1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "qemu/main-loop.h" 24 #include "exec/exec-all.h" 25 26 /* CSR function table public API */ 27 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 28 { 29 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 30 } 31 32 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 33 { 34 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 35 } 36 37 /* Predicates */ 38 static RISCVException fs(CPURISCVState *env, int csrno) 39 { 40 #if !defined(CONFIG_USER_ONLY) 41 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 42 return RISCV_EXCP_ILLEGAL_INST; 43 } 44 #endif 45 return RISCV_EXCP_NONE; 46 } 47 48 static RISCVException vs(CPURISCVState *env, int csrno) 49 { 50 CPUState *cs = env_cpu(env); 51 RISCVCPU *cpu = RISCV_CPU(cs); 52 53 if (env->misa_ext & RVV || 54 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 55 #if !defined(CONFIG_USER_ONLY) 56 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 57 return RISCV_EXCP_ILLEGAL_INST; 58 } 59 #endif 60 return RISCV_EXCP_NONE; 61 } 62 return RISCV_EXCP_ILLEGAL_INST; 63 } 64 65 static RISCVException ctr(CPURISCVState *env, int csrno) 66 { 67 #if !defined(CONFIG_USER_ONLY) 68 CPUState *cs = env_cpu(env); 69 RISCVCPU *cpu = RISCV_CPU(cs); 70 71 if (!cpu->cfg.ext_counters) { 72 /* The Counters extensions is not enabled */ 73 return RISCV_EXCP_ILLEGAL_INST; 74 } 75 76 if (riscv_cpu_virt_enabled(env)) { 77 switch (csrno) { 78 case CSR_CYCLE: 79 if (!get_field(env->hcounteren, COUNTEREN_CY) && 80 get_field(env->mcounteren, COUNTEREN_CY)) { 81 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 82 } 83 break; 84 case CSR_TIME: 85 if (!get_field(env->hcounteren, COUNTEREN_TM) && 86 get_field(env->mcounteren, COUNTEREN_TM)) { 87 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 88 } 89 break; 90 case CSR_INSTRET: 91 if (!get_field(env->hcounteren, COUNTEREN_IR) && 92 get_field(env->mcounteren, COUNTEREN_IR)) { 93 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 94 } 95 break; 96 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 97 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3)) && 98 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3))) { 99 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 100 } 101 break; 102 } 103 if (riscv_cpu_mxl(env) == MXL_RV32) { 104 switch (csrno) { 105 case CSR_CYCLEH: 106 if (!get_field(env->hcounteren, COUNTEREN_CY) && 107 get_field(env->mcounteren, COUNTEREN_CY)) { 108 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 109 } 110 break; 111 case CSR_TIMEH: 112 if (!get_field(env->hcounteren, COUNTEREN_TM) && 113 get_field(env->mcounteren, COUNTEREN_TM)) { 114 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 115 } 116 break; 117 case CSR_INSTRETH: 118 if (!get_field(env->hcounteren, COUNTEREN_IR) && 119 get_field(env->mcounteren, COUNTEREN_IR)) { 120 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 121 } 122 break; 123 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 124 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3H)) && 125 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3H))) { 126 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 127 } 128 break; 129 } 130 } 131 } 132 #endif 133 return RISCV_EXCP_NONE; 134 } 135 136 static RISCVException ctr32(CPURISCVState *env, int csrno) 137 { 138 if (riscv_cpu_mxl(env) != MXL_RV32) { 139 return RISCV_EXCP_ILLEGAL_INST; 140 } 141 142 return ctr(env, csrno); 143 } 144 145 #if !defined(CONFIG_USER_ONLY) 146 static RISCVException any(CPURISCVState *env, int csrno) 147 { 148 return RISCV_EXCP_NONE; 149 } 150 151 static RISCVException any32(CPURISCVState *env, int csrno) 152 { 153 if (riscv_cpu_mxl(env) != MXL_RV32) { 154 return RISCV_EXCP_ILLEGAL_INST; 155 } 156 157 return any(env, csrno); 158 159 } 160 161 static int aia_any(CPURISCVState *env, int csrno) 162 { 163 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 164 return RISCV_EXCP_ILLEGAL_INST; 165 } 166 167 return any(env, csrno); 168 } 169 170 static int aia_any32(CPURISCVState *env, int csrno) 171 { 172 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 173 return RISCV_EXCP_ILLEGAL_INST; 174 } 175 176 return any32(env, csrno); 177 } 178 179 static RISCVException smode(CPURISCVState *env, int csrno) 180 { 181 if (riscv_has_ext(env, RVS)) { 182 return RISCV_EXCP_NONE; 183 } 184 185 return RISCV_EXCP_ILLEGAL_INST; 186 } 187 188 static int smode32(CPURISCVState *env, int csrno) 189 { 190 if (riscv_cpu_mxl(env) != MXL_RV32) { 191 return RISCV_EXCP_ILLEGAL_INST; 192 } 193 194 return smode(env, csrno); 195 } 196 197 static int aia_smode(CPURISCVState *env, int csrno) 198 { 199 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 200 return RISCV_EXCP_ILLEGAL_INST; 201 } 202 203 return smode(env, csrno); 204 } 205 206 static int aia_smode32(CPURISCVState *env, int csrno) 207 { 208 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 209 return RISCV_EXCP_ILLEGAL_INST; 210 } 211 212 return smode32(env, csrno); 213 } 214 215 static RISCVException hmode(CPURISCVState *env, int csrno) 216 { 217 if (riscv_has_ext(env, RVS) && 218 riscv_has_ext(env, RVH)) { 219 /* Hypervisor extension is supported */ 220 if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 221 env->priv == PRV_M) { 222 return RISCV_EXCP_NONE; 223 } else { 224 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 225 } 226 } 227 228 return RISCV_EXCP_ILLEGAL_INST; 229 } 230 231 static RISCVException hmode32(CPURISCVState *env, int csrno) 232 { 233 if (riscv_cpu_mxl(env) != MXL_RV32) { 234 if (!riscv_cpu_virt_enabled(env)) { 235 return RISCV_EXCP_ILLEGAL_INST; 236 } else { 237 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 238 } 239 } 240 241 return hmode(env, csrno); 242 243 } 244 245 /* Checks if PointerMasking registers could be accessed */ 246 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 247 { 248 /* Check if j-ext is present */ 249 if (riscv_has_ext(env, RVJ)) { 250 return RISCV_EXCP_NONE; 251 } 252 return RISCV_EXCP_ILLEGAL_INST; 253 } 254 255 static int aia_hmode(CPURISCVState *env, int csrno) 256 { 257 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 258 return RISCV_EXCP_ILLEGAL_INST; 259 } 260 261 return hmode(env, csrno); 262 } 263 264 static int aia_hmode32(CPURISCVState *env, int csrno) 265 { 266 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 267 return RISCV_EXCP_ILLEGAL_INST; 268 } 269 270 return hmode32(env, csrno); 271 } 272 273 static RISCVException pmp(CPURISCVState *env, int csrno) 274 { 275 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 276 return RISCV_EXCP_NONE; 277 } 278 279 return RISCV_EXCP_ILLEGAL_INST; 280 } 281 282 static RISCVException epmp(CPURISCVState *env, int csrno) 283 { 284 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 285 return RISCV_EXCP_NONE; 286 } 287 288 return RISCV_EXCP_ILLEGAL_INST; 289 } 290 #endif 291 292 /* User Floating-Point CSRs */ 293 static RISCVException read_fflags(CPURISCVState *env, int csrno, 294 target_ulong *val) 295 { 296 *val = riscv_cpu_get_fflags(env); 297 return RISCV_EXCP_NONE; 298 } 299 300 static RISCVException write_fflags(CPURISCVState *env, int csrno, 301 target_ulong val) 302 { 303 #if !defined(CONFIG_USER_ONLY) 304 env->mstatus |= MSTATUS_FS; 305 #endif 306 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 307 return RISCV_EXCP_NONE; 308 } 309 310 static RISCVException read_frm(CPURISCVState *env, int csrno, 311 target_ulong *val) 312 { 313 *val = env->frm; 314 return RISCV_EXCP_NONE; 315 } 316 317 static RISCVException write_frm(CPURISCVState *env, int csrno, 318 target_ulong val) 319 { 320 #if !defined(CONFIG_USER_ONLY) 321 env->mstatus |= MSTATUS_FS; 322 #endif 323 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 324 return RISCV_EXCP_NONE; 325 } 326 327 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 328 target_ulong *val) 329 { 330 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 331 | (env->frm << FSR_RD_SHIFT); 332 return RISCV_EXCP_NONE; 333 } 334 335 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 336 target_ulong val) 337 { 338 #if !defined(CONFIG_USER_ONLY) 339 env->mstatus |= MSTATUS_FS; 340 #endif 341 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 342 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 343 return RISCV_EXCP_NONE; 344 } 345 346 static RISCVException read_vtype(CPURISCVState *env, int csrno, 347 target_ulong *val) 348 { 349 uint64_t vill; 350 switch (env->xl) { 351 case MXL_RV32: 352 vill = (uint32_t)env->vill << 31; 353 break; 354 case MXL_RV64: 355 vill = (uint64_t)env->vill << 63; 356 break; 357 default: 358 g_assert_not_reached(); 359 } 360 *val = (target_ulong)vill | env->vtype; 361 return RISCV_EXCP_NONE; 362 } 363 364 static RISCVException read_vl(CPURISCVState *env, int csrno, 365 target_ulong *val) 366 { 367 *val = env->vl; 368 return RISCV_EXCP_NONE; 369 } 370 371 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 372 { 373 *val = env_archcpu(env)->cfg.vlen >> 3; 374 return RISCV_EXCP_NONE; 375 } 376 377 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 378 target_ulong *val) 379 { 380 *val = env->vxrm; 381 return RISCV_EXCP_NONE; 382 } 383 384 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 385 target_ulong val) 386 { 387 #if !defined(CONFIG_USER_ONLY) 388 env->mstatus |= MSTATUS_VS; 389 #endif 390 env->vxrm = val; 391 return RISCV_EXCP_NONE; 392 } 393 394 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 395 target_ulong *val) 396 { 397 *val = env->vxsat; 398 return RISCV_EXCP_NONE; 399 } 400 401 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 402 target_ulong val) 403 { 404 #if !defined(CONFIG_USER_ONLY) 405 env->mstatus |= MSTATUS_VS; 406 #endif 407 env->vxsat = val; 408 return RISCV_EXCP_NONE; 409 } 410 411 static RISCVException read_vstart(CPURISCVState *env, int csrno, 412 target_ulong *val) 413 { 414 *val = env->vstart; 415 return RISCV_EXCP_NONE; 416 } 417 418 static RISCVException write_vstart(CPURISCVState *env, int csrno, 419 target_ulong val) 420 { 421 #if !defined(CONFIG_USER_ONLY) 422 env->mstatus |= MSTATUS_VS; 423 #endif 424 /* 425 * The vstart CSR is defined to have only enough writable bits 426 * to hold the largest element index, i.e. lg2(VLEN) bits. 427 */ 428 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 429 return RISCV_EXCP_NONE; 430 } 431 432 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 433 { 434 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 435 return RISCV_EXCP_NONE; 436 } 437 438 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 439 { 440 #if !defined(CONFIG_USER_ONLY) 441 env->mstatus |= MSTATUS_VS; 442 #endif 443 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 444 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 445 return RISCV_EXCP_NONE; 446 } 447 448 /* User Timers and Counters */ 449 static RISCVException read_instret(CPURISCVState *env, int csrno, 450 target_ulong *val) 451 { 452 #if !defined(CONFIG_USER_ONLY) 453 if (icount_enabled()) { 454 *val = icount_get(); 455 } else { 456 *val = cpu_get_host_ticks(); 457 } 458 #else 459 *val = cpu_get_host_ticks(); 460 #endif 461 