1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "qemu/main-loop.h" 26 #include "exec/exec-all.h" 27 #include "sysemu/cpu-timers.h" 28 #include "qemu/guest-random.h" 29 #include "qapi/error.h" 30 31 /* CSR function table public API */ 32 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 33 { 34 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 35 } 36 37 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 38 { 39 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 40 } 41 42 /* Predicates */ 43 static RISCVException fs(CPURISCVState *env, int csrno) 44 { 45 #if !defined(CONFIG_USER_ONLY) 46 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 47 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 48 return RISCV_EXCP_ILLEGAL_INST; 49 } 50 #endif 51 return RISCV_EXCP_NONE; 52 } 53 54 static RISCVException vs(CPURISCVState *env, int csrno) 55 { 56 CPUState *cs = env_cpu(env); 57 RISCVCPU *cpu = RISCV_CPU(cs); 58 59 if (env->misa_ext & RVV || 60 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 61 #if !defined(CONFIG_USER_ONLY) 62 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 63 return RISCV_EXCP_ILLEGAL_INST; 64 } 65 #endif 66 return RISCV_EXCP_NONE; 67 } 68 return RISCV_EXCP_ILLEGAL_INST; 69 } 70 71 static RISCVException ctr(CPURISCVState *env, int csrno) 72 { 73 #if !defined(CONFIG_USER_ONLY) 74 CPUState *cs = env_cpu(env); 75 RISCVCPU *cpu = RISCV_CPU(cs); 76 int ctr_index; 77 int base_csrno = CSR_HPMCOUNTER3; 78 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 79 80 if (rv32 && csrno >= CSR_CYCLEH) { 81 /* Offset for RV32 hpmcounternh counters */ 82 base_csrno += 0x80; 83 } 84 ctr_index = csrno - base_csrno; 85 86 if (!cpu->cfg.pmu_num || ctr_index >= (cpu->cfg.pmu_num)) { 87 /* No counter is enabled in PMU or the counter is out of range */ 88 return RISCV_EXCP_ILLEGAL_INST; 89 } 90 91 if (env->priv == PRV_S) { 92 switch (csrno) { 93 case CSR_CYCLE: 94 if (!get_field(env->mcounteren, COUNTEREN_CY)) { 95 return RISCV_EXCP_ILLEGAL_INST; 96 } 97 break; 98 case CSR_TIME: 99 if (!get_field(env->mcounteren, COUNTEREN_TM)) { 100 return RISCV_EXCP_ILLEGAL_INST; 101 } 102 break; 103 case CSR_INSTRET: 104 if (!get_field(env->mcounteren, COUNTEREN_IR)) { 105 return RISCV_EXCP_ILLEGAL_INST; 106 } 107 break; 108 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 109 ctr_index = csrno - CSR_CYCLE; 110 if (!get_field(env->mcounteren, 1 << ctr_index)) { 111 return RISCV_EXCP_ILLEGAL_INST; 112 } 113 break; 114 } 115 if (rv32) { 116 switch (csrno) { 117 case CSR_CYCLEH: 118 if (!get_field(env->mcounteren, COUNTEREN_CY)) { 119 return RISCV_EXCP_ILLEGAL_INST; 120 } 121 break; 122 case CSR_TIMEH: 123 if (!get_field(env->mcounteren, COUNTEREN_TM)) { 124 return RISCV_EXCP_ILLEGAL_INST; 125 } 126 break; 127 case CSR_INSTRETH: 128 if (!get_field(env->mcounteren, COUNTEREN_IR)) { 129 return RISCV_EXCP_ILLEGAL_INST; 130 } 131 break; 132 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 133 ctr_index = csrno - CSR_CYCLEH; 134 if (!get_field(env->mcounteren, 1 << ctr_index)) { 135 return RISCV_EXCP_ILLEGAL_INST; 136 } 137 break; 138 } 139 } 140 } 141 142 if (riscv_cpu_virt_enabled(env)) { 143 switch (csrno) { 144 case CSR_CYCLE: 145 if (!get_field(env->hcounteren, COUNTEREN_CY) && 146 get_field(env->mcounteren, COUNTEREN_CY)) { 147 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 148 } 149 break; 150 case CSR_TIME: 151 if (!get_field(env->hcounteren, COUNTEREN_TM) && 152 get_field(env->mcounteren, COUNTEREN_TM)) { 153 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 154 } 155 break; 156 case CSR_INSTRET: 157 if (!get_field(env->hcounteren, COUNTEREN_IR) && 158 get_field(env->mcounteren, COUNTEREN_IR)) { 159 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 160 } 161 break; 162 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 163 ctr_index = csrno - CSR_CYCLE; 164 if (!get_field(env->hcounteren, 1 << ctr_index) && 165 get_field(env->mcounteren, 1 << ctr_index)) { 166 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 167 } 168 break; 169 } 170 if (rv32) { 171 switch (csrno) { 172 case CSR_CYCLEH: 173 if (!get_field(env->hcounteren, COUNTEREN_CY) && 174 get_field(env->mcounteren, COUNTEREN_CY)) { 175 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 176 } 177 break; 178 case CSR_TIMEH: 179 if (!get_field(env->hcounteren, COUNTEREN_TM) && 180 get_field(env->mcounteren, COUNTEREN_TM)) { 181 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 182 } 183 break; 184 case CSR_INSTRETH: 185 if (!get_field(env->hcounteren, COUNTEREN_IR) && 186 get_field(env->mcounteren, COUNTEREN_IR)) { 187 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 188 } 189 break; 190 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 191 ctr_index = csrno - CSR_CYCLEH; 192 if (!get_field(env->hcounteren, 1 << ctr_index) && 193 get_field(env->mcounteren, 1 << ctr_index)) { 194 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 195 } 196 break; 197 } 198 } 199 } 200 #endif 201 return RISCV_EXCP_NONE; 202 } 203 204 static RISCVException ctr32(CPURISCVState *env, int csrno) 205 { 206 if (riscv_cpu_mxl(env) != MXL_RV32) { 207 return RISCV_EXCP_ILLEGAL_INST; 208 } 209 210 return ctr(env, csrno); 211 } 212 213 #if !defined(CONFIG_USER_ONLY) 214 static RISCVException mctr(CPURISCVState *env, int csrno) 215 { 216 CPUState *cs = env_cpu(env); 217 RISCVCPU *cpu = RISCV_CPU(cs); 218 int ctr_index; 219 int base_csrno = CSR_MHPMCOUNTER3; 220 221 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 222 /* Offset for RV32 mhpmcounternh counters */ 223 base_csrno += 0x80; 224 } 225 ctr_index = csrno - base_csrno; 226 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 227 /* The PMU is not enabled or counter is out of range*/ 228 return RISCV_EXCP_ILLEGAL_INST; 229 } 230 231 return RISCV_EXCP_NONE; 232 } 233 234 static RISCVException mctr32(CPURISCVState *env, int csrno) 235 { 236 if (riscv_cpu_mxl(env) != MXL_RV32) { 237 return RISCV_EXCP_ILLEGAL_INST; 238 } 239 240 return mctr(env, csrno); 241 } 242 243 static RISCVException any(CPURISCVState *env, int csrno) 244 { 245 return RISCV_EXCP_NONE; 246 } 247 248 static RISCVException any32(CPURISCVState *env, int csrno) 249 { 250 if (riscv_cpu_mxl(env) != MXL_RV32) { 251 return RISCV_EXCP_ILLEGAL_INST; 252 } 253 254 return any(env, csrno); 255 256 } 257 258 static int aia_any(CPURISCVState *env, int csrno) 259 { 260 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 261 return RISCV_EXCP_ILLEGAL_INST; 262 } 263 264 return any(env, csrno); 265 } 266 267 static int aia_any32(CPURISCVState *env, int csrno) 268 { 269 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 270 return RISCV_EXCP_ILLEGAL_INST; 271 } 272 273 return any32(env, csrno); 274 } 275 276 static RISCVException smode(CPURISCVState *env, int csrno) 277 { 278 if (riscv_has_ext(env, RVS)) { 279 return RISCV_EXCP_NONE; 280 } 281 282 return RISCV_EXCP_ILLEGAL_INST; 283 } 284 285 static int smode32(CPURISCVState *env, int csrno) 286 { 287 if (riscv_cpu_mxl(env) != MXL_RV32) { 288 return RISCV_EXCP_ILLEGAL_INST; 289 } 290 291 return smode(env, csrno); 292 } 293 294 static int aia_smode(CPURISCVState *env, int csrno) 295 { 296 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 297 return RISCV_EXCP_ILLEGAL_INST; 298 } 299 300 return smode(env, csrno); 301 } 302 303 static int aia_smode32(CPURISCVState *env, int csrno) 304 { 305 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 306 return RISCV_EXCP_ILLEGAL_INST; 307 } 308 309 return smode32(env, csrno); 310 } 311 312 static RISCVException hmode(CPURISCVState *env, int csrno) 313 { 314 if (riscv_has_ext(env, RVS) && 315 riscv_has_ext(env, RVH)) { 316 /* Hypervisor extension is supported */ 317 if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 318 env->priv == PRV_M) { 319 return RISCV_EXCP_NONE; 320 } else { 321 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 322 } 323 } 324 325 return RISCV_EXCP_ILLEGAL_INST; 326 } 327 328 static RISCVException hmode32(CPURISCVState *env, int csrno) 329 { 330 if (riscv_cpu_mxl(env) != MXL_RV32) { 331 if (!riscv_cpu_virt_enabled(env)) { 332 return RISCV_EXCP_ILLEGAL_INST; 333 } else { 334 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 335 } 336 } 337 338 return hmode(env, csrno); 339 340 } 341 342 /* Checks if PointerMasking registers could be accessed */ 343 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 344 { 345 /* Check if j-ext is present */ 346 if (riscv_has_ext(env, RVJ)) { 347 return RISCV_EXCP_NONE; 348 } 349 return RISCV_EXCP_ILLEGAL_INST; 350 } 351 352 static int aia_hmode(CPURISCVState *env, int csrno) 353 { 354 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 355 return RISCV_EXCP_ILLEGAL_INST; 356 } 357 358 return hmode(env, csrno); 359 } 360 361 static int aia_hmode32(CPURISCVState *env, int csrno) 362 { 363 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 364 return RISCV_EXCP_ILLEGAL_INST; 365 } 366 367 return hmode32(env, csrno); 368 } 369 370 static RISCVException pmp(CPURISCVState *env, int csrno) 371 { 372 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 373 return RISCV_EXCP_NONE; 374 } 375 376 return RISCV_EXCP_ILLEGAL_INST; 377 } 378 379 static RISCVException epmp(CPURISCVState *env, int csrno) 380 { 381 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 382 return RISCV_EXCP_NONE; 383 } 384 385 return RISCV_EXCP_ILLEGAL_INST; 386 } 387 388 static RISCVException debug(CPURISCVState *env, int csrno) 389 { 390 if (riscv_feature(env, RISCV_FEATURE_DEBUG)) { 391 return RISCV_EXCP_NONE; 392 } 393 394 return RISCV_EXCP_ILLEGAL_INST; 395 } 396 #endif 397 398 static RISCVException seed(CPURISCVState *env, int csrno) 399 { 400 RISCVCPU *cpu = env_archcpu(env); 401 402 if (!cpu->cfg.ext_zkr) { 403 return RISCV_EXCP_ILLEGAL_INST; 404 } 405 406 #if !defined(CONFIG_USER_ONLY) 407 /* 408 * With a CSR read-write instruction: 409 * 1) The seed CSR is always available in machine mode as normal. 410 * 2) Attempted access to seed from virtual modes VS and VU always raises 411 * an exception(virtual instruction exception only if mseccfg.sseed=1). 412 * 3) Without the corresponding access control bit set to 1, any attempted 413 * access to seed from U, S or HS modes will raise an illegal instruction 414 * exception. 415 */ 416 if (env->priv == PRV_M) { 417 return RISCV_EXCP_NONE; 418 } else if (riscv_cpu_virt_enabled(env)) { 419 if (env->mseccfg & MSECCFG_SSEED) { 420 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 421 } else { 422 return RISCV_EXCP_ILLEGAL_INST; 423 } 424 } else { 425 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 426 return RISCV_EXCP_NONE; 427 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 428 return RISCV_EXCP_NONE; 429 } else { 430 return RISCV_EXCP_ILLEGAL_INST; 431 } 432 } 433 #else 434 return RISCV_EXCP_NONE; 435 #endif 436 } 437 438 /* User Floating-Point CSRs */ 439 static RISCVException read_fflags(CPURISCVState *env, int csrno, 440 target_ulong *val) 441 { 442 *val = riscv_cpu_get_fflags(env); 443 return RISCV_EXCP_NONE; 444 } 445 446 static RISCVException write_fflags(CPURISCVState *env, int csrno, 447 target_ulong val) 448 { 449 #if !defined(CONFIG_USER_ONLY) 450 if (riscv_has_ext(env, RVF)) { 451 env->mstatus |= MSTATUS_FS; 452 } 453 #endif 454 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 455 return RISCV_EXCP_NONE; 456 } 457 458 static RISCVException read_frm(CPURISCVState *env, int csrno, 459 target_ulong *val) 460 { 461 *val = env->frm; 462 return RISCV_EXCP_NONE; 463 } 464 465 static RISCVException write_frm(CPURISCVState *env, int csrno, 466 target_ulong val) 467 { 468 #if !defined(CONFIG_USER_ONLY) 469 if (riscv_has_ext(env, RVF)) { 470 env->mstatus |= MSTATUS_FS; 471 } 472 #endif 473 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 474 return RISCV_EXCP_NONE; 475 } 476 477 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 478 target_ulong *val) 479 { 480 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 481 | (env->frm << FSR_RD_SHIFT); 482 return RISCV_EXCP_NONE; 483 } 484 485 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 486 target_ulong val) 487 { 488 #if !defined(CONFIG_USER_ONLY) 489 if (riscv_has_ext(env, RVF)) { 490 env->mstatus |= MSTATUS_FS; 491 } 492 #endif 493 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 494 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 495 return RISCV_EXCP_NONE; 496 } 497 498 static RISCVException read_vtype(CPURISCVState *env, int csrno, 499 target_ulong *val) 500 { 501 uint64_t vill; 502 switch (env->xl) { 503 case MXL_RV32: 504 vill = (uint32_t)env->vill << 31; 505 break; 506 case MXL_RV64: 507 vill = (uint64_t)env->vill << 63; 508 break; 509 default: 510 g_assert_not_reached(); 511 } 512 *val = (target_ulong)vill | env->vtype; 513 return RISCV_EXCP_NONE; 514 } 515 516 static RISCVException read_vl(CPURISCVState *env, int csrno, 517 target_ulong *val) 518 { 519 *val = env->vl; 520 return RISCV_EXCP_NONE; 521 } 522 523 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 524 { 525 *val = env_archcpu(env)->cfg.vlen >> 3; 526 return RISCV_EXCP_NONE; 527 } 528 529 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 530 target_ulong *val) 531 { 532 *val = env->vxrm; 533 return RISCV_EXCP_NONE; 534 } 535 536 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 537 target_ulong val) 538 { 539 #if !defined(CONFIG_USER_ONLY) 540 env->mstatus |= MSTATUS_VS; 541 #endif 542 env->vxrm = val; 543 return RISCV_EXCP_NONE; 544 } 545 546 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 547 target_ulong *val) 548 { 549 *val = env->vxsat; 550 return RISCV_EXCP_NONE; 551 } 552 553 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 554 target_ulong val) 555 { 556 #if !defined(CONFIG_USER_ONLY) 557 env->mstatus |= MSTATUS_VS; 558 #endif 559 env->vxsat = val; 560 return RISCV_EXCP_NONE; 561 } 562 563 static RISCVException read_vstart(CPURISCVState *env, int csrno, 564 target_ulong *val) 565 { 566 *val = env->vstart; 567 return RISCV_EXCP_NONE; 568 } 569 570 static RISCVException write_vstart(CPURISCVState *env, int csrno, 571 target_ulong val) 572 { 573 #if !defined(CONFIG_USER_ONLY) 574 env->mstatus |= MSTATUS_VS; 575 #endif 576 /* 577 * The vstart CSR is defined to have only enough writable bits 578 * to hold the largest element index, i.e. lg2(VLEN) bits. 579 */ 580 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 581 return RISCV_EXCP_NONE; 582 } 583 584 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 585 { 586 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 587 return RISCV_EXCP_NONE; 588 } 589 590 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 591 { 592 #if !defined(CONFIG_USER_ONLY) 593 env->mstatus |= MSTATUS_VS; 594 #endif 595 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 596 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 597 return RISCV_EXCP_NONE; 598 } 599 600 /* User Timers and Counters */ 601 static target_ulong get_ticks(bool shift) 602 { 603 int64_t val; 604 target_ulong result; 605 606 #if !defined(CONFIG_USER_ONLY) 607 if (icount_enabled()) { 608 val = icount_get(); 609 } else { 610 val = cpu_get_host_ticks(); 611 } 612 #else 613 val = cpu_get_host_ticks(); 614 #endif 615 616 if (shift) { 617 result = val >> 32; 618 } else { 619 result = val; 620 } 621 622 return result; 623 } 624 625 #if defined(CONFIG_USER_ONLY) 626 static RISCVException read_time(CPURISCVState *env, int csrno, 627 target_ulong *val) 628 { 629 *val = cpu_get_host_ticks(); 630 return RISCV_EXCP_NONE; 631 } 632 633 static RISCVException read_timeh(CPURISCVState *env, int csrno, 634 target_ulong *val) 635 { 636 *val = cpu_get_host_ticks() >> 32; 637 return RISCV_EXCP_NONE; 638 } 639 640 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 641 { 642 *val = get_ticks(false); 643 return RISCV_EXCP_NONE; 644 } 645 646 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 647 { 648 *val = get_ticks(true); 649 return RISCV_EXCP_NONE; 650 } 651 652 #else /* CONFIG_USER_ONLY */ 653 654 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 655 { 656 int evt_index = csrno - CSR_MCOUNTINHIBIT; 657 658 *val = env->mhpmevent_val[evt_index]; 659 660 return RISCV_EXCP_NONE; 661 } 662 663 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 664 { 665 int evt_index = csrno - CSR_MCOUNTINHIBIT; 666 667 env->mhpmevent_val[evt_index] = val; 668 669 return RISCV_EXCP_NONE; 670 } 671 672 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 673 { 674 int ctr_idx = csrno - CSR_MCYCLE; 675 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 676 677 counter->mhpmcounter_val = val; 678 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 679 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 680 counter->mhpmcounter_prev = get_ticks(false); 681 } else { 682 /* Other counters can keep incrementing from the given value */ 683 counter->mhpmcounter_prev = val; 684 } 685 686 return RISCV_EXCP_NONE; 687 } 688 689 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 690 { 691 int ctr_idx = csrno - CSR_MCYCLEH; 692 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 693 694 counter->mhpmcounterh_val = val; 695 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 696 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 697 counter->mhpmcounterh_prev = get_ticks(true); 698 } else { 699 counter->mhpmcounterh_prev = val; 700 } 701 702 return RISCV_EXCP_NONE; 703 } 704 705 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 706 bool upper_half, uint32_t ctr_idx) 707 { 708 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 709 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 710 counter.mhpmcounter_prev; 711 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 712 counter.mhpmcounter_val; 713 714 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 715 /** 716 * Counter should not increment if inhibit bit is set. We can't really 717 * stop the icount counting. Just return the counter value written by 718 * the supervisor to indicate that counter was not incremented. 719 */ 720 if (!counter.started) { 721 *val = ctr_val; 722 return RISCV_EXCP_NONE; 723 } else { 724 /* Mark that the counter has been stopped */ 725 counter.started = false; 726 } 727 } 728 729 /** 730 * The kernel computes the perf delta by subtracting the current value from 731 * the value it initialized previously (ctr_val). 732 */ 733 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 734 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 735 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 736 } else { 737 *val = ctr_val; 738 } 739 740 return RISCV_EXCP_NONE; 741 } 742 743 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 744 { 745 uint16_t ctr_index; 746 747 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 748 ctr_index = csrno - CSR_MCYCLE; 749 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 750 ctr_index = csrno - CSR_CYCLE; 751 } else { 752 return RISCV_EXCP_ILLEGAL_INST; 753 } 754 755 return riscv_pmu_read_ctr(env, val, false, ctr_index); 756 } 757 758 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 759 { 760 uint16_t ctr_index; 761 762 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 763 ctr_index = csrno - CSR_MCYCLEH; 764 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 765 ctr_index = csrno - CSR_CYCLEH; 766 } else { 767 return RISCV_EXCP_ILLEGAL_INST; 768 } 769 770 return riscv_pmu_read_ctr(env, val, true, ctr_index); 771 } 772 773 static RISCVException read_time(CPURISCVState *env, int csrno, 774 target_ulong *val) 775 { 776 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 777 778 if (!env->rdtime_fn) { 779 return RISCV_EXCP_ILLEGAL_INST; 780 } 781 782 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 783 return RISCV_EXCP_NONE; 784 } 785 786 static RISCVException read_timeh(CPURISCVState *env, int csrno, 787 target_ulong *val) 788 { 789 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 790 791 if (!env->rdtime_fn) { 792 return RISCV_EXCP_ILLEGAL_INST; 793 } 794 795 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 796 return RISCV_EXCP_NONE; 797 } 798 799 /* Machine constants */ 800 801 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 802 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP)) 803 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 804 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 805 806 #define VSTOPI_NUM_SRCS 5 807 808 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 809 VS_MODE_INTERRUPTS; 810 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 811 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 812 HS_MODE_INTERRUPTS; 813 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 814 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 815 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 816 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 817 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 818 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 819 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 820 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 821 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 822 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 823 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 824 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 825 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 826 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 827 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 828 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 829 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 830 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 831 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 832 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 833 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 834 (1ULL << (RISCV_EXCP_VS_ECALL)) | 835 (1ULL << (RISCV_EXCP_M_ECALL)) | 836 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 837 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 838 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 839 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 840 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 841 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 842 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 843 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP; 844 static const target_ulong hip_writable_mask = MIP_VSSIP; 845 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 846 static const target_ulong vsip_writable_mask = MIP_VSSIP; 847 848 static const char valid_vm_1_10_32[16] = { 849 [VM_1_10_MBARE] = 1, 850 [VM_1_10_SV32] = 1 851 }; 852 853 static const char valid_vm_1_10_64[16] = { 854 [VM_1_10_MBARE] = 1, 855 [VM_1_10_SV39] = 1, 856 [VM_1_10_SV48] = 1, 857 [VM_1_10_SV57] = 1 858 }; 859 860 /* Machine Information Registers */ 861 static RISCVException read_zero(CPURISCVState *env, int csrno, 862 target_ulong *val) 863 { 864 *val = 0; 865 return RISCV_EXCP_NONE; 866 } 867 868 static RISCVException write_ignore(CPURISCVState *env, int csrno, 869 target_ulong val) 870 { 871 return RISCV_EXCP_NONE; 872 } 873 874 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 875 target_ulong *val) 876 { 877 CPUState *cs = env_cpu(env); 878 RISCVCPU *cpu = RISCV_CPU(cs); 879 880 *val = cpu->cfg.mvendorid; 881 return RISCV_EXCP_NONE; 882 } 883 884 static RISCVException read_marchid(CPURISCVState *env, int csrno, 885 target_ulong *val) 886 { 887 CPUState *cs = env_cpu(env); 888 RISCVCPU *cpu = RISCV_CPU(cs); 889 890 *val = cpu->cfg.marchid; 891 return RISCV_EXCP_NONE; 892 } 893 894 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 895 target_ulong *val) 896 { 897 CPUState *cs = env_cpu(env); 898 RISCVCPU *cpu = RISCV_CPU(cs); 899 900 *val = cpu->cfg.mimpid; 901 return RISCV_EXCP_NONE; 902 } 903 904 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 905 target_ulong *val) 906 { 907 *val = env->mhartid; 908 return RISCV_EXCP_NONE; 909 } 910 911 /* Machine Trap Setup */ 912 913 /* We do not store SD explicitly, only compute it on demand. */ 914 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 915 { 916 if ((status & MSTATUS_FS) == MSTATUS_FS || 917 (status & MSTATUS_VS) == MSTATUS_VS || 918 (status & MSTATUS_XS) == MSTATUS_XS) { 919 switch (xl) { 920 case MXL_RV32: 921 return status | MSTATUS32_SD; 922 case MXL_RV64: 923 return status | MSTATUS64_SD; 924 case MXL_RV128: 925 return MSTATUSH128_SD; 926 default: 927 g_assert_not_reached(); 928 } 929 } 930 return status; 931 } 932 933 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 934 target_ulong *val) 935 { 936 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 937 return RISCV_EXCP_NONE; 938 } 939 940 static int validate_vm(CPURISCVState *env, target_ulong vm) 941 { 942 if (riscv_cpu_mxl(env) == MXL_RV32) { 943 return valid_vm_1_10_32[vm & 0xf]; 944 } else { 945 return valid_vm_1_10_64[vm & 0xf]; 946 } 947 } 948 949 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 950 target_ulong val) 951 { 952 uint64_t mstatus = env->mstatus; 953 uint64_t mask = 0; 954 RISCVMXL xl = riscv_cpu_mxl(env); 955 956 /* flush tlb on mstatus fields that affect VM */ 957 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 958 MSTATUS_MPRV | MSTATUS_SUM)) { 959 tlb_flush(env_cpu(env)); 960 } 961 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 962 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 963 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 964 MSTATUS_TW | MSTATUS_VS; 965 966 if (riscv_has_ext(env, RVF)) { 967 mask |= MSTATUS_FS; 968 } 969 970 if (xl != MXL_RV32 || env->debugger) { 971 /* 972 * RV32: MPV and GVA are not in mstatus. The current plan is to 973 * add them to mstatush. For now, we just don't support it. 974 */ 975 mask |= MSTATUS_MPV | MSTATUS_GVA; 976 if ((val & MSTATUS64_UXL) != 0) { 977 mask |= MSTATUS64_UXL; 978 } 979 } 980 981 mstatus = (mstatus & ~mask) | (val & mask); 982 983 if (xl > MXL_RV32) { 984 /* SXL field is for now read only */ 985 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 986 } 987 env->mstatus = mstatus; 988 env->xl = cpu_recompute_xl(env); 989 990 return RISCV_EXCP_NONE; 991 } 992 993 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 994 target_ulong *val) 995 { 996 *val = env->mstatus >> 32; 997 return RISCV_EXCP_NONE; 998 } 999 1000 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1001 target_ulong val) 1002 { 1003 uint64_t valh = (uint64_t)val << 32; 1004 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1005 1006 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1007 tlb_flush(env_cpu(env)); 1008 } 1009 1010 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1011 1012 return RISCV_EXCP_NONE; 1013 } 1014 1015 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1016 Int128 *val) 1017 { 1018 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1019 return RISCV_EXCP_NONE; 1020 } 1021 1022 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1023 Int128 *val) 1024 { 1025 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1026 return RISCV_EXCP_NONE; 1027 } 1028 1029 static RISCVException read_misa(CPURISCVState *env, int csrno, 1030 target_ulong *val) 1031 { 1032 target_ulong misa; 1033 1034 switch (env->misa_mxl) { 1035 case MXL_RV32: 1036 misa = (target_ulong)MXL_RV32 << 30; 1037 break; 1038 #ifdef TARGET_RISCV64 1039 case MXL_RV64: 1040 misa = (target_ulong)MXL_RV64 << 62; 1041 break; 1042 #endif 1043 default: 1044 g_assert_not_reached(); 1045 } 1046 1047 *val = misa | env->misa_ext; 1048 return RISCV_EXCP_NONE; 1049 } 1050 1051 static RISCVException write_misa(CPURISCVState *env, int csrno, 1052 target_ulong val) 1053 { 1054 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 1055 /* drop write to misa */ 1056 return RISCV_EXCP_NONE; 1057 } 1058 1059 /* 'I' or 'E' must be present */ 1060 if (!(val & (RVI | RVE))) { 1061 /* It is not, drop write to misa */ 1062 return RISCV_EXCP_NONE; 1063 } 1064 1065 /* 'E' excludes all other extensions */ 1066 if (val & RVE) { 1067 /* when we support 'E' we can do "val = RVE;" however 1068 * for now we just drop writes if 'E' is present. 1069 */ 1070 return RISCV_EXCP_NONE; 1071 } 1072 1073 /* 1074 * misa.MXL writes are not supported by QEMU. 1075 * Drop writes to those bits. 1076 */ 1077 1078 /* Mask extensions that are not supported by this hart */ 1079 val &= env->misa_ext_mask; 1080 1081 /* Mask extensions that are not supported by QEMU */ 1082 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 1083 1084 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1085 if ((val & RVD) && !(val & RVF)) { 1086 val &= ~RVD; 1087 } 1088 1089 /* Suppress 'C' if next instruction is not aligned 1090 * TODO: this should check next_pc 1091 */ 1092 if ((val & RVC) && (GETPC() & ~3) != 0) { 1093 val &= ~RVC; 1094 } 1095 1096 /* If nothing changed, do nothing. */ 1097 if (val == env->misa_ext) { 1098 return RISCV_EXCP_NONE; 1099 } 1100 1101 if (!