero }, 2361 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", any32, read_zero }, 2362 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", any32, read_zero }, 2363 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", any32, read_zero }, 2364 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", any32, read_zero }, 2365 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", any32, read_zero }, 2366 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", any32, read_zero }, 2367 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", any32, read_zero }, 2368 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", any32, read_zero }, 2369 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", any32, read_zero }, 2370 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", any32, read_zero }, 2371 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", any32, read_zero }, 2372 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", any32, read_zero }, 2373 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", any32, read_zero }, 2374 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", any32, read_zero }, 2375 #endif /* !CONFIG_USER_ONLY */ 2376 }; 2377