return RISCV_EXCP_NONE; 462 } 463 464 static RISCVException read_instreth(CPURISCVState *env, int csrno, 465 target_ulong *val) 466 { 467 #if !defined(CONFIG_USER_ONLY) 468 if (icount_enabled()) { 469 *val = icount_get() >> 32; 470 } else { 471 *val = cpu_get_host_ticks() >> 32; 472 } 473 #else 474 *val = cpu_get_host_ticks() >> 32; 475 #endif 476 return RISCV_EXCP_NONE; 477 } 478 479 #if defined(CONFIG_USER_ONLY) 480 static RISCVException read_time(CPURISCVState *env, int csrno, 481 target_ulong *val) 482 { 483 *val = cpu_get_host_ticks(); 484 return RISCV_EXCP_NONE; 485 } 486 487 static RISCVException read_timeh(CPURISCVState *env, int csrno, 488 target_ulong *val) 489 { 490 *val = cpu_get_host_ticks() >> 32; 491 return RISCV_EXCP_NONE; 492 } 493 494 #else /* CONFIG_USER_ONLY */ 495 496 static RISCVException read_time(CPURISCVState *env, int csrno, 497 target_ulong *val) 498 { 499 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 500 501 if (!env->rdtime_fn) { 502 return RISCV_EXCP_ILLEGAL_INST; 503 } 504 505 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 506 return RISCV_EXCP_NONE; 507 } 508 509 static RISCVException read_timeh(CPURISCVState *env, int csrno, 510 target_ulong *val) 511 { 512 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 513 514 if (!env->rdtime_fn) { 515 return RISCV_EXCP_ILLEGAL_INST; 516 } 517 518 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 519 return RISCV_EXCP_NONE; 520 } 521 522 /* Machine constants */ 523 524 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 525 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP)) 526 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 527 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 528 529 #define VSTOPI_NUM_SRCS 5 530 531 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 532 VS_MODE_INTERRUPTS; 533 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 534 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 535 HS_MODE_INTERRUPTS; 536 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 537 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 538 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 539 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 540 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 541 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 542 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 543 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 544 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 545 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 546 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 547 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 548 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 549 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 550 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 551 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 552 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 553 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 554 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 555 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 556 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 557 (1ULL << (RISCV_EXCP_VS_ECALL)) | 558 (1ULL << (RISCV_EXCP_M_ECALL)) | 559 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 560 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 561 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 562 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 563 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 564 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 565 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 566 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP; 567 static const target_ulong hip_writable_mask = MIP_VSSIP; 568 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 569 static const target_ulong vsip_writable_mask = MIP_VSSIP; 570 571 static const char valid_vm_1_10_32[16] = { 572 [VM_1_10_MBARE] = 1, 573 [VM_1_10_SV32] = 1 574 }; 575 576 static const char valid_vm_1_10_64[16] = { 577 [VM_1_10_MBARE] = 1, 578 [VM_1_10_SV39] = 1, 579 [VM_1_10_SV48] = 1, 580 [VM_1_10_SV57] = 1 581 }; 582 583 /* Machine Information Registers */ 584 static RISCVException read_zero(CPURISCVState *env, int csrno, 585 target_ulong *val) 586 { 587 *val = 0; 588 return RISCV_EXCP_NONE; 589 } 590 591 static RISCVException write_ignore(CPURISCVState *env, int csrno, 592 target_ulong val) 593 { 594 return RISCV_EXCP_NONE; 595 } 596 597 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 598 target_ulong *val) 599 { 600 *val = env->mhartid; 601 return RISCV_EXCP_NONE; 602 } 603 604 /* Machine Trap Setup */ 605 606 /* We do not store SD explicitly, only compute it on demand. */ 607 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 608 { 609 if ((status & MSTATUS_FS) == MSTATUS_FS || 610 (status & MSTATUS_VS) == MSTATUS_VS || 611 (status & MSTATUS_XS) == MSTATUS_XS) { 612 switch (xl) { 613 case MXL_RV32: 614 return status | MSTATUS32_SD; 615 case MXL_RV64: 616 return status | MSTATUS64_SD; 617 case MXL_RV128: 618 return MSTATUSH128_SD; 619 default: 620 g_assert_not_reached(); 621 } 622 } 623 return status; 624 } 625 626 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 627 target_ulong *val) 628 { 629 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 630 return RISCV_EXCP_NONE; 631 } 632 633 static int validate_vm(CPURISCVState *env, target_ulong vm) 634 { 635 if (riscv_cpu_mxl(env) == MXL_RV32) { 636 return valid_vm_1_10_32[vm & 0xf]; 637 } else { 638 return valid_vm_1_10_64[vm & 0xf]; 639 } 640 } 641 642 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 643 target_ulong val) 644 { 645 uint64_t mstatus = env->mstatus; 646 uint64_t mask = 0; 647 RISCVMXL xl = riscv_cpu_mxl(env); 648 649 /* flush tlb on mstatus fields that affect VM */ 650 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 651 MSTATUS_MPRV | MSTATUS_SUM)) { 652 tlb_flush(env_cpu(env)); 653 } 654 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 655 MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM | 656 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 657 MSTATUS_TW | MSTATUS_VS; 658 659 if (xl != MXL_RV32 || env->debugger) { 660 /* 661 * RV32: MPV and GVA are not in mstatus. The current plan is to 662 * add them to mstatush. For now, we just don't support it. 663 */ 664 mask |= MSTATUS_MPV | MSTATUS_GVA; 665 if ((val & MSTATUS64_UXL) != 0) { 666 mask |= MSTATUS64_UXL; 667 } 668 } 669 670 mstatus = (mstatus & ~mask) | (val & mask); 671 672 if (xl > MXL_RV32) { 673 /* SXL field is for now read only */ 674 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 675 } 676 env->mstatus = mstatus; 677 env->xl = cpu_recompute_xl(env); 678 679 return RISCV_EXCP_NONE; 680 } 681 682 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 683 target_ulong *val) 684 { 685 *val = env->mstatus >> 32; 686 return RISCV_EXCP_NONE; 687 } 688 689 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 690 target_ulong val) 691 { 692 uint64_t valh = (uint64_t)val << 32; 693 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 694 695 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 696 tlb_flush(env_cpu(env)); 697 } 698 699 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 700 701 return RISCV_EXCP_NONE; 702 } 703 704 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 705 Int128 *val) 706 { 707 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 708 return RISCV_EXCP_NONE; 709 } 710 711 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 712 Int128 *val) 713 { 714 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 715 return RISCV_EXCP_NONE; 716 } 717 718 static RISCVException read_misa(CPURISCVState *env, int csrno, 719 target_ulong *val) 720 { 721 target_ulong misa; 722 723 switch (env->misa_mxl) { 724 case MXL_RV32: 725 misa = (target_ulong)MXL_RV32 << 30; 726 break; 727 #ifdef TARGET_RISCV64 728 case MXL_RV64: 729 misa = (target_ulong)MXL_RV64 << 62; 730 break; 731 #endif 732 default: 733 g_assert_not_reached(); 734 } 735 736 *val = misa | env->misa_ext; 737 return RISCV_EXCP_NONE; 738 } 739 740 static RISCVException write_misa(CPURISCVState *env, int csrno, 741 target_ulong val) 742 { 743 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 744 /* drop write to misa */ 745 return RISCV_EXCP_NONE; 746 } 747 748 /* 'I' or 'E' must be present */ 749 if (!(val & (RVI | RVE))) { 750 /* It is not, drop write to misa */ 751 return RISCV_EXCP_NONE; 752 } 753 754 /* 'E' excludes all other extensions */ 755 if (val & RVE) { 756 /* when we support 'E' we can do "val = RVE;" however 757 * for now we just drop writes if 'E' is present. 758 */ 759 return RISCV_EXCP_NONE; 760 } 761 762 /* 763 * misa.MXL writes are not supported by QEMU. 764 * Drop writes to those bits. 765 */ 766 767 /* Mask extensions that are not supported by this hart */ 768 val &= env->misa_ext_mask; 769 770 /* Mask extensions that are not supported by QEMU */ 771 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 772 773 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 774 if ((val & RVD) && !(val & RVF)) { 775 val &= ~RVD; 776 } 777 778 /* Suppress 'C' if next instruction is not aligned 779 * TODO: this should check next_pc 780 */ 781 if ((val & RVC) && (GETPC() & ~3) != 0) { 782 val &= ~RVC; 783 } 784 785 /* If nothing changed, do nothing. */ 786 if (val == env->misa_ext) { 787 return RISCV_EXCP_NONE; 788 } 789 790 /* flush translation cache */ 791 tb_flush(env_cpu(env)); 792 env->misa_ext = val; 793 env->xl = riscv_cpu_mxl(env); 794 return RISCV_EXCP_NONE; 795 } 796 797 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 798 target_ulong *val) 799 { 800 *val = env->medeleg; 801 return RISCV_EXCP_NONE; 802 } 803 804 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 805 target_ulong val) 806 { 807 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 808 return RISCV_EXCP_NONE; 809 } 810 811 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 812 uint64_t *ret_val, 813 uint64_t new_val, uint64_t wr_mask) 814 { 815 uint64_t mask = wr_mask & delegable_ints; 816 817 if (ret_val) { 818 *ret_val = env->mideleg; 819 } 820 821 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 822 823 if (riscv_has_ext(env, RVH)) { 824 env->mideleg |= HS_MODE_INTERRUPTS; 825 } 826 827 return RISCV_EXCP_NONE; 828 } 829 830 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 831 target_ulong *ret_val, 832 target_ulong new_val, target_ulong wr_mask) 833 { 834 uint64_t rval; 835 RISCVException ret; 836 837 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 838 if (ret_val) { 839 *ret_val = rval; 840 } 841 842 return ret; 843 } 844 845 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 846 target_ulong *ret_val, 847 target_ulong new_val, 848 target_ulong wr_mask) 849 { 850 uint64_t rval; 851 RISCVException ret; 852 853 ret = rmw_mideleg64(env, csrno, &rval, 854 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 855 if (ret_val) { 856 *ret_val = rval >> 32; 857 } 858 859 return ret; 860 } 861 862 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 863 