1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "sysemu/cpu-timers.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 32 /* CSR function table public API */ 33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 34 { 35 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 36 } 37 38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 41 } 42 43 /* Predicates */ 44 static RISCVException fs(CPURISCVState *env, int csrno) 45 { 46 #if !defined(CONFIG_USER_ONLY) 47 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 48 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 49 return RISCV_EXCP_ILLEGAL_INST; 50 } 51 #endif 52 return RISCV_EXCP_NONE; 53 } 54 55 static RISCVException vs(CPURISCVState *env, int csrno) 56 { 57 CPUState *cs = env_cpu(env); 58 RISCVCPU *cpu = RISCV_CPU(cs); 59 60 if (env->misa_ext & RVV || 61 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 62 #if !defined(CONFIG_USER_ONLY) 63 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 64 return RISCV_EXCP_ILLEGAL_INST; 65 } 66 #endif 67 return RISCV_EXCP_NONE; 68 } 69 return RISCV_EXCP_ILLEGAL_INST; 70 } 71 72 static RISCVException ctr(CPURISCVState *env, int csrno) 73 { 74 #if !defined(CONFIG_USER_ONLY) 75 CPUState *cs = env_cpu(env); 76 RISCVCPU *cpu = RISCV_CPU(cs); 77 int ctr_index; 78 target_ulong ctr_mask; 79 int base_csrno = CSR_CYCLE; 80 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 81 82 if (rv32 && csrno >= CSR_CYCLEH) { 83 /* Offset for RV32 hpmcounternh counters */ 84 base_csrno += 0x80; 85 } 86 ctr_index = csrno - base_csrno; 87 ctr_mask = BIT(ctr_index); 88 89 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 90 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 91 goto skip_ext_pmu_check; 92 } 93 94 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 95 /* No counter is enabled in PMU or the counter is out of range */ 96 return RISCV_EXCP_ILLEGAL_INST; 97 } 98 99 skip_ext_pmu_check: 100 101 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 102 return RISCV_EXCP_ILLEGAL_INST; 103 } 104 105 if (riscv_cpu_virt_enabled(env)) { 106 if (!get_field(env->hcounteren, ctr_mask) || 107 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 108 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 109 } 110 } 111 112 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 113 !get_field(env->scounteren, ctr_mask)) { 114 return RISCV_EXCP_ILLEGAL_INST; 115 } 116 117 #endif 118 return RISCV_EXCP_NONE; 119 } 120 121 static RISCVException ctr32(CPURISCVState *env, int csrno) 122 { 123 if (riscv_cpu_mxl(env) != MXL_RV32) { 124 return RISCV_EXCP_ILLEGAL_INST; 125 } 126 127 return ctr(env, csrno); 128 } 129 130 #if !defined(CONFIG_USER_ONLY) 131 static RISCVException mctr(CPURISCVState *env, int csrno) 132 { 133 CPUState *cs = env_cpu(env); 134 RISCVCPU *cpu = RISCV_CPU(cs); 135 int ctr_index; 136 int base_csrno = CSR_MHPMCOUNTER3; 137 138 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 139 /* Offset for RV32 mhpmcounternh counters */ 140 base_csrno += 0x80; 141 } 142 ctr_index = csrno - base_csrno; 143 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 144 /* The PMU is not enabled or counter is out of range*/ 145 return RISCV_EXCP_ILLEGAL_INST; 146 } 147 148 return RISCV_EXCP_NONE; 149 } 150 151 static RISCVException mctr32(CPURISCVState *env, int csrno) 152 { 153 if (riscv_cpu_mxl(env) != MXL_RV32) { 154 return RISCV_EXCP_ILLEGAL_INST; 155 } 156 157 return mctr(env, csrno); 158 } 159 160 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 161 { 162 CPUState *cs = env_cpu(env); 163 RISCVCPU *cpu = RISCV_CPU(cs); 164 165 if (!cpu->cfg.ext_sscofpmf) { 166 return RISCV_EXCP_ILLEGAL_INST; 167 } 168 169 return RISCV_EXCP_NONE; 170 } 171 172 static RISCVException any(CPURISCVState *env, int csrno) 173 { 174 return RISCV_EXCP_NONE; 175 } 176 177 static RISCVException any32(CPURISCVState *env, int csrno) 178 { 179 if (riscv_cpu_mxl(env) != MXL_RV32) { 180 return RISCV_EXCP_ILLEGAL_INST; 181 } 182 183 return any(env, csrno); 184 185 } 186 187 static int aia_any(CPURISCVState *env, int csrno) 188 { 189 RISCVCPU *cpu = env_archcpu(env); 190 191 if (!cpu->cfg.ext_smaia) { 192 return RISCV_EXCP_ILLEGAL_INST; 193 } 194 195 return any(env, csrno); 196 } 197 198 static int aia_any32(CPURISCVState *env, int csrno) 199 { 200 RISCVCPU *cpu = env_archcpu(env); 201 202 if (!cpu->cfg.ext_smaia) { 203 return RISCV_EXCP_ILLEGAL_INST; 204 } 205 206 return any32(env, csrno); 207 } 208 209 static RISCVException smode(CPURISCVState *env, int csrno) 210 { 211 if (riscv_has_ext(env, RVS)) { 212 return RISCV_EXCP_NONE; 213 } 214 215 return RISCV_EXCP_ILLEGAL_INST; 216 } 217 218 static int smode32(CPURISCVState *env, int csrno) 219 { 220 if (riscv_cpu_mxl(env) != MXL_RV32) { 221 return RISCV_EXCP_ILLEGAL_INST; 222 } 223 224 return smode(env, csrno); 225 } 226 227 static int aia_smode(CPURISCVState *env, int csrno) 228 { 229 RISCVCPU *cpu = env_archcpu(env); 230 231 if (!cpu->cfg.ext_ssaia) { 232 return RISCV_EXCP_ILLEGAL_INST; 233 } 234 235 return smode(env, csrno); 236 } 237 238 static int aia_smode32(CPURISCVState *env, int csrno) 239 { 240 RISCVCPU *cpu = env_archcpu(env); 241 242 if (!cpu->cfg.ext_ssaia) { 243 return RISCV_EXCP_ILLEGAL_INST; 244 } 245 246 return smode32(env, csrno); 247 } 248 249 static RISCVException hmode(CPURISCVState *env, int csrno) 250 { 251 if (riscv_has_ext(env, RVH)) { 252 return RISCV_EXCP_NONE; 253 } 254 255 return RISCV_EXCP_ILLEGAL_INST; 256 } 257 258 static RISCVException hmode32(CPURISCVState *env, int csrno) 259 { 260 if (riscv_cpu_mxl(env) != MXL_RV32) { 261 return RISCV_EXCP_ILLEGAL_INST; 262 } 263 264 return hmode(env, csrno); 265 266 } 267 268 static RISCVException umode(CPURISCVState *env, int csrno) 269 { 270 if (riscv_has_ext(env, RVU)) { 271 return RISCV_EXCP_NONE; 272 } 273 274 return RISCV_EXCP_ILLEGAL_INST; 275 } 276 277 static RISCVException umode32(CPURISCVState *env, int csrno) 278 { 279 if (riscv_cpu_mxl(env) != MXL_RV32) { 280 return RISCV_EXCP_ILLEGAL_INST; 281 } 282 283 return umode(env, csrno); 284 } 285 286 /* Checks if PointerMasking registers could be accessed */ 287 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 288 { 289 /* Check if j-ext is present */ 290 if (riscv_has_ext(env, RVJ)) { 291 return RISCV_EXCP_NONE; 292 } 293 return RISCV_EXCP_ILLEGAL_INST; 294 } 295 296 static int aia_hmode(CPURISCVState *env, int csrno) 297 { 298 RISCVCPU *cpu = env_archcpu(env); 299 300 if (!cpu->cfg.ext_ssaia) { 301 return RISCV_EXCP_ILLEGAL_INST; 302 } 303 304 return hmode(env, csrno); 305 } 306 307 static int aia_hmode32(CPURISCVState *env, int csrno) 308 { 309 RISCVCPU *cpu = env_archcpu(env); 310 311 if (!cpu->cfg.ext_ssaia) { 312 return RISCV_EXCP_ILLEGAL_INST; 313 } 314 315 return hmode32(env, csrno); 316 } 317 318 static RISCVException pmp(CPURISCVState *env, int csrno) 319 { 320 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 321 return RISCV_EXCP_NONE; 322 } 323 324 return RISCV_EXCP_ILLEGAL_INST; 325 } 326 327 static RISCVException epmp(CPURISCVState *env, int csrno) 328 { 329 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 330 return RISCV_EXCP_NONE; 331 } 332 333 return RISCV_EXCP_ILLEGAL_INST; 334 } 335 336 static RISCVException debug(CPURISCVState *env, int csrno) 337 { 338 if (riscv_feature(env, RISCV_FEATURE_DEBUG)) { 339 return RISCV_EXCP_NONE; 340 } 341 342 return RISCV_EXCP_ILLEGAL_INST; 343 } 344 #endif 345 346 static RISCVException seed(CPURISCVState *env, int csrno) 347 { 348 RISCVCPU *cpu = env_archcpu(env); 349 350 if (!cpu->cfg.ext_zkr) { 351 return RISCV_EXCP_ILLEGAL_INST; 352 } 353 354 #if !defined(CONFIG_USER_ONLY) 355 /* 356 * With a CSR read-write instruction: 357 * 1) The seed CSR is always available in machine mode as normal. 358 * 2) Attempted access to seed from virtual modes VS and VU always raises 359 * an exception(virtual instruction exception only if mseccfg.sseed=1). 360 * 3) Without the corresponding access control bit set to 1, any attempted 361 * access to seed from U, S or HS modes will raise an illegal instruction 362 * exception. 363 */ 364 if (env->priv == PRV_M) { 365 return RISCV_EXCP_NONE; 366 } else if (riscv_cpu_virt_enabled(env)) { 367 if (env->mseccfg & MSECCFG_SSEED) { 368 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 369 } else { 370 return RISCV_EXCP_ILLEGAL_INST; 371 } 372 } else { 373 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 374 return RISCV_EXCP_NONE; 375 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 376 return RISCV_EXCP_NONE; 377 } else { 378 return RISCV_EXCP_ILLEGAL_INST; 379 } 380 } 381 #else 382 return RISCV_EXCP_NONE; 383 #endif 384 } 385 386 /* User Floating-Point CSRs */ 387 static RISCVException read_fflags(CPURISCVState *env, int csrno, 388 target_ulong *val) 389 { 390 *val = riscv_cpu_get_fflags(env); 391 return RISCV_EXCP_NONE; 392 } 393 394 static RISCVException write_fflags(CPURISCVState *env, int csrno, 395 target_ulong val) 396 { 397 #if !defined(CONFIG_USER_ONLY) 398 if (riscv_has_ext(env, RVF)) { 399 env->mstatus |= MSTATUS_FS; 400 } 401 #endif 402 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 403 return RISCV_EXCP_NONE; 404 } 405 406 static RISCVException read_frm(CPURISCVState *env, int csrno, 407 target_ulong *val) 408 { 409 *val = env->frm; 410 return RISCV_EXCP_NONE; 411 } 412 413 static RISCVException write_frm(CPURISCVState *env, int csrno, 414 target_ulong val) 415 { 416 #if !defined(CONFIG_USER_ONLY) 417 if (riscv_has_ext(env, RVF)) { 418 env->mstatus |= MSTATUS_FS; 419 } 420 #endif 421 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 422 return RISCV_EXCP_NONE; 423 } 424 425 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 426 target_ulong *val) 427 { 428 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 429 | (env->frm << FSR_RD_SHIFT); 430 return RISCV_EXCP_NONE; 431 } 432 433 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 434 target_ulong val) 435 { 436 #if !defined(CONFIG_USER_ONLY) 437 if (riscv_has_ext(env, RVF)) { 438 env->mstatus |= MSTATUS_FS; 439 } 440 #endif 441 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 442 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 443 return RISCV_EXCP_NONE; 444 } 445 446 static RISCVException read_vtype(CPURISCVState *env, int csrno, 447 target_ulong *val) 448 { 449 uint64_t vill; 450 switch (env->xl) { 451 case MXL_RV32: 452 vill = (uint32_t)env->vill << 31; 453 break; 454 case MXL_RV64: 455 vill = (uint64_t)env->vill << 63; 456 break; 457 default: 458 g_assert_not_reached(); 459 } 460 *val = (target_ulong)vill | env->vtype; 461 return RISCV_EXCP_NONE; 462 } 463 464 static RISCVException read_vl(CPURISCVState *env, int csrno, 465 target_ulong *val) 466 { 467 *val = env->vl; 468 return RISCV_EXCP_NONE; 469 } 470 471 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 472 { 473 *val = env_archcpu(env)->cfg.vlen >> 3; 474 return RISCV_EXCP_NONE; 475 } 476 477 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 478 target_ulong *val) 479 { 480 *val = env->vxrm; 481 return RISCV_EXCP_NONE; 482 } 483 484 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 485 target_ulong val) 486 { 487 #if !defined(CONFIG_USER_ONLY) 488 env->mstatus |= MSTATUS_VS; 489 #endif 490 env->vxrm = val; 491 return RISCV_EXCP_NONE; 492 } 493 494 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 495 target_ulong *val) 496 { 497 *val = env->vxsat; 498 return RISCV_EXCP_NONE; 499 } 500 501 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 502 target_ulong val) 503 { 504 #if !defined(CONFIG_USER_ONLY) 505 env->mstatus |= MSTATUS_VS; 506 #endif 507 env->vxsat = val; 508 return RISCV_EXCP_NONE; 509 } 510 511 static RISCVException read_vstart(CPURISCVState *env, int csrno, 512 target_ulong *val) 513 { 514 *val = env->vstart; 515 return RISCV_EXCP_NONE; 516 } 517 518 static RISCVException write_vstart(CPURISCVState *env, int csrno, 519 target_ulong val) 520 { 521 #if !defined(CONFIG_USER_ONLY) 522 env->mstatus |= MSTATUS_VS; 523 #endif 524 /* 525 * The vstart CSR is defined to have only enough writable bits 526 * to hold the largest element index, i.e. lg2(VLEN) bits. 527 */ 528 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 529 return RISCV_EXCP_NONE; 530 } 531 532 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 533 { 534 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 535 return RISCV_EXCP_NONE; 536 } 537 538 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 539 { 540 #if !defined(CONFIG_USER_ONLY) 541 env->mstatus |= MSTATUS_VS; 542 #endif 543 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 544 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 545 return RISCV_EXCP_NONE; 546 } 547 548 /* User Timers and Counters */ 549 static target_ulong get_ticks(bool shift) 550 { 551 int64_t val; 552 target_ulong result; 553 554 #if !defined(CONFIG_USER_ONLY) 555 if (icount_enabled()) { 556 val = icount_get(); 557 } else { 558 val = cpu_get_host_ticks(); 559 } 560 #else 561 val = cpu_get_host_ticks(); 562 #endif 563 564 if (shift) { 565 result = val >> 32; 566 } else { 567 result = val; 568 } 569 570 return result; 571 } 572 573 #if defined(CONFIG_USER_ONLY) 574 static RISCVException read_time(CPURISCVState *env, int csrno, 575 target_ulong *val) 576 { 577 *val = cpu_get_host_ticks(); 578 