1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "tcg/tcg-cpu.h" 25 #include "pmu.h" 26 #include "time_helper.h" 27 #include "exec/exec-all.h" 28 #include "exec/tb-flush.h" 29 #include "sysemu/cpu-timers.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 33 34 /* CSR function table public API */ 35 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 36 { 37 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 38 } 39 40 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 41 { 42 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 43 } 44 45 /* Predicates */ 46 #if !defined(CONFIG_USER_ONLY) 47 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) 48 { 49 bool virt = env->virt_enabled; 50 51 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 52 return RISCV_EXCP_NONE; 53 } 54 55 if (!(env->mstateen[index] & bit)) { 56 return RISCV_EXCP_ILLEGAL_INST; 57 } 58 59 if (virt) { 60 if (!(env->hstateen[index] & bit)) { 61 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 62 } 63 64 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 65 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 66 } 67 } 68 69 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 70 if (!(env->sstateen[index] & bit)) { 71 return RISCV_EXCP_ILLEGAL_INST; 72 } 73 } 74 75 return RISCV_EXCP_NONE; 76 } 77 #endif 78 79 static RISCVException fs(CPURISCVState *env, int csrno) 80 { 81 #if !defined(CONFIG_USER_ONLY) 82 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 83 !riscv_cpu_cfg(env)->ext_zfinx) { 84 return RISCV_EXCP_ILLEGAL_INST; 85 } 86 87 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 88 return smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR); 89 } 90 #endif 91 return RISCV_EXCP_NONE; 92 } 93 94 static RISCVException vs(CPURISCVState *env, int csrno) 95 { 96 if (riscv_cpu_cfg(env)->ext_zve32x) { 97 #if !defined(CONFIG_USER_ONLY) 98 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 99 return RISCV_EXCP_ILLEGAL_INST; 100 } 101 #endif 102 return RISCV_EXCP_NONE; 103 } 104 return RISCV_EXCP_ILLEGAL_INST; 105 } 106 107 static RISCVException ctr(CPURISCVState *env, int csrno) 108 { 109 #if !defined(CONFIG_USER_ONLY) 110 RISCVCPU *cpu = env_archcpu(env); 111 int ctr_index; 112 target_ulong ctr_mask; 113 int base_csrno = CSR_CYCLE; 114 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 115 116 if (rv32 && csrno >= CSR_CYCLEH) { 117 /* Offset for RV32 hpmcounternh counters */ 118 base_csrno += 0x80; 119 } 120 ctr_index = csrno - base_csrno; 121 ctr_mask = BIT(ctr_index); 122 123 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 124 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 125 if (!riscv_cpu_cfg(env)->ext_zicntr) { 126 return RISCV_EXCP_ILLEGAL_INST; 127 } 128 129 goto skip_ext_pmu_check; 130 } 131 132 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 133 /* No counter is enabled in PMU or the counter is out of range */ 134 return RISCV_EXCP_ILLEGAL_INST; 135 } 136 137 skip_ext_pmu_check: 138 139 if (env->debugger) { 140 return RISCV_EXCP_NONE; 141 } 142 143 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 144 return RISCV_EXCP_ILLEGAL_INST; 145 } 146 147 if (env->virt_enabled) { 148 if (!get_field(env->hcounteren, ctr_mask) || 149 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 150 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 151 } 152 } 153 154 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 155 !get_field(env->scounteren, ctr_mask)) { 156 return RISCV_EXCP_ILLEGAL_INST; 157 } 158 159 #endif 160 return RISCV_EXCP_NONE; 161 } 162 163 static RISCVException ctr32(CPURISCVState *env, int csrno) 164 { 165 if (riscv_cpu_mxl(env) != MXL_RV32) { 166 return RISCV_EXCP_ILLEGAL_INST; 167 } 168 169 return ctr(env, csrno); 170 } 171 172 static RISCVException zcmt(CPURISCVState *env, int csrno) 173 { 174 if (!riscv_cpu_cfg(env)->ext_zcmt) { 175 return RISCV_EXCP_ILLEGAL_INST; 176 } 177 178 #if !defined(CONFIG_USER_ONLY) 179 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); 180 if (ret != RISCV_EXCP_NONE) { 181 return ret; 182 } 183 #endif 184 185 return RISCV_EXCP_NONE; 186 } 187 188 #if !defined(CONFIG_USER_ONLY) 189 static RISCVException mctr(CPURISCVState *env, int csrno) 190 { 191 RISCVCPU *cpu = env_archcpu(env); 192 uint32_t pmu_avail_ctrs = cpu->pmu_avail_ctrs; 193 int ctr_index; 194 int base_csrno = CSR_MHPMCOUNTER3; 195 196 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 197 /* Offset for RV32 mhpmcounternh counters */ 198 csrno -= 0x80; 199 } 200 201 g_assert(csrno >= CSR_MHPMCOUNTER3 && csrno <= CSR_MHPMCOUNTER31); 202 203 ctr_index = csrno - base_csrno; 204 if ((BIT(ctr_index) & pmu_avail_ctrs >> 3) == 0) { 205 /* The PMU is not enabled or counter is out of range */ 206 return RISCV_EXCP_ILLEGAL_INST; 207 } 208 209 return RISCV_EXCP_NONE; 210 } 211 212 static RISCVException mctr32(CPURISCVState *env, int csrno) 213 { 214 if (riscv_cpu_mxl(env) != MXL_RV32) { 215 return RISCV_EXCP_ILLEGAL_INST; 216 } 217 218 return mctr(env, csrno); 219 } 220 221 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 222 { 223 if (!riscv_cpu_cfg(env)->ext_sscofpmf) { 224 return RISCV_EXCP_ILLEGAL_INST; 225 } 226 227 return RISCV_EXCP_NONE; 228 } 229 230 static RISCVException sscofpmf_32(CPURISCVState *env, int csrno) 231 { 232 if (riscv_cpu_mxl(env) != MXL_RV32) { 233 return RISCV_EXCP_ILLEGAL_INST; 234 } 235 236 return sscofpmf(env, csrno); 237 } 238 239 static RISCVException any(CPURISCVState *env, int csrno) 240 { 241 return RISCV_EXCP_NONE; 242 } 243 244 static RISCVException any32(CPURISCVState *env, int csrno) 245 { 246 if (riscv_cpu_mxl(env) != MXL_RV32) { 247 return RISCV_EXCP_ILLEGAL_INST; 248 } 249 250 return any(env, csrno); 251 252 } 253 254 static RISCVException aia_any(CPURISCVState *env, int csrno) 255 { 256 if (!riscv_cpu_cfg(env)->ext_smaia) { 257 return RISCV_EXCP_ILLEGAL_INST; 258 } 259 260 return any(env, csrno); 261 } 262 263 static RISCVException aia_any32(CPURISCVState *env, int csrno) 264 { 265 if (!riscv_cpu_cfg(env)->ext_smaia) { 266 return RISCV_EXCP_ILLEGAL_INST; 267 } 268 269 return any32(env, csrno); 270 } 271 272 static RISCVException smode(CPURISCVState *env, int csrno) 273 { 274 if (riscv_has_ext(env, RVS)) { 275 return RISCV_EXCP_NONE; 276 } 277 278 return RISCV_EXCP_ILLEGAL_INST; 279 } 280 281 static RISCVException smode32(CPURISCVState *env, int csrno) 282 { 283 if (riscv_cpu_mxl(env) != MXL_RV32) { 284 return RISCV_EXCP_ILLEGAL_INST; 285 } 286 287 return smode(env, csrno); 288 } 289 290 static RISCVException aia_smode(CPURISCVState *env, int csrno) 291 { 292 if (!riscv_cpu_cfg(env)->ext_ssaia) { 293 return RISCV_EXCP_ILLEGAL_INST; 294 } 295 296 return smode(env, csrno); 297 } 298 299 static RISCVException aia_smode32(CPURISCVState *env, int csrno) 300 { 301 if (!riscv_cpu_cfg(env)->ext_ssaia) { 302 return RISCV_EXCP_ILLEGAL_INST; 303 } 304 305 return smode32(env, csrno); 306 } 307 308 static RISCVException hmode(CPURISCVState *env, int csrno) 309 { 310 if (riscv_has_ext(env, RVH)) { 311 return RISCV_EXCP_NONE; 312 } 313 314 return RISCV_EXCP_ILLEGAL_INST; 315 } 316 317 static RISCVException hmode32(CPURISCVState *env, int csrno) 318 { 319 if (riscv_cpu_mxl(env) != MXL_RV32) { 320 return RISCV_EXCP_ILLEGAL_INST; 321 } 322 323 return hmode(env, csrno); 324 325 } 326 327 static RISCVException umode(CPURISCVState *env, int csrno) 328 { 329 if (riscv_has_ext(env, RVU)) { 330 return RISCV_EXCP_NONE; 331 } 332 333 return RISCV_EXCP_ILLEGAL_INST; 334 } 335 336 static RISCVException umode32(CPURISCVState *env, int csrno) 337 { 338 if (riscv_cpu_mxl(env) != MXL_RV32) { 339 return RISCV_EXCP_ILLEGAL_INST; 340 } 341 342 return umode(env, csrno); 343 } 344 345 static RISCVException mstateen(CPURISCVState *env, int csrno) 346 { 347 if (!riscv_cpu_cfg(env)->ext_smstateen) { 348 return RISCV_EXCP_ILLEGAL_INST; 349 } 350 351 return any(env, csrno); 352 } 353 354 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 355 { 356 if (!riscv_cpu_cfg(env)->ext_smstateen) { 357 return RISCV_EXCP_ILLEGAL_INST; 358 } 359 360 RISCVException ret = hmode(env, csrno); 361 if (ret != RISCV_EXCP_NONE) { 362 return ret; 363 } 364 365 if (env->debugger) { 366 return RISCV_EXCP_NONE; 367 } 368 369 if (env->priv < PRV_M) { 370 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 371 return RISCV_EXCP_ILLEGAL_INST; 372 } 373 } 374 375 return RISCV_EXCP_NONE; 376 } 377 378 static RISCVException hstateen(CPURISCVState *env, int csrno) 379 { 380 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 381 } 382 383 static RISCVException hstateenh(CPURISCVState *env, int csrno) 384 { 385 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 386 } 387 388 static RISCVException sstateen(CPURISCVState *env, int csrno) 389 { 390 bool virt = env->virt_enabled; 391 int index = csrno - CSR_SSTATEEN0; 392 393 if (!riscv_cpu_cfg(env)->ext_smstateen) { 394 return RISCV_EXCP_ILLEGAL_INST; 395 } 396 397 RISCVException ret = smode(env, csrno); 398 if (ret != RISCV_EXCP_NONE) { 399 return ret; 400 } 401 402 if (env->debugger) { 403 return RISCV_EXCP_NONE; 404 } 405 406 if (env->priv < PRV_M) { 407 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 408 return RISCV_EXCP_ILLEGAL_INST; 409 } 410 411 if (virt) { 412 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 413 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 414 } 415 } 416 } 417 418 return RISCV_EXCP_NONE; 419 } 420 421 static RISCVException sstc(CPURISCVState *env, int csrno) 422 { 423 bool hmode_check = false; 424 425 if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { 426 return RISCV_EXCP_ILLEGAL_INST; 427 } 428 429 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 430 hmode_check = true; 431 } 432 433 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 434 if (ret != RISCV_EXCP_NONE) { 435 return ret; 436 } 437 438 if (env->debugger) { 439 return RISCV_EXCP_NONE; 440 } 441 442 if (env->priv == PRV_M) { 443 return RISCV_EXCP_NONE; 444 } 445 446 /* 447 * No need of separate function for rv32 as menvcfg stores both menvcfg 448 * menvcfgh for RV32. 449 */ 450 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 451 get_field(env->menvcfg, MENVCFG_STCE))) { 452 return RISCV_EXCP_ILLEGAL_INST; 453 } 454 455 if (env->virt_enabled) { 456 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 457 get_field(env->henvcfg, HENVCFG_STCE))) { 458 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 459 } 460 } 461 462 return RISCV_EXCP_NONE; 463 } 464 465 static RISCVException sstc_32(CPURISCVState *env, int csrno) 466 { 467 if (riscv_cpu_mxl(env) != MXL_RV32) { 468 return RISCV_EXCP_ILLEGAL_INST; 469 } 470 471 return sstc(env, csrno); 472 } 473 474 static RISCVException satp(CPURISCVState *env, int csrno) 475 { 476 if (env->priv == PRV_S && !env->virt_enabled && 477 get_field(env->mstatus, MSTATUS_TVM)) { 478 return RISCV_EXCP_ILLEGAL_INST; 479 } 480 if (env->priv == PRV_S && env->virt_enabled && 481 get_field(env->hstatus, HSTATUS_VTVM)) { 482 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 483 } 484 485 return smode(env, csrno); 486 } 487 488 static RISCVException hgatp(CPURISCVState *env, int csrno) 489 { 490 if (env->priv == PRV_S && !env->virt_enabled && 491 get_field(env->mstatus, MSTATUS_TVM)) { 492 return RISCV_EXCP_ILLEGAL_INST; 493 } 494 495 return hmode(env, csrno); 496 } 497 498 /* Checks if PointerMasking registers could be accessed */ 499 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 500 { 501 /* Check if j-ext is present */ 502 if (riscv_has_ext(env, RVJ)) { 503 return RISCV_EXCP_NONE; 504 } 505 return RISCV_EXCP_ILLEGAL_INST; 506 } 507 508 static RISCVException aia_hmode(CPURISCVState *env, int csrno) 509 { 510 if (!riscv_cpu_cfg(env)->ext_ssaia) { 511 return RISCV_EXCP_ILLEGAL_INST; 512 } 513 514 return hmode(env, csrno); 515 } 516 517 static RISCVException aia_hmode32(CPURISCVState *env, int csrno) 518 { 519 if (!riscv_cpu_cfg(env)->ext_ssaia) { 520 return RISCV_EXCP_ILLEGAL_INST; 521 } 522 523 return hmode32(env, csrno); 524 } 525 526 static RISCVException pmp(CPURISCVState *env, int csrno) 527 { 528 if (riscv_cpu_cfg(env)->pmp) { 529 if (csrno <= CSR_PMPCFG3) { 530 uint32_t reg_index = csrno - CSR_PMPCFG0; 531 532 /* TODO: RV128 restriction check */ 533 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 534 return RISCV_EXCP_ILLEGAL_INST; 535 } 536 } 537 538 return RISCV_EXCP_NONE; 539 } 540 541 return RISCV_EXCP_ILLEGAL_INST; 542 } 543 544 static RISCVException have_mseccfg(CPURISCVState *env, int csrno) 545 { 546 if (riscv_cpu_cfg(env)->ext_smepmp) { 547 return RISCV_EXCP_NONE; 548 } 549 if (riscv_cpu_cfg(env)->ext_zkr) { 550 return RISCV_EXCP_NONE; 551 } 552 553 return RISCV_EXCP_ILLEGAL_INST; 554 } 555 556 static RISCVException debug(CPURISCVState *env, int csrno) 557 { 558 if (riscv_cpu_cfg(env)->debug) { 559 return RISCV_EXCP_NONE; 560 } 561 562 return RISCV_EXCP_ILLEGAL_INST; 563 } 564 #endif 565 566 static RISCVException seed(CPURISCVState *env, int csrno) 567 { 568 if (!riscv_cpu_cfg(env)->ext_zkr) { 569 return RISCV_EXCP_ILLEGAL_INST; 570 } 571 572 #if !defined(CONFIG_USER_ONLY) 573 if (env->debugger) { 574 return RISCV_EXCP_NONE; 575 } 576 577 /* 578 * With a CSR read-write instruction: 579 * 1) The seed CSR is always available in machine mode as normal. 580 * 2) Attempted access to seed from virtual modes VS and VU always raises 581 * an exception(virtual instruction exception only if mseccfg.sseed=1). 582 * 3) Without the corresponding access control bit set to 1, any attempted 583 * access to seed from U, S or HS modes will raise an illegal instruction 584 * exception. 585 */ 586 if (env->priv == PRV_M) { 587 return RISCV_EXCP_NONE; 588 } else if (env->virt_enabled) { 589 if (env->mseccfg & MSECCFG_SSEED) { 590 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 591 } else { 592 return RISCV_EXCP_ILLEGAL_INST; 593 } 594 } else { 595 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 596 return RISCV_EXCP_NONE; 597 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 598 return RISCV_EXCP_NONE; 599 } else { 600 return RISCV_EXCP_ILLEGAL_INST; 601 } 602 } 603 #else 604 return RISCV_EXCP_NONE; 605 #endif 606 } 607 608 /* User Floating-Point CSRs */ 609 static RISCVException read_fflags(CPURISCVState *env, int csrno, 610 target_ulong *val) 611 { 612 *val = riscv_cpu_get_fflags(env); 613 return RISCV_EXCP_NONE; 614 } 615 616 static RISCVException write_fflags(CPURISCVState *env, int csrno, 617 target_ulong val) 618 { 619 #if !defined(CONFIG_USER_ONLY) 620 if (riscv_has_ext(env, RVF)) { 621 env->mstatus |= MSTATUS_FS; 622 } 623 #endif 624 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 625 return RISCV_EXCP_NONE; 626 } 627 628 static RISCVException read_frm(CPURISCVState *env, int csrno, 629 target_ulong *val) 630 { 631 *val = env->frm; 632 return RISCV_EXCP_NONE; 633 } 634 635 static RISCVException write_frm(CPURISCVState *env, int csrno, 636 target_ulong val) 637 { 638 #if !defined(CONFIG_USER_ONLY) 639 if (riscv_has_ext(env, RVF)) { 640 env->mstatus |= MSTATUS_FS; 641 } 642 #endif 643 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 644 return RISCV_EXCP_NONE; 645 } 646 647 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 648 target_ulong *val) 649 { 650 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 651 | (env->frm << FSR_RD_SHIFT); 652 return RISCV_EXCP_NONE; 653 } 654 655 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 656 target_ulong val) 657 { 658 #if !defined(CONFIG_USER_ONLY) 659 if (riscv_has_ext(env, RVF)) { 660 env->mstatus |= MSTATUS_FS; 661 } 662 #endif 663 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 664 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 665 return RISCV_EXCP_NONE; 666 } 667 668 static RISCVException read_vtype(CPURISCVState *env, int csrno, 669 target_ulong *val) 670 { 671 uint64_t vill; 672 switch (env->xl) { 673 case MXL_RV32: 674 vill = (uint32_t)env->vill << 31; 675 break; 676 case MXL_RV64: 677 vill = (uint64_t)env->vill << 63; 678 break; 679 default: 680 g_assert_not_reached(); 681 } 682 *val = (target_ulong)vill | env->vtype; 683 return RISCV_EXCP_NONE; 684 } 685 686 static RISCVException read_vl(CPURISCVState *env, int csrno, 687 target_ulong *val) 688 { 689 *val = env->vl; 690 return RISCV_EXCP_NONE; 691 } 692 693 static RISCVException read_vlenb(CPURISCVState *env, int csrno, 694 target_ulong *val) 695 { 696 *val = riscv_cpu_cfg(env)->vlenb; 697 return RISCV_EXCP_NONE; 698 } 699 700 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 701 target_ulong *val) 702 { 703 *val = env->vxrm; 704 return RISCV_EXCP_NONE; 705 } 706 707 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 708 target_ulong val) 709 { 710 #if !defined(CONFIG_USER_ONLY) 711 env->mstatus |= MSTATUS_VS; 712 #endif 713 env->vxrm = val; 714 return RISCV_EXCP_NONE; 715 } 716 717 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 718 target_ulong *val) 719 { 720 *val = env->vxsat; 721 return RISCV_EXCP_NONE; 722 } 723 724 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 725 target_ulong val) 726 { 727 #if !defined(CONFIG_USER_ONLY) 728 env->mstatus |= MSTATUS_VS; 729 #endif 730 env->vxsat = val; 731 return RISCV_EXCP_NONE; 732 } 733 734 static RISCVException read_vstart(CPURISCVState *env, int csrno, 735 target_ulong *val) 736 { 737 *val = env->vstart; 738 return RISCV_EXCP_NONE; 739 } 740 741 static RISCVException write_vstart(CPURISCVState *env, int csrno, 742 target_ulong val) 743 { 744 #if !defined(CONFIG_USER_ONLY) 745 env->mstatus |= MSTATUS_VS; 746 #endif 747 /* 748 * The vstart CSR is defined to have only enough writable bits 749 * to hold the largest element index, i.e. lg2(VLEN) bits. 750 */ 751 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlenb << 3)); 752 return RISCV_EXCP_NONE; 753 } 754 755 static RISCVException read_vcsr(CPURISCVState *env, int csrno, 756 target_ulong *val) 757 { 758 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 759 return RISCV_EXCP_NONE; 760 } 761 762 static RISCVException write_vcsr(CPURISCVState *env, int csrno, 763 target_ulong val) 764 { 765 #if !defined(CONFIG_USER_ONLY) 766 env->mstatus |= MSTATUS_VS; 767 #endif 768 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 769 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 770 return RISCV_EXCP_NONE; 771 } 772 773 /* User Timers and Counters */ 774 static target_ulong get_ticks(bool shift, bool instructions) 775 { 776 int64_t val; 777 target_ulong result; 778 779 #if !defined(CONFIG_USER_ONLY) 780 if (icount_enabled()) { 781 if (instructions) { 782 val = icount_get_raw(); 783 } else { 784 val = icount_get(); 785 } 786 } else { 787 val = cpu_get_host_ticks(); 788 } 789 #else 790 val = cpu_get_host_ticks(); 791 #endif 792 793 if (shift) { 794 result = val >> 32; 795 } else { 796 result = val; 797 } 798 799 return result; 800 } 801 802 #if defined(CONFIG_USER_ONLY) 803 static RISCVException read_time(CPURISCVState *env, int csrno, 804 target_ulong *val) 805 { 806 *val = cpu_get_host_ticks(); 807 return RISCV_EXCP_NONE; 808 } 809 810 static RISCVException read_timeh(CPURISCVState *env, int csrno, 811 target_ulong *val) 812 { 813 *val = cpu_get_host_ticks() >> 32; 814 return RISCV_EXCP_NONE; 815 } 816 817 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 818 