1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "qemu/main-loop.h" 26 #include "exec/exec-all.h" 27 #include "sysemu/cpu-timers.h" 28 #include "qemu/guest-random.h" 29 #include "qapi/error.h" 30 31 /* CSR function table public API */ 32 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 33 { 34 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 35 } 36 37 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 38 { 39 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 40 } 41 42 /* Predicates */ 43 static RISCVException fs(CPURISCVState *env, int csrno) 44 { 45 #if !defined(CONFIG_USER_ONLY) 46 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 47 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 48 return RISCV_EXCP_ILLEGAL_INST; 49 } 50 #endif 51 return RISCV_EXCP_NONE; 52 } 53 54 static RISCVException vs(CPURISCVState *env, int csrno) 55 { 56 CPUState *cs = env_cpu(env); 57 RISCVCPU *cpu = RISCV_CPU(cs); 58 59 if (env->misa_ext & RVV || 60 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 61 #if !defined(CONFIG_USER_ONLY) 62 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 63 return RISCV_EXCP_ILLEGAL_INST; 64 } 65 #endif 66 return RISCV_EXCP_NONE; 67 } 68 return RISCV_EXCP_ILLEGAL_INST; 69 } 70 71 static RISCVException ctr(CPURISCVState *env, int csrno) 72 { 73 #if !defined(CONFIG_USER_ONLY) 74 CPUState *cs = env_cpu(env); 75 RISCVCPU *cpu = RISCV_CPU(cs); 76 int ctr_index; 77 int base_csrno = CSR_HPMCOUNTER3; 78 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 79 80 if (rv32 && csrno >= CSR_CYCLEH) { 81 /* Offset for RV32 hpmcounternh counters */ 82 base_csrno += 0x80; 83 } 84 ctr_index = csrno - base_csrno; 85 86 if (!cpu->cfg.pmu_num || ctr_index >= (cpu->cfg.pmu_num)) { 87 /* No counter is enabled in PMU or the counter is out of range */ 88 return RISCV_EXCP_ILLEGAL_INST; 89 } 90 91 if (env->priv == PRV_S) { 92 switch (csrno) { 93 case CSR_CYCLE: 94 if (!get_field(env->mcounteren, COUNTEREN_CY)) { 95 return RISCV_EXCP_ILLEGAL_INST; 96 } 97 break; 98 case CSR_TIME: 99 if (!get_field(env->mcounteren, COUNTEREN_TM)) { 100 return RISCV_EXCP_ILLEGAL_INST; 101 } 102 break; 103 case CSR_INSTRET: 104 if (!get_field(env->mcounteren, COUNTEREN_IR)) { 105 return RISCV_EXCP_ILLEGAL_INST; 106 } 107 break; 108 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 109 ctr_index = csrno - CSR_CYCLE; 110 if (!get_field(env->mcounteren, 1 << ctr_index)) { 111 return RISCV_EXCP_ILLEGAL_INST; 112 } 113 break; 114 } 115 if (rv32) { 116 switch (csrno) { 117 case CSR_CYCLEH: 118 if (!get_field(env->mcounteren, COUNTEREN_CY)) { 119 return RISCV_EXCP_ILLEGAL_INST; 120 } 121 break; 122 case CSR_TIMEH: 123 if (!get_field(env->mcounteren, COUNTEREN_TM)) { 124 return RISCV_EXCP_ILLEGAL_INST; 125 } 126 break; 127 case CSR_INSTRETH: 128 if (!get_field(env->mcounteren, COUNTEREN_IR)) { 129 return RISCV_EXCP_ILLEGAL_INST; 130 } 131 break; 132 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 133 ctr_index = csrno - CSR_CYCLEH; 134 if (!get_field(env->mcounteren, 1 << ctr_index)) { 135 return RISCV_EXCP_ILLEGAL_INST; 136 } 137 break; 138 } 139 } 140 } 141 142 if (riscv_cpu_virt_enabled(env)) { 143 switch (csrno) { 144 case CSR_CYCLE: 145 if (!get_field(env->hcounteren, COUNTEREN_CY) && 146 get_field(env->mcounteren, COUNTEREN_CY)) { 147 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 148 } 149 break; 150 case CSR_TIME: 151 if (!get_field(env->hcounteren, COUNTEREN_TM) && 152 get_field(env->mcounteren, COUNTEREN_TM)) { 153 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 154 } 155 break; 156 case CSR_INSTRET: 157 if (!get_field(env->hcounteren, COUNTEREN_IR) && 158 get_field(env->mcounteren, COUNTEREN_IR)) { 159 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 160 } 161 break; 162 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 163 ctr_index = csrno - CSR_CYCLE; 164 if (!get_field(env->hcounteren, 1 << ctr_index) && 165 get_field(env->mcounteren, 1 << ctr_index)) { 166 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 167 } 168 break; 169 } 170 if (rv32) { 171 switch (csrno) { 172 case CSR_CYCLEH: 173 if (!get_field(env->hcounteren, COUNTEREN_CY) && 174 get_field(env->mcounteren, COUNTEREN_CY)) { 175 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 176 } 177 break; 178 case CSR_TIMEH: 179 if (!get_field(env->hcounteren, COUNTEREN_TM) && 180 get_field(env->mcounteren, COUNTEREN_TM)) { 181 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 182 } 183 break; 184 case CSR_INSTRETH: 185 if (!get_field(env->hcounteren, COUNTEREN_IR) && 186 get_field(env->mcounteren, COUNTEREN_IR)) { 187 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 188 } 189 break; 190 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 191 ctr_index = csrno - CSR_CYCLEH; 192 if (!get_field(env->hcounteren, 1 << ctr_index) && 193 get_field(env->mcounteren, 1 << ctr_index)) { 194 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 195 } 196 break; 197 } 198 } 199 } 200 #endif 201 return RISCV_EXCP_NONE; 202 } 203 204 static RISCVException ctr32(CPURISCVState *env, int csrno) 205 { 206 if (riscv_cpu_mxl(env) != MXL_RV32) { 207 return RISCV_EXCP_ILLEGAL_INST; 208 } 209 210 return ctr(env, csrno); 211 } 212 213 #if !defined(CONFIG_USER_ONLY) 214 static RISCVException mctr(CPURISCVState *env, int csrno) 215 { 216 CPUState *cs = env_cpu(env); 217 RISCVCPU *cpu = RISCV_CPU(cs); 218 int ctr_index; 219 int base_csrno = CSR_MHPMCOUNTER3; 220 221 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 222 /* Offset for RV32 mhpmcounternh counters */ 223 base_csrno += 0x80; 224 } 225 ctr_index = csrno - base_csrno; 226 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 227 /* The PMU is not enabled or counter is out of range*/ 228 return RISCV_EXCP_ILLEGAL_INST; 229 } 230 231 return RISCV_EXCP_NONE; 232 } 233 234 static RISCVException mctr32(CPURISCVState *env, int csrno) 235 { 236 if (riscv_cpu_mxl(env) != MXL_RV32) { 237 return RISCV_EXCP_ILLEGAL_INST; 238 } 239 240 return mctr(env, csrno); 241 } 242 243 static RISCVException any(CPURISCVState *env, int csrno) 244 { 245 return RISCV_EXCP_NONE; 246 } 247 248 static RISCVException any32(CPURISCVState *env, int csrno) 249 { 250 if (riscv_cpu_mxl(env) != MXL_RV32) { 251 return RISCV_EXCP_ILLEGAL_INST; 252 } 253 254 return any(env, csrno); 255 256 } 257 258 static int aia_any(CPURISCVState *env, int csrno) 259 { 260 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 261 return RISCV_EXCP_ILLEGAL_INST; 262 } 263 264 return any(env, csrno); 265 } 266 267 static int aia_any32(CPURISCVState *env, int csrno) 268 { 269 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 270 return RISCV_EXCP_ILLEGAL_INST; 271 } 272 273 return any32(env, csrno); 274 } 275 276 static RISCVException smode(CPURISCVState *env, int csrno) 277 { 278 if (riscv_has_ext(env, RVS)) { 279 return RISCV_EXCP_NONE; 280 } 281 282 return RISCV_EXCP_ILLEGAL_INST; 283 } 284 285 static int smode32(CPURISCVState *env, int csrno) 286 { 287 if (riscv_cpu_mxl(env) != MXL_RV32) { 288 return RISCV_EXCP_ILLEGAL_INST; 289 } 290 291 return smode(env, csrno); 292 } 293 294 static int aia_smode(CPURISCVState *env, int csrno) 295 { 296 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 297 return RISCV_EXCP_ILLEGAL_INST; 298 } 299 300 return smode(env, csrno); 301 } 302 303 static int aia_smode32(CPURISCVState *env, int csrno) 304 { 305 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 306 return RISCV_EXCP_ILLEGAL_INST; 307 } 308 309 return smode32(env, csrno); 310 } 311 312 static RISCVException hmode(CPURISCVState *env, int csrno) 313 { 314 if (riscv_has_ext(env, RVS) && 315 riscv_has_ext(env, RVH)) { 316 /* Hypervisor extension is supported */ 317 if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 318 env->priv == PRV_M) { 319 return RISCV_EXCP_NONE; 320 } else { 321 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 322 } 323 } 324 325 return RISCV_EXCP_ILLEGAL_INST; 326 } 327 328 static RISCVException hmode32(CPURISCVState *env, int csrno) 329 { 330 if (riscv_cpu_mxl(env) != MXL_RV32) { 331 if (!riscv_cpu_virt_enabled(env)) { 332 return RISCV_EXCP_ILLEGAL_INST; 333 } else { 334 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 335 } 336 } 337 338 return hmode(env, csrno); 339 340 } 341 342 static RISCVException umode(CPURISCVState *env, int csrno) 343 { 344 if (riscv_has_ext(env, RVU)) { 345 return RISCV_EXCP_NONE; 346 } 347 348 return RISCV_EXCP_ILLEGAL_INST; 349 } 350 351 static RISCVException umode32(CPURISCVState *env, int csrno) 352 { 353 if (riscv_cpu_mxl(env) != MXL_RV32) { 354 return RISCV_EXCP_ILLEGAL_INST; 355 } 356 357 return umode(env, csrno); 358 } 359 360 /* Checks if PointerMasking registers could be accessed */ 361 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 362 { 363 /* Check if j-ext is present */ 364 if (riscv_has_ext(env, RVJ)) { 365 return RISCV_EXCP_NONE; 366 } 367 return RISCV_EXCP_ILLEGAL_INST; 368 } 369 370 static int aia_hmode(CPURISCVState *env, int csrno) 371 { 372 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 373 return RISCV_EXCP_ILLEGAL_INST; 374 } 375 376 return hmode(env, csrno); 377 } 378 379 static int aia_hmode32(CPURISCVState *env, int csrno) 380 { 381 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 382 return RISCV_EXCP_ILLEGAL_INST; 383 } 384 385 return hmode32(env, csrno); 386 } 387 388 static RISCVException pmp(CPURISCVState *env, int csrno) 389 { 390 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 391 return RISCV_EXCP_NONE; 392 } 393 394 return RISCV_EXCP_ILLEGAL_INST; 395 } 396 397 static RISCVException epmp(CPURISCVState *env, int csrno) 398 { 399 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 400 return RISCV_EXCP_NONE; 401 } 402 403 return RISCV_EXCP_ILLEGAL_INST; 404 } 405 406 static RISCVException debug(CPURISCVState *env, int csrno) 407 { 408 if (riscv_feature(env, RISCV_FEATURE_DEBUG)) { 409 return RISCV_EXCP_NONE; 410 } 411 412 return RISCV_EXCP_ILLEGAL_INST; 413 } 414 #endif 415 416 static RISCVException seed(CPURISCVState *env, int csrno) 417 { 418 RISCVCPU *cpu = env_archcpu(env); 419 420 if (!cpu->cfg.ext_zkr) { 421 return RISCV_EXCP_ILLEGAL_INST; 422 } 423 424 #if !defined(CONFIG_USER_ONLY) 425 /* 426 * With a CSR read-write instruction: 427 * 1) The seed CSR is always available in machine mode as normal. 428 * 2) Attempted access to seed from virtual modes VS and VU always raises 429 * an exception(virtual instruction exception only if mseccfg.sseed=1). 430 * 3) Without the corresponding access control bit set to 1, any attempted 431 * access to seed from U, S or HS modes will raise an illegal instruction 432 * exception. 433 */ 434 if (env->priv == PRV_M) { 435 return RISCV_EXCP_NONE; 436 } else if (riscv_cpu_virt_enabled(env)) { 437 if (env->mseccfg & MSECCFG_SSEED) { 438 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 439 } else { 440 return RISCV_EXCP_ILLEGAL_INST; 441 } 442 } else { 443 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 444 return RISCV_EXCP_NONE; 445 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 446 return RISCV_EXCP_NONE; 447 } else { 448 return RISCV_EXCP_ILLEGAL_INST; 449 } 450 } 451 #else 452 return RISCV_EXCP_NONE; 453 #endif 454 } 455 456 /* User Floating-Point CSRs */ 457 static RISCVException read_fflags(CPURISCVState *env, int csrno, 458 target_ulong *val) 459 { 460 *val = riscv_cpu_get_fflags(env); 461 return RISCV_EXCP_NONE; 462 } 463 464 static RISCVException write_fflags(CPURISCVState *env, int csrno, 465 target_ulong val) 466 { 467 #if !defined(CONFIG_USER_ONLY) 468 if (riscv_has_ext(env, RVF)) { 469 env->mstatus |= MSTATUS_FS; 470 } 471 #endif 472 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 473 return RISCV_EXCP_NONE; 474 } 475 476 static RISCVException read_frm(CPURISCVState *env, int csrno, 477 target_ulong *val) 478 { 479 *val = env->frm; 480 return RISCV_EXCP_NONE; 481 } 482 483 static RISCVException write_frm(CPURISCVState *env, int csrno, 484 target_ulong val) 485 { 486 #if !defined(CONFIG_USER_ONLY) 487 if (riscv_has_ext(env, RVF)) { 488 env->mstatus |= MSTATUS_FS; 489 } 490 #endif 491 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 492 return RISCV_EXCP_NONE; 493 } 494 495 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 496 target_ulong *val) 497 { 498 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 499 | (env->frm << FSR_RD_SHIFT); 500 return RISCV_EXCP_NONE; 501 } 502 503 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 504 target_ulong val) 505 { 506 #if !defined(CONFIG_USER_ONLY) 507 if (riscv_has_ext(env, RVF)) { 508 env->mstatus |= MSTATUS_FS; 509 } 510 #endif 511 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 512 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 513 return RISCV_EXCP_NONE; 514 } 515 516 static RISCVException read_vtype(CPURISCVState *env, int csrno, 517 target_ulong *val) 518 { 519 uint64_t vill; 520 switch (env->xl) { 521 case MXL_RV32: 522 vill = (uint32_t)env->vill << 31; 523 break; 524 case MXL_RV64: 525 vill = (uint64_t)env->vill << 63; 526 break; 527 default: 528 g_assert_not_reached(); 529 } 530 *val = (target_ulong)vill | env->vtype; 531 return RISCV_EXCP_NONE; 532 } 533 534 static RISCVException read_vl(CPURISCVState *env, int csrno, 535 target_ulong *val) 536 { 537 *val = env->vl; 538 return RISCV_EXCP_NONE; 539 } 540 541 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 542 { 543 *val = env_archcpu(env)->cfg.vlen >> 3; 544 return RISCV_EXCP_NONE; 545 } 546 547 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 548 target_ulong *val) 549 { 550 *val = env->vxrm; 551 return RISCV_EXCP_NONE; 552 } 553 554 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 555 target_ulong val) 556 { 557 #if !defined(CONFIG_USER_ONLY) 558 env->mstatus |= MSTATUS_VS; 559 #endif 560 env->vxrm = val; 561 return RISCV_EXCP_NONE; 562 } 563 564 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 565 target_ulong *val) 566 { 567 *val = env->vxsat; 568 return RISCV_EXCP_NONE; 569 } 570 571 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 572 target_ulong val) 573 { 574 #if !defined(CONFIG_USER_ONLY) 575 env->mstatus |= MSTATUS_VS; 576 #endif 577 env->vxsat = val; 578 return RISCV_EXCP_NONE; 