return RISCV_EXCP_NONE; 579 } 580 581 static RISCVException read_timeh(CPURISCVState *env, int csrno, 582 target_ulong *val) 583 { 584 *val = cpu_get_host_ticks() >> 32; 585 return RISCV_EXCP_NONE; 586 } 587 588 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 589 { 590 *val = get_ticks(false); 591 return RISCV_EXCP_NONE; 592 } 593 594 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 595 { 596 *val = get_ticks(true); 597 return RISCV_EXCP_NONE; 598 } 599 600 #else /* CONFIG_USER_ONLY */ 601 602 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 603 { 604 int evt_index = csrno - CSR_MCOUNTINHIBIT; 605 606 *val = env->mhpmevent_val[evt_index]; 607 608 return RISCV_EXCP_NONE; 609 } 610 611 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 612 { 613 int evt_index = csrno - CSR_MCOUNTINHIBIT; 614 uint64_t mhpmevt_val = val; 615 616 env->mhpmevent_val[evt_index] = val; 617 618 if (riscv_cpu_mxl(env) == MXL_RV32) { 619 mhpmevt_val = mhpmevt_val | 620 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 621 } 622 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 623 624 return RISCV_EXCP_NONE; 625 } 626 627 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 628 { 629 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 630 631 *val = env->mhpmeventh_val[evt_index]; 632 633 return RISCV_EXCP_NONE; 634 } 635 636 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 637 { 638 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 639 uint64_t mhpmevth_val = val; 640 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 641 642 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 643 env->mhpmeventh_val[evt_index] = val; 644 645 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 646 647 return RISCV_EXCP_NONE; 648 } 649 650 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 651 { 652 int ctr_idx = csrno - CSR_MCYCLE; 653 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 654 uint64_t mhpmctr_val = val; 655 656 counter->mhpmcounter_val = val; 657 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 658 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 659 counter->mhpmcounter_prev = get_ticks(false); 660 if (ctr_idx > 2) { 661 if (riscv_cpu_mxl(env) == MXL_RV32) { 662 mhpmctr_val = mhpmctr_val | 663 ((uint64_t)counter->mhpmcounterh_val << 32); 664 } 665 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 666 } 667 } else { 668 /* Other counters can keep incrementing from the given value */ 669 counter->mhpmcounter_prev = val; 670 } 671 672 return RISCV_EXCP_NONE; 673 } 674 675 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 676 { 677 int ctr_idx = csrno - CSR_MCYCLEH; 678 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 679 uint64_t mhpmctr_val = counter->mhpmcounter_val; 680 uint64_t mhpmctrh_val = val; 681 682 counter->mhpmcounterh_val = val; 683 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 684 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 685 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 686 counter->mhpmcounterh_prev = get_ticks(true); 687 if (ctr_idx > 2) { 688 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 689 } 690 } else { 691 counter->mhpmcounterh_prev = val; 692 } 693 694 return RISCV_EXCP_NONE; 695 } 696 697 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 698 bool upper_half, uint32_t ctr_idx) 699 { 700 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 701 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 702 counter.mhpmcounter_prev; 703 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 704 counter.mhpmcounter_val; 705 706 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 707 /** 708 * Counter should not increment if inhibit bit is set. We can't really 709 * stop the icount counting. Just return the counter value written by 710 * the supervisor to indicate that counter was not incremented. 711 */ 712 if (!counter.started) { 713 *val = ctr_val; 714 return RISCV_EXCP_NONE; 715 } else { 716 /* Mark that the counter has been stopped */ 717 counter.started = false; 718 } 719 } 720 721 /** 722 * The kernel computes the perf delta by subtracting the current value from 723 * the value it initialized previously (ctr_val). 724 */ 725 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 726 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 727 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 728 } else { 729 *val = ctr_val; 730 } 731 732 return RISCV_EXCP_NONE; 733 } 734 735 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 736 { 737 uint16_t ctr_index; 738 739 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 740 ctr_index = csrno - CSR_MCYCLE; 741 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 742 ctr_index = csrno - CSR_CYCLE; 743 } else { 744 return RISCV_EXCP_ILLEGAL_INST; 745 } 746 747 return riscv_pmu_read_ctr(env, val, false, ctr_index); 748 } 749 750 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 751 { 752 uint16_t ctr_index; 753 754 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 755 ctr_index = csrno - CSR_MCYCLEH; 756 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 757 ctr_index = csrno - CSR_CYCLEH; 758 } else { 759 return RISCV_EXCP_ILLEGAL_INST; 760 } 761 762 return riscv_pmu_read_ctr(env, val, true, ctr_index); 763 } 764 765 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 766 { 767 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 768 int i; 769 *val = 0; 770 target_ulong *mhpm_evt_val; 771 uint64_t of_bit_mask; 772 773 if (riscv_cpu_mxl(env) == MXL_RV32) { 774 mhpm_evt_val = env->mhpmeventh_val; 775 of_bit_mask = MHPMEVENTH_BIT_OF; 776 } else { 777 mhpm_evt_val = env->mhpmevent_val; 778 of_bit_mask = MHPMEVENT_BIT_OF; 779 } 780 781 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 782 if ((get_field(env->mcounteren, BIT(i))) && 783 (mhpm_evt_val[i] & of_bit_mask)) { 784 *val |= BIT(i); 785 } 786 } 787 788 return RISCV_EXCP_NONE; 789 } 790 791 static RISCVException read_time(CPURISCVState *env, int csrno, 792 target_ulong *val) 793 { 794 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 795 796 if (!env->rdtime_fn) { 797 return RISCV_EXCP_ILLEGAL_INST; 798 } 799 800 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 801 return RISCV_EXCP_NONE; 802 } 803 804 static RISCVException read_timeh(CPURISCVState *env, int csrno, 805 target_ulong *val) 806 { 807 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 808 809 if (!env->rdtime_fn) { 810 return RISCV_EXCP_ILLEGAL_INST; 811 } 812 813 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 814 return RISCV_EXCP_NONE; 815 } 816 817 static RISCVException sstc(CPURISCVState *env, int csrno) 818 { 819 CPUState *cs = env_cpu(env); 820 RISCVCPU *cpu = RISCV_CPU(cs); 821 bool hmode_check = false; 822 823 if (!cpu->cfg.ext_sstc || !env->rdtime_fn) { 824 return RISCV_EXCP_ILLEGAL_INST; 825 } 826 827 if (env->priv == PRV_M) { 828 return RISCV_EXCP_NONE; 829 } 830 831 /* 832 * No need of separate function for rv32 as menvcfg stores both menvcfg 833 * menvcfgh for RV32. 834 */ 835 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 836 get_field(env->menvcfg, MENVCFG_STCE))) { 837 return RISCV_EXCP_ILLEGAL_INST; 838 } 839 840 if (riscv_cpu_virt_enabled(env)) { 841 if (!(get_field(env->hcounteren, COUNTEREN_TM) & 842 get_field(env->henvcfg, HENVCFG_STCE))) { 843 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 844 } 845 } 846 847 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 848 hmode_check = true; 849 } 850 851 return hmode_check ? hmode(env, csrno) : smode(env, csrno); 852 } 853 854 static RISCVException sstc_32(CPURISCVState *env, int csrno) 855 { 856 if (riscv_cpu_mxl(env) != MXL_RV32) { 857 return RISCV_EXCP_ILLEGAL_INST; 858 } 859 860 return sstc(env, csrno); 861 } 862 863 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 864 target_ulong *val) 865 { 866 *val = env->vstimecmp; 867 868 return RISCV_EXCP_NONE; 869 } 870 871 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 872 target_ulong *val) 873 { 874 *val = env->vstimecmp >> 32; 875 876 return RISCV_EXCP_NONE; 877 } 878 879 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 880 target_ulong val) 881 { 882 RISCVCPU *cpu = env_archcpu(env); 883 884 if (riscv_cpu_mxl(env) == MXL_RV32) { 885 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 886 } else { 887 env->vstimecmp = val; 888 } 889 890 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 891 env->htimedelta, MIP_VSTIP); 892 893 return RISCV_EXCP_NONE; 894 } 895 896 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 897 target_ulong val) 898 { 899 RISCVCPU *cpu = env_archcpu(env); 900 901 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 902 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 903 env->htimedelta, MIP_VSTIP); 904 905 return RISCV_EXCP_NONE; 906 } 907 908 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 909 target_ulong *val) 910 { 911 if (riscv_cpu_virt_enabled(env)) { 912 *val = env->vstimecmp; 913 } else { 914 *val = env->stimecmp; 915 } 916 917 return RISCV_EXCP_NONE; 918 } 919 920 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 921 target_ulong *val) 922 { 923 if (riscv_cpu_virt_enabled(env)) { 924 *val = env->vstimecmp >> 32; 925 } else { 926 *val = env->stimecmp >> 32; 927 } 928 929 return RISCV_EXCP_NONE; 930 } 931 932 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 933 target_ulong val) 934 { 935 RISCVCPU *cpu = env_archcpu(env); 936 937 if (riscv_cpu_virt_enabled(env)) { 938 return write_vstimecmp(env, csrno, val); 939 } 940 941 if (riscv_cpu_mxl(env) == MXL_RV32) { 942 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 943 } else { 944 env->stimecmp = val; 945 } 946 947 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 948 949 return RISCV_EXCP_NONE; 950 } 951 952 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 953 target_ulong val) 954 { 955 RISCVCPU *cpu = env_archcpu(env); 956 957 if (riscv_cpu_virt_enabled(env)) { 958 return write_vstimecmph(env, csrno, val); 959 } 960 961 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 962 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 963 964 return RISCV_EXCP_NONE; 965 } 966 967 /* Machine constants */ 968 969 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 970 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 971 MIP_LCOFIP)) 972 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 973 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 974 975 #define VSTOPI_NUM_SRCS 5 976 977 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 978 VS_MODE_INTERRUPTS; 979 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 980 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 981 HS_MODE_INTERRUPTS; 982 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 983 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 984 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 985 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 986 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 987 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 988 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 989 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 990 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 991 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 992 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 993 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 994 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 995 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 996 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 997 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 998 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 999 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1000 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1001 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1002 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1003 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1004 (1ULL << (RISCV_EXCP_M_ECALL)) | 1005 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1006 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1007 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1008 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1009 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1010 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1011 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1012 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1013 SIP_LCOFIP; 1014 static const target_ulong hip_writable_mask = MIP_VSSIP; 1015 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1016 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1017 1018 static const char valid_vm_1_10_32[16] = { 1019 [VM_1_10_MBARE] = 1, 1020 [VM_1_10_SV32] = 1 1021 }; 1022 1023 static const char valid_vm_1_10_64[16] = { 1024 [VM_1_10_MBARE] = 1, 1025 [VM_1_10_SV39] = 1, 1026 [VM_1_10_SV48] = 1, 1027 [VM_1_10_SV57] = 1 1028 }; 1029 1030 /* Machine Information Registers */ 1031 static RISCVException read_zero(CPURISCVState *env, int csrno, 1032 target_ulong *val) 1033 { 1034 *val = 0; 1035 return RISCV_EXCP_NONE; 1036 } 1037 1038 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1039 target_ulong val) 1040 { 1041 return RISCV_EXCP_NONE; 1042 } 1043 1044 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1045 