(val & RVF)) { 1102 env->mstatus &= ~MSTATUS_FS; 1103 } 1104 1105 /* flush translation cache */ 1106 tb_flush(env_cpu(env)); 1107 env->misa_ext = val; 1108 env->xl = riscv_cpu_mxl(env); 1109 return RISCV_EXCP_NONE; 1110 } 1111 1112 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1113 target_ulong *val) 1114 { 1115 *val = env->medeleg; 1116 return RISCV_EXCP_NONE; 1117 } 1118 1119 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1120 target_ulong val) 1121 { 1122 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1123 return RISCV_EXCP_NONE; 1124 } 1125 1126 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1127 uint64_t *ret_val, 1128 uint64_t new_val, uint64_t wr_mask) 1129 { 1130 uint64_t mask = wr_mask & delegable_ints; 1131 1132 if (ret_val) { 1133 *ret_val = env->mideleg; 1134 } 1135 1136 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1137 1138 if (riscv_has_ext(env, RVH)) { 1139 env->mideleg |= HS_MODE_INTERRUPTS; 1140 } 1141 1142 return RISCV_EXCP_NONE; 1143 } 1144 1145 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1146 target_ulong *ret_val, 1147 target_ulong new_val, target_ulong wr_mask) 1148 { 1149 uint64_t rval; 1150 RISCVException ret; 1151 1152 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1153 if (ret_val) { 1154 *ret_val = rval; 1155 } 1156 1157 return ret; 1158 } 1159 1160 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1161 target_ulong *ret_val, 1162 target_ulong new_val, 1163 target_ulong wr_mask) 1164 { 1165 uint64_t rval; 1166 RISCVException ret; 1167 1168 ret = rmw_mideleg64(env, csrno, &rval, 1169 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1170 if (ret_val) { 1171 *ret_val = rval >> 32; 1172 } 1173 1174 return ret; 1175 } 1176 1177 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1178 uint64_t *ret_val, 1179 uint64_t new_val, uint64_t wr_mask) 1180 { 1181 uint64_t mask = wr_mask & all_ints; 1182 1183 if (ret_val) { 1184 *ret_val = env->mie; 1185 } 1186 1187 env->mie = (env->mie & ~mask) | (new_val & mask); 1188 1189 if (!riscv_has_ext(env, RVH)) { 1190 env->mie &= ~((uint64_t)MIP_SGEIP); 1191 } 1192 1193 return RISCV_EXCP_NONE; 1194 } 1195 1196 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1197 target_ulong *ret_val, 1198 target_ulong new_val, target_ulong wr_mask) 1199 { 1200 uint64_t rval; 1201 RISCVException ret; 1202 1203 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1204 if (ret_val) { 1205 *ret_val = rval; 1206 } 1207 1208 return ret; 1209 } 1210 1211 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1212 target_ulong *ret_val, 1213 target_ulong new_val, target_ulong wr_mask) 1214 { 1215 uint64_t rval; 1216 RISCVException ret; 1217 1218 ret = rmw_mie64(env, csrno, &rval, 1219 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1220 if (ret_val) { 1221 *ret_val = rval >> 32; 1222 } 1223 1224 return ret; 1225 } 1226 1227 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1228 { 1229 int irq; 1230 uint8_t iprio; 1231 1232 irq = riscv_cpu_mirq_pending(env); 1233 if (irq <= 0 || irq > 63) { 1234 *val = 0; 1235 } else { 1236 iprio = env->miprio[irq]; 1237 if (!iprio) { 1238 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1239 iprio = IPRIO_MMAXIPRIO; 1240 } 1241 } 1242 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1243 *val |= iprio; 1244 } 1245 1246 return RISCV_EXCP_NONE; 1247 } 1248 1249 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1250 { 1251 if (!riscv_cpu_virt_enabled(env)) { 1252 return csrno; 1253 } 1254 1255 switch (csrno) { 1256 case CSR_SISELECT: 1257 return CSR_VSISELECT; 1258 case CSR_SIREG: 1259 return CSR_VSIREG; 1260 case CSR_SSETEIPNUM: 1261 return CSR_VSSETEIPNUM; 1262 case CSR_SCLREIPNUM: 1263 return CSR_VSCLREIPNUM; 1264 case CSR_SSETEIENUM: 1265 return CSR_VSSETEIENUM; 1266 case CSR_SCLREIENUM: 1267 return CSR_VSCLREIENUM; 1268 case CSR_STOPEI: 1269 return CSR_VSTOPEI; 1270 default: 1271 return csrno; 1272 }; 1273 } 1274 1275 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1276 target_ulong new_val, target_ulong wr_mask) 1277 { 1278 target_ulong *iselect; 1279 1280 /* Translate CSR number for VS-mode */ 1281 csrno = aia_xlate_vs_csrno(env, csrno); 1282 1283 /* Find the iselect CSR based on CSR number */ 1284 switch (csrno) { 1285 case CSR_MISELECT: 1286 iselect = &env->miselect; 1287 break; 1288 case CSR_SISELECT: 1289 iselect = &env->siselect; 1290 break; 1291 case CSR_VSISELECT: 1292 iselect = &env->vsiselect; 1293 break; 1294 default: 1295 return RISCV_EXCP_ILLEGAL_INST; 1296 }; 1297 1298 if (val) { 1299 *val = *iselect; 1300 } 1301 1302 wr_mask &= ISELECT_MASK; 1303 if (wr_mask) { 1304 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1305 } 1306 1307 return RISCV_EXCP_NONE; 1308 } 1309 1310 static int rmw_iprio(target_ulong xlen, 1311 target_ulong iselect, uint8_t *iprio, 1312 target_ulong *val, target_ulong new_val, 1313 target_ulong wr_mask, int ext_irq_no) 1314 { 1315 int i, firq, nirqs; 1316 target_ulong old_val; 1317 1318 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1319 return -EINVAL; 1320 } 1321 if (xlen != 32 && iselect & 0x1) { 1322 return -EINVAL; 1323 } 1324 1325 nirqs = 4 * (xlen / 32); 1326 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1327 1328 old_val = 0; 1329 for (i = 0; i < nirqs; i++) { 1330 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1331 } 1332 1333 if (val) { 1334 *val = old_val; 1335 } 1336 1337 if (wr_mask) { 1338 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1339 for (i = 0; i < nirqs; i++) { 1340 /* 1341 * M-level and S-level external IRQ priority always read-only 1342 * zero. This means default priority order is always preferred 1343 * for M-level and S-level external IRQs. 1344 */ 1345 if ((firq + i) == ext_irq_no) { 1346 continue; 1347 } 1348 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1349 } 1350 } 1351 1352 return 0; 1353 } 1354 1355 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1356 target_ulong new_val, target_ulong wr_mask) 1357 { 1358 bool virt; 1359 uint8_t *iprio; 1360 int ret = -EINVAL; 1361 target_ulong priv, isel, vgein; 1362 1363 /* Translate CSR number for VS-mode */ 1364 csrno = aia_xlate_vs_csrno(env, csrno); 1365 1366 /* Decode register details from CSR number */ 1367 virt = false; 1368 switch (csrno) { 1369 case CSR_MIREG: 1370 iprio = env->miprio; 1371 isel = env->miselect; 1372 priv = PRV_M; 1373 break; 1374 case CSR_SIREG: 1375 iprio = env->siprio; 1376 isel = env->siselect; 1377 priv = PRV_S; 1378 break; 1379 case CSR_VSIREG: 1380 iprio = env->hviprio; 1381 isel = env->vsiselect; 1382 priv = PRV_S; 1383 virt = true; 1384 break; 1385 default: 1386 goto done; 1387 }; 1388 1389 /* Find the selected guest interrupt file */ 1390 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1391 1392 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1393 /* Local interrupt priority registers not available for VS-mode */ 1394 if (!virt) { 1395 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1396 isel, iprio, val, new_val, wr_mask, 1397 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1398 } 1399 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1400 /* IMSIC registers only available when machine implements it. */ 1401 if (env->aia_ireg_rmw_fn[priv]) { 1402 /* Selected guest interrupt file should not be zero */ 1403 if (virt && (!vgein || env->geilen < vgein)) { 1404 goto done; 1405 } 1406 /* Call machine specific IMSIC register emulation */ 1407 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1408 AIA_MAKE_IREG(isel, priv, virt, vgein, 1409 riscv_cpu_mxl_bits(env)), 1410 val, new_val, wr_mask); 1411 } 1412 } 1413 1414 done: 1415 if (ret) { 1416 return (riscv_cpu_virt_enabled(env) && virt) ? 1417 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1418 } 1419 return RISCV_EXCP_NONE; 1420 } 1421 1422 static int rmw_xsetclreinum(CPURISCVState *env, int csrno, target_ulong *val, 1423 target_ulong new_val, target_ulong wr_mask) 1424 { 1425 int ret = -EINVAL; 1426 bool set, pend, virt; 1427 target_ulong priv, isel, vgein, xlen, nval, wmask; 1428 1429 /* Translate CSR number for VS-mode */ 1430 csrno = aia_xlate_vs_csrno(env, csrno); 1431 1432 /* Decode register details from CSR number */ 1433 virt = set = pend = false; 1434 switch (csrno) { 1435 case CSR_MSETEIPNUM: 1436 priv = PRV_M; 1437 set = true; 1438 pend = true; 1439 break; 1440 case CSR_MCLREIPNUM: 1441 priv = PRV_M; 1442 pend = true; 1443 break; 1444 case CSR_MSETEIENUM: 1445 priv = PRV_M; 1446 set = true; 1447 break; 1448 case CSR_MCLREIENUM: 1449 priv = PRV_M; 1450 break; 1451 case CSR_SSETEIPNUM: 1452 priv = PRV_S; 1453 set = true; 1454 pend = true; 1455 break; 1456 case CSR_SCLREIPNUM: 1457 priv = PRV_S; 1458 pend = true; 1459 break; 1460 case CSR_SSETEIENUM: 1461 priv = PRV_S; 1462 set = true; 1463 break; 1464 case CSR_SCLREIENUM: 1465 priv = PRV_S; 1466 break; 1467 case CSR_VSSETEIPNUM: 1468 priv = PRV_S; 1469 virt = true; 1470 set = true; 1471 pend = true; 1472 break; 1473 case CSR_VSCLREIPNUM: 1474 priv = PRV_S; 1475 virt = true; 1476 pend = true; 1477 break; 1478 case CSR_VSSETEIENUM: 1479 priv = PRV_S; 1480 virt = true; 1481 set = true; 1482 break; 1483 case CSR_VSCLREIENUM: 1484 priv = PRV_S; 1485 virt = true; 1486 break; 1487 default: 1488 goto done; 1489 }; 1490 1491 /* IMSIC CSRs only available when machine implements IMSIC. */ 1492 if (!env->aia_ireg_rmw_fn[priv]) { 1493 goto done; 1494 } 1495 1496 /* Find the selected guest interrupt file */ 1497 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1498 1499 /* Selected guest interrupt file should be valid */ 1500 if (virt && (!vgein || env->geilen < vgein)) { 1501 goto done; 1502 } 1503 1504 /* Set/Clear CSRs always read zero */ 1505 if (val) { 1506 *val = 0; 1507 } 1508 1509 if (wr_mask) { 1510 /* Get interrupt number */ 1511 new_val &= wr_mask; 1512 1513 /* Find target interrupt pending/enable register */ 1514 xlen = riscv_cpu_mxl_bits(env); 1515 isel = (new_val / xlen); 1516 isel *= (xlen / IMSIC_EIPx_BITS); 1517 isel += (pend) ? ISELECT_IMSIC_EIP0 : ISELECT_IMSIC_EIE0; 1518 1519 /* Find the interrupt bit to be set/clear */ 1520 wmask = ((target_ulong)1) << (new_val % xlen); 1521 nval = (set) ? wmask : 0; 1522 1523 /* Call machine specific IMSIC register emulation */ 1524 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1525 AIA_MAKE_IREG(isel, priv, virt, 1526 vgein, xlen), 1527 NULL, nval, wmask); 1528 } else { 1529 ret = 0; 1530 } 1531 1532 done: 1533 if (ret) { 1534 return (riscv_cpu_virt_enabled(env) && virt) ? 1535 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1536 } 1537 return RISCV_EXCP_NONE; 1538 } 1539 1540 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1541 target_ulong new_val, target_ulong wr_mask) 1542 { 1543 bool virt; 1544 int ret = -EINVAL; 1545 target_ulong priv, vgein; 1546 1547 /* Translate CSR number for VS-mode */ 1548 csrno = aia_xlate_vs_csrno(env, csrno); 1549 1550 /* Decode register details from CSR number */ 1551 virt = false; 1552 switch (csrno) { 1553 case CSR_MTOPEI: 1554 priv = PRV_M; 1555 break; 1556 case CSR_STOPEI: 1557 priv = PRV_S; 1558 break; 1559 case CSR_VSTOPEI: 1560 priv = PRV_S; 1561 virt = true; 1562 break; 1563 default: 1564 goto done; 1565 }; 1566 1567 /* IMSIC CSRs only available when machine implements IMSIC. */ 1568 if (!env->aia_ireg_rmw_fn[priv]) { 1569 goto done; 1570 } 1571 1572 /* Find the selected guest interrupt file */ 1573 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1574 1575 /* Selected guest interrupt file should be valid */ 1576 if (virt && (!vgein || env->geilen < vgein)) { 1577 goto done; 1578 } 1579 1580 /* Call machine specific IMSIC register emulation for TOPEI */ 1581 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1582 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1583 riscv_cpu_mxl_bits(env)), 1584 val, new_val, wr_mask); 1585 1586 done: 1587 if (ret) { 1588 return (riscv_cpu_virt_enabled(env) && virt) ? 1589 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1590 } 1591 return RISCV_EXCP_NONE; 1592 } 1593 1594 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1595 target_ulong *val) 1596 { 1597 *val = env->mtvec; 1598 return RISCV_EXCP_NONE; 1599 } 1600 1601 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1602 target_ulong val) 1603 { 1604 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1605 if ((val & 3) < 2) { 1606 env->mtvec = val; 1607 } else { 1608 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1609 } 1610 return RISCV_EXCP_NONE; 1611 } 1612 1613 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1614 target_ulong *val) 1615 { 1616 if (env->priv_ver < PRIV_VERSION_1_11_0) { 1617 return RISCV_EXCP_ILLEGAL_INST; 1618 } 1619 1620 *val = env->mcountinhibit; 1621 return RISCV_EXCP_NONE; 1622 } 1623 1624 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1625 target_ulong val) 1626 { 1627 int cidx; 1628 PMUCTRState *counter; 1629 1630 if (env->priv_ver < PRIV_VERSION_1_11_0) { 1631 return RISCV_EXCP_ILLEGAL_INST; 1632 } 1633 1634 env->mcountinhibit = val; 1635 1636 /* Check if any other counter is also monitoring cycles/instructions */ 1637 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1638 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1639 counter = &env->pmu_ctrs[cidx]; 1640 counter->started = true; 1641 } 1642 } 1643 1644 return RISCV_EXCP_NONE; 1645 } 1646 1647 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1648 target_ulong *val) 1649 { 1650 *val = env->mcounteren; 1651 return RISCV_EXCP_NONE; 1652 } 1653 1654 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1655 target_ulong val) 1656 { 1657 env->mcounteren = val; 1658 return RISCV_EXCP_NONE; 1659 } 1660 1661 /* Machine Trap Handling */ 1662 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1663 Int128 *val) 1664 { 1665 *val = int128_make128(env->mscratch, env->mscratchh); 1666 return RISCV_EXCP_NONE; 1667 } 1668 1669 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1670 Int128 val) 1671 { 1672 env->mscratch = int128_getlo(val); 1673 env->mscratchh = int128_gethi(val); 1674 return RISCV_EXCP_NONE; 1675 } 1676 1677 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1678 target_ulong *val) 1679 { 1680 *val = env->mscratch; 1681 return RISCV_EXCP_NONE; 1682 } 1683 1684 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1685 target_ulong val) 1686 { 1687 env->mscratch = val; 1688 return RISCV_EXCP_NONE; 1689 } 1690 1691 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1692 target_ulong *val) 1693 { 1694 *val = env->mepc; 1695 return RISCV_EXCP_NONE; 1696 } 1697 1698 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1699 target_ulong val) 1700 { 1701 env->mepc = val; 1702 return RISCV_EXCP_NONE; 1703 } 1704 1705 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1706 target_ulong *val) 1707 { 1708 *val = env->mcause; 1709 return RISCV_EXCP_NONE; 1710 } 1711 1712 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1713 target_ulong val) 1714 { 1715 env->mcause = val; 1716 return RISCV_EXCP_NONE; 1717 } 1718 1719 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1720 