1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "sysemu/cpu-timers.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 32 /* CSR function table public API */ 33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 34 { 35 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 36 } 37 38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 41 } 42 43 /* Predicates */ 44 static RISCVException fs(CPURISCVState *env, int csrno) 45 { 46 #if !defined(CONFIG_USER_ONLY) 47 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 48 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 49 return RISCV_EXCP_ILLEGAL_INST; 50 } 51 #endif 52 return RISCV_EXCP_NONE; 53 } 54 55 static RISCVException vs(CPURISCVState *env, int csrno) 56 { 57 CPUState *cs = env_cpu(env); 58 RISCVCPU *cpu = RISCV_CPU(cs); 59 60 if (env->misa_ext & RVV || 61 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 62 #if !defined(CONFIG_USER_ONLY) 63 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 64 return RISCV_EXCP_ILLEGAL_INST; 65 } 66 #endif 67 return RISCV_EXCP_NONE; 68 } 69 return RISCV_EXCP_ILLEGAL_INST; 70 } 71 72 static RISCVException ctr(CPURISCVState *env, int csrno) 73 { 74 #if !defined(CONFIG_USER_ONLY) 75 CPUState *cs = env_cpu(env); 76 RISCVCPU *cpu = RISCV_CPU(cs); 77 int ctr_index; 78 target_ulong ctr_mask; 79 int base_csrno = CSR_CYCLE; 80 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 81 82 if (rv32 && csrno >= CSR_CYCLEH) { 83 /* Offset for RV32 hpmcounternh counters */ 84 base_csrno += 0x80; 85 } 86 ctr_index = csrno - base_csrno; 87 ctr_mask = BIT(ctr_index); 88 89 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 90 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 91 goto skip_ext_pmu_check; 92 } 93 94 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 95 /* No counter is enabled in PMU or the counter is out of range */ 96 return RISCV_EXCP_ILLEGAL_INST; 97 } 98 99 skip_ext_pmu_check: 100 101 if (((env->priv == PRV_S) && (!get_field(env->mcounteren, ctr_mask))) || 102 ((env->priv == PRV_U) && (!get_field(env->scounteren, ctr_mask)))) { 103 return RISCV_EXCP_ILLEGAL_INST; 104 } 105 106 if (riscv_cpu_virt_enabled(env)) { 107 if (!get_field(env->hcounteren, ctr_mask) && 108 get_field(env->mcounteren, ctr_mask)) { 109 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 110 } 111 } 112 #endif 113 return RISCV_EXCP_NONE; 114 } 115 116 static RISCVException ctr32(CPURISCVState *env, int csrno) 117 { 118 if (riscv_cpu_mxl(env) != MXL_RV32) { 119 return RISCV_EXCP_ILLEGAL_INST; 120 } 121 122 return ctr(env, csrno); 123 } 124 125 #if !defined(CONFIG_USER_ONLY) 126 static RISCVException mctr(CPURISCVState *env, int csrno) 127 { 128 CPUState *cs = env_cpu(env); 129 RISCVCPU *cpu = RISCV_CPU(cs); 130 int ctr_index; 131 int base_csrno = CSR_MHPMCOUNTER3; 132 133 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 134 /* Offset for RV32 mhpmcounternh counters */ 135 base_csrno += 0x80; 136 } 137 ctr_index = csrno - base_csrno; 138 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 139 /* The PMU is not enabled or counter is out of range*/ 140 return RISCV_EXCP_ILLEGAL_INST; 141 } 142 143 return RISCV_EXCP_NONE; 144 } 145 146 static RISCVException mctr32(CPURISCVState *env, int csrno) 147 { 148 if (riscv_cpu_mxl(env) != MXL_RV32) { 149 return RISCV_EXCP_ILLEGAL_INST; 150 } 151 152 return mctr(env, csrno); 153 } 154 155 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 156 { 157 CPUState *cs = env_cpu(env); 158 RISCVCPU *cpu = RISCV_CPU(cs); 159 160 if (!cpu->cfg.ext_sscofpmf) { 161 return RISCV_EXCP_ILLEGAL_INST; 162 } 163 164 return RISCV_EXCP_NONE; 165 } 166 167 static RISCVException any(CPURISCVState *env, int csrno) 168 { 169 return RISCV_EXCP_NONE; 170 } 171 172 static RISCVException any32(CPURISCVState *env, int csrno) 173 { 174 if (riscv_cpu_mxl(env) != MXL_RV32) { 175 return RISCV_EXCP_ILLEGAL_INST; 176 } 177 178 return any(env, csrno); 179 180 } 181 182 static int aia_any(CPURISCVState *env, int csrno) 183 { 184 RISCVCPU *cpu = env_archcpu(env); 185 186 if (!cpu->cfg.ext_smaia) { 187 return RISCV_EXCP_ILLEGAL_INST; 188 } 189 190 return any(env, csrno); 191 } 192 193 static int aia_any32(CPURISCVState *env, int csrno) 194 { 195 RISCVCPU *cpu = env_archcpu(env); 196 197 if (!cpu->cfg.ext_smaia) { 198 return RISCV_EXCP_ILLEGAL_INST; 199 } 200 201 return any32(env, csrno); 202 } 203 204 static RISCVException smode(CPURISCVState *env, int csrno) 205 { 206 if (riscv_has_ext(env, RVS)) { 207 return RISCV_EXCP_NONE; 208 } 209 210 return RISCV_EXCP_ILLEGAL_INST; 211 } 212 213 static int smode32(CPURISCVState *env, int csrno) 214 { 215 if (riscv_cpu_mxl(env) != MXL_RV32) { 216 return RISCV_EXCP_ILLEGAL_INST; 217 } 218 219 return smode(env, csrno); 220 } 221 222 static int aia_smode(CPURISCVState *env, int csrno) 223 { 224 RISCVCPU *cpu = env_archcpu(env); 225 226 if (!cpu->cfg.ext_ssaia) { 227 return RISCV_EXCP_ILLEGAL_INST; 228 } 229 230 return smode(env, csrno); 231 } 232 233 static int aia_smode32(CPURISCVState *env, int csrno) 234 { 235 RISCVCPU *cpu = env_archcpu(env); 236 237 if (!cpu->cfg.ext_ssaia) { 238 return RISCV_EXCP_ILLEGAL_INST; 239 } 240 241 return smode32(env, csrno); 242 } 243 244 static RISCVException hmode(CPURISCVState *env, int csrno) 245 { 246 if (riscv_has_ext(env, RVH)) { 247 return RISCV_EXCP_NONE; 248 } 249 250 return RISCV_EXCP_ILLEGAL_INST; 251 } 252 253 static RISCVException hmode32(CPURISCVState *env, int csrno) 254 { 255 if (riscv_cpu_mxl(env) != MXL_RV32) { 256 return RISCV_EXCP_ILLEGAL_INST; 257 } 258 259 return hmode(env, csrno); 260 261 } 262 263 static RISCVException umode(CPURISCVState *env, int csrno) 264 { 265 if (riscv_has_ext(env, RVU)) { 266 return RISCV_EXCP_NONE; 267 } 268 269 return RISCV_EXCP_ILLEGAL_INST; 270 } 271 272 static RISCVException umode32(CPURISCVState *env, int csrno) 273 { 274 if (riscv_cpu_mxl(env) != MXL_RV32) { 275 return RISCV_EXCP_ILLEGAL_INST; 276 } 277 278 return umode(env, csrno); 279 } 280 281 /* Checks if PointerMasking registers could be accessed */ 282 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 283 { 284 /* Check if j-ext is present */ 285 if (riscv_has_ext(env, RVJ)) { 286 return RISCV_EXCP_NONE; 287 } 288 return RISCV_EXCP_ILLEGAL_INST; 289 } 290 291 static int aia_hmode(CPURISCVState *env, int csrno) 292 { 293 RISCVCPU *cpu = env_archcpu(env); 294 295 if (!cpu->cfg.ext_ssaia) { 296 return RISCV_EXCP_ILLEGAL_INST; 297 } 298 299 return hmode(env, csrno); 300 } 301 302 static int aia_hmode32(CPURISCVState *env, int csrno) 303 { 304 RISCVCPU *cpu = env_archcpu(env); 305 306 if (!cpu->cfg.ext_ssaia) { 307 return RISCV_EXCP_ILLEGAL_INST; 308 } 309 310 return hmode32(env, csrno); 311 } 312 313 static RISCVException pmp(CPURISCVState *env, int csrno) 314 { 315 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 316 return RISCV_EXCP_NONE; 317 } 318 319 return RISCV_EXCP_ILLEGAL_INST; 320 } 321 322 static RISCVException epmp(CPURISCVState *env, int csrno) 323 { 324 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 325 return RISCV_EXCP_NONE; 326 } 327 328 return RISCV_EXCP_ILLEGAL_INST; 329 } 330 331 static RISCVException debug(CPURISCVState *env, int csrno) 332 { 333 if (riscv_feature(env, RISCV_FEATURE_DEBUG)) { 334 return RISCV_EXCP_NONE; 335 } 336 337 return RISCV_EXCP_ILLEGAL_INST; 338 } 339 #endif 340 341 static RISCVException seed(CPURISCVState *env, int csrno) 342 { 343 RISCVCPU *cpu = env_archcpu(env); 344 345 if (!cpu->cfg.ext_zkr) { 346 return RISCV_EXCP_ILLEGAL_INST; 347 } 348 349 #if !defined(CONFIG_USER_ONLY) 350 /* 351 * With a CSR read-write instruction: 352 * 1) The seed CSR is always available in machine mode as normal. 353 * 2) Attempted access to seed from virtual modes VS and VU always raises 354 * an exception(virtual instruction exception only if mseccfg.sseed=1). 355 * 3) Without the corresponding access control bit set to 1, any attempted 356 * access to seed from U, S or HS modes will raise an illegal instruction 357 * exception. 358 */ 359 if (env->priv == PRV_M) { 360 return RISCV_EXCP_NONE; 361 } else if (riscv_cpu_virt_enabled(env)) { 362 if (env->mseccfg & MSECCFG_SSEED) { 363 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 364 } else { 365 return RISCV_EXCP_ILLEGAL_INST; 366 } 367 } else { 368 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 369 return RISCV_EXCP_NONE; 370 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 371 return RISCV_EXCP_NONE; 372 } else { 373 return RISCV_EXCP_ILLEGAL_INST; 374 } 375 } 376 #else 377 return RISCV_EXCP_NONE; 378 #endif 379 } 380 381 /* User Floating-Point CSRs */ 382 static RISCVException read_fflags(CPURISCVState *env, int csrno, 383 target_ulong *val) 384 { 385 *val = riscv_cpu_get_fflags(env); 386 return RISCV_EXCP_NONE; 387 } 388 389 static RISCVException write_fflags(CPURISCVState *env, int csrno, 390 target_ulong val) 391 { 392 #if !defined(CONFIG_USER_ONLY) 393 if (riscv_has_ext(env, RVF)) { 394 env->mstatus |= MSTATUS_FS; 395 } 396 #endif 397 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 398 return RISCV_EXCP_NONE; 399 } 400 401 static RISCVException read_frm(CPURISCVState *env, int csrno, 402 target_ulong *val) 403 { 404 *val = env->frm; 405 return RISCV_EXCP_NONE; 406 } 407 408 static RISCVException write_frm(CPURISCVState *env, int csrno, 409 target_ulong val) 410 { 411 #if !defined(CONFIG_USER_ONLY) 412 if (riscv_has_ext(env, RVF)) { 413 env->mstatus |= MSTATUS_FS; 414 } 415 #endif 416 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 417 return RISCV_EXCP_NONE; 418 } 419 420 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 421 target_ulong *val) 422 { 423 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 424 | (env->frm << FSR_RD_SHIFT); 425 return RISCV_EXCP_NONE; 426 } 427 428 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 429 target_ulong val) 430 { 431 #if !defined(CONFIG_USER_ONLY) 432 if (riscv_has_ext(env, RVF)) { 433 env->mstatus |= MSTATUS_FS; 434 } 435 #endif 436 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 437 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 438 return RISCV_EXCP_NONE; 439 } 440 441 static RISCVException read_vtype(CPURISCVState *env, int csrno, 442 target_ulong *val) 443 { 444 uint64_t vill; 445 switch (env->xl) { 446 case MXL_RV32: 447 vill = (uint32_t)env->vill << 31; 448 break; 449 case MXL_RV64: 450 vill = (uint64_t)env->vill << 63; 451 break; 452 default: 453 g_assert_not_reached(); 454 } 455 *val = (target_ulong)vill | env->vtype; 456 return RISCV_EXCP_NONE; 457 } 458 459 static RISCVException read_vl(CPURISCVState *env, int csrno, 460 target_ulong *val) 461 { 462 *val = env->vl; 463 return RISCV_EXCP_NONE; 464 } 465 466 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 467 { 468 *val = env_archcpu(env)->cfg.vlen >> 3; 469 return RISCV_EXCP_NONE; 470 } 471 472 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 473 target_ulong *val) 474 { 475 *val = env->vxrm; 476 return RISCV_EXCP_NONE; 477 } 478 479 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 480 target_ulong val) 481 { 482 #if !defined(CONFIG_USER_ONLY) 483 env->mstatus |= MSTATUS_VS; 484 #endif 485 env->vxrm = val; 486 return RISCV_EXCP_NONE; 487 } 488 489 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 490 target_ulong *val) 491 { 492 *val = env->vxsat; 493 return RISCV_EXCP_NONE; 494 } 495 496 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 497 target_ulong val) 498 { 499 #if !defined(CONFIG_USER_ONLY) 500 env->mstatus |= MSTATUS_VS; 501 #endif 502 env->vxsat = val; 503 return RISCV_EXCP_NONE; 504 } 505 506 static RISCVException read_vstart(CPURISCVState *env, int csrno, 507 target_ulong *val) 508 { 509 *val = env->vstart; 510 return RISCV_EXCP_NONE; 511 } 512 513 static RISCVException write_vstart(CPURISCVState *env, int csrno, 514 target_ulong val) 515 { 516 #if !defined(CONFIG_USER_ONLY) 517 env->mstatus |= MSTATUS_VS; 518 #endif 519 /* 520 * The vstart CSR is defined to have only enough writable bits 521 * to hold the largest element index, i.e. lg2(VLEN) bits. 522 */ 523 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 524 return RISCV_EXCP_NONE; 525 } 526 527 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 528 { 529 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 530 return RISCV_EXCP_NONE; 531 } 532 533 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 534 { 535 #if !defined(CONFIG_USER_ONLY) 536 env->mstatus |= MSTATUS_VS; 537 #endif 538 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 539 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 540 return RISCV_EXCP_NONE; 541 } 542 543 /* User Timers and Counters */ 544 static target_ulong get_ticks(bool shift) 545 { 546 int64_t val; 547 target_ulong result; 548 549 #if !defined(CONFIG_USER_ONLY) 550 if (icount_enabled()) { 551 val = icount_get(); 552 } else { 553 val = cpu_get_host_ticks(); 554 } 555 #else 556 val = cpu_get_host_ticks(); 557 #endif 558 559 if (shift) { 560 result = val >> 32; 561 } else { 562 result = val; 563 } 564 565 return result; 566 } 567 568 #if defined(CONFIG_USER_ONLY) 569 static RISCVException read_time(CPURISCVState *env, int csrno, 570 target_ulong *val) 571 { 572 *val = cpu_get_host_ticks(); 573 return RISCV_EXCP_NONE; 574 } 575 576 static RISCVException read_timeh(CPURISCVState *env, int csrno, 577 target_ulong *val) 578 { 579 *val = cpu_get_host_ticks() >> 32; 580 return RISCV_EXCP_NONE; 581 } 582 583 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 584 { 585 *val = get_ticks(false); 586 return RISCV_EXCP_NONE; 587 } 588 589 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 590 { 591 *val = get_ticks(true); 592 return RISCV_EXCP_NONE; 593 } 594 595 #else /* CONFIG_USER_ONLY */ 596 597 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 598 { 599 int evt_index = csrno - CSR_MCOUNTINHIBIT; 600 601 *val = env->mhpmevent_val[evt_index]; 602 603 return RISCV_EXCP_NONE; 604 } 605 606 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 607 { 608 int evt_index = csrno - CSR_MCOUNTINHIBIT; 609 uint64_t mhpmevt_val = val; 610 611 env->mhpmevent_val[evt_index] = val; 612 613 if (riscv_cpu_mxl(env) == MXL_RV32) { 614 mhpmevt_val = mhpmevt_val | 615 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 616 } 617 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 618 619 return RISCV_EXCP_NONE; 620 } 621 622 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 623 { 624 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 625 626 *val = env->mhpmeventh_val[evt_index]; 627 628 return RISCV_EXCP_NONE; 629 } 630 631 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 632 { 633 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 634 uint64_t mhpmevth_val = val; 635 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 636 637 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 638 env->mhpmeventh_val[evt_index] = val; 639 640 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 641 642 return RISCV_EXCP_NONE; 643 } 644 645 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 646 { 647 int ctr_idx = csrno - CSR_MCYCLE; 648 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 649 uint64_t mhpmctr_val = val; 650 651 counter->mhpmcounter_val = val; 652 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 653 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 654 counter->mhpmcounter_prev = get_ticks(false); 655 if (ctr_idx > 2) { 656 if (riscv_cpu_mxl(env) == MXL_RV32) { 657 mhpmctr_val = mhpmctr_val | 658 ((uint64_t)counter->mhpmcounterh_val << 32); 659 } 660 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 661 } 662 } else { 663 /* Other counters can keep incrementing from the given value */ 664 counter->mhpmcounter_prev = val; 665 } 666 667 return RISCV_EXCP_NONE; 668 } 669 670 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 671 { 672 int ctr_idx = csrno - CSR_MCYCLEH; 673 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 674 uint64_t mhpmctr_val = counter->mhpmcounter_val; 675 uint64_t mhpmctrh_val = val; 676 677 counter->mhpmcounterh_val = val; 678 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 679 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 680 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 681 counter->mhpmcounterh_prev = get_ticks(true); 682 if (ctr_idx > 2) { 683 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 684 } 685 } else { 686 counter->mhpmcounterh_prev = val; 687 } 688 689 return RISCV_EXCP_NONE; 690 } 691 692 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 693 bool upper_half, uint32_t ctr_idx) 694 { 695 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 696 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 697 counter.mhpmcounter_prev; 698 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 699 counter.mhpmcounter_val; 700 701 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 702 /** 703 * Counter should not increment if inhibit bit is set. We can't really 704 * stop the icount counting. Just return the counter value written by 705 * the supervisor to indicate that counter was not incremented. 