uint64_t *ret_val, 864 uint64_t new_val, uint64_t wr_mask) 865 { 866 uint64_t mask = wr_mask & all_ints; 867 868 if (ret_val) { 869 *ret_val = env->mie; 870 } 871 872 env->mie = (env->mie & ~mask) | (new_val & mask); 873 874 if (!riscv_has_ext(env, RVH)) { 875 env->mie &= ~((uint64_t)MIP_SGEIP); 876 } 877 878 return RISCV_EXCP_NONE; 879 } 880 881 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 882 target_ulong *ret_val, 883 target_ulong new_val, target_ulong wr_mask) 884 { 885 uint64_t rval; 886 RISCVException ret; 887 888 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 889 if (ret_val) { 890 *ret_val = rval; 891 } 892 893 return ret; 894 } 895 896 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 897 target_ulong *ret_val, 898 target_ulong new_val, target_ulong wr_mask) 899 { 900 uint64_t rval; 901 RISCVException ret; 902 903 ret = rmw_mie64(env, csrno, &rval, 904 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 905 if (ret_val) { 906 *ret_val = rval >> 32; 907 } 908 909 return ret; 910 } 911 912 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 913 { 914 int irq; 915 uint8_t iprio; 916 917 irq = riscv_cpu_mirq_pending(env); 918 if (irq <= 0 || irq > 63) { 919 *val = 0; 920 } else { 921 iprio = env->miprio[irq]; 922 if (!iprio) { 923 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 924 iprio = IPRIO_MMAXIPRIO; 925 } 926 } 927 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 928 *val |= iprio; 929 } 930 931 return RISCV_EXCP_NONE; 932 } 933 934 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 935 target_ulong *val) 936 { 937 *val = env->mtvec; 938 return RISCV_EXCP_NONE; 939 } 940 941 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 942 target_ulong val) 943 { 944 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 945 if ((val & 3) < 2) { 946 env->mtvec = val; 947 } else { 948 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 949 } 950 return RISCV_EXCP_NONE; 951 } 952 953 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 954 target_ulong *val) 955 { 956 *val = env->mcounteren; 957 return RISCV_EXCP_NONE; 958 } 959 960 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 961 target_ulong val) 962 { 963 env->mcounteren = val; 964 return RISCV_EXCP_NONE; 965 } 966 967 /* Machine Trap Handling */ 968 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 969 Int128 *val) 970 { 971 *val = int128_make128(env->mscratch, env->mscratchh); 972 return RISCV_EXCP_NONE; 973 } 974 975 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 976 Int128 val) 977 { 978 env->mscratch = int128_getlo(val); 979 env->mscratchh = int128_gethi(val); 980 return RISCV_EXCP_NONE; 981 } 982 983 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 984 target_ulong *val) 985 { 986 *val = env->mscratch; 987 return RISCV_EXCP_NONE; 988 } 989 990 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 991 target_ulong val) 992 { 993 env->mscratch = val; 994 return RISCV_EXCP_NONE; 995 } 996 997 static RISCVException read_mepc(CPURISCVState *env, int csrno, 998 target_ulong *val) 999 { 1000 *val = env->mepc; 1001 return RISCV_EXCP_NONE; 1002 } 1003 1004 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1005 target_ulong val) 1006 { 1007 env->mepc = val; 1008 return RISCV_EXCP_NONE; 1009 } 1010 1011 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1012 target_ulong *val) 1013 { 1014 *val = env->mcause; 1015 return RISCV_EXCP_NONE; 1016 } 1017 1018 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1019 target_ulong val) 1020 { 1021 env->mcause = val; 1022 return RISCV_EXCP_NONE; 1023 } 1024 1025 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1026 target_ulong *val) 1027 { 1028 *val = env->mtval; 1029 return RISCV_EXCP_NONE; 1030 } 1031 1032 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1033 target_ulong val) 1034 { 1035 env->mtval = val; 1036 return RISCV_EXCP_NONE; 1037 } 1038 1039 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 1040 uint64_t *ret_val, 1041 uint64_t new_val, uint64_t wr_mask) 1042 { 1043 RISCVCPU *cpu = env_archcpu(env); 1044 /* Allow software control of delegable interrupts not claimed by hardware */ 1045 uint64_t old_mip, mask = wr_mask & delegable_ints & ~env->miclaim; 1046 uint32_t gin; 1047 1048 if (mask) { 1049 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 1050 } else { 1051 old_mip = env->mip; 1052 } 1053 1054 if (csrno != CSR_HVIP) { 1055 gin = get_field(env->hstatus, HSTATUS_VGEIN); 1056 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 1057 } 1058 1059 if (ret_val) { 1060 *ret_val = old_mip; 1061 } 1062 1063 return RISCV_EXCP_NONE; 1064 } 1065 1066 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 1067 target_ulong *ret_val, 1068 target_ulong new_val, target_ulong wr_mask) 1069 { 1070 uint64_t rval; 1071 RISCVException ret; 1072 1073 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 1074 if (ret_val) { 1075 *ret_val = rval; 1076 } 1077 1078 return ret; 1079 } 1080 1081 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 1082 target_ulong *ret_val, 1083 target_ulong new_val, target_ulong wr_mask) 1084 { 1085 uint64_t rval; 1086 RISCVException ret; 1087 1088 ret = rmw_mip64(env, csrno, &rval, 1089 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1090 if (ret_val) { 1091 *ret_val = rval >> 32; 1092 } 1093 1094 return ret; 1095 } 1096 1097 /* Supervisor Trap Setup */ 1098 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 1099 Int128 *val) 1100 { 1101 uint64_t mask = sstatus_v1_10_mask; 1102 uint64_t sstatus = env->mstatus & mask; 1103 if (env->xl != MXL_RV32 || env->debugger) { 1104 mask |= SSTATUS64_UXL; 1105 } 1106 1107 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 1108 return RISCV_EXCP_NONE; 1109 } 1110 1111 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 1112 target_ulong *val) 1113 { 1114 target_ulong mask = (sstatus_v1_10_mask); 1115 if (env->xl != MXL_RV32 || env->debugger) { 1116 mask |= SSTATUS64_UXL; 1117 } 1118 /* TODO: Use SXL not MXL. */ 1119 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 1120 return RISCV_EXCP_NONE; 1121 } 1122 1123 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 1124 target_ulong val) 1125 { 1126 target_ulong mask = (sstatus_v1_10_mask); 1127 1128 if (env->xl != MXL_RV32 || env->debugger) { 1129 if ((val & SSTATUS64_UXL) != 0) { 1130 mask |= SSTATUS64_UXL; 1131 } 1132 } 1133 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 1134 return write_mstatus(env, CSR_MSTATUS, newval); 1135 } 1136 1137 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 1138 uint64_t *ret_val, 1139 uint64_t new_val, uint64_t wr_mask) 1140 { 1141 RISCVException ret; 1142 uint64_t rval, vsbits, mask = env->hideleg & VS_MODE_INTERRUPTS; 1143 1144 /* Bring VS-level bits to correct position */ 1145 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 1146 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 1147 new_val |= vsbits << 1; 1148 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 1149 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 1150 wr_mask |= vsbits << 1; 1151 1152 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 1153 if (ret_val) { 1154 rval &= mask; 1155 vsbits = rval & VS_MODE_INTERRUPTS; 1156 rval &= ~VS_MODE_INTERRUPTS; 1157 *ret_val = rval | (vsbits >> 1); 1158 } 1159 1160 return ret; 1161 } 1162 1163 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 1164 target_ulong *ret_val, 1165 target_ulong new_val, target_ulong wr_mask) 1166 { 1167 uint64_t rval; 1168 RISCVException ret; 1169 1170 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 1171 if (ret_val) { 1172 *ret_val = rval; 1173 } 1174 1175 return ret; 1176 } 1177 1178 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 1179 target_ulong *ret_val, 1180 target_ulong new_val, target_ulong wr_mask) 1181 { 1182 uint64_t rval; 1183 RISCVException ret; 1184 1185 ret = rmw_vsie64(env, csrno, &rval, 1186 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1187 if (ret_val) { 1188 *ret_val = rval >> 32; 1189 } 1190 1191 return ret; 1192 } 1193 1194 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 1195 uint64_t *ret_val, 1196 uint64_t new_val, uint64_t wr_mask) 1197 { 1198 RISCVException ret; 1199 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 1200 1201 if (riscv_cpu_virt_enabled(env)) { 1202 if (env->hvictl & HVICTL_VTI) { 1203 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1204 } 1205 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 1206 } else { 1207 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 1208 } 1209 1210 if (ret_val) { 1211 *ret_val &= mask; 1212 } 1213 1214 return ret; 1215 } 1216 1217 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 1218 target_ulong *ret_val, 1219 target_ulong new_val, target_ulong wr_mask) 1220 { 1221 uint64_t rval; 1222 RISCVException ret; 1223 1224 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 1225 if (ret == RISCV_EXCP_NONE && ret_val) { 1226 *ret_val = rval; 1227 } 1228 1229 return ret; 1230 } 1231 1232 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 1233 target_ulong *ret_val, 1234 target_ulong new_val, target_ulong wr_mask) 1235 { 1236 uint64_t rval; 1237 RISCVException ret; 1238 1239 ret = rmw_sie64(env, csrno, &rval, 1240 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1241 if (ret_val) { 1242 *ret_val = rval >> 32; 1243 } 1244 1245 return ret; 1246 } 1247 1248 static RISCVException read_stvec(CPURISCVState *env, int csrno, 1249 target_ulong *val) 1250 { 1251 *val = env->stvec; 1252 return RISCV_EXCP_NONE; 1253 } 1254 1255 static RISCVException write_stvec(CPURISCVState *env, int csrno, 1256 target_ulong val) 1257 { 1258 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1259 if ((val & 3) < 2) { 1260 env->stvec = val; 1261 } else { 1262 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 1263 } 1264 return RISCV_EXCP_NONE; 1265 } 1266 1267 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 1268 target_ulong *val) 1269 { 1270 *val = env->scounteren; 1271 return RISCV_EXCP_NONE; 1272 } 1273 1274 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 1275 target_ulong val) 1276 { 1277 env->scounteren = val; 1278 return RISCV_EXCP_NONE; 1279 } 1280 1281 /* Supervisor Trap Handling */ 1282 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 1283 Int128 *val) 1284 { 1285 *val = int128_make128(env->sscratch, env->sscratchh); 1286 return RISCV_EXCP_NONE; 1287 } 1288 1289 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 1290 Int128 val) 1291 { 1292 env->sscratch = int128_getlo(val); 1293 env->sscratchh = int128_gethi(val); 1294 return RISCV_EXCP_NONE; 1295 } 1296 1297 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 1298 target_ulong *val) 1299 { 1300 *val = env->sscratch; 1301 return RISCV_EXCP_NONE; 1302 } 1303 1304 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 1305 target_ulong val) 1306 { 1307 env->sscratch = val; 1308 return RISCV_EXCP_NONE; 1309 } 1310 1311 static RISCVException read_sepc(CPURISCVState *env, int csrno, 1312 target_ulong *val) 1313 { 1314 *val = env->sepc; 1315 return RISCV_EXCP_NONE; 1316 } 1317 1318 static RISCVException write_sepc(CPURISCVState *env, int csrno, 1319 target_ulong val) 1320 { 1321 env->sepc = val; 1322 return RISCV_EXCP_NONE; 1323 } 1324 1325 static RISCVException read_scause(CPURISCVState *env, int csrno, 1326 target_ulong *val) 1327 { 1328 *val = env->scause; 1329 return RISCV_EXCP_NONE; 1330 } 1331 1332 static RISCVException write_scause(CPURISCVState *env, int csrno, 1333 target_ulong val) 1334 { 1335 env->scause = val; 1336 return RISCV_EXCP_NONE; 1337 } 1338 1339 static RISCVException read_stval(CPURISCVState *env, int csrno, 1340 target_ulong *val) 1341 { 1342 *val = env->stval; 1343 return RISCV_EXCP_NONE; 1344 } 1345 1346 static RISCVException write_stval(CPURISCVState *env, int csrno, 1347 target_ulong val) 1348 { 1349 env->stval = val; 1350 return RISCV_EXCP_NONE; 1351 } 1352 1353 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 1354 uint64_t *ret_val, 1355 uint64_t new_val, uint64_t wr_mask) 1356 { 1357 RISCVException ret; 1358 uint64_t rval, vsbits, mask = env->hideleg & vsip_writable_mask; 1359 1360 /* Bring VS-level bits to correct position */ 1361 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 1362 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 1363 new_val |= vsbits << 1; 1364 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 1365 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 1366 wr_mask |= vsbits << 1; 1367 1368 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask & mask); 1369 if (ret_val) { 1370 rval &= mask; 1371 vsbits = rval & VS_MODE_INTERRUPTS; 1372 rval &= ~VS_MODE_INTERRUPTS; 1373 *ret_val = rval | (vsbits >> 1); 1374 } 1375 1376 return ret; 1377 } 1378 1379 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 1380 target_ulong *ret_val, 1381 target_ulong new_val, target_ulong wr_mask) 1382 { 1383 uint64_t rval; 1384 RISCVException ret; 1385 1386 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 1387 if (ret_val) { 1388 *ret_val = rval; 1389 } 1390 1391 return ret; 1392 } 1393 1394 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 1395 target_ulong *ret_val, 1396 target_ulong new_val, target_ulong wr_mask) 1397 { 1398 uint64_t rval; 1399 RISCVException ret; 1400 1401 ret = rmw_vsip64(env, csrno, &rval, 1402 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1403 if (ret_val) { 1404 *ret_val = rval >> 32; 1405 } 1406 1407 return ret; 1408 } 1409 1410 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 1411 uint64_t *ret_val, 1412 uint64_t new_val, uint64_t wr_mask) 1413 { 1414 RISCVException ret; 1415 uint64_t mask = env->mideleg & sip_writable_mask; 1416 1417 if (riscv_cpu_virt_enabled(env)) { 1418 if (env->hvictl & HVICTL_VTI) { 1419 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1420 } 1421 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 1422 } else { 1423 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 1424 } 1425 1426 if (ret_val) { 1427 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 1428 } 1429 1430 return ret; 1431 } 1432 1433 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 1434 target_ulong *ret_val, 1435 target_ulong new_val, target_ulong wr_mask) 1436 { 1437 uint64_t rval; 1438 RISCVException ret; 1439 1440 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 1441 if (ret_val) { 1442 *ret_val = rval; 1443 } 1444 1445 return ret; 1446 } 1447 1448 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 1449 target_ulong *ret_val, 1450 target_ulong new_val, target_ulong wr_mask) 1451 { 1452 uint64_t rval; 1453 RISCVException ret; 1454 1455 ret = rmw_sip64(env, csrno, &rval, 1456 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1457 if (ret_val) { 1458 *ret_val = rval >> 32; 1459 } 1460 1461 return ret; 1462 } 1463 1464 /* Supervisor Protection and Translation */ 1465 static RISCVException read_satp(CPURISCVState *env, int csrno, 1466 target_ulong *val) 1467 { 1468 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 1469 *val = 0; 1470 return RISCV_EXCP_NONE; 1471 } 1472 1473 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 1474 return RISCV_EXCP_ILLEGAL_INST; 1475 } else { 1476 *val = env->satp; 1477 } 1478 1479 return RISCV_EXCP_NONE; 1480 } 1481 1482 static RISCVException write_satp(CPURISCVState *env, int csrno, 1483 target_ulong val) 1484 { 1485 target_ulong vm, mask, asid; 1486 1487 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 1488 return RISCV_EXCP_NONE; 1489 } 1490 1491 if (riscv_cpu_mxl(env) == MXL_RV32) { 1492 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1493 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1494 asid = (val ^ env->satp) & SATP32_ASID; 1495 } else { 1496 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1497 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1498 asid = (val ^ env->satp) & SATP64_ASID; 1499 } 1500 1501 if (vm && mask) { 1502 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 1503 return RISCV_EXCP_ILLEGAL_INST; 1504 } else { 1505 if (asid) { 1506 tlb_flush(env_cpu(env)); 1507 } 1508 env->satp = val; 1509 } 1510 } 1511 return RISCV_EXCP_NONE; 1512 } 1513 1514 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 1515 { 1516 int irq, ret; 1517 target_ulong topei; 1518 uint64_t vseip, vsgein; 1519 uint32_t iid, iprio, hviid, hviprio, gein; 1520 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 1521 1522 gein = get_field(env->hstatus, HSTATUS_VGEIN); 1523 hviid = get_field(env->hvictl, HVICTL_IID); 1524 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 1525 1526 if (gein) { 1527 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 1528 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 1529 if (gein <= env->geilen && vseip) { 1530 siid[scount] = IRQ_S_EXT; 1531 siprio[scount] = IPRIO_MMAXIPRIO + 1; 1532 if (env->aia_ireg_rmw_fn[PRV_S]) { 1533 /* 1534 * Call machine specific IMSIC register emulation for 1535 * reading TOPEI. 1536 */ 1537 ret = env->aia_ireg_rmw_fn[PRV_S]( 1538 env->aia_ireg_rmw_fn_arg[PRV_S], 1539 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 1540 riscv_cpu_mxl_bits(env)), 1541 &topei, 0, 0); 1542 if (!ret && topei) { 1543 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 1544 } 1545 } 1546 scount++; 1547 } 1548 } else { 1549 if (hviid == IRQ_S_EXT && hviprio) { 1550 siid[scount] = IRQ_S_EXT; 1551 siprio[scount] = hviprio; 1552 scount++; 1553 } 1554 } 1555 1556 if (env->hvictl & HVICTL_VTI) { 1557 if (hviid != IRQ_S_EXT) { 1558 siid[scount] = hviid; 1559 siprio[scount] = hviprio; 1560 scount++; 1561 } 1562 } else { 1563 irq = riscv_cpu_vsirq_pending(env); 1564 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 1565 siid[scount] = irq; 1566 siprio[scount] = env->hviprio[irq]; 1567 scount++; 1568 } 1569 } 1570 1571 iid = 0; 1572 iprio = UINT_MAX; 1573 for (s = 0; s < scount; s++) { 1574 if (siprio[s] < iprio) { 1575 iid = siid[s]; 1576 iprio = siprio[s]; 1577 } 1578 } 1579 1580 if (iid) { 1581 if (env->hvictl & HVICTL_IPRIOM) { 1582 if (iprio > IPRIO_MMAXIPRIO) { 1583 iprio = IPRIO_MMAXIPRIO; 1584 } 1585 if (!iprio) { 1586 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 1587 iprio = IPRIO_MMAXIPRIO; 1588 } 1589 } 1590 } else { 1591 iprio = 1; 1592 } 1593 } else { 1594 iprio = 0; 1595 } 1596 1597 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1598 *val |= iprio; 1599 return RISCV_EXCP_NONE; 1600 } 1601 1602 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 1603 { 1604 int irq; 1605 uint8_t iprio; 1606 1607 if (riscv_cpu_virt_enabled(env)) { 1608 return read_vstopi(env, CSR_VSTOPI, val); 1609 } 1610 1611 irq = riscv_cpu_sirq_pending(env); 1612 if (irq <= 0 || irq > 63) { 1613 *val = 0; 1614 } else { 1615 iprio = env->siprio[irq]; 1616 if (!iprio) { 1617 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 1618 iprio = IPRIO_MMAXIPRIO; 1619 } 1620 } 1621 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1622 *val |= iprio; 1623 } 1624 1625 return RISCV_EXCP_NONE; 1626 } 1627 1628 /* Hypervisor Extensions */ 1629 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 1630 target_ulong *val) 1631 { 1632 *val = env->hstatus; 1633 if (riscv_cpu_mxl(env) != MXL_RV32) { 1634 /* We only support 64-bit VSXL */ 1635 *val = set_field(*val, HSTATUS_VSXL, 2); 1636 } 1637 /* We only support little endian */ 1638 *val = set_field(*val, HSTATUS_VSBE, 0); 1639 return RISCV_EXCP_NONE; 1640 } 1641 1642 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 1643 target_ulong val) 1644 { 1645 env->hstatus = val; 1646 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 1647 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 1648 } 1649 if (get_field(val, HSTATUS_VSBE) != 0) { 1650 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 1651 } 1652 return RISCV_EXCP_NONE; 1653 } 1654 1655 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 1656 target_ulong *val) 1657 { 1658 *val = env->hedeleg; 1659 return RISCV_EXCP_NONE; 1660 } 1661 1662 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 1663 target_ulong val) 1664 { 1665 env->hedeleg = val & vs_delegable_excps; 1666 return RISCV_EXCP_NONE; 1667 } 1668 1669 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 1670 uint64_t *ret_val, 1671 uint64_t new_val, uint64_t wr_mask) 1672 { 1673 uint64_t mask = wr_mask & vs_delegable_ints; 1674 1675 if (ret_val) { 1676 *ret_val = env->hideleg & vs_delegable_ints; 1677 } 1678 1679 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 1680 return RISCV_EXCP_NONE; 1681 } 1682 1683 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 1684 target_ulong *ret_val, 1685 target_ulong new_val, target_ulong wr_mask) 1686 { 1687 uint64_t rval; 1688 RISCVException ret; 1689 1690 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 1691 if (ret_val) { 1692 *ret_val = rval; 1693 } 1694 1695 return ret; 1696 } 1697 1698 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 1699 target_ulong *ret_val, 1700 target_ulong new_val, target_ulong wr_mask) 1701 { 1702 uint64_t rval; 1703 RISCVException ret; 1704 1705 ret = rmw_hideleg64(env, csrno, &rval, 1706 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1707 if (ret_val) { 1708 *ret_val = rval >> 32; 1709 } 1710 1711 return ret; 1712 } 1713 1714 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 1715 uint64_t *ret_val, 1716 uint64_t new_val, uint64_t wr_mask) 1717 { 1718 RISCVException ret; 1719 1720 ret = rmw_mip64(env, csrno, ret_val, new_val, 1721 wr_mask & hvip_writable_mask); 1722 if (ret_val) { 1723 *ret_val &= VS_MODE_INTERRUPTS; 1724 } 1725 1726 return ret; 1727 } 1728 1729 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 1730 target_ulong *ret_val, 1731 target_ulong new_val, target_ulong wr_mask) 1732 { 1733 uint64_t rval; 1734 RISCVException ret; 1735 1736 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 1737 if (ret_val) { 1738 *ret_val = rval; 1739 } 1740 1741 return ret; 1742 } 1743 1744 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 1745 target_ulong *ret_val, 1746 target_ulong new_val, target_ulong wr_mask) 1747 { 1748 uint64_t rval; 1749 RISCVException ret; 1750 1751 ret = rmw_hvip64(env, csrno, &rval, 1752 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1753 if (ret_val) { 1754 *ret_val = rval >> 32; 1755 } 1756 1757 return ret; 1758 } 1759 1760 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 1761 target_ulong *ret_value, 1762 target_ulong new_value, target_ulong write_mask) 1763 { 1764 int ret = rmw_mip(env, csrno, ret_value, new_value, 1765 write_mask & hip_writable_mask); 1766 1767 if (ret_value) { 1768 *ret_value &= HS_MODE_INTERRUPTS; 1769 } 1770 return ret; 1771 } 1772 1773 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 1774 target_ulong *ret_val, 1775 target_ulong new_val, target_ulong wr_mask) 1776 { 1777 uint64_t rval; 1778 RISCVException ret; 1779 1780 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 1781 if (ret_val) { 1782 *ret_val = rval & HS_MODE_INTERRUPTS; 1783 } 1784 1785 return ret; 1786 } 1787 1788 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 1789 target_ulong *val) 1790 { 1791 *val = env->hcounteren; 1792 return RISCV_EXCP_NONE; 1793 } 1794 1795 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 1796 target_ulong val) 1797 { 1798 env->hcounteren = val; 1799 return RISCV_EXCP_NONE; 1800 } 1801 1802 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 1803 target_ulong *val) 1804 { 1805 if (val) { 1806 *val = env->hgeie; 1807 } 1808 return RISCV_EXCP_NONE; 1809 } 1810 1811 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 1812 target_ulong val) 1813 { 1814 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 1815 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 1816 env->hgeie = val; 1817 /* Update mip.SGEIP bit */ 1818 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 1819 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 1820 return RISCV_EXCP_NONE; 1821 } 1822 1823 static RISCVException read_htval(CPURISCVState *env, int csrno, 1824 target_ulong *val) 1825 { 1826 *val = env->htval; 1827 return RISCV_EXCP_NONE; 1828 } 1829 1830 static RISCVException write_htval(CPURISCVState *env, int csrno, 1831 target_ulong val) 1832 { 1833 env->htval = val; 1834 return RISCV_EXCP_NONE; 1835 } 1836 1837 static RISCVException read_htinst(CPURISCVState *env, int csrno, 1838 target_ulong *val) 1839 { 1840 *val = env->htinst; 1841 return RISCV_EXCP_NONE; 1842 } 1843 1844 static RISCVException write_htinst(CPURISCVState *env, int csrno, 1845 target_ulong val) 1846 { 1847 return RISCV_EXCP_NONE; 1848 } 1849 1850 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 1851 target_ulong *val) 1852 { 1853 if (val) { 1854 *val = env->hgeip; 1855 } 1856 return RISCV_EXCP_NONE; 1857 } 1858 1859 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 1860 target_ulong *val) 1861 { 1862 *val = env->hgatp; 1863 return RISCV_EXCP_NONE; 1864 } 1865 1866 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 1867 target_ulong val) 1868 { 1869 env->hgatp = val; 1870 return RISCV_EXCP_NONE; 1871 } 1872 1873 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 1874 target_ulong *val) 1875 { 1876 if (!env->rdtime_fn) { 1877 return RISCV_EXCP_ILLEGAL_INST; 1878 } 1879 1880 *val = env->htimedelta; 1881 return RISCV_EXCP_NONE; 1882 } 1883 1884 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 1885 target_ulong val) 1886 { 1887 if (!env->rdtime_fn) { 1888 return RISCV_EXCP_ILLEGAL_INST; 1889 } 1890 1891 if (riscv_cpu_mxl(env) == MXL_RV32) { 1892 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 1893 } else { 1894 env->htimedelta = val; 1895 } 1896 return RISCV_EXCP_NONE; 1897 } 1898 1899 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 1900 target_ulong *val) 1901 { 1902 if (!env->rdtime_fn) { 1903 return RISCV_EXCP_ILLEGAL_INST; 1904 } 1905 1906 *val = env->htimedelta >> 32; 1907 return RISCV_EXCP_NONE; 1908 } 1909 1910 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 1911 target_ulong val) 1912 { 1913 if (!env->rdtime_fn) { 1914 return RISCV_EXCP_ILLEGAL_INST; 1915 } 1916 1917 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 1918 return RISCV_EXCP_NONE; 1919 } 1920 1921 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 1922 { 1923 *val = env->hvictl; 1924 return RISCV_EXCP_NONE; 1925 } 1926 1927 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 1928 { 1929 env->hvictl = val & HVICTL_VALID_MASK; 1930 return RISCV_EXCP_NONE; 1931 } 1932 1933 static int read_hvipriox(CPURISCVState *env, int first_index, 1934 uint8_t *iprio, target_ulong *val) 1935 { 1936 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 1937 1938 /* First index has to be a multiple of number of irqs per register */ 1939 if (first_index % num_irqs) { 1940 return (riscv_cpu_virt_enabled(env)) ? 1941 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1942 } 1943 1944 /* Fill-up return value */ 1945 *val = 0; 1946 for (i = 0; i < num_irqs; i++) { 1947 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 1948 continue; 1949 } 1950 if (rdzero) { 1951 continue; 1952 } 1953 *val |= ((target_ulong)iprio[irq]) << (i * 8); 1954 } 1955 1956 return RISCV_EXCP_NONE; 1957 } 1958 1959 static int write_hvipriox(CPURISCVState *env, int first_index, 1960 uint8_t *iprio, target_ulong val) 1961 { 1962 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 1963 1964 /* First index has to be a multiple of number of irqs per register */ 1965 if (first_index % num_irqs) { 1966 return (riscv_cpu_virt_enabled(env)) ? 1967 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1968 } 1969 1970 /* Fill-up priority arrary */ 1971 for (i = 0; i < num_irqs; i++) { 1972 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 1973 continue; 1974 } 1975 if (rdzero) { 1976 iprio[irq] = 0; 1977 } else { 1978 iprio[irq] = (val >> (i * 8)) & 0xff; 1979 } 1980 } 1981 1982 return RISCV_EXCP_NONE; 1983 } 1984 1985 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 1986 { 1987 return read_hvipriox(env, 0, env->hviprio, val); 1988 } 1989 1990 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 1991 { 1992 return write_hvipriox(env, 0, env->hviprio, val); 1993 } 1994 1995 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 1996 { 1997 return read_hvipriox(env, 4, env->hviprio, val); 1998 } 1999 2000 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 2001 { 2002 return write_hvipriox(env, 4, env->hviprio, val); 2003 } 2004 2005 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 2006 { 2007 return read_hvipriox(env, 8, env->hviprio, val); 2008 } 2009 2010 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 2011 { 2012 return write_hvipriox(env, 8, env->hviprio, val); 2013 } 2014 2015 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 2016 { 2017 return read_hvipriox(env, 12, env->hviprio, val); 2018 } 2019 2020 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 2021 { 2022 return write_hvipriox(env, 12, env->hviprio, val); 2023 } 2024 2025 /* Virtual CSR Registers */ 2026 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 2027 target_ulong *val) 2028 { 2029 *val = env->vsstatus; 2030 return RISCV_EXCP_NONE; 2031 } 2032 2033 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 2034 target_ulong val) 2035 { 2036 uint64_t mask = (target_ulong)-1; 2037 if ((val & VSSTATUS64_UXL) == 0) { 2038 mask &= ~VSSTATUS64_UXL; 2039 } 2040 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 2041 return RISCV_EXCP_NONE; 2042 } 2043 2044 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 2045 { 2046 *val = env->vstvec; 2047 return RISCV_EXCP_NONE; 2048 } 2049 2050 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 2051 target_ulong val) 2052 { 2053 env->vstvec = val; 2054 return RISCV_EXCP_NONE; 2055 } 2056 2057 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 2058 target_ulong *val) 2059 { 2060 *val = env->vsscratch; 2061 return RISCV_EXCP_NONE; 2062 } 2063 2064 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 2065 target_ulong val) 2066 { 2067 env->vsscratch = val; 2068 return RISCV_EXCP_NONE; 2069 } 2070 2071 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 2072 target_ulong *val) 2073 { 2074 *val = env->vsepc; 2075 return RISCV_EXCP_NONE; 2076 } 2077 2078 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 2079 target_ulong val) 2080 { 2081 env->vsepc = val; 2082 return RISCV_EXCP_NONE; 2083 } 2084 2085 static RISCVException read_vscause(CPURISCVState *env, int csrno, 2086 target_ulong *val) 2087 { 2088 *val = env->vscause; 2089 return RISCV_EXCP_NONE; 2090 } 2091 2092 static RISCVException write_vscause(CPURISCVState *env, int csrno, 2093 target_ulong val) 2094 { 2095 env->vscause = val; 2096 return RISCV_EXCP_NONE; 2097 } 2098 2099 static RISCVException read_vstval(CPURISCVState *env, int csrno, 2100 target_ulong *val) 2101 { 2102 *val = env->vstval; 2103 return RISCV_EXCP_NONE; 2104 } 2105 2106 static RISCVException write_vstval(CPURISCVState *env, int csrno, 2107 target_ulong val) 2108 { 2109 env->vstval = val; 2110 return RISCV_EXCP_NONE; 2111 } 2112 2113 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 2114 target_ulong *val) 2115 { 2116 *val = env->vsatp; 2117 return RISCV_EXCP_NONE; 2118 } 2119 2120 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 2121 target_ulong val) 2122 { 2123 env->vsatp = val; 2124 return RISCV_EXCP_NONE; 2125 } 2126 2127 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 2128 target_ulong *val) 2129 { 2130 *val = env->mtval2; 2131 return RISCV_EXCP_NONE; 2132 } 2133 2134 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 2135 target_ulong val) 2136 { 2137 env->mtval2 = val; 2138 return RISCV_EXCP_NONE; 2139 } 2140 2141 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 2142 target_ulong *val) 2143 { 2144 *val = env->mtinst; 2145 return RISCV_EXCP_NONE; 2146 } 2147 2148 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 2149 target_ulong val) 2150 { 2151 env->mtinst = val; 2152 return RISCV_EXCP_NONE; 2153 } 2154 2155 /* Physical Memory Protection */ 2156 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 2157 target_ulong *val) 2158 { 2159 *val = mseccfg_csr_read(env); 2160 return RISCV_EXCP_NONE; 2161 } 2162 2163 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 2164 target_ulong val) 2165 { 2166 mseccfg_csr_write(env, val); 2167 return RISCV_EXCP_NONE; 2168 } 2169 2170 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 2171 { 2172 /* TODO: RV128 restriction check */ 2173 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 2174 return false; 2175 } 2176 return true; 2177 } 2178 2179 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 2180 target_ulong *val) 2181 { 2182 uint32_t reg_index = csrno - CSR_PMPCFG0; 2183 2184 if (!check_pmp_reg_index(env, reg_index)) { 2185 return RISCV_EXCP_ILLEGAL_INST; 2186 } 2187 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 2188 return RISCV_EXCP_NONE; 2189 } 2190 2191 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 2192 target_ulong val) 2193 { 2194 uint32_t reg_index = csrno - CSR_PMPCFG0; 2195 2196 if (!check_pmp_reg_index(env, reg_index)) { 2197 return RISCV_EXCP_ILLEGAL_INST; 2198 } 2199 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 2200 return RISCV_EXCP_NONE; 2201 } 2202 2203 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 2204 target_ulong *val) 2205 { 2206 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 2207 return RISCV_EXCP_NONE; 2208 } 2209 2210 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 