target_ulong *val) 1721 { 1722 *val = env->mtval; 1723 return RISCV_EXCP_NONE; 1724 } 1725 1726 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1727 target_ulong val) 1728 { 1729 env->mtval = val; 1730 return RISCV_EXCP_NONE; 1731 } 1732 1733 /* Execution environment configuration setup */ 1734 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1735 target_ulong *val) 1736 { 1737 *val = env->menvcfg; 1738 return RISCV_EXCP_NONE; 1739 } 1740 1741 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1742 target_ulong val) 1743 { 1744 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1745 1746 if (riscv_cpu_mxl(env) == MXL_RV64) { 1747 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1748 } 1749 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1750 1751 return RISCV_EXCP_NONE; 1752 } 1753 1754 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1755 target_ulong *val) 1756 { 1757 *val = env->menvcfg >> 32; 1758 return RISCV_EXCP_NONE; 1759 } 1760 1761 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1762 target_ulong val) 1763 { 1764 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1765 uint64_t valh = (uint64_t)val << 32; 1766 1767 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1768 1769 return RISCV_EXCP_NONE; 1770 } 1771 1772 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1773 target_ulong *val) 1774 { 1775 *val = env->senvcfg; 1776 return RISCV_EXCP_NONE; 1777 } 1778 1779 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1780 target_ulong val) 1781 { 1782 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1783 1784 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1785 1786 return RISCV_EXCP_NONE; 1787 } 1788 1789 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1790 target_ulong *val) 1791 { 1792 *val = env->henvcfg; 1793 return RISCV_EXCP_NONE; 1794 } 1795 1796 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1797 target_ulong val) 1798 { 1799 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1800 1801 if (riscv_cpu_mxl(env) == MXL_RV64) { 1802 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 1803 } 1804 1805 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1806 1807 return RISCV_EXCP_NONE; 1808 } 1809 1810 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1811 target_ulong *val) 1812 { 1813 *val = env->henvcfg >> 32; 1814 return RISCV_EXCP_NONE; 1815 } 1816 1817 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 1818 target_ulong val) 1819 { 1820 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 1821 uint64_t valh = (uint64_t)val << 32; 1822 1823 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 1824 1825 return RISCV_EXCP_NONE; 1826 } 1827 1828 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 1829 uint64_t *ret_val, 1830 uint64_t new_val, uint64_t wr_mask) 1831 { 1832 RISCVCPU *cpu = env_archcpu(env); 1833 uint64_t old_mip, mask = wr_mask & delegable_ints; 1834 uint32_t gin; 1835 1836 if (mask & MIP_SEIP) { 1837 env->software_seip = new_val & MIP_SEIP; 1838 new_val |= env->external_seip * MIP_SEIP; 1839 } 1840 1841 if (mask) { 1842 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 1843 } else { 1844 old_mip = env->mip; 1845 } 1846 1847 if (csrno != CSR_HVIP) { 1848 gin = get_field(env->hstatus, HSTATUS_VGEIN); 1849 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 1850 } 1851 1852 if (ret_val) { 1853 *ret_val = old_mip; 1854 } 1855 1856 return RISCV_EXCP_NONE; 1857 } 1858 1859 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 1860 target_ulong *ret_val, 1861 target_ulong new_val, target_ulong wr_mask) 1862 { 1863 uint64_t rval; 1864 RISCVException ret; 1865 1866 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 1867 if (ret_val) { 1868 *ret_val = rval; 1869 } 1870 1871 return ret; 1872 } 1873 1874 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 1875 target_ulong *ret_val, 1876 target_ulong new_val, target_ulong wr_mask) 1877 { 1878 uint64_t rval; 1879 RISCVException ret; 1880 1881 ret = rmw_mip64(env, csrno, &rval, 1882 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1883 if (ret_val) { 1884 *ret_val = rval >> 32; 1885 } 1886 1887 return ret; 1888 } 1889 1890 /* Supervisor Trap Setup */ 1891 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 1892 Int128 *val) 1893 { 1894 uint64_t mask = sstatus_v1_10_mask; 1895 uint64_t sstatus = env->mstatus & mask; 1896 if (env->xl != MXL_RV32 || env->debugger) { 1897 mask |= SSTATUS64_UXL; 1898 } 1899 1900 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 1901 return RISCV_EXCP_NONE; 1902 } 1903 1904 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 1905 target_ulong *val) 1906 { 1907 target_ulong mask = (sstatus_v1_10_mask); 1908 if (env->xl != MXL_RV32 || env->debugger) { 1909 mask |= SSTATUS64_UXL; 1910 } 1911 /* TODO: Use SXL not MXL. */ 1912 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 1913 return RISCV_EXCP_NONE; 1914 } 1915 1916 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 1917 target_ulong val) 1918 { 1919 target_ulong mask = (sstatus_v1_10_mask); 1920 1921 if (env->xl != MXL_RV32 || env->debugger) { 1922 if ((val & SSTATUS64_UXL) != 0) { 1923 mask |= SSTATUS64_UXL; 1924 } 1925 } 1926 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 1927 return write_mstatus(env, CSR_MSTATUS, newval); 1928 } 1929 1930 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 1931 uint64_t *ret_val, 1932 uint64_t new_val, uint64_t wr_mask) 1933 { 1934 RISCVException ret; 1935 uint64_t rval, vsbits, mask = env->hideleg & VS_MODE_INTERRUPTS; 1936 1937 /* Bring VS-level bits to correct position */ 1938 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 1939 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 1940 new_val |= vsbits << 1; 1941 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 1942 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 1943 wr_mask |= vsbits << 1; 1944 1945 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 1946 if (ret_val) { 1947 rval &= mask; 1948 vsbits = rval & VS_MODE_INTERRUPTS; 1949 rval &= ~VS_MODE_INTERRUPTS; 1950 *ret_val = rval | (vsbits >> 1); 1951 } 1952 1953 return ret; 1954 } 1955 1956 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 1957 target_ulong *ret_val, 1958 target_ulong new_val, target_ulong wr_mask) 1959 { 1960 uint64_t rval; 1961 RISCVException ret; 1962 1963 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 1964 if (ret_val) { 1965 *ret_val = rval; 1966 } 1967 1968 return ret; 1969 } 1970 1971 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 1972 target_ulong *ret_val, 1973 target_ulong new_val, target_ulong wr_mask) 1974 { 1975 uint64_t rval; 1976 RISCVException ret; 1977 1978 ret = rmw_vsie64(env, csrno, &rval, 1979 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1980 if (ret_val) { 1981 *ret_val = rval >> 32; 1982 } 1983 1984 return ret; 1985 } 1986 1987 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 1988 uint64_t *ret_val, 1989 uint64_t new_val, uint64_t wr_mask) 1990 { 1991 RISCVException ret; 1992 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 1993 1994 if (riscv_cpu_virt_enabled(env)) { 1995 if (env->hvictl & HVICTL_VTI) { 1996 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1997 } 1998 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 1999 } else { 2000 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2001 } 2002 2003 if (ret_val) { 2004 *ret_val &= mask; 2005 } 2006 2007 return ret; 2008 } 2009 2010 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2011 target_ulong *ret_val, 2012 target_ulong new_val, target_ulong wr_mask) 2013 { 2014 uint64_t rval; 2015 RISCVException ret; 2016 2017 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2018 if (ret == RISCV_EXCP_NONE && ret_val) { 2019 *ret_val = rval; 2020 } 2021 2022 return ret; 2023 } 2024 2025 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2026 target_ulong *ret_val, 2027 target_ulong new_val, target_ulong wr_mask) 2028 { 2029 uint64_t rval; 2030 RISCVException ret; 2031 2032 ret = rmw_sie64(env, csrno, &rval, 2033 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2034 if (ret_val) { 2035 *ret_val = rval >> 32; 2036 } 2037 2038 return ret; 2039 } 2040 2041 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2042 target_ulong *val) 2043 { 2044 *val = env->stvec; 2045 return RISCV_EXCP_NONE; 2046 } 2047 2048 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2049 target_ulong val) 2050 { 2051 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2052 if ((val & 3) < 2) { 2053 env->stvec = val; 2054 } else { 2055 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2056 } 2057 return RISCV_EXCP_NONE; 2058 } 2059 2060 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2061 target_ulong *val) 2062 { 2063 *val = env->scounteren; 2064 return RISCV_EXCP_NONE; 2065 } 2066 2067 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2068 target_ulong val) 2069 { 2070 env->scounteren = val; 2071 return RISCV_EXCP_NONE; 2072 } 2073 2074 /* Supervisor Trap Handling */ 2075 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2076 Int128 *val) 2077 { 2078 *val = int128_make128(env->sscratch, env->sscratchh); 2079 return RISCV_EXCP_NONE; 2080 } 2081 2082 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2083 Int128 val) 2084 { 2085 env->sscratch = int128_getlo(val); 2086 env->sscratchh = int128_gethi(val); 2087 return RISCV_EXCP_NONE; 2088 } 2089 2090 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2091 target_ulong *val) 2092 { 2093 *val = env->sscratch; 2094 return RISCV_EXCP_NONE; 2095 } 2096 2097 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2098 target_ulong val) 2099 { 2100 env->sscratch = val; 2101 return RISCV_EXCP_NONE; 2102 } 2103 2104 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2105 target_ulong *val) 2106 { 2107 *val = env->sepc; 2108 return RISCV_EXCP_NONE; 2109 } 2110 2111 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2112 target_ulong val) 2113 { 2114 env->sepc = val; 2115 return RISCV_EXCP_NONE; 2116 } 2117 2118 static RISCVException read_scause(CPURISCVState *env, int csrno, 2119 target_ulong *val) 2120 { 2121 *val = env->scause; 2122 return RISCV_EXCP_NONE; 2123 } 2124 2125 static RISCVException write_scause(CPURISCVState *env, int csrno, 2126 target_ulong val) 2127 { 2128 env->scause = val; 2129 return RISCV_EXCP_NONE; 2130 } 2131 2132 static RISCVException read_stval(CPURISCVState *env, int csrno, 2133 target_ulong *val) 2134 { 2135 *val = env->stval; 2136 return RISCV_EXCP_NONE; 2137 } 2138 2139 static RISCVException write_stval(CPURISCVState *env, int csrno, 2140 target_ulong val) 2141 { 2142 env->stval = val; 2143 return RISCV_EXCP_NONE; 2144 } 2145 2146 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2147 uint64_t *ret_val, 2148 uint64_t new_val, uint64_t wr_mask) 2149 { 2150 RISCVException ret; 2151 uint64_t rval, vsbits, mask = env->hideleg & vsip_writable_mask; 2152 2153 /* Bring VS-level bits to correct position */ 2154 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2155 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2156 new_val |= vsbits << 1; 2157 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2158 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2159 wr_mask |= vsbits << 1; 2160 2161 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask & mask); 2162 if (ret_val) { 2163 rval &= mask; 2164 vsbits = rval & VS_MODE_INTERRUPTS; 2165 rval &= ~VS_MODE_INTERRUPTS; 2166 *ret_val = rval | (vsbits >> 1); 2167 } 2168 2169 return ret; 2170 } 2171 2172 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2173 target_ulong *ret_val, 2174 target_ulong new_val, target_ulong wr_mask) 2175 { 2176 uint64_t rval; 2177 RISCVException ret; 2178 2179 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2180 if (ret_val) { 2181 *ret_val = rval; 2182 } 2183 2184 return ret; 2185 } 2186 2187 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2188 target_ulong *ret_val, 2189 target_ulong new_val, target_ulong wr_mask) 2190 { 2191 uint64_t rval; 2192 RISCVException ret; 2193 2194 ret = rmw_vsip64(env, csrno, &rval, 2195 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2196 if (ret_val) { 2197 *ret_val = rval >> 32; 2198 } 2199 2200 return ret; 2201 } 2202 2203 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2204 uint64_t *ret_val, 2205 uint64_t new_val, uint64_t wr_mask) 2206 { 2207 RISCVException ret; 2208 uint64_t mask = env->mideleg & sip_writable_mask; 2209 2210 if (riscv_cpu_virt_enabled(env)) { 2211 if (env->hvictl & HVICTL_VTI) { 2212 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2213 } 2214 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2215 } else { 2216 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2217 } 2218 2219 if (ret_val) { 2220 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2221 } 2222 2223 return ret; 2224 } 2225 2226 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2227 target_ulong *ret_val, 2228 target_ulong new_val, target_ulong wr_mask) 2229 { 2230 uint64_t rval; 2231 RISCVException ret; 2232 2233 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2234 if (ret_val) { 2235 *ret_val = rval; 2236 } 2237 2238 return ret; 2239 } 2240 2241 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2242 target_ulong *ret_val, 2243 target_ulong new_val, target_ulong wr_mask) 2244 { 2245 uint64_t rval; 2246 RISCVException ret; 2247 2248 ret = rmw_sip64(env, csrno, &rval, 2249 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2250 if (ret_val) { 2251 *ret_val = rval >> 32; 2252 } 2253 2254 return ret; 2255 } 2256 2257 /* Supervisor Protection and Translation */ 2258 static RISCVException read_satp(CPURISCVState *env, int csrno, 2259 target_ulong *val) 2260 { 2261 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2262 *val = 0; 2263 return RISCV_EXCP_NONE; 2264 } 2265 2266 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2267 return RISCV_EXCP_ILLEGAL_INST; 2268 } else { 2269 *val = env->satp; 2270 } 2271 2272 return RISCV_EXCP_NONE; 2273 } 2274 2275 static RISCVException write_satp(CPURISCVState *env, int csrno, 2276 target_ulong val) 2277 { 2278 target_ulong vm, mask; 2279 2280 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2281 return RISCV_EXCP_NONE; 2282 } 2283 2284 if (riscv_cpu_mxl(env) == MXL_RV32) { 2285 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2286 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2287 } else { 2288 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2289 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2290 } 2291 2292 if (vm && mask) { 2293 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2294 return RISCV_EXCP_ILLEGAL_INST; 2295 } else { 2296 /* 2297 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2298 * pass these through QEMU's TLB emulation as it improves 2299 * performance. Flushing the TLB on SATP writes with paging 2300 * enabled avoids leaking those invalid cached mappings. 