706 */ 707 if (!counter.started) { 708 *val = ctr_val; 709 return RISCV_EXCP_NONE; 710 } else { 711 /* Mark that the counter has been stopped */ 712 counter.started = false; 713 } 714 } 715 716 /** 717 * The kernel computes the perf delta by subtracting the current value from 718 * the value it initialized previously (ctr_val). 719 */ 720 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 721 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 722 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 723 } else { 724 *val = ctr_val; 725 } 726 727 return RISCV_EXCP_NONE; 728 } 729 730 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 731 { 732 uint16_t ctr_index; 733 734 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 735 ctr_index = csrno - CSR_MCYCLE; 736 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 737 ctr_index = csrno - CSR_CYCLE; 738 } else { 739 return RISCV_EXCP_ILLEGAL_INST; 740 } 741 742 return riscv_pmu_read_ctr(env, val, false, ctr_index); 743 } 744 745 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 746 { 747 uint16_t ctr_index; 748 749 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 750 ctr_index = csrno - CSR_MCYCLEH; 751 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 752 ctr_index = csrno - CSR_CYCLEH; 753 } else { 754 return RISCV_EXCP_ILLEGAL_INST; 755 } 756 757 return riscv_pmu_read_ctr(env, val, true, ctr_index); 758 } 759 760 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 761 { 762 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 763 int i; 764 *val = 0; 765 target_ulong *mhpm_evt_val; 766 uint64_t of_bit_mask; 767 768 if (riscv_cpu_mxl(env) == MXL_RV32) { 769 mhpm_evt_val = env->mhpmeventh_val; 770 of_bit_mask = MHPMEVENTH_BIT_OF; 771 } else { 772 mhpm_evt_val = env->mhpmevent_val; 773 of_bit_mask = MHPMEVENT_BIT_OF; 774 } 775 776 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 777 if ((get_field(env->mcounteren, BIT(i))) && 778 (mhpm_evt_val[i] & of_bit_mask)) { 779 *val |= BIT(i); 780 } 781 } 782 783 return RISCV_EXCP_NONE; 784 } 785 786 static RISCVException read_time(CPURISCVState *env, int csrno, 787 target_ulong *val) 788 { 789 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 790 791 if (!env->rdtime_fn) { 792 return RISCV_EXCP_ILLEGAL_INST; 793 } 794 795 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 796 return RISCV_EXCP_NONE; 797 } 798 799 static RISCVException read_timeh(CPURISCVState *env, int csrno, 800 target_ulong *val) 801 { 802 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 803 804 if (!env->rdtime_fn) { 805 return RISCV_EXCP_ILLEGAL_INST; 806 } 807 808 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 809 return RISCV_EXCP_NONE; 810 } 811 812 static RISCVException sstc(CPURISCVState *env, int csrno) 813 { 814 CPUState *cs = env_cpu(env); 815 RISCVCPU *cpu = RISCV_CPU(cs); 816 bool hmode_check = false; 817 818 if (!cpu->cfg.ext_sstc || !env->rdtime_fn) { 819 return RISCV_EXCP_ILLEGAL_INST; 820 } 821 822 if (env->priv == PRV_M) { 823 return RISCV_EXCP_NONE; 824 } 825 826 /* 827 * No need of separate function for rv32 as menvcfg stores both menvcfg 828 * menvcfgh for RV32. 829 */ 830 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 831 get_field(env->menvcfg, MENVCFG_STCE))) { 832 return RISCV_EXCP_ILLEGAL_INST; 833 } 834 835 if (riscv_cpu_virt_enabled(env)) { 836 if (!(get_field(env->hcounteren, COUNTEREN_TM) & 837 get_field(env->henvcfg, HENVCFG_STCE))) { 838 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 839 } 840 } 841 842 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 843 hmode_check = true; 844 } 845 846 return hmode_check ? hmode(env, csrno) : smode(env, csrno); 847 } 848 849 static RISCVException sstc_32(CPURISCVState *env, int csrno) 850 { 851 if (riscv_cpu_mxl(env) != MXL_RV32) { 852 return RISCV_EXCP_ILLEGAL_INST; 853 } 854 855 return sstc(env, csrno); 856 } 857 858 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 859 target_ulong *val) 860 { 861 *val = env->vstimecmp; 862 863 return RISCV_EXCP_NONE; 864 } 865 866 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 867 target_ulong *val) 868 { 869 *val = env->vstimecmp >> 32; 870 871 return RISCV_EXCP_NONE; 872 } 873 874 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 875 target_ulong val) 876 { 877 RISCVCPU *cpu = env_archcpu(env); 878 879 if (riscv_cpu_mxl(env) == MXL_RV32) { 880 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 881 } else { 882 env->vstimecmp = val; 883 } 884 885 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 886 env->htimedelta, MIP_VSTIP); 887 888 return RISCV_EXCP_NONE; 889 } 890 891 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 892 target_ulong val) 893 { 894 RISCVCPU *cpu = env_archcpu(env); 895 896 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 897 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 898 env->htimedelta, MIP_VSTIP); 899 900 return RISCV_EXCP_NONE; 901 } 902 903 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 904 target_ulong *val) 905 { 906 if (riscv_cpu_virt_enabled(env)) { 907 *val = env->vstimecmp; 908 } else { 909 *val = env->stimecmp; 910 } 911 912 return RISCV_EXCP_NONE; 913 } 914 915 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 916 target_ulong *val) 917 { 918 if (riscv_cpu_virt_enabled(env)) { 919 *val = env->vstimecmp >> 32; 920 } else { 921 *val = env->stimecmp >> 32; 922 } 923 924 return RISCV_EXCP_NONE; 925 } 926 927 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 928 target_ulong val) 929 { 930 RISCVCPU *cpu = env_archcpu(env); 931 932 if (riscv_cpu_virt_enabled(env)) { 933 return write_vstimecmp(env, csrno, val); 934 } 935 936 if (riscv_cpu_mxl(env) == MXL_RV32) { 937 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 938 } else { 939 env->stimecmp = val; 940 } 941 942 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 943 944 return RISCV_EXCP_NONE; 945 } 946 947 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 948 target_ulong val) 949 { 950 RISCVCPU *cpu = env_archcpu(env); 951 952 if (riscv_cpu_virt_enabled(env)) { 953 return write_vstimecmph(env, csrno, val); 954 } 955 956 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 957 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 958 959 return RISCV_EXCP_NONE; 960 } 961 962 /* Machine constants */ 963 964 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 965 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 966 MIP_LCOFIP)) 967 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 968 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 969 970 #define VSTOPI_NUM_SRCS 5 971 972 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 973 VS_MODE_INTERRUPTS; 974 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 975 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 976 HS_MODE_INTERRUPTS; 977 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 978 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 979 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 980 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 981 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 982 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 983 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 984 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 985 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 986 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 987 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 988 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 989 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 990 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 991 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 992 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 993 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 994 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 995 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 996 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 997 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 998 (1ULL << (RISCV_EXCP_VS_ECALL)) | 999 (1ULL << (RISCV_EXCP_M_ECALL)) | 1000 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1001 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1002 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1003 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1004 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1005 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1006 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1007 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1008 SIP_LCOFIP; 1009 static const target_ulong hip_writable_mask = MIP_VSSIP; 1010 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1011 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1012 1013 static const char valid_vm_1_10_32[16] = { 1014 [VM_1_10_MBARE] = 1, 1015 [VM_1_10_SV32] = 1 1016 }; 1017 1018 static const char valid_vm_1_10_64[16] = { 1019 [VM_1_10_MBARE] = 1, 1020 [VM_1_10_SV39] = 1, 1021 [VM_1_10_SV48] = 1, 1022 [VM_1_10_SV57] = 1 1023 }; 1024 1025 /* Machine Information Registers */ 1026 static RISCVException read_zero(CPURISCVState *env, int csrno, 1027 target_ulong *val) 1028 { 1029 *val = 0; 1030 return RISCV_EXCP_NONE; 1031 } 1032 1033 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1034 target_ulong val) 1035 { 1036 return RISCV_EXCP_NONE; 1037 } 1038 1039 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1040 target_ulong *val) 1041 { 1042 CPUState *cs = env_cpu(env); 1043 RISCVCPU *cpu = RISCV_CPU(cs); 1044 1045 *val = cpu->cfg.mvendorid; 1046 return RISCV_EXCP_NONE; 1047 } 1048 1049 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1050 target_ulong *val) 1051 { 1052 CPUState *cs = env_cpu(env); 1053 RISCVCPU *cpu = RISCV_CPU(cs); 1054 1055 *val = cpu->cfg.marchid; 1056 return RISCV_EXCP_NONE; 1057 } 1058 1059 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1060 target_ulong *val) 1061 { 1062 CPUState *cs = env_cpu(env); 1063 RISCVCPU *cpu = RISCV_CPU(cs); 1064 1065 *val = cpu->cfg.mimpid; 1066 return RISCV_EXCP_NONE; 1067 } 1068 1069 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1070 target_ulong *val) 1071 { 1072 *val = env->mhartid; 1073 return RISCV_EXCP_NONE; 1074 } 1075 1076 /* Machine Trap Setup */ 1077 1078 /* We do not store SD explicitly, only compute it on demand. */ 1079 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1080 { 1081 if ((status & MSTATUS_FS) == MSTATUS_FS || 1082 (status & MSTATUS_VS) == MSTATUS_VS || 1083 (status & MSTATUS_XS) == MSTATUS_XS) { 1084 switch (xl) { 1085 case MXL_RV32: 1086 return status | MSTATUS32_SD; 1087 case MXL_RV64: 1088 return status | MSTATUS64_SD; 1089 case MXL_RV128: 1090 return MSTATUSH128_SD; 1091 default: 1092 g_assert_not_reached(); 1093 } 1094 } 1095 return status; 1096 } 1097 1098 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1099 target_ulong *val) 1100 { 1101 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1102 return RISCV_EXCP_NONE; 1103 } 1104 1105 static int validate_vm(CPURISCVState *env, target_ulong vm) 1106 { 1107 if (riscv_cpu_mxl(env) == MXL_RV32) { 1108 return valid_vm_1_10_32[vm & 0xf]; 1109 } else { 1110 return valid_vm_1_10_64[vm & 0xf]; 1111 } 1112 } 1113 1114 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1115 target_ulong val) 1116 { 1117 uint64_t mstatus = env->mstatus; 1118 uint64_t mask = 0; 1119 RISCVMXL xl = riscv_cpu_mxl(env); 1120 1121 /* flush tlb on mstatus fields that affect VM */ 1122 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1123 MSTATUS_MPRV | MSTATUS_SUM)) { 1124 tlb_flush(env_cpu(env)); 1125 } 1126 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1127 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1128 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1129 MSTATUS_TW | MSTATUS_VS; 1130 1131 if (riscv_has_ext(env, RVF)) { 1132 mask |= MSTATUS_FS; 1133 } 1134 1135 if (xl != MXL_RV32 || env->debugger) { 1136 /* 1137 * RV32: MPV and GVA are not in mstatus. The current plan is to 1138 * add them to mstatush. For now, we just don't support it. 1139 */ 1140 mask |= MSTATUS_MPV | MSTATUS_GVA; 1141 if ((val & MSTATUS64_UXL) != 0) { 1142 mask |= MSTATUS64_UXL; 1143 } 1144 } 1145 1146 mstatus = (mstatus & ~mask) | (val & mask); 1147 1148 if (xl > MXL_RV32) { 1149 /* SXL field is for now read only */ 1150 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1151 } 1152 env->mstatus = mstatus; 1153 env->xl = cpu_recompute_xl(env); 1154 1155 return RISCV_EXCP_NONE; 1156 } 1157 1158 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1159 target_ulong *val) 1160 { 1161 *val = env->mstatus >> 32; 1162 return RISCV_EXCP_NONE; 1163 } 1164 1165 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1166 target_ulong val) 1167 { 1168 uint64_t valh = (uint64_t)val << 32; 1169 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1170 1171 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1172 tlb_flush(env_cpu(env)); 1173 } 1174 1175 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1176 1177 return RISCV_EXCP_NONE; 1178 } 1179 1180 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1181 Int128 *val) 1182 { 1183 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1184 return RISCV_EXCP_NONE; 1185 } 1186 1187 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1188 Int128 *val) 1189 { 1190 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1191 return RISCV_EXCP_NONE; 1192 } 1193 1194 static RISCVException read_misa(CPURISCVState *env, int csrno, 1195 target_ulong *val) 1196 { 1197 target_ulong misa; 1198 1199 switch (env->misa_mxl) { 1200 case MXL_RV32: 1201 misa = (target_ulong)MXL_RV32 << 30; 1202 break; 1203 #ifdef TARGET_RISCV64 1204 case MXL_RV64: 1205 misa = (target_ulong)MXL_RV64 << 62; 1206 break; 1207 #endif 1208 default: 1209 g_assert_not_reached(); 1210 } 1211 1212 *val = misa | env->misa_ext; 1213 return RISCV_EXCP_NONE; 1214 } 1215 1216 static RISCVException write_misa(CPURISCVState *env, int csrno, 1217 target_ulong val) 1218 { 1219 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 1220 /* drop write to misa */ 1221 return RISCV_EXCP_NONE; 1222 } 1223 1224 /* 'I' or 'E' must be present */ 1225 if (!