target_ulong *val) 1046 { 1047 CPUState *cs = env_cpu(env); 1048 RISCVCPU *cpu = RISCV_CPU(cs); 1049 1050 *val = cpu->cfg.mvendorid; 1051 return RISCV_EXCP_NONE; 1052 } 1053 1054 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1055 target_ulong *val) 1056 { 1057 CPUState *cs = env_cpu(env); 1058 RISCVCPU *cpu = RISCV_CPU(cs); 1059 1060 *val = cpu->cfg.marchid; 1061 return RISCV_EXCP_NONE; 1062 } 1063 1064 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1065 target_ulong *val) 1066 { 1067 CPUState *cs = env_cpu(env); 1068 RISCVCPU *cpu = RISCV_CPU(cs); 1069 1070 *val = cpu->cfg.mimpid; 1071 return RISCV_EXCP_NONE; 1072 } 1073 1074 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1075 target_ulong *val) 1076 { 1077 *val = env->mhartid; 1078 return RISCV_EXCP_NONE; 1079 } 1080 1081 /* Machine Trap Setup */ 1082 1083 /* We do not store SD explicitly, only compute it on demand. */ 1084 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1085 { 1086 if ((status & MSTATUS_FS) == MSTATUS_FS || 1087 (status & MSTATUS_VS) == MSTATUS_VS || 1088 (status & MSTATUS_XS) == MSTATUS_XS) { 1089 switch (xl) { 1090 case MXL_RV32: 1091 return status | MSTATUS32_SD; 1092 case MXL_RV64: 1093 return status | MSTATUS64_SD; 1094 case MXL_RV128: 1095 return MSTATUSH128_SD; 1096 default: 1097 g_assert_not_reached(); 1098 } 1099 } 1100 return status; 1101 } 1102 1103 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1104 target_ulong *val) 1105 { 1106 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1107 return RISCV_EXCP_NONE; 1108 } 1109 1110 static int validate_vm(CPURISCVState *env, target_ulong vm) 1111 { 1112 if (riscv_cpu_mxl(env) == MXL_RV32) { 1113 return valid_vm_1_10_32[vm & 0xf]; 1114 } else { 1115 return valid_vm_1_10_64[vm & 0xf]; 1116 } 1117 } 1118 1119 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1120 target_ulong val) 1121 { 1122 uint64_t mstatus = env->mstatus; 1123 uint64_t mask = 0; 1124 RISCVMXL xl = riscv_cpu_mxl(env); 1125 1126 /* flush tlb on mstatus fields that affect VM */ 1127 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1128 MSTATUS_MPRV | MSTATUS_SUM)) { 1129 tlb_flush(env_cpu(env)); 1130 } 1131 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1132 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1133 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1134 MSTATUS_TW | MSTATUS_VS; 1135 1136 if (riscv_has_ext(env, RVF)) { 1137 mask |= MSTATUS_FS; 1138 } 1139 1140 if (xl != MXL_RV32 || env->debugger) { 1141 /* 1142 * RV32: MPV and GVA are not in mstatus. The current plan is to 1143 * add them to mstatush. For now, we just don't support it. 1144 */ 1145 mask |= MSTATUS_MPV | MSTATUS_GVA; 1146 if ((val & MSTATUS64_UXL) != 0) { 1147 mask |= MSTATUS64_UXL; 1148 } 1149 } 1150 1151 mstatus = (mstatus & ~mask) | (val & mask); 1152 1153 if (xl > MXL_RV32) { 1154 /* SXL field is for now read only */ 1155 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1156 } 1157 env->mstatus = mstatus; 1158 env->xl = cpu_recompute_xl(env); 1159 1160 return RISCV_EXCP_NONE; 1161 } 1162 1163 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1164 target_ulong *val) 1165 { 1166 *val = env->mstatus >> 32; 1167 return RISCV_EXCP_NONE; 1168 } 1169 1170 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1171 target_ulong val) 1172 { 1173 uint64_t valh = (uint64_t)val << 32; 1174 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1175 1176 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1177 tlb_flush(env_cpu(env)); 1178 } 1179 1180 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1181 1182 return RISCV_EXCP_NONE; 1183 } 1184 1185 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1186 Int128 *val) 1187 { 1188 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1189 return RISCV_EXCP_NONE; 1190 } 1191 1192 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1193 Int128 *val) 1194 { 1195 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1196 return RISCV_EXCP_NONE; 1197 } 1198 1199 static RISCVException read_misa(CPURISCVState *env, int csrno, 1200 target_ulong *val) 1201 { 1202 target_ulong misa; 1203 1204 switch (env->misa_mxl) { 1205 case MXL_RV32: 1206 misa = (target_ulong)MXL_RV32 << 30; 1207 break; 1208 #ifdef TARGET_RISCV64 1209 case MXL_RV64: 1210 misa = (target_ulong)MXL_RV64 << 62; 1211 break; 1212 #endif 1213 default: 1214 g_assert_not_reached(); 1215 } 1216 1217 *val = misa | env->misa_ext; 1218 return RISCV_EXCP_NONE; 1219 } 1220 1221 static RISCVException write_misa(CPURISCVState *env, int csrno, 1222 target_ulong val) 1223 { 1224 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 1225 /* drop write to misa */ 1226 return RISCV_EXCP_NONE; 1227 } 1228 1229 /* 'I' or 'E' must be present */ 1230 if (!(val & (RVI | RVE))) { 1231 /* It is not, drop write to misa */ 1232 return RISCV_EXCP_NONE; 1233 } 1234 1235 /* 'E' excludes all other extensions */ 1236 if (val & RVE) { 1237 /* when we support 'E' we can do "val = RVE;" however 1238 * for now we just drop writes if 'E' is present. 1239 */ 1240 return RISCV_EXCP_NONE; 1241 } 1242 1243 /* 1244 * misa.MXL writes are not supported by QEMU. 1245 * Drop writes to those bits. 1246 */ 1247 1248 /* Mask extensions that are not supported by this hart */ 1249 val &= env->misa_ext_mask; 1250 1251 /* Mask extensions that are not supported by QEMU */ 1252 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 1253 1254 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1255 if ((val & RVD) && !(val & RVF)) { 1256 val &= ~RVD; 1257 } 1258 1259 /* Suppress 'C' if next instruction is not aligned 1260 * TODO: this should check next_pc 1261 */ 1262 if ((val & RVC) && (GETPC() & ~3) != 0) { 1263 val &= ~RVC; 1264 } 1265 1266 /* If nothing changed, do nothing. */ 1267 if (val == env->misa_ext) { 1268 return RISCV_EXCP_NONE; 1269 } 1270 1271 if (!(val & RVF)) { 1272 env->mstatus &= ~MSTATUS_FS; 1273 } 1274 1275 /* flush translation cache */ 1276 tb_flush(env_cpu(env)); 1277 env->misa_ext = val; 1278 env->xl = riscv_cpu_mxl(env); 1279 return RISCV_EXCP_NONE; 1280 } 1281 1282 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1283 target_ulong *val) 1284 { 1285 *val = env->medeleg; 1286 return RISCV_EXCP_NONE; 1287 } 1288 1289 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1290 target_ulong val) 1291 { 1292 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1293 return RISCV_EXCP_NONE; 1294 } 1295 1296 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1297 uint64_t *ret_val, 1298 uint64_t new_val, uint64_t wr_mask) 1299 { 1300 uint64_t mask = wr_mask & delegable_ints; 1301 1302 if (ret_val) { 1303 *ret_val = env->mideleg; 1304 } 1305 1306 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1307 1308 if (riscv_has_ext(env, RVH)) { 1309 env->mideleg |= HS_MODE_INTERRUPTS; 1310 } 1311 1312 return RISCV_EXCP_NONE; 1313 } 1314 1315 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1316 target_ulong *ret_val, 1317 target_ulong new_val, target_ulong wr_mask) 1318 { 1319 uint64_t rval; 1320 RISCVException ret; 1321 1322 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1323 if (ret_val) { 1324 *ret_val = rval; 1325 } 1326 1327 return ret; 1328 } 1329 1330 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1331 target_ulong *ret_val, 1332 target_ulong new_val, 1333 target_ulong wr_mask) 1334 { 1335 uint64_t rval; 1336 RISCVException ret; 1337 1338 ret = rmw_mideleg64(env, csrno, &rval, 1339 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1340 if (ret_val) { 1341 *ret_val = rval >> 32; 1342 } 1343 1344 return ret; 1345 } 1346 1347 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1348 uint64_t *ret_val, 1349 uint64_t new_val, uint64_t wr_mask) 1350 { 1351 uint64_t mask = wr_mask & all_ints; 1352 1353 if (ret_val) { 1354 *ret_val = env->mie; 1355 } 1356 1357 env->mie = (env->mie & ~mask) | (new_val & mask); 1358 1359 if (!riscv_has_ext(env, RVH)) { 1360 env->mie &= ~((uint64_t)MIP_SGEIP); 1361 } 1362 1363 return RISCV_EXCP_NONE; 1364 } 1365 1366 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1367 target_ulong *ret_val, 1368 target_ulong new_val, target_ulong wr_mask) 1369 { 1370 uint64_t rval; 1371 RISCVException ret; 1372 1373 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1374 if (ret_val) { 1375 *ret_val = rval; 1376 } 1377 1378 return ret; 1379 } 1380 1381 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1382 target_ulong *ret_val, 1383 target_ulong new_val, target_ulong wr_mask) 1384 { 1385 uint64_t rval; 1386 RISCVException ret; 1387 1388 ret = rmw_mie64(env, csrno, &rval, 1389 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1390 if (ret_val) { 1391 *ret_val = rval >> 32; 1392 } 1393 1394 return ret; 1395 } 1396 1397 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1398 { 1399 int irq; 1400 uint8_t iprio; 1401 1402 irq = riscv_cpu_mirq_pending(env); 1403 if (irq <= 0 || irq > 63) { 1404 *val = 0; 1405 } else { 1406 iprio = env->miprio[irq]; 1407 if (!iprio) { 1408 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1409 iprio = IPRIO_MMAXIPRIO; 1410 } 1411 } 1412 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1413 *val |= iprio; 1414 } 1415 1416 return RISCV_EXCP_NONE; 1417 } 1418 1419 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1420 { 1421 if (!riscv_cpu_virt_enabled(env)) { 1422 return csrno; 1423 } 1424 1425 switch (csrno) { 1426 case CSR_SISELECT: 1427 return CSR_VSISELECT; 1428 case CSR_SIREG: 1429 return CSR_VSIREG; 1430 case CSR_STOPEI: 1431 return CSR_VSTOPEI; 1432 default: 1433 return csrno; 1434 }; 1435 } 1436 1437 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1438 target_ulong new_val, target_ulong wr_mask) 1439 { 1440 target_ulong *iselect; 1441 1442 /* Translate CSR number for VS-mode */ 1443 csrno = aia_xlate_vs_csrno(env, csrno); 1444 1445 /* Find the iselect CSR based on CSR number */ 1446 switch (csrno) { 1447 case CSR_MISELECT: 1448 iselect = &env->miselect; 1449 break; 1450 case CSR_SISELECT: 1451 iselect = &env->siselect; 1452 break; 1453 case CSR_VSISELECT: 1454 iselect = &env->vsiselect; 1455 break; 1456 default: 1457 return RISCV_EXCP_ILLEGAL_INST; 1458 }; 1459 1460 if (val) { 1461 *val = *iselect; 1462 } 1463 1464 wr_mask &= ISELECT_MASK; 1465 if (wr_mask) { 1466 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1467 } 1468 1469 return RISCV_EXCP_NONE; 1470 } 1471 1472 static int rmw_iprio(target_ulong xlen, 1473 target_ulong iselect, uint8_t *iprio, 1474 target_ulong *val, target_ulong new_val, 1475 target_ulong wr_mask, int ext_irq_no) 1476 { 1477 int i, firq, nirqs; 1478 target_ulong old_val; 1479 1480 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1481 return -EINVAL; 1482 } 1483 if (xlen != 32 && iselect & 0x1) { 1484 return -EINVAL; 1485 } 1486 1487 nirqs = 4 * (xlen / 32); 1488 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1489 1490 old_val = 0; 1491 for (i = 0; i < nirqs; i++) { 1492 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1493 } 1494 1495 if (val) { 1496 *val = old_val; 1497 } 1498 1499 if (wr_mask) { 1500 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1501 for (i = 0; i < nirqs; i++) { 1502 /* 1503 * M-level and S-level external IRQ priority always read-only 1504 * zero. This means default priority order is always preferred 1505 * for M-level and S-level external IRQs. 1506 */ 1507 if ((firq + i) == ext_irq_no) { 1508 continue; 1509 } 1510 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1511 } 1512 } 1513 1514 return 0; 1515 } 1516 1517 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1518 target_ulong new_val, target_ulong wr_mask) 1519 { 1520 bool virt; 1521 uint8_t *iprio; 1522 int ret = -EINVAL; 1523 target_ulong priv, isel, vgein; 1524 1525 /* Translate CSR number for VS-mode */ 1526 csrno = aia_xlate_vs_csrno(env, csrno); 1527 1528 /* Decode register details from CSR number */ 1529 virt = false; 1530 switch (csrno) { 1531 case CSR_MIREG: 1532 iprio = env->miprio; 1533 isel = env->miselect; 1534 priv = PRV_M; 1535 break; 1536 case CSR_SIREG: 1537 iprio = env->siprio; 1538 isel = env->siselect; 1539 priv = PRV_S; 1540 break; 1541 case CSR_VSIREG: 1542 iprio = env->hviprio; 1543 isel = env->vsiselect; 1544 priv = PRV_S; 1545 virt = true; 1546 break; 1547 default: 1548 goto done; 1549 }; 1550 1551 /* Find the selected guest interrupt file */ 1552 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1553 1554 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1555 /* Local interrupt priority registers not available for VS-mode */ 1556 if (!virt) { 1557 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1558 isel, iprio, val, new_val, wr_mask, 1559 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1560 } 1561 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1562 /* IMSIC registers only available when machine implements it. */ 1563 if (env->aia_ireg_rmw_fn[priv]) { 1564 /* Selected guest interrupt file should not be zero */ 1565 if (virt && (!vgein || env->geilen < vgein)) { 1566 goto done; 1567 } 1568 /* Call machine specific IMSIC register emulation */ 1569 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1570 AIA_MAKE_IREG(isel, priv, virt, vgein, 1571 riscv_cpu_mxl_bits(env)), 1572 val, new_val, wr_mask); 1573 } 1574 } 1575 1576 done: 1577 if (ret) { 1578 return (riscv_cpu_virt_enabled(env) && virt) ? 