target_ulong *val) 819 { 820 *val = get_ticks(false, (csrno == CSR_INSTRET)); 821 return RISCV_EXCP_NONE; 822 } 823 824 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 825 target_ulong *val) 826 { 827 *val = get_ticks(true, (csrno == CSR_INSTRETH)); 828 return RISCV_EXCP_NONE; 829 } 830 831 #else /* CONFIG_USER_ONLY */ 832 833 static RISCVException read_mhpmevent(CPURISCVState *env, int csrno, 834 target_ulong *val) 835 { 836 int evt_index = csrno - CSR_MCOUNTINHIBIT; 837 838 *val = env->mhpmevent_val[evt_index]; 839 840 return RISCV_EXCP_NONE; 841 } 842 843 static RISCVException write_mhpmevent(CPURISCVState *env, int csrno, 844 target_ulong val) 845 { 846 int evt_index = csrno - CSR_MCOUNTINHIBIT; 847 uint64_t mhpmevt_val = val; 848 849 env->mhpmevent_val[evt_index] = val; 850 851 if (riscv_cpu_mxl(env) == MXL_RV32) { 852 mhpmevt_val = mhpmevt_val | 853 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 854 } 855 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 856 857 return RISCV_EXCP_NONE; 858 } 859 860 static RISCVException read_mhpmeventh(CPURISCVState *env, int csrno, 861 target_ulong *val) 862 { 863 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 864 865 *val = env->mhpmeventh_val[evt_index]; 866 867 return RISCV_EXCP_NONE; 868 } 869 870 static RISCVException write_mhpmeventh(CPURISCVState *env, int csrno, 871 target_ulong val) 872 { 873 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 874 uint64_t mhpmevth_val = val; 875 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 876 877 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 878 env->mhpmeventh_val[evt_index] = val; 879 880 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 881 882 return RISCV_EXCP_NONE; 883 } 884 885 static RISCVException write_mhpmcounter(CPURISCVState *env, int csrno, 886 target_ulong val) 887 { 888 int ctr_idx = csrno - CSR_MCYCLE; 889 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 890 uint64_t mhpmctr_val = val; 891 bool instr = riscv_pmu_ctr_monitor_instructions(env, ctr_idx); 892 893 counter->mhpmcounter_val = val; 894 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || instr) { 895 counter->mhpmcounter_prev = get_ticks(false, instr); 896 if (ctr_idx > 2) { 897 if (riscv_cpu_mxl(env) == MXL_RV32) { 898 mhpmctr_val = mhpmctr_val | 899 ((uint64_t)counter->mhpmcounterh_val << 32); 900 } 901 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 902 } 903 } else { 904 /* Other counters can keep incrementing from the given value */ 905 counter->mhpmcounter_prev = val; 906 } 907 908 return RISCV_EXCP_NONE; 909 } 910 911 static RISCVException write_mhpmcounterh(CPURISCVState *env, int csrno, 912 target_ulong val) 913 { 914 int ctr_idx = csrno - CSR_MCYCLEH; 915 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 916 uint64_t mhpmctr_val = counter->mhpmcounter_val; 917 uint64_t mhpmctrh_val = val; 918 bool instr = riscv_pmu_ctr_monitor_instructions(env, ctr_idx); 919 920 counter->mhpmcounterh_val = val; 921 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 922 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || instr) { 923 counter->mhpmcounterh_prev = get_ticks(true, instr); 924 if (ctr_idx > 2) { 925 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 926 } 927 } else { 928 counter->mhpmcounterh_prev = val; 929 } 930 931 return RISCV_EXCP_NONE; 932 } 933 934 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 935 bool upper_half, uint32_t ctr_idx) 936 { 937 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 938 target_ulong ctr_prev = upper_half ? counter->mhpmcounterh_prev : 939 counter->mhpmcounter_prev; 940 target_ulong ctr_val = upper_half ? counter->mhpmcounterh_val : 941 counter->mhpmcounter_val; 942 bool instr = riscv_pmu_ctr_monitor_instructions(env, ctr_idx); 943 944 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 945 /* 946 * Counter should not increment if inhibit bit is set. We can't really 947 * stop the icount counting. Just return the counter value written by 948 * the supervisor to indicate that counter was not incremented. 949 */ 950 if (!counter->started) { 951 *val = ctr_val; 952 return RISCV_EXCP_NONE; 953 } else { 954 /* Mark that the counter has been stopped */ 955 counter->started = false; 956 } 957 } 958 959 /* 960 * The kernel computes the perf delta by subtracting the current value from 961 * the value it initialized previously (ctr_val). 962 */ 963 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || instr) { 964 *val = get_ticks(upper_half, instr) - ctr_prev + ctr_val; 965 } else { 966 *val = ctr_val; 967 } 968 969 return RISCV_EXCP_NONE; 970 } 971 972 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 973 target_ulong *val) 974 { 975 uint16_t ctr_index; 976 977 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 978 ctr_index = csrno - CSR_MCYCLE; 979 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 980 ctr_index = csrno - CSR_CYCLE; 981 } else { 982 return RISCV_EXCP_ILLEGAL_INST; 983 } 984 985 return riscv_pmu_read_ctr(env, val, false, ctr_index); 986 } 987 988 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 989 target_ulong *val) 990 { 991 uint16_t ctr_index; 992 993 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 994 ctr_index = csrno - CSR_MCYCLEH; 995 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 996 ctr_index = csrno - CSR_CYCLEH; 997 } else { 998 return RISCV_EXCP_ILLEGAL_INST; 999 } 1000 1001 return riscv_pmu_read_ctr(env, val, true, ctr_index); 1002 } 1003 1004 static RISCVException read_scountovf(CPURISCVState *env, int csrno, 1005 target_ulong *val) 1006 { 1007 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 1008 int i; 1009 *val = 0; 1010 target_ulong *mhpm_evt_val; 1011 uint64_t of_bit_mask; 1012 1013 if (riscv_cpu_mxl(env) == MXL_RV32) { 1014 mhpm_evt_val = env->mhpmeventh_val; 1015 of_bit_mask = MHPMEVENTH_BIT_OF; 1016 } else { 1017 mhpm_evt_val = env->mhpmevent_val; 1018 of_bit_mask = MHPMEVENT_BIT_OF; 1019 } 1020 1021 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 1022 if ((get_field(env->mcounteren, BIT(i))) && 1023 (mhpm_evt_val[i] & of_bit_mask)) { 1024 *val |= BIT(i); 1025 } 1026 } 1027 1028 return RISCV_EXCP_NONE; 1029 } 1030 1031 static RISCVException read_time(CPURISCVState *env, int csrno, 1032 target_ulong *val) 1033 { 1034 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1035 1036 if (!env->rdtime_fn) { 1037 return RISCV_EXCP_ILLEGAL_INST; 1038 } 1039 1040 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 1041 return RISCV_EXCP_NONE; 1042 } 1043 1044 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1045 target_ulong *val) 1046 { 1047 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1048 1049 if (!env->rdtime_fn) { 1050 return RISCV_EXCP_ILLEGAL_INST; 1051 } 1052 1053 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 1054 return RISCV_EXCP_NONE; 1055 } 1056 1057 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 1058 target_ulong *val) 1059 { 1060 *val = env->vstimecmp; 1061 1062 return RISCV_EXCP_NONE; 1063 } 1064 1065 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 1066 target_ulong *val) 1067 { 1068 *val = env->vstimecmp >> 32; 1069 1070 return RISCV_EXCP_NONE; 1071 } 1072 1073 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1074 target_ulong val) 1075 { 1076 if (riscv_cpu_mxl(env) == MXL_RV32) { 1077 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1078 } else { 1079 env->vstimecmp = val; 1080 } 1081 1082 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1083 env->htimedelta, MIP_VSTIP); 1084 1085 return RISCV_EXCP_NONE; 1086 } 1087 1088 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1089 target_ulong val) 1090 { 1091 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1092 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1093 env->htimedelta, MIP_VSTIP); 1094 1095 return RISCV_EXCP_NONE; 1096 } 1097 1098 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1099 target_ulong *val) 1100 { 1101 if (env->virt_enabled) { 1102 *val = env->vstimecmp; 1103 } else { 1104 *val = env->stimecmp; 1105 } 1106 1107 return RISCV_EXCP_NONE; 1108 } 1109 1110 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1111 target_ulong *val) 1112 { 1113 if (env->virt_enabled) { 1114 *val = env->vstimecmp >> 32; 1115 } else { 1116 *val = env->stimecmp >> 32; 1117 } 1118 1119 return RISCV_EXCP_NONE; 1120 } 1121 1122 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1123 target_ulong val) 1124 { 1125 if (env->virt_enabled) { 1126 if (env->hvictl & HVICTL_VTI) { 1127 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1128 } 1129 return write_vstimecmp(env, csrno, val); 1130 } 1131 1132 if (riscv_cpu_mxl(env) == MXL_RV32) { 1133 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1134 } else { 1135 env->stimecmp = val; 1136 } 1137 1138 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1139 1140 return RISCV_EXCP_NONE; 1141 } 1142 1143 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1144 target_ulong val) 1145 { 1146 if (env->virt_enabled) { 1147 if (env->hvictl & HVICTL_VTI) { 1148 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1149 } 1150 return write_vstimecmph(env, csrno, val); 1151 } 1152 1153 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1154 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1155 1156 return RISCV_EXCP_NONE; 1157 } 1158 1159 #define VSTOPI_NUM_SRCS 5 1160 1161 /* 1162 * All core local interrupts except the fixed ones 0:12. This macro is for 1163 * virtual interrupts logic so please don't change this to avoid messing up 1164 * the whole support, For reference see AIA spec: `5.3 Interrupt filtering and 1165 * virtual interrupts for supervisor level` and `6.3.2 Virtual interrupts for 1166 * VS level`. 1167 */ 1168 #define LOCAL_INTERRUPTS (~0x1FFFULL) 1169 1170 static const uint64_t delegable_ints = 1171 S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS | MIP_LCOFIP; 1172 static const uint64_t vs_delegable_ints = 1173 (VS_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & ~MIP_LCOFIP; 1174 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1175 HS_MODE_INTERRUPTS | LOCAL_INTERRUPTS; 1176 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1177 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1178 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1179 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1180 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1181 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1182 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1183 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1184 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1185 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1186 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1187 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1188 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1189 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1190 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1191 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1192 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1193 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1194 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1195 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1196 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1197 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1198 (1ULL << (RISCV_EXCP_M_ECALL)) | 1199 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1200 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1201 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1202 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1203 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1204 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1205 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1206 1207 /* 1208 * Spec allows for bits 13:63 to be either read-only or writable. 1209 * So far we have interrupt LCOFIP in that region which is writable. 1210 * 1211 * Also, spec allows to inject virtual interrupts in this region even 1212 * without any hardware interrupts for that interrupt number. 1213 * 1214 * For now interrupt in 13:63 region are all kept writable. 13 being 1215 * LCOFIP and 14:63 being virtual only. Change this in future if we 1216 * introduce more interrupts that are not writable. 1217 */ 1218 1219 /* Bit STIP can be an alias of mip.STIP that's why it's writable in mvip. */ 1220 static const uint64_t mvip_writable_mask = MIP_SSIP | MIP_STIP | MIP_SEIP | 1221 LOCAL_INTERRUPTS; 1222 static const uint64_t mvien_writable_mask = MIP_SSIP | MIP_SEIP | 1223 LOCAL_INTERRUPTS; 1224 1225 static const uint64_t sip_writable_mask = SIP_SSIP | LOCAL_INTERRUPTS; 1226 static const uint64_t hip_writable_mask = MIP_VSSIP; 1227 static const uint64_t hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | 1228 MIP_VSEIP | LOCAL_INTERRUPTS; 1229 static const uint64_t hvien_writable_mask = LOCAL_INTERRUPTS; 1230 1231 static const uint64_t vsip_writable_mask = MIP_VSSIP | LOCAL_INTERRUPTS; 1232 1233 const bool valid_vm_1_10_32[16] = { 1234 [VM_1_10_MBARE] = true, 1235 [VM_1_10_SV32] = true 1236 }; 1237 1238 const bool valid_vm_1_10_64[16] = { 1239 [VM_1_10_MBARE] = true, 1240 [VM_1_10_SV39] = true, 1241 [VM_1_10_SV48] = true, 1242 [VM_1_10_SV57] = true 1243 }; 1244 1245 /* Machine Information Registers */ 1246 static RISCVException read_zero(CPURISCVState *env, int csrno, 1247 target_ulong *val) 1248 { 1249 *val = 0; 1250 return RISCV_EXCP_NONE; 1251 } 1252 1253 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1254 target_ulong val) 1255 { 1256 return RISCV_EXCP_NONE; 1257 } 1258 1259 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1260 target_ulong *val) 1261 { 1262 *val = riscv_cpu_cfg(env)->mvendorid; 1263 return RISCV_EXCP_NONE; 1264 } 1265 1266 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1267 target_ulong *val) 1268 { 1269 *val = riscv_cpu_cfg(env)->marchid; 1270 return RISCV_EXCP_NONE; 1271 } 1272 1273 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1274 target_ulong *val) 1275 { 1276 *val = riscv_cpu_cfg(env)->mimpid; 1277 return RISCV_EXCP_NONE; 1278 } 1279 1280 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1281 target_ulong *val) 1282 { 1283 *val = env->mhartid; 1284 return RISCV_EXCP_NONE; 1285 } 1286 1287 /* Machine Trap Setup */ 1288 1289 /* We do not store SD explicitly, only compute it on demand. */ 1290 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1291 { 1292 if ((status & MSTATUS_FS) == MSTATUS_FS || 1293 (status & MSTATUS_VS) == MSTATUS_VS || 1294 (status & MSTATUS_XS) == MSTATUS_XS) { 1295 switch (xl) { 1296 case MXL_RV32: 1297 return status | MSTATUS32_SD; 1298 case MXL_RV64: 1299 return status | MSTATUS64_SD; 1300 case MXL_RV128: 1301 return MSTATUSH128_SD; 1302 default: 1303 g_assert_not_reached(); 1304 } 1305 } 1306 return status; 1307 } 1308 1309 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1310 target_ulong *val) 1311 { 1312 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1313 return RISCV_EXCP_NONE; 1314 } 1315 1316 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1317 { 1318 uint64_t mode_supported = riscv_cpu_cfg(env)->satp_mode.map; 1319 return get_field(mode_supported, (1 << vm)); 1320 } 1321 1322 static target_ulong legalize_xatp(CPURISCVState *env, target_ulong old_xatp, 1323 target_ulong val) 1324 { 1325 target_ulong mask; 1326 bool vm; 1327 if (riscv_cpu_mxl(env) == MXL_RV32) { 1328 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1329 mask = (val ^ old_xatp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1330 } else { 1331 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1332 mask = (val ^ old_xatp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1333 } 1334 1335 if (vm && mask) { 1336 /* 1337 * The ISA defines SATP.MODE=Bare as "no translation", but we still 1338 * pass these through QEMU's TLB emulation as it improves 1339 * performance. Flushing the TLB on SATP writes with paging 1340 * enabled avoids leaking those invalid cached mappings. 1341 */ 1342 tlb_flush(env_cpu(env)); 1343 return val; 1344 } 1345 return old_xatp; 1346 } 1347 1348 static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp, 1349 target_ulong val) 1350 { 1351 bool valid = false; 1352 target_ulong new_mpp = get_field(val, MSTATUS_MPP); 1353 1354 switch (new_mpp) { 1355 case PRV_M: 1356 valid = true; 1357 break; 1358 case PRV_S: 1359 valid = riscv_has_ext(env, RVS); 1360 break; 1361 case PRV_U: 1362 valid = riscv_has_ext(env, RVU); 1363 break; 1364 } 1365 1366 /* Remain field unchanged if new_mpp value is invalid */ 1367 if (!valid) { 1368 val = set_field(val, MSTATUS_MPP, old_mpp); 1369 } 1370 1371 return val; 1372 } 1373 1374 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1375 target_ulong val) 1376 { 1377 uint64_t mstatus = env->mstatus; 1378 uint64_t mask = 0; 1379 RISCVMXL xl = riscv_cpu_mxl(env); 1380 1381 /* 1382 * MPP field have been made WARL since priv version 1.11. However, 1383 * legalization for it will not break any software running on 1.10. 1384 */ 1385 val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val); 1386 1387 /* flush tlb on mstatus fields that affect VM */ 1388 if ((val ^ mstatus) & MSTATUS_MXR) { 1389 tlb_flush(env_cpu(env)); 1390 } 1391 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1392 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1393 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1394 MSTATUS_TW; 1395 1396 if (riscv_has_ext(env, RVF)) { 1397 mask |= MSTATUS_FS; 1398 } 1399 if (riscv_has_ext(env, RVV)) { 1400 mask |= MSTATUS_VS; 1401 } 1402 1403 if (xl != MXL_RV32 || env->debugger) { 1404 if (riscv_has_ext(env, RVH)) { 1405 mask |= MSTATUS_MPV | MSTATUS_GVA; 1406 } 1407 if ((val & MSTATUS64_UXL) != 0) { 1408 mask |= MSTATUS64_UXL; 1409 } 1410 } 1411 1412 mstatus = (mstatus & ~mask) | (val & mask); 1413 1414 env->mstatus = mstatus; 1415 1416 /* 1417 * Except in debug mode, UXL/SXL can only be modified by higher 1418 * privilege mode. So xl will not be changed in normal mode. 1419 */ 1420 if (env->debugger) { 1421 env->xl = cpu_recompute_xl(env); 1422 } 1423 1424 riscv_cpu_update_mask(env); 1425 return RISCV_EXCP_NONE; 1426 } 1427 1428 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1429 target_ulong *val) 1430 { 1431 *val = env->mstatus >> 32; 1432 return RISCV_EXCP_NONE; 1433 } 1434 1435 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1436 target_ulong val) 1437 { 1438 uint64_t valh = (uint64_t)val << 32; 1439 uint64_t mask = riscv_has_ext(env, RVH) ? MSTATUS_MPV | MSTATUS_GVA : 0; 1440 1441 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1442 1443 return RISCV_EXCP_NONE; 1444 } 1445 1446 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1447 Int128 *val) 1448 { 1449 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, 1450 env->mstatus)); 1451 return RISCV_EXCP_NONE; 1452 } 1453 1454 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1455 Int128 *val) 1456 { 1457 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1458 return RISCV_EXCP_NONE; 1459 } 1460 1461 static RISCVException read_misa(CPURISCVState *env, int csrno, 1462 target_ulong *val) 1463 { 1464 target_ulong misa; 1465 1466 switch (env->misa_mxl) { 1467 case MXL_RV32: 1468 misa = (target_ulong)MXL_RV32 << 30; 1469 break; 1470 #ifdef TARGET_RISCV64 1471 case MXL_RV64: 1472 misa = (target_ulong)MXL_RV64 << 62; 1473 break; 1474 #endif 1475 default: 1476 g_assert_not_reached(); 1477 } 1478 1479 *val = misa | env->misa_ext; 1480 return RISCV_EXCP_NONE; 1481 } 1482 1483 static RISCVException write_misa(CPURISCVState *env, int csrno, 1484 target_ulong val) 1485 { 1486 RISCVCPU *cpu = env_archcpu(env); 1487 uint32_t orig_misa_ext = env->misa_ext; 1488 Error *local_err = NULL; 1489 1490 if (!riscv_cpu_cfg(env)->misa_w) { 1491 /* drop write to misa */ 1492 return RISCV_EXCP_NONE; 1493 } 1494 1495 /* Mask extensions that are not supported by this hart */ 1496 val &= env->misa_ext_mask; 1497 1498 /* 1499 * Suppress 'C' if next instruction is not aligned 1500 * TODO: this should check next_pc 1501 */ 1502 if ((val & RVC) && (GETPC() & ~3) != 0) { 1503 val &= ~RVC; 1504 } 1505 1506 /* Disable RVG if any of its dependencies are disabled */ 1507 if (!