(val & (RVI | RVE))) { 1226 /* It is not, drop write to misa */ 1227 return RISCV_EXCP_NONE; 1228 } 1229 1230 /* 'E' excludes all other extensions */ 1231 if (val & RVE) { 1232 /* when we support 'E' we can do "val = RVE;" however 1233 * for now we just drop writes if 'E' is present. 1234 */ 1235 return RISCV_EXCP_NONE; 1236 } 1237 1238 /* 1239 * misa.MXL writes are not supported by QEMU. 1240 * Drop writes to those bits. 1241 */ 1242 1243 /* Mask extensions that are not supported by this hart */ 1244 val &= env->misa_ext_mask; 1245 1246 /* Mask extensions that are not supported by QEMU */ 1247 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 1248 1249 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1250 if ((val & RVD) && !(val & RVF)) { 1251 val &= ~RVD; 1252 } 1253 1254 /* Suppress 'C' if next instruction is not aligned 1255 * TODO: this should check next_pc 1256 */ 1257 if ((val & RVC) && (GETPC() & ~3) != 0) { 1258 val &= ~RVC; 1259 } 1260 1261 /* If nothing changed, do nothing. */ 1262 if (val == env->misa_ext) { 1263 return RISCV_EXCP_NONE; 1264 } 1265 1266 if (!(val & RVF)) { 1267 env->mstatus &= ~MSTATUS_FS; 1268 } 1269 1270 /* flush translation cache */ 1271 tb_flush(env_cpu(env)); 1272 env->misa_ext = val; 1273 env->xl = riscv_cpu_mxl(env); 1274 return RISCV_EXCP_NONE; 1275 } 1276 1277 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1278 target_ulong *val) 1279 { 1280 *val = env->medeleg; 1281 return RISCV_EXCP_NONE; 1282 } 1283 1284 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1285 target_ulong val) 1286 { 1287 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1288 return RISCV_EXCP_NONE; 1289 } 1290 1291 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1292 uint64_t *ret_val, 1293 uint64_t new_val, uint64_t wr_mask) 1294 { 1295 uint64_t mask = wr_mask & delegable_ints; 1296 1297 if (ret_val) { 1298 *ret_val = env->mideleg; 1299 } 1300 1301 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1302 1303 if (riscv_has_ext(env, RVH)) { 1304 env->mideleg |= HS_MODE_INTERRUPTS; 1305 } 1306 1307 return RISCV_EXCP_NONE; 1308 } 1309 1310 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1311 target_ulong *ret_val, 1312 target_ulong new_val, target_ulong wr_mask) 1313 { 1314 uint64_t rval; 1315 RISCVException ret; 1316 1317 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1318 if (ret_val) { 1319 *ret_val = rval; 1320 } 1321 1322 return ret; 1323 } 1324 1325 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1326 target_ulong *ret_val, 1327 target_ulong new_val, 1328 target_ulong wr_mask) 1329 { 1330 uint64_t rval; 1331 RISCVException ret; 1332 1333 ret = rmw_mideleg64(env, csrno, &rval, 1334 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1335 if (ret_val) { 1336 *ret_val = rval >> 32; 1337 } 1338 1339 return ret; 1340 } 1341 1342 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1343 uint64_t *ret_val, 1344 uint64_t new_val, uint64_t wr_mask) 1345 { 1346 uint64_t mask = wr_mask & all_ints; 1347 1348 if (ret_val) { 1349 *ret_val = env->mie; 1350 } 1351 1352 env->mie = (env->mie & ~mask) | (new_val & mask); 1353 1354 if (!riscv_has_ext(env, RVH)) { 1355 env->mie &= ~((uint64_t)MIP_SGEIP); 1356 } 1357 1358 return RISCV_EXCP_NONE; 1359 } 1360 1361 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1362 target_ulong *ret_val, 1363 target_ulong new_val, target_ulong wr_mask) 1364 { 1365 uint64_t rval; 1366 RISCVException ret; 1367 1368 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1369 if (ret_val) { 1370 *ret_val = rval; 1371 } 1372 1373 return ret; 1374 } 1375 1376 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1377 target_ulong *ret_val, 1378 target_ulong new_val, target_ulong wr_mask) 1379 { 1380 uint64_t rval; 1381 RISCVException ret; 1382 1383 ret = rmw_mie64(env, csrno, &rval, 1384 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1385 if (ret_val) { 1386 *ret_val = rval >> 32; 1387 } 1388 1389 return ret; 1390 } 1391 1392 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1393 { 1394 int irq; 1395 uint8_t iprio; 1396 1397 irq = riscv_cpu_mirq_pending(env); 1398 if (irq <= 0 || irq > 63) { 1399 *val = 0; 1400 } else { 1401 iprio = env->miprio[irq]; 1402 if (!iprio) { 1403 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1404 iprio = IPRIO_MMAXIPRIO; 1405 } 1406 } 1407 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1408 *val |= iprio; 1409 } 1410 1411 return RISCV_EXCP_NONE; 1412 } 1413 1414 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1415 { 1416 if (!riscv_cpu_virt_enabled(env)) { 1417 return csrno; 1418 } 1419 1420 switch (csrno) { 1421 case CSR_SISELECT: 1422 return CSR_VSISELECT; 1423 case CSR_SIREG: 1424 return CSR_VSIREG; 1425 case CSR_STOPEI: 1426 return CSR_VSTOPEI; 1427 default: 1428 return csrno; 1429 }; 1430 } 1431 1432 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1433 target_ulong new_val, target_ulong wr_mask) 1434 { 1435 target_ulong *iselect; 1436 1437 /* Translate CSR number for VS-mode */ 1438 csrno = aia_xlate_vs_csrno(env, csrno); 1439 1440 /* Find the iselect CSR based on CSR number */ 1441 switch (csrno) { 1442 case CSR_MISELECT: 1443 iselect = &env->miselect; 1444 break; 1445 case CSR_SISELECT: 1446 iselect = &env->siselect; 1447 break; 1448 case CSR_VSISELECT: 1449 iselect = &env->vsiselect; 1450 break; 1451 default: 1452 return RISCV_EXCP_ILLEGAL_INST; 1453 }; 1454 1455 if (val) { 1456 *val = *iselect; 1457 } 1458 1459 wr_mask &= ISELECT_MASK; 1460 if (wr_mask) { 1461 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1462 } 1463 1464 return RISCV_EXCP_NONE; 1465 } 1466 1467 static int rmw_iprio(target_ulong xlen, 1468 target_ulong iselect, uint8_t *iprio, 1469 target_ulong *val, target_ulong new_val, 1470 target_ulong wr_mask, int ext_irq_no) 1471 { 1472 int i, firq, nirqs; 1473 target_ulong old_val; 1474 1475 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1476 return -EINVAL; 1477 } 1478 if (xlen != 32 && iselect & 0x1) { 1479 return -EINVAL; 1480 } 1481 1482 nirqs = 4 * (xlen / 32); 1483 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1484 1485 old_val = 0; 1486 for (i = 0; i < nirqs; i++) { 1487 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1488 } 1489 1490 if (val) { 1491 *val = old_val; 1492 } 1493 1494 if (wr_mask) { 1495 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1496 for (i = 0; i < nirqs; i++) { 1497 /* 1498 * M-level and S-level external IRQ priority always read-only 1499 * zero. This means default priority order is always preferred 1500 * for M-level and S-level external IRQs. 1501 */ 1502 if ((firq + i) == ext_irq_no) { 1503 continue; 1504 } 1505 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1506 } 1507 } 1508 1509 return 0; 1510 } 1511 1512 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1513 target_ulong new_val, target_ulong wr_mask) 1514 { 1515 bool virt; 1516 uint8_t *iprio; 1517 int ret = -EINVAL; 1518 target_ulong priv, isel, vgein; 1519 1520 /* Translate CSR number for VS-mode */ 1521 csrno = aia_xlate_vs_csrno(env, csrno); 1522 1523 /* Decode register details from CSR number */ 1524 virt = false; 1525 switch (csrno) { 1526 case CSR_MIREG: 1527 iprio = env->miprio; 1528 isel = env->miselect; 1529 priv = PRV_M; 1530 break; 1531 case CSR_SIREG: 1532 iprio = env->siprio; 1533 isel = env->siselect; 1534 priv = PRV_S; 1535 break; 1536 case CSR_VSIREG: 1537 iprio = env->hviprio; 1538 isel = env->vsiselect; 1539 priv = PRV_S; 1540 virt = true; 1541 break; 1542 default: 1543 goto done; 1544 }; 1545 1546 /* Find the selected guest interrupt file */ 1547 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1548 1549 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1550 /* Local interrupt priority registers not available for VS-mode */ 1551 if (!virt) { 1552 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1553 isel, iprio, val, new_val, wr_mask, 1554 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1555 } 1556 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1557 /* IMSIC registers only available when machine implements it. */ 1558 if (env->aia_ireg_rmw_fn[priv]) { 1559 /* Selected guest interrupt file should not be zero */ 1560 if (virt && (!vgein || env->geilen < vgein)) { 1561 goto done; 1562 } 1563 /* Call machine specific IMSIC register emulation */ 1564 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1565 AIA_MAKE_IREG(isel, priv, virt, vgein, 1566 riscv_cpu_mxl_bits(env)), 1567 val, new_val, wr_mask); 1568 } 1569 } 1570 1571 done: 1572 if (ret) { 1573 return (riscv_cpu_virt_enabled(env) && virt) ? 1574 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1575 } 1576 return RISCV_EXCP_NONE; 1577 } 1578 1579 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1580 target_ulong new_val, target_ulong wr_mask) 1581 { 1582 bool virt; 1583 int ret = -EINVAL; 1584 target_ulong priv, vgein; 1585 1586 /* Translate CSR number for VS-mode */ 1587 csrno = aia_xlate_vs_csrno(env, csrno); 1588 1589 /* Decode register details from CSR number */ 1590 virt = false; 1591 switch (csrno) { 1592 case CSR_MTOPEI: 1593 priv = PRV_M; 1594 break; 1595 case CSR_STOPEI: 1596 priv = PRV_S; 1597 break; 1598 case CSR_VSTOPEI: 1599 priv = PRV_S; 1600 virt = true; 1601 break; 1602 default: 1603 goto done; 1604 }; 1605 1606 /* IMSIC CSRs only available when machine implements IMSIC. */ 1607 if (!env->aia_ireg_rmw_fn[priv]) { 1608 goto done; 1609 } 1610 1611 /* Find the selected guest interrupt file */ 1612 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1613 1614 /* Selected guest interrupt file should be valid */ 1615 if (virt && (!vgein || env->geilen < vgein)) { 1616 goto done; 1617 } 1618 1619 /* Call machine specific IMSIC register emulation for TOPEI */ 1620 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1621 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1622 riscv_cpu_mxl_bits(env)), 1623 val, new_val, wr_mask); 1624 1625 done: 1626 if (ret) { 1627 return (riscv_cpu_virt_enabled(env) && virt) ? 1628 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1629 } 1630 return RISCV_EXCP_NONE; 1631 } 1632 1633 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1634 target_ulong *val) 1635 { 1636 *val = env->mtvec; 1637 return RISCV_EXCP_NONE; 1638 } 1639 1640 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1641 target_ulong val) 1642 { 1643 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1644 if ((val & 3) < 2) { 1645 env->mtvec = val; 1646 } else { 1647 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1648 } 1649 return RISCV_EXCP_NONE; 1650 } 1651 1652 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1653 target_ulong *val) 1654 { 1655 *val = env->mcountinhibit; 1656 return RISCV_EXCP_NONE; 1657 } 1658 1659 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1660 target_ulong val) 1661 { 1662 int cidx; 1663 PMUCTRState *counter; 1664 1665 env->mcountinhibit = val; 1666 1667 /* Check if any other counter is also monitoring cycles/instructions */ 1668 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1669 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1670 counter = &env->pmu_ctrs[cidx]; 1671 counter->started = true; 1672 } 1673 } 1674 1675 return RISCV_EXCP_NONE; 1676 } 1677 1678 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1679 target_ulong *val) 1680 { 1681 *val = env->mcounteren; 1682 return RISCV_EXCP_NONE; 1683 } 1684 1685 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1686 target_ulong val) 1687 { 1688 env->mcounteren = val; 1689 return RISCV_EXCP_NONE; 1690 } 1691 1692 /* Machine Trap Handling */ 1693 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1694 Int128 *val) 1695 { 1696 *val = int128_make128(env->mscratch, env->mscratchh); 1697 return RISCV_EXCP_NONE; 1698 } 1699 1700 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1701 Int128 val) 1702 { 1703 env->mscratch = int128_getlo(val); 1704 env->mscratchh = int128_gethi(val); 1705 return RISCV_EXCP_NONE; 1706 } 1707 1708 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1709 target_ulong *val) 1710 { 1711 *val = env->mscratch; 1712 return RISCV_EXCP_NONE; 1713 } 1714 1715 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1716 target_ulong val) 1717 { 1718 env->mscratch = val; 1719 return RISCV_EXCP_NONE; 1720 } 1721 1722 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1723 target_ulong *val) 1724 { 1725 *val = env->mepc; 1726 return RISCV_EXCP_NONE; 1727 } 1728 1729 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1730 target_ulong val) 1731 { 1732 env->mepc = val; 1733 return RISCV_EXCP_NONE; 1734 } 1735 1736 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1737 target_ulong *val) 1738 { 1739 *val = env->mcause; 1740 return RISCV_EXCP_NONE; 1741 } 1742 1743 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1744 target_ulong val) 1745 { 1746 env->mcause = val; 1747 return RISCV_EXCP_NONE; 1748 } 1749 1750 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1751 target_ulong *val) 1752 { 1753 *val = env->mtval; 1754 return RISCV_EXCP_NONE; 1755 } 1756 1757 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1758 target_ulong val) 1759 { 1760 env->mtval = val; 1761 return RISCV_EXCP_NONE; 1762 } 1763 1764 /* Execution environment configuration setup */ 1765 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1766 target_ulong *val) 1767 { 1768 *val = env->menvcfg; 1769 return RISCV_EXCP_NONE; 1770 } 1771 1772 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1773 target_ulong val) 1774 { 1775 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1776 1777 if (riscv_cpu_mxl(env) == MXL_RV64) { 1778 