1579 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1580 } 1581 return RISCV_EXCP_NONE; 1582 } 1583 1584 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1585 target_ulong new_val, target_ulong wr_mask) 1586 { 1587 bool virt; 1588 int ret = -EINVAL; 1589 target_ulong priv, vgein; 1590 1591 /* Translate CSR number for VS-mode */ 1592 csrno = aia_xlate_vs_csrno(env, csrno); 1593 1594 /* Decode register details from CSR number */ 1595 virt = false; 1596 switch (csrno) { 1597 case CSR_MTOPEI: 1598 priv = PRV_M; 1599 break; 1600 case CSR_STOPEI: 1601 priv = PRV_S; 1602 break; 1603 case CSR_VSTOPEI: 1604 priv = PRV_S; 1605 virt = true; 1606 break; 1607 default: 1608 goto done; 1609 }; 1610 1611 /* IMSIC CSRs only available when machine implements IMSIC. */ 1612 if (!env->aia_ireg_rmw_fn[priv]) { 1613 goto done; 1614 } 1615 1616 /* Find the selected guest interrupt file */ 1617 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1618 1619 /* Selected guest interrupt file should be valid */ 1620 if (virt && (!vgein || env->geilen < vgein)) { 1621 goto done; 1622 } 1623 1624 /* Call machine specific IMSIC register emulation for TOPEI */ 1625 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1626 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1627 riscv_cpu_mxl_bits(env)), 1628 val, new_val, wr_mask); 1629 1630 done: 1631 if (ret) { 1632 return (riscv_cpu_virt_enabled(env) && virt) ? 1633 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1634 } 1635 return RISCV_EXCP_NONE; 1636 } 1637 1638 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1639 target_ulong *val) 1640 { 1641 *val = env->mtvec; 1642 return RISCV_EXCP_NONE; 1643 } 1644 1645 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1646 target_ulong val) 1647 { 1648 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1649 if ((val & 3) < 2) { 1650 env->mtvec = val; 1651 } else { 1652 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1653 } 1654 return RISCV_EXCP_NONE; 1655 } 1656 1657 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1658 target_ulong *val) 1659 { 1660 *val = env->mcountinhibit; 1661 return RISCV_EXCP_NONE; 1662 } 1663 1664 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1665 target_ulong val) 1666 { 1667 int cidx; 1668 PMUCTRState *counter; 1669 1670 env->mcountinhibit = val; 1671 1672 /* Check if any other counter is also monitoring cycles/instructions */ 1673 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1674 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1675 counter = &env->pmu_ctrs[cidx]; 1676 counter->started = true; 1677 } 1678 } 1679 1680 return RISCV_EXCP_NONE; 1681 } 1682 1683 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1684 target_ulong *val) 1685 { 1686 *val = env->mcounteren; 1687 return RISCV_EXCP_NONE; 1688 } 1689 1690 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1691 target_ulong val) 1692 { 1693 env->mcounteren = val; 1694 return RISCV_EXCP_NONE; 1695 } 1696 1697 /* Machine Trap Handling */ 1698 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1699 Int128 *val) 1700 { 1701 *val = int128_make128(env->mscratch, env->mscratchh); 1702 return RISCV_EXCP_NONE; 1703 } 1704 1705 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1706 Int128 val) 1707 { 1708 env->mscratch = int128_getlo(val); 1709 env->mscratchh = int128_gethi(val); 1710 return RISCV_EXCP_NONE; 1711 } 1712 1713 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1714 target_ulong *val) 1715 { 1716 *val = env->mscratch; 1717 return RISCV_EXCP_NONE; 1718 } 1719 1720 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1721 target_ulong val) 1722 { 1723 env->mscratch = val; 1724 return RISCV_EXCP_NONE; 1725 } 1726 1727 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1728 target_ulong *val) 1729 { 1730 *val = env->mepc; 1731 return RISCV_EXCP_NONE; 1732 } 1733 1734 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1735 target_ulong val) 1736 { 1737 env->mepc = val; 1738 return RISCV_EXCP_NONE; 1739 } 1740 1741 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1742 target_ulong *val) 1743 { 1744 *val = env->mcause; 1745 return RISCV_EXCP_NONE; 1746 } 1747 1748 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1749 target_ulong val) 1750 { 1751 env->mcause = val; 1752 return RISCV_EXCP_NONE; 1753 } 1754 1755 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1756 target_ulong *val) 1757 { 1758 *val = env->mtval; 1759 return RISCV_EXCP_NONE; 1760 } 1761 1762 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1763 target_ulong val) 1764 { 1765 env->mtval = val; 1766 return RISCV_EXCP_NONE; 1767 } 1768 1769 /* Execution environment configuration setup */ 1770 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1771 target_ulong *val) 1772 { 1773 *val = env->menvcfg; 1774 return RISCV_EXCP_NONE; 1775 } 1776 1777 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1778 target_ulong val) 1779 { 1780 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1781 1782 if (riscv_cpu_mxl(env) == MXL_RV64) { 1783 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1784 } 1785 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1786 1787 return RISCV_EXCP_NONE; 1788 } 1789 1790 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1791 target_ulong *val) 1792 { 1793 *val = env->menvcfg >> 32; 1794 return RISCV_EXCP_NONE; 1795 } 1796 1797 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1798 target_ulong val) 1799 { 1800 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1801 uint64_t valh = (uint64_t)val << 32; 1802 1803 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1804 1805 return RISCV_EXCP_NONE; 1806 } 1807 1808 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1809 target_ulong *val) 1810 { 1811 *val = env->senvcfg; 1812 return RISCV_EXCP_NONE; 1813 } 1814 1815 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1816 target_ulong val) 1817 { 1818 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1819 1820 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1821 1822 return RISCV_EXCP_NONE; 1823 } 1824 1825 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1826 target_ulong *val) 1827 { 1828 *val = env->henvcfg; 1829 return RISCV_EXCP_NONE; 1830 } 1831 1832 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1833 target_ulong val) 1834 { 1835 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1836 1837 if (riscv_cpu_mxl(env) == MXL_RV64) { 1838 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 1839 } 1840 1841 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1842 1843 return RISCV_EXCP_NONE; 1844 } 1845 1846 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1847 target_ulong *val) 1848 { 1849 *val = env->henvcfg >> 32; 1850 return RISCV_EXCP_NONE; 1851 } 1852 1853 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 1854 target_ulong val) 1855 { 1856 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 1857 uint64_t valh = (uint64_t)val << 32; 1858 1859 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 1860 1861 return RISCV_EXCP_NONE; 1862 } 1863 1864 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 1865 uint64_t *ret_val, 1866 uint64_t new_val, uint64_t wr_mask) 1867 { 1868 RISCVCPU *cpu = env_archcpu(env); 1869 uint64_t old_mip, mask = wr_mask & delegable_ints; 1870 uint32_t gin; 1871 1872 if (mask & MIP_SEIP) { 1873 env->software_seip = new_val & MIP_SEIP; 1874 new_val |= env->external_seip * MIP_SEIP; 1875 } 1876 1877 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 1878 get_field(env->menvcfg, MENVCFG_STCE)) { 1879 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 1880 mask = mask & ~(MIP_STIP | MIP_VSTIP); 1881 } 1882 1883 if (mask) { 1884 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 1885 } else { 1886 old_mip = env->mip; 1887 } 1888 1889 if (csrno != CSR_HVIP) { 1890 gin = get_field(env->hstatus, HSTATUS_VGEIN); 1891 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 1892 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 1893 } 1894 1895 if (ret_val) { 1896 *ret_val = old_mip; 1897 } 1898 1899 return RISCV_EXCP_NONE; 1900 } 1901 1902 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 1903 target_ulong *ret_val, 1904 target_ulong new_val, target_ulong wr_mask) 1905 { 1906 uint64_t rval; 1907 RISCVException ret; 1908 1909 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 1910 if (ret_val) { 1911 *ret_val = rval; 1912 } 1913 1914 return ret; 1915 } 1916 1917 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 1918 target_ulong *ret_val, 1919 target_ulong new_val, target_ulong wr_mask) 1920 { 1921 uint64_t rval; 1922 RISCVException ret; 1923 1924 ret = rmw_mip64(env, csrno, &rval, 1925 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1926 if (ret_val) { 1927 *ret_val = rval >> 32; 1928 } 1929 1930 return ret; 1931 } 1932 1933 /* Supervisor Trap Setup */ 1934 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 1935 Int128 *val) 1936 { 1937 uint64_t mask = sstatus_v1_10_mask; 1938 uint64_t sstatus = env->mstatus & mask; 1939 if (env->xl != MXL_RV32 || env->debugger) { 1940 mask |= SSTATUS64_UXL; 1941 } 1942 1943 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 1944 return RISCV_EXCP_NONE; 1945 } 1946 1947 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 1948 target_ulong *val) 1949 { 1950 target_ulong mask = (sstatus_v1_10_mask); 1951 if (env->xl != MXL_RV32 || env->debugger) { 1952 mask |= SSTATUS64_UXL; 1953 } 1954 /* TODO: Use SXL not MXL. */ 1955 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 1956 return RISCV_EXCP_NONE; 1957 } 1958 1959 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 1960 target_ulong val) 1961 { 1962 target_ulong mask = (sstatus_v1_10_mask); 1963 1964 if (env->xl != MXL_RV32 || env->debugger) { 1965 if ((val & SSTATUS64_UXL) != 0) { 1966 mask |= SSTATUS64_UXL; 1967 } 1968 } 1969 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 1970 return write_mstatus(env, CSR_MSTATUS, newval); 1971 } 1972 1973 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 1974 uint64_t *ret_val, 1975 uint64_t new_val, uint64_t wr_mask) 1976 { 1977 RISCVException ret; 1978 uint64_t rval, vsbits, mask = env->hideleg & VS_MODE_INTERRUPTS; 1979 1980 /* Bring VS-level bits to correct position */ 1981 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 1982 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 1983 new_val |= vsbits << 1; 1984 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 1985 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 1986 wr_mask |= vsbits << 1; 1987 1988 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 1989 if (ret_val) { 1990 rval &= mask; 1991 vsbits = rval & VS_MODE_INTERRUPTS; 1992 rval &= ~VS_MODE_INTERRUPTS; 1993 *ret_val = rval | (vsbits >> 1); 1994 } 1995 1996 return ret; 1997 } 1998 1999 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2000 target_ulong *ret_val, 2001 target_ulong new_val, target_ulong wr_mask) 2002 { 2003 uint64_t rval; 2004 RISCVException ret; 2005 2006 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2007 if (ret_val) { 2008 *ret_val = rval; 2009 } 2010 2011 return ret; 2012 } 2013 2014 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2015 target_ulong *ret_val, 2016 target_ulong new_val, target_ulong wr_mask) 2017 { 2018 uint64_t rval; 2019 RISCVException ret; 2020 2021 ret = rmw_vsie64(env, csrno, &rval, 2022 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2023 if (ret_val) { 2024 *ret_val = rval >> 32; 2025 } 2026 2027 return ret; 2028 } 2029 2030 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2031 uint64_t *ret_val, 2032 uint64_t new_val, uint64_t wr_mask) 2033 { 2034 RISCVException ret; 2035 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2036 2037 if (riscv_cpu_virt_enabled(env)) { 2038 if (env->hvictl & HVICTL_VTI) { 2039 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2040 } 2041 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2042 } else { 2043 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2044 } 2045 2046 if (ret_val) { 2047 *ret_val &= mask; 2048 } 2049 2050 return ret; 2051 } 2052 2053 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2054 target_ulong *ret_val, 2055 target_ulong new_val, target_ulong wr_mask) 2056 { 2057 uint64_t rval; 2058 RISCVException ret; 2059 2060 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2061 if (ret == RISCV_EXCP_NONE && ret_val) { 2062 *ret_val = rval; 2063 } 2064 2065 return ret; 2066 } 2067 2068 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2069 target_ulong *ret_val, 2070 target_ulong new_val, target_ulong wr_mask) 2071 { 2072 uint64_t rval; 2073 RISCVException ret; 2074 2075 ret = rmw_sie64(env, csrno, &rval, 2076 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2077 if (ret_val) { 2078 *ret_val = rval >> 32; 2079 } 2080 2081 return ret; 2082 } 2083 2084 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2085 target_ulong *val) 2086 { 2087 *val = env->stvec; 2088 return RISCV_EXCP_NONE; 2089 } 2090 2091 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2092 target_ulong val) 2093 { 2094 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2095 if ((val & 3) < 2) { 2096 env->stvec = val; 2097 } else { 2098 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2099 } 2100 