2301 */ 2302 tlb_flush(env_cpu(env)); 2303 env->satp = val; 2304 } 2305 } 2306 return RISCV_EXCP_NONE; 2307 } 2308 2309 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2310 { 2311 int irq, ret; 2312 target_ulong topei; 2313 uint64_t vseip, vsgein; 2314 uint32_t iid, iprio, hviid, hviprio, gein; 2315 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2316 2317 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2318 hviid = get_field(env->hvictl, HVICTL_IID); 2319 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2320 2321 if (gein) { 2322 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2323 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2324 if (gein <= env->geilen && vseip) { 2325 siid[scount] = IRQ_S_EXT; 2326 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2327 if (env->aia_ireg_rmw_fn[PRV_S]) { 2328 /* 2329 * Call machine specific IMSIC register emulation for 2330 * reading TOPEI. 2331 */ 2332 ret = env->aia_ireg_rmw_fn[PRV_S]( 2333 env->aia_ireg_rmw_fn_arg[PRV_S], 2334 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2335 riscv_cpu_mxl_bits(env)), 2336 &topei, 0, 0); 2337 if (!ret && topei) { 2338 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2339 } 2340 } 2341 scount++; 2342 } 2343 } else { 2344 if (hviid == IRQ_S_EXT && hviprio) { 2345 siid[scount] = IRQ_S_EXT; 2346 siprio[scount] = hviprio; 2347 scount++; 2348 } 2349 } 2350 2351 if (env->hvictl & HVICTL_VTI) { 2352 if (hviid != IRQ_S_EXT) { 2353 siid[scount] = hviid; 2354 siprio[scount] = hviprio; 2355 scount++; 2356 } 2357 } else { 2358 irq = riscv_cpu_vsirq_pending(env); 2359 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2360 siid[scount] = irq; 2361 siprio[scount] = env->hviprio[irq]; 2362 scount++; 2363 } 2364 } 2365 2366 iid = 0; 2367 iprio = UINT_MAX; 2368 for (s = 0; s < scount; s++) { 2369 if (siprio[s] < iprio) { 2370 iid = siid[s]; 2371 iprio = siprio[s]; 2372 } 2373 } 2374 2375 if (iid) { 2376 if (env->hvictl & HVICTL_IPRIOM) { 2377 if (iprio > IPRIO_MMAXIPRIO) { 2378 iprio = IPRIO_MMAXIPRIO; 2379 } 2380 if (!iprio) { 2381 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2382 iprio = IPRIO_MMAXIPRIO; 2383 } 2384 } 2385 } else { 2386 iprio = 1; 2387 } 2388 } else { 2389 iprio = 0; 2390 } 2391 2392 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2393 *val |= iprio; 2394 return RISCV_EXCP_NONE; 2395 } 2396 2397 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2398 { 2399 int irq; 2400 uint8_t iprio; 2401 2402 if (riscv_cpu_virt_enabled(env)) { 2403 return read_vstopi(env, CSR_VSTOPI, val); 2404 } 2405 2406 irq = riscv_cpu_sirq_pending(env); 2407 if (irq <= 0 || irq > 63) { 2408 *val = 0; 2409 } else { 2410 iprio = env->siprio[irq]; 2411 if (!iprio) { 2412 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2413 iprio = IPRIO_MMAXIPRIO; 2414 } 2415 } 2416 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2417 *val |= iprio; 2418 } 2419 2420 return RISCV_EXCP_NONE; 2421 } 2422 2423 /* Hypervisor Extensions */ 2424 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2425 target_ulong *val) 2426 { 2427 *val = env->hstatus; 2428 if (riscv_cpu_mxl(env) != MXL_RV32) { 2429 /* We only support 64-bit VSXL */ 2430 *val = set_field(*val, HSTATUS_VSXL, 2); 2431 } 2432 /* We only support little endian */ 2433 *val = set_field(*val, HSTATUS_VSBE, 0); 2434 return RISCV_EXCP_NONE; 2435 } 2436 2437 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2438 target_ulong val) 2439 { 2440 env->hstatus = val; 2441 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2442 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2443 } 2444 if (get_field(val, HSTATUS_VSBE) != 0) { 2445 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2446 } 2447 return RISCV_EXCP_NONE; 2448 } 2449 2450 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2451 target_ulong *val) 2452 { 2453 *val = env->hedeleg; 2454 return RISCV_EXCP_NONE; 2455 } 2456 2457 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2458 target_ulong val) 2459 { 2460 env->hedeleg = val & vs_delegable_excps; 2461 return RISCV_EXCP_NONE; 2462 } 2463 2464 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2465 uint64_t *ret_val, 2466 uint64_t new_val, uint64_t wr_mask) 2467 { 2468 uint64_t mask = wr_mask & vs_delegable_ints; 2469 2470 if (ret_val) { 2471 *ret_val = env->hideleg & vs_delegable_ints; 2472 } 2473 2474 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2475 return RISCV_EXCP_NONE; 2476 } 2477 2478 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2479 target_ulong *ret_val, 2480 target_ulong new_val, target_ulong wr_mask) 2481 { 2482 uint64_t rval; 2483 RISCVException ret; 2484 2485 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2486 if (ret_val) { 2487 *ret_val = rval; 2488 } 2489 2490 return ret; 2491 } 2492 2493 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2494 target_ulong *ret_val, 2495 target_ulong new_val, target_ulong wr_mask) 2496 { 2497 uint64_t rval; 2498 RISCVException ret; 2499 2500 ret = rmw_hideleg64(env, csrno, &rval, 2501 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2502 if (ret_val) { 2503 *ret_val = rval >> 32; 2504 } 2505 2506 return ret; 2507 } 2508 2509 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2510 uint64_t *ret_val, 2511 uint64_t new_val, uint64_t wr_mask) 2512 { 2513 RISCVException ret; 2514 2515 ret = rmw_mip64(env, csrno, ret_val, new_val, 2516 wr_mask & hvip_writable_mask); 2517 if (ret_val) { 2518 *ret_val &= VS_MODE_INTERRUPTS; 2519 } 2520 2521 return ret; 2522 } 2523 2524 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2525 target_ulong *ret_val, 2526 target_ulong new_val, target_ulong wr_mask) 2527 { 2528 uint64_t rval; 2529 RISCVException ret; 2530 2531 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2532 if (ret_val) { 2533 *ret_val = rval; 2534 } 2535 2536 return ret; 2537 } 2538 2539 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2540 target_ulong *ret_val, 2541 target_ulong new_val, target_ulong wr_mask) 2542 { 2543 uint64_t rval; 2544 RISCVException ret; 2545 2546 ret = rmw_hvip64(env, csrno, &rval, 2547 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2548 if (ret_val) { 2549 *ret_val = rval >> 32; 2550 } 2551 2552 return ret; 2553 } 2554 2555 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2556 target_ulong *ret_value, 2557 target_ulong new_value, target_ulong write_mask) 2558 { 2559 int ret = rmw_mip(env, csrno, ret_value, new_value, 2560 write_mask & hip_writable_mask); 2561 2562 if (ret_value) { 2563 *ret_value &= HS_MODE_INTERRUPTS; 2564 } 2565 return ret; 2566 } 2567 2568 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2569 target_ulong *ret_val, 2570 target_ulong new_val, target_ulong wr_mask) 2571 { 2572 uint64_t rval; 2573 RISCVException ret; 2574 2575 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2576 if (ret_val) { 2577 *ret_val = rval & HS_MODE_INTERRUPTS; 2578 } 2579 2580 return ret; 2581 } 2582 2583 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2584 target_ulong *val) 2585 { 2586 *val = env->hcounteren; 2587 return RISCV_EXCP_NONE; 2588 } 2589 2590 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2591 target_ulong val) 2592 { 2593 env->hcounteren = val; 2594 return RISCV_EXCP_NONE; 2595 } 2596 2597 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2598 target_ulong *val) 2599 { 2600 if (val) { 2601 *val = env->hgeie; 2602 } 2603 return RISCV_EXCP_NONE; 2604 } 2605 2606 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2607 target_ulong val) 2608 { 2609 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2610 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2611 env->hgeie = val; 2612 /* Update mip.SGEIP bit */ 2613 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2614 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2615 return RISCV_EXCP_NONE; 2616 } 2617 2618 static RISCVException read_htval(CPURISCVState *env, int csrno, 2619 target_ulong *val) 2620 { 2621 *val = env->htval; 2622 return RISCV_EXCP_NONE; 2623 } 2624 2625 static RISCVException write_htval(CPURISCVState *env, int csrno, 2626 target_ulong val) 2627 { 2628 env->htval = val; 2629 return RISCV_EXCP_NONE; 2630 } 2631 2632 static RISCVException read_htinst(CPURISCVState *env, int csrno, 2633 target_ulong *val) 2634 { 2635 *val = env->htinst; 2636 return RISCV_EXCP_NONE; 2637 } 2638 2639 static RISCVException write_htinst(CPURISCVState *env, int csrno, 2640 target_ulong val) 2641 { 2642 return RISCV_EXCP_NONE; 2643 } 2644 2645 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 2646 target_ulong *val) 2647 { 2648 if (val) { 2649 *val = env->hgeip; 2650 } 2651 return RISCV_EXCP_NONE; 2652 } 2653 2654 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 2655 target_ulong *val) 2656 { 2657 *val = env->hgatp; 2658 return RISCV_EXCP_NONE; 2659 } 2660 2661 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 2662 target_ulong val) 2663 { 2664 env->hgatp = val; 2665 return RISCV_EXCP_NONE; 2666 } 2667 2668 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 2669 target_ulong *val) 2670 { 2671 if (!env->rdtime_fn) { 2672 return RISCV_EXCP_ILLEGAL_INST; 2673 } 2674 2675 *val = env->htimedelta; 2676 return RISCV_EXCP_NONE; 2677 } 2678 2679 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 2680 target_ulong val) 2681 { 2682 if (!env->rdtime_fn) { 2683 return RISCV_EXCP_ILLEGAL_INST; 2684 } 2685 2686 if (riscv_cpu_mxl(env) == MXL_RV32) { 2687 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 2688 } else { 2689 env->htimedelta = val; 2690 } 2691 return RISCV_EXCP_NONE; 2692 } 2693 2694 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 2695 target_ulong *val) 2696 { 2697 if (!env->rdtime_fn) { 2698 return RISCV_EXCP_ILLEGAL_INST; 2699 } 2700 2701 *val = env->htimedelta >> 32; 2702 return RISCV_EXCP_NONE; 2703 } 2704 2705 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 2706 target_ulong val) 2707 { 2708 if (!env->rdtime_fn) { 2709 return RISCV_EXCP_ILLEGAL_INST; 2710 } 2711 2712 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 2713 return RISCV_EXCP_NONE; 2714 } 2715 2716 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 2717 { 2718 *val = env->hvictl; 2719 return RISCV_EXCP_NONE; 2720 } 2721 2722 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 2723 { 2724 env->hvictl = val & HVICTL_VALID_MASK; 2725 return RISCV_EXCP_NONE; 2726 } 2727 2728 static int read_hvipriox(CPURISCVState *env, int first_index, 2729 uint8_t *iprio, target_ulong *val) 2730 { 2731 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2732 2733 /* First index has to be a multiple of number of irqs per register */ 2734 if (first_index % num_irqs) { 2735 return (riscv_cpu_virt_enabled(env)) ? 2736 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2737 } 2738 2739 /* Fill-up return value */ 2740 *val = 0; 2741 for (i = 0; i < num_irqs; i++) { 2742 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2743 continue; 2744 } 2745 if (rdzero) { 2746 continue; 2747 } 2748 *val |= ((target_ulong)iprio[irq]) << (i * 8); 2749 } 2750 2751 return RISCV_EXCP_NONE; 2752 } 2753 2754 static int write_hvipriox(CPURISCVState *env, int first_index, 2755 uint8_t *iprio, target_ulong val) 2756 { 2757 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2758 2759 /* First index has to be a multiple of number of irqs per register */ 2760 if (first_index % num_irqs) { 2761 return (riscv_cpu_virt_enabled(env)) ? 2762 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2763 } 2764 2765 /* Fill-up priority arrary */ 2766 for (i = 0; i < num_irqs; i++) { 2767 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2768 continue; 2769 } 2770 if (rdzero) { 2771 iprio[irq] = 0; 2772 } else { 2773 iprio[irq] = (val >> (i * 8)) & 0xff; 2774 } 2775 } 2776 2777 return RISCV_EXCP_NONE; 2778 } 2779 2780 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 2781 { 2782 return read_hvipriox(env, 0, env->hviprio, val); 2783 } 2784 2785 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 2786 { 2787 return write_hvipriox(env, 0, env->hviprio, val); 2788 } 2789 2790 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 2791 { 2792 return read_hvipriox(env, 4, env->hviprio, val); 2793 } 2794 2795 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 2796 { 2797 return write_hvipriox(env, 4, env->hviprio, val); 2798 } 2799 2800 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 2801 { 2802 return read_hvipriox(env, 8, env->hviprio, val); 2803 } 2804 2805 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 2806 { 2807 return write_hvipriox(env, 8, env->hviprio, val); 2808 } 2809 2810 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 2811 { 2812 return read_hvipriox(env, 12, env->hviprio, val); 2813 } 2814 2815 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 2816 { 2817 return write_hvipriox(env, 12, env->hviprio, val); 2818 } 2819 2820 /* Virtual CSR Registers */ 2821 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 2822 target_ulong *val) 2823 { 2824 *val = env->vsstatus; 2825 return RISCV_EXCP_NONE; 2826 } 2827 2828 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 2829 target_ulong val) 2830 { 2831 uint64_t mask = (target_ulong)-1; 2832 if ((val & VSSTATUS64_UXL) == 0) { 2833 mask &= ~VSSTATUS64_UXL; 2834 } 2835 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 2836 return RISCV_EXCP_NONE; 2837 } 2838 2839 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 2840 { 2841 *val = env->vstvec; 2842 return RISCV_EXCP_NONE; 2843 } 2844 2845 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 2846 target_ulong val) 2847 { 2848 env->vstvec = val; 2849 return RISCV_EXCP_NONE; 2850 } 2851 2852 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 2853 target_ulong *val) 2854 { 2855 *val = env->vsscratch; 2856 return RISCV_EXCP_NONE; 2857 } 2858 2859 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 2860 target_ulong val) 2861 { 2862 env->vsscratch = val; 2863 return RISCV_EXCP_NONE; 2864 } 2865 2866 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 2867 target_ulong *val) 2868 { 2869 *val = env->vsepc; 2870 return RISCV_EXCP_NONE; 2871 } 2872 2873 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 2874 target_ulong val) 2875 { 2876 env->vsepc = val; 2877 return RISCV_EXCP_NONE; 2878 } 2879 2880 static RISCVException read_vscause(CPURISCVState *env, int csrno, 2881 target_ulong *val) 2882 { 2883 *val = env->vscause; 2884 return