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1779 } 1780 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1781 1782 return RISCV_EXCP_NONE; 1783 } 1784 1785 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1786 target_ulong *val) 1787 { 1788 *val = env->menvcfg >> 32; 1789 return RISCV_EXCP_NONE; 1790 } 1791 1792 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1793 target_ulong val) 1794 { 1795 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1796 uint64_t valh = (uint64_t)val << 32; 1797 1798 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1799 1800 return RISCV_EXCP_NONE; 1801 } 1802 1803 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1804 target_ulong *val) 1805 { 1806 *val = env->senvcfg; 1807 return RISCV_EXCP_NONE; 1808 } 1809 1810 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1811 target_ulong val) 1812 { 1813 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1814 1815 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1816 1817 return RISCV_EXCP_NONE; 1818 } 1819 1820 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1821 target_ulong *val) 1822 { 1823 *val = env->henvcfg; 1824 return RISCV_EXCP_NONE; 1825 } 1826 1827 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1828 target_ulong val) 1829 { 1830 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1831 1832 if (riscv_cpu_mxl(env) == MXL_RV64) { 1833 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 1834 } 1835 1836 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1837 1838 return RISCV_EXCP_NONE; 1839 } 1840 1841 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1842 target_ulong *val) 1843 { 1844 *val = env->henvcfg >> 32; 1845 return RISCV_EXCP_NONE; 1846 } 1847 1848 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 1849 target_ulong val) 1850 { 1851 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 1852 uint64_t valh = (uint64_t)val << 32; 1853 1854 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 1855 1856 return RISCV_EXCP_NONE; 1857 } 1858 1859 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 1860 uint64_t *ret_val, 1861 uint64_t new_val, uint64_t wr_mask) 1862 { 1863 RISCVCPU *cpu = env_archcpu(env); 1864 uint64_t old_mip, mask = wr_mask & delegable_ints; 1865 uint32_t gin; 1866 1867 if (mask & MIP_SEIP) { 1868 env->software_seip = new_val & MIP_SEIP; 1869 new_val |= env->external_seip * MIP_SEIP; 1870 } 1871 1872 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 1873 get_field(env->menvcfg, MENVCFG_STCE)) { 1874 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 1875 mask = mask & ~(MIP_STIP | MIP_VSTIP); 1876 } 1877 1878 if (mask) { 1879 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 1880 } else { 1881 old_mip = env->mip; 1882 } 1883 1884 if (csrno != CSR_HVIP) { 1885 gin = get_field(env->hstatus, HSTATUS_VGEIN); 1886 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 1887 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 1888 } 1889 1890 if (ret_val) { 1891 *ret_val = old_mip; 1892 } 1893 1894 return RISCV_EXCP_NONE; 1895 } 1896 1897 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 1898 target_ulong *ret_val, 1899 target_ulong new_val, target_ulong wr_mask) 1900 { 1901 uint64_t rval; 1902 RISCVException ret; 1903 1904 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 1905 if (ret_val) { 1906 *ret_val = rval; 1907 } 1908 1909 return ret; 1910 } 1911 1912 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 1913 target_ulong *ret_val, 1914 target_ulong new_val, target_ulong wr_mask) 1915 { 1916 uint64_t rval; 1917 RISCVException ret; 1918 1919 ret = rmw_mip64(env, csrno, &rval, 1920 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1921 if (ret_val) { 1922 *ret_val = rval >> 32; 1923 } 1924 1925 return ret; 1926 } 1927 1928 /* Supervisor Trap Setup */ 1929 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 1930 Int128 *val) 1931 { 1932 uint64_t mask = sstatus_v1_10_mask; 1933 uint64_t sstatus = env->mstatus & mask; 1934 if (env->xl != MXL_RV32 || env->debugger) { 1935 mask |= SSTATUS64_UXL; 1936 } 1937 1938 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 1939 return RISCV_EXCP_NONE; 1940 } 1941 1942 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 1943 target_ulong *val) 1944 { 1945 target_ulong mask = (sstatus_v1_10_mask); 1946 if (env->xl != MXL_RV32 || env->debugger) { 1947 mask |= SSTATUS64_UXL; 1948 } 1949 /* TODO: Use SXL not MXL. */ 1950 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 1951 return RISCV_EXCP_NONE; 1952 } 1953 1954 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 1955 target_ulong val) 1956 { 1957 target_ulong mask = (sstatus_v1_10_mask); 1958 1959 if (env->xl != MXL_RV32 || env->debugger) { 1960 if ((val & SSTATUS64_UXL) != 0) { 1961 mask |= SSTATUS64_UXL; 1962 } 1963 } 1964 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 1965 return write_mstatus(env, CSR_MSTATUS, newval); 1966 } 1967 1968 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 1969 uint64_t *ret_val, 1970 uint64_t new_val, uint64_t wr_mask) 1971 { 1972 RISCVException ret; 1973 uint64_t rval, vsbits, mask = env->hideleg & VS_MODE_INTERRUPTS; 1974 1975 /* Bring VS-level bits to correct position */ 1976 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 1977 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 1978 new_val |= vsbits << 1; 1979 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 1980 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 1981 wr_mask |= vsbits << 1; 1982 1983 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 1984 if (ret_val) { 1985 rval &= mask; 1986 vsbits = rval & VS_MODE_INTERRUPTS; 1987 rval &= ~VS_MODE_INTERRUPTS; 1988 *ret_val = rval | (vsbits >> 1); 1989 } 1990 1991 return ret; 1992 } 1993 1994 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 1995 target_ulong *ret_val, 1996 target_ulong new_val, target_ulong wr_mask) 1997 { 1998 uint64_t rval; 1999 RISCVException ret; 2000 2001 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2002 if (ret_val) { 2003 *ret_val = rval; 2004 } 2005 2006 return ret; 2007 } 2008 2009 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2010 target_ulong *ret_val, 2011 target_ulong new_val, target_ulong wr_mask) 2012 { 2013 uint64_t rval; 2014 RISCVException ret; 2015 2016 ret = rmw_vsie64(env, csrno, &rval, 2017 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2018 if (ret_val) { 2019 *ret_val = rval >> 32; 2020 } 2021 2022 return ret; 2023 } 2024 2025 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2026 uint64_t *ret_val, 2027 uint64_t new_val, uint64_t wr_mask) 2028 { 2029 RISCVException ret; 2030 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2031 2032 if (riscv_cpu_virt_enabled(env)) { 2033 if (env->hvictl & HVICTL_VTI) { 2034 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2035 } 2036 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2037 } else { 2038 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2039 } 2040 2041 if (ret_val) { 2042 *ret_val &= mask; 2043 } 2044 2045 return ret; 2046 } 2047 2048 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2049 target_ulong *ret_val, 2050 target_ulong new_val, target_ulong wr_mask) 2051 { 2052 uint64_t rval; 2053 RISCVException ret; 2054 2055 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2056 if (ret == RISCV_EXCP_NONE && ret_val) { 2057 *ret_val = rval; 2058 } 2059 2060 return ret; 2061 } 2062 2063 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2064 target_ulong *ret_val, 2065 target_ulong new_val, target_ulong wr_mask) 2066 { 2067 uint64_t rval; 2068 RISCVException ret; 2069 2070 ret = rmw_sie64(env, csrno, &rval, 2071 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2072 if (ret_val) { 2073 *ret_val = rval >> 32; 2074 } 2075 2076 return ret; 2077 } 2078 2079 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2080 target_ulong *val) 2081 { 2082 *val = env->stvec; 2083 return RISCV_EXCP_NONE; 2084 } 2085 2086 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2087 target_ulong val) 2088 { 2089 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2090 if ((val & 3) < 2) { 2091 env->stvec = val; 2092 } else { 2093 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2094 } 2095 return RISCV_EXCP_NONE; 2096 } 2097 2098 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2099 target_ulong *val) 2100 { 2101 *val = env->scounteren; 2102 return RISCV_EXCP_NONE; 2103 } 2104 2105 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2106 target_ulong val) 2107 { 2108 env->scounteren = val; 2109 return RISCV_EXCP_NONE; 2110 } 2111 2112 /* Supervisor Trap Handling */ 2113 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2114 Int128 *val) 2115 { 2116 *val = int128_make128(env->sscratch, env->sscratchh); 2117 return RISCV_EXCP_NONE; 2118 } 2119 2120 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2121 Int128 val) 2122 { 2123 env->sscratch = int128_getlo(val); 2124 env->sscratchh = int128_gethi(val); 2125 return RISCV_EXCP_NONE; 2126 } 2127 2128 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2129 target_ulong *val) 2130 { 2131 *val = env->sscratch; 2132 return RISCV_EXCP_NONE; 2133 } 2134 2135 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2136 target_ulong val) 2137 { 2138 env->sscratch = val; 2139 return RISCV_EXCP_NONE; 2140 } 2141 2142 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2143 target_ulong *val) 2144 { 2145 *val = env->sepc; 2146 return RISCV_EXCP_NONE; 2147 } 2148 2149 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2150 target_ulong val) 2151 { 2152 env->sepc = val; 2153 return RISCV_EXCP_NONE; 2154 } 2155 2156 static RISCVException read_scause(CPURISCVState *env, int csrno, 2157 target_ulong *val) 2158 { 2159 *val = env->scause; 2160 return RISCV_EXCP_NONE; 2161 } 2162 2163 static RISCVException write_scause(CPURISCVState *env, int csrno, 2164 target_ulong val) 2165 { 2166 env->scause = val; 2167 return RISCV_EXCP_NONE; 2168 } 2169 2170 static RISCVException read_stval(CPURISCVState *env, int csrno, 2171 target_ulong *val) 2172 { 2173 *val = env->stval; 2174 return RISCV_EXCP_NONE; 2175 } 2176 2177 static RISCVException write_stval(CPURISCVState *env, int csrno, 2178 target_ulong val) 2179 { 2180 env->stval = val; 2181 return RISCV_EXCP_NONE; 2182 } 2183 2184 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2185 uint64_t *ret_val, 2186 uint64_t new_val, uint64_t wr_mask) 2187 { 2188 RISCVException ret; 2189 uint64_t rval, vsbits, mask = env->hideleg & vsip_writable_mask; 2190 2191 /* Bring VS-level bits to correct position */ 2192 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2193 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2194 new_val |= vsbits << 1; 2195 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2196 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2197 wr_mask |= vsbits << 1; 2198 2199 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask & mask); 2200 if (ret_val) { 2201 rval &= mask; 2202 vsbits = rval & VS_MODE_INTERRUPTS; 2203 rval &= ~VS_MODE_INTERRUPTS; 2204 *ret_val = rval | (vsbits >> 1); 2205 } 2206 2207 return ret; 2208 } 2209 2210 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2211 target_ulong *ret_val, 2212 target_ulong new_val, target_ulong wr_mask) 2213 { 2214 uint64_t rval; 2215 RISCVException ret; 2216 2217 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2218 if (ret_val) { 2219 *ret_val = rval; 2220 } 2221 2222 return ret; 2223 } 2224 2225 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2226 target_ulong *ret_val, 2227 target_ulong new_val, target_ulong wr_mask) 2228 { 2229 uint64_t rval; 2230 RISCVException ret; 2231 2232 ret = rmw_vsip64(env, csrno, &rval, 2233 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2234 if (ret_val) { 2235 *ret_val = rval >> 32; 2236 } 2237 2238 return ret; 2239 } 2240 2241 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2242 uint64_t *ret_val, 2243 uint64_t new_val, uint64_t wr_mask) 2244 { 2245 RISCVException ret; 2246 uint64_t mask = env->mideleg & sip_writable_mask; 2247 2248 if (riscv_cpu_virt_enabled(env)) { 2249 if (env->hvictl & HVICTL_VTI) { 2250 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2251 } 2252 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2253 } else { 2254 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2255 } 2256 2257 if (ret_val) { 2258 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2259 } 2260 2261 return ret; 2262 } 2263 2264 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2265 target_ulong *ret_val, 2266 target_ulong new_val, target_ulong wr_mask) 2267 { 2268 uint64_t rval; 2269 RISCVException ret; 2270 2271 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2272 if (ret_val) { 2273 *ret_val = rval; 2274 } 2275 2276 return ret; 2277 } 2278 2279 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2280 target_ulong *ret_val, 2281 target_ulong new_val, target_ulong wr_mask) 2282 { 2283 uint64_t rval; 2284 RISCVException ret; 2285 2286 ret = rmw_sip64(env, csrno, &rval, 2287 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2288 if (ret_val) { 2289 *ret_val = rval >> 32; 2290 } 2291 2292 return ret; 2293 } 2294 2295 /* Supervisor Protection and Translation */ 2296 static RISCVException read_satp(CPURISCVState *env, int csrno, 2297 target_ulong *val) 2298 { 2299 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2300 *val = 0; 2301 return RISCV_EXCP_NONE; 2302 } 2303 2304 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2305 return RISCV_EXCP_ILLEGAL_INST; 2306 } else { 2307 *val = env->satp; 2308 } 2309 2310 return RISCV_EXCP_NONE; 2311 } 2312 2313 static RISCVException write_satp(CPURISCVState *env, int csrno, 2314 target_ulong val) 2315 { 2316 target_ulong vm, mask; 2317 2318 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2319 return RISCV_EXCP_NONE; 2320 } 2321 2322 if (riscv_cpu_mxl(env) == MXL_RV32) { 2323 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2324 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2325 } else { 2326 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2327 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2328 } 2329 2330 if (vm && mask) { 2331 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2332 return RISCV_EXCP_ILLEGAL_INST; 2333 } else { 2334 /* 2335 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2336 * pass these through QEMU's TLB emulation as it improves 2337 * performance. Flushing the TLB on SATP writes with paging 2338 * enabled avoids leaking those invalid cached mappings. 