return RISCV_EXCP_NONE; 2101 } 2102 2103 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2104 target_ulong *val) 2105 { 2106 *val = env->scounteren; 2107 return RISCV_EXCP_NONE; 2108 } 2109 2110 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2111 target_ulong val) 2112 { 2113 env->scounteren = val; 2114 return RISCV_EXCP_NONE; 2115 } 2116 2117 /* Supervisor Trap Handling */ 2118 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2119 Int128 *val) 2120 { 2121 *val = int128_make128(env->sscratch, env->sscratchh); 2122 return RISCV_EXCP_NONE; 2123 } 2124 2125 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2126 Int128 val) 2127 { 2128 env->sscratch = int128_getlo(val); 2129 env->sscratchh = int128_gethi(val); 2130 return RISCV_EXCP_NONE; 2131 } 2132 2133 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2134 target_ulong *val) 2135 { 2136 *val = env->sscratch; 2137 return RISCV_EXCP_NONE; 2138 } 2139 2140 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2141 target_ulong val) 2142 { 2143 env->sscratch = val; 2144 return RISCV_EXCP_NONE; 2145 } 2146 2147 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2148 target_ulong *val) 2149 { 2150 *val = env->sepc; 2151 return RISCV_EXCP_NONE; 2152 } 2153 2154 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2155 target_ulong val) 2156 { 2157 env->sepc = val; 2158 return RISCV_EXCP_NONE; 2159 } 2160 2161 static RISCVException read_scause(CPURISCVState *env, int csrno, 2162 target_ulong *val) 2163 { 2164 *val = env->scause; 2165 return RISCV_EXCP_NONE; 2166 } 2167 2168 static RISCVException write_scause(CPURISCVState *env, int csrno, 2169 target_ulong val) 2170 { 2171 env->scause = val; 2172 return RISCV_EXCP_NONE; 2173 } 2174 2175 static RISCVException read_stval(CPURISCVState *env, int csrno, 2176 target_ulong *val) 2177 { 2178 *val = env->stval; 2179 return RISCV_EXCP_NONE; 2180 } 2181 2182 static RISCVException write_stval(CPURISCVState *env, int csrno, 2183 target_ulong val) 2184 { 2185 env->stval = val; 2186 return RISCV_EXCP_NONE; 2187 } 2188 2189 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2190 uint64_t *ret_val, 2191 uint64_t new_val, uint64_t wr_mask) 2192 { 2193 RISCVException ret; 2194 uint64_t rval, vsbits, mask = env->hideleg & vsip_writable_mask; 2195 2196 /* Bring VS-level bits to correct position */ 2197 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2198 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2199 new_val |= vsbits << 1; 2200 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2201 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2202 wr_mask |= vsbits << 1; 2203 2204 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask & mask); 2205 if (ret_val) { 2206 rval &= mask; 2207 vsbits = rval & VS_MODE_INTERRUPTS; 2208 rval &= ~VS_MODE_INTERRUPTS; 2209 *ret_val = rval | (vsbits >> 1); 2210 } 2211 2212 return ret; 2213 } 2214 2215 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2216 target_ulong *ret_val, 2217 target_ulong new_val, target_ulong wr_mask) 2218 { 2219 uint64_t rval; 2220 RISCVException ret; 2221 2222 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2223 if (ret_val) { 2224 *ret_val = rval; 2225 } 2226 2227 return ret; 2228 } 2229 2230 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2231 target_ulong *ret_val, 2232 target_ulong new_val, target_ulong wr_mask) 2233 { 2234 uint64_t rval; 2235 RISCVException ret; 2236 2237 ret = rmw_vsip64(env, csrno, &rval, 2238 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2239 if (ret_val) { 2240 *ret_val = rval >> 32; 2241 } 2242 2243 return ret; 2244 } 2245 2246 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2247 uint64_t *ret_val, 2248 uint64_t new_val, uint64_t wr_mask) 2249 { 2250 RISCVException ret; 2251 uint64_t mask = env->mideleg & sip_writable_mask; 2252 2253 if (riscv_cpu_virt_enabled(env)) { 2254 if (env->hvictl & HVICTL_VTI) { 2255 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2256 } 2257 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2258 } else { 2259 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2260 } 2261 2262 if (ret_val) { 2263 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2264 } 2265 2266 return ret; 2267 } 2268 2269 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2270 target_ulong *ret_val, 2271 target_ulong new_val, target_ulong wr_mask) 2272 { 2273 uint64_t rval; 2274 RISCVException ret; 2275 2276 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2277 if (ret_val) { 2278 *ret_val = rval; 2279 } 2280 2281 return ret; 2282 } 2283 2284 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2285 target_ulong *ret_val, 2286 target_ulong new_val, target_ulong wr_mask) 2287 { 2288 uint64_t rval; 2289 RISCVException ret; 2290 2291 ret = rmw_sip64(env, csrno, &rval, 2292 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2293 if (ret_val) { 2294 *ret_val = rval >> 32; 2295 } 2296 2297 return ret; 2298 } 2299 2300 /* Supervisor Protection and Translation */ 2301 static RISCVException read_satp(CPURISCVState *env, int csrno, 2302 target_ulong *val) 2303 { 2304 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2305 *val = 0; 2306 return RISCV_EXCP_NONE; 2307 } 2308 2309 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2310 return RISCV_EXCP_ILLEGAL_INST; 2311 } else { 2312 *val = env->satp; 2313 } 2314 2315 return RISCV_EXCP_NONE; 2316 } 2317 2318 static RISCVException write_satp(CPURISCVState *env, int csrno, 2319 target_ulong val) 2320 { 2321 target_ulong vm, mask; 2322 2323 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2324 return RISCV_EXCP_NONE; 2325 } 2326 2327 if (riscv_cpu_mxl(env) == MXL_RV32) { 2328 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2329 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2330 } else { 2331 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2332 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2333 } 2334 2335 if (vm && mask) { 2336 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2337 return RISCV_EXCP_ILLEGAL_INST; 2338 } else { 2339 /* 2340 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2341 * pass these through QEMU's TLB emulation as it improves 2342 * performance. Flushing the TLB on SATP writes with paging 2343 * enabled avoids leaking those invalid cached mappings. 2344 */ 2345 tlb_flush(env_cpu(env)); 2346 env->satp = val; 2347 } 2348 } 2349 return RISCV_EXCP_NONE; 2350 } 2351 2352 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2353 { 2354 int irq, ret; 2355 target_ulong topei; 2356 uint64_t vseip, vsgein; 2357 uint32_t iid, iprio, hviid, hviprio, gein; 2358 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2359 2360 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2361 hviid = get_field(env->hvictl, HVICTL_IID); 2362 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2363 2364 if (gein) { 2365 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2366 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2367 if (gein <= env->geilen && vseip) { 2368 siid[scount] = IRQ_S_EXT; 2369 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2370 if (env->aia_ireg_rmw_fn[PRV_S]) { 2371 /* 2372 * Call machine specific IMSIC register emulation for 2373 * reading TOPEI. 2374 */ 2375 ret = env->aia_ireg_rmw_fn[PRV_S]( 2376 env->aia_ireg_rmw_fn_arg[PRV_S], 2377 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2378 riscv_cpu_mxl_bits(env)), 2379 &topei, 0, 0); 2380 if (!ret && topei) { 2381 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2382 } 2383 } 2384 scount++; 2385 } 2386 } else { 2387 if (hviid == IRQ_S_EXT && hviprio) { 2388 siid[scount] = IRQ_S_EXT; 2389 siprio[scount] = hviprio; 2390 scount++; 2391 } 2392 } 2393 2394 if (env->hvictl & HVICTL_VTI) { 2395 if (hviid != IRQ_S_EXT) { 2396 siid[scount] = hviid; 2397 siprio[scount] = hviprio; 2398 scount++; 2399 } 2400 } else { 2401 irq = riscv_cpu_vsirq_pending(env); 2402 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2403 siid[scount] = irq; 2404 siprio[scount] = env->hviprio[irq]; 2405 scount++; 2406 } 2407 } 2408 2409 iid = 0; 2410 iprio = UINT_MAX; 2411 for (s = 0; s < scount; s++) { 2412 if (siprio[s] < iprio) { 2413 iid = siid[s]; 2414 iprio = siprio[s]; 2415 } 2416 } 2417 2418 if (iid) { 2419 if (env->hvictl & HVICTL_IPRIOM) { 2420 if (iprio > IPRIO_MMAXIPRIO) { 2421 iprio = IPRIO_MMAXIPRIO; 2422 } 2423 if (!iprio) { 2424 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2425 iprio = IPRIO_MMAXIPRIO; 2426 } 2427 } 2428 } else { 2429 iprio = 1; 2430 } 2431 } else { 2432 iprio = 0; 2433 } 2434 2435 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2436 *val |= iprio; 2437 return RISCV_EXCP_NONE; 2438 } 2439 2440 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2441 { 2442 int irq; 2443 uint8_t iprio; 2444 2445 if (riscv_cpu_virt_enabled(env)) { 2446 return read_vstopi(env, CSR_VSTOPI, val); 2447 } 2448 2449 irq = riscv_cpu_sirq_pending(env); 2450 if (irq <= 0 || irq > 63) { 2451 *val = 0; 2452 } else { 2453 iprio = env->siprio[irq]; 2454 if (!iprio) { 2455 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2456 iprio = IPRIO_MMAXIPRIO; 2457 } 2458 } 2459 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2460 *val |= iprio; 2461 } 2462 2463 return RISCV_EXCP_NONE; 2464 } 2465 2466 /* Hypervisor Extensions */ 2467 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2468 target_ulong *val) 2469 { 2470 *val = env->hstatus; 2471 if (riscv_cpu_mxl(env) != MXL_RV32) { 2472 /* We only support 64-bit VSXL */ 2473 *val = set_field(*val, HSTATUS_VSXL, 2); 2474 } 2475 /* We only support little endian */ 2476 *val = set_field(*val, HSTATUS_VSBE, 0); 2477 return RISCV_EXCP_NONE; 2478 } 2479 2480 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2481 target_ulong val) 2482 { 2483 env->hstatus = val; 2484 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2485 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2486 } 2487 if (get_field(val, HSTATUS_VSBE) != 0) { 2488 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2489 } 2490 return RISCV_EXCP_NONE; 2491 } 2492 2493 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2494 target_ulong *val) 2495 { 2496 *val = env->hedeleg; 2497 return RISCV_EXCP_NONE; 2498 } 2499 2500 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2501 target_ulong val) 2502 { 2503 env->hedeleg = val & vs_delegable_excps; 2504 return RISCV_EXCP_NONE; 2505 } 2506 2507 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2508 uint64_t *ret_val, 2509 uint64_t new_val, uint64_t wr_mask) 2510 { 2511 uint64_t mask = wr_mask & vs_delegable_ints; 2512 2513 if (ret_val) { 2514 *ret_val = env->hideleg & vs_delegable_ints; 2515 } 2516 2517 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2518 return RISCV_EXCP_NONE; 2519 } 2520 2521 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2522 target_ulong *ret_val, 2523 target_ulong new_val, target_ulong wr_mask) 2524 { 2525 uint64_t rval; 2526 RISCVException ret; 2527 2528 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2529 if (ret_val) { 2530 *ret_val = rval; 2531 } 2532 2533 return ret; 2534 } 2535 2536 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2537 target_ulong *ret_val, 2538 target_ulong new_val, target_ulong wr_mask) 2539 { 2540 uint64_t rval; 2541 RISCVException ret; 2542 2543 ret = rmw_hideleg64(env, csrno, &rval, 2544 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2545 if (ret_val) { 2546 *ret_val = rval >> 32; 2547 } 2548 2549 return ret; 2550 } 2551 2552 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2553 uint64_t *ret_val, 2554 uint64_t new_val, uint64_t wr_mask) 2555 { 2556 RISCVException ret; 2557 2558 ret = rmw_mip64(env, csrno, ret_val, new_val, 2559 wr_mask & hvip_writable_mask); 2560 if (ret_val) { 2561 *ret_val &= VS_MODE_INTERRUPTS; 2562 } 2563 2564 return ret; 2565 } 2566 2567 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2568 target_ulong *ret_val, 2569 target_ulong new_val, target_ulong wr_mask) 2570 { 2571 uint64_t rval; 2572 RISCVException ret; 2573 2574 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2575 if (ret_val) { 2576 *ret_val = rval; 2577 } 2578 2579 return ret; 2580 } 2581 2582 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2583 target_ulong *ret_val, 2584 target_ulong new_val, target_ulong wr_mask) 2585 { 2586 uint64_t rval; 2587 RISCVException ret; 2588 2589 ret = rmw_hvip64(env, csrno, &rval, 2590 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2591 if (ret_val) { 2592 *ret_val = rval >> 32; 2593 } 2594 2595 return ret; 2596 } 2597 2598 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2599 target_ulong *ret_value, 2600 target_ulong new_value, target_ulong write_mask) 2601 { 2602 int ret = rmw_mip(env, csrno, ret_value, new_value, 2603 write_mask & hip_writable_mask); 2604 2605 if (ret_value) { 2606 *ret_value &= HS_MODE_INTERRUPTS; 2607 } 2608 return ret; 2609 } 2610 2611 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2612 target_ulong *ret_val, 2613 target_ulong new_val, target_ulong wr_mask) 2614 { 2615 uint64_t rval; 2616 RISCVException ret; 2617 2618 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2619 if (ret_val) { 2620 *ret_val = rval & HS_MODE_INTERRUPTS; 2621 } 2622 2623 return ret; 2624 } 2625 2626 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2627 