(val & RVI && val & RVM && val & RVA && 1508 val & RVF && val & RVD)) { 1509 val &= ~RVG; 1510 } 1511 1512 /* If nothing changed, do nothing. */ 1513 if (val == env->misa_ext) { 1514 return RISCV_EXCP_NONE; 1515 } 1516 1517 env->misa_ext = val; 1518 riscv_cpu_validate_set_extensions(cpu, &local_err); 1519 if (local_err != NULL) { 1520 /* Rollback on validation error */ 1521 qemu_log_mask(LOG_GUEST_ERROR, "Unable to write MISA ext value " 1522 "0x%x, keeping existing MISA ext 0x%x\n", 1523 env->misa_ext, orig_misa_ext); 1524 1525 env->misa_ext = orig_misa_ext; 1526 1527 return RISCV_EXCP_NONE; 1528 } 1529 1530 if (!(env->misa_ext & RVF)) { 1531 env->mstatus &= ~MSTATUS_FS; 1532 } 1533 1534 /* flush translation cache */ 1535 tb_flush(env_cpu(env)); 1536 env->xl = riscv_cpu_mxl(env); 1537 return RISCV_EXCP_NONE; 1538 } 1539 1540 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1541 target_ulong *val) 1542 { 1543 *val = env->medeleg; 1544 return RISCV_EXCP_NONE; 1545 } 1546 1547 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1548 target_ulong val) 1549 { 1550 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1551 return RISCV_EXCP_NONE; 1552 } 1553 1554 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1555 uint64_t *ret_val, 1556 uint64_t new_val, uint64_t wr_mask) 1557 { 1558 uint64_t mask = wr_mask & delegable_ints; 1559 1560 if (ret_val) { 1561 *ret_val = env->mideleg; 1562 } 1563 1564 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1565 1566 if (riscv_has_ext(env, RVH)) { 1567 env->mideleg |= HS_MODE_INTERRUPTS; 1568 } 1569 1570 return RISCV_EXCP_NONE; 1571 } 1572 1573 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1574 target_ulong *ret_val, 1575 target_ulong new_val, target_ulong wr_mask) 1576 { 1577 uint64_t rval; 1578 RISCVException ret; 1579 1580 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1581 if (ret_val) { 1582 *ret_val = rval; 1583 } 1584 1585 return ret; 1586 } 1587 1588 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1589 target_ulong *ret_val, 1590 target_ulong new_val, 1591 target_ulong wr_mask) 1592 { 1593 uint64_t rval; 1594 RISCVException ret; 1595 1596 ret = rmw_mideleg64(env, csrno, &rval, 1597 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1598 if (ret_val) { 1599 *ret_val = rval >> 32; 1600 } 1601 1602 return ret; 1603 } 1604 1605 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1606 uint64_t *ret_val, 1607 uint64_t new_val, uint64_t wr_mask) 1608 { 1609 uint64_t mask = wr_mask & all_ints; 1610 1611 if (ret_val) { 1612 *ret_val = env->mie; 1613 } 1614 1615 env->mie = (env->mie & ~mask) | (new_val & mask); 1616 1617 if (!riscv_has_ext(env, RVH)) { 1618 env->mie &= ~((uint64_t)HS_MODE_INTERRUPTS); 1619 } 1620 1621 return RISCV_EXCP_NONE; 1622 } 1623 1624 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1625 target_ulong *ret_val, 1626 target_ulong new_val, target_ulong wr_mask) 1627 { 1628 uint64_t rval; 1629 RISCVException ret; 1630 1631 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1632 if (ret_val) { 1633 *ret_val = rval; 1634 } 1635 1636 return ret; 1637 } 1638 1639 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1640 target_ulong *ret_val, 1641 target_ulong new_val, target_ulong wr_mask) 1642 { 1643 uint64_t rval; 1644 RISCVException ret; 1645 1646 ret = rmw_mie64(env, csrno, &rval, 1647 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1648 if (ret_val) { 1649 *ret_val = rval >> 32; 1650 } 1651 1652 return ret; 1653 } 1654 1655 static RISCVException rmw_mvien64(CPURISCVState *env, int csrno, 1656 uint64_t *ret_val, 1657 uint64_t new_val, uint64_t wr_mask) 1658 { 1659 uint64_t mask = wr_mask & mvien_writable_mask; 1660 1661 if (ret_val) { 1662 *ret_val = env->mvien; 1663 } 1664 1665 env->mvien = (env->mvien & ~mask) | (new_val & mask); 1666 1667 return RISCV_EXCP_NONE; 1668 } 1669 1670 static RISCVException rmw_mvien(CPURISCVState *env, int csrno, 1671 target_ulong *ret_val, 1672 target_ulong new_val, target_ulong wr_mask) 1673 { 1674 uint64_t rval; 1675 RISCVException ret; 1676 1677 ret = rmw_mvien64(env, csrno, &rval, new_val, wr_mask); 1678 if (ret_val) { 1679 *ret_val = rval; 1680 } 1681 1682 return ret; 1683 } 1684 1685 static RISCVException rmw_mvienh(CPURISCVState *env, int csrno, 1686 target_ulong *ret_val, 1687 target_ulong new_val, target_ulong wr_mask) 1688 { 1689 uint64_t rval; 1690 RISCVException ret; 1691 1692 ret = rmw_mvien64(env, csrno, &rval, 1693 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1694 if (ret_val) { 1695 *ret_val = rval >> 32; 1696 } 1697 1698 return ret; 1699 } 1700 1701 static RISCVException read_mtopi(CPURISCVState *env, int csrno, 1702 target_ulong *val) 1703 { 1704 int irq; 1705 uint8_t iprio; 1706 1707 irq = riscv_cpu_mirq_pending(env); 1708 if (irq <= 0 || irq > 63) { 1709 *val = 0; 1710 } else { 1711 iprio = env->miprio[irq]; 1712 if (!iprio) { 1713 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1714 iprio = IPRIO_MMAXIPRIO; 1715 } 1716 } 1717 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1718 *val |= iprio; 1719 } 1720 1721 return RISCV_EXCP_NONE; 1722 } 1723 1724 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1725 { 1726 if (!env->virt_enabled) { 1727 return csrno; 1728 } 1729 1730 switch (csrno) { 1731 case CSR_SISELECT: 1732 return CSR_VSISELECT; 1733 case CSR_SIREG: 1734 return CSR_VSIREG; 1735 case CSR_STOPEI: 1736 return CSR_VSTOPEI; 1737 default: 1738 return csrno; 1739 }; 1740 } 1741 1742 static RISCVException rmw_xiselect(CPURISCVState *env, int csrno, 1743 target_ulong *val, target_ulong new_val, 1744 target_ulong wr_mask) 1745 { 1746 target_ulong *iselect; 1747 1748 /* Translate CSR number for VS-mode */ 1749 csrno = aia_xlate_vs_csrno(env, csrno); 1750 1751 /* Find the iselect CSR based on CSR number */ 1752 switch (csrno) { 1753 case CSR_MISELECT: 1754 iselect = &env->miselect; 1755 break; 1756 case CSR_SISELECT: 1757 iselect = &env->siselect; 1758 break; 1759 case CSR_VSISELECT: 1760 iselect = &env->vsiselect; 1761 break; 1762 default: 1763 return RISCV_EXCP_ILLEGAL_INST; 1764 }; 1765 1766 if (val) { 1767 *val = *iselect; 1768 } 1769 1770 wr_mask &= ISELECT_MASK; 1771 if (wr_mask) { 1772 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1773 } 1774 1775 return RISCV_EXCP_NONE; 1776 } 1777 1778 static int rmw_iprio(target_ulong xlen, 1779 target_ulong iselect, uint8_t *iprio, 1780 target_ulong *val, target_ulong new_val, 1781 target_ulong wr_mask, int ext_irq_no) 1782 { 1783 int i, firq, nirqs; 1784 target_ulong old_val; 1785 1786 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1787 return -EINVAL; 1788 } 1789 if (xlen != 32 && iselect & 0x1) { 1790 return -EINVAL; 1791 } 1792 1793 nirqs = 4 * (xlen / 32); 1794 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1795 1796 old_val = 0; 1797 for (i = 0; i < nirqs; i++) { 1798 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1799 } 1800 1801 if (val) { 1802 *val = old_val; 1803 } 1804 1805 if (wr_mask) { 1806 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1807 for (i = 0; i < nirqs; i++) { 1808 /* 1809 * M-level and S-level external IRQ priority always read-only 1810 * zero. This means default priority order is always preferred 1811 * for M-level and S-level external IRQs. 1812 */ 1813 if ((firq + i) == ext_irq_no) { 1814 continue; 1815 } 1816 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1817 } 1818 } 1819 1820 return 0; 1821 } 1822 1823 static RISCVException rmw_xireg(CPURISCVState *env, int csrno, 1824 target_ulong *val, target_ulong new_val, 1825 target_ulong wr_mask) 1826 { 1827 bool virt, isel_reserved; 1828 uint8_t *iprio; 1829 int ret = -EINVAL; 1830 target_ulong priv, isel, vgein; 1831 1832 /* Translate CSR number for VS-mode */ 1833 csrno = aia_xlate_vs_csrno(env, csrno); 1834 1835 /* Decode register details from CSR number */ 1836 virt = false; 1837 isel_reserved = false; 1838 switch (csrno) { 1839 case CSR_MIREG: 1840 iprio = env->miprio; 1841 isel = env->miselect; 1842 priv = PRV_M; 1843 break; 1844 case CSR_SIREG: 1845 if (env->priv == PRV_S && env->mvien & MIP_SEIP && 1846 env->siselect >= ISELECT_IMSIC_EIDELIVERY && 1847 env->siselect <= ISELECT_IMSIC_EIE63) { 1848 goto done; 1849 } 1850 iprio = env->siprio; 1851 isel = env->siselect; 1852 priv = PRV_S; 1853 break; 1854 case CSR_VSIREG: 1855 iprio = env->hviprio; 1856 isel = env->vsiselect; 1857 priv = PRV_S; 1858 virt = true; 1859 break; 1860 default: 1861 goto done; 1862 }; 1863 1864 /* Find the selected guest interrupt file */ 1865 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1866 1867 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1868 /* Local interrupt priority registers not available for VS-mode */ 1869 if (!virt) { 1870 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1871 isel, iprio, val, new_val, wr_mask, 1872 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1873 } 1874 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1875 /* IMSIC registers only available when machine implements it. */ 1876 if (env->aia_ireg_rmw_fn[priv]) { 1877 /* Selected guest interrupt file should not be zero */ 1878 if (virt && (!vgein || env->geilen < vgein)) { 1879 goto done; 1880 } 1881 /* Call machine specific IMSIC register emulation */ 1882 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1883 AIA_MAKE_IREG(isel, priv, virt, vgein, 1884 riscv_cpu_mxl_bits(env)), 1885 val, new_val, wr_mask); 1886 } 1887 } else { 1888 isel_reserved = true; 1889 } 1890 1891 done: 1892 if (ret) { 1893 return (env->virt_enabled && virt && !isel_reserved) ? 1894 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1895 } 1896 return RISCV_EXCP_NONE; 1897 } 1898 1899 static RISCVException rmw_xtopei(CPURISCVState *env, int csrno, 1900 target_ulong *val, target_ulong new_val, 1901 target_ulong wr_mask) 1902 { 1903 bool virt; 1904 int ret = -EINVAL; 1905 target_ulong priv, vgein; 1906 1907 /* Translate CSR number for VS-mode */ 1908 csrno = aia_xlate_vs_csrno(env, csrno); 1909 1910 /* Decode register details from CSR number */ 1911 virt = false; 1912 switch (csrno) { 1913 case CSR_MTOPEI: 1914 priv = PRV_M; 1915 break; 1916 case CSR_STOPEI: 1917 if (env->mvien & MIP_SEIP && env->priv == PRV_S) { 1918 goto done; 1919 } 1920 priv = PRV_S; 1921 break; 1922 case CSR_VSTOPEI: 1923 priv = PRV_S; 1924 virt = true; 1925 break; 1926 default: 1927 goto done; 1928 }; 1929 1930 /* IMSIC CSRs only available when machine implements IMSIC. */ 1931 if (!env->aia_ireg_rmw_fn[priv]) { 1932 goto done; 1933 } 1934 1935 /* Find the selected guest interrupt file */ 1936 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1937 1938 /* Selected guest interrupt file should be valid */ 1939 if (virt && (!vgein || env->geilen < vgein)) { 1940 goto done; 1941 } 1942 1943 /* Call machine specific IMSIC register emulation for TOPEI */ 1944 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1945 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1946 riscv_cpu_mxl_bits(env)), 1947 val, new_val, wr_mask); 1948 1949 done: 1950 if (ret) { 1951 return (env->virt_enabled && virt) ? 1952 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1953 } 1954 return RISCV_EXCP_NONE; 1955 } 1956 1957 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1958 target_ulong *val) 1959 { 1960 *val = env->mtvec; 1961 return RISCV_EXCP_NONE; 1962 } 1963 1964 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1965 target_ulong val) 1966 { 1967 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1968 if ((val & 3) < 2) { 1969 env->mtvec = val; 1970 } else { 1971 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1972 } 1973 return RISCV_EXCP_NONE; 1974 } 1975 1976 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1977 target_ulong *val) 1978 { 1979 *val = env->mcountinhibit; 1980 return RISCV_EXCP_NONE; 1981 } 1982 1983 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1984 target_ulong val) 1985 { 1986 int cidx; 1987 PMUCTRState *counter; 1988 RISCVCPU *cpu = env_archcpu(env); 1989 1990 /* WARL register - disable unavailable counters; TM bit is always 0 */ 1991 env->mcountinhibit = 1992 val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_IR); 1993 1994 /* Check if any other counter is also monitoring cycles/instructions */ 1995 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1996 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1997 counter = &env->pmu_ctrs[cidx]; 1998 counter->started = true; 1999 } 2000 } 2001 2002 return RISCV_EXCP_NONE; 2003 } 2004 2005 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 2006 target_ulong *val) 2007 { 2008 *val = env->mcounteren; 2009 return RISCV_EXCP_NONE; 2010 } 2011 2012 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 2013 target_ulong val) 2014 { 2015 RISCVCPU *cpu = env_archcpu(env); 2016 2017 /* WARL register - disable unavailable counters */ 2018 env->mcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 2019 COUNTEREN_IR); 2020 return RISCV_EXCP_NONE; 2021 } 2022 2023 /* Machine Trap Handling */ 2024 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 2025 Int128 *val) 2026 { 2027 *val = int128_make128(env->mscratch, env->mscratchh); 2028 return RISCV_EXCP_NONE; 2029 } 2030 2031 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 2032 Int128 val) 2033 { 2034 env->mscratch = int128_getlo(val); 2035 env->mscratchh = int128_gethi(val); 2036 return RISCV_EXCP_NONE; 2037 } 2038 2039 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 2040 target_ulong *val) 2041 { 2042 *val = env->mscratch; 2043 return RISCV_EXCP_NONE; 2044 } 2045 2046 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 2047 target_ulong val) 2048 { 2049 env->mscratch = val; 2050 return RISCV_EXCP_NONE; 2051 } 2052 2053 static RISCVException read_mepc(CPURISCVState *env, int csrno, 2054 target_ulong *val) 2055 { 2056 *val = env->mepc; 2057 return RISCV_EXCP_NONE; 2058 } 2059 2060 static RISCVException write_mepc(CPURISCVState *env, int csrno, 2061 target_ulong val) 2062 { 2063 env->mepc = val; 2064 return RISCV_EXCP_NONE; 2065 } 2066 2067 static RISCVException read_mcause(CPURISCVState *env, int csrno, 2068 target_ulong *val) 2069 { 2070 *val = env->mcause; 2071 return RISCV_EXCP_NONE; 2072 } 2073 2074 static RISCVException write_mcause(CPURISCVState *env, int csrno, 2075 target_ulong val) 2076 { 2077 env->mcause = val; 2078 return RISCV_EXCP_NONE; 2079 } 2080 2081 static RISCVException read_mtval(CPURISCVState *env, int csrno, 2082 target_ulong *val) 2083 { 2084 *val = env->mtval; 2085 return RISCV_EXCP_NONE; 2086 } 2087 2088 static RISCVException write_mtval(CPURISCVState *env, int csrno, 2089 target_ulong val) 2090 { 2091 env->mtval = val; 2092 return RISCV_EXCP_NONE; 2093 } 2094 2095 /* Execution environment configuration setup */ 2096 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 2097 target_ulong *val) 2098 { 2099 *val = env->menvcfg; 2100 return RISCV_EXCP_NONE; 2101 } 2102 2103 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 2104 target_ulong val) 2105 { 2106 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 2107 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 2108 2109 if (riscv_cpu_mxl(env) == MXL_RV64) { 2110 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 2111 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 2112 (cfg->ext_svadu ? MENVCFG_ADUE : 0); 2113 } 2114 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 2115 2116 return RISCV_EXCP_NONE; 2117 } 2118 2119 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 2120 target_ulong *val) 2121 { 2122 *val = env->menvcfg >> 32; 2123 return RISCV_EXCP_NONE; 2124 } 2125 2126 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 2127 target_ulong val) 2128 { 2129 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 2130 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 2131 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 2132 (cfg->ext_svadu ? MENVCFG_ADUE : 0); 2133 uint64_t valh = (uint64_t)val << 32; 2134 2135 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 2136 2137 return RISCV_EXCP_NONE; 2138 } 2139 2140 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 2141 target_ulong *val) 2142 { 2143 RISCVException ret; 2144 2145 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2146 if (ret != RISCV_EXCP_NONE) { 2147 return ret; 2148 } 2149 2150 *val = env->senvcfg; 2151 return RISCV_EXCP_NONE; 2152 } 2153 2154 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 2155 target_ulong val) 2156 { 2157 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 2158 RISCVException ret; 2159 2160 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2161 if (ret != RISCV_EXCP_NONE) { 2162 return ret; 2163 } 2164 2165 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 2166 return RISCV_EXCP_NONE; 2167 } 2168 2169 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 2170 target_ulong *val) 2171 { 2172 RISCVException ret; 2173 2174 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2175 if (ret != RISCV_EXCP_NONE) { 2176 return ret; 2177 } 2178 2179 /* 2180 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 2181 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 2182 * henvcfg.adue is read_only 0 when menvcfg.adue = 0 2183 */ 2184 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | 2185 env->menvcfg); 2186 return RISCV_EXCP_NONE; 2187 } 2188 2189 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 2190 target_ulong val) 2191 { 2192 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 2193 RISCVException ret; 2194 2195 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2196 if (ret != RISCV_EXCP_NONE) { 2197 return ret; 2198 } 2199 2200 if (riscv_cpu_mxl(env) == MXL_RV64) { 2201 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE); 2202 } 2203 2204 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 2205 2206 return RISCV_EXCP_NONE; 2207 } 2208 2209 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 2210 target_ulong *val) 2211 { 2212 RISCVException ret; 2213 2214 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2215 if (ret != RISCV_EXCP_NONE) { 2216 return ret; 2217 } 2218 2219 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | 2220 env->menvcfg)) >> 32; 2221 return RISCV_EXCP_NONE; 2222 } 2223 2224 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2225 