579 } 580 581 static RISCVException read_vstart(CPURISCVState *env, int csrno, 582 target_ulong *val) 583 { 584 *val = env->vstart; 585 return RISCV_EXCP_NONE; 586 } 587 588 static RISCVException write_vstart(CPURISCVState *env, int csrno, 589 target_ulong val) 590 { 591 #if !defined(CONFIG_USER_ONLY) 592 env->mstatus |= MSTATUS_VS; 593 #endif 594 /* 595 * The vstart CSR is defined to have only enough writable bits 596 * to hold the largest element index, i.e. lg2(VLEN) bits. 597 */ 598 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 599 return RISCV_EXCP_NONE; 600 } 601 602 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 603 { 604 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 605 return RISCV_EXCP_NONE; 606 } 607 608 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 609 { 610 #if !defined(CONFIG_USER_ONLY) 611 env->mstatus |= MSTATUS_VS; 612 #endif 613 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 614 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 615 return RISCV_EXCP_NONE; 616 } 617 618 /* User Timers and Counters */ 619 static target_ulong get_ticks(bool shift) 620 { 621 int64_t val; 622 target_ulong result; 623 624 #if !defined(CONFIG_USER_ONLY) 625 if (icount_enabled()) { 626 val = icount_get(); 627 } else { 628 val = cpu_get_host_ticks(); 629 } 630 #else 631 val = cpu_get_host_ticks(); 632 #endif 633 634 if (shift) { 635 result = val >> 32; 636 } else { 637 result = val; 638 } 639 640 return result; 641 } 642 643 #if defined(CONFIG_USER_ONLY) 644 static RISCVException read_time(CPURISCVState *env, int csrno, 645 target_ulong *val) 646 { 647 *val = cpu_get_host_ticks(); 648 return RISCV_EXCP_NONE; 649 } 650 651 static RISCVException read_timeh(CPURISCVState *env, int csrno, 652 target_ulong *val) 653 { 654 *val = cpu_get_host_ticks() >> 32; 655 return RISCV_EXCP_NONE; 656 } 657 658 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 659 { 660 *val = get_ticks(false); 661 return RISCV_EXCP_NONE; 662 } 663 664 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 665 { 666 *val = get_ticks(true); 667 return RISCV_EXCP_NONE; 668 } 669 670 #else /* CONFIG_USER_ONLY */ 671 672 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 673 { 674 int evt_index = csrno - CSR_MCOUNTINHIBIT; 675 676 *val = env->mhpmevent_val[evt_index]; 677 678 return RISCV_EXCP_NONE; 679 } 680 681 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 682 { 683 int evt_index = csrno - CSR_MCOUNTINHIBIT; 684 685 env->mhpmevent_val[evt_index] = val; 686 687 return RISCV_EXCP_NONE; 688 } 689 690 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 691 { 692 int ctr_idx = csrno - CSR_MCYCLE; 693 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 694 695 counter->mhpmcounter_val = val; 696 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 697 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 698 counter->mhpmcounter_prev = get_ticks(false); 699 } else { 700 /* Other counters can keep incrementing from the given value */ 701 counter->mhpmcounter_prev = val; 702 } 703 704 return RISCV_EXCP_NONE; 705 } 706 707 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 708 { 709 int ctr_idx = csrno - CSR_MCYCLEH; 710 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 711 712 counter->mhpmcounterh_val = val; 713 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 714 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 715 counter->mhpmcounterh_prev = get_ticks(true); 716 } else { 717 counter->mhpmcounterh_prev = val; 718 } 719 720 return RISCV_EXCP_NONE; 721 } 722 723 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 724 bool upper_half, uint32_t ctr_idx) 725 { 726 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 727 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 728 counter.mhpmcounter_prev; 729 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 730 counter.mhpmcounter_val; 731 732 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 733 /** 734 * Counter should not increment if inhibit bit is set. We can't really 735 * stop the icount counting. Just return the counter value written by 736 * the supervisor to indicate that counter was not incremented. 737 */ 738 if (!counter.started) { 739 *val = ctr_val; 740 return RISCV_EXCP_NONE; 741 } else { 742 /* Mark that the counter has been stopped */ 743 counter.started = false; 744 } 745 } 746 747 /** 748 * The kernel computes the perf delta by subtracting the current value from 749 * the value it initialized previously (ctr_val). 750 */ 751 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 752 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 753 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 754 } else { 755 *val = ctr_val; 756 } 757 758 return RISCV_EXCP_NONE; 759 } 760 761 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 762 { 763 uint16_t ctr_index; 764 765 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 766 ctr_index = csrno - CSR_MCYCLE; 767 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 768 ctr_index = csrno - CSR_CYCLE; 769 } else { 770 return RISCV_EXCP_ILLEGAL_INST; 771 } 772 773 return riscv_pmu_read_ctr(env, val, false, ctr_index); 774 } 775 776 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 777 { 778 uint16_t ctr_index; 779 780 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 781 ctr_index = csrno - CSR_MCYCLEH; 782 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 783 ctr_index = csrno - CSR_CYCLEH; 784 } else { 785 return RISCV_EXCP_ILLEGAL_INST; 786 } 787 788 return riscv_pmu_read_ctr(env, val, true, ctr_index); 789 } 790 791 static RISCVException read_time(CPURISCVState *env, int csrno, 792 target_ulong *val) 793 { 794 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 795 796 if (!env->rdtime_fn) { 797 return RISCV_EXCP_ILLEGAL_INST; 798 } 799 800 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 801 return RISCV_EXCP_NONE; 802 } 803 804 static RISCVException read_timeh(CPURISCVState *env, int csrno, 805 target_ulong *val) 806 { 807 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 808 809 if (!env->rdtime_fn) { 810 return RISCV_EXCP_ILLEGAL_INST; 811 } 812 813 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 814 return RISCV_EXCP_NONE; 815 } 816 817 /* Machine constants */ 818 819 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 820 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP)) 821 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 822 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 823 824 #define VSTOPI_NUM_SRCS 5 825 826 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 827 VS_MODE_INTERRUPTS; 828 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 829 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 830 HS_MODE_INTERRUPTS; 831 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 832 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 833 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 834 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 835 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 836 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 837 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 838 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 839 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 840 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 841 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 842 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 843 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 844 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 845 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 846 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 847 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 848 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 849 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 850 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 851 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 852 (1ULL << (RISCV_EXCP_VS_ECALL)) | 853 (1ULL << (RISCV_EXCP_M_ECALL)) | 854 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 855 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 856 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 857 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 858 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 859 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 860 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 861 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP; 862 static const target_ulong hip_writable_mask = MIP_VSSIP; 863 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 864 static const target_ulong vsip_writable_mask = MIP_VSSIP; 865 866 static const char valid_vm_1_10_32[16] = { 867 [VM_1_10_MBARE] = 1, 868 [VM_1_10_SV32] = 1 869 }; 870 871 static const char valid_vm_1_10_64[16] = { 872 [VM_1_10_MBARE] = 1, 873 [VM_1_10_SV39] = 1, 874 [VM_1_10_SV48] = 1, 875 [VM_1_10_SV57] = 1 876 }; 877 878 /* Machine Information Registers */ 879 static RISCVException read_zero(CPURISCVState *env, int csrno, 880 target_ulong *val) 881 { 882 *val = 0; 883 return RISCV_EXCP_NONE; 884 } 885 886 static RISCVException write_ignore(CPURISCVState *env, int csrno, 887 target_ulong val) 888 { 889 return RISCV_EXCP_NONE; 890 } 891 892 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 893 target_ulong *val) 894 { 895 CPUState *cs = env_cpu(env); 896 RISCVCPU *cpu = RISCV_CPU(cs); 897 898 *val = cpu->cfg.mvendorid; 899 return RISCV_EXCP_NONE; 900 } 901 902 static RISCVException read_marchid(CPURISCVState *env, int csrno, 903 target_ulong *val) 904 { 905 CPUState *cs = env_cpu(env); 906 RISCVCPU *cpu = RISCV_CPU(cs); 907 908 *val = cpu->cfg.marchid; 909 return RISCV_EXCP_NONE; 910 } 911 912 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 913 target_ulong *val) 914 { 915 CPUState *cs = env_cpu(env); 916 RISCVCPU *cpu = RISCV_CPU(cs); 917 918 *val = cpu->cfg.mimpid; 919 return RISCV_EXCP_NONE; 920 } 921 922 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 923 target_ulong *val) 924 { 925 *val = env->mhartid; 926 return RISCV_EXCP_NONE; 927 } 928 929 /* Machine Trap Setup */ 930 931 /* We do not store SD explicitly, only compute it on demand. */ 932 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 933 { 934 if ((status & MSTATUS_FS) == MSTATUS_FS || 935 (status & MSTATUS_VS) == MSTATUS_VS || 936 (status & MSTATUS_XS) == MSTATUS_XS) { 937 switch (xl) { 938 case MXL_RV32: 939 return status | MSTATUS32_SD; 940 case MXL_RV64: 941 return status | MSTATUS64_SD; 942 case MXL_RV128: 943 return MSTATUSH128_SD; 944 default: 945 g_assert_not_reached(); 946 } 947 } 948 return status; 949 } 950 951 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 952 target_ulong *val) 953 { 954 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 955 return RISCV_EXCP_NONE; 956 } 957 958 static int validate_vm(CPURISCVState *env, target_ulong vm) 959 { 960 if (riscv_cpu_mxl(env) == MXL_RV32) { 961 return valid_vm_1_10_32[vm & 0xf]; 962 } else { 963 return valid_vm_1_10_64[vm & 0xf]; 964 } 965 } 966 967 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 968 target_ulong val) 969 { 970 uint64_t mstatus = env->mstatus; 971 uint64_t mask = 0; 972 RISCVMXL xl = riscv_cpu_mxl(env); 973 974 /* flush tlb on mstatus fields that affect VM */ 975 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 976 MSTATUS_MPRV | MSTATUS_SUM)) { 977 tlb_flush(env_cpu(env)); 978 } 979 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 980 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 981 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 982 MSTATUS_TW | MSTATUS_VS; 983 984 if (riscv_has_ext(env, RVF)) { 985 mask |= MSTATUS_FS; 986 } 987 988 if (xl != MXL_RV32 || env->debugger) { 989 /* 990 * RV32: MPV and GVA are not in mstatus. The current plan is to 991 * add them to mstatush. For now, we just don't support it. 992 */ 993 mask |= MSTATUS_MPV | MSTATUS_GVA; 994 if ((val & MSTATUS64_UXL) != 0) { 995 mask |= MSTATUS64_UXL; 996 } 997 } 998 999 mstatus = (mstatus & ~mask) | (val & mask); 1000 1001 if (xl > MXL_RV32) { 1002 /* SXL field is for now read only */ 1003 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1004 } 1005 env->mstatus = mstatus; 1006 env->xl = cpu_recompute_xl(env); 1007 1008 return RISCV_EXCP_NONE; 1009 } 1010 1011 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1012 target_ulong *val) 1013 { 1014 *val = env->mstatus >> 32; 1015 return RISCV_EXCP_NONE; 1016 } 1017 1018 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1019 target_ulong val) 1020 { 1021 uint64_t valh = (uint64_t)val << 32; 1022 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1023 1024 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1025 tlb_flush(env_cpu(env)); 1026 } 1027 1028 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1029 1030 return RISCV_EXCP_NONE; 1031 } 1032 1033 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1034 Int128 *val) 1035 { 1036 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1037 return RISCV_EXCP_NONE; 1038 } 1039 1040 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1041 Int128 *val) 1042 { 1043 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1044 return RISCV_EXCP_NONE; 1045 } 1046 1047 static RISCVException read_misa(CPURISCVState *env, int csrno, 1048 target_ulong *val) 1049 { 1050 target_ulong misa; 1051 1052 switch (env->misa_mxl) { 1053 case MXL_RV32: 1054 misa = (target_ulong)MXL_RV32 << 30; 1055 break; 1056 #ifdef TARGET_RISCV64 1057 case MXL_RV64: 1058 misa = (target_ulong)MXL_RV64 << 62; 1059 break; 1060 #endif 1061 default: 1062 g_assert_not_reached(); 1063 } 1064 1065 *val = misa | env->misa_ext; 1066 return RISCV_EXCP_NONE; 1067 } 1068 1069 static RISCVException write_misa(CPURISCVState *env, int csrno, 1070 target_ulong val) 1071 { 1072 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 1073 /* drop write to misa */ 1074 return RISCV_EXCP_NONE; 1075 } 1076 1077 /* 'I' or 'E' must be present */ 1078 if (!(val & (RVI | RVE))) { 1079 /* It is not, drop write to misa */ 1080 return RISCV_EXCP_NONE; 1081 } 1082 1083 /* 'E' excludes all other extensions */ 1084 if (val & RVE) { 1085 /* when we support 'E' we can do "val = RVE;" however 1086 * for now we just drop writes if 'E' is present. 