target_ulong *val) 2628 { 2629 *val = env->hcounteren; 2630 return RISCV_EXCP_NONE; 2631 } 2632 2633 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2634 target_ulong val) 2635 { 2636 env->hcounteren = val; 2637 return RISCV_EXCP_NONE; 2638 } 2639 2640 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2641 target_ulong *val) 2642 { 2643 if (val) { 2644 *val = env->hgeie; 2645 } 2646 return RISCV_EXCP_NONE; 2647 } 2648 2649 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2650 target_ulong val) 2651 { 2652 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2653 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2654 env->hgeie = val; 2655 /* Update mip.SGEIP bit */ 2656 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2657 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2658 return RISCV_EXCP_NONE; 2659 } 2660 2661 static RISCVException read_htval(CPURISCVState *env, int csrno, 2662 target_ulong *val) 2663 { 2664 *val = env->htval; 2665 return RISCV_EXCP_NONE; 2666 } 2667 2668 static RISCVException write_htval(CPURISCVState *env, int csrno, 2669 target_ulong val) 2670 { 2671 env->htval = val; 2672 return RISCV_EXCP_NONE; 2673 } 2674 2675 static RISCVException read_htinst(CPURISCVState *env, int csrno, 2676 target_ulong *val) 2677 { 2678 *val = env->htinst; 2679 return RISCV_EXCP_NONE; 2680 } 2681 2682 static RISCVException write_htinst(CPURISCVState *env, int csrno, 2683 target_ulong val) 2684 { 2685 return RISCV_EXCP_NONE; 2686 } 2687 2688 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 2689 target_ulong *val) 2690 { 2691 if (val) { 2692 *val = env->hgeip; 2693 } 2694 return RISCV_EXCP_NONE; 2695 } 2696 2697 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 2698 target_ulong *val) 2699 { 2700 *val = env->hgatp; 2701 return RISCV_EXCP_NONE; 2702 } 2703 2704 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 2705 target_ulong val) 2706 { 2707 env->hgatp = val; 2708 return RISCV_EXCP_NONE; 2709 } 2710 2711 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 2712 target_ulong *val) 2713 { 2714 if (!env->rdtime_fn) { 2715 return RISCV_EXCP_ILLEGAL_INST; 2716 } 2717 2718 *val = env->htimedelta; 2719 return RISCV_EXCP_NONE; 2720 } 2721 2722 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 2723 target_ulong val) 2724 { 2725 if (!env->rdtime_fn) { 2726 return RISCV_EXCP_ILLEGAL_INST; 2727 } 2728 2729 if (riscv_cpu_mxl(env) == MXL_RV32) { 2730 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 2731 } else { 2732 env->htimedelta = val; 2733 } 2734 return RISCV_EXCP_NONE; 2735 } 2736 2737 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 2738 target_ulong *val) 2739 { 2740 if (!env->rdtime_fn) { 2741 return RISCV_EXCP_ILLEGAL_INST; 2742 } 2743 2744 *val = env->htimedelta >> 32; 2745 return RISCV_EXCP_NONE; 2746 } 2747 2748 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 2749 target_ulong val) 2750 { 2751 if (!env->rdtime_fn) { 2752 return RISCV_EXCP_ILLEGAL_INST; 2753 } 2754 2755 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 2756 return RISCV_EXCP_NONE; 2757 } 2758 2759 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 2760 { 2761 *val = env->hvictl; 2762 return RISCV_EXCP_NONE; 2763 } 2764 2765 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 2766 { 2767 env->hvictl = val & HVICTL_VALID_MASK; 2768 return RISCV_EXCP_NONE; 2769 } 2770 2771 static int read_hvipriox(CPURISCVState *env, int first_index, 2772 uint8_t *iprio, target_ulong *val) 2773 { 2774 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2775 2776 /* First index has to be a multiple of number of irqs per register */ 2777 if (first_index % num_irqs) { 2778 return (riscv_cpu_virt_enabled(env)) ? 2779 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2780 } 2781 2782 /* Fill-up return value */ 2783 *val = 0; 2784 for (i = 0; i < num_irqs; i++) { 2785 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2786 continue; 2787 } 2788 if (rdzero) { 2789 continue; 2790 } 2791 *val |= ((target_ulong)iprio[irq]) << (i * 8); 2792 } 2793 2794 return RISCV_EXCP_NONE; 2795 } 2796 2797 static int write_hvipriox(CPURISCVState *env, int first_index, 2798 uint8_t *iprio, target_ulong val) 2799 { 2800 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2801 2802 /* First index has to be a multiple of number of irqs per register */ 2803 if (first_index % num_irqs) { 2804 return (riscv_cpu_virt_enabled(env)) ? 2805 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2806 } 2807 2808 /* Fill-up priority arrary */ 2809 for (i = 0; i < num_irqs; i++) { 2810 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2811 continue; 2812 } 2813 if (rdzero) { 2814 iprio[irq] = 0; 2815 } else { 2816 iprio[irq] = (val >> (i * 8)) & 0xff; 2817 } 2818 } 2819 2820 return RISCV_EXCP_NONE; 2821 } 2822 2823 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 2824 { 2825 return read_hvipriox(env, 0, env->hviprio, val); 2826 } 2827 2828 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 2829 { 2830 return write_hvipriox(env, 0, env->hviprio, val); 2831 } 2832 2833 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 2834 { 2835 return read_hvipriox(env, 4, env->hviprio, val); 2836 } 2837 2838 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 2839 { 2840 return write_hvipriox(env, 4, env->hviprio, val); 2841 } 2842 2843 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 2844 { 2845 return read_hvipriox(env, 8, env->hviprio, val); 2846 } 2847 2848 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 2849 { 2850 return write_hvipriox(env, 8, env->hviprio, val); 2851 } 2852 2853 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 2854 { 2855 return read_hvipriox(env, 12, env->hviprio, val); 2856 } 2857 2858 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 2859 { 2860 return write_hvipriox(env, 12, env->hviprio, val); 2861 } 2862 2863 /* Virtual CSR Registers */ 2864 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 2865 target_ulong *val) 2866 { 2867 *val = env->vsstatus; 2868 return RISCV_EXCP_NONE; 2869 } 2870 2871 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 2872 target_ulong val) 2873 { 2874 uint64_t mask = (target_ulong)-1; 2875 if ((val & VSSTATUS64_UXL) == 0) { 2876 mask &= ~VSSTATUS64_UXL; 2877 } 2878 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 2879 return RISCV_EXCP_NONE; 2880 } 2881 2882 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 2883 { 2884 *val = env->vstvec; 2885 return RISCV_EXCP_NONE; 2886 } 2887 2888 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 2889 target_ulong val) 2890 { 2891 env->vstvec = val; 2892 return RISCV_EXCP_NONE; 2893 } 2894 2895 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 2896 target_ulong *val) 2897 { 2898 *val = env->vsscratch; 2899 return RISCV_EXCP_NONE; 2900 } 2901 2902 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 2903 target_ulong val) 2904 { 2905 env->vsscratch = val; 2906 return RISCV_EXCP_NONE; 2907 } 2908 2909 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 2910 target_ulong *val) 2911 { 2912 *val = env->vsepc; 2913 return RISCV_EXCP_NONE; 2914 } 2915 2916 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 2917 target_ulong val) 2918 { 2919 env->vsepc = val; 2920 return RISCV_EXCP_NONE; 2921 } 2922 2923 static RISCVException read_vscause(CPURISCVState *env, int csrno, 2924 target_ulong *val) 2925 { 2926 *val = env->vscause; 2927 return RISCV_EXCP_NONE; 2928 } 2929 2930 static RISCVException write_vscause(CPURISCVState *env, int csrno, 2931 target_ulong val) 2932 { 2933 env->vscause = val; 2934 return RISCV_EXCP_NONE; 2935 } 2936 2937 static RISCVException read_vstval(CPURISCVState *env, int csrno, 2938 target_ulong *val) 2939 { 2940 *val = env->vstval; 2941 return RISCV_EXCP_NONE; 2942 } 2943 2944 static RISCVException write_vstval(CPURISCVState *env, int csrno, 2945 target_ulong val) 2946 { 2947 env->vstval = val; 2948 return RISCV_EXCP_NONE; 2949 } 2950 2951 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 2952 target_ulong *val) 2953 { 2954 *val = env->vsatp; 2955 return RISCV_EXCP_NONE; 2956 } 2957 2958 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 2959 target_ulong val) 2960 { 2961 env->vsatp = val; 2962 return RISCV_EXCP_NONE; 2963 } 2964 2965 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 2966 target_ulong *val) 2967 { 2968 *val = env->mtval2; 2969 return RISCV_EXCP_NONE; 2970 } 2971 2972 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 2973 target_ulong val) 2974 { 2975 env->mtval2 = val; 2976 return RISCV_EXCP_NONE; 2977 } 2978 2979 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 2980 target_ulong *val) 2981 { 2982 *val = env->mtinst; 2983 return RISCV_EXCP_NONE; 2984 } 2985 2986 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 2987 target_ulong val) 2988 { 2989 env->mtinst = val; 2990 return RISCV_EXCP_NONE; 2991 } 2992 2993 /* Physical Memory Protection */ 2994 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 2995 target_ulong *val) 2996 { 2997 *val = mseccfg_csr_read(env); 2998 return RISCV_EXCP_NONE; 2999 } 3000 3001 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3002 target_ulong val) 3003 { 3004 mseccfg_csr_write(env, val); 3005 return RISCV_EXCP_NONE; 3006 } 3007 3008 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 3009 { 3010 /* TODO: RV128 restriction check */ 3011 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 3012 return false; 3013 } 3014 return true; 3015 } 3016 3017 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3018 target_ulong *val) 3019 { 3020 uint32_t reg_index = csrno - CSR_PMPCFG0; 3021 3022 if (!check_pmp_reg_index(env, reg_index)) { 3023 return RISCV_EXCP_ILLEGAL_INST; 3024 } 3025 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 3026 return RISCV_EXCP_NONE; 3027 } 3028 3029 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3030 target_ulong val) 3031 { 3032 uint32_t reg_index = csrno - CSR_PMPCFG0; 3033 3034 if (!check_pmp_reg_index(env, reg_index)) { 3035 return RISCV_EXCP_ILLEGAL_INST; 3036 } 3037 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 3038 return RISCV_EXCP_NONE; 3039 } 3040 3041 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3042 target_ulong *val) 3043 { 3044 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3045 return RISCV_EXCP_NONE; 3046 } 3047 3048 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3049 target_ulong val) 3050 { 3051 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3052 return RISCV_EXCP_NONE; 3053 } 3054 3055 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3056 target_ulong *val) 3057 { 3058 *val = tselect_csr_read(env); 3059 return RISCV_EXCP_NONE; 3060 } 3061 3062 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3063 target_ulong val) 3064 { 3065 tselect_csr_write(env, val); 3066 return RISCV_EXCP_NONE; 3067 } 3068 3069 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3070 target_ulong *val) 3071 { 3072 /* return 0 in tdata1 to end the trigger enumeration */ 3073 if (env->trigger_cur >= TRIGGER_NUM && csrno == CSR_TDATA1) { 3074 *val = 0; 3075 return RISCV_EXCP_NONE; 3076 } 3077 3078 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3079 return RISCV_EXCP_ILLEGAL_INST; 3080 } 3081 3082 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3083 return RISCV_EXCP_NONE; 3084 } 3085 3086 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3087 target_ulong val) 3088 { 3089 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3090 return RISCV_EXCP_ILLEGAL_INST; 3091 } 3092 3093 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3094 return RISCV_EXCP_NONE; 3095 } 3096 3097 /* 3098 * Functions to access Pointer Masking feature registers 3099 * We have to check if current priv lvl could modify 3100 * csr in given mode 3101 */ 3102 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3103 { 3104 int csr_priv = get_field(csrno, 0x300); 3105 int pm_current; 3106 3107 if (env->debugger) { 3108 return false; 3109 } 3110 /* 3111 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3112 * so allow the access 3113 */ 3114 if (env->priv != csr_priv) { 3115 return false; 3116 } 3117 switch (env->priv) { 3118 case PRV_M: 3119 pm_current = get_field(env->mmte, M_PM_CURRENT); 3120 break; 3121 case PRV_S: 3122 pm_current = get_field(env->mmte, S_PM_CURRENT); 3123 break; 3124 case PRV_U: 3125 pm_current = get_field(env->mmte, U_PM_CURRENT); 3126 break; 3127 default: 3128 g_assert_not_reached(); 3129 } 3130 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3131 return !pm_current; 3132 } 3133 3134 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3135 target_ulong *val) 3136 { 3137 *val = env->mmte & MMTE_MASK; 3138 return RISCV_EXCP_NONE; 3139 } 3140 3141 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3142 target_ulong val) 3143 { 3144 uint64_t mstatus; 3145 target_ulong wpri_val = val & MMTE_MASK; 3146 3147 if (val != wpri_val) { 3148 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3149 "MMTE: WPRI violation written 0x", val, 3150 "vs expected 0x", wpri_val); 3151 } 3152 /* for machine mode pm.current is hardwired to 1 */ 3153 wpri_val |= MMTE_M_PM_CURRENT; 3154 3155 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3156 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3157 env->mmte = wpri_val | PM_EXT_DIRTY; 3158 riscv_cpu_update_mask(env); 