2339 */ 2340 tlb_flush(env_cpu(env)); 2341 env->satp = val; 2342 } 2343 } 2344 return RISCV_EXCP_NONE; 2345 } 2346 2347 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2348 { 2349 int irq, ret; 2350 target_ulong topei; 2351 uint64_t vseip, vsgein; 2352 uint32_t iid, iprio, hviid, hviprio, gein; 2353 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2354 2355 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2356 hviid = get_field(env->hvictl, HVICTL_IID); 2357 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2358 2359 if (gein) { 2360 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2361 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2362 if (gein <= env->geilen && vseip) { 2363 siid[scount] = IRQ_S_EXT; 2364 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2365 if (env->aia_ireg_rmw_fn[PRV_S]) { 2366 /* 2367 * Call machine specific IMSIC register emulation for 2368 * reading TOPEI. 2369 */ 2370 ret = env->aia_ireg_rmw_fn[PRV_S]( 2371 env->aia_ireg_rmw_fn_arg[PRV_S], 2372 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2373 riscv_cpu_mxl_bits(env)), 2374 &topei, 0, 0); 2375 if (!ret && topei) { 2376 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2377 } 2378 } 2379 scount++; 2380 } 2381 } else { 2382 if (hviid == IRQ_S_EXT && hviprio) { 2383 siid[scount] = IRQ_S_EXT; 2384 siprio[scount] = hviprio; 2385 scount++; 2386 } 2387 } 2388 2389 if (env->hvictl & HVICTL_VTI) { 2390 if (hviid != IRQ_S_EXT) { 2391 siid[scount] = hviid; 2392 siprio[scount] = hviprio; 2393 scount++; 2394 } 2395 } else { 2396 irq = riscv_cpu_vsirq_pending(env); 2397 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2398 siid[scount] = irq; 2399 siprio[scount] = env->hviprio[irq]; 2400 scount++; 2401 } 2402 } 2403 2404 iid = 0; 2405 iprio = UINT_MAX; 2406 for (s = 0; s < scount; s++) { 2407 if (siprio[s] < iprio) { 2408 iid = siid[s]; 2409 iprio = siprio[s]; 2410 } 2411 } 2412 2413 if (iid) { 2414 if (env->hvictl & HVICTL_IPRIOM) { 2415 if (iprio > IPRIO_MMAXIPRIO) { 2416 iprio = IPRIO_MMAXIPRIO; 2417 } 2418 if (!iprio) { 2419 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2420 iprio = IPRIO_MMAXIPRIO; 2421 } 2422 } 2423 } else { 2424 iprio = 1; 2425 } 2426 } else { 2427 iprio = 0; 2428 } 2429 2430 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2431 *val |= iprio; 2432 return RISCV_EXCP_NONE; 2433 } 2434 2435 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2436 { 2437 int irq; 2438 uint8_t iprio; 2439 2440 if (riscv_cpu_virt_enabled(env)) { 2441 return read_vstopi(env, CSR_VSTOPI, val); 2442 } 2443 2444 irq = riscv_cpu_sirq_pending(env); 2445 if (irq <= 0 || irq > 63) { 2446 *val = 0; 2447 } else { 2448 iprio = env->siprio[irq]; 2449 if (!iprio) { 2450 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2451 iprio = IPRIO_MMAXIPRIO; 2452 } 2453 } 2454 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2455 *val |= iprio; 2456 } 2457 2458 return RISCV_EXCP_NONE; 2459 } 2460 2461 /* Hypervisor Extensions */ 2462 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2463 target_ulong *val) 2464 { 2465 *val = env->hstatus; 2466 if (riscv_cpu_mxl(env) != MXL_RV32) { 2467 /* We only support 64-bit VSXL */ 2468 *val = set_field(*val, HSTATUS_VSXL, 2); 2469 } 2470 /* We only support little endian */ 2471 *val = set_field(*val, HSTATUS_VSBE, 0); 2472 return RISCV_EXCP_NONE; 2473 } 2474 2475 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2476 target_ulong val) 2477 { 2478 env->hstatus = val; 2479 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2480 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2481 } 2482 if (get_field(val, HSTATUS_VSBE) != 0) { 2483 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2484 } 2485 return RISCV_EXCP_NONE; 2486 } 2487 2488 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2489 target_ulong *val) 2490 { 2491 *val = env->hedeleg; 2492 return RISCV_EXCP_NONE; 2493 } 2494 2495 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2496 target_ulong val) 2497 { 2498 env->hedeleg = val & vs_delegable_excps; 2499 return RISCV_EXCP_NONE; 2500 } 2501 2502 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2503 uint64_t *ret_val, 2504 uint64_t new_val, uint64_t wr_mask) 2505 { 2506 uint64_t mask = wr_mask & vs_delegable_ints; 2507 2508 if (ret_val) { 2509 *ret_val = env->hideleg & vs_delegable_ints; 2510 } 2511 2512 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2513 return RISCV_EXCP_NONE; 2514 } 2515 2516 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2517 target_ulong *ret_val, 2518 target_ulong new_val, target_ulong wr_mask) 2519 { 2520 uint64_t rval; 2521 RISCVException ret; 2522 2523 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2524 if (ret_val) { 2525 *ret_val = rval; 2526 } 2527 2528 return ret; 2529 } 2530 2531 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2532 target_ulong *ret_val, 2533 target_ulong new_val, target_ulong wr_mask) 2534 { 2535 uint64_t rval; 2536 RISCVException ret; 2537 2538 ret = rmw_hideleg64(env, csrno, &rval, 2539 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2540 if (ret_val) { 2541 *ret_val = rval >> 32; 2542 } 2543 2544 return ret; 2545 } 2546 2547 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2548 uint64_t *ret_val, 2549 uint64_t new_val, uint64_t wr_mask) 2550 { 2551 RISCVException ret; 2552 2553 ret = rmw_mip64(env, csrno, ret_val, new_val, 2554 wr_mask & hvip_writable_mask); 2555 if (ret_val) { 2556 *ret_val &= VS_MODE_INTERRUPTS; 2557 } 2558 2559 return ret; 2560 } 2561 2562 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2563 target_ulong *ret_val, 2564 target_ulong new_val, target_ulong wr_mask) 2565 { 2566 uint64_t rval; 2567 RISCVException ret; 2568 2569 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2570 if (ret_val) { 2571 *ret_val = rval; 2572 } 2573 2574 return ret; 2575 } 2576 2577 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2578 target_ulong *ret_val, 2579 target_ulong new_val, target_ulong wr_mask) 2580 { 2581 uint64_t rval; 2582 RISCVException ret; 2583 2584 ret = rmw_hvip64(env, csrno, &rval, 2585 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2586 if (ret_val) { 2587 *ret_val = rval >> 32; 2588 } 2589 2590 return ret; 2591 } 2592 2593 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2594 target_ulong *ret_value, 2595 target_ulong new_value, target_ulong write_mask) 2596 { 2597 int ret = rmw_mip(env, csrno, ret_value, new_value, 2598 write_mask & hip_writable_mask); 2599 2600 if (ret_value) { 2601 *ret_value &= HS_MODE_INTERRUPTS; 2602 } 2603 return ret; 2604 } 2605 2606 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2607 target_ulong *ret_val, 2608 target_ulong new_val, target_ulong wr_mask) 2609 { 2610 uint64_t rval; 2611 RISCVException ret; 2612 2613 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2614 if (ret_val) { 2615 *ret_val = rval & HS_MODE_INTERRUPTS; 2616 } 2617 2618 return ret; 2619 } 2620 2621 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2622 target_ulong *val) 2623 { 2624 *val = env->hcounteren; 2625 return RISCV_EXCP_NONE; 2626 } 2627 2628 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2629 target_ulong val) 2630 { 2631 env->hcounteren = val; 2632 return RISCV_EXCP_NONE; 2633 } 2634 2635 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2636 target_ulong *val) 2637 { 2638 if (val) { 2639 *val = env->hgeie; 2640 } 2641 return RISCV_EXCP_NONE; 2642 } 2643 2644 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2645 target_ulong val) 2646 { 2647 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2648 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2649 env->hgeie = val; 2650 /* Update mip.SGEIP bit */ 2651 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2652 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2653 return RISCV_EXCP_NONE; 2654 } 2655 2656 static RISCVException read_htval(CPURISCVState *env, int csrno, 2657 target_ulong *val) 2658 { 2659 *val = env->htval; 2660 return RISCV_EXCP_NONE; 2661 } 2662 2663 static RISCVException write_htval(CPURISCVState *env, int csrno, 2664 target_ulong val) 2665 { 2666 env->htval = val; 2667 return RISCV_EXCP_NONE; 2668 } 2669 2670 static RISCVException read_htinst(CPURISCVState *env, int csrno, 2671 target_ulong *val) 2672 { 2673 *val = env->htinst; 2674 return RISCV_EXCP_NONE; 2675 } 2676 2677 static RISCVException write_htinst(CPURISCVState *env, int csrno, 2678 target_ulong val) 2679 { 2680 return RISCV_EXCP_NONE; 2681 } 2682 2683 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 2684 target_ulong *val) 2685 { 2686 if (val) { 2687 *val = env->hgeip; 2688 } 2689 return RISCV_EXCP_NONE; 2690 } 2691 2692 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 2693 target_ulong *val) 2694 { 2695 *val = env->hgatp; 2696 return RISCV_EXCP_NONE; 2697 } 2698 2699 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 2700 target_ulong val) 2701 { 2702 env->hgatp = val; 2703 return RISCV_EXCP_NONE; 2704 } 2705 2706 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 2707 target_ulong *val) 2708 { 2709 if (!env->rdtime_fn) { 2710 return RISCV_EXCP_ILLEGAL_INST; 2711 } 2712 2713 *val = env->htimedelta; 2714 return RISCV_EXCP_NONE; 2715 } 2716 2717 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 2718 target_ulong val) 2719 { 2720 if (!env->rdtime_fn) { 2721 return RISCV_EXCP_ILLEGAL_INST; 2722 } 2723 2724 if (riscv_cpu_mxl(env) == MXL_RV32) { 2725 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 2726 } else { 2727 env->htimedelta = val; 2728 } 2729 return RISCV_EXCP_NONE; 2730 } 2731 2732 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 2733 target_ulong *val) 2734 { 2735 if (!env->rdtime_fn) { 2736 return RISCV_EXCP_ILLEGAL_INST; 2737 } 2738 2739 *val = env->htimedelta >> 32; 2740 return RISCV_EXCP_NONE; 2741 } 2742 2743 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 2744 target_ulong val) 2745 { 2746 if (!env->rdtime_fn) { 2747 return RISCV_EXCP_ILLEGAL_INST; 2748 } 2749 2750 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 2751 return RISCV_EXCP_NONE; 2752 } 2753 2754 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 2755 { 2756 *val = env->hvictl; 2757 return RISCV_EXCP_NONE; 2758 } 2759 2760 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 2761 { 2762 env->hvictl = val & HVICTL_VALID_MASK; 2763 return RISCV_EXCP_NONE; 2764 } 2765 2766 static int read_hvipriox(CPURISCVState *env, int first_index, 2767 uint8_t *iprio, target_ulong *val) 2768 { 2769 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2770 2771 /* First index has to be a multiple of number of irqs per register */ 2772 if (first_index % num_irqs) { 2773 return (riscv_cpu_virt_enabled(env)) ? 2774 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2775 } 2776 2777 /* Fill-up return value */ 2778 *val = 0; 2779 for (i = 0; i < num_irqs; i++) { 2780 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2781 continue; 2782 } 2783 if (rdzero) { 2784 continue; 2785 } 2786 *val |= ((target_ulong)iprio[irq]) << (i * 8); 2787 } 2788 2789 return RISCV_EXCP_NONE; 2790 } 2791 2792 static int write_hvipriox(CPURISCVState *env, int first_index, 2793 uint8_t *iprio, target_ulong val) 2794 { 2795 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2796 2797 /* First index has to be a multiple of number of irqs per register */ 2798 if (first_index % num_irqs) { 2799 return (riscv_cpu_virt_enabled(env)) ? 2800 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2801 } 2802 2803 /* Fill-up priority arrary */ 2804 for (i = 0; i < num_irqs; i++) { 2805 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2806 continue; 2807 } 2808 if (rdzero) { 2809 iprio[irq] = 0; 2810 } else { 2811 iprio[irq] = (val >> (i * 8)) & 0xff; 2812 } 2813 } 2814 2815 return RISCV_EXCP_NONE; 2816 } 2817 2818 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 2819 { 2820 return read_hvipriox(env, 0, env->hviprio, val); 2821 } 2822 2823 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 2824 { 2825 return write_hvipriox(env, 0, env->hviprio, val); 2826 } 2827 2828 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 2829 { 2830 return read_hvipriox(env, 4, env->hviprio, val); 2831 } 2832 2833 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 2834 { 2835 return write_hvipriox(env, 4, env->hviprio, val); 2836 } 2837 2838 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 2839 { 2840 return read_hvipriox(env, 8, env->hviprio, val); 2841 } 2842 2843 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 2844 { 2845 return write_hvipriox(env, 8, env->hviprio, val); 2846 } 2847 2848 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 2849 { 2850 return read_hvipriox(env, 12, env->hviprio, val); 2851 } 2852 2853 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 2854 { 2855 return write_hvipriox(env, 12, env->hviprio, val); 2856 } 2857 2858 /* Virtual CSR Registers */ 2859 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 2860 target_ulong *val) 2861 { 2862 *val = env->vsstatus; 2863 return RISCV_EXCP_NONE; 2864 } 2865 2866 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 2867 target_ulong val) 2868 { 2869 uint64_t mask = (target_ulong)-1; 2870 if ((val & VSSTATUS64_UXL) == 0) { 2871 mask &= ~VSSTATUS64_UXL; 2872 } 2873 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 2874 return RISCV_EXCP_NONE; 2875 } 2876 2877 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 2878 { 2879 *val = env->vstvec; 2880 return RISCV_EXCP_NONE; 2881 } 2882 2883 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 2884 target_ulong val) 2885 { 2886 env->vstvec = val; 2887 return RISCV_EXCP_NONE; 2888 } 2889 2890 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 2891 target_ulong *val) 2892 { 2893 *val = env->vsscratch; 2894 return RISCV_EXCP_NONE; 2895 } 2896 2897 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 2898 target_ulong val) 2899 { 2900 env->vsscratch = val; 2901 return RISCV_EXCP_NONE; 2902 } 2903 2904 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 2905 target_ulong *val) 2906 { 2907 *val = env->vsepc; 2908 return RISCV_EXCP_NONE; 2909 } 2910 2911 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 2912 target_ulong val) 2913 { 2914 env->vsepc = val; 2915 return RISCV_EXCP_NONE; 2916 } 2917 2918 static RISCVException read_vscause(CPURISCVState *env, int csrno, 2919 target_ulong *val) 2920 { 2921 *val = env->vscause; 2922 return RISCV_EXCP_NONE; 2923 } 2924 2925 static RISCVException write_vscause(CPURISCVState *env, int csrno, 2926 target_ulong val) 2927 { 2928 env->vscause = val; 2929 return RISCV_EXCP_NONE; 2930 } 2931 2932 static RISCVException read_vstval(CPURISCVState *env, int csrno, 2933 target_ulong *val) 2934 { 2935 *val = env->vstval; 2936 return RISCV_EXCP_NONE; 2937 } 2938 2939 static RISCVException write_vstval(CPURISCVState *env, int csrno, 2940 target_ulong val) 2941 { 2942 env->vstval = val; 2943 return RISCV_EXCP_NONE; 2944 } 2945 2946 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 2947 target_ulong *val) 2948 { 2949 *val = env->vsatp; 2950 return RISCV_EXCP_NONE; 2951 } 2952 2953 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 2954 target_ulong val) 2955 { 2956 env->vsatp = val; 2957 return RISCV_EXCP_NONE; 2958 } 2959 2960 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 2961 target_ulong *val) 2962 { 2963 *val = env->mtval2; 2964 return RISCV_EXCP_NONE; 2965 } 2966 2967 