2211 target_ulong val) 2212 { 2213 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 2214 return RISCV_EXCP_NONE; 2215 } 2216 2217 /* 2218 * Functions to access Pointer Masking feature registers 2219 * We have to check if current priv lvl could modify 2220 * csr in given mode 2221 */ 2222 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 2223 { 2224 int csr_priv = get_field(csrno, 0x300); 2225 int pm_current; 2226 2227 if (env->debugger) { 2228 return false; 2229 } 2230 /* 2231 * If priv lvls differ that means we're accessing csr from higher priv lvl, 2232 * so allow the access 2233 */ 2234 if (env->priv != csr_priv) { 2235 return false; 2236 } 2237 switch (env->priv) { 2238 case PRV_M: 2239 pm_current = get_field(env->mmte, M_PM_CURRENT); 2240 break; 2241 case PRV_S: 2242 pm_current = get_field(env->mmte, S_PM_CURRENT); 2243 break; 2244 case PRV_U: 2245 pm_current = get_field(env->mmte, U_PM_CURRENT); 2246 break; 2247 default: 2248 g_assert_not_reached(); 2249 } 2250 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 2251 return !pm_current; 2252 } 2253 2254 static RISCVException read_mmte(CPURISCVState *env, int csrno, 2255 target_ulong *val) 2256 { 2257 *val = env->mmte & MMTE_MASK; 2258 return RISCV_EXCP_NONE; 2259 } 2260 2261 static RISCVException write_mmte(CPURISCVState *env, int csrno, 2262 target_ulong val) 2263 { 2264 uint64_t mstatus; 2265 target_ulong wpri_val = val & MMTE_MASK; 2266 2267 if (val != wpri_val) { 2268 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 2269 "MMTE: WPRI violation written 0x", val, 2270 "vs expected 0x", wpri_val); 2271 } 2272 /* for machine mode pm.current is hardwired to 1 */ 2273 wpri_val |= MMTE_M_PM_CURRENT; 2274 2275 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 2276 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 2277 env->mmte = wpri_val | PM_EXT_DIRTY; 2278 riscv_cpu_update_mask(env); 2279 2280 /* Set XS and SD bits, since PM CSRs are dirty */ 2281 mstatus = env->mstatus | MSTATUS_XS; 2282 write_mstatus(env, csrno, mstatus); 2283 return RISCV_EXCP_NONE; 2284 } 2285 2286 static RISCVException read_smte(CPURISCVState *env, int csrno, 2287 target_ulong *val) 2288 { 2289 *val = env->mmte & SMTE_MASK; 2290 return RISCV_EXCP_NONE; 2291 } 2292 2293 static RISCVException write_smte(CPURISCVState *env, int csrno, 2294 target_ulong val) 2295 { 2296 target_ulong wpri_val = val & SMTE_MASK; 2297 2298 if (val != wpri_val) { 2299 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 2300 "SMTE: WPRI violation written 0x", val, 2301 "vs expected 0x", wpri_val); 2302 } 2303 2304 /* if pm.current==0 we can't modify current PM CSRs */ 2305 if (check_pm_current_disabled(env, csrno)) { 2306 return RISCV_EXCP_NONE; 2307 } 2308 2309 wpri_val |= (env->mmte & ~SMTE_MASK); 2310 write_mmte(env, csrno, wpri_val); 2311 return RISCV_EXCP_NONE; 2312 } 2313 2314 static RISCVException read_umte(CPURISCVState *env, int csrno, 2315 target_ulong *val) 2316 { 2317 *val = env->mmte & UMTE_MASK; 2318 return RISCV_EXCP_NONE; 2319 } 2320 2321 static RISCVException write_umte(CPURISCVState *env, int csrno, 2322 target_ulong val) 2323 { 2324 target_ulong wpri_val = val & UMTE_MASK; 2325 2326 if (val != wpri_val) { 2327 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 2328 "UMTE: WPRI violation written 0x", val, 2329 "vs expected 0x", wpri_val); 2330 } 2331 2332 if (check_pm_current_disabled(env, csrno)) { 2333 return RISCV_EXCP_NONE; 2334 } 2335 2336 wpri_val |= (env->mmte & ~UMTE_MASK); 2337 write_mmte(env, csrno, wpri_val); 2338 return RISCV_EXCP_NONE; 2339 } 2340 2341 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 2342 target_ulong *val) 2343 { 2344 *val = env->mpmmask; 2345 return RISCV_EXCP_NONE; 2346 } 2347 2348 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 2349 target_ulong val) 2350 { 2351 uint64_t mstatus; 2352 2353 env->mpmmask = val; 2354 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 2355 env->cur_pmmask = val; 2356 } 2357 env->mmte |= PM_EXT_DIRTY; 2358 2359 /* Set XS and SD bits, since PM CSRs are dirty */ 2360 mstatus = env->mstatus | MSTATUS_XS; 2361 write_mstatus(env, csrno, mstatus); 2362 return RISCV_EXCP_NONE; 2363 } 2364 2365 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 2366 target_ulong *val) 2367 { 2368 *val = env->spmmask; 2369 return RISCV_EXCP_NONE; 2370 } 2371 2372 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 2373 target_ulong val) 2374 { 2375 uint64_t mstatus; 2376 2377 /* if pm.current==0 we can't modify current PM CSRs */ 2378 if (check_pm_current_disabled(env, csrno)) { 2379 return RISCV_EXCP_NONE; 2380 } 2381 env->spmmask = val; 2382 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 2383 env->cur_pmmask = val; 2384 } 2385 env->mmte |= PM_EXT_DIRTY; 2386 2387 /* Set XS and SD bits, since PM CSRs are dirty */ 2388 mstatus = env->mstatus | MSTATUS_XS; 2389 write_mstatus(env, csrno, mstatus); 2390 return RISCV_EXCP_NONE; 2391 } 2392 2393 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 2394 target_ulong *val) 2395 { 2396 *val = env->upmmask; 2397 return RISCV_EXCP_NONE; 2398 } 2399 2400 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 2401 target_ulong val) 2402 { 2403 uint64_t mstatus; 2404 2405 /* if pm.current==0 we can't modify current PM CSRs */ 2406 if (check_pm_current_disabled(env, csrno)) { 2407 return RISCV_EXCP_NONE; 2408 } 2409 env->upmmask = val; 2410 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 2411 env->cur_pmmask = val; 2412 } 2413 env->mmte |= PM_EXT_DIRTY; 2414 2415 /* Set XS and SD bits, since PM CSRs are dirty */ 2416 mstatus = env->mstatus | MSTATUS_XS; 2417 write_mstatus(env, csrno, mstatus); 2418 return RISCV_EXCP_NONE; 2419 } 2420 2421 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 2422 target_ulong *val) 2423 { 2424 *val = env->mpmbase; 2425 return RISCV_EXCP_NONE; 2426 } 2427 2428 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 2429 target_ulong val) 2430 { 2431 uint64_t mstatus; 2432 2433 env->mpmbase = val; 2434 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 2435 env->cur_pmbase = val; 2436 } 2437 env->mmte |= PM_EXT_DIRTY; 2438 2439 /* Set XS and SD bits, since PM CSRs are dirty */ 2440 mstatus = env->mstatus | MSTATUS_XS; 2441 write_mstatus(env, csrno, mstatus); 2442 return RISCV_EXCP_NONE; 2443 } 2444 2445 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 2446 target_ulong *val) 2447 { 2448 *val = env->spmbase; 2449 return RISCV_EXCP_NONE; 2450 } 2451 2452 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 2453 target_ulong val) 2454 { 2455 uint64_t mstatus; 2456 2457 /* if pm.current==0 we can't modify current PM CSRs */ 2458 if (check_pm_current_disabled(env, csrno)) { 2459 return RISCV_EXCP_NONE; 2460 } 2461 env->spmbase = val; 2462 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 2463 env->cur_pmbase = val; 2464 } 2465 env->mmte |= PM_EXT_DIRTY; 2466 2467 /* Set XS and SD bits, since PM CSRs are dirty */ 2468 mstatus = env->mstatus | MSTATUS_XS; 2469 write_mstatus(env, csrno, mstatus); 2470 return RISCV_EXCP_NONE; 2471 } 2472 2473 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 2474 target_ulong *val) 2475 { 2476 *val = env->upmbase; 2477 return RISCV_EXCP_NONE; 2478 } 2479 2480 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 2481 target_ulong val) 2482 { 2483 uint64_t mstatus; 2484 2485 /* if pm.current==0 we can't modify current PM CSRs */ 2486 if (check_pm_current_disabled(env, csrno)) { 2487 return RISCV_EXCP_NONE; 2488 } 2489 env->upmbase = val; 2490 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 2491 env->cur_pmbase = val; 2492 } 2493 env->mmte |= PM_EXT_DIRTY; 2494 2495 /* Set XS and SD bits, since PM CSRs are dirty */ 2496 mstatus = env->mstatus | MSTATUS_XS; 2497 write_mstatus(env, csrno, mstatus); 2498 return RISCV_EXCP_NONE; 2499 } 2500 2501 #endif 2502 2503 /* 2504 * riscv_csrrw - read and/or update control and status register 2505 * 2506 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 2507 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 2508 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 2509 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 2510 */ 2511 2512 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 2513 int csrno, 2514 bool write_mask, 2515 RISCVCPU *cpu) 2516 { 2517 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 2518 int read_only = get_field(csrno, 0xC00) == 3; 2519 #if !defined(CONFIG_USER_ONLY) 2520 int effective_priv = env->priv; 2521 2522 if (riscv_has_ext(env, RVH) && 2523 env->priv == PRV_S && 2524 !riscv_cpu_virt_enabled(env)) { 2525 /* 2526 * We are in S mode without virtualisation, therefore we are in HS Mode. 2527 * Add 1 to the effective privledge level to allow us to access the 2528 * Hypervisor CSRs. 2529 */ 2530 effective_priv++; 2531 } 2532 2533 if (!env->debugger && (effective_priv < get_field(csrno, 0x300))) { 2534 return RISCV_EXCP_ILLEGAL_INST; 2535 } 2536 #endif 2537 if (write_mask && read_only) { 2538 return RISCV_EXCP_ILLEGAL_INST; 2539 } 2540 2541 /* ensure the CSR extension is enabled. */ 2542 if (!cpu->cfg.ext_icsr) { 2543 return RISCV_EXCP_ILLEGAL_INST; 2544 } 2545 2546 /* check predicate */ 2547 if (!csr_ops[csrno].predicate) { 2548 return RISCV_EXCP_ILLEGAL_INST; 2549 } 2550 2551 return csr_ops[csrno].predicate(env, csrno); 2552 } 2553 2554 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 2555 target_ulong *ret_value, 2556 target_ulong new_value, 2557 target_ulong write_mask) 2558 { 2559 RISCVException ret; 2560 target_ulong old_value; 2561 2562 /* execute combined read/write operation if it exists */ 2563 if (csr_ops[csrno].op) { 2564 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 2565 } 2566 2567 /* if no accessor exists then return failure */ 2568 if (!csr_ops[csrno].read) { 2569 return RISCV_EXCP_ILLEGAL_INST; 2570 } 2571 /* read old value */ 2572 ret = csr_ops[csrno].read(env, csrno, &old_value); 2573 if (ret != RISCV_EXCP_NONE) { 2574 return ret; 2575 } 2576 2577 /* write value if writable and write mask set, otherwise drop writes */ 2578 if (write_mask) { 2579 new_value = (old_value & ~write_mask) | (new_value & write_mask); 2580 if (csr_ops[csrno].write) { 2581 ret = csr_ops[csrno].write(env, csrno, new_value); 2582 if (ret != RISCV_EXCP_NONE) { 2583 return ret; 2584 } 2585 } 2586 } 2587 2588 /* return old value */ 2589 if (ret_value) { 2590 *ret_value = old_value; 2591 } 2592 2593 return RISCV_EXCP_NONE; 2594 } 2595 2596 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 2597 target_ulong *ret_value, 2598 target_ulong new_value, target_ulong write_mask) 2599 { 2600 RISCVCPU *cpu = env_archcpu(env); 2601 2602 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 2603 if (ret != RISCV_EXCP_NONE) { 2604 return ret; 2605 } 2606 2607 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 2608 } 2609 2610 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 2611 Int128 *ret_value, 2612 Int128 new_value, 2613 Int128 write_mask) 2614 { 2615 RISCVException ret; 2616 Int128 old_value; 2617 2618 /* read old value */ 2619 ret = csr_ops[csrno].read128(env, csrno, &old_value); 2620 if (ret != RISCV_EXCP_NONE) { 2621 return ret; 2622 } 2623 2624 /* write value if writable and write mask set, otherwise drop writes */ 2625 if (int128_nz(write_mask)) { 2626 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 2627 int128_and(new_value, write_mask)); 2628 if (csr_ops[csrno].write128) { 2629 ret = csr_ops[csrno].write128(env, csrno, new_value); 2630 if (ret != RISCV_EXCP_NONE) { 2631 return ret; 2632 } 2633 } else if (csr_ops[csrno].write) { 2634 /* avoids having to write wrappers for all registers */ 2635 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 2636 if (ret != RISCV_EXCP_NONE) { 2637 return ret; 2638 } 2639 } 2640 } 2641 2642 /* return old value */ 2643 if (ret_value) { 2644 *ret_value = old_value; 2645 } 2646 2647 return RISCV_EXCP_NONE; 2648 } 2649 2650 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 2651 Int128 *ret_value, 2652 Int128 new_value, Int128 write_mask) 2653 { 2654 RISCVException ret; 2655 RISCVCPU *cpu = env_archcpu(env); 2656 2657 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 2658 if (ret != RISCV_EXCP_NONE) { 2659 return ret; 2660 } 2661 2662 if (csr_ops[csrno].read128) { 2663 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 2664 } 2665 2666 /* 2667 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 2668 * at all defined. 