3159 3160 /* Set XS and SD bits, since PM CSRs are dirty */ 3161 mstatus = env->mstatus | MSTATUS_XS; 3162 write_mstatus(env, csrno, mstatus); 3163 return RISCV_EXCP_NONE; 3164 } 3165 3166 static RISCVException read_smte(CPURISCVState *env, int csrno, 3167 target_ulong *val) 3168 { 3169 *val = env->mmte & SMTE_MASK; 3170 return RISCV_EXCP_NONE; 3171 } 3172 3173 static RISCVException write_smte(CPURISCVState *env, int csrno, 3174 target_ulong val) 3175 { 3176 target_ulong wpri_val = val & SMTE_MASK; 3177 3178 if (val != wpri_val) { 3179 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3180 "SMTE: WPRI violation written 0x", val, 3181 "vs expected 0x", wpri_val); 3182 } 3183 3184 /* if pm.current==0 we can't modify current PM CSRs */ 3185 if (check_pm_current_disabled(env, csrno)) { 3186 return RISCV_EXCP_NONE; 3187 } 3188 3189 wpri_val |= (env->mmte & ~SMTE_MASK); 3190 write_mmte(env, csrno, wpri_val); 3191 return RISCV_EXCP_NONE; 3192 } 3193 3194 static RISCVException read_umte(CPURISCVState *env, int csrno, 3195 target_ulong *val) 3196 { 3197 *val = env->mmte & UMTE_MASK; 3198 return RISCV_EXCP_NONE; 3199 } 3200 3201 static RISCVException write_umte(CPURISCVState *env, int csrno, 3202 target_ulong val) 3203 { 3204 target_ulong wpri_val = val & UMTE_MASK; 3205 3206 if (val != wpri_val) { 3207 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3208 "UMTE: WPRI violation written 0x", val, 3209 "vs expected 0x", wpri_val); 3210 } 3211 3212 if (check_pm_current_disabled(env, csrno)) { 3213 return RISCV_EXCP_NONE; 3214 } 3215 3216 wpri_val |= (env->mmte & ~UMTE_MASK); 3217 write_mmte(env, csrno, wpri_val); 3218 return RISCV_EXCP_NONE; 3219 } 3220 3221 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3222 target_ulong *val) 3223 { 3224 *val = env->mpmmask; 3225 return RISCV_EXCP_NONE; 3226 } 3227 3228 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3229 target_ulong val) 3230 { 3231 uint64_t mstatus; 3232 3233 env->mpmmask = val; 3234 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3235 env->cur_pmmask = val; 3236 } 3237 env->mmte |= PM_EXT_DIRTY; 3238 3239 /* Set XS and SD bits, since PM CSRs are dirty */ 3240 mstatus = env->mstatus | MSTATUS_XS; 3241 write_mstatus(env, csrno, mstatus); 3242 return RISCV_EXCP_NONE; 3243 } 3244 3245 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3246 target_ulong *val) 3247 { 3248 *val = env->spmmask; 3249 return RISCV_EXCP_NONE; 3250 } 3251 3252 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3253 target_ulong val) 3254 { 3255 uint64_t mstatus; 3256 3257 /* if pm.current==0 we can't modify current PM CSRs */ 3258 if (check_pm_current_disabled(env, csrno)) { 3259 return RISCV_EXCP_NONE; 3260 } 3261 env->spmmask = val; 3262 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3263 env->cur_pmmask = val; 3264 } 3265 env->mmte |= PM_EXT_DIRTY; 3266 3267 /* Set XS and SD bits, since PM CSRs are dirty */ 3268 mstatus = env->mstatus | MSTATUS_XS; 3269 write_mstatus(env, csrno, mstatus); 3270 return RISCV_EXCP_NONE; 3271 } 3272 3273 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3274 target_ulong *val) 3275 { 3276 *val = env->upmmask; 3277 return RISCV_EXCP_NONE; 3278 } 3279 3280 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3281 target_ulong val) 3282 { 3283 uint64_t mstatus; 3284 3285 /* if pm.current==0 we can't modify current PM CSRs */ 3286 if (check_pm_current_disabled(env, csrno)) { 3287 return RISCV_EXCP_NONE; 3288 } 3289 env->upmmask = val; 3290 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3291 env->cur_pmmask = val; 3292 } 3293 env->mmte |= PM_EXT_DIRTY; 3294 3295 /* Set XS and SD bits, since PM CSRs are dirty */ 3296 mstatus = env->mstatus | MSTATUS_XS; 3297 write_mstatus(env, csrno, mstatus); 3298 return RISCV_EXCP_NONE; 3299 } 3300 3301 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3302 target_ulong *val) 3303 { 3304 *val = env->mpmbase; 3305 return RISCV_EXCP_NONE; 3306 } 3307 3308 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3309 target_ulong val) 3310 { 3311 uint64_t mstatus; 3312 3313 env->mpmbase = val; 3314 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3315 env->cur_pmbase = val; 3316 } 3317 env->mmte |= PM_EXT_DIRTY; 3318 3319 /* Set XS and SD bits, since PM CSRs are dirty */ 3320 mstatus = env->mstatus | MSTATUS_XS; 3321 write_mstatus(env, csrno, mstatus); 3322 return RISCV_EXCP_NONE; 3323 } 3324 3325 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3326 target_ulong *val) 3327 { 3328 *val = env->spmbase; 3329 return RISCV_EXCP_NONE; 3330 } 3331 3332 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3333 target_ulong val) 3334 { 3335 uint64_t mstatus; 3336 3337 /* if pm.current==0 we can't modify current PM CSRs */ 3338 if (check_pm_current_disabled(env, csrno)) { 3339 return RISCV_EXCP_NONE; 3340 } 3341 env->spmbase = val; 3342 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3343 env->cur_pmbase = val; 3344 } 3345 env->mmte |= PM_EXT_DIRTY; 3346 3347 /* Set XS and SD bits, since PM CSRs are dirty */ 3348 mstatus = env->mstatus | MSTATUS_XS; 3349 write_mstatus(env, csrno, mstatus); 3350 return RISCV_EXCP_NONE; 3351 } 3352 3353 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3354 target_ulong *val) 3355 { 3356 *val = env->upmbase; 3357 return RISCV_EXCP_NONE; 3358 } 3359 3360 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3361 target_ulong val) 3362 { 3363 uint64_t mstatus; 3364 3365 /* if pm.current==0 we can't modify current PM CSRs */ 3366 if (check_pm_current_disabled(env, csrno)) { 3367 return RISCV_EXCP_NONE; 3368 } 3369 env->upmbase = val; 3370 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3371 env->cur_pmbase = val; 3372 } 3373 env->mmte |= PM_EXT_DIRTY; 3374 3375 /* Set XS and SD bits, since PM CSRs are dirty */ 3376 mstatus = env->mstatus | MSTATUS_XS; 3377 write_mstatus(env, csrno, mstatus); 3378 return RISCV_EXCP_NONE; 3379 } 3380 3381 #endif 3382 3383 /* Crypto Extension */ 3384 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3385 target_ulong *ret_value, 3386 target_ulong new_value, 3387 target_ulong write_mask) 3388 { 3389 uint16_t random_v; 3390 Error *random_e = NULL; 3391 int random_r; 3392 target_ulong rval; 3393 3394 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3395 if (unlikely(random_r < 0)) { 3396 /* 3397 * Failed, for unknown reasons in the crypto subsystem. 3398 * The best we can do is log the reason and return a 3399 * failure indication to the guest. There is no reason 3400 * we know to expect the failure to be transitory, so 3401 * indicate DEAD to avoid having the guest spin on WAIT. 3402 */ 3403 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3404 __func__, error_get_pretty(random_e)); 3405 error_free(random_e); 3406 rval = SEED_OPST_DEAD; 3407 } else { 3408 rval = random_v | SEED_OPST_ES16; 3409 } 3410 3411 if (ret_value) { 3412 *ret_value = rval; 3413 } 3414 3415 return RISCV_EXCP_NONE; 3416 } 3417 3418 /* 3419 * riscv_csrrw - read and/or update control and status register 3420 * 3421 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3422 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3423 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3424 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3425 */ 3426 3427 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3428 int csrno, 3429 bool write_mask, 3430 RISCVCPU *cpu) 3431 { 3432 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3433 int read_only = get_field(csrno, 0xC00) == 3; 3434 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3435 3436 /* ensure the CSR extension is enabled. */ 3437 if (!cpu->cfg.ext_icsr) { 3438 return RISCV_EXCP_ILLEGAL_INST; 3439 } 3440 3441 if (env->priv_ver < csr_min_priv) { 3442 return RISCV_EXCP_ILLEGAL_INST; 3443 } 3444 3445 /* check predicate */ 3446 if (!csr_ops[csrno].predicate) { 3447 return RISCV_EXCP_ILLEGAL_INST; 3448 } 3449 3450 if (write_mask && read_only) { 3451 return RISCV_EXCP_ILLEGAL_INST; 3452 } 3453 3454 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3455 if (ret != RISCV_EXCP_NONE) { 3456 return ret; 3457 } 3458 3459 #if !defined(CONFIG_USER_ONLY) 3460 int csr_priv, effective_priv = env->priv; 3461 3462 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3463 !riscv_cpu_virt_enabled(env)) { 3464 /* 3465 * We are in HS mode. Add 1 to the effective privledge level to 3466 * allow us to access the Hypervisor CSRs. 3467 */ 3468 effective_priv++; 3469 } 3470 3471 csr_priv = get_field(csrno, 0x300); 3472 if (!env->debugger && (effective_priv < csr_priv)) { 3473 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3474 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3475 } 3476 return RISCV_EXCP_ILLEGAL_INST; 3477 } 3478 #endif 3479 return RISCV_EXCP_NONE; 3480 } 3481 3482 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3483 target_ulong *ret_value, 3484 target_ulong new_value, 3485 target_ulong write_mask) 3486 { 3487 RISCVException ret; 3488 target_ulong old_value; 3489 3490 /* execute combined read/write operation if it exists */ 3491 if (csr_ops[csrno].op) { 3492 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3493 } 3494 3495 /* if no accessor exists then return failure */ 3496 if (!csr_ops[csrno].read) { 3497 return RISCV_EXCP_ILLEGAL_INST; 3498 } 3499 /* read old value */ 3500 ret = csr_ops[csrno].read(env, csrno, &old_value); 3501 if (ret != RISCV_EXCP_NONE) { 3502 return ret; 3503 } 3504 3505 /* write value if writable and write mask set, otherwise drop writes */ 3506 if (write_mask) { 3507 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3508 if (csr_ops[csrno].write) { 3509 ret = csr_ops[csrno].write(env, csrno, new_value); 3510 if (ret != RISCV_EXCP_NONE) { 3511 return ret; 3512 } 3513 } 3514 } 3515 3516 /* return old value */ 3517 if (ret_value) { 3518 *ret_value = old_value; 3519 } 3520 3521 return RISCV_EXCP_NONE; 3522 } 3523 3524 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3525 target_ulong *ret_value, 3526 target_ulong new_value, target_ulong write_mask) 3527 { 3528 RISCVCPU *cpu = env_archcpu(env); 3529 3530 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3531 if (ret != RISCV_EXCP_NONE) { 3532 return ret; 3533 } 3534 3535 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3536 } 3537 3538 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3539 Int128 *ret_value, 3540 Int128 new_value, 3541 Int128 write_mask) 3542 { 3543 RISCVException ret; 3544 Int128 old_value; 3545 3546 /* read old value */ 3547 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3548 if (ret != RISCV_EXCP_NONE) { 3549 return ret; 3550 } 3551 3552 /* write value if writable and write mask set, otherwise drop writes */ 3553 if (int128_nz(write_mask)) { 3554 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3555 int128_and(new_value, write_mask)); 3556 if (csr_ops[csrno].write128) { 3557 ret = csr_ops[csrno].write128(env, csrno, new_value); 3558 if (ret != RISCV_EXCP_NONE) { 3559 return ret; 3560 } 3561 } else if (csr_ops[csrno].write) { 3562 /* avoids having to write wrappers for all registers */ 3563 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3564 if (ret != RISCV_EXCP_NONE) { 3565 return ret; 3566 } 3567 } 3568 } 3569 3570 /* return old value */ 3571 if (ret_value) { 3572 *ret_value = old_value; 3573 } 3574 3575 return RISCV_EXCP_NONE; 3576 } 3577 3578 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3579 Int128 *ret_value, 3580 Int128 new_value, Int128 write_mask) 3581 { 3582 RISCVException ret; 3583 RISCVCPU *cpu = env_archcpu(env); 3584 3585 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3586 if (ret != RISCV_EXCP_NONE) { 3587 return ret; 3588 } 3589 3590 if (csr_ops[csrno].read128) { 3591 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3592 } 3593 3594 /* 3595 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3596 * at all defined. 3597 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3598 * significant), for those, this fallback is correctly handling the accesses 3599 */ 3600 target_ulong old_value; 3601 ret = riscv_csrrw_do64(env, csrno, &old_value, 3602 int128_getlo(new_value), 3603 int128_getlo(write_mask)); 3604 if (ret == RISCV_EXCP_NONE && ret_value) { 3605 *ret_value = int128_make64(old_value); 3606 } 3607 return ret; 3608 } 3609 3610 /* 3611 * Debugger support. If not in user mode, set env->debugger before the 3612 * riscv_csrrw call and clear it after the call. 3613 */ 3614 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3615 target_ulong *ret_value, 3616 target_ulong new_value, 3617 target_ulong write_mask) 3618 { 3619 RISCVException ret; 3620 #if !defined(CONFIG_USER_ONLY) 3621 env->debugger = true; 3622 #endif 3623 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3624 #if !defined(CONFIG_USER_ONLY) 3625 env->debugger = false; 3626 #endif 3627 return ret; 3628 } 3629 3630 /* Control and Status Register function table */ 3631 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3632 /* User Floating-Point CSRs */ 3633 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3634 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3635 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3636 /* Vector CSRs */ 3637 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart, 3638 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3639 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat, 3640 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3641 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm, 3642 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3643 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr, 3644 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3645 [CSR_VL] = { "vl", vs, read_vl, 3646 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3647 [CSR_VTYPE] = { "vtype", vs, read_vtype, 3648 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3649 [CSR_VLENB] = { "vlenb", vs, read_vlenb, 3650 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3651 /* User Timers and Counters */ 3652 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 3653 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 3654 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 3655 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 3656 3657 /* 3658 * In privileged mode, the monitor will have to emulate TIME CSRs only if 3659 * rdtime callback is not provided by machine/platform emulation. 