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 2968 target_ulong val) 2969 { 2970 env->mtval2 = val; 2971 return RISCV_EXCP_NONE; 2972 } 2973 2974 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 2975 target_ulong *val) 2976 { 2977 *val = env->mtinst; 2978 return RISCV_EXCP_NONE; 2979 } 2980 2981 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 2982 target_ulong val) 2983 { 2984 env->mtinst = val; 2985 return RISCV_EXCP_NONE; 2986 } 2987 2988 /* Physical Memory Protection */ 2989 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 2990 target_ulong *val) 2991 { 2992 *val = mseccfg_csr_read(env); 2993 return RISCV_EXCP_NONE; 2994 } 2995 2996 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 2997 target_ulong val) 2998 { 2999 mseccfg_csr_write(env, val); 3000 return RISCV_EXCP_NONE; 3001 } 3002 3003 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 3004 { 3005 /* TODO: RV128 restriction check */ 3006 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 3007 return false; 3008 } 3009 return true; 3010 } 3011 3012 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3013 target_ulong *val) 3014 { 3015 uint32_t reg_index = csrno - CSR_PMPCFG0; 3016 3017 if (!check_pmp_reg_index(env, reg_index)) { 3018 return RISCV_EXCP_ILLEGAL_INST; 3019 } 3020 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 3021 return RISCV_EXCP_NONE; 3022 } 3023 3024 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3025 target_ulong val) 3026 { 3027 uint32_t reg_index = csrno - CSR_PMPCFG0; 3028 3029 if (!check_pmp_reg_index(env, reg_index)) { 3030 return RISCV_EXCP_ILLEGAL_INST; 3031 } 3032 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 3033 return RISCV_EXCP_NONE; 3034 } 3035 3036 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3037 target_ulong *val) 3038 { 3039 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3040 return RISCV_EXCP_NONE; 3041 } 3042 3043 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3044 target_ulong val) 3045 { 3046 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3047 return RISCV_EXCP_NONE; 3048 } 3049 3050 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3051 target_ulong *val) 3052 { 3053 *val = tselect_csr_read(env); 3054 return RISCV_EXCP_NONE; 3055 } 3056 3057 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3058 target_ulong val) 3059 { 3060 tselect_csr_write(env, val); 3061 return RISCV_EXCP_NONE; 3062 } 3063 3064 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3065 target_ulong *val) 3066 { 3067 /* return 0 in tdata1 to end the trigger enumeration */ 3068 if (env->trigger_cur >= TRIGGER_NUM && csrno == CSR_TDATA1) { 3069 *val = 0; 3070 return RISCV_EXCP_NONE; 3071 } 3072 3073 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3074 return RISCV_EXCP_ILLEGAL_INST; 3075 } 3076 3077 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3078 return RISCV_EXCP_NONE; 3079 } 3080 3081 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3082 target_ulong val) 3083 { 3084 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3085 return RISCV_EXCP_ILLEGAL_INST; 3086 } 3087 3088 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3089 return RISCV_EXCP_NONE; 3090 } 3091 3092 /* 3093 * Functions to access Pointer Masking feature registers 3094 * We have to check if current priv lvl could modify 3095 * csr in given mode 3096 */ 3097 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3098 { 3099 int csr_priv = get_field(csrno, 0x300); 3100 int pm_current; 3101 3102 if (env->debugger) { 3103 return false; 3104 } 3105 /* 3106 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3107 * so allow the access 3108 */ 3109 if (env->priv != csr_priv) { 3110 return false; 3111 } 3112 switch (env->priv) { 3113 case PRV_M: 3114 pm_current = get_field(env->mmte, M_PM_CURRENT); 3115 break; 3116 case PRV_S: 3117 pm_current = get_field(env->mmte, S_PM_CURRENT); 3118 break; 3119 case PRV_U: 3120 pm_current = get_field(env->mmte, U_PM_CURRENT); 3121 break; 3122 default: 3123 g_assert_not_reached(); 3124 } 3125 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3126 return !pm_current; 3127 } 3128 3129 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3130 target_ulong *val) 3131 { 3132 *val = env->mmte & MMTE_MASK; 3133 return RISCV_EXCP_NONE; 3134 } 3135 3136 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3137 target_ulong val) 3138 { 3139 uint64_t mstatus; 3140 target_ulong wpri_val = val & MMTE_MASK; 3141 3142 if (val != wpri_val) { 3143 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3144 "MMTE: WPRI violation written 0x", val, 3145 "vs expected 0x", wpri_val); 3146 } 3147 /* for machine mode pm.current is hardwired to 1 */ 3148 wpri_val |= MMTE_M_PM_CURRENT; 3149 3150 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3151 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3152 env->mmte = wpri_val | PM_EXT_DIRTY; 3153 riscv_cpu_update_mask(env); 3154 3155 /* Set XS and SD bits, since PM CSRs are dirty */ 3156 mstatus = env->mstatus | MSTATUS_XS; 3157 write_mstatus(env, csrno, mstatus); 3158 return RISCV_EXCP_NONE; 3159 } 3160 3161 static RISCVException read_smte(CPURISCVState *env, int csrno, 3162 target_ulong *val) 3163 { 3164 *val = env->mmte & SMTE_MASK; 3165 return RISCV_EXCP_NONE; 3166 } 3167 3168 static RISCVException write_smte(CPURISCVState *env, int csrno, 3169 target_ulong val) 3170 { 3171 target_ulong wpri_val = val & SMTE_MASK; 3172 3173 if (val != wpri_val) { 3174 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3175 "SMTE: WPRI violation written 0x", val, 3176 "vs expected 0x", wpri_val); 3177 } 3178 3179 /* if pm.current==0 we can't modify current PM CSRs */ 3180 if (check_pm_current_disabled(env, csrno)) { 3181 return RISCV_EXCP_NONE; 3182 } 3183 3184 wpri_val |= (env->mmte & ~SMTE_MASK); 3185 write_mmte(env, csrno, wpri_val); 3186 return RISCV_EXCP_NONE; 3187 } 3188 3189 static RISCVException read_umte(CPURISCVState *env, int csrno, 3190 target_ulong *val) 3191 { 3192 *val = env->mmte & UMTE_MASK; 3193 return RISCV_EXCP_NONE; 3194 } 3195 3196 static RISCVException write_umte(CPURISCVState *env, int csrno, 3197 target_ulong val) 3198 { 3199 target_ulong wpri_val = val & UMTE_MASK; 3200 3201 if (val != wpri_val) { 3202 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3203 "UMTE: WPRI violation written 0x", val, 3204 "vs expected 0x", wpri_val); 3205 } 3206 3207 if (check_pm_current_disabled(env, csrno)) { 3208 return RISCV_EXCP_NONE; 3209 } 3210 3211 wpri_val |= (env->mmte & ~UMTE_MASK); 3212 write_mmte(env, csrno, wpri_val); 3213 return RISCV_EXCP_NONE; 3214 } 3215 3216 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3217 target_ulong *val) 3218 { 3219 *val = env->mpmmask; 3220 return RISCV_EXCP_NONE; 3221 } 3222 3223 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3224 target_ulong val) 3225 { 3226 uint64_t mstatus; 3227 3228 env->mpmmask = val; 3229 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3230 env->cur_pmmask = val; 3231 } 3232 env->mmte |= PM_EXT_DIRTY; 3233 3234 /* Set XS and SD bits, since PM CSRs are dirty */ 3235 mstatus = env->mstatus | MSTATUS_XS; 3236 write_mstatus(env, csrno, mstatus); 3237 return RISCV_EXCP_NONE; 3238 } 3239 3240 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3241 target_ulong *val) 3242 { 3243 *val = env->spmmask; 3244 return RISCV_EXCP_NONE; 3245 } 3246 3247 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3248 target_ulong val) 3249 { 3250 uint64_t mstatus; 3251 3252 /* if pm.current==0 we can't modify current PM CSRs */ 3253 if (check_pm_current_disabled(env, csrno)) { 3254 return RISCV_EXCP_NONE; 3255 } 3256 env->spmmask = val; 3257 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3258 env->cur_pmmask = val; 3259 } 3260 env->mmte |= PM_EXT_DIRTY; 3261 3262 /* Set XS and SD bits, since PM CSRs are dirty */ 3263 mstatus = env->mstatus | MSTATUS_XS; 3264 write_mstatus(env, csrno, mstatus); 3265 return RISCV_EXCP_NONE; 3266 } 3267 3268 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3269 target_ulong *val) 3270 { 3271 *val = env->upmmask; 3272 return RISCV_EXCP_NONE; 3273 } 3274 3275 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3276 target_ulong val) 3277 { 3278 uint64_t mstatus; 3279 3280 /* if pm.current==0 we can't modify current PM CSRs */ 3281 if (check_pm_current_disabled(env, csrno)) { 3282 return RISCV_EXCP_NONE; 3283 } 3284 env->upmmask = val; 3285 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3286 env->cur_pmmask = val; 3287 } 3288 env->mmte |= PM_EXT_DIRTY; 3289 3290 /* Set XS and SD bits, since PM CSRs are dirty */ 3291 mstatus = env->mstatus | MSTATUS_XS; 3292 write_mstatus(env, csrno, mstatus); 3293 return RISCV_EXCP_NONE; 3294 } 3295 3296 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3297 target_ulong *val) 3298 { 3299 *val = env->mpmbase; 3300 return RISCV_EXCP_NONE; 3301 } 3302 3303 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3304 target_ulong val) 3305 { 3306 uint64_t mstatus; 3307 3308 env->mpmbase = val; 3309 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3310 env->cur_pmbase = val; 3311 } 3312 env->mmte |= PM_EXT_DIRTY; 3313 3314 /* Set XS and SD bits, since PM CSRs are dirty */ 3315 mstatus = env->mstatus | MSTATUS_XS; 3316 write_mstatus(env, csrno, mstatus); 3317 return RISCV_EXCP_NONE; 3318 } 3319 3320 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3321 target_ulong *val) 3322 { 3323 *val = env->spmbase; 3324 return RISCV_EXCP_NONE; 3325 } 3326 3327 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3328 target_ulong val) 3329 { 3330 uint64_t mstatus; 3331 3332 /* if pm.current==0 we can't modify current PM CSRs */ 3333 if (check_pm_current_disabled(env, csrno)) { 3334 return RISCV_EXCP_NONE; 3335 } 3336 env->spmbase = val; 3337 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3338 env->cur_pmbase = val; 3339 } 3340 env->mmte |= PM_EXT_DIRTY; 3341 3342 /* Set XS and SD bits, since PM CSRs are dirty */ 3343 mstatus = env->mstatus | MSTATUS_XS; 3344 write_mstatus(env, csrno, mstatus); 3345 return RISCV_EXCP_NONE; 3346 } 3347 3348 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3349 target_ulong *val) 3350 { 3351 *val = env->upmbase; 3352 return RISCV_EXCP_NONE; 3353 } 3354 3355 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3356 target_ulong val) 3357 { 3358 uint64_t mstatus; 3359 3360 /* if pm.current==0 we can't modify current PM CSRs */ 3361 if (check_pm_current_disabled(env, csrno)) { 3362 return RISCV_EXCP_NONE; 3363 } 3364 env->upmbase = val; 3365 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3366 env->cur_pmbase = val; 3367 } 3368 env->mmte |= PM_EXT_DIRTY; 3369 3370 /* Set XS and SD bits, since PM CSRs are dirty */ 3371 mstatus = env->mstatus | MSTATUS_XS; 3372 write_mstatus(env, csrno, mstatus); 3373 return RISCV_EXCP_NONE; 3374 } 3375 3376 #endif 3377 3378 /* Crypto Extension */ 3379 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3380 target_ulong *ret_value, 3381 target_ulong new_value, 3382 target_ulong write_mask) 3383 { 3384 uint16_t random_v; 3385 Error *random_e = NULL; 3386 int random_r; 3387 target_ulong rval; 3388 3389 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3390 if (unlikely(random_r < 0)) { 3391 /* 3392 * Failed, for unknown reasons in the crypto subsystem. 3393 * The best we can do is log the reason and return a 3394 * failure indication to the guest. There is no reason 3395 * we know to expect the failure to be transitory, so 3396 * indicate DEAD to avoid having the guest spin on WAIT. 3397 */ 3398 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3399 __func__, error_get_pretty(random_e)); 3400 error_free(random_e); 3401 rval = SEED_OPST_DEAD; 3402 } else { 3403 rval = random_v | SEED_OPST_ES16; 3404 } 3405 3406 if (ret_value) { 3407 *ret_value = rval; 3408 } 3409 3410 return RISCV_EXCP_NONE; 3411 } 3412 3413 /* 3414 * riscv_csrrw - read and/or update control and status register 3415 * 3416 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3417 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3418 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3419 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3420 */ 3421 3422 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3423 int csrno, 3424 bool write_mask, 3425 RISCVCPU *cpu) 3426 { 3427 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3428 int read_only = get_field(csrno, 0xC00) == 3; 3429 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3430 3431 /* ensure the CSR extension is enabled. */ 3432 if (!cpu->cfg.ext_icsr) { 3433 return RISCV_EXCP_ILLEGAL_INST; 3434 } 3435 3436 if (env->priv_ver < csr_min_priv) { 3437 return RISCV_EXCP_ILLEGAL_INST; 3438 } 3439 3440 /* check predicate */ 3441 if (!csr_ops[csrno].predicate) { 3442 return RISCV_EXCP_ILLEGAL_INST; 3443 } 3444 3445 if (write_mask && read_only) { 3446 return RISCV_EXCP_ILLEGAL_INST; 3447 } 3448 3449 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3450 if (ret != RISCV_EXCP_NONE) { 3451 return ret; 3452 } 3453 3454 #if !defined(CONFIG_USER_ONLY) 3455 int csr_priv, effective_priv = env->priv; 3456 3457 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3458 !riscv_cpu_virt_enabled(env)) { 3459 /* 3460 * We are in HS mode. Add 1 to the effective privledge level to 3461 * allow us to access the Hypervisor CSRs. 3462 */ 3463 effective_priv++; 3464 } 3465 3466 csr_priv = get_field(csrno, 0x300); 3467 if (!env->debugger && (effective_priv < csr_priv)) { 3468 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3469 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3470 } 3471 return RISCV_EXCP_ILLEGAL_INST; 3472 } 3473 #endif 3474 return RISCV_EXCP_NONE; 3475 } 3476 3477 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3478 target_ulong *ret_value, 3479 target_ulong new_value, 3480 target_ulong write_mask) 3481 { 3482 RISCVException ret; 3483 target_ulong old_value; 3484 3485 /* execute combined read/write operation if it exists */ 3486 if (csr_ops[csrno].op) { 3487 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3488 } 3489 3490 /* if no accessor exists then return failure */ 3491 if (!csr_ops[csrno].read) { 3492 return RISCV_EXCP_ILLEGAL_INST; 3493 } 3494 /* read old value */ 3495 ret = csr_ops[csrno].read(env, csrno, &old_value); 3496 if (ret != RISCV_EXCP_NONE) { 3497 return ret; 3498 } 3499 3500 /* write value if writable and write mask set, otherwise drop writes */ 3501 if (write_mask) { 3502 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3503 if (csr_ops[csrno].write) { 3504 ret = csr_ops[csrno].write(env, csrno, new_value); 3505 if (ret != RISCV_EXCP_NONE) { 3506 return ret; 3507 } 3508 } 3509 } 3510 3511 /* return old value */ 3512 if (ret_value) { 3513 *ret_value = old_value; 3514 } 3515 3516 return RISCV_EXCP_NONE; 3517 } 3518 3519 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3520 target_ulong *ret_value, 3521 target_ulong new_value, target_ulong write_mask) 3522 { 3523 RISCVCPU *cpu = env_archcpu(env); 3524 3525 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3526 if (ret != RISCV_EXCP_NONE) { 3527 return ret; 3528 } 3529 3530 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3531 } 3532 3533 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3534 Int128 *ret_value, 3535 Int128 new_value, 3536 Int128 write_mask) 3537 { 3538 RISCVException ret; 3539 Int128 old_value; 3540 3541 /* read old value */ 3542 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3543 if (ret != RISCV_EXCP_NONE) { 3544 return ret; 3545 } 3546 3547 /* write value if writable and write mask set, otherwise drop writes */ 3548 if (int128_nz(write_mask)) { 3549 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3550 int128_and(new_value, write_mask)); 3551 if (csr_ops[csrno].write128) { 3552 ret = csr_ops[csrno].write128(env, csrno, new_value); 3553 if (ret != RISCV_EXCP_NONE) { 3554 return ret; 3555 } 3556 } else if (csr_ops[csrno].write) { 3557 /* avoids having to write wrappers for all registers */ 3558 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3559 if (ret != RISCV_EXCP_NONE) { 3560 return ret; 3561 } 3562 } 3563 } 3564 3565 /* return old value */ 3566 if (ret_value) { 3567 *ret_value = old_value; 3568 } 3569 3570 return RISCV_EXCP_NONE; 3571 } 3572 3573 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3574 Int128 *ret_value, 3575 Int128 new_value, Int128 write_mask) 3576 { 3577 RISCVException ret; 3578 RISCVCPU *cpu = env_archcpu(env); 3579 3580 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3581 if (ret != RISCV_EXCP_NONE) { 3582 return ret; 3583 } 3584 3585 if (csr_ops[csrno].read128) { 3586 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3587 } 3588 3589 /* 3590 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3591 * at all defined. 