1087 */ 1088 return RISCV_EXCP_NONE; 1089 } 1090 1091 /* 1092 * misa.MXL writes are not supported by QEMU. 1093 * Drop writes to those bits. 1094 */ 1095 1096 /* Mask extensions that are not supported by this hart */ 1097 val &= env->misa_ext_mask; 1098 1099 /* Mask extensions that are not supported by QEMU */ 1100 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 1101 1102 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1103 if ((val & RVD) && !(val & RVF)) { 1104 val &= ~RVD; 1105 } 1106 1107 /* Suppress 'C' if next instruction is not aligned 1108 * TODO: this should check next_pc 1109 */ 1110 if ((val & RVC) && (GETPC() & ~3) != 0) { 1111 val &= ~RVC; 1112 } 1113 1114 /* If nothing changed, do nothing. */ 1115 if (val == env->misa_ext) { 1116 return RISCV_EXCP_NONE; 1117 } 1118 1119 if (!(val & RVF)) { 1120 env->mstatus &= ~MSTATUS_FS; 1121 } 1122 1123 /* flush translation cache */ 1124 tb_flush(env_cpu(env)); 1125 env->misa_ext = val; 1126 env->xl = riscv_cpu_mxl(env); 1127 return RISCV_EXCP_NONE; 1128 } 1129 1130 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1131 target_ulong *val) 1132 { 1133 *val = env->medeleg; 1134 return RISCV_EXCP_NONE; 1135 } 1136 1137 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1138 target_ulong val) 1139 { 1140 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1141 return RISCV_EXCP_NONE; 1142 } 1143 1144 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1145 uint64_t *ret_val, 1146 uint64_t new_val, uint64_t wr_mask) 1147 { 1148 uint64_t mask = wr_mask & delegable_ints; 1149 1150 if (ret_val) { 1151 *ret_val = env->mideleg; 1152 } 1153 1154 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1155 1156 if (riscv_has_ext(env, RVH)) { 1157 env->mideleg |= HS_MODE_INTERRUPTS; 1158 } 1159 1160 return RISCV_EXCP_NONE; 1161 } 1162 1163 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1164 target_ulong *ret_val, 1165 target_ulong new_val, target_ulong wr_mask) 1166 { 1167 uint64_t rval; 1168 RISCVException ret; 1169 1170 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1171 if (ret_val) { 1172 *ret_val = rval; 1173 } 1174 1175 return ret; 1176 } 1177 1178 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1179 target_ulong *ret_val, 1180 target_ulong new_val, 1181 target_ulong wr_mask) 1182 { 1183 uint64_t rval; 1184 RISCVException ret; 1185 1186 ret = rmw_mideleg64(env, csrno, &rval, 1187 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1188 if (ret_val) { 1189 *ret_val = rval >> 32; 1190 } 1191 1192 return ret; 1193 } 1194 1195 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1196 uint64_t *ret_val, 1197 uint64_t new_val, uint64_t wr_mask) 1198 { 1199 uint64_t mask = wr_mask & all_ints; 1200 1201 if (ret_val) { 1202 *ret_val = env->mie; 1203 } 1204 1205 env->mie = (env->mie & ~mask) | (new_val & mask); 1206 1207 if (!riscv_has_ext(env, RVH)) { 1208 env->mie &= ~((uint64_t)MIP_SGEIP); 1209 } 1210 1211 return RISCV_EXCP_NONE; 1212 } 1213 1214 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1215 target_ulong *ret_val, 1216 target_ulong new_val, target_ulong wr_mask) 1217 { 1218 uint64_t rval; 1219 RISCVException ret; 1220 1221 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1222 if (ret_val) { 1223 *ret_val = rval; 1224 } 1225 1226 return ret; 1227 } 1228 1229 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1230 target_ulong *ret_val, 1231 target_ulong new_val, target_ulong wr_mask) 1232 { 1233 uint64_t rval; 1234 RISCVException ret; 1235 1236 ret = rmw_mie64(env, csrno, &rval, 1237 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1238 if (ret_val) { 1239 *ret_val = rval >> 32; 1240 } 1241 1242 return ret; 1243 } 1244 1245 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1246 { 1247 int irq; 1248 uint8_t iprio; 1249 1250 irq = riscv_cpu_mirq_pending(env); 1251 if (irq <= 0 || irq > 63) { 1252 *val = 0; 1253 } else { 1254 iprio = env->miprio[irq]; 1255 if (!iprio) { 1256 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1257 iprio = IPRIO_MMAXIPRIO; 1258 } 1259 } 1260 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1261 *val |= iprio; 1262 } 1263 1264 return RISCV_EXCP_NONE; 1265 } 1266 1267 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1268 { 1269 if (!riscv_cpu_virt_enabled(env)) { 1270 return csrno; 1271 } 1272 1273 switch (csrno) { 1274 case CSR_SISELECT: 1275 return CSR_VSISELECT; 1276 case CSR_SIREG: 1277 return CSR_VSIREG; 1278 case CSR_STOPEI: 1279 return CSR_VSTOPEI; 1280 default: 1281 return csrno; 1282 }; 1283 } 1284 1285 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1286 target_ulong new_val, target_ulong wr_mask) 1287 { 1288 target_ulong *iselect; 1289 1290 /* Translate CSR number for VS-mode */ 1291 csrno = aia_xlate_vs_csrno(env, csrno); 1292 1293 /* Find the iselect CSR based on CSR number */ 1294 switch (csrno) { 1295 case CSR_MISELECT: 1296 iselect = &env->miselect; 1297 break; 1298 case CSR_SISELECT: 1299 iselect = &env->siselect; 1300 break; 1301 case CSR_VSISELECT: 1302 iselect = &env->vsiselect; 1303 break; 1304 default: 1305 return RISCV_EXCP_ILLEGAL_INST; 1306 }; 1307 1308 if (val) { 1309 *val = *iselect; 1310 } 1311 1312 wr_mask &= ISELECT_MASK; 1313 if (wr_mask) { 1314 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1315 } 1316 1317 return RISCV_EXCP_NONE; 1318 } 1319 1320 static int rmw_iprio(target_ulong xlen, 1321 target_ulong iselect, uint8_t *iprio, 1322 target_ulong *val, target_ulong new_val, 1323 target_ulong wr_mask, int ext_irq_no) 1324 { 1325 int i, firq, nirqs; 1326 target_ulong old_val; 1327 1328 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1329 return -EINVAL; 1330 } 1331 if (xlen != 32 && iselect & 0x1) { 1332 return -EINVAL; 1333 } 1334 1335 nirqs = 4 * (xlen / 32); 1336 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1337 1338 old_val = 0; 1339 for (i = 0; i < nirqs; i++) { 1340 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1341 } 1342 1343 if (val) { 1344 *val = old_val; 1345 } 1346 1347 if (wr_mask) { 1348 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1349 for (i = 0; i < nirqs; i++) { 1350 /* 1351 * M-level and S-level external IRQ priority always read-only 1352 * zero. This means default priority order is always preferred 1353 * for M-level and S-level external IRQs. 1354 */ 1355 if ((firq + i) == ext_irq_no) { 1356 continue; 1357 } 1358 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1359 } 1360 } 1361 1362 return 0; 1363 } 1364 1365 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1366 target_ulong new_val, target_ulong wr_mask) 1367 { 1368 bool virt; 1369 uint8_t *iprio; 1370 int ret = -EINVAL; 1371 target_ulong priv, isel, vgein; 1372 1373 /* Translate CSR number for VS-mode */ 1374 csrno = aia_xlate_vs_csrno(env, csrno); 1375 1376 /* Decode register details from CSR number */ 1377 virt = false; 1378 switch (csrno) { 1379 case CSR_MIREG: 1380 iprio = env->miprio; 1381 isel = env->miselect; 1382 priv = PRV_M; 1383 break; 1384 case CSR_SIREG: 1385 iprio = env->siprio; 1386 isel = env->siselect; 1387 priv = PRV_S; 1388 break; 1389 case CSR_VSIREG: 1390 iprio = env->hviprio; 1391 isel = env->vsiselect; 1392 priv = PRV_S; 1393 virt = true; 1394 break; 1395 default: 1396 goto done; 1397 }; 1398 1399 /* Find the selected guest interrupt file */ 1400 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1401 1402 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1403 /* Local interrupt priority registers not available for VS-mode */ 1404 if (!virt) { 1405 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1406 isel, iprio, val, new_val, wr_mask, 1407 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1408 } 1409 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1410 /* IMSIC registers only available when machine implements it. */ 1411 if (env->aia_ireg_rmw_fn[priv]) { 1412 /* Selected guest interrupt file should not be zero */ 1413 if (virt && (!vgein || env->geilen < vgein)) { 1414 goto done; 1415 } 1416 /* Call machine specific IMSIC register emulation */ 1417 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1418 AIA_MAKE_IREG(isel, priv, virt, vgein, 1419 riscv_cpu_mxl_bits(env)), 1420 val, new_val, wr_mask); 1421 } 1422 } 1423 1424 done: 1425 if (ret) { 1426 return (riscv_cpu_virt_enabled(env) && virt) ? 1427 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1428 } 1429 return RISCV_EXCP_NONE; 1430 } 1431 1432 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1433 target_ulong new_val, target_ulong wr_mask) 1434 { 1435 bool virt; 1436 int ret = -EINVAL; 1437 target_ulong priv, vgein; 1438 1439 /* Translate CSR number for VS-mode */ 1440 csrno = aia_xlate_vs_csrno(env, csrno); 1441 1442 /* Decode register details from CSR number */ 1443 virt = false; 1444 switch (csrno) { 1445 case CSR_MTOPEI: 1446 priv = PRV_M; 1447 break; 1448 case CSR_STOPEI: 1449 priv = PRV_S; 1450 break; 1451 case CSR_VSTOPEI: 1452 priv = PRV_S; 1453 virt = true; 1454 break; 1455 default: 1456 goto done; 1457 }; 1458 1459 /* IMSIC CSRs only available when machine implements IMSIC. */ 1460 if (!env->aia_ireg_rmw_fn[priv]) { 1461 goto done; 1462 } 1463 1464 /* Find the selected guest interrupt file */ 1465 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1466 1467 /* Selected guest interrupt file should be valid */ 1468 if (virt && (!vgein || env->geilen < vgein)) { 1469 goto done; 1470 } 1471 1472 /* Call machine specific IMSIC register emulation for TOPEI */ 1473 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1474 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1475 riscv_cpu_mxl_bits(env)), 1476 val, new_val, wr_mask); 1477 1478 done: 1479 if (ret) { 1480 return (riscv_cpu_virt_enabled(env) && virt) ? 1481 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1482 } 1483 return RISCV_EXCP_NONE; 1484 } 1485 1486 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1487 target_ulong *val) 1488 { 1489 *val = env->mtvec; 1490 return RISCV_EXCP_NONE; 1491 } 1492 1493 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1494 target_ulong val) 1495 { 1496 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1497 if ((val & 3) < 2) { 1498 env->mtvec = val; 1499 } else { 1500 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1501 } 1502 return RISCV_EXCP_NONE; 1503 } 1504 1505 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1506 target_ulong *val) 1507 { 1508 if (env->priv_ver < PRIV_VERSION_1_11_0) { 1509 return RISCV_EXCP_ILLEGAL_INST; 1510 } 1511 1512 *val = env->mcountinhibit; 1513 return RISCV_EXCP_NONE; 1514 } 1515 1516 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1517 target_ulong val) 1518 { 1519 int cidx; 1520 PMUCTRState *counter; 1521 1522 if (env->priv_ver < PRIV_VERSION_1_11_0) { 1523 return RISCV_EXCP_ILLEGAL_INST; 1524 } 1525 1526 env->mcountinhibit = val; 1527 1528 /* Check if any other counter is also monitoring cycles/instructions */ 1529 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1530 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1531 counter = &env->pmu_ctrs[cidx]; 1532 counter->started = true; 1533 } 1534 } 1535 1536 return RISCV_EXCP_NONE; 1537 } 1538 1539 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1540 target_ulong *val) 1541 { 1542 *val = env->mcounteren; 1543 return RISCV_EXCP_NONE; 1544 } 1545 1546 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1547 target_ulong val) 1548 { 1549 env->mcounteren = val; 1550 return RISCV_EXCP_NONE; 1551 } 1552 1553 /* Machine Trap Handling */ 1554 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1555 Int128 *val) 1556 { 1557 *val = int128_make128(env->mscratch, env->mscratchh); 1558 return RISCV_EXCP_NONE; 1559 } 1560 1561 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1562 Int128 val) 1563 { 1564 env->mscratch = int128_getlo(val); 1565 env->mscratchh = int128_gethi(val); 1566 return RISCV_EXCP_NONE; 1567 } 1568 1569 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1570 target_ulong *val) 1571 { 1572 *val = env->mscratch; 1573 return RISCV_EXCP_NONE; 1574 } 1575 1576 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1577 target_ulong val) 1578 { 1579 env->mscratch = val; 1580 return RISCV_EXCP_NONE; 1581 } 1582 1583 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1584 target_ulong *val) 1585 { 1586 *val = env->mepc; 1587 return RISCV_EXCP_NONE; 1588 } 1589 1590 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1591 target_ulong val) 1592 { 1593 env->mepc = val; 1594 return RISCV_EXCP_NONE; 1595 } 1596 1597 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1598 target_ulong *val) 1599 { 1600 *val = env->mcause; 1601 return RISCV_EXCP_NONE; 1602 } 1603 1604 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1605 target_ulong val) 1606 { 1607 env->mcause = val; 1608 return RISCV_EXCP_NONE; 1609 } 1610 1611 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1612 target_ulong *val) 1613 { 1614 *val = env->mtval; 1615 return RISCV_EXCP_NONE; 1616 } 1617 1618 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1619 target_ulong val) 1620 { 1621 env->mtval = val; 1622 return RISCV_EXCP_NONE; 1623 } 1624 1625 /* Execution environment configuration setup */ 1626 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1627 target_ulong *val) 1628 { 1629 *val = env->menvcfg; 1630 return RISCV_EXCP_NONE; 1631 } 1632 1633 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1634 target_ulong val) 1635 { 1636 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1637 1638 if (riscv_cpu_mxl(env) == MXL_RV64) { 1639 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1640 } 1641 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1642 1643 return RISCV_EXCP_NONE; 1644 } 1645 1646 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1647 target_ulong *val) 1648 { 1649 *val = env->menvcfg >> 32; 1650 return RISCV_EXCP_NONE; 1651 } 1652 1653 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1654 target_ulong val) 1655 { 1656 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1657 uint64_t valh = (uint64_t)val << 32; 1658 1659 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1660 1661 return RISCV_EXCP_NONE; 1662 } 1663 1664 