RISCV_EXCP_NONE; 2885 } 2886 2887 static RISCVException write_vscause(CPURISCVState *env, int csrno, 2888 target_ulong val) 2889 { 2890 env->vscause = val; 2891 return RISCV_EXCP_NONE; 2892 } 2893 2894 static RISCVException read_vstval(CPURISCVState *env, int csrno, 2895 target_ulong *val) 2896 { 2897 *val = env->vstval; 2898 return RISCV_EXCP_NONE; 2899 } 2900 2901 static RISCVException write_vstval(CPURISCVState *env, int csrno, 2902 target_ulong val) 2903 { 2904 env->vstval = val; 2905 return RISCV_EXCP_NONE; 2906 } 2907 2908 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 2909 target_ulong *val) 2910 { 2911 *val = env->vsatp; 2912 return RISCV_EXCP_NONE; 2913 } 2914 2915 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 2916 target_ulong val) 2917 { 2918 env->vsatp = val; 2919 return RISCV_EXCP_NONE; 2920 } 2921 2922 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 2923 target_ulong *val) 2924 { 2925 *val = env->mtval2; 2926 return RISCV_EXCP_NONE; 2927 } 2928 2929 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 2930 target_ulong val) 2931 { 2932 env->mtval2 = val; 2933 return RISCV_EXCP_NONE; 2934 } 2935 2936 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 2937 target_ulong *val) 2938 { 2939 *val = env->mtinst; 2940 return RISCV_EXCP_NONE; 2941 } 2942 2943 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 2944 target_ulong val) 2945 { 2946 env->mtinst = val; 2947 return RISCV_EXCP_NONE; 2948 } 2949 2950 /* Physical Memory Protection */ 2951 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 2952 target_ulong *val) 2953 { 2954 *val = mseccfg_csr_read(env); 2955 return RISCV_EXCP_NONE; 2956 } 2957 2958 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 2959 target_ulong val) 2960 { 2961 mseccfg_csr_write(env, val); 2962 return RISCV_EXCP_NONE; 2963 } 2964 2965 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 2966 { 2967 /* TODO: RV128 restriction check */ 2968 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 2969 return false; 2970 } 2971 return true; 2972 } 2973 2974 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 2975 target_ulong *val) 2976 { 2977 uint32_t reg_index = csrno - CSR_PMPCFG0; 2978 2979 if (!check_pmp_reg_index(env, reg_index)) { 2980 return RISCV_EXCP_ILLEGAL_INST; 2981 } 2982 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 2983 return RISCV_EXCP_NONE; 2984 } 2985 2986 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 2987 target_ulong val) 2988 { 2989 uint32_t reg_index = csrno - CSR_PMPCFG0; 2990 2991 if (!check_pmp_reg_index(env, reg_index)) { 2992 return RISCV_EXCP_ILLEGAL_INST; 2993 } 2994 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 2995 return RISCV_EXCP_NONE; 2996 } 2997 2998 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 2999 target_ulong *val) 3000 { 3001 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3002 return RISCV_EXCP_NONE; 3003 } 3004 3005 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3006 target_ulong val) 3007 { 3008 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3009 return RISCV_EXCP_NONE; 3010 } 3011 3012 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3013 target_ulong *val) 3014 { 3015 *val = tselect_csr_read(env); 3016 return RISCV_EXCP_NONE; 3017 } 3018 3019 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3020 target_ulong val) 3021 { 3022 tselect_csr_write(env, val); 3023 return RISCV_EXCP_NONE; 3024 } 3025 3026 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3027 target_ulong *val) 3028 { 3029 /* return 0 in tdata1 to end the trigger enumeration */ 3030 if (env->trigger_cur >= TRIGGER_NUM && csrno == CSR_TDATA1) { 3031 *val = 0; 3032 return RISCV_EXCP_NONE; 3033 } 3034 3035 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3036 return RISCV_EXCP_ILLEGAL_INST; 3037 } 3038 3039 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3040 return RISCV_EXCP_NONE; 3041 } 3042 3043 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3044 target_ulong val) 3045 { 3046 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3047 return RISCV_EXCP_ILLEGAL_INST; 3048 } 3049 3050 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3051 return RISCV_EXCP_NONE; 3052 } 3053 3054 /* 3055 * Functions to access Pointer Masking feature registers 3056 * We have to check if current priv lvl could modify 3057 * csr in given mode 3058 */ 3059 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3060 { 3061 int csr_priv = get_field(csrno, 0x300); 3062 int pm_current; 3063 3064 if (env->debugger) { 3065 return false; 3066 } 3067 /* 3068 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3069 * so allow the access 3070 */ 3071 if (env->priv != csr_priv) { 3072 return false; 3073 } 3074 switch (env->priv) { 3075 case PRV_M: 3076 pm_current = get_field(env->mmte, M_PM_CURRENT); 3077 break; 3078 case PRV_S: 3079 pm_current = get_field(env->mmte, S_PM_CURRENT); 3080 break; 3081 case PRV_U: 3082 pm_current = get_field(env->mmte, U_PM_CURRENT); 3083 break; 3084 default: 3085 g_assert_not_reached(); 3086 } 3087 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3088 return !pm_current; 3089 } 3090 3091 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3092 target_ulong *val) 3093 { 3094 *val = env->mmte & MMTE_MASK; 3095 return RISCV_EXCP_NONE; 3096 } 3097 3098 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3099 target_ulong val) 3100 { 3101 uint64_t mstatus; 3102 target_ulong wpri_val = val & MMTE_MASK; 3103 3104 if (val != wpri_val) { 3105 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3106 "MMTE: WPRI violation written 0x", val, 3107 "vs expected 0x", wpri_val); 3108 } 3109 /* for machine mode pm.current is hardwired to 1 */ 3110 wpri_val |= MMTE_M_PM_CURRENT; 3111 3112 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3113 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3114 env->mmte = wpri_val | PM_EXT_DIRTY; 3115 riscv_cpu_update_mask(env); 3116 3117 /* Set XS and SD bits, since PM CSRs are dirty */ 3118 mstatus = env->mstatus | MSTATUS_XS; 3119 write_mstatus(env, csrno, mstatus); 3120 return RISCV_EXCP_NONE; 3121 } 3122 3123 static RISCVException read_smte(CPURISCVState *env, int csrno, 3124 target_ulong *val) 3125 { 3126 *val = env->mmte & SMTE_MASK; 3127 return RISCV_EXCP_NONE; 3128 } 3129 3130 static RISCVException write_smte(CPURISCVState *env, int csrno, 3131 target_ulong val) 3132 { 3133 target_ulong wpri_val = val & SMTE_MASK; 3134 3135 if (val != wpri_val) { 3136 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3137 "SMTE: WPRI violation written 0x", val, 3138 "vs expected 0x", wpri_val); 3139 } 3140 3141 /* if pm.current==0 we can't modify current PM CSRs */ 3142 if (check_pm_current_disabled(env, csrno)) { 3143 return RISCV_EXCP_NONE; 3144 } 3145 3146 wpri_val |= (env->mmte & ~SMTE_MASK); 3147 write_mmte(env, csrno, wpri_val); 3148 return RISCV_EXCP_NONE; 3149 } 3150 3151 static RISCVException read_umte(CPURISCVState *env, int csrno, 3152 target_ulong *val) 3153 { 3154 *val = env->mmte & UMTE_MASK; 3155 return RISCV_EXCP_NONE; 3156 } 3157 3158 static RISCVException write_umte(CPURISCVState *env, int csrno, 3159 target_ulong val) 3160 { 3161 target_ulong wpri_val = val & UMTE_MASK; 3162 3163 if (val != wpri_val) { 3164 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3165 "UMTE: WPRI violation written 0x", val, 3166 "vs expected 0x", wpri_val); 3167 } 3168 3169 if (check_pm_current_disabled(env, csrno)) { 3170 return RISCV_EXCP_NONE; 3171 } 3172 3173 wpri_val |= (env->mmte & ~UMTE_MASK); 3174 write_mmte(env, csrno, wpri_val); 3175 return RISCV_EXCP_NONE; 3176 } 3177 3178 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3179 target_ulong *val) 3180 { 3181 *val = env->mpmmask; 3182 return RISCV_EXCP_NONE; 3183 } 3184 3185 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3186 target_ulong val) 3187 { 3188 uint64_t mstatus; 3189 3190 env->mpmmask = val; 3191 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3192 env->cur_pmmask = val; 3193 } 3194 env->mmte |= PM_EXT_DIRTY; 3195 3196 /* Set XS and SD bits, since PM CSRs are dirty */ 3197 mstatus = env->mstatus | MSTATUS_XS; 3198 write_mstatus(env, csrno, mstatus); 3199 return RISCV_EXCP_NONE; 3200 } 3201 3202 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3203 target_ulong *val) 3204 { 3205 *val = env->spmmask; 3206 return RISCV_EXCP_NONE; 3207 } 3208 3209 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3210 target_ulong val) 3211 { 3212 uint64_t mstatus; 3213 3214 /* if pm.current==0 we can't modify current PM CSRs */ 3215 if (check_pm_current_disabled(env, csrno)) { 3216 return RISCV_EXCP_NONE; 3217 } 3218 env->spmmask = val; 3219 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3220 env->cur_pmmask = val; 3221 } 3222 env->mmte |= PM_EXT_DIRTY; 3223 3224 /* Set XS and SD bits, since PM CSRs are dirty */ 3225 mstatus = env->mstatus | MSTATUS_XS; 3226 write_mstatus(env, csrno, mstatus); 3227 return RISCV_EXCP_NONE; 3228 } 3229 3230 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3231 target_ulong *val) 3232 { 3233 *val = env->upmmask; 3234 return RISCV_EXCP_NONE; 3235 } 3236 3237 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3238 target_ulong val) 3239 { 3240 uint64_t mstatus; 3241 3242 /* if pm.current==0 we can't modify current PM CSRs */ 3243 if (check_pm_current_disabled(env, csrno)) { 3244 return RISCV_EXCP_NONE; 3245 } 3246 env->upmmask = val; 3247 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3248 env->cur_pmmask = val; 3249 } 3250 env->mmte |= PM_EXT_DIRTY; 3251 3252 /* Set XS and SD bits, since PM CSRs are dirty */ 3253 mstatus = env->mstatus | MSTATUS_XS; 3254 write_mstatus(env, csrno, mstatus); 3255 return RISCV_EXCP_NONE; 3256 } 3257 3258 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3259 target_ulong *val) 3260 { 3261 *val = env->mpmbase; 3262 return RISCV_EXCP_NONE; 3263 } 3264 3265 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3266 target_ulong val) 3267 { 3268 uint64_t mstatus; 3269 3270 env->mpmbase = val; 3271 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3272 env->cur_pmbase = val; 3273 } 3274 env->mmte |= PM_EXT_DIRTY; 3275 3276 /* Set XS and SD bits, since PM CSRs are dirty */ 3277 mstatus = env->mstatus | MSTATUS_XS; 3278 write_mstatus(env, csrno, mstatus); 3279 return RISCV_EXCP_NONE; 3280 } 3281 3282 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3283 target_ulong *val) 3284 { 3285 *val = env->spmbase; 3286 return RISCV_EXCP_NONE; 3287 } 3288 3289 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3290 target_ulong val) 3291 { 3292 uint64_t mstatus; 3293 3294 /* if pm.current==0 we can't modify current PM CSRs */ 3295 if (check_pm_current_disabled(env, csrno)) { 3296 return RISCV_EXCP_NONE; 3297 } 3298 env->spmbase = val; 3299 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3300 env->cur_pmbase = val; 3301 } 3302 env->mmte |= PM_EXT_DIRTY; 3303 3304 /* Set XS and SD bits, since PM CSRs are dirty */ 3305 mstatus = env->mstatus | MSTATUS_XS; 3306 write_mstatus(env, csrno, mstatus); 3307 return RISCV_EXCP_NONE; 3308 } 3309 3310 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3311 target_ulong *val) 3312 { 3313 *val = env->upmbase; 3314 return RISCV_EXCP_NONE; 3315 } 3316 3317 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3318 target_ulong val) 3319 { 3320 uint64_t mstatus; 3321 3322 /* if pm.current==0 we can't modify current PM CSRs */ 3323 if (check_pm_current_disabled(env, csrno)) { 3324 return RISCV_EXCP_NONE; 3325 } 3326 env->upmbase = val; 3327 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3328 env->cur_pmbase = val; 3329 } 3330 env->mmte |= PM_EXT_DIRTY; 3331 3332 /* Set XS and SD bits, since PM CSRs are dirty */ 3333 mstatus = env->mstatus | MSTATUS_XS; 3334 write_mstatus(env, csrno, mstatus); 3335 return RISCV_EXCP_NONE; 3336 } 3337 3338 #endif 3339 3340 /* Crypto Extension */ 3341 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3342 target_ulong *ret_value, 3343 target_ulong new_value, 3344 target_ulong write_mask) 3345 { 3346 uint16_t random_v; 3347 Error *random_e = NULL; 3348 int random_r; 3349 target_ulong rval; 3350 3351 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3352 if (unlikely(random_r < 0)) { 3353 /* 3354 * Failed, for unknown reasons in the crypto subsystem. 3355 * The best we can do is log the reason and return a 3356 * failure indication to the guest. There is no reason 3357 * we know to expect the failure to be transitory, so 3358 * indicate DEAD to avoid having the guest spin on WAIT. 3359 */ 3360 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3361 __func__, error_get_pretty(random_e)); 3362 error_free(random_e); 3363 rval = SEED_OPST_DEAD; 3364 } else { 3365 rval = random_v | SEED_OPST_ES16; 3366 } 3367 3368 if (ret_value) { 3369 *ret_value = rval; 3370 } 3371 3372 return RISCV_EXCP_NONE; 3373 } 3374 3375 /* 3376 * riscv_csrrw - read and/or update control and status register 3377 * 3378 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3379 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3380 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3381 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3382 */ 3383 3384 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3385 int csrno, 3386 bool write_mask, 3387 RISCVCPU *cpu) 3388 { 3389 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3390 int read_only = get_field(csrno, 0xC00) == 3; 3391 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3392 #if !defined(CONFIG_USER_ONLY) 3393 int csr_priv, effective_priv = env->priv; 3394 3395 if (riscv_has_ext(env, RVH) && env->priv == PRV_S) { 3396 /* 3397 * We are in either HS or VS mode. 3398 * Add 1 to the effective privledge level to allow us to access the 3399 * Hypervisor CSRs. The `hmode` predicate will determine if access 3400 * should be allowed(HS) or if a virtual instruction exception should be 3401 * raised(VS). 