3592 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3593 * significant), for those, this fallback is correctly handling the accesses 3594 */ 3595 target_ulong old_value; 3596 ret = riscv_csrrw_do64(env, csrno, &old_value, 3597 int128_getlo(new_value), 3598 int128_getlo(write_mask)); 3599 if (ret == RISCV_EXCP_NONE && ret_value) { 3600 *ret_value = int128_make64(old_value); 3601 } 3602 return ret; 3603 } 3604 3605 /* 3606 * Debugger support. If not in user mode, set env->debugger before the 3607 * riscv_csrrw call and clear it after the call. 3608 */ 3609 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3610 target_ulong *ret_value, 3611 target_ulong new_value, 3612 target_ulong write_mask) 3613 { 3614 RISCVException ret; 3615 #if !defined(CONFIG_USER_ONLY) 3616 env->debugger = true; 3617 #endif 3618 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3619 #if !defined(CONFIG_USER_ONLY) 3620 env->debugger = false; 3621 #endif 3622 return ret; 3623 } 3624 3625 /* Control and Status Register function table */ 3626 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3627 /* User Floating-Point CSRs */ 3628 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3629 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3630 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3631 /* Vector CSRs */ 3632 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart, 3633 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3634 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat, 3635 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3636 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm, 3637 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3638 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr, 3639 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3640 [CSR_VL] = { "vl", vs, read_vl, 3641 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3642 [CSR_VTYPE] = { "vtype", vs, read_vtype, 3643 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3644 [CSR_VLENB] = { "vlenb", vs, read_vlenb, 3645 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3646 /* User Timers and Counters */ 3647 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 3648 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 3649 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 3650 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 3651 3652 /* 3653 * In privileged mode, the monitor will have to emulate TIME CSRs only if 3654 * rdtime callback is not provided by machine/platform emulation. 3655 */ 3656 [CSR_TIME] = { "time", ctr, read_time }, 3657 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 3658 3659 /* Crypto Extension */ 3660 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 3661 3662 #if !defined(CONFIG_USER_ONLY) 3663 /* Machine Timers and Counters */ 3664 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 3665 write_mhpmcounter }, 3666 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 3667 write_mhpmcounter }, 3668 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 3669 write_mhpmcounterh }, 3670 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 3671 write_mhpmcounterh }, 3672 3673 /* Machine Information Registers */ 3674 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 3675 [CSR_MARCHID] = { "marchid", any, read_marchid }, 3676 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 3677 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 3678 3679 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 3680 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3681 /* Machine Trap Setup */ 3682 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 3683 NULL, read_mstatus_i128 }, 3684 [CSR_MISA] = { "misa", any, read_misa, write_misa, 3685 NULL, read_misa_i128 }, 3686 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 3687 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 3688 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 3689 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 3690 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 3691 write_mcounteren }, 3692 3693 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 3694 write_mstatush }, 3695 3696 /* Machine Trap Handling */ 3697 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 3698 NULL, read_mscratch_i128, write_mscratch_i128 }, 3699 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 3700 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 3701 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 3702 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 3703 3704 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 3705 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 3706 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 3707 3708 /* Machine-Level Interrupts (AIA) */ 3709 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 3710 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 3711 3712 /* Virtual Interrupts for Supervisor Level (AIA) */ 3713 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 3714 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 3715 3716 /* Machine-Level High-Half CSRs (AIA) */ 3717 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 3718 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 3719 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 3720 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 3721 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 3722 3723 /* Execution environment configuration */ 3724 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 3725 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3726 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 3727 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3728 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 3729 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3730 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 3731 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3732 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 3733 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3734 3735 /* Supervisor Trap Setup */ 3736 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 3737 NULL, read_sstatus_i128 }, 3738 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 3739 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 3740 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 3741 write_scounteren }, 3742 3743 /* Supervisor Trap Handling */ 3744 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 3745 NULL, read_sscratch_i128, write_sscratch_i128 }, 3746 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 3747 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 3748 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 3749 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 3750 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 3751 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3752 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 3753 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3754 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 3755 write_vstimecmp, 3756 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3757 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 3758 write_vstimecmph, 3759 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3760 3761 /* Supervisor Protection and Translation */ 3762 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 3763 3764 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 3765 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 3766 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 3767 3768 /* Supervisor-Level Interrupts (AIA) */ 3769 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 3770 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 3771 3772 /* Supervisor-Level High-Half CSRs (AIA) */ 3773 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 3774 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 3775 3776 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 3777 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3778 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 3779 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3780 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 3781 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3782 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 3783 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3784 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 3785 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3786 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 3787 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3788 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 3789 write_hcounteren, 3790 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3791 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 3792 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3793 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 3794 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3795 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 3796 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3797 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 3798 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3799 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 3800 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3801 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 3802 write_htimedelta, 3803 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3804 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 3805 write_htimedeltah, 3806 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3807 3808 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 3809 write_vsstatus, 3810 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3811 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 3812 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3813 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 3814 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3815 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 3816 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3817 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 3818 write_vsscratch, 3819 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3820 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 3821 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3822 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 3823 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3824 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 3825 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3826 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 3827 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3828 3829 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 3830 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3831 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 3832 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3833 3834 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 3835 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 3836 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 3837 write_hvictl }, 3838 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 3839 write_hviprio1 }, 3840 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 3841 write_hviprio2 }, 3842 3843 /* 3844 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 3845 */ 3846 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 3847 rmw_xiselect }, 3848 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 3849 3850 /* VS-Level Interrupts (H-extension with AIA) */ 3851 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 3852 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 3853 3854 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 3855 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 3856 rmw_hidelegh }, 3857 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 3858 write_ignore }, 3859 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 3860 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 3861 write_hviprio1h }, 3862 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 3863 write_hviprio2h }, 3864 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 3865 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 3866 3867 /* Physical Memory Protection */ 3868 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 3869 .min_priv_ver = PRIV_VERSION_1_11_0 }, 3870 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 3871 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 3872 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 3873 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 3874 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 3875 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 3876 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 3877 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 3878 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 3879 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 3880 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 3881 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 