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1665 target_ulong *val) 1666 { 1667 *val = env->senvcfg; 1668 return RISCV_EXCP_NONE; 1669 } 1670 1671 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1672 target_ulong val) 1673 { 1674 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1675 1676 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1677 1678 return RISCV_EXCP_NONE; 1679 } 1680 1681 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1682 target_ulong *val) 1683 { 1684 *val = env->henvcfg; 1685 return RISCV_EXCP_NONE; 1686 } 1687 1688 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1689 target_ulong val) 1690 { 1691 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1692 1693 if (riscv_cpu_mxl(env) == MXL_RV64) { 1694 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 1695 } 1696 1697 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1698 1699 return RISCV_EXCP_NONE; 1700 } 1701 1702 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1703 target_ulong *val) 1704 { 1705 *val = env->henvcfg >> 32; 1706 return RISCV_EXCP_NONE; 1707 } 1708 1709 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 1710 target_ulong val) 1711 { 1712 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 1713 uint64_t valh = (uint64_t)val << 32; 1714 1715 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 1716 1717 return RISCV_EXCP_NONE; 1718 } 1719 1720 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 1721 uint64_t *ret_val, 1722 uint64_t new_val, uint64_t wr_mask) 1723 { 1724 RISCVCPU *cpu = env_archcpu(env); 1725 uint64_t old_mip, mask = wr_mask & delegable_ints; 1726 uint32_t gin; 1727 1728 if (mask & MIP_SEIP) { 1729 env->software_seip = new_val & MIP_SEIP; 1730 new_val |= env->external_seip * MIP_SEIP; 1731 } 1732 1733 if (mask) { 1734 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 1735 } else { 1736 old_mip = env->mip; 1737 } 1738 1739 if (csrno != CSR_HVIP) { 1740 gin = get_field(env->hstatus, HSTATUS_VGEIN); 1741 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 1742 } 1743 1744 if (ret_val) { 1745 *ret_val = old_mip; 1746 } 1747 1748 return RISCV_EXCP_NONE; 1749 } 1750 1751 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 1752 target_ulong *ret_val, 1753 target_ulong new_val, target_ulong wr_mask) 1754 { 1755 uint64_t rval; 1756 RISCVException ret; 1757 1758 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 1759 if (ret_val) { 1760 *ret_val = rval; 1761 } 1762 1763 return ret; 1764 } 1765 1766 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 1767 target_ulong *ret_val, 1768 target_ulong new_val, target_ulong wr_mask) 1769 { 1770 uint64_t rval; 1771 RISCVException ret; 1772 1773 ret = rmw_mip64(env, csrno, &rval, 1774 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1775 if (ret_val) { 1776 *ret_val = rval >> 32; 1777 } 1778 1779 return ret; 1780 } 1781 1782 /* Supervisor Trap Setup */ 1783 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 1784 Int128 *val) 1785 { 1786 uint64_t mask = sstatus_v1_10_mask; 1787 uint64_t sstatus = env->mstatus & mask; 1788 if (env->xl != MXL_RV32 || env->debugger) { 1789 mask |= SSTATUS64_UXL; 1790 } 1791 1792 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 1793 return RISCV_EXCP_NONE; 1794 } 1795 1796 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 1797 target_ulong *val) 1798 { 1799 target_ulong mask = (sstatus_v1_10_mask); 1800 if (env->xl != MXL_RV32 || env->debugger) { 1801 mask |= SSTATUS64_UXL; 1802 } 1803 /* TODO: Use SXL not MXL. */ 1804 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 1805 return RISCV_EXCP_NONE; 1806 } 1807 1808 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 1809 target_ulong val) 1810 { 1811 target_ulong mask = (sstatus_v1_10_mask); 1812 1813 if (env->xl != MXL_RV32 || env->debugger) { 1814 if ((val & SSTATUS64_UXL) != 0) { 1815 mask |= SSTATUS64_UXL; 1816 } 1817 } 1818 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 1819 return write_mstatus(env, CSR_MSTATUS, newval); 1820 } 1821 1822 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 1823 uint64_t *ret_val, 1824 uint64_t new_val, uint64_t wr_mask) 1825 { 1826 RISCVException ret; 1827 uint64_t rval, vsbits, mask = env->hideleg & VS_MODE_INTERRUPTS; 1828 1829 /* Bring VS-level bits to correct position */ 1830 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 1831 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 1832 new_val |= vsbits << 1; 1833 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 1834 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 1835 wr_mask |= vsbits << 1; 1836 1837 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 1838 if (ret_val) { 1839 rval &= mask; 1840 vsbits = rval & VS_MODE_INTERRUPTS; 1841 rval &= ~VS_MODE_INTERRUPTS; 1842 *ret_val = rval | (vsbits >> 1); 1843 } 1844 1845 return ret; 1846 } 1847 1848 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 1849 target_ulong *ret_val, 1850 target_ulong new_val, target_ulong wr_mask) 1851 { 1852 uint64_t rval; 1853 RISCVException ret; 1854 1855 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 1856 if (ret_val) { 1857 *ret_val = rval; 1858 } 1859 1860 return ret; 1861 } 1862 1863 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 1864 target_ulong *ret_val, 1865 target_ulong new_val, target_ulong wr_mask) 1866 { 1867 uint64_t rval; 1868 RISCVException ret; 1869 1870 ret = rmw_vsie64(env, csrno, &rval, 1871 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1872 if (ret_val) { 1873 *ret_val = rval >> 32; 1874 } 1875 1876 return ret; 1877 } 1878 1879 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 1880 uint64_t *ret_val, 1881 uint64_t new_val, uint64_t wr_mask) 1882 { 1883 RISCVException ret; 1884 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 1885 1886 if (riscv_cpu_virt_enabled(env)) { 1887 if (env->hvictl & HVICTL_VTI) { 1888 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1889 } 1890 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 1891 } else { 1892 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 1893 } 1894 1895 if (ret_val) { 1896 *ret_val &= mask; 1897 } 1898 1899 return ret; 1900 } 1901 1902 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 1903 target_ulong *ret_val, 1904 target_ulong new_val, target_ulong wr_mask) 1905 { 1906 uint64_t rval; 1907 RISCVException ret; 1908 1909 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 1910 if (ret == RISCV_EXCP_NONE && ret_val) { 1911 *ret_val = rval; 1912 } 1913 1914 return ret; 1915 } 1916 1917 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 1918 target_ulong *ret_val, 1919 target_ulong new_val, target_ulong wr_mask) 1920 { 1921 uint64_t rval; 1922 RISCVException ret; 1923 1924 ret = rmw_sie64(env, csrno, &rval, 1925 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1926 if (ret_val) { 1927 *ret_val = rval >> 32; 1928 } 1929 1930 return ret; 1931 } 1932 1933 static RISCVException read_stvec(CPURISCVState *env, int csrno, 1934 target_ulong *val) 1935 { 1936 *val = env->stvec; 1937 return RISCV_EXCP_NONE; 1938 } 1939 1940 static RISCVException write_stvec(CPURISCVState *env, int csrno, 1941 target_ulong val) 1942 { 1943 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1944 if ((val & 3) < 2) { 1945 env->stvec = val; 1946 } else { 1947 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 1948 } 1949 return RISCV_EXCP_NONE; 1950 } 1951 1952 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 1953 target_ulong *val) 1954 { 1955 *val = env->scounteren; 1956 return RISCV_EXCP_NONE; 1957 } 1958 1959 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 1960 target_ulong val) 1961 { 1962 env->scounteren = val; 1963 return RISCV_EXCP_NONE; 1964 } 1965 1966 /* Supervisor Trap Handling */ 1967 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 1968 Int128 *val) 1969 { 1970 *val = int128_make128(env->sscratch, env->sscratchh); 1971 return RISCV_EXCP_NONE; 1972 } 1973 1974 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 1975 Int128 val) 1976 { 1977 env->sscratch = int128_getlo(val); 1978 env->sscratchh = int128_gethi(val); 1979 return RISCV_EXCP_NONE; 1980 } 1981 1982 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 1983 target_ulong *val) 1984 { 1985 *val = env->sscratch; 1986 return RISCV_EXCP_NONE; 1987 } 1988 1989 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 1990 target_ulong val) 1991 { 1992 env->sscratch = val; 1993 return RISCV_EXCP_NONE; 1994 } 1995 1996 static RISCVException read_sepc(CPURISCVState *env, int csrno, 1997 target_ulong *val) 1998 { 1999 *val = env->sepc; 2000 return RISCV_EXCP_NONE; 2001 } 2002 2003 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2004 target_ulong val) 2005 { 2006 env->sepc = val; 2007 return RISCV_EXCP_NONE; 2008 } 2009 2010 static RISCVException read_scause(CPURISCVState *env, int csrno, 2011 target_ulong *val) 2012 { 2013 *val = env->scause; 2014 return RISCV_EXCP_NONE; 2015 } 2016 2017 static RISCVException write_scause(CPURISCVState *env, int csrno, 2018 target_ulong val) 2019 { 2020 env->scause = val; 2021 return RISCV_EXCP_NONE; 2022 } 2023 2024 static RISCVException read_stval(CPURISCVState *env, int csrno, 2025 target_ulong *val) 2026 { 2027 *val = env->stval; 2028 return RISCV_EXCP_NONE; 2029 } 2030 2031 static RISCVException write_stval(CPURISCVState *env, int csrno, 2032 target_ulong val) 2033 { 2034 env->stval = val; 2035 return RISCV_EXCP_NONE; 2036 } 2037 2038 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2039 uint64_t *ret_val, 2040 uint64_t new_val, uint64_t wr_mask) 2041 { 2042 RISCVException ret; 2043 uint64_t rval, vsbits, mask = env->hideleg & vsip_writable_mask; 2044 2045 /* Bring VS-level bits to correct position */ 2046 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2047 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2048 new_val |= vsbits << 1; 2049 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2050 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2051 wr_mask |= vsbits << 1; 2052 2053 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask & mask); 2054 if (ret_val) { 2055 rval &= mask; 2056 vsbits = rval & VS_MODE_INTERRUPTS; 2057 rval &= ~VS_MODE_INTERRUPTS; 2058 *ret_val = rval | (vsbits >> 1); 2059 } 2060 2061 return ret; 2062 } 2063 2064 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2065 target_ulong *ret_val, 2066 target_ulong new_val, target_ulong wr_mask) 2067 { 2068 uint64_t rval; 2069 RISCVException ret; 2070 2071 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2072 if (ret_val) { 2073 *ret_val = rval; 2074 } 2075 2076 return ret; 2077 } 2078 2079 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2080 target_ulong *ret_val, 2081 target_ulong new_val, target_ulong wr_mask) 2082 { 2083 uint64_t rval; 2084 RISCVException ret; 2085 2086 ret = rmw_vsip64(env, csrno, &rval, 2087 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2088 if (ret_val) { 2089 *ret_val = rval >> 32; 2090 } 2091 2092 return ret; 2093 } 2094 2095 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2096 uint64_t *ret_val, 2097 uint64_t new_val, uint64_t wr_mask) 2098 { 2099 RISCVException ret; 2100 uint64_t mask = env->mideleg & sip_writable_mask; 2101 2102 if (riscv_cpu_virt_enabled(env)) { 2103 if (env->hvictl & HVICTL_VTI) { 2104 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2105 } 2106 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2107 } else { 2108 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2109 } 2110 2111 if (ret_val) { 2112 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2113 } 2114 2115 return ret; 2116 } 2117 2118 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2119 target_ulong *ret_val, 2120 target_ulong new_val, target_ulong wr_mask) 2121 { 2122 uint64_t rval; 2123 RISCVException ret; 2124 2125 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2126 if (ret_val) { 2127 *ret_val = rval; 2128 } 2129 2130 return ret; 2131 } 2132 2133 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2134 target_ulong *ret_val, 2135 target_ulong new_val, target_ulong wr_mask) 2136 { 2137 uint64_t rval; 2138 RISCVException ret; 2139 2140 ret = rmw_sip64(env, csrno, &rval, 2141 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2142 if (ret_val) { 2143 *ret_val = rval >> 32; 2144 } 2145 2146 return ret; 2147 } 2148 2149 /* Supervisor Protection and Translation */ 2150 static RISCVException read_satp(CPURISCVState *env, int csrno, 2151 target_ulong *val) 2152 { 2153 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2154 *val = 0; 2155 return RISCV_EXCP_NONE; 2156 } 2157 2158 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2159 return RISCV_EXCP_ILLEGAL_INST; 2160 } else { 2161 *val = env->satp; 2162 } 2163 2164 return RISCV_EXCP_NONE; 2165 } 2166 2167 static RISCVException write_satp(CPURISCVState *env, int csrno, 2168 target_ulong val) 2169 { 2170 target_ulong vm, mask; 2171 2172 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2173 return RISCV_EXCP_NONE; 2174 } 2175 2176 if (riscv_cpu_mxl(env) == MXL_RV32) { 2177 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2178 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2179 } else { 2180 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2181 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2182 } 2183 2184 if (vm && mask) { 2185 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2186 return RISCV_EXCP_ILLEGAL_INST; 2187 } else { 2188 /* 2189 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2190 * pass these through QEMU's TLB emulation as it improves 2191 * performance. Flushing the TLB on SATP writes with paging 2192 * enabled avoids leaking those invalid cached mappings. 2193 */ 2194 tlb_flush(env_cpu(env)); 2195 env->satp = val; 2196 } 2197 } 2198 return RISCV_EXCP_NONE; 2199 } 2200 2201 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2202 { 2203 int irq, ret; 2204 target_ulong topei; 2205 uint64_t vseip, vsgein; 2206 uint32_t iid, iprio, hviid, hviprio, gein; 2207 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2208 2209 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2210 hviid = get_field(env->hvictl, HVICTL_IID); 2211 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2212 2213 if (gein) { 2214 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2215 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2216 if (gein <= env->geilen && vseip) { 2217 siid[scount] = IRQ_S_EXT; 2218 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2219 if (env->aia_ireg_rmw_fn[PRV_S]) { 2220 /* 2221 * Call machine specific IMSIC register emulation for 2222 * reading TOPEI. 