target_ulong val) 2226 { 2227 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 2228 HENVCFG_ADUE); 2229 uint64_t valh = (uint64_t)val << 32; 2230 RISCVException ret; 2231 2232 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2233 if (ret != RISCV_EXCP_NONE) { 2234 return ret; 2235 } 2236 2237 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2238 return RISCV_EXCP_NONE; 2239 } 2240 2241 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2242 target_ulong *val) 2243 { 2244 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2245 2246 return RISCV_EXCP_NONE; 2247 } 2248 2249 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2250 uint64_t wr_mask, target_ulong new_val) 2251 { 2252 uint64_t *reg; 2253 2254 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2255 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2256 2257 return RISCV_EXCP_NONE; 2258 } 2259 2260 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2261 target_ulong new_val) 2262 { 2263 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2264 if (!riscv_has_ext(env, RVF)) { 2265 wr_mask |= SMSTATEEN0_FCSR; 2266 } 2267 2268 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 2269 wr_mask |= SMSTATEEN0_P1P13; 2270 } 2271 2272 return write_mstateen(env, csrno, wr_mask, new_val); 2273 } 2274 2275 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2276 target_ulong new_val) 2277 { 2278 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2279 } 2280 2281 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2282 target_ulong *val) 2283 { 2284 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2285 2286 return RISCV_EXCP_NONE; 2287 } 2288 2289 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2290 uint64_t wr_mask, target_ulong new_val) 2291 { 2292 uint64_t *reg, val; 2293 2294 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2295 val = (uint64_t)new_val << 32; 2296 val |= *reg & 0xFFFFFFFF; 2297 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2298 2299 return RISCV_EXCP_NONE; 2300 } 2301 2302 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2303 target_ulong new_val) 2304 { 2305 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2306 2307 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 2308 wr_mask |= SMSTATEEN0_P1P13; 2309 } 2310 2311 return write_mstateenh(env, csrno, wr_mask, new_val); 2312 } 2313 2314 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2315 target_ulong new_val) 2316 { 2317 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2318 } 2319 2320 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2321 target_ulong *val) 2322 { 2323 int index = csrno - CSR_HSTATEEN0; 2324 2325 *val = env->hstateen[index] & env->mstateen[index]; 2326 2327 return RISCV_EXCP_NONE; 2328 } 2329 2330 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2331 uint64_t mask, target_ulong new_val) 2332 { 2333 int index = csrno - CSR_HSTATEEN0; 2334 uint64_t *reg, wr_mask; 2335 2336 reg = &env->hstateen[index]; 2337 wr_mask = env->mstateen[index] & mask; 2338 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2339 2340 return RISCV_EXCP_NONE; 2341 } 2342 2343 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2344 target_ulong new_val) 2345 { 2346 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2347 2348 if (!riscv_has_ext(env, RVF)) { 2349 wr_mask |= SMSTATEEN0_FCSR; 2350 } 2351 2352 return write_hstateen(env, csrno, wr_mask, new_val); 2353 } 2354 2355 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2356 target_ulong new_val) 2357 { 2358 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2359 } 2360 2361 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2362 target_ulong *val) 2363 { 2364 int index = csrno - CSR_HSTATEEN0H; 2365 2366 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2367 2368 return RISCV_EXCP_NONE; 2369 } 2370 2371 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2372 uint64_t mask, target_ulong new_val) 2373 { 2374 int index = csrno - CSR_HSTATEEN0H; 2375 uint64_t *reg, wr_mask, val; 2376 2377 reg = &env->hstateen[index]; 2378 val = (uint64_t)new_val << 32; 2379 val |= *reg & 0xFFFFFFFF; 2380 wr_mask = env->mstateen[index] & mask; 2381 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2382 2383 return RISCV_EXCP_NONE; 2384 } 2385 2386 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2387 target_ulong new_val) 2388 { 2389 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2390 2391 return write_hstateenh(env, csrno, wr_mask, new_val); 2392 } 2393 2394 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2395 target_ulong new_val) 2396 { 2397 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2398 } 2399 2400 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2401 target_ulong *val) 2402 { 2403 bool virt = env->virt_enabled; 2404 int index = csrno - CSR_SSTATEEN0; 2405 2406 *val = env->sstateen[index] & env->mstateen[index]; 2407 if (virt) { 2408 *val &= env->hstateen[index]; 2409 } 2410 2411 return RISCV_EXCP_NONE; 2412 } 2413 2414 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2415 uint64_t mask, target_ulong new_val) 2416 { 2417 bool virt = env->virt_enabled; 2418 int index = csrno - CSR_SSTATEEN0; 2419 uint64_t wr_mask; 2420 uint64_t *reg; 2421 2422 wr_mask = env->mstateen[index] & mask; 2423 if (virt) { 2424 wr_mask &= env->hstateen[index]; 2425 } 2426 2427 reg = &env->sstateen[index]; 2428 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2429 2430 return RISCV_EXCP_NONE; 2431 } 2432 2433 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2434 target_ulong new_val) 2435 { 2436 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2437 2438 if (!riscv_has_ext(env, RVF)) { 2439 wr_mask |= SMSTATEEN0_FCSR; 2440 } 2441 2442 return write_sstateen(env, csrno, wr_mask, new_val); 2443 } 2444 2445 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2446 target_ulong new_val) 2447 { 2448 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2449 } 2450 2451 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2452 uint64_t *ret_val, 2453 uint64_t new_val, uint64_t wr_mask) 2454 { 2455 uint64_t old_mip, mask = wr_mask & delegable_ints; 2456 uint32_t gin; 2457 2458 if (mask & MIP_SEIP) { 2459 env->software_seip = new_val & MIP_SEIP; 2460 new_val |= env->external_seip * MIP_SEIP; 2461 } 2462 2463 if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && 2464 get_field(env->menvcfg, MENVCFG_STCE)) { 2465 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2466 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2467 } 2468 2469 if (mask) { 2470 old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); 2471 } else { 2472 old_mip = env->mip; 2473 } 2474 2475 if (csrno != CSR_HVIP) { 2476 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2477 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2478 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2479 } 2480 2481 if (ret_val) { 2482 *ret_val = old_mip; 2483 } 2484 2485 return RISCV_EXCP_NONE; 2486 } 2487 2488 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2489 target_ulong *ret_val, 2490 target_ulong new_val, target_ulong wr_mask) 2491 { 2492 uint64_t rval; 2493 RISCVException ret; 2494 2495 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2496 if (ret_val) { 2497 *ret_val = rval; 2498 } 2499 2500 return ret; 2501 } 2502 2503 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2504 target_ulong *ret_val, 2505 target_ulong new_val, target_ulong wr_mask) 2506 { 2507 uint64_t rval; 2508 RISCVException ret; 2509 2510 ret = rmw_mip64(env, csrno, &rval, 2511 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2512 if (ret_val) { 2513 *ret_val = rval >> 32; 2514 } 2515 2516 return ret; 2517 } 2518 2519 /* 2520 * The function is written for two use-cases: 2521 * 1- To access mvip csr as is for m-mode access. 2522 * 2- To access sip as a combination of mip and mvip for s-mode. 2523 * 2524 * Both report bits 1, 5, 9 and 13:63 but with the exception of 2525 * STIP being read-only zero in case of mvip when sstc extension 2526 * is present. 2527 * Also, sip needs to be read-only zero when both mideleg[i] and 2528 * mvien[i] are zero but mvip needs to be an alias of mip. 2529 */ 2530 static RISCVException rmw_mvip64(CPURISCVState *env, int csrno, 2531 uint64_t *ret_val, 2532 uint64_t new_val, uint64_t wr_mask) 2533 { 2534 RISCVCPU *cpu = env_archcpu(env); 2535 target_ulong ret_mip = 0; 2536 RISCVException ret; 2537 uint64_t old_mvip; 2538 2539 /* 2540 * mideleg[i] mvien[i] 2541 * 0 0 No delegation. mvip[i] is alias of mip[i]. 2542 * 0 1 mvip[i] becomes source of interrupt, mip bypassed. 2543 * 1 X mip[i] is source of interrupt and mvip[i] aliases 2544 * mip[i]. 2545 * 2546 * So alias condition would be for bits: 2547 * ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (mideleg | ~mvien)) | 2548 * (!sstc & MIP_STIP) 2549 * 2550 * Non-alias condition will be for bits: 2551 * (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~mideleg & mvien) 2552 * 2553 * alias_mask denotes the bits that come from mip nalias_mask denotes bits 2554 * that come from hvip. 2555 */ 2556 uint64_t alias_mask = ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2557 (env->mideleg | ~env->mvien)) | MIP_STIP; 2558 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2559 (~env->mideleg & env->mvien); 2560 uint64_t wr_mask_mvip; 2561 uint64_t wr_mask_mip; 2562 2563 /* 2564 * mideleg[i] mvien[i] 2565 * 0 0 sip[i] read-only zero. 2566 * 0 1 sip[i] alias of mvip[i]. 2567 * 1 X sip[i] alias of mip[i]. 2568 * 2569 * Both alias and non-alias mask remain same for sip except for bits 2570 * which are zero in both mideleg and mvien. 2571 */ 2572 if (csrno == CSR_SIP) { 2573 /* Remove bits that are zero in both mideleg and mvien. */ 2574 alias_mask &= (env->mideleg | env->mvien); 2575 nalias_mask &= (env->mideleg | env->mvien); 2576 } 2577 2578 /* 2579 * If sstc is present, mvip.STIP is not an alias of mip.STIP so clear 2580 * that our in mip returned value. 2581 */ 2582 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2583 get_field(env->menvcfg, MENVCFG_STCE)) { 2584 alias_mask &= ~MIP_STIP; 2585 } 2586 2587 wr_mask_mip = wr_mask & alias_mask & mvip_writable_mask; 2588 wr_mask_mvip = wr_mask & nalias_mask & mvip_writable_mask; 2589 2590 /* 2591 * For bits set in alias_mask, mvip needs to be alias of mip, so forward 2592 * this to rmw_mip. 2593 */ 2594 ret = rmw_mip(env, CSR_MIP, &ret_mip, new_val, wr_mask_mip); 2595 if (ret != RISCV_EXCP_NONE) { 2596 return ret; 2597 } 2598 2599 old_mvip = env->mvip; 2600 2601 /* 2602 * Write to mvip. Update only non-alias bits. Alias bits were updated 2603 * in mip in rmw_mip above. 2604 */ 2605 if (wr_mask_mvip) { 2606 env->mvip = (env->mvip & ~wr_mask_mvip) | (new_val & wr_mask_mvip); 2607 2608 /* 2609 * Given mvip is separate source from mip, we need to trigger interrupt 2610 * from here separately. Normally this happen from riscv_cpu_update_mip. 2611 */ 2612 riscv_cpu_interrupt(env); 2613 } 2614 2615 if (ret_val) { 2616 ret_mip &= alias_mask; 2617 old_mvip &= nalias_mask; 2618 2619 *ret_val = old_mvip | ret_mip; 2620 } 2621 2622 return RISCV_EXCP_NONE; 2623 } 2624 2625 static RISCVException rmw_mvip(CPURISCVState *env, int csrno, 2626 target_ulong *ret_val, 2627 target_ulong new_val, target_ulong wr_mask) 2628 { 2629 uint64_t rval; 2630 RISCVException ret; 2631 2632 ret = rmw_mvip64(env, csrno, &rval, new_val, wr_mask); 2633 if (ret_val) { 2634 *ret_val = rval; 2635 } 2636 2637 return ret; 2638 } 2639 2640 static RISCVException rmw_mviph(CPURISCVState *env, int csrno, 2641 target_ulong *ret_val, 2642 target_ulong new_val, target_ulong wr_mask) 2643 { 2644 uint64_t rval; 2645 RISCVException ret; 2646 2647 ret = rmw_mvip64(env, csrno, &rval, 2648 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2649 if (ret_val) { 2650 *ret_val = rval >> 32; 2651 } 2652 2653 return ret; 2654 } 2655 2656 /* Supervisor Trap Setup */ 2657 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2658 Int128 *val) 2659 { 2660 uint64_t mask = sstatus_v1_10_mask; 2661 uint64_t sstatus = env->mstatus & mask; 2662 if (env->xl != MXL_RV32 || env->debugger) { 2663 mask |= SSTATUS64_UXL; 2664 } 2665 2666 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2667 return RISCV_EXCP_NONE; 2668 } 2669 2670 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2671 target_ulong *val) 2672 { 2673 target_ulong mask = (sstatus_v1_10_mask); 2674 if (env->xl != MXL_RV32 || env->debugger) { 2675 mask |= SSTATUS64_UXL; 2676 } 2677 /* TODO: Use SXL not MXL. */ 2678 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2679 return RISCV_EXCP_NONE; 2680 } 2681 2682 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2683 target_ulong val) 2684 { 2685 target_ulong mask = (sstatus_v1_10_mask); 2686 2687 if (env->xl != MXL_RV32 || env->debugger) { 2688 if ((val & SSTATUS64_UXL) != 0) { 2689 mask |= SSTATUS64_UXL; 2690 } 2691 } 2692 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2693 return write_mstatus(env, CSR_MSTATUS, newval); 2694 } 2695 2696 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2697 uint64_t *ret_val, 2698 uint64_t new_val, uint64_t wr_mask) 2699 { 2700 uint64_t alias_mask = (LOCAL_INTERRUPTS | VS_MODE_INTERRUPTS) & 2701 env->hideleg; 2702 uint64_t nalias_mask = LOCAL_INTERRUPTS & (~env->hideleg & env->hvien); 2703 uint64_t rval, rval_vs, vsbits; 2704 uint64_t wr_mask_vsie; 2705 uint64_t wr_mask_mie; 2706 RISCVException ret; 2707 2708 /* Bring VS-level bits to correct position */ 2709 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2710 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2711 new_val |= vsbits << 1; 2712 2713 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2714 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2715 wr_mask |= vsbits << 1; 2716 2717 wr_mask_mie = wr_mask & alias_mask; 2718 wr_mask_vsie = wr_mask & nalias_mask; 2719 2720 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask_mie); 2721 2722 rval_vs = env->vsie & nalias_mask; 2723 env->vsie = (env->vsie & ~wr_mask_vsie) | (new_val & wr_mask_vsie); 2724 2725 if (ret_val) { 2726 rval &= alias_mask; 2727 vsbits = rval & VS_MODE_INTERRUPTS; 2728 rval &= ~VS_MODE_INTERRUPTS; 2729 *ret_val = rval | (vsbits >> 1) | rval_vs; 2730 } 2731 2732 return ret; 2733 } 2734 2735 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2736 target_ulong *ret_val, 2737 target_ulong new_val, target_ulong wr_mask) 2738 { 2739 uint64_t rval; 2740 RISCVException ret; 2741 2742 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2743 if (ret_val) { 2744 *ret_val = rval; 2745 } 2746 2747 return ret; 2748 } 2749 2750 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2751 target_ulong *ret_val, 2752 target_ulong new_val, target_ulong wr_mask) 2753 { 2754 uint64_t rval; 2755 RISCVException ret; 2756 2757 ret = rmw_vsie64(env, csrno, &rval, 2758 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2759 if (ret_val) { 2760 *ret_val = rval >> 32; 2761 } 2762 2763 return ret; 2764 } 2765 2766 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2767 uint64_t *ret_val, 2768 uint64_t new_val, uint64_t wr_mask) 2769 { 2770 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2771 (~env->mideleg & env->mvien); 2772 uint64_t alias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & env->mideleg; 2773 uint64_t sie_mask = wr_mask & nalias_mask; 2774 RISCVException ret; 2775 2776 /* 2777 * mideleg[i] mvien[i] 2778 * 0 0 sie[i] read-only zero. 2779 * 0 1 sie[i] is a separate writable bit. 2780 * 1 X sie[i] alias of mie[i]. 2781 * 2782 * Both alias and non-alias mask remain same for sip except for bits 2783 * which are zero in both mideleg and mvien. 2784 */ 2785 if (env->virt_enabled) { 2786 if (env->hvictl & HVICTL_VTI) { 2787 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2788 } 2789 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2790 if (ret_val) { 2791 *ret_val &= alias_mask; 2792 } 2793 } else { 2794 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & alias_mask); 2795 if (ret_val) { 2796 *ret_val &= alias_mask; 2797 *ret_val |= env->sie & nalias_mask; 2798 } 2799 2800 env->sie = (env->sie & ~sie_mask) | (new_val & sie_mask); 2801 } 2802 2803 return ret; 2804 } 2805 2806 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2807 target_ulong *ret_val, 2808 target_ulong new_val, target_ulong wr_mask) 2809 { 2810 uint64_t rval; 2811 RISCVException ret; 2812 2813 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2814 if (ret == RISCV_EXCP_NONE && ret_val) { 2815 *ret_val = rval; 2816 } 2817 2818 return ret; 2819 } 2820 2821 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2822 target_ulong *ret_val, 2823 target_ulong new_val, target_ulong wr_mask) 2824 { 2825 uint64_t rval; 2826 RISCVException ret; 2827 2828 ret = rmw_sie64(env, csrno, &rval, 2829 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2830 if (ret_val) { 2831 *ret_val = rval >> 32; 2832 } 2833 2834 return ret; 2835 } 2836 2837 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2838 target_ulong *val) 2839 { 2840 *val = env->stvec; 2841 return RISCV_EXCP_NONE; 2842 } 2843 2844 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2845 target_ulong val) 2846 { 2847 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2848 if ((val & 3) < 2) { 2849 env->stvec = val; 2850 } else { 2851 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2852 } 2853 return RISCV_EXCP_NONE; 2854 } 2855 2856 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2857 target_ulong *val) 2858 { 2859 *val = env->scounteren; 2860 return RISCV_EXCP_NONE; 2861 } 2862 2863 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2864 target_ulong val) 2865 { 2866 env->scounteren = val; 2867 return RISCV_EXCP_NONE; 2868 } 2869 2870 /* Supervisor Trap Handling */ 2871 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2872 Int128 *val) 2873 { 2874 *val = int128_make128(env->sscratch, env->sscratchh); 2875 return RISCV_EXCP_NONE; 2876 } 2877 2878 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2879 Int128 val) 2880 { 2881 env->sscratch = int128_getlo(val); 2882 env->sscratchh = int128_gethi(val); 2883 return RISCV_EXCP_NONE; 2884 } 2885 2886 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2887 target_ulong *val) 2888 { 2889 *val = env->sscratch; 2890 return RISCV_EXCP_NONE; 2891 } 2892 2893 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2894 target_ulong val) 2895 { 2896 env->sscratch = val; 2897 return RISCV_EXCP_NONE; 2898 } 2899 2900 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2901 target_ulong *val) 2902 { 2903 *val = env->sepc; 2904 return RISCV_EXCP_NONE; 2905 } 2906 2907 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2908 target_ulong val) 2909 { 2910 env->sepc = val; 2911 return RISCV_EXCP_NONE; 2912 } 2913 2914 static RISCVException read_scause(CPURISCVState *env, int csrno, 2915 target_ulong *val) 2916 { 2917 *val = env->scause; 2918 return RISCV_EXCP_NONE; 2919 } 2920 2921 static RISCVException write_scause(CPURISCVState *env, int csrno, 2922 target_ulong val) 2923 { 2924 env->scause = val; 2925 return RISCV_EXCP_NONE; 2926 } 2927 2928 static RISCVException read_stval(CPURISCVState *env, int csrno, 2929 target_ulong *val) 2930 { 2931 *val = env->stval; 2932 return RISCV_EXCP_NONE; 2933 } 2934 2935 static RISCVException