2669 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 2670 * significant), for those, this fallback is correctly handling the accesses 2671 */ 2672 target_ulong old_value; 2673 ret = riscv_csrrw_do64(env, csrno, &old_value, 2674 int128_getlo(new_value), 2675 int128_getlo(write_mask)); 2676 if (ret == RISCV_EXCP_NONE && ret_value) { 2677 *ret_value = int128_make64(old_value); 2678 } 2679 return ret; 2680 } 2681 2682 /* 2683 * Debugger support. If not in user mode, set env->debugger before the 2684 * riscv_csrrw call and clear it after the call. 2685 */ 2686 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 2687 target_ulong *ret_value, 2688 target_ulong new_value, 2689 target_ulong write_mask) 2690 { 2691 RISCVException ret; 2692 #if !defined(CONFIG_USER_ONLY) 2693 env->debugger = true; 2694 #endif 2695 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 2696 #if !defined(CONFIG_USER_ONLY) 2697 env->debugger = false; 2698 #endif 2699 return ret; 2700 } 2701 2702 /* Control and Status Register function table */ 2703 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 2704 /* User Floating-Point CSRs */ 2705 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 2706 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 2707 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 2708 /* Vector CSRs */ 2709 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 2710 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 2711 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 2712 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 2713 [CSR_VL] = { "vl", vs, read_vl }, 2714 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 2715 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 2716 /* User Timers and Counters */ 2717 [CSR_CYCLE] = { "cycle", ctr, read_instret }, 2718 [CSR_INSTRET] = { "instret", ctr, read_instret }, 2719 [CSR_CYCLEH] = { "cycleh", ctr32, read_instreth }, 2720 [CSR_INSTRETH] = { "instreth", ctr32, read_instreth }, 2721 2722 /* 2723 * In privileged mode, the monitor will have to emulate TIME CSRs only if 2724 * rdtime callback is not provided by machine/platform emulation. 2725 */ 2726 [CSR_TIME] = { "time", ctr, read_time }, 2727 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 2728 2729 #if !defined(CONFIG_USER_ONLY) 2730 /* Machine Timers and Counters */ 2731 [CSR_MCYCLE] = { "mcycle", any, read_instret }, 2732 [CSR_MINSTRET] = { "minstret", any, read_instret }, 2733 [CSR_MCYCLEH] = { "mcycleh", any32, read_instreth }, 2734 [CSR_MINSTRETH] = { "minstreth", any32, read_instreth }, 2735 2736 /* Machine Information Registers */ 2737 [CSR_MVENDORID] = { "mvendorid", any, read_zero }, 2738 [CSR_MARCHID] = { "marchid", any, read_zero }, 2739 [CSR_MIMPID] = { "mimpid", any, read_zero }, 2740 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 2741 2742 /* Machine Trap Setup */ 2743 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, NULL, 2744 read_mstatus_i128 }, 2745 [CSR_MISA] = { "misa", any, read_misa, write_misa, NULL, 2746 read_misa_i128 }, 2747 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 2748 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 2749 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 2750 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 2751 [CSR_MCOUNTEREN] = { "mcounteren", any, read_mcounteren, write_mcounteren }, 2752 2753 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, write_mstatush }, 2754 2755 /* Machine Trap Handling */ 2756 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, NULL, 2757 read_mscratch_i128, write_mscratch_i128 }, 2758 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 2759 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 2760 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 2761 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 2762 2763 /* Machine-Level Interrupts (AIA) */ 2764 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 2765 2766 /* Virtual Interrupts for Supervisor Level (AIA) */ 2767 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 2768 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 2769 2770 /* Machine-Level High-Half CSRs (AIA) */ 2771 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 2772 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 2773 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 2774 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 2775 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 2776 2777 /* Supervisor Trap Setup */ 2778 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, NULL, 2779 read_sstatus_i128 }, 2780 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 2781 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 2782 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, write_scounteren }, 2783 2784 /* Supervisor Trap Handling */ 2785 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, NULL, 2786 read_sscratch_i128, write_sscratch_i128 }, 2787 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 2788 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 2789 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 2790 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 2791 2792 /* Supervisor Protection and Translation */ 2793 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 2794 2795 /* Supervisor-Level Interrupts (AIA) */ 2796 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 2797 2798 /* Supervisor-Level High-Half CSRs (AIA) */ 2799 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 2800 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 2801 2802 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus }, 2803 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg }, 2804 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg }, 2805 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip }, 2806 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip }, 2807 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie }, 2808 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, write_hcounteren }, 2809 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie }, 2810 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval }, 2811 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst }, 2812 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, NULL }, 2813 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp }, 2814 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, write_htimedelta }, 2815 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, write_htimedeltah }, 2816 2817 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, write_vsstatus }, 2818 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip }, 2819 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie }, 2820 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec }, 2821 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, write_vsscratch }, 2822 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc }, 2823 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause }, 2824 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval }, 2825 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp }, 2826 2827 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2 }, 2828 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst }, 2829 2830 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 2831 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 2832 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, write_hvictl }, 2833 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, write_hviprio1 }, 2834 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, write_hviprio2 }, 2835 2836 /* VS-Level Interrupts (H-extension with AIA) */ 2837 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 2838 2839 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 2840 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, rmw_hidelegh }, 2841 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, write_ignore }, 2842 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 2843 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, write_hviprio1h }, 2844 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, write_hviprio2h }, 2845 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 2846 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 2847 2848 /* Physical Memory Protection */ 2849 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg }, 2850 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 2851 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 2852 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 2853 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 2854 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 2855 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 2856 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 2857 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 2858 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 2859 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 2860 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 2861 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 2862 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 2863 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 2864 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 2865 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 2866 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 2867 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 2868 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 2869 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 2870 2871 /* User Pointer Masking */ 2872 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 2873 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, write_upmmask }, 2874 