2223 */ 2224 ret = env->aia_ireg_rmw_fn[PRV_S]( 2225 env->aia_ireg_rmw_fn_arg[PRV_S], 2226 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2227 riscv_cpu_mxl_bits(env)), 2228 &topei, 0, 0); 2229 if (!ret && topei) { 2230 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2231 } 2232 } 2233 scount++; 2234 } 2235 } else { 2236 if (hviid == IRQ_S_EXT && hviprio) { 2237 siid[scount] = IRQ_S_EXT; 2238 siprio[scount] = hviprio; 2239 scount++; 2240 } 2241 } 2242 2243 if (env->hvictl & HVICTL_VTI) { 2244 if (hviid != IRQ_S_EXT) { 2245 siid[scount] = hviid; 2246 siprio[scount] = hviprio; 2247 scount++; 2248 } 2249 } else { 2250 irq = riscv_cpu_vsirq_pending(env); 2251 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2252 siid[scount] = irq; 2253 siprio[scount] = env->hviprio[irq]; 2254 scount++; 2255 } 2256 } 2257 2258 iid = 0; 2259 iprio = UINT_MAX; 2260 for (s = 0; s < scount; s++) { 2261 if (siprio[s] < iprio) { 2262 iid = siid[s]; 2263 iprio = siprio[s]; 2264 } 2265 } 2266 2267 if (iid) { 2268 if (env->hvictl & HVICTL_IPRIOM) { 2269 if (iprio > IPRIO_MMAXIPRIO) { 2270 iprio = IPRIO_MMAXIPRIO; 2271 } 2272 if (!iprio) { 2273 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2274 iprio = IPRIO_MMAXIPRIO; 2275 } 2276 } 2277 } else { 2278 iprio = 1; 2279 } 2280 } else { 2281 iprio = 0; 2282 } 2283 2284 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2285 *val |= iprio; 2286 return RISCV_EXCP_NONE; 2287 } 2288 2289 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2290 { 2291 int irq; 2292 uint8_t iprio; 2293 2294 if (riscv_cpu_virt_enabled(env)) { 2295 return read_vstopi(env, CSR_VSTOPI, val); 2296 } 2297 2298 irq = riscv_cpu_sirq_pending(env); 2299 if (irq <= 0 || irq > 63) { 2300 *val = 0; 2301 } else { 2302 iprio = env->siprio[irq]; 2303 if (!iprio) { 2304 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2305 iprio = IPRIO_MMAXIPRIO; 2306 } 2307 } 2308 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2309 *val |= iprio; 2310 } 2311 2312 return RISCV_EXCP_NONE; 2313 } 2314 2315 /* Hypervisor Extensions */ 2316 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2317 target_ulong *val) 2318 { 2319 *val = env->hstatus; 2320 if (riscv_cpu_mxl(env) != MXL_RV32) { 2321 /* We only support 64-bit VSXL */ 2322 *val = set_field(*val, HSTATUS_VSXL, 2); 2323 } 2324 /* We only support little endian */ 2325 *val = set_field(*val, HSTATUS_VSBE, 0); 2326 return RISCV_EXCP_NONE; 2327 } 2328 2329 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2330 target_ulong val) 2331 { 2332 env->hstatus = val; 2333 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2334 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2335 } 2336 if (get_field(val, HSTATUS_VSBE) != 0) { 2337 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2338 } 2339 return RISCV_EXCP_NONE; 2340 } 2341 2342 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2343 target_ulong *val) 2344 { 2345 *val = env->hedeleg; 2346 return RISCV_EXCP_NONE; 2347 } 2348 2349 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2350 target_ulong val) 2351 { 2352 env->hedeleg = val & vs_delegable_excps; 2353 return RISCV_EXCP_NONE; 2354 } 2355 2356 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2357 uint64_t *ret_val, 2358 uint64_t new_val, uint64_t wr_mask) 2359 { 2360 uint64_t mask = wr_mask & vs_delegable_ints; 2361 2362 if (ret_val) { 2363 *ret_val = env->hideleg & vs_delegable_ints; 2364 } 2365 2366 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2367 return RISCV_EXCP_NONE; 2368 } 2369 2370 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2371 target_ulong *ret_val, 2372 target_ulong new_val, target_ulong wr_mask) 2373 { 2374 uint64_t rval; 2375 RISCVException ret; 2376 2377 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2378 if (ret_val) { 2379 *ret_val = rval; 2380 } 2381 2382 return ret; 2383 } 2384 2385 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2386 target_ulong *ret_val, 2387 target_ulong new_val, target_ulong wr_mask) 2388 { 2389 uint64_t rval; 2390 RISCVException ret; 2391 2392 ret = rmw_hideleg64(env, csrno, &rval, 2393 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2394 if (ret_val) { 2395 *ret_val = rval >> 32; 2396 } 2397 2398 return ret; 2399 } 2400 2401 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2402 uint64_t *ret_val, 2403 uint64_t new_val, uint64_t wr_mask) 2404 { 2405 RISCVException ret; 2406 2407 ret = rmw_mip64(env, csrno, ret_val, new_val, 2408 wr_mask & hvip_writable_mask); 2409 if (ret_val) { 2410 *ret_val &= VS_MODE_INTERRUPTS; 2411 } 2412 2413 return ret; 2414 } 2415 2416 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2417 target_ulong *ret_val, 2418 target_ulong new_val, target_ulong wr_mask) 2419 { 2420 uint64_t rval; 2421 RISCVException ret; 2422 2423 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2424 if (ret_val) { 2425 *ret_val = rval; 2426 } 2427 2428 return ret; 2429 } 2430 2431 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2432 target_ulong *ret_val, 2433 target_ulong new_val, target_ulong wr_mask) 2434 { 2435 uint64_t rval; 2436 RISCVException ret; 2437 2438 ret = rmw_hvip64(env, csrno, &rval, 2439 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2440 if (ret_val) { 2441 *ret_val = rval >> 32; 2442 } 2443 2444 return ret; 2445 } 2446 2447 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2448 target_ulong *ret_value, 2449 target_ulong new_value, target_ulong write_mask) 2450 { 2451 int ret = rmw_mip(env, csrno, ret_value, new_value, 2452 write_mask & hip_writable_mask); 2453 2454 if (ret_value) { 2455 *ret_value &= HS_MODE_INTERRUPTS; 2456 } 2457 return ret; 2458 } 2459 2460 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2461 target_ulong *ret_val, 2462 target_ulong new_val, target_ulong wr_mask) 2463 { 2464 uint64_t rval; 2465 RISCVException ret; 2466 2467 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2468 if (ret_val) { 2469 *ret_val = rval & HS_MODE_INTERRUPTS; 2470 } 2471 2472 return ret; 2473 } 2474 2475 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2476 target_ulong *val) 2477 { 2478 *val = env->hcounteren; 2479 return RISCV_EXCP_NONE; 2480 } 2481 2482 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2483 target_ulong val) 2484 { 2485 env->hcounteren = val; 2486 return RISCV_EXCP_NONE; 2487 } 2488 2489 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2490 target_ulong *val) 2491 { 2492 if (val) { 2493 *val = env->hgeie; 2494 } 2495 return RISCV_EXCP_NONE; 2496 } 2497 2498 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2499 target_ulong val) 2500 { 2501 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2502 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2503 env->hgeie = val; 2504 /* Update mip.SGEIP bit */ 2505 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2506 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2507 return RISCV_EXCP_NONE; 2508 } 2509 2510 static RISCVException read_htval(CPURISCVState *env, int csrno, 2511 target_ulong *val) 2512 { 2513 *val = env->htval; 2514 return RISCV_EXCP_NONE; 2515 } 2516 2517 static RISCVException write_htval(CPURISCVState *env, int csrno, 2518 target_ulong val) 2519 { 2520 env->htval = val; 2521 return RISCV_EXCP_NONE; 2522 } 2523 2524 static RISCVException read_htinst(CPURISCVState *env, int csrno, 2525 target_ulong *val) 2526 { 2527 *val = env->htinst; 2528 return RISCV_EXCP_NONE; 2529 } 2530 2531 static RISCVException write_htinst(CPURISCVState *env, int csrno, 2532 target_ulong val) 2533 { 2534 return RISCV_EXCP_NONE; 2535 } 2536 2537 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 2538 target_ulong *val) 2539 { 2540 if (val) { 2541 *val = env->hgeip; 2542 } 2543 return RISCV_EXCP_NONE; 2544 } 2545 2546 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 2547 target_ulong *val) 2548 { 2549 *val = env->hgatp; 2550 return RISCV_EXCP_NONE; 2551 } 2552 2553 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 2554 target_ulong val) 2555 { 2556 env->hgatp = val; 2557 return RISCV_EXCP_NONE; 2558 } 2559 2560 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 2561 target_ulong *val) 2562 { 2563 if (!env->rdtime_fn) { 2564 return RISCV_EXCP_ILLEGAL_INST; 2565 } 2566 2567 *val = env->htimedelta; 2568 return RISCV_EXCP_NONE; 2569 } 2570 2571 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 2572 target_ulong val) 2573 { 2574 if (!env->rdtime_fn) { 2575 return RISCV_EXCP_ILLEGAL_INST; 2576 } 2577 2578 if (riscv_cpu_mxl(env) == MXL_RV32) { 2579 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 2580 } else { 2581 env->htimedelta = val; 2582 } 2583 return RISCV_EXCP_NONE; 2584 } 2585 2586 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 2587 target_ulong *val) 2588 { 2589 if (!env->rdtime_fn) { 2590 return RISCV_EXCP_ILLEGAL_INST; 2591 } 2592 2593 *val = env->htimedelta >> 32; 2594 return RISCV_EXCP_NONE; 2595 } 2596 2597 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 2598 target_ulong val) 2599 { 2600 if (!env->rdtime_fn) { 2601 return RISCV_EXCP_ILLEGAL_INST; 2602 } 2603 2604 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 2605 return RISCV_EXCP_NONE; 2606 } 2607 2608 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 2609 { 2610 *val = env->hvictl; 2611 return RISCV_EXCP_NONE; 2612 } 2613 2614 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 2615 { 2616 env->hvictl = val & HVICTL_VALID_MASK; 2617 return RISCV_EXCP_NONE; 2618 } 2619 2620 static int read_hvipriox(CPURISCVState *env, int first_index, 2621 uint8_t *iprio, target_ulong *val) 2622 { 2623 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2624 2625 /* First index has to be a multiple of number of irqs per register */ 2626 if (first_index % num_irqs) { 2627 return (riscv_cpu_virt_enabled(env)) ? 2628 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2629 } 2630 2631 /* Fill-up return value */ 2632 *val = 0; 2633 for (i = 0; i < num_irqs; i++) { 2634 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2635 continue; 2636 } 2637 if (rdzero) { 2638 continue; 2639 } 2640 *val |= ((target_ulong)iprio[irq]) << (i * 8); 2641 } 2642 2643 return RISCV_EXCP_NONE; 2644 } 2645 2646 static int write_hvipriox(CPURISCVState *env, int first_index, 2647 uint8_t *iprio, target_ulong val) 2648 { 2649 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2650 2651 /* First index has to be a multiple of number of irqs per register */ 2652 if (first_index % num_irqs) { 2653 return (riscv_cpu_virt_enabled(env)) ? 2654 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2655 } 2656 2657 /* Fill-up priority arrary */ 2658 for (i = 0; i < num_irqs; i++) { 2659 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2660 continue; 2661 } 2662 if (rdzero) { 2663 iprio[irq] = 0; 2664 } else { 2665 iprio[irq] = (val >> (i * 8)) & 0xff; 2666 } 2667 } 2668 2669 return RISCV_EXCP_NONE; 2670 } 2671 2672 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 2673 { 2674 return read_hvipriox(env, 0, env->hviprio, val); 2675 } 2676 2677 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 2678 { 2679 return write_hvipriox(env, 0, env->hviprio, val); 2680 } 2681 2682 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 2683 { 2684 return read_hvipriox(env, 4, env->hviprio, val); 2685 } 2686 2687 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 2688 { 2689 return write_hvipriox(env, 4, env->hviprio, val); 2690 } 2691 2692 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 2693 { 2694 return read_hvipriox(env, 8, env->hviprio, val); 2695 } 2696 2697 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 2698 { 2699 return write_hvipriox(env, 8, env->hviprio, val); 2700 } 2701 2702 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 2703 { 2704 return read_hvipriox(env, 12, env->hviprio, val); 2705 } 2706 2707 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 2708 { 2709 return write_hvipriox(env, 12, env->hviprio, val); 2710 } 2711 2712 /* Virtual CSR Registers */ 2713 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 2714 target_ulong *val) 2715 { 2716 *val = env->vsstatus; 2717 return RISCV_EXCP_NONE; 2718 } 2719 2720 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 2721 target_ulong val) 2722 { 2723 uint64_t mask = (target_ulong)-1; 2724 if ((val & VSSTATUS64_UXL) == 0) { 2725 mask &= ~VSSTATUS64_UXL; 2726 } 2727 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 2728 return RISCV_EXCP_NONE; 2729 } 2730 2731 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 2732 { 2733 *val = env->vstvec; 2734 return RISCV_EXCP_NONE; 2735 } 2736 2737 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 2738 target_ulong val) 2739 { 2740 env->vstvec = val; 2741 return RISCV_EXCP_NONE; 2742 } 2743 2744 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 2745 target_ulong *val) 2746 { 2747 *val = env->vsscratch; 2748 return RISCV_EXCP_NONE; 2749 } 2750 2751 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 2752 target_ulong val) 2753 { 2754 env->vsscratch = val; 2755 return RISCV_EXCP_NONE; 2756 } 2757 2758 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 2759 target_ulong *val) 2760 { 2761 *val = env->vsepc; 2762 return RISCV_EXCP_NONE; 2763 } 2764 2765 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 2766 target_ulong val) 2767 { 2768 env->vsepc = val; 2769 return RISCV_EXCP_NONE; 2770 } 2771 2772 static RISCVException read_vscause(CPURISCVState *env, int csrno, 2773 target_ulong *val) 2774 { 2775 *val = env->vscause; 2776 return RISCV_EXCP_NONE; 2777 } 2778 2779 static RISCVException write_vscause(CPURISCVState *env, int csrno, 2780 target_ulong val) 2781 { 2782 env->vscause = val; 2783 return RISCV_EXCP_NONE; 2784 } 2785 2786 static RISCVException read_vstval(CPURISCVState *env, int csrno, 2787 target_ulong *val) 2788 { 2789 *val = env->vstval; 2790 return RISCV_EXCP_NONE; 2791 } 2792 2793 static RISCVException write_vstval(CPURISCVState *env, int csrno, 2794 target_ulong val) 2795 { 2796 env->vstval = val; 2797 return RISCV_EXCP_NONE; 2798 } 2799 2800 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 2801 target_ulong *val) 2802 { 2803 *val = env->vsatp; 2804 return RISCV_EXCP_NONE; 2805 } 2806 2807 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 2808 target_ulong val) 2809 { 2810 env->vsatp = val; 2811 return RISCV_EXCP_NONE; 2812 } 2813 2814 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 2815 target_ulong *val) 2816 { 2817 *val = env->mtval2; 2818 return RISCV_EXCP_NONE; 2819 } 2820 2821 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 2822 target_ulong val) 2823 { 2824 env->mtval2 = val; 2825 return RISCV_EXCP_NONE; 2826 } 2827 2828 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 2829 target_ulong *val) 2830 { 2831 *val = env->mtinst; 2832 return RISCV_EXCP_NONE; 2833 } 2834 2835 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 2836 target_ulong val) 2837 { 2838 env->mtinst = val; 2839 return RISCV_EXCP_NONE; 2840 } 2841 2842 /* Physical Memory Protection */ 2843 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 2844 target_ulong *val) 2845 { 2846 *val = mseccfg_csr_read(env); 2847 return RISCV_EXCP_NONE; 2848 } 2849 2850 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 2851 target_ulong val) 2852 { 2853 mseccfg_csr_write(env, val); 2854 return RISCV_EXCP_NONE; 2855 } 2856 2857 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 2858 { 2859 /* TODO: RV128 restriction check */ 2860 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 2861 return false; 2862 } 2863 return true; 2864 } 2865 2866 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 2867 target_ulong *val) 2868 { 2869 uint32_t reg_index = csrno - CSR_PMPCFG0; 2870 2871 if (!check_pmp_reg_index(env, reg_index)) { 2872 return RISCV_EXCP_ILLEGAL_INST; 2873 } 2874 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 2875 return RISCV_EXCP_NONE; 2876 } 2877 2878 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 2879 target_ulong val) 2880 { 2881 uint32_t reg_index = csrno - CSR_PMPCFG0; 2882 2883 if (!check_pmp_reg_index(env, reg_index)) { 2884 return RISCV_EXCP_ILLEGAL_INST; 2885 } 2886 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 2887 return RISCV_EXCP_NONE; 2888 } 2889 2890 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 2891 target_ulong *val) 2892 { 2893 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 2894 return RISCV_EXCP_NONE; 2895 } 2896 2897 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 2898 target_ulong val) 2899 { 2900 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 2901 return RISCV_EXCP_NONE; 2902 } 2903 2904 static RISCVException read_tselect(CPURISCVState *env, int csrno, 2905 target_ulong *val) 2906 { 2907 *val = tselect_csr_read(env); 2908 return RISCV_EXCP_NONE; 2909 } 2910 2911 static RISCVException write_tselect(CPURISCVState *env, int csrno, 2912 target_ulong val) 2913 { 2914 tselect_csr_write(env, val); 2915 return RISCV_EXCP_NONE; 2916 } 2917 2918 static RISCVException read_tdata(CPURISCVState *env, int csrno, 2919 target_ulong *val) 2920 { 2921 /* return 0 in tdata1 to end the trigger enumeration */ 2922 if (env->trigger_cur >= TRIGGER_NUM && csrno == CSR_TDATA1) { 2923 *val = 0; 2924 return RISCV_EXCP_NONE; 2925 } 2926 2927 if (!tdata_available(env, csrno - CSR_TDATA1)) { 2928 return RISCV_EXCP_ILLEGAL_INST; 2929 } 2930 2931 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 2932 return RISCV_EXCP_NONE; 2933 } 2934 2935 static RISCVException write_tdata(CPURISCVState *env, int csrno, 2936 target_ulong val) 2937 { 2938 if (!tdata_available(env, csrno - CSR_TDATA1)) { 2939 return RISCV_EXCP_ILLEGAL_INST; 2940 } 2941 2942 tdata_csr_write(env, csrno - CSR_TDATA1, val); 2943 return RISCV_EXCP_NONE; 2944 } 2945 2946 /* 2947 * Functions to access Pointer Masking feature registers 2948 * We have to check if current priv lvl could modify 2949 * csr in given mode 2950 */ 2951 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 2952 { 2953 int csr_priv = get_field(csrno, 0x300); 2954 int pm_current; 2955 2956 if (env->debugger) { 2957 return false; 2958 } 2959 /* 2960 * If priv lvls differ that means we're accessing csr from higher priv lvl, 2961 * so allow the access 2962 */ 2963 if (env->priv != csr_priv) { 2964 return false; 2965 } 2966 switch (env->priv) { 2967 case PRV_M: 2968 pm_current = get_field(env->mmte, M_PM_CURRENT); 2969 break; 2970 case PRV_S: 2971 pm_current = get_field(env->mmte, S_PM_CURRENT); 2972 break; 2973 case PRV_U: 2974 pm_current = get_field(env->mmte, U_PM_CURRENT); 2975 break; 2976 default: 2977 g_assert_not_reached(); 2978 } 2979 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 2980 return !pm_current; 2981 } 2982 2983 static RISCVException read_mmte(CPURISCVState *env, int csrno, 2984 target_ulong *val) 2985 { 2986 *val = env->mmte & MMTE_MASK; 2987 return RISCV_EXCP_NONE; 2988 } 2989 2990 static RISCVException write_mmte(CPURISCVState *env, int csrno, 2991 target_ulong val) 2992 { 2993 uint64_t mstatus; 2994 target_ulong wpri_val = val & MMTE_MASK; 2995 2996 if (val != wpri_val) { 2997 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 2998 "MMTE: WPRI violation written 0x", val, 2999 "vs expected 0x", wpri_val); 3000 } 3001 /* for machine mode pm.current is hardwired to 1 */ 3002 wpri_val |= MMTE_M_PM_CURRENT; 3003 3004 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3005 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3006 env->mmte = wpri_val | PM_EXT_DIRTY; 3007 riscv_cpu_update_mask(env); 3008 3009 /* Set XS and SD bits, since PM CSRs are dirty */ 3010 mstatus = env->mstatus | MSTATUS_XS; 3011 write_mstatus(env, csrno, mstatus); 3012 return RISCV_EXCP_NONE; 3013 } 3014 3015 static RISCVException read_smte(CPURISCVState *env, int csrno, 3016 target_ulong *val) 3017 { 3018 *val = env->mmte & SMTE_MASK; 3019 return RISCV_EXCP_NONE; 3020 } 3021 3022 static RISCVException write_smte(CPURISCVState *env, int csrno, 3023 target_ulong val) 3024 { 3025 target_ulong wpri_val = val & SMTE_MASK; 3026 3027 if (val != wpri_val) { 3028 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3029 "SMTE: WPRI violation written 0x", val, 3030 "vs expected 0x", wpri_val); 3031 } 3032 3033 /* if pm.current==0 we can't modify current PM CSRs */ 3034 if (check_pm_current_disabled(env, csrno)) { 3035 return RISCV_EXCP_NONE; 3036 } 3037 3038 wpri_val |= (env->mmte & ~SMTE_MASK); 3039 write_mmte(env, csrno, wpri_val); 3040 return RISCV_EXCP_NONE; 3041 } 3042 3043 static RISCVException read_umte(CPURISCVState *env, int csrno, 3044 target_ulong *val) 3045 { 3046 *val = env->mmte & UMTE_MASK; 3047 return RISCV_EXCP_NONE; 3048 } 3049 3050 static RISCVException write_umte(CPURISCVState *env, int csrno, 3051 target_ulong val) 3052 { 3053 target_ulong wpri_val = val & UMTE_MASK; 3054 3055 if (val != wpri_val) { 3056 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3057 "UMTE: WPRI violation written 0x", val, 3058 "vs expected 0x", wpri_val); 3059 } 3060 3061 if (check_pm_current_disabled(env, csrno)) { 3062 return RISCV_EXCP_NONE; 3063 } 3064 3065 wpri_val |= (env->mmte & ~UMTE_MASK); 3066 write_mmte(env, csrno, wpri_val); 3067 return RISCV_EXCP_NONE; 3068 } 3069 3070 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3071 target_ulong *val) 3072 { 3073 *val = env->mpmmask; 3074 return RISCV_EXCP_NONE; 3075 } 3076 3077 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3078 target_ulong val) 3079 { 3080 uint64_t mstatus; 3081 3082 env->mpmmask = val; 3083 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3084 env->cur_pmmask = val; 3085 } 3086 env->mmte |= PM_EXT_DIRTY; 3087 3088 /* Set XS and SD bits, since PM CSRs are dirty */ 3089 mstatus = env->mstatus | MSTATUS_XS; 3090 write_mstatus(env, csrno, mstatus); 3091 return RISCV_EXCP_NONE; 3092 } 3093 3094 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3095 target_ulong *val) 3096 { 3097 *val = env->spmmask; 3098 return RISCV_EXCP_NONE; 3099 } 3100 3101 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3102 target_ulong val) 3103 { 3104 uint64_t mstatus; 3105 3106 /* if pm.current==0 we can't modify current PM CSRs */ 3107 if (check_pm_current_disabled(env, csrno)) { 3108 return RISCV_EXCP_NONE; 3109 } 3110 env->spmmask = val; 3111 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3112 env->cur_pmmask = val; 3113 } 3114 env->mmte |= PM_EXT_DIRTY; 3115 3116 /* Set XS and SD bits, since PM CSRs are dirty */ 3117 mstatus = env->mstatus | MSTATUS_XS; 3118 write_mstatus(env, csrno, mstatus); 3119 return RISCV_EXCP_NONE; 3120 } 3121 3122 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3123 target_ulong *val) 3124 { 3125 *val = env->upmmask; 3126 return RISCV_EXCP_NONE; 3127 } 3128 3129 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3130 target_ulong val) 3131 { 3132 uint64_t mstatus; 3133 3134 /* if pm.current==0 we can't modify current PM CSRs */ 3135 if (check_pm_current_disabled(env, csrno)) { 3136 return RISCV_EXCP_NONE; 3137 } 3138 env->upmmask = val; 3139 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3140 env->cur_pmmask = val; 3141 } 3142 env->mmte |= PM_EXT_DIRTY; 3143 3144 /* Set XS and SD bits, since PM CSRs are dirty */ 3145 mstatus = env->mstatus | MSTATUS_XS; 3146 write_mstatus(env, csrno, mstatus); 3147 return RISCV_EXCP_NONE; 3148 } 3149 3150 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3151 target_ulong *val) 3152 { 3153 *val = env->mpmbase; 3154 return RISCV_EXCP_NONE; 3155 } 3156 3157 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3158 target_ulong val) 3159 { 3160 uint64_t mstatus; 3161 3162 env->mpmbase = val; 3163 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3164 env->cur_pmbase = val; 3165 } 3166 env->mmte |= PM_EXT_DIRTY; 3167 3168 /* Set XS and SD bits, since PM CSRs are dirty */ 3169 mstatus = env->mstatus | MSTATUS_XS; 3170 write_mstatus(env, csrno, mstatus); 3171 return RISCV_EXCP_NONE; 3172 } 3173 3174 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3175 target_ulong *val) 3176 { 3177 *val = env->spmbase; 3178 return RISCV_EXCP_NONE; 3179 } 3180 3181 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3182 target_ulong val) 3183 { 3184 uint64_t mstatus; 3185 3186 /* if pm.current==0 we can't modify current PM CSRs */ 3187 if (check_pm_current_disabled(env, csrno)) { 3188 return RISCV_EXCP_NONE; 3189 } 3190 env->spmbase = val; 3191 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3192 env->cur_pmbase = val; 3193 } 3194 env->mmte |= PM_EXT_DIRTY; 3195 3196 /* Set XS and SD bits, since PM CSRs are dirty */ 3197 mstatus = env->mstatus | MSTATUS_XS; 3198 write_mstatus(env, csrno, mstatus); 3199 return RISCV_EXCP_NONE; 3200 } 3201 3202 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3203 target_ulong *val) 3204 { 3205 *val = env->upmbase; 3206 return RISCV_EXCP_NONE; 3207 } 3208 3209 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3210 target_ulong val) 3211 { 3212 uint64_t mstatus; 3213 3214 /* if pm.current==0 we can't modify current PM CSRs */ 3215 if (check_pm_current_disabled(env, csrno)) { 3216 return RISCV_EXCP_NONE; 3217 } 3218 env->upmbase = val; 3219 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3220 env->cur_pmbase = val; 3221 } 3222 env->mmte |= PM_EXT_DIRTY; 3223 3224 /* Set XS and SD bits, since PM CSRs are dirty */ 3225 mstatus = env->mstatus | MSTATUS_XS; 3226 write_mstatus(env, csrno, mstatus); 3227 return RISCV_EXCP_NONE; 3228 } 3229 3230 #endif 3231 3232 /* Crypto Extension */ 3233 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3234 target_ulong *ret_value, 3235 target_ulong new_value, 3236 target_ulong write_mask) 3237 { 3238 uint16_t random_v; 3239 Error *random_e = NULL; 3240 int random_r; 3241 target_ulong rval; 3242 3243 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3244 if (unlikely(random_r < 0)) { 3245 /* 3246 * Failed, for unknown reasons in the crypto subsystem. 3247 * The best we can do is log the reason and return a 3248 * failure indication to the guest. There is no reason 3249 * we know to expect the failure to be transitory, so 3250 * indicate DEAD to avoid having the guest spin on WAIT. 3251 */ 3252 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3253 __func__, error_get_pretty(random_e)); 3254 error_free(random_e); 3255 rval = SEED_OPST_DEAD; 3256 } else { 3257 rval = random_v | SEED_OPST_ES16; 3258 } 3259 3260 if (ret_value) { 3261 *ret_value = rval; 3262 } 3263 3264 return RISCV_EXCP_NONE; 3265 } 3266 3267 /* 3268 * riscv_csrrw - read and/or update control and status register 3269 * 3270 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3271 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3272 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3273 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3274 */ 3275 3276 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3277 int csrno, 3278 bool write_mask, 3279 RISCVCPU *cpu) 3280 { 3281 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3282 int read_only = get_field(csrno, 0xC00) == 3; 3283 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3284 #if !defined(CONFIG_USER_ONLY) 3285 int csr_priv, effective_priv = env->priv; 3286 3287 if (riscv_has_ext(env, RVH) && env->priv == PRV_S) { 3288 /* 3289 * We are in either HS or VS mode. 3290 * Add 1 to the effective privledge level to allow us to access the 3291 * Hypervisor CSRs. The `hmode` predicate will determine if access 3292 * should be allowed(HS) or if a virtual instruction exception should be 3293 * raised(VS). 