write_stval(CPURISCVState *env, int csrno, 2936 target_ulong val) 2937 { 2938 env->stval = val; 2939 return RISCV_EXCP_NONE; 2940 } 2941 2942 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2943 uint64_t *ret_val, 2944 uint64_t new_val, uint64_t wr_mask); 2945 2946 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2947 uint64_t *ret_val, 2948 uint64_t new_val, uint64_t wr_mask) 2949 { 2950 RISCVException ret; 2951 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2952 uint64_t vsbits; 2953 2954 /* Add virtualized bits into vsip mask. */ 2955 mask |= env->hvien & ~env->hideleg; 2956 2957 /* Bring VS-level bits to correct position */ 2958 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2959 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2960 new_val |= vsbits << 1; 2961 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2962 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2963 wr_mask |= vsbits << 1; 2964 2965 ret = rmw_hvip64(env, csrno, &rval, new_val, 2966 wr_mask & mask & vsip_writable_mask); 2967 if (ret_val) { 2968 rval &= mask; 2969 vsbits = rval & VS_MODE_INTERRUPTS; 2970 rval &= ~VS_MODE_INTERRUPTS; 2971 *ret_val = rval | (vsbits >> 1); 2972 } 2973 2974 return ret; 2975 } 2976 2977 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2978 target_ulong *ret_val, 2979 target_ulong new_val, target_ulong wr_mask) 2980 { 2981 uint64_t rval; 2982 RISCVException ret; 2983 2984 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2985 if (ret_val) { 2986 *ret_val = rval; 2987 } 2988 2989 return ret; 2990 } 2991 2992 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2993 target_ulong *ret_val, 2994 target_ulong new_val, target_ulong wr_mask) 2995 { 2996 uint64_t rval; 2997 RISCVException ret; 2998 2999 ret = rmw_vsip64(env, csrno, &rval, 3000 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3001 if (ret_val) { 3002 *ret_val = rval >> 32; 3003 } 3004 3005 return ret; 3006 } 3007 3008 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 3009 uint64_t *ret_val, 3010 uint64_t new_val, uint64_t wr_mask) 3011 { 3012 RISCVException ret; 3013 uint64_t mask = (env->mideleg | env->mvien) & sip_writable_mask; 3014 3015 if (env->virt_enabled) { 3016 if (env->hvictl & HVICTL_VTI) { 3017 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3018 } 3019 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 3020 } else { 3021 ret = rmw_mvip64(env, csrno, ret_val, new_val, wr_mask & mask); 3022 } 3023 3024 if (ret_val) { 3025 *ret_val &= (env->mideleg | env->mvien) & 3026 (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS); 3027 } 3028 3029 return ret; 3030 } 3031 3032 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 3033 target_ulong *ret_val, 3034 target_ulong new_val, target_ulong wr_mask) 3035 { 3036 uint64_t rval; 3037 RISCVException ret; 3038 3039 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 3040 if (ret_val) { 3041 *ret_val = rval; 3042 } 3043 3044 return ret; 3045 } 3046 3047 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 3048 target_ulong *ret_val, 3049 target_ulong new_val, target_ulong wr_mask) 3050 { 3051 uint64_t rval; 3052 RISCVException ret; 3053 3054 ret = rmw_sip64(env, csrno, &rval, 3055 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3056 if (ret_val) { 3057 *ret_val = rval >> 32; 3058 } 3059 3060 return ret; 3061 } 3062 3063 /* Supervisor Protection and Translation */ 3064 static RISCVException read_satp(CPURISCVState *env, int csrno, 3065 target_ulong *val) 3066 { 3067 if (!riscv_cpu_cfg(env)->mmu) { 3068 *val = 0; 3069 return RISCV_EXCP_NONE; 3070 } 3071 *val = env->satp; 3072 return RISCV_EXCP_NONE; 3073 } 3074 3075 static RISCVException write_satp(CPURISCVState *env, int csrno, 3076 target_ulong val) 3077 { 3078 if (!riscv_cpu_cfg(env)->mmu) { 3079 return RISCV_EXCP_NONE; 3080 } 3081 3082 env->satp = legalize_xatp(env, env->satp, val); 3083 return RISCV_EXCP_NONE; 3084 } 3085 3086 static RISCVException read_vstopi(CPURISCVState *env, int csrno, 3087 target_ulong *val) 3088 { 3089 int irq, ret; 3090 target_ulong topei; 3091 uint64_t vseip, vsgein; 3092 uint32_t iid, iprio, hviid, hviprio, gein; 3093 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 3094 3095 gein = get_field(env->hstatus, HSTATUS_VGEIN); 3096 hviid = get_field(env->hvictl, HVICTL_IID); 3097 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 3098 3099 if (gein) { 3100 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 3101 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 3102 if (gein <= env->geilen && vseip) { 3103 siid[scount] = IRQ_S_EXT; 3104 siprio[scount] = IPRIO_MMAXIPRIO + 1; 3105 if (env->aia_ireg_rmw_fn[PRV_S]) { 3106 /* 3107 * Call machine specific IMSIC register emulation for 3108 * reading TOPEI. 3109 */ 3110 ret = env->aia_ireg_rmw_fn[PRV_S]( 3111 env->aia_ireg_rmw_fn_arg[PRV_S], 3112 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 3113 riscv_cpu_mxl_bits(env)), 3114 &topei, 0, 0); 3115 if (!ret && topei) { 3116 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 3117 } 3118 } 3119 scount++; 3120 } 3121 } else { 3122 if (hviid == IRQ_S_EXT && hviprio) { 3123 siid[scount] = IRQ_S_EXT; 3124 siprio[scount] = hviprio; 3125 scount++; 3126 } 3127 } 3128 3129 if (env->hvictl & HVICTL_VTI) { 3130 if (hviid != IRQ_S_EXT) { 3131 siid[scount] = hviid; 3132 siprio[scount] = hviprio; 3133 scount++; 3134 } 3135 } else { 3136 irq = riscv_cpu_vsirq_pending(env); 3137 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 3138 siid[scount] = irq; 3139 siprio[scount] = env->hviprio[irq]; 3140 scount++; 3141 } 3142 } 3143 3144 iid = 0; 3145 iprio = UINT_MAX; 3146 for (s = 0; s < scount; s++) { 3147 if (siprio[s] < iprio) { 3148 iid = siid[s]; 3149 iprio = siprio[s]; 3150 } 3151 } 3152 3153 if (iid) { 3154 if (env->hvictl & HVICTL_IPRIOM) { 3155 if (iprio > IPRIO_MMAXIPRIO) { 3156 iprio = IPRIO_MMAXIPRIO; 3157 } 3158 if (!iprio) { 3159 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 3160 iprio = IPRIO_MMAXIPRIO; 3161 } 3162 } 3163 } else { 3164 iprio = 1; 3165 } 3166 } else { 3167 iprio = 0; 3168 } 3169 3170 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 3171 *val |= iprio; 3172 3173 return RISCV_EXCP_NONE; 3174 } 3175 3176 static RISCVException read_stopi(CPURISCVState *env, int csrno, 3177 target_ulong *val) 3178 { 3179 int irq; 3180 uint8_t iprio; 3181 3182 if (env->virt_enabled) { 3183 return read_vstopi(env, CSR_VSTOPI, val); 3184 } 3185 3186 irq = riscv_cpu_sirq_pending(env); 3187 if (irq <= 0 || irq > 63) { 3188 *val = 0; 3189 } else { 3190 iprio = env->siprio[irq]; 3191 if (!iprio) { 3192 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 3193 iprio = IPRIO_MMAXIPRIO; 3194 } 3195 } 3196 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 3197 *val |= iprio; 3198 } 3199 3200 return RISCV_EXCP_NONE; 3201 } 3202 3203 /* Hypervisor Extensions */ 3204 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 3205 target_ulong *val) 3206 { 3207 *val = env->hstatus; 3208 if (riscv_cpu_mxl(env) != MXL_RV32) { 3209 /* We only support 64-bit VSXL */ 3210 *val = set_field(*val, HSTATUS_VSXL, 2); 3211 } 3212 /* We only support little endian */ 3213 *val = set_field(*val, HSTATUS_VSBE, 0); 3214 return RISCV_EXCP_NONE; 3215 } 3216 3217 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 3218 target_ulong val) 3219 { 3220 env->hstatus = val; 3221 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 3222 qemu_log_mask(LOG_UNIMP, 3223 "QEMU does not support mixed HSXLEN options."); 3224 } 3225 if (get_field(val, HSTATUS_VSBE) != 0) { 3226 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 3227 } 3228 return RISCV_EXCP_NONE; 3229 } 3230 3231 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 3232 target_ulong *val) 3233 { 3234 *val = env->hedeleg; 3235 return RISCV_EXCP_NONE; 3236 } 3237 3238 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 3239 target_ulong val) 3240 { 3241 env->hedeleg = val & vs_delegable_excps; 3242 return RISCV_EXCP_NONE; 3243 } 3244 3245 static RISCVException read_hedelegh(CPURISCVState *env, int csrno, 3246 target_ulong *val) 3247 { 3248 RISCVException ret; 3249 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 3250 if (ret != RISCV_EXCP_NONE) { 3251 return ret; 3252 } 3253 3254 /* Reserved, now read zero */ 3255 *val = 0; 3256 return RISCV_EXCP_NONE; 3257 } 3258 3259 static RISCVException write_hedelegh(CPURISCVState *env, int csrno, 3260 target_ulong val) 3261 { 3262 RISCVException ret; 3263 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 3264 if (ret != RISCV_EXCP_NONE) { 3265 return ret; 3266 } 3267 3268 /* Reserved, now write ignore */ 3269 return RISCV_EXCP_NONE; 3270 } 3271 3272 static RISCVException rmw_hvien64(CPURISCVState *env, int csrno, 3273 uint64_t *ret_val, 3274 uint64_t new_val, uint64_t wr_mask) 3275 { 3276 uint64_t mask = wr_mask & hvien_writable_mask; 3277 3278 if (ret_val) { 3279 *ret_val = env->hvien; 3280 } 3281 3282 env->hvien = (env->hvien & ~mask) | (new_val & mask); 3283 3284 return RISCV_EXCP_NONE; 3285 } 3286 3287 static RISCVException rmw_hvien(CPURISCVState *env, int csrno, 3288 target_ulong *ret_val, 3289 target_ulong new_val, target_ulong wr_mask) 3290 { 3291 uint64_t rval; 3292 RISCVException ret; 3293 3294 ret = rmw_hvien64(env, csrno, &rval, new_val, wr_mask); 3295 if (ret_val) { 3296 *ret_val = rval; 3297 } 3298 3299 return ret; 3300 } 3301 3302 static RISCVException rmw_hvienh(CPURISCVState *env, int csrno, 3303 target_ulong *ret_val, 3304 target_ulong new_val, target_ulong wr_mask) 3305 { 3306 uint64_t rval; 3307 RISCVException ret; 3308 3309 ret = rmw_hvien64(env, csrno, &rval, 3310 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3311 if (ret_val) { 3312 *ret_val = rval >> 32; 3313 } 3314 3315 return ret; 3316 } 3317 3318 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 3319 uint64_t *ret_val, 3320 uint64_t new_val, uint64_t wr_mask) 3321 { 3322 uint64_t mask = wr_mask & vs_delegable_ints; 3323 3324 if (ret_val) { 3325 *ret_val = env->hideleg & vs_delegable_ints; 3326 } 3327 3328 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 3329 return RISCV_EXCP_NONE; 3330 } 3331 3332 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 3333 target_ulong *ret_val, 3334 target_ulong new_val, target_ulong wr_mask) 3335 { 3336 uint64_t rval; 3337 RISCVException ret; 3338 3339 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 3340 if (ret_val) { 3341 *ret_val = rval; 3342 } 3343 3344 return ret; 3345 } 3346 3347 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 3348 target_ulong *ret_val, 3349 target_ulong new_val, target_ulong wr_mask) 3350 { 3351 uint64_t rval; 3352 RISCVException ret; 3353 3354 ret = rmw_hideleg64(env, csrno, &rval, 3355 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3356 if (ret_val) { 3357 *ret_val = rval >> 32; 3358 } 3359 3360 return ret; 3361 } 3362 3363 /* 3364 * The function is written for two use-cases: 3365 * 1- To access hvip csr as is for HS-mode access. 3366 * 2- To access vsip as a combination of hvip, and mip for vs-mode. 3367 * 3368 * Both report bits 2, 6, 10 and 13:63. 3369 * vsip needs to be read-only zero when both hideleg[i] and 3370 * hvien[i] are zero. 3371 */ 3372 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 3373 uint64_t *ret_val, 3374 uint64_t new_val, uint64_t wr_mask) 3375 { 3376 RISCVException ret; 3377 uint64_t old_hvip; 3378 uint64_t ret_mip; 3379 3380 /* 3381 * For bits 10, 6 and 2, vsip[i] is an alias of hip[i]. These bits are 3382 * present in hip, hvip and mip. Where mip[i] is alias of hip[i] and hvip[i] 3383 * is OR'ed in hip[i] to inject virtual interrupts from hypervisor. These 3384 * bits are actually being maintained in mip so we read them from there. 3385 * This way we have a single source of truth and allows for easier 3386 * implementation. 3387 * 3388 * For bits 13:63 we have: 3389 * 3390 * hideleg[i] hvien[i] 3391 * 0 0 No delegation. vsip[i] readonly zero. 3392 * 0 1 vsip[i] is alias of hvip[i], sip bypassed. 3393 * 1 X vsip[i] is alias of sip[i], hvip bypassed. 3394 * 3395 * alias_mask denotes the bits that come from sip (mip here given we 3396 * maintain all bits there). nalias_mask denotes bits that come from 3397 * hvip. 3398 */ 3399 uint64_t alias_mask = (env->hideleg | ~env->hvien) | VS_MODE_INTERRUPTS; 3400 uint64_t nalias_mask = (~env->hideleg & env->hvien); 3401 uint64_t wr_mask_hvip; 3402 uint64_t wr_mask_mip; 3403 3404 /* 3405 * Both alias and non-alias mask remain same for vsip except: 3406 * 1- For VS* bits if they are zero in hideleg. 3407 * 2- For 13:63 bits if they are zero in both hideleg and hvien. 3408 */ 3409 if (csrno == CSR_VSIP) { 3410 /* zero-out VS* bits that are not delegated to VS mode. */ 3411 alias_mask &= (env->hideleg | ~VS_MODE_INTERRUPTS); 3412 3413 /* 3414 * zero-out 13:63 bits that are zero in both hideleg and hvien. 3415 * nalias_mask mask can not contain any VS* bits so only second 3416 * condition applies on it. 3417 */ 3418 nalias_mask &= (env->hideleg | env->hvien); 3419 alias_mask &= (env->hideleg | env->hvien); 3420 } 3421 3422 wr_mask_hvip = wr_mask & nalias_mask & hvip_writable_mask; 3423 wr_mask_mip = wr_mask & alias_mask & hvip_writable_mask; 3424 3425 /* Aliased bits, bits 10, 6, 2 need to come from mip. */ 3426 ret = rmw_mip64(env, csrno, &ret_mip, new_val, wr_mask_mip); 3427 if (ret != RISCV_EXCP_NONE) { 3428 return ret; 3429 } 3430 3431 old_hvip = env->hvip; 3432 3433 if (wr_mask_hvip) { 3434 env->hvip = (env->hvip & ~wr_mask_hvip) | (new_val & wr_mask_hvip); 3435 3436 /* 3437 * Given hvip is separate source from mip, we need to trigger interrupt 3438 * from here separately. Normally this happen from riscv_cpu_update_mip. 3439 */ 3440 riscv_cpu_interrupt(env); 3441 } 3442 3443 if (ret_val) { 3444 /* Only take VS* bits from mip. */ 3445 ret_mip &= alias_mask; 3446 3447 /* Take in non-delegated 13:63 bits from hvip. */ 3448 old_hvip &= nalias_mask; 3449 3450 *ret_val = ret_mip | old_hvip; 3451 } 3452 3453 return ret; 3454 } 3455 3456 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 3457 target_ulong *ret_val, 3458 target_ulong new_val, target_ulong wr_mask) 3459 { 3460 uint64_t rval; 3461 RISCVException ret; 3462 3463 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 3464 if (ret_val) { 3465 *ret_val = rval; 3466 } 3467 3468 return ret; 3469 } 3470 3471 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 3472 target_ulong *ret_val, 3473 target_ulong new_val, target_ulong wr_mask) 3474 { 3475 uint64_t rval; 3476 RISCVException ret; 3477 3478 ret = rmw_hvip64(env, csrno, &rval, 3479 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3480 if (ret_val) { 3481 *ret_val = rval >> 32; 3482 } 3483 3484 return ret; 3485 } 3486 3487 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 3488 target_ulong *ret_value, 3489 target_ulong new_value, target_ulong write_mask) 3490 { 3491 int ret = rmw_mip(env, csrno, ret_value, new_value, 3492 write_mask & hip_writable_mask); 3493 3494 if (ret_value) { 3495 *ret_value &= HS_MODE_INTERRUPTS; 3496 } 3497 return ret; 3498 } 3499 3500 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 3501 target_ulong *ret_val, 3502 target_ulong new_val, target_ulong wr_mask) 3503 { 3504 uint64_t rval; 3505 RISCVException ret; 3506 3507 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 3508 if (ret_val) { 3509 *ret_val = rval & HS_MODE_INTERRUPTS; 3510 } 3511 3512 return ret; 3513 } 3514 3515 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 3516 target_ulong *val) 3517 { 3518 *val = env->hcounteren; 3519 return RISCV_EXCP_NONE; 3520 } 3521 3522 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 3523 target_ulong val) 3524 { 3525 env->hcounteren = val; 3526 return RISCV_EXCP_NONE; 3527 } 3528 3529 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 3530 target_ulong *val) 3531 { 3532 if (val) { 3533 *val = env->hgeie; 3534 } 3535 return RISCV_EXCP_NONE; 3536 } 3537 3538 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 3539 target_ulong val) 3540 { 3541 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 3542 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 3543 env->hgeie = val; 3544 /* Update mip.SGEIP bit */ 3545 riscv_cpu_update_mip(env, MIP_SGEIP, 3546 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 3547 return RISCV_EXCP_NONE; 3548 } 3549 3550 static RISCVException read_htval(CPURISCVState *env, int csrno, 3551 target_ulong *val) 3552 { 3553 *val = env->htval; 3554 return RISCV_EXCP_NONE; 3555 } 3556 3557 static RISCVException write_htval(CPURISCVState *env, int csrno, 3558 target_ulong val) 3559 { 3560 env->htval = val; 3561 return RISCV_EXCP_NONE; 3562 } 3563 3564 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3565 target_ulong *val) 3566 { 3567 *val = env->htinst; 3568 return RISCV_EXCP_NONE; 3569 } 3570 3571 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3572 target_ulong val) 3573 { 3574 return RISCV_EXCP_NONE; 3575 } 3576 3577 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3578 target_ulong *val) 3579 { 3580 if (val) { 3581 *val = env->hgeip; 3582 } 3583 return RISCV_EXCP_NONE; 3584 } 3585 3586 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3587 target_ulong *val) 3588 { 3589 *val = env->hgatp; 3590 return RISCV_EXCP_NONE; 3591 } 3592 3593 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3594 target_ulong val) 3595 { 3596 env->hgatp = legalize_xatp(env, env->hgatp, val); 3597 return RISCV_EXCP_NONE; 3598 } 3599 3600 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3601 target_ulong *val) 3602 { 3603 if (!env->rdtime_fn) { 3604 return RISCV_EXCP_ILLEGAL_INST; 3605 } 3606 3607 *val = env->htimedelta; 3608 return RISCV_EXCP_NONE; 3609 } 3610 3611 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3612 target_ulong val) 3613 { 3614 if (!env->rdtime_fn) { 3615 return RISCV_EXCP_ILLEGAL_INST; 3616 } 3617 3618 if (riscv_cpu_mxl(env) == MXL_RV32) { 3619 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3620 } else { 3621 env->htimedelta = val; 3622 } 3623 3624 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3625 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3626 env->htimedelta, MIP_VSTIP); 3627 } 3628 3629 return RISCV_EXCP_NONE; 3630 } 3631 3632 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3633 target_ulong *val) 3634 { 3635 if (!env->rdtime_fn) { 3636 return RISCV_EXCP_ILLEGAL_INST; 3637 } 3638 3639 *val = env->htimedelta >> 32; 3640 return RISCV_EXCP_NONE; 3641 } 3642 3643 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3644 target_ulong val) 3645 { 3646 if (!env->rdtime_fn) { 3647 return RISCV_EXCP_ILLEGAL_INST; 3648 } 3649 3650 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3651 3652 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3653 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3654 env->htimedelta, MIP_VSTIP); 3655 } 3656 3657 return RISCV_EXCP_NONE; 3658 } 3659 3660 static RISCVException read_hvictl(CPURISCVState *env, int csrno, 3661 target_ulong *val) 3662 { 3663 *val = env->hvictl; 3664 return RISCV_EXCP_NONE; 3665 } 3666 3667 static RISCVException write_hvictl(CPURISCVState *env, int csrno, 3668 target_ulong val) 3669 { 3670 env->hvictl = val & HVICTL_VALID_MASK; 3671 return RISCV_EXCP_NONE; 3672 } 3673 3674 static RISCVException read_hvipriox(CPURISCVState *env, int first_index, 3675 uint8_t *iprio, target_ulong *val) 3676 { 3677 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3678 3679 /* First index has to be a multiple of number of irqs per register */ 3680 if (first_index % num_irqs) { 3681 return (env->virt_enabled) ? 