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, write_upmbase }, 2875 /* Machine Pointer Masking */ 2876 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 2877 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, write_mpmmask }, 2878 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, write_mpmbase }, 2879 /* Supervisor Pointer Masking */ 2880 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 2881 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, write_spmmask }, 2882 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, write_spmbase }, 2883 2884 /* Performance Counters */ 2885 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_zero }, 2886 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_zero }, 2887 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_zero }, 2888 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_zero }, 2889 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_zero }, 2890 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_zero }, 2891 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_zero }, 2892 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_zero }, 2893 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_zero }, 2894 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_zero }, 2895 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_zero }, 2896 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_zero }, 2897 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_zero }, 2898 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_zero }, 2899 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_zero }, 2900 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_zero }, 2901 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_zero }, 2902 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_zero }, 2903 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_zero }, 2904 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_zero }, 2905 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_zero }, 2906 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_zero }, 2907 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_zero }, 2908 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_zero }, 2909 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_zero }, 2910 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_zero }, 2911 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_zero }, 2912 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_zero }, 2913 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_zero }, 2914 2915 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", any, read_zero }, 2916 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", any, read_zero }, 2917 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", any, read_zero }, 2918 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", any, read_zero }, 2919 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", any, read_zero }, 2920 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", any, read_zero }, 2921 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", any, read_zero }, 2922 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", any, read_zero }, 2923 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", any, read_zero }, 2924 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", any, read_zero }, 2925 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", any, read_zero }, 2926 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", any, read_zero }, 2927 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", any, read_zero }, 2928 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", any, read_zero }, 2929 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", any, read_zero }, 2930 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", any, read_zero }, 2931 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", any, read_zero }, 2932 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", any, read_zero }, 2933 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", any, read_zero }, 2934 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", any, read_zero }, 2935 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", any, read_zero }, 2936 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", any, read_zero }, 2937 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", any, read_zero }, 2938 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", any, read_zero }, 2939 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", any, read_zero }, 2940 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", any, read_zero }, 2941 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", any, read_zero }, 2942 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", any, read_zero }, 2943 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", any, read_zero }, 2944 2945 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_zero }, 2946 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_zero }, 2947 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_zero }, 2948 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_zero }, 2949 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_zero }, 2950 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_zero }, 2951 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_zero }, 2952 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_zero }, 2953 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_zero }, 2954 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_zero }, 2955 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_zero }, 2956 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_zero }, 2957 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_zero }, 2958 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_zero }, 2959 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_zero }, 2960 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_zero }, 2961 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_zero }, 2962 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_zero }, 2963 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_zero }, 2964 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_zero }, 2965 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_zero }, 2966 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_zero }, 2967 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_zero }, 2968 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_zero }, 2969 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_zero }, 2970 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_zero }, 2971 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_zero }, 2972 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_zero }, 2973 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_zero }, 2974 2975 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_zero }, 2976 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_zero }, 2977 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_zero }, 2978 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_zero }, 2979 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_zero }, 2980 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_zero }, 2981 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_zero }, 2982 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_zero }, 2983 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_zero }, 2984 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_zero }, 2985 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_zero }, 2986 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_zero }, 2987 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_zero }, 2988 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_zero }, 2989 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_zero }, 2990 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_zero }, 2991 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_zero }, 2992 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_zero }, 2993 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_zero }, 2994 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_zero }, 2995 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_zero }, 2996 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_zero }, 2997 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_zero }, 2998 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_zero }, 2999 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_zero }, 3000 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_zero }, 3001 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_zero }, 3002 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_zero }, 3003 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_zero }, 3004 3005 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", any32, read_zero }, 3006 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", any32, read_zero }, 3007 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", any32, read_zero }, 3008 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", any32, read_zero }, 3009 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", any32, read_zero }, 3010 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", any32, read_zero }, 3011 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", any32, read_zero }, 3012 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", any32, read_zero }, 3013 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", any32, read_zero }, 3014 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", any32, read_zero }, 3015 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", any32, read_zero }, 3016 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", any32, read_zero }, 3017 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", any32, read_zero }, 3018 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", any32, read_zero }, 3019 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", any32, read_zero }, 3020 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", any32, read_zero }, 3021 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", any32, read_zero }, 3022 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", any32, read_zero }, 3023 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", any32, read_zero }, 3024 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", any32, read_zero }, 3025 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", any32, read_zero }, 3026 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", any32, read_zero }, 3027 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", any32, read_zero }, 3028 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", any32, read_zero }, 3029 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", any32, read_zero }, 3030 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", any32, read_zero }, 3031 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", any32, read_zero }, 3032 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", any32, read_zero }, 3033 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", any32, read_zero }, 3034 #endif /* !CONFIG_USER_ONLY */ 3035 }; 3036