3294 */ 3295 effective_priv++; 3296 } 3297 3298 csr_priv = get_field(csrno, 0x300); 3299 if (!env->debugger && (effective_priv < csr_priv)) { 3300 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3301 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3302 } 3303 return RISCV_EXCP_ILLEGAL_INST; 3304 } 3305 #endif 3306 if (write_mask && read_only) { 3307 return RISCV_EXCP_ILLEGAL_INST; 3308 } 3309 3310 /* ensure the CSR extension is enabled. */ 3311 if (!cpu->cfg.ext_icsr) { 3312 return RISCV_EXCP_ILLEGAL_INST; 3313 } 3314 3315 /* check predicate */ 3316 if (!csr_ops[csrno].predicate) { 3317 return RISCV_EXCP_ILLEGAL_INST; 3318 } 3319 3320 if (env->priv_ver < csr_min_priv) { 3321 return RISCV_EXCP_ILLEGAL_INST; 3322 } 3323 3324 return csr_ops[csrno].predicate(env, csrno); 3325 } 3326 3327 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3328 target_ulong *ret_value, 3329 target_ulong new_value, 3330 target_ulong write_mask) 3331 { 3332 RISCVException ret; 3333 target_ulong old_value; 3334 3335 /* execute combined read/write operation if it exists */ 3336 if (csr_ops[csrno].op) { 3337 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3338 } 3339 3340 /* if no accessor exists then return failure */ 3341 if (!csr_ops[csrno].read) { 3342 return RISCV_EXCP_ILLEGAL_INST; 3343 } 3344 /* read old value */ 3345 ret = csr_ops[csrno].read(env, csrno, &old_value); 3346 if (ret != RISCV_EXCP_NONE) { 3347 return ret; 3348 } 3349 3350 /* write value if writable and write mask set, otherwise drop writes */ 3351 if (write_mask) { 3352 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3353 if (csr_ops[csrno].write) { 3354 ret = csr_ops[csrno].write(env, csrno, new_value); 3355 if (ret != RISCV_EXCP_NONE) { 3356 return ret; 3357 } 3358 } 3359 } 3360 3361 /* return old value */ 3362 if (ret_value) { 3363 *ret_value = old_value; 3364 } 3365 3366 return RISCV_EXCP_NONE; 3367 } 3368 3369 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3370 target_ulong *ret_value, 3371 target_ulong new_value, target_ulong write_mask) 3372 { 3373 RISCVCPU *cpu = env_archcpu(env); 3374 3375 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3376 if (ret != RISCV_EXCP_NONE) { 3377 return ret; 3378 } 3379 3380 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3381 } 3382 3383 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3384 Int128 *ret_value, 3385 Int128 new_value, 3386 Int128 write_mask) 3387 { 3388 RISCVException ret; 3389 Int128 old_value; 3390 3391 /* read old value */ 3392 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3393 if (ret != RISCV_EXCP_NONE) { 3394 return ret; 3395 } 3396 3397 /* write value if writable and write mask set, otherwise drop writes */ 3398 if (int128_nz(write_mask)) { 3399 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3400 int128_and(new_value, write_mask)); 3401 if (csr_ops[csrno].write128) { 3402 ret = csr_ops[csrno].write128(env, csrno, new_value); 3403 if (ret != RISCV_EXCP_NONE) { 3404 return ret; 3405 } 3406 } else if (csr_ops[csrno].write) { 3407 /* avoids having to write wrappers for all registers */ 3408 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3409 if (ret != RISCV_EXCP_NONE) { 3410 return ret; 3411 } 3412 } 3413 } 3414 3415 /* return old value */ 3416 if (ret_value) { 3417 *ret_value = old_value; 3418 } 3419 3420 return RISCV_EXCP_NONE; 3421 } 3422 3423 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3424 Int128 *ret_value, 3425 Int128 new_value, Int128 write_mask) 3426 { 3427 RISCVException ret; 3428 RISCVCPU *cpu = env_archcpu(env); 3429 3430 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3431 if (ret != RISCV_EXCP_NONE) { 3432 return ret; 3433 } 3434 3435 if (csr_ops[csrno].read128) { 3436 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3437 } 3438 3439 /* 3440 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3441 * at all defined. 3442 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3443 * significant), for those, this fallback is correctly handling the accesses 3444 */ 3445 target_ulong old_value; 3446 ret = riscv_csrrw_do64(env, csrno, &old_value, 3447 int128_getlo(new_value), 3448 int128_getlo(write_mask)); 3449 if (ret == RISCV_EXCP_NONE && ret_value) { 3450 *ret_value = int128_make64(old_value); 3451 } 3452 return ret; 3453 } 3454 3455 /* 3456 * Debugger support. If not in user mode, set env->debugger before the 3457 * riscv_csrrw call and clear it after the call. 3458 */ 3459 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3460 target_ulong *ret_value, 3461 target_ulong new_value, 3462 target_ulong write_mask) 3463 { 3464 RISCVException ret; 3465 #if !defined(CONFIG_USER_ONLY) 3466 env->debugger = true; 3467 #endif 3468 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3469 #if !defined(CONFIG_USER_ONLY) 3470 env->debugger = false; 3471 #endif 3472 return ret; 3473 } 3474 3475 /* Control and Status Register function table */ 3476 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3477 /* User Floating-Point CSRs */ 3478 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3479 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3480 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3481 /* Vector CSRs */ 3482 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart, 3483 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3484 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat, 3485 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3486 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm, 3487 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3488 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr, 3489 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3490 [CSR_VL] = { "vl", vs, read_vl, 3491 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3492 [CSR_VTYPE] = { "vtype", vs, read_vtype, 3493 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3494 [CSR_VLENB] = { "vlenb", vs, read_vlenb, 3495 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3496 /* User Timers and Counters */ 3497 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 3498 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 3499 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 3500 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 3501 3502 /* 3503 * In privileged mode, the monitor will have to emulate TIME CSRs only if 3504 * rdtime callback is not provided by machine/platform emulation. 3505 */ 3506 [CSR_TIME] = { "time", ctr, read_time }, 3507 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 3508 3509 /* Crypto Extension */ 3510 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 3511 3512 #if !defined(CONFIG_USER_ONLY) 3513 /* Machine Timers and Counters */ 3514 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 3515 write_mhpmcounter }, 3516 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 3517 write_mhpmcounter }, 3518 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 3519 write_mhpmcounterh }, 3520 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 3521 write_mhpmcounterh }, 3522 3523 /* Machine Information Registers */ 3524 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 3525 [CSR_MARCHID] = { "marchid", any, read_marchid }, 3526 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 3527 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 3528 3529 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 3530 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3531 /* Machine Trap Setup */ 3532 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 3533 NULL, read_mstatus_i128 }, 3534 [CSR_MISA] = { "misa", any, read_misa, write_misa, 3535 NULL, read_misa_i128 }, 3536 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 3537 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 3538 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 3539 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 3540 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 3541 write_mcounteren }, 3542 3543 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 3544 write_mstatush }, 3545 3546 /* Machine Trap Handling */ 3547 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 3548 NULL, read_mscratch_i128, write_mscratch_i128 }, 3549 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 3550 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 3551 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 3552 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 3553 3554 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 3555 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 3556 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 3557 3558 /* Machine-Level Interrupts (AIA) */ 3559 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 3560 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 3561 3562 /* Virtual Interrupts for Supervisor Level (AIA) */ 3563 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 3564 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 3565 3566 /* Machine-Level High-Half CSRs (AIA) */ 3567 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 3568 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 3569 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 3570 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 3571 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 3572 3573 /* Execution environment configuration */ 3574 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 3575 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3576 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 3577 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3578 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 3579 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3580 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 3581 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3582 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 3583 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3584 3585 /* Supervisor Trap Setup */ 3586 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 3587 NULL, read_sstatus_i128 }, 3588 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 3589 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 3590 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 3591 write_scounteren }, 3592 3593 /* Supervisor Trap Handling */ 3594 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 3595 NULL, read_sscratch_i128, write_sscratch_i128 }, 3596 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 3597 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 3598 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 3599 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 3600 3601 /* Supervisor Protection and Translation */ 3602 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 3603 3604 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 3605 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 3606 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 3607 3608 /* Supervisor-Level Interrupts (AIA) */ 3609 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 3610 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 3611 3612 /* Supervisor-Level High-Half CSRs (AIA) */ 3613 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 3614 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 3615 3616 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 3617 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3618 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 3619 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3620 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 3621 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3622 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 3623 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3624 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 3625 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3626 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 3627 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3628 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 3629 write_hcounteren, 3630 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3631 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 3632 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3633 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 3634 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3635 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 3636 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3637 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 3638 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3639 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 3640 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3641 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 3642 write_htimedelta, 3643 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3644 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 3645 write_htimedeltah, 3646 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3647 3648 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 3649 write_vsstatus, 3650 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3651 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 3652 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3653 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 3654 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3655 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 3656 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3657 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 3658 write_vsscratch, 3659 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3660 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 3661 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3662 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 3663 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3664 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 3665 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3666 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 3667 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3668 3669 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 3670 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3671 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 3672 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3673 3674 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 3675 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 3676 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 3677 write_hvictl }, 3678 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 3679 write_hviprio1 }, 3680 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 3681 write_hviprio2 }, 3682 3683 /* 3684 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 3685 */ 3686 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 