3682 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3683 } 3684 3685 /* Fill-up return value */ 3686 *val = 0; 3687 for (i = 0; i < num_irqs; i++) { 3688 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3689 continue; 3690 } 3691 if (rdzero) { 3692 continue; 3693 } 3694 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3695 } 3696 3697 return RISCV_EXCP_NONE; 3698 } 3699 3700 static RISCVException write_hvipriox(CPURISCVState *env, int first_index, 3701 uint8_t *iprio, target_ulong val) 3702 { 3703 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3704 3705 /* First index has to be a multiple of number of irqs per register */ 3706 if (first_index % num_irqs) { 3707 return (env->virt_enabled) ? 3708 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3709 } 3710 3711 /* Fill-up priority array */ 3712 for (i = 0; i < num_irqs; i++) { 3713 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3714 continue; 3715 } 3716 if (rdzero) { 3717 iprio[irq] = 0; 3718 } else { 3719 iprio[irq] = (val >> (i * 8)) & 0xff; 3720 } 3721 } 3722 3723 return RISCV_EXCP_NONE; 3724 } 3725 3726 static RISCVException read_hviprio1(CPURISCVState *env, int csrno, 3727 target_ulong *val) 3728 { 3729 return read_hvipriox(env, 0, env->hviprio, val); 3730 } 3731 3732 static RISCVException write_hviprio1(CPURISCVState *env, int csrno, 3733 target_ulong val) 3734 { 3735 return write_hvipriox(env, 0, env->hviprio, val); 3736 } 3737 3738 static RISCVException read_hviprio1h(CPURISCVState *env, int csrno, 3739 target_ulong *val) 3740 { 3741 return read_hvipriox(env, 4, env->hviprio, val); 3742 } 3743 3744 static RISCVException write_hviprio1h(CPURISCVState *env, int csrno, 3745 target_ulong val) 3746 { 3747 return write_hvipriox(env, 4, env->hviprio, val); 3748 } 3749 3750 static RISCVException read_hviprio2(CPURISCVState *env, int csrno, 3751 target_ulong *val) 3752 { 3753 return read_hvipriox(env, 8, env->hviprio, val); 3754 } 3755 3756 static RISCVException write_hviprio2(CPURISCVState *env, int csrno, 3757 target_ulong val) 3758 { 3759 return write_hvipriox(env, 8, env->hviprio, val); 3760 } 3761 3762 static RISCVException read_hviprio2h(CPURISCVState *env, int csrno, 3763 target_ulong *val) 3764 { 3765 return read_hvipriox(env, 12, env->hviprio, val); 3766 } 3767 3768 static RISCVException write_hviprio2h(CPURISCVState *env, int csrno, 3769 target_ulong val) 3770 { 3771 return write_hvipriox(env, 12, env->hviprio, val); 3772 } 3773 3774 /* Virtual CSR Registers */ 3775 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3776 target_ulong *val) 3777 { 3778 *val = env->vsstatus; 3779 return RISCV_EXCP_NONE; 3780 } 3781 3782 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3783 target_ulong val) 3784 { 3785 uint64_t mask = (target_ulong)-1; 3786 if ((val & VSSTATUS64_UXL) == 0) { 3787 mask &= ~VSSTATUS64_UXL; 3788 } 3789 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3790 return RISCV_EXCP_NONE; 3791 } 3792 3793 static RISCVException read_vstvec(CPURISCVState *env, int csrno, 3794 target_ulong *val) 3795 { 3796 *val = env->vstvec; 3797 return RISCV_EXCP_NONE; 3798 } 3799 3800 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3801 target_ulong val) 3802 { 3803 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 3804 if ((val & 3) < 2) { 3805 env->vstvec = val; 3806 } else { 3807 qemu_log_mask(LOG_UNIMP, "CSR_VSTVEC: reserved mode not supported\n"); 3808 } 3809 return RISCV_EXCP_NONE; 3810 } 3811 3812 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3813 target_ulong *val) 3814 { 3815 *val = env->vsscratch; 3816 return RISCV_EXCP_NONE; 3817 } 3818 3819 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3820 target_ulong val) 3821 { 3822 env->vsscratch = val; 3823 return RISCV_EXCP_NONE; 3824 } 3825 3826 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3827 target_ulong *val) 3828 { 3829 *val = env->vsepc; 3830 return RISCV_EXCP_NONE; 3831 } 3832 3833 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3834 target_ulong val) 3835 { 3836 env->vsepc = val; 3837 return RISCV_EXCP_NONE; 3838 } 3839 3840 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3841 target_ulong *val) 3842 { 3843 *val = env->vscause; 3844 return RISCV_EXCP_NONE; 3845 } 3846 3847 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3848 target_ulong val) 3849 { 3850 env->vscause = val; 3851 return RISCV_EXCP_NONE; 3852 } 3853 3854 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3855 target_ulong *val) 3856 { 3857 *val = env->vstval; 3858 return RISCV_EXCP_NONE; 3859 } 3860 3861 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3862 target_ulong val) 3863 { 3864 env->vstval = val; 3865 return RISCV_EXCP_NONE; 3866 } 3867 3868 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3869 target_ulong *val) 3870 { 3871 *val = env->vsatp; 3872 return RISCV_EXCP_NONE; 3873 } 3874 3875 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3876 target_ulong val) 3877 { 3878 env->vsatp = legalize_xatp(env, env->vsatp, val); 3879 return RISCV_EXCP_NONE; 3880 } 3881 3882 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3883 target_ulong *val) 3884 { 3885 *val = env->mtval2; 3886 return RISCV_EXCP_NONE; 3887 } 3888 3889 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3890 target_ulong val) 3891 { 3892 env->mtval2 = val; 3893 return RISCV_EXCP_NONE; 3894 } 3895 3896 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3897 target_ulong *val) 3898 { 3899 *val = env->mtinst; 3900 return RISCV_EXCP_NONE; 3901 } 3902 3903 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3904 target_ulong val) 3905 { 3906 env->mtinst = val; 3907 return RISCV_EXCP_NONE; 3908 } 3909 3910 /* Physical Memory Protection */ 3911 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3912 target_ulong *val) 3913 { 3914 *val = mseccfg_csr_read(env); 3915 return RISCV_EXCP_NONE; 3916 } 3917 3918 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3919 target_ulong val) 3920 { 3921 mseccfg_csr_write(env, val); 3922 return RISCV_EXCP_NONE; 3923 } 3924 3925 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3926 target_ulong *val) 3927 { 3928 uint32_t reg_index = csrno - CSR_PMPCFG0; 3929 3930 *val = pmpcfg_csr_read(env, reg_index); 3931 return RISCV_EXCP_NONE; 3932 } 3933 3934 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3935 target_ulong val) 3936 { 3937 uint32_t reg_index = csrno - CSR_PMPCFG0; 3938 3939 pmpcfg_csr_write(env, reg_index, val); 3940 return RISCV_EXCP_NONE; 3941 } 3942 3943 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3944 target_ulong *val) 3945 { 3946 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3947 return RISCV_EXCP_NONE; 3948 } 3949 3950 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3951 target_ulong val) 3952 { 3953 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3954 return RISCV_EXCP_NONE; 3955 } 3956 3957 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3958 target_ulong *val) 3959 { 3960 *val = tselect_csr_read(env); 3961 return RISCV_EXCP_NONE; 3962 } 3963 3964 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3965 target_ulong val) 3966 { 3967 tselect_csr_write(env, val); 3968 return RISCV_EXCP_NONE; 3969 } 3970 3971 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3972 target_ulong *val) 3973 { 3974 /* return 0 in tdata1 to end the trigger enumeration */ 3975 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3976 *val = 0; 3977 return RISCV_EXCP_NONE; 3978 } 3979 3980 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3981 return RISCV_EXCP_ILLEGAL_INST; 3982 } 3983 3984 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3985 return RISCV_EXCP_NONE; 3986 } 3987 3988 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3989 target_ulong val) 3990 { 3991 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3992 return RISCV_EXCP_ILLEGAL_INST; 3993 } 3994 3995 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3996 return RISCV_EXCP_NONE; 3997 } 3998 3999 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 4000 target_ulong *val) 4001 { 4002 *val = tinfo_csr_read(env); 4003 return RISCV_EXCP_NONE; 4004 } 4005 4006 static RISCVException read_mcontext(CPURISCVState *env, int csrno, 4007 target_ulong *val) 4008 { 4009 *val = env->mcontext; 4010 return RISCV_EXCP_NONE; 4011 } 4012 4013 static RISCVException write_mcontext(CPURISCVState *env, int csrno, 4014 target_ulong val) 4015 { 4016 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 4017 int32_t mask; 4018 4019 if (riscv_has_ext(env, RVH)) { 4020 /* Spec suggest 7-bit for RV32 and 14-bit for RV64 w/ H extension */ 4021 mask = rv32 ? MCONTEXT32_HCONTEXT : MCONTEXT64_HCONTEXT; 4022 } else { 4023 /* Spec suggest 6-bit for RV32 and 13-bit for RV64 w/o H extension */ 4024 mask = rv32 ? MCONTEXT32 : MCONTEXT64; 4025 } 4026 4027 env->mcontext = val & mask; 4028 return RISCV_EXCP_NONE; 4029 } 4030 4031 /* 4032 * Functions to access Pointer Masking feature registers 4033 * We have to check if current priv lvl could modify 4034 * csr in given mode 4035 */ 4036 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 4037 { 4038 int csr_priv = get_field(csrno, 0x300); 4039 int pm_current; 4040 4041 if (env->debugger) { 4042 return false; 4043 } 4044 /* 4045 * If priv lvls differ that means we're accessing csr from higher priv lvl, 4046 * so allow the access 4047 */ 4048 if (env->priv != csr_priv) { 4049 return false; 4050 } 4051 switch (env->priv) { 4052 case PRV_M: 4053 pm_current = get_field(env->mmte, M_PM_CURRENT); 4054 break; 4055 case PRV_S: 4056 pm_current = get_field(env->mmte, S_PM_CURRENT); 4057 break; 4058 case PRV_U: 4059 pm_current = get_field(env->mmte, U_PM_CURRENT); 4060 break; 4061 default: 4062 g_assert_not_reached(); 4063 } 4064 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 4065 return !pm_current; 4066 } 4067 4068 static RISCVException read_mmte(CPURISCVState *env, int csrno, 4069 target_ulong *val) 4070 { 4071 *val = env->mmte & MMTE_MASK; 4072 return RISCV_EXCP_NONE; 4073 } 4074 4075 static RISCVException write_mmte(CPURISCVState *env, int csrno, 4076 target_ulong val) 4077 { 4078 uint64_t mstatus; 4079 target_ulong wpri_val = val & MMTE_MASK; 4080 4081 if (val != wpri_val) { 4082 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4083 TARGET_FMT_lx "\n", "MMTE: WPRI violation written 0x", 4084 val, "vs expected 0x", wpri_val); 4085 } 4086 /* for machine mode pm.current is hardwired to 1 */ 4087 wpri_val |= MMTE_M_PM_CURRENT; 4088 4089 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 4090 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 4091 env->mmte = wpri_val | EXT_STATUS_DIRTY; 4092 riscv_cpu_update_mask(env); 4093 4094 /* Set XS and SD bits, since PM CSRs are dirty */ 4095 mstatus = env->mstatus | MSTATUS_XS; 4096 write_mstatus(env, csrno, mstatus); 4097 return RISCV_EXCP_NONE; 4098 } 4099 4100 static RISCVException read_smte(CPURISCVState *env, int csrno, 4101 target_ulong *val) 4102 { 4103 *val = env->mmte & SMTE_MASK; 4104 return RISCV_EXCP_NONE; 4105 } 4106 4107 static RISCVException write_smte(CPURISCVState *env, int csrno, 4108 target_ulong val) 4109 { 4110 target_ulong wpri_val = val & SMTE_MASK; 4111 4112 if (val != wpri_val) { 4113 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4114 TARGET_FMT_lx "\n", "SMTE: WPRI violation written 0x", 4115 val, "vs expected 0x", wpri_val); 4116 } 4117 4118 /* if pm.current==0 we can't modify current PM CSRs */ 4119 if (check_pm_current_disabled(env, csrno)) { 4120 return RISCV_EXCP_NONE; 4121 } 4122 4123 wpri_val |= (env->mmte & ~SMTE_MASK); 4124 write_mmte(env, csrno, wpri_val); 4125 return RISCV_EXCP_NONE; 4126 } 4127 4128 static RISCVException read_umte(CPURISCVState *env, int csrno, 4129 target_ulong *val) 4130 { 4131 *val = env->mmte & UMTE_MASK; 4132 return RISCV_EXCP_NONE; 4133 } 4134 4135 static RISCVException write_umte(CPURISCVState *env, int csrno, 4136 target_ulong val) 4137 { 4138 target_ulong wpri_val = val & UMTE_MASK; 4139 4140 if (val != wpri_val) { 4141 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4142 TARGET_FMT_lx "\n", "UMTE: WPRI violation written 0x", 4143 val, "vs expected 0x", wpri_val); 4144 } 4145 4146 if (check_pm_current_disabled(env, csrno)) { 4147 return RISCV_EXCP_NONE; 4148 } 4149 4150 wpri_val |= (env->mmte & ~UMTE_MASK); 4151 write_mmte(env, csrno, wpri_val); 4152 return RISCV_EXCP_NONE; 4153 } 4154 4155 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 4156 target_ulong *val) 4157 { 4158 *val = env->mpmmask; 4159 return RISCV_EXCP_NONE; 4160 } 4161 4162 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 4163 target_ulong val) 4164 { 4165 uint64_t mstatus; 4166 4167 env->mpmmask = val; 4168 if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { 4169 env->cur_pmmask = val; 4170 } 4171 env->mmte |= EXT_STATUS_DIRTY; 4172 4173 /* Set XS and SD bits, since PM CSRs are dirty */ 4174 mstatus = env->mstatus | MSTATUS_XS; 4175 write_mstatus(env, csrno, mstatus); 4176 return RISCV_EXCP_NONE; 4177 } 4178 4179 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 4180 target_ulong *val) 4181 { 4182 *val = env->spmmask; 4183 return RISCV_EXCP_NONE; 4184 } 4185 4186 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 4187 target_ulong val) 4188 { 4189 uint64_t mstatus; 4190 4191 /* if pm.current==0 we can't modify current PM CSRs */ 4192 if (check_pm_current_disabled(env, csrno)) { 4193 return RISCV_EXCP_NONE; 4194 } 4195 env->spmmask = val; 4196 if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { 4197 env->cur_pmmask = val; 4198 if (cpu_get_xl(env, PRV_S) == MXL_RV32) { 4199 env->cur_pmmask &= UINT32_MAX; 4200 } 4201 } 4202 env->mmte |= EXT_STATUS_DIRTY; 4203 4204 /* Set XS and SD bits, since PM CSRs are dirty */ 4205 mstatus = env->mstatus | MSTATUS_XS; 4206 write_mstatus(env, csrno, mstatus); 4207 return RISCV_EXCP_NONE; 4208 } 4209 4210 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 4211 target_ulong *val) 4212 { 4213 *val = env->upmmask; 4214 return RISCV_EXCP_NONE; 4215 } 4216 4217 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 4218 target_ulong val) 4219 { 4220 uint64_t mstatus; 4221 4222 /* if pm.current==0 we can't modify current PM CSRs */ 4223 if (check_pm_current_disabled(env, csrno)) { 4224 return RISCV_EXCP_NONE; 4225 } 4226 env->upmmask = val; 4227 if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { 4228 env->cur_pmmask = val; 4229 if (cpu_get_xl(env, PRV_U) == MXL_RV32) { 4230 env->cur_pmmask &= UINT32_MAX; 4231 } 4232 } 4233 env->mmte |= EXT_STATUS_DIRTY; 4234 4235 /* Set XS and SD bits, since PM CSRs are dirty */ 4236 mstatus = env->mstatus | MSTATUS_XS; 4237 write_mstatus(env, csrno, mstatus); 4238 return RISCV_EXCP_NONE; 4239 } 4240 4241 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 4242 target_ulong *val) 4243 { 4244 *val = env->mpmbase; 4245 return RISCV_EXCP_NONE; 4246 } 4247 4248 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 4249 target_ulong val) 4250 { 4251 uint64_t mstatus; 4252 4253 env->mpmbase = val; 4254 if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { 4255 env->cur_pmbase = val; 4256 } 4257 env->mmte |= EXT_STATUS_DIRTY; 4258 4259 /* Set XS and SD bits, since PM CSRs are dirty */ 4260 mstatus = env->mstatus | MSTATUS_XS; 4261 write_mstatus(env, csrno, mstatus); 4262 return RISCV_EXCP_NONE; 4263 } 4264 4265 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 4266 target_ulong *val) 4267 { 4268 *val = env->spmbase; 4269 return RISCV_EXCP_NONE; 4270 } 4271 4272 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 4273 target_ulong val) 4274 { 4275 uint64_t mstatus; 4276 4277 /* if pm.current==0 we can't modify current PM CSRs */ 4278 if (check_pm_current_disabled(env, csrno)) { 4279 return RISCV_EXCP_NONE; 4280 } 4281 env->spmbase = val; 4282 if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { 4283 env->cur_pmbase = val; 4284 if (cpu_get_xl(env, PRV_S) == MXL_RV32) { 4285 env->cur_pmbase &= UINT32_MAX; 4286 } 4287 } 4288 env->mmte |= EXT_STATUS_DIRTY; 4289 4290 /* Set XS and SD bits, since PM CSRs are dirty */ 4291 mstatus = env->mstatus | MSTATUS_XS; 4292 write_mstatus(env, csrno, mstatus); 4293 return RISCV_EXCP_NONE; 4294 } 4295 4296 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 4297 target_ulong *val) 4298 { 4299 *val = env->upmbase; 4300 return RISCV_EXCP_NONE; 4301 } 4302 4303 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 4304 target_ulong val) 4305 { 4306 uint64_t mstatus; 4307 4308 /* if pm.current==0 we can't modify current PM CSRs */ 4309 if (check_pm_current_disabled(env, csrno)) { 4310 return RISCV_EXCP_NONE; 4311 } 4312 env->upmbase = val; 4313 if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { 4314 env->cur_pmbase = val; 4315 if (cpu_get_xl(env, PRV_U) == MXL_RV32) { 4316 env->cur_pmbase &= UINT32_MAX; 4317 } 4318 } 4319 env->mmte |= EXT_STATUS_DIRTY; 4320 4321 /* Set XS and SD bits, since PM CSRs are dirty */ 4322 mstatus = env->mstatus | MSTATUS_XS; 4323 write_mstatus(env, csrno, mstatus); 4324 return RISCV_EXCP_NONE; 4325 } 4326 4327 #endif 4328 4329 /* Crypto Extension */ 4330 target_ulong riscv_new_csr_seed(target_ulong new_value, 4331 target_ulong write_mask) 4332 { 4333 uint16_t random_v; 4334 Error *random_e = NULL; 4335 int random_r; 4336 target_ulong rval; 4337 4338 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 4339 if (unlikely(random_r < 0)) { 4340 /* 4341 * Failed, for unknown reasons in the crypto subsystem. 4342 * The best we can do is log the reason and return a 4343 * failure indication to the guest. There is no reason 4344 * we know to expect the failure to be transitory, so 4345 * indicate DEAD to avoid having the guest spin on WAIT. 4346 */ 4347 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 4348 __func__, error_get_pretty(random_e)); 4349 error_free(random_e); 4350 rval = SEED_OPST_DEAD; 4351 } else { 4352 rval = random_v | SEED_OPST_ES16; 4353 } 4354 4355 return rval; 4356 } 4357 4358 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 4359 target_ulong *ret_value, 4360 target_ulong new_value, 4361 target_ulong write_mask) 4362 { 4363 target_ulong rval; 4364 4365 rval = riscv_new_csr_seed(new_value, write_mask); 4366 4367 if (ret_value) { 4368 *ret_value = rval; 4369 } 4370 4371 return RISCV_EXCP_NONE; 4372 } 4373 4374 /* 4375 * riscv_csrrw - read and/or update control and status register 4376 * 4377 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 4378 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 4379 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 4380 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 4381 */ 4382 4383 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 4384 int csrno, 4385 bool write_mask) 4386 { 4387 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 4388 bool read_only = get_field(csrno, 0xC00) == 3; 4389 int csr_min_priv = csr_ops[csrno].min_priv_ver; 4390 4391 /* ensure the CSR extension is enabled */ 4392 if (!riscv_cpu_cfg(env)->ext_zicsr) { 4393 return RISCV_EXCP_ILLEGAL_INST; 4394 } 4395 4396 /* ensure CSR is implemented by checking predicate */ 4397 if (!csr_ops[csrno].predicate) { 4398 return RISCV_EXCP_ILLEGAL_INST; 4399 } 4400 4401 /* privileged spec version check */ 4402 if (env->priv_ver < csr_min_priv) { 4403 return RISCV_EXCP_ILLEGAL_INST; 4404 } 4405 4406 /* read / write check */ 4407 if (write_mask && read_only) { 4408 return RISCV_EXCP_ILLEGAL_INST; 4409 } 4410 4411 /* 4412 * The predicate() not only does existence check but also does some 4413 * access control check which triggers for example virtual instruction 4414 * exception in some cases. When writing read-only CSRs in those cases 4415 * illegal instruction exception should be triggered instead of virtual 4416 * instruction exception. Hence this comes after the read / write check. 