3402 */ 3403 effective_priv++; 3404 } 3405 3406 csr_priv = get_field(csrno, 0x300); 3407 if (!env->debugger && (effective_priv < csr_priv)) { 3408 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3409 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3410 } 3411 return RISCV_EXCP_ILLEGAL_INST; 3412 } 3413 #endif 3414 if (write_mask && read_only) { 3415 return RISCV_EXCP_ILLEGAL_INST; 3416 } 3417 3418 /* ensure the CSR extension is enabled. */ 3419 if (!cpu->cfg.ext_icsr) { 3420 return RISCV_EXCP_ILLEGAL_INST; 3421 } 3422 3423 /* check predicate */ 3424 if (!csr_ops[csrno].predicate) { 3425 return RISCV_EXCP_ILLEGAL_INST; 3426 } 3427 3428 if (env->priv_ver < csr_min_priv) { 3429 return RISCV_EXCP_ILLEGAL_INST; 3430 } 3431 3432 return csr_ops[csrno].predicate(env, csrno); 3433 } 3434 3435 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3436 target_ulong *ret_value, 3437 target_ulong new_value, 3438 target_ulong write_mask) 3439 { 3440 RISCVException ret; 3441 target_ulong old_value; 3442 3443 /* execute combined read/write operation if it exists */ 3444 if (csr_ops[csrno].op) { 3445 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3446 } 3447 3448 /* if no accessor exists then return failure */ 3449 if (!csr_ops[csrno].read) { 3450 return RISCV_EXCP_ILLEGAL_INST; 3451 } 3452 /* read old value */ 3453 ret = csr_ops[csrno].read(env, csrno, &old_value); 3454 if (ret != RISCV_EXCP_NONE) { 3455 return ret; 3456 } 3457 3458 /* write value if writable and write mask set, otherwise drop writes */ 3459 if (write_mask) { 3460 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3461 if (csr_ops[csrno].write) { 3462 ret = csr_ops[csrno].write(env, csrno, new_value); 3463 if (ret != RISCV_EXCP_NONE) { 3464 return ret; 3465 } 3466 } 3467 } 3468 3469 /* return old value */ 3470 if (ret_value) { 3471 *ret_value = old_value; 3472 } 3473 3474 return RISCV_EXCP_NONE; 3475 } 3476 3477 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3478 target_ulong *ret_value, 3479 target_ulong new_value, target_ulong write_mask) 3480 { 3481 RISCVCPU *cpu = env_archcpu(env); 3482 3483 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3484 if (ret != RISCV_EXCP_NONE) { 3485 return ret; 3486 } 3487 3488 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3489 } 3490 3491 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3492 Int128 *ret_value, 3493 Int128 new_value, 3494 Int128 write_mask) 3495 { 3496 RISCVException ret; 3497 Int128 old_value; 3498 3499 /* read old value */ 3500 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3501 if (ret != RISCV_EXCP_NONE) { 3502 return ret; 3503 } 3504 3505 /* write value if writable and write mask set, otherwise drop writes */ 3506 if (int128_nz(write_mask)) { 3507 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3508 int128_and(new_value, write_mask)); 3509 if (csr_ops[csrno].write128) { 3510 ret = csr_ops[csrno].write128(env, csrno, new_value); 3511 if (ret != RISCV_EXCP_NONE) { 3512 return ret; 3513 } 3514 } else if (csr_ops[csrno].write) { 3515 /* avoids having to write wrappers for all registers */ 3516 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3517 if (ret != RISCV_EXCP_NONE) { 3518 return ret; 3519 } 3520 } 3521 } 3522 3523 /* return old value */ 3524 if (ret_value) { 3525 *ret_value = old_value; 3526 } 3527 3528 return RISCV_EXCP_NONE; 3529 } 3530 3531 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3532 Int128 *ret_value, 3533 Int128 new_value, Int128 write_mask) 3534 { 3535 RISCVException ret; 3536 RISCVCPU *cpu = env_archcpu(env); 3537 3538 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3539 if (ret != RISCV_EXCP_NONE) { 3540 return ret; 3541 } 3542 3543 if (csr_ops[csrno].read128) { 3544 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3545 } 3546 3547 /* 3548 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3549 * at all defined. 3550 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3551 * significant), for those, this fallback is correctly handling the accesses 3552 */ 3553 target_ulong old_value; 3554 ret = riscv_csrrw_do64(env, csrno, &old_value, 3555 int128_getlo(new_value), 3556 int128_getlo(write_mask)); 3557 if (ret == RISCV_EXCP_NONE && ret_value) { 3558 *ret_value = int128_make64(old_value); 3559 } 3560 return ret; 3561 } 3562 3563 /* 3564 * Debugger support. If not in user mode, set env->debugger before the 3565 * riscv_csrrw call and clear it after the call. 3566 */ 3567 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3568 target_ulong *ret_value, 3569 target_ulong new_value, 3570 target_ulong write_mask) 3571 { 3572 RISCVException ret; 3573 #if !defined(CONFIG_USER_ONLY) 3574 env->debugger = true; 3575 #endif 3576 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3577 #if !defined(CONFIG_USER_ONLY) 3578 env->debugger = false; 3579 #endif 3580 return ret; 3581 } 3582 3583 /* Control and Status Register function table */ 3584 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3585 /* User Floating-Point CSRs */ 3586 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3587 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3588 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3589 /* Vector CSRs */ 3590 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart, 3591 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3592 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat, 3593 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3594 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm, 3595 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3596 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr, 3597 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3598 [CSR_VL] = { "vl", vs, read_vl, 3599 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3600 [CSR_VTYPE] = { "vtype", vs, read_vtype, 3601 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3602 [CSR_VLENB] = { "vlenb", vs, read_vlenb, 3603 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3604 /* User Timers and Counters */ 3605 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 3606 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 3607 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 3608 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 3609 3610 /* 3611 * In privileged mode, the monitor will have to emulate TIME CSRs only if 3612 * rdtime callback is not provided by machine/platform emulation. 3613 */ 3614 [CSR_TIME] = { "time", ctr, read_time }, 3615 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 3616 3617 /* Crypto Extension */ 3618 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 3619 3620 #if !defined(CONFIG_USER_ONLY) 3621 /* Machine Timers and Counters */ 3622 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, write_mhpmcounter}, 3623 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, write_mhpmcounter}, 3624 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, write_mhpmcounterh}, 3625 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, write_mhpmcounterh}, 3626 3627 /* Machine Information Registers */ 3628 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 3629 [CSR_MARCHID] = { "marchid", any, read_marchid }, 3630 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 3631 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 3632 3633 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 3634 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3635 /* Machine Trap Setup */ 3636 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, NULL, 3637 read_mstatus_i128 }, 3638 [CSR_MISA] = { "misa", any, read_misa, write_misa, NULL, 3639 read_misa_i128 }, 3640 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 3641 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 3642 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 3643 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 3644 [CSR_MCOUNTEREN] = { "mcounteren", any, read_mcounteren, write_mcounteren }, 3645 3646 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, write_mstatush }, 3647 3648 /* Machine Trap Handling */ 3649 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, NULL, 3650 read_mscratch_i128, write_mscratch_i128 }, 3651 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 3652 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 3653 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 3654 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 3655 3656 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 3657 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 3658 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 3659 3660 /* Machine-Level Interrupts (AIA) */ 3661 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 3662 3663 /* Machine-Level IMSIC Interface (AIA) */ 3664 [CSR_MSETEIPNUM] = { "mseteipnum", aia_any, NULL, NULL, rmw_xsetclreinum }, 3665 [CSR_MCLREIPNUM] = { "mclreipnum", aia_any, NULL, NULL, rmw_xsetclreinum }, 3666 [CSR_MSETEIENUM] = { "mseteienum", aia_any, NULL, NULL, rmw_xsetclreinum }, 3667 [CSR_MCLREIENUM] = { "mclreienum", aia_any, NULL, NULL, rmw_xsetclreinum }, 3668 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 3669 3670 /* Virtual Interrupts for Supervisor Level (AIA) */ 3671 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 3672 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 3673 3674 /* Machine-Level High-Half CSRs (AIA) */ 3675 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 3676 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 3677 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 3678 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 3679 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 3680 3681 /* Execution environment configuration */ 3682 [CSR_MENVCFG] = { "menvcfg", any, read_menvcfg, write_menvcfg, 3683 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3684 [CSR_MENVCFGH] = { "menvcfgh", any32, read_menvcfgh, write_menvcfgh, 3685 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3686 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 3687 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3688 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 3689 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3690 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 3691 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3692 3693 /* Supervisor Trap Setup */ 3694 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, NULL, 3695 read_sstatus_i128 }, 3696 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 3697 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 3698 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, write_scounteren }, 3699 3700 /* Supervisor Trap Handling */ 3701 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, NULL, 3702 read_sscratch_i128, write_sscratch_i128 }, 3703 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 3704 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 3705 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 3706 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 3707 3708 /* Supervisor Protection and Translation */ 3709 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 3710 3711 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 3712 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 3713 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 3714 3715 /* Supervisor-Level Interrupts (AIA) */ 3716 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 3717 3718 /* Supervisor-Level IMSIC Interface (AIA) */ 3719 [CSR_SSETEIPNUM] = { "sseteipnum", aia_smode, NULL, NULL, rmw_xsetclreinum }, 3720 [CSR_SCLREIPNUM] = { "sclreipnum", aia_smode, NULL, NULL, rmw_xsetclreinum }, 3721 [CSR_SSETEIENUM] = { "sseteienum", aia_smode, NULL, NULL, rmw_xsetclreinum }, 3722 [CSR_SCLREIENUM] = { "sclreienum", aia_smode, NULL, NULL, rmw_xsetclreinum }, 3723 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 3724 3725 /* Supervisor-Level High-Half CSRs (AIA) */ 3726 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 3727 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 3728 3729 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 3730 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3731 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 3732 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3733 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 3734 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3735 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 3736 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3737 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 3738 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3739 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 3740 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3741 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, write_hcounteren, 3742 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3743 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 3744 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3745 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 3746 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3747 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 3748 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3749 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 3750 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3751 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 3752 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3753 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, write_htimedelta, 3754 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3755 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, write_htimedeltah, 3756 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3757 3758 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, write_vsstatus, 3759 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3760 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 3761 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3762 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 3763 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3764 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 3765 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3766 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, write_vsscratch, 3767 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3768 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 3769 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3770 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 3771 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3772 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 3773 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3774 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 3775 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3776 3777 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 3778 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3779 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 3780 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3781 3782 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 3783 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 3784 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, write_hvictl }, 3785 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, write_hviprio1 }, 3786 