3687 rmw_xiselect }, 3688 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 3689 3690 /* VS-Level Interrupts (H-extension with AIA) */ 3691 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 3692 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 3693 3694 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 3695 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 3696 rmw_hidelegh }, 3697 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 3698 write_ignore }, 3699 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 3700 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 3701 write_hviprio1h }, 3702 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 3703 write_hviprio2h }, 3704 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 3705 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 3706 3707 /* Physical Memory Protection */ 3708 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 3709 .min_priv_ver = PRIV_VERSION_1_11_0 }, 3710 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 3711 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 3712 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 3713 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 3714 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 3715 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 3716 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 3717 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 3718 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 3719 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 3720 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 3721 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 3722 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 3723 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 3724 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 3725 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 3726 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 3727 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 3728 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 3729 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 3730 3731 /* Debug CSRs */ 3732 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 3733 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 3734 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 3735 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 3736 3737 /* User Pointer Masking */ 3738 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 3739 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 3740 write_upmmask }, 3741 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 3742 write_upmbase }, 3743 /* Machine Pointer Masking */ 3744 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 3745 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 3746 write_mpmmask }, 3747 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 3748 write_mpmbase }, 3749 /* Supervisor Pointer Masking */ 3750 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 3751 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 3752 write_spmmask }, 3753 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 3754 write_spmbase }, 3755 3756 /* Performance Counters */ 3757 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 3758 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 3759 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 3760 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 3761 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 3762 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 3763 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 3764 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 3765 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 3766 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 3767 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 3768 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 3769 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 3770 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 3771 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 3772 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 3773 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 3774 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 3775 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 3776 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 3777 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 3778 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 3779 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 3780 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 3781 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 3782 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 3783 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 3784 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 3785 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 3786 3787 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 3788 write_mhpmcounter }, 3789 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 3790 write_mhpmcounter }, 3791 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 3792 write_mhpmcounter }, 3793 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 3794 write_mhpmcounter }, 3795 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 3796 write_mhpmcounter }, 3797 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 3798 write_mhpmcounter }, 3799 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 3800 write_mhpmcounter }, 3801 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 3802 write_mhpmcounter }, 3803 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 3804 write_mhpmcounter }, 3805 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 3806 write_mhpmcounter }, 3807 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 3808 write_mhpmcounter }, 3809 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 3810 write_mhpmcounter }, 3811 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 3812 write_mhpmcounter }, 3813 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 3814 write_mhpmcounter }, 3815 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 3816 write_mhpmcounter }, 3817 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 3818 write_mhpmcounter }, 3819 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 3820 write_mhpmcounter }, 3821 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 3822 write_mhpmcounter }, 3823 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 3824 write_mhpmcounter }, 3825 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 3826 write_mhpmcounter }, 3827 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 3828 write_mhpmcounter }, 3829 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 3830 write_mhpmcounter }, 3831 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 3832 write_mhpmcounter }, 3833 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 3834 write_mhpmcounter }, 3835 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 3836 write_mhpmcounter }, 3837 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 3838 write_mhpmcounter }, 3839 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 3840 write_mhpmcounter }, 3841 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 3842 write_mhpmcounter }, 3843 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 3844 write_mhpmcounter }, 3845 3846 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 3847 write_mcountinhibit, 3848 .min_priv_ver = PRIV_VERSION_1_11_0 }, 3849 3850 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 3851 write_mhpmevent }, 3852 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 3853 write_mhpmevent }, 3854 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 3855 write_mhpmevent }, 3856 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 3857 write_mhpmevent }, 3858 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 3859 write_mhpmevent }, 3860 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 3861 write_mhpmevent }, 3862 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 3863 write_mhpmevent }, 3864 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 3865 write_mhpmevent }, 3866 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 3867 write_mhpmevent }, 3868 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 3869 write_mhpmevent }, 3870 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 3871 write_mhpmevent }, 3872 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 3873 write_mhpmevent }, 3874 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 3875 write_mhpmevent }, 3876 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 3877 write_mhpmevent }, 3878 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 3879 write_mhpmevent }, 3880 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 3881 write_mhpmevent }, 3882 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 3883 write_mhpmevent }, 3884 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 3885 write_mhpmevent }, 3886 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 3887 write_mhpmevent }, 3888 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 3889 write_mhpmevent }, 3890 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 3891 write_mhpmevent }, 3892 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 3893 write_mhpmevent }, 3894 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 3895 write_mhpmevent }, 3896 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 3897 write_mhpmevent }, 3898 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 3899 write_mhpmevent }, 3900 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 3901 write_mhpmevent }, 3902 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 3903 write_mhpmevent }, 3904 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 3905 write_mhpmevent }, 3906 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 3907 write_mhpmevent }, 3908 3909 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 3910 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 3911 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 3912 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 3913 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 3914 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 3915 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 3916 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 3917 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 3918 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 3919 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 3920 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 3921 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 3922 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 3923 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 3924 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 3925 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 3926 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 3927 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 3928 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 3929 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 3930 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 3931 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 3932 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 3933 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 3934 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 3935 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 3936 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 3937 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 3938 3939 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 3940 write_mhpmcounterh }, 3941 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 3942 write_mhpmcounterh }, 3943 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 3944 write_mhpmcounterh }, 3945 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 3946 write_mhpmcounterh }, 3947 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 3948 write_mhpmcounterh }, 3949 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 3950 write_mhpmcounterh }, 3951 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 3952 write_mhpmcounterh }, 3953 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 3954 write_mhpmcounterh }, 3955 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 3956 write_mhpmcounterh }, 3957 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 3958 write_mhpmcounterh }, 3959 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 3960 write_mhpmcounterh }, 3961 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 3962 write_mhpmcounterh }, 3963 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 3964 write_mhpmcounterh }, 3965 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 3966 write_mhpmcounterh }, 3967 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 3968 write_mhpmcounterh }, 3969 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 3970 write_mhpmcounterh }, 3971 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 3972 write_mhpmcounterh }, 3973 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 3974 write_mhpmcounterh }, 3975 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 3976 write_mhpmcounterh }, 3977 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 3978 write_mhpmcounterh }, 3979 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 3980 write_mhpmcounterh }, 3981 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 3982 write_mhpmcounterh }, 3983 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 3984 write_mhpmcounterh }, 3985 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 3986 write_mhpmcounterh }, 3987 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 3988 write_mhpmcounterh }, 3989 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 3990 write_mhpmcounterh }, 3991 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 3992 write_mhpmcounterh }, 3993 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 3994 write_mhpmcounterh }, 3995 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 3996 write_mhpmcounterh }, 3997 #endif /* !CONFIG_USER_ONLY */ 3998 }; 3999