3660 */ 3661 [CSR_TIME] = { "time", ctr, read_time }, 3662 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 3663 3664 /* Crypto Extension */ 3665 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 3666 3667 #if !defined(CONFIG_USER_ONLY) 3668 /* Machine Timers and Counters */ 3669 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 3670 write_mhpmcounter }, 3671 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 3672 write_mhpmcounter }, 3673 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 3674 write_mhpmcounterh }, 3675 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 3676 write_mhpmcounterh }, 3677 3678 /* Machine Information Registers */ 3679 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 3680 [CSR_MARCHID] = { "marchid", any, read_marchid }, 3681 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 3682 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 3683 3684 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 3685 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3686 /* Machine Trap Setup */ 3687 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 3688 NULL, read_mstatus_i128 }, 3689 [CSR_MISA] = { "misa", any, read_misa, write_misa, 3690 NULL, read_misa_i128 }, 3691 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 3692 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 3693 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 3694 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 3695 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 3696 write_mcounteren }, 3697 3698 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 3699 write_mstatush }, 3700 3701 /* Machine Trap Handling */ 3702 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 3703 NULL, read_mscratch_i128, write_mscratch_i128 }, 3704 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 3705 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 3706 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 3707 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 3708 3709 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 3710 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 3711 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 3712 3713 /* Machine-Level Interrupts (AIA) */ 3714 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 3715 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 3716 3717 /* Virtual Interrupts for Supervisor Level (AIA) */ 3718 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 3719 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 3720 3721 /* Machine-Level High-Half CSRs (AIA) */ 3722 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 3723 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 3724 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 3725 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 3726 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 3727 3728 /* Execution environment configuration */ 3729 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 3730 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3731 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 3732 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3733 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 3734 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3735 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 3736 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3737 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 3738 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3739 3740 /* Supervisor Trap Setup */ 3741 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 3742 NULL, read_sstatus_i128 }, 3743 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 3744 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 3745 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 3746 write_scounteren }, 3747 3748 /* Supervisor Trap Handling */ 3749 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 3750 NULL, read_sscratch_i128, write_sscratch_i128 }, 3751 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 3752 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 3753 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 3754 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 3755 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 3756 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3757 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 3758 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3759 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 3760 write_vstimecmp, 3761 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3762 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 3763 write_vstimecmph, 3764 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3765 3766 /* Supervisor Protection and Translation */ 3767 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 3768 3769 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 3770 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 3771 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 3772 3773 /* Supervisor-Level Interrupts (AIA) */ 3774 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 3775 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 3776 3777 /* Supervisor-Level High-Half CSRs (AIA) */ 3778 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 3779 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 3780 3781 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 3782 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3783 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 3784 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3785 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 3786 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3787 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 3788 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3789 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 3790 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3791 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 3792 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3793 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 3794 write_hcounteren, 3795 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3796 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 3797 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3798 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 3799 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3800 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 3801 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3802 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 3803 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3804 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 3805 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3806 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 3807 write_htimedelta, 3808 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3809 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 3810 write_htimedeltah, 3811 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3812 3813 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 3814 write_vsstatus, 3815 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3816 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 3817 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3818 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 3819 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3820 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 3821 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3822 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 3823 write_vsscratch, 3824 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3825 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 3826 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3827 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 3828 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3829 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 3830 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3831 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 3832 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3833 3834 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 3835 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3836 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 3837 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3838 3839 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 3840 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 3841 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 3842 write_hvictl }, 3843 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 3844 write_hviprio1 }, 3845 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 3846 write_hviprio2 }, 3847 3848 /* 3849 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 3850 */ 3851 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 3852 rmw_xiselect }, 3853 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 3854 3855 /* VS-Level Interrupts (H-extension with AIA) */ 3856 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 3857 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 3858 3859 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 3860 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 3861 rmw_hidelegh }, 3862 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 3863 write_ignore }, 3864 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 3865 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 3866 write_hviprio1h }, 3867 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 3868 write_hviprio2h }, 3869 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 3870 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 3871 3872 /* Physical Memory Protection */ 3873 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 3874 .min_priv_ver = PRIV_VERSION_1_11_0 }, 3875 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 3876 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 3877 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 3878 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 3879 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 3880 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 3881 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 3882 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 3883 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 3884 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 3885 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 3886 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 3887 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 3888 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 3889 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 3890 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 3891 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 3892 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 3893 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 3894 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 3895 3896 /* Debug CSRs */ 3897 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 3898 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 3899 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 3900 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 3901 3902 /* User Pointer Masking */ 3903 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 3904 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 3905 write_upmmask }, 3906 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 3907 write_upmbase }, 3908 /* Machine Pointer Masking */ 3909 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 3910 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 3911 write_mpmmask }, 3912 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 3913 write_mpmbase }, 3914 /* Supervisor Pointer Masking */ 3915 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 3916 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 3917 write_spmmask }, 3918 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 3919 write_spmbase }, 3920 3921 /* Performance Counters */ 3922