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, write_hviprio2 }, 3787 3788 /* 3789 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 3790 */ 3791 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, rmw_xiselect }, 3792 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 3793 3794 /* VS-Level Interrupts (H-extension with AIA) */ 3795 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 3796 3797 /* VS-Level IMSIC Interface (H-extension with AIA) */ 3798 [CSR_VSSETEIPNUM] = { "vsseteipnum", aia_hmode, NULL, NULL, rmw_xsetclreinum }, 3799 [CSR_VSCLREIPNUM] = { "vsclreipnum", aia_hmode, NULL, NULL, rmw_xsetclreinum }, 3800 [CSR_VSSETEIENUM] = { "vsseteienum", aia_hmode, NULL, NULL, rmw_xsetclreinum }, 3801 [CSR_VSCLREIENUM] = { "vsclreienum", aia_hmode, NULL, NULL, rmw_xsetclreinum }, 3802 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 3803 3804 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 3805 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, rmw_hidelegh }, 3806 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, write_ignore }, 3807 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 3808 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, write_hviprio1h }, 3809 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, write_hviprio2h }, 3810 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 3811 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 3812 3813 /* Physical Memory Protection */ 3814 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 3815 .min_priv_ver = PRIV_VERSION_1_11_0 }, 3816 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 3817 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 3818 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 3819 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 3820 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 3821 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 3822 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 3823 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 3824 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 3825 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 3826 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 3827 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 3828 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 3829 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 3830 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 3831 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 3832 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 3833 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 3834 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 3835 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 3836 3837 /* Debug CSRs */ 3838 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 3839 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 3840 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 3841 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 3842 3843 /* User Pointer Masking */ 3844 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 3845 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, write_upmmask }, 3846 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, write_upmbase }, 3847 /* Machine Pointer Masking */ 3848 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 3849 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, write_mpmmask }, 3850 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, write_mpmbase }, 3851 /* Supervisor Pointer Masking */ 3852 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 3853 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, write_spmmask }, 3854 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, write_spmbase }, 3855 3856 /* Performance Counters */ 3857 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 3858 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 3859 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 3860 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 3861 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 3862 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 3863 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 3864 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 3865 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 3866 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 3867 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 3868 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 3869 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 3870 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 3871 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 3872 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 3873 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 3874 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 3875 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 3876 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 3877 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 3878 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 3879 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 3880 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 3881 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 3882 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 3883 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 3884 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 3885 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 3886 3887 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 3888 write_mhpmcounter }, 3889 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 3890 write_mhpmcounter }, 3891 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 3892 write_mhpmcounter }, 3893 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 3894 write_mhpmcounter }, 3895 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 3896 write_mhpmcounter }, 3897 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 3898 write_mhpmcounter }, 3899 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 3900 write_mhpmcounter }, 3901 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 3902 write_mhpmcounter }, 3903 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 3904 write_mhpmcounter }, 3905 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 3906 write_mhpmcounter }, 3907 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 3908 write_mhpmcounter }, 3909 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 3910 write_mhpmcounter }, 3911 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 3912 write_mhpmcounter }, 3913 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 3914 write_mhpmcounter }, 3915 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 3916 write_mhpmcounter }, 3917 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 3918 write_mhpmcounter }, 3919 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 3920 write_mhpmcounter }, 3921 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 3922 write_mhpmcounter }, 3923 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 3924 write_mhpmcounter }, 3925 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 3926 write_mhpmcounter }, 3927 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 3928 write_mhpmcounter }, 3929 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 3930 write_mhpmcounter }, 3931 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 3932 write_mhpmcounter }, 3933 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 3934 write_mhpmcounter }, 3935 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 3936 write_mhpmcounter }, 3937 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 3938 write_mhpmcounter }, 3939 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 3940 write_mhpmcounter }, 3941 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 3942 write_mhpmcounter }, 3943 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 3944 write_mhpmcounter }, 3945 3946 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 3947 write_mcountinhibit }, 3948 3949 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 3950 write_mhpmevent }, 3951 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 3952 write_mhpmevent }, 3953 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 3954 write_mhpmevent }, 3955 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 3956 write_mhpmevent }, 3957 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 3958 write_mhpmevent }, 3959 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 3960 write_mhpmevent }, 3961 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 3962 write_mhpmevent }, 3963 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 3964 write_mhpmevent }, 3965 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 3966 write_mhpmevent }, 3967 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 3968 write_mhpmevent }, 3969 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 3970 write_mhpmevent }, 3971 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 3972 write_mhpmevent }, 3973 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 3974 write_mhpmevent }, 3975 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 3976 write_mhpmevent }, 3977 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 3978 write_mhpmevent }, 3979 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 3980 write_mhpmevent }, 3981 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 3982 write_mhpmevent }, 3983 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 3984 write_mhpmevent }, 3985 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 3986 write_mhpmevent }, 3987 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 3988 write_mhpmevent }, 3989 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 3990 write_mhpmevent }, 3991 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 3992 write_mhpmevent }, 3993 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 3994 write_mhpmevent }, 3995 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 3996 write_mhpmevent }, 3997 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 3998 write_mhpmevent }, 3999 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4000 write_mhpmevent }, 4001 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4002 write_mhpmevent }, 4003 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4004 write_mhpmevent }, 4005 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4006 write_mhpmevent }, 4007 4008 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4009 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4010 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4011 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4012 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4013 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4014 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4015 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4016 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4017 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4018 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4019 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4020 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4021 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4022 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4023 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4024 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4025 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4026 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4027 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4028 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4029 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4030 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4031 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4032 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4033 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4034 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4035 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4036 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4037 4038 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4039 write_mhpmcounterh }, 4040 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4041 write_mhpmcounterh }, 4042 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4043 write_mhpmcounterh }, 4044 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4045 write_mhpmcounterh }, 4046 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4047 write_mhpmcounterh }, 4048 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4049 write_mhpmcounterh }, 4050 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4051 write_mhpmcounterh }, 4052 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4053 write_mhpmcounterh }, 4054 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4055 write_mhpmcounterh }, 4056 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4057 write_mhpmcounterh }, 4058 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4059 write_mhpmcounterh }, 4060 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4061 write_mhpmcounterh }, 4062 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4063 write_mhpmcounterh }, 4064 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4065 write_mhpmcounterh }, 4066 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4067 write_mhpmcounterh }, 4068 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4069 write_mhpmcounterh }, 4070 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4071 write_mhpmcounterh }, 4072 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4073 write_mhpmcounterh }, 4074 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4075 write_mhpmcounterh }, 4076 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4077 write_mhpmcounterh }, 4078 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4079 write_mhpmcounterh }, 4080 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4081 write_mhpmcounterh }, 4082 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4083 write_mhpmcounterh }, 4084 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4085 write_mhpmcounterh }, 4086 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4087 write_mhpmcounterh }, 4088 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4089 write_mhpmcounterh }, 4090 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4091 write_mhpmcounterh }, 4092 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4093 write_mhpmcounterh }, 4094 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4095 write_mhpmcounterh }, 4096 #endif /* !CONFIG_USER_ONLY */ 4097 }; 4098