3882 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 3883 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 3884 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 3885 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 3886 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 3887 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 3888 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 3889 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 3890 3891 /* Debug CSRs */ 3892 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 3893 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 3894 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 3895 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 3896 3897 /* User Pointer Masking */ 3898 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 3899 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 3900 write_upmmask }, 3901 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 3902 write_upmbase }, 3903 /* Machine Pointer Masking */ 3904 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 3905 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 3906 write_mpmmask }, 3907 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 3908 write_mpmbase }, 3909 /* Supervisor Pointer Masking */ 3910 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 3911 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 3912 write_spmmask }, 3913 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 3914 write_spmbase }, 3915 3916 /* Performance Counters */ 3917 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 3918 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 3919 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 3920 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 3921 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 3922 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 3923 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 3924 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 3925 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 3926 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 3927 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 3928 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 3929 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 3930 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 3931 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 3932 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 3933 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 3934 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 3935 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 3936 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 3937 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 3938 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 3939 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 3940 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 3941 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 3942 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 3943 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 3944 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 3945 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 3946 3947 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 3948 write_mhpmcounter }, 3949 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 3950 write_mhpmcounter }, 3951 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 3952 write_mhpmcounter }, 3953 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 3954 write_mhpmcounter }, 3955 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 3956 write_mhpmcounter }, 3957 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 3958 write_mhpmcounter }, 3959 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 3960 write_mhpmcounter }, 3961 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 3962 write_mhpmcounter }, 3963 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 3964 write_mhpmcounter }, 3965 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 3966 write_mhpmcounter }, 3967 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 3968 write_mhpmcounter }, 3969 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 3970 write_mhpmcounter }, 3971 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 3972 write_mhpmcounter }, 3973 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 3974 write_mhpmcounter }, 3975 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 3976 write_mhpmcounter }, 3977 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 3978 write_mhpmcounter }, 3979 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 3980 write_mhpmcounter }, 3981 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 3982 write_mhpmcounter }, 3983 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 3984 write_mhpmcounter }, 3985 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 3986 write_mhpmcounter }, 3987 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 3988 write_mhpmcounter }, 3989 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 3990 write_mhpmcounter }, 3991 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 3992 write_mhpmcounter }, 3993 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 3994 write_mhpmcounter }, 3995 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 3996 write_mhpmcounter }, 3997 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 3998 write_mhpmcounter }, 3999 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4000 write_mhpmcounter }, 4001 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4002 write_mhpmcounter }, 4003 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4004 write_mhpmcounter }, 4005 4006 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4007 write_mcountinhibit, 4008 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4009 4010 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4011 write_mhpmevent }, 4012 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4013 write_mhpmevent }, 4014 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4015 write_mhpmevent }, 4016 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4017 write_mhpmevent }, 4018 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4019 write_mhpmevent }, 4020 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4021 write_mhpmevent }, 4022 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4023 write_mhpmevent }, 4024 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4025 write_mhpmevent }, 4026 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4027 write_mhpmevent }, 4028 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4029 write_mhpmevent }, 4030 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4031 write_mhpmevent }, 4032 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4033 write_mhpmevent }, 4034 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4035 write_mhpmevent }, 4036 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4037 write_mhpmevent }, 4038 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4039 write_mhpmevent }, 4040 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4041 write_mhpmevent }, 4042 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4043 write_mhpmevent }, 4044 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4045 write_mhpmevent }, 4046 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4047 write_mhpmevent }, 4048 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4049 write_mhpmevent }, 4050 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4051 write_mhpmevent }, 4052 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4053 write_mhpmevent }, 4054 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4055 write_mhpmevent }, 4056 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4057 write_mhpmevent }, 4058 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4059 write_mhpmevent }, 4060 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4061 write_mhpmevent }, 4062 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4063 write_mhpmevent }, 4064 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4065 write_mhpmevent }, 4066 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4067 write_mhpmevent }, 4068 4069 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4070 write_mhpmeventh }, 4071 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4072 write_mhpmeventh }, 4073 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4074 write_mhpmeventh }, 4075 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4076 write_mhpmeventh }, 4077 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4078 write_mhpmeventh }, 4079 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4080 write_mhpmeventh }, 4081 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4082 write_mhpmeventh }, 4083 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4084 write_mhpmeventh }, 4085 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4086 write_mhpmeventh }, 4087 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4088 write_mhpmeventh }, 4089 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4090 write_mhpmeventh }, 4091 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4092 write_mhpmeventh }, 4093 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4094 write_mhpmeventh }, 4095 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4096 write_mhpmeventh }, 4097 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4098 write_mhpmeventh }, 4099 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4100 write_mhpmeventh }, 4101 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4102 write_mhpmeventh }, 4103 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4104 write_mhpmeventh }, 4105 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4106 write_mhpmeventh }, 4107 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4108 write_mhpmeventh }, 4109 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4110 write_mhpmeventh }, 4111 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4112 write_mhpmeventh }, 4113 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4114 write_mhpmeventh }, 4115 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4116 write_mhpmeventh }, 4117 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4118 write_mhpmeventh }, 4119 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4120 write_mhpmeventh }, 4121 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4122 write_mhpmeventh }, 4123 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4124 write_mhpmeventh }, 4125 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4126 write_mhpmeventh }, 4127 4128 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4129 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4130 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4131 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4132 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4133 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4134 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4135 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4136 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4137 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4138 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4139 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4140 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4141 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4142 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4143 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4144 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4145 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4146 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4147 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4148 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4149 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4150 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4151 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4152 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4153 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4154 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4155 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4156 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4157 4158 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4159 write_mhpmcounterh }, 4160 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4161 write_mhpmcounterh }, 4162 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4163 write_mhpmcounterh }, 4164 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4165 write_mhpmcounterh }, 4166 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4167 write_mhpmcounterh }, 4168 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4169 write_mhpmcounterh }, 4170 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4171 write_mhpmcounterh }, 4172 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4173 write_mhpmcounterh }, 4174 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4175 write_mhpmcounterh }, 4176 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4177 write_mhpmcounterh }, 4178 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4179 write_mhpmcounterh }, 4180 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4181 write_mhpmcounterh }, 4182 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4183 write_mhpmcounterh }, 4184 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4185 write_mhpmcounterh }, 4186 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4187 write_mhpmcounterh }, 4188 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4189 write_mhpmcounterh }, 4190 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4191 write_mhpmcounterh }, 4192 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4193 write_mhpmcounterh }, 4194 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4195 write_mhpmcounterh }, 4196 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4197 write_mhpmcounterh }, 4198 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4199 write_mhpmcounterh }, 4200 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4201 write_mhpmcounterh }, 4202 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4203 write_mhpmcounterh }, 4204 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4205 write_mhpmcounterh }, 4206 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4207 write_mhpmcounterh }, 4208 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4209 write_mhpmcounterh }, 4210 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4211 write_mhpmcounterh }, 4212 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4213 write_mhpmcounterh }, 4214 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4215 write_mhpmcounterh }, 4216 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf }, 4217 4218 #endif /* !CONFIG_USER_ONLY */ 4219 }; 4220