4417 */ 4418 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 4419 if (ret != RISCV_EXCP_NONE) { 4420 return ret; 4421 } 4422 4423 #if !defined(CONFIG_USER_ONLY) 4424 int csr_priv, effective_priv = env->priv; 4425 4426 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 4427 !env->virt_enabled) { 4428 /* 4429 * We are in HS mode. Add 1 to the effective privilege level to 4430 * allow us to access the Hypervisor CSRs. 4431 */ 4432 effective_priv++; 4433 } 4434 4435 csr_priv = get_field(csrno, 0x300); 4436 if (!env->debugger && (effective_priv < csr_priv)) { 4437 if (csr_priv == (PRV_S + 1) && env->virt_enabled) { 4438 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 4439 } 4440 return RISCV_EXCP_ILLEGAL_INST; 4441 } 4442 #endif 4443 return RISCV_EXCP_NONE; 4444 } 4445 4446 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 4447 target_ulong *ret_value, 4448 target_ulong new_value, 4449 target_ulong write_mask) 4450 { 4451 RISCVException ret; 4452 target_ulong old_value = 0; 4453 4454 /* execute combined read/write operation if it exists */ 4455 if (csr_ops[csrno].op) { 4456 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 4457 } 4458 4459 /* 4460 * ret_value == NULL means that rd=x0 and we're coming from helper_csrw() 4461 * and we can't throw side effects caused by CSR reads. 4462 */ 4463 if (ret_value) { 4464 /* if no accessor exists then return failure */ 4465 if (!csr_ops[csrno].read) { 4466 return RISCV_EXCP_ILLEGAL_INST; 4467 } 4468 /* read old value */ 4469 ret = csr_ops[csrno].read(env, csrno, &old_value); 4470 if (ret != RISCV_EXCP_NONE) { 4471 return ret; 4472 } 4473 } 4474 4475 /* write value if writable and write mask set, otherwise drop writes */ 4476 if (write_mask) { 4477 new_value = (old_value & ~write_mask) | (new_value & write_mask); 4478 if (csr_ops[csrno].write) { 4479 ret = csr_ops[csrno].write(env, csrno, new_value); 4480 if (ret != RISCV_EXCP_NONE) { 4481 return ret; 4482 } 4483 } 4484 } 4485 4486 /* return old value */ 4487 if (ret_value) { 4488 *ret_value = old_value; 4489 } 4490 4491 return RISCV_EXCP_NONE; 4492 } 4493 4494 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 4495 target_ulong *ret_value, 4496 target_ulong new_value, target_ulong write_mask) 4497 { 4498 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask); 4499 if (ret != RISCV_EXCP_NONE) { 4500 return ret; 4501 } 4502 4503 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 4504 } 4505 4506 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 4507 Int128 *ret_value, 4508 Int128 new_value, 4509 Int128 write_mask) 4510 { 4511 RISCVException ret; 4512 Int128 old_value; 4513 4514 /* read old value */ 4515 ret = csr_ops[csrno].read128(env, csrno, &old_value); 4516 if (ret != RISCV_EXCP_NONE) { 4517 return ret; 4518 } 4519 4520 /* write value if writable and write mask set, otherwise drop writes */ 4521 if (int128_nz(write_mask)) { 4522 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 4523 int128_and(new_value, write_mask)); 4524 if (csr_ops[csrno].write128) { 4525 ret = csr_ops[csrno].write128(env, csrno, new_value); 4526 if (ret != RISCV_EXCP_NONE) { 4527 return ret; 4528 } 4529 } else if (csr_ops[csrno].write) { 4530 /* avoids having to write wrappers for all registers */ 4531 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 4532 if (ret != RISCV_EXCP_NONE) { 4533 return ret; 4534 } 4535 } 4536 } 4537 4538 /* return old value */ 4539 if (ret_value) { 4540 *ret_value = old_value; 4541 } 4542 4543 return RISCV_EXCP_NONE; 4544 } 4545 4546 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 4547 Int128 *ret_value, 4548 Int128 new_value, Int128 write_mask) 4549 { 4550 RISCVException ret; 4551 4552 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask)); 4553 if (ret != RISCV_EXCP_NONE) { 4554 return ret; 4555 } 4556 4557 if (csr_ops[csrno].read128) { 4558 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 4559 } 4560 4561 /* 4562 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 4563 * at all defined. 4564 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 4565 * significant), for those, this fallback is correctly handling the 4566 * accesses 4567 */ 4568 target_ulong old_value; 4569 ret = riscv_csrrw_do64(env, csrno, &old_value, 4570 int128_getlo(new_value), 4571 int128_getlo(write_mask)); 4572 if (ret == RISCV_EXCP_NONE && ret_value) { 4573 *ret_value = int128_make64(old_value); 4574 } 4575 return ret; 4576 } 4577 4578 /* 4579 * Debugger support. If not in user mode, set env->debugger before the 4580 * riscv_csrrw call and clear it after the call. 4581 */ 4582 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 4583 target_ulong *ret_value, 4584 target_ulong new_value, 4585 target_ulong write_mask) 4586 { 4587 RISCVException ret; 4588 #if !defined(CONFIG_USER_ONLY) 4589 env->debugger = true; 4590 #endif 4591 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 4592 #if !defined(CONFIG_USER_ONLY) 4593 env->debugger = false; 4594 #endif 4595 return ret; 4596 } 4597 4598 static RISCVException read_jvt(CPURISCVState *env, int csrno, 4599 target_ulong *val) 4600 { 4601 *val = env->jvt; 4602 return RISCV_EXCP_NONE; 4603 } 4604 4605 static RISCVException write_jvt(CPURISCVState *env, int csrno, 4606 target_ulong val) 4607 { 4608 env->jvt = val; 4609 return RISCV_EXCP_NONE; 4610 } 4611 4612 /* 4613 * Control and Status Register function table 4614 * riscv_csr_operations::predicate() must be provided for an implemented CSR 4615 */ 4616 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 4617 /* User Floating-Point CSRs */ 4618 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 4619 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 4620 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 4621 /* Vector CSRs */ 4622 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 4623 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 4624 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4625 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4626 [CSR_VL] = { "vl", vs, read_vl }, 4627 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4628 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4629 /* User Timers and Counters */ 4630 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4631 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4632 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4633 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4634 4635 /* 4636 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4637 * rdtime callback is not provided by machine/platform emulation. 4638 */ 4639 [CSR_TIME] = { "time", ctr, read_time }, 4640 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4641 4642 /* Crypto Extension */ 4643 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4644 4645 /* Zcmt Extension */ 4646 [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, 4647 4648 #if !defined(CONFIG_USER_ONLY) 4649 /* Machine Timers and Counters */ 4650 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4651 write_mhpmcounter }, 4652 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4653 write_mhpmcounter }, 4654 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4655 write_mhpmcounterh }, 4656 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4657 write_mhpmcounterh }, 4658 4659 /* Machine Information Registers */ 4660 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4661 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4662 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4663 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4664 4665 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4666 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4667 /* Machine Trap Setup */ 4668 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4669 NULL, read_mstatus_i128 }, 4670 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4671 NULL, read_misa_i128 }, 4672 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4673 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4674 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4675 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4676 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4677 write_mcounteren }, 4678 4679 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4680 write_mstatush }, 4681 [CSR_MEDELEGH] = { "medelegh", any32, read_zero, write_ignore, 4682 .min_priv_ver = PRIV_VERSION_1_13_0 }, 4683 [CSR_HEDELEGH] = { "hedelegh", hmode32, read_hedelegh, write_hedelegh, 4684 .min_priv_ver = PRIV_VERSION_1_13_0 }, 4685 4686 /* Machine Trap Handling */ 4687 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4688 NULL, read_mscratch_i128, write_mscratch_i128 }, 4689 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4690 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4691 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4692 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4693 4694 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4695 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4696 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4697 4698 /* Machine-Level Interrupts (AIA) */ 4699 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4700 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4701 4702 /* Virtual Interrupts for Supervisor Level (AIA) */ 4703 [CSR_MVIEN] = { "mvien", aia_any, NULL, NULL, rmw_mvien }, 4704 [CSR_MVIP] = { "mvip", aia_any, NULL, NULL, rmw_mvip }, 4705 4706 /* Machine-Level High-Half CSRs (AIA) */ 4707 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4708 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4709 [CSR_MVIENH] = { "mvienh", aia_any32, NULL, NULL, rmw_mvienh }, 4710 [CSR_MVIPH] = { "mviph", aia_any32, NULL, NULL, rmw_mviph }, 4711 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4712 4713 /* Execution environment configuration */ 4714 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4715 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4716 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4717 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4718 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4719 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4720 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4721 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4722 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4723 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4724 4725 /* Smstateen extension CSRs */ 4726 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4727 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4728 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4729 write_mstateen0h, 4730 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4731 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4732 write_mstateen_1_3, 4733 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4734 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4735 write_mstateenh_1_3, 4736 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4737 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4738 write_mstateen_1_3, 4739 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4740 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4741 write_mstateenh_1_3, 4742 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4743 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4744 write_mstateen_1_3, 4745 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4746 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4747 write_mstateenh_1_3, 4748 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4749 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4750 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4751 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4752 write_hstateen0h, 4753 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4754 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4755 write_hstateen_1_3, 4756 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4757 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4758 write_hstateenh_1_3, 4759 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4760 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4761 write_hstateen_1_3, 4762 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4763 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4764 write_hstateenh_1_3, 4765 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4766 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4767 write_hstateen_1_3, 4768 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4769 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4770 write_hstateenh_1_3, 4771 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4772 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4773 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4774 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4775 write_sstateen_1_3, 4776 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4777 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4778 write_sstateen_1_3, 4779 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4780 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4781 write_sstateen_1_3, 4782 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4783 4784 /* Supervisor Trap Setup */ 4785 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4786 NULL, read_sstatus_i128 }, 4787 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4788 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4789 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4790 write_scounteren }, 4791 4792 /* Supervisor Trap Handling */ 4793 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4794 NULL, read_sscratch_i128, write_sscratch_i128 }, 4795 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4796 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4797 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4798 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4799 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4800 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4801 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4802 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4803 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4804 write_vstimecmp, 4805 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4806 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4807 write_vstimecmph, 4808 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4809 4810 /* Supervisor Protection and Translation */ 4811 [CSR_SATP] = { "satp", satp, read_satp, write_satp }, 4812 4813 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4814 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4815 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4816 4817 /* Supervisor-Level Interrupts (AIA) */ 4818 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4819 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4820 4821 /* Supervisor-Level High-Half CSRs (AIA) */ 4822 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4823 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4824 4825 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4826 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4827 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4828 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4829 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4830 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4831 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4832 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4833 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4834 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4835 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4836 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4837 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4838 write_hcounteren, 4839 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4840 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4841 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4842 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4843 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4844 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4845 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4846 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4847 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4848 [CSR_HGATP] = { "hgatp", hgatp, read_hgatp, write_hgatp, 4849 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4850 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4851 write_htimedelta, 4852 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4853 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4854 write_htimedeltah, 4855 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4856 4857 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4858 write_vsstatus, 4859 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4860 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4861 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4862 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4863 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4864 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4865 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4866 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4867 write_vsscratch, 4868 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4869 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4870 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4871 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4872 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4873 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4874 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4875 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4876 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4877 4878 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4879 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4880 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4881 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4882 4883 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4884 [CSR_HVIEN] = { "hvien", aia_hmode, NULL, NULL, rmw_hvien }, 4885 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4886 write_hvictl }, 4887 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4888 write_hviprio1 }, 4889 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4890 write_hviprio2 }, 4891 /* 4892 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4893 */ 4894 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4895 rmw_xiselect }, 4896 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4897 4898 /* VS-Level Interrupts (H-extension with AIA) */ 4899 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4900 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4901 4902 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4903 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4904 rmw_hidelegh }, 4905 [CSR_HVIENH] = { "hvienh", aia_hmode32, NULL, NULL, rmw_hvienh }, 4906 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4907 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4908 write_hviprio1h }, 4909 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4910 write_hviprio2h }, 4911 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4912 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4913 4914 /* Physical Memory Protection */ 4915 [CSR_MSECCFG] = { "mseccfg", have_mseccfg, read_mseccfg, write_mseccfg, 4916 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4917 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4918 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4919 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4920 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4921 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4922 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4923 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4924 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4925 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4926 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4927 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4928 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4929 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4930 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4931 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4932 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4933 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4934 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4935 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4936 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4937 4938 /* Debug CSRs */ 4939 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4940 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4941 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4942 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4943 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4944 [CSR_MCONTEXT] = { "mcontext", debug, read_mcontext, write_mcontext }, 4945 4946 /* User Pointer Masking */ 4947 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4948 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4949 write_upmmask }, 4950 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4951 write_upmbase }, 4952 /* Machine Pointer Masking */ 4953 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4954 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4955 write_mpmmask }, 4956 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4957 write_mpmbase }, 4958 /* Supervisor Pointer Masking */ 4959 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4960 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4961 write_spmmask }, 4962 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4963 write_spmbase }, 4964 4965 /* Performance Counters */ 4966 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4967 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4968 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4969 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4970 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4971 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4972 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4973 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4974 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4975 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4976 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4977 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4978 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4979 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4980 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4981 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4982 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4983 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4984 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4985 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4986 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4987 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4988 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4989 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4990 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4991 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4992 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4993 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4994 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4995 4996 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4997 write_mhpmcounter }, 4998 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4999 write_mhpmcounter }, 5000 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 5001 write_mhpmcounter }, 5002 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 5003 write_mhpmcounter }, 5004 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 5005 write_mhpmcounter }, 5006 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 5007 write_mhpmcounter }, 5008 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 5009 write_mhpmcounter }, 5010 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 5011 write_mhpmcounter }, 5012 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 5013 write_mhpmcounter }, 5014 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 5015 write_mhpmcounter }, 5016 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 5017 write_mhpmcounter }, 5018 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 5019 write_mhpmcounter }, 5020 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 5021 write_mhpmcounter }, 5022 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 5023 write_mhpmcounter }, 5024 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 5025 write_mhpmcounter }, 5026 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 5027 write_mhpmcounter }, 5028 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 5029 write_mhpmcounter }, 5030 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 5031 write_mhpmcounter }, 5032 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 5033 write_mhpmcounter }, 5034 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 5035 write_mhpmcounter }, 5036 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 5037 write_mhpmcounter }, 5038 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 5039 write_mhpmcounter }, 5040 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 5041 write_mhpmcounter }, 5042 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 5043 write_mhpmcounter }, 5044 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 5045 write_mhpmcounter }, 5046 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 5047 write_mhpmcounter }, 5048 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 5049 write_mhpmcounter }, 5050 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 5051 write_mhpmcounter }, 5052 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 5053 write_mhpmcounter }, 5054 5055 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 5056 write_mcountinhibit, 5057 .min_priv_ver = PRIV_VERSION_1_11_0 }, 5058 5059 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 5060 write_mhpmevent }, 5061 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 5062 write_mhpmevent }, 5063 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 5064 write_mhpmevent }, 5065 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 5066 write_mhpmevent }, 5067 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 5068 write_mhpmevent }, 5069 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 5070 write_mhpmevent }, 5071 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 5072 write_mhpmevent }, 5073 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 5074 write_mhpmevent }, 5075 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 5076 write_mhpmevent }, 5077 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 5078 write_mhpmevent }, 5079 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 5080 write_mhpmevent }, 5081 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 5082 write_mhpmevent }, 5083 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 5084 write_mhpmevent }, 5085 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 5086 write_mhpmevent }, 5087 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 5088 write_mhpmevent }, 5089 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 5090 write_mhpmevent }, 5091 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 5092 write_mhpmevent }, 5093 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 5094 write_mhpmevent }, 5095 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 5096 write_mhpmevent }, 5097 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 5098 write_mhpmevent }, 5099 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 5100 write_mhpmevent }, 5101 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 5102 write_mhpmevent }, 5103 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 5104 write_mhpmevent }, 5105 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 5106 write_mhpmevent }, 5107 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 5108 write_mhpmevent }, 5109 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 5110 write_mhpmevent }, 5111 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 5112 write_mhpmevent }, 5113 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 5114 write_mhpmevent }, 5115 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 5116 write_mhpmevent }, 5117 5118 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf_32, read_mhpmeventh, 5119 write_mhpmeventh, 5120 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5121 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf_32, read_mhpmeventh, 5122 write_mhpmeventh, 5123 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5124 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf_32, read_mhpmeventh, 5125 write_mhpmeventh, 5126 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5127 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf_32, read_mhpmeventh, 5128 write_mhpmeventh, 5129 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5130 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf_32, read_mhpmeventh, 5131 write_mhpmeventh, 5132 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5133 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf_32, read_mhpmeventh, 5134 write_mhpmeventh, 5135 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5136 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf_32, read_mhpmeventh, 5137 write_mhpmeventh, 5138 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5139 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf_32, read_mhpmeventh, 5140 write_mhpmeventh, 5141 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5142 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf_32, read_mhpmeventh, 5143 write_mhpmeventh, 5144 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5145 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf_32, read_mhpmeventh, 5146 write_mhpmeventh, 5147 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5148 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf_32, read_mhpmeventh, 5149 write_mhpmeventh, 5150 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5151 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf_32, read_mhpmeventh, 5152 write_mhpmeventh, 5153 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5154 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf_32, read_mhpmeventh, 5155 write_mhpmeventh, 5156 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5157 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf_32, read_mhpmeventh, 5158 write_mhpmeventh, 5159 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5160 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf_32, read_mhpmeventh, 5161 write_mhpmeventh, 5162 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5163 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf_32, read_mhpmeventh, 5164 write_mhpmeventh, 5165 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5166 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf_32, read_mhpmeventh, 5167 write_mhpmeventh, 5168 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5169 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf_32, read_mhpmeventh, 5170 write_mhpmeventh, 5171 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5172 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf_32, read_mhpmeventh, 5173 write_mhpmeventh, 5174 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5175 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf_32, read_mhpmeventh, 5176 write_mhpmeventh, 5177 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5178 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf_32, read_mhpmeventh, 5179 write_mhpmeventh, 5180 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5181 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf_32, read_mhpmeventh, 5182 write_mhpmeventh, 5183 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5184 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf_32, read_mhpmeventh, 5185 write_mhpmeventh, 5186 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5187 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf_32, read_mhpmeventh, 5188 write_mhpmeventh, 5189 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5190 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf_32, read_mhpmeventh, 5191 write_mhpmeventh, 5192 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5193 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf_32, read_mhpmeventh, 5194 write_mhpmeventh, 5195 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5196 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf_32, read_mhpmeventh, 5197 write_mhpmeventh, 5198 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5199 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf_32, read_mhpmeventh, 5200 write_mhpmeventh, 5201 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5202 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf_32, read_mhpmeventh, 5203 write_mhpmeventh, 5204 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5205 5206 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 5207 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 5208 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 5209 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 5210 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 5211 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 5212 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 5213 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 5214 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 5215 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 5216 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 5217 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 5218 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 5219 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 5220 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 5221 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 5222 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 5223 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 5224 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 5225 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 5226 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 5227 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 5228 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 5229 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 5230 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 5231 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 5232 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 5233 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 5234 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 5235 5236 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 5237 write_mhpmcounterh }, 5238 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 5239 write_mhpmcounterh }, 5240 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 5241 write_mhpmcounterh }, 5242 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 5243 write_mhpmcounterh }, 5244 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 5245 write_mhpmcounterh }, 5246 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 5247 write_mhpmcounterh }, 5248 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 5249 write_mhpmcounterh }, 5250 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 5251 write_mhpmcounterh }, 5252 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 5253 write_mhpmcounterh }, 5254 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 5255 write_mhpmcounterh }, 5256 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 5257 write_mhpmcounterh }, 5258 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 5259 write_mhpmcounterh }, 5260 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 5261 write_mhpmcounterh }, 5262 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 5263 write_mhpmcounterh }, 5264 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 5265 write_mhpmcounterh }, 5266 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 5267 write_mhpmcounterh }, 5268 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 5269 write_mhpmcounterh }, 5270 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 5271 write_mhpmcounterh }, 5272 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 5273 write_mhpmcounterh }, 5274 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 5275 write_mhpmcounterh }, 5276 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 5277 write_mhpmcounterh }, 5278 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 5279 write_mhpmcounterh }, 5280 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 5281 write_mhpmcounterh }, 5282 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 5283 write_mhpmcounterh }, 5284 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 5285 write_mhpmcounterh }, 5286 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 5287 write_mhpmcounterh }, 5288 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 5289 write_mhpmcounterh }, 5290 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 5291 write_mhpmcounterh }, 5292 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 5293 write_mhpmcounterh }, 5294 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 5295 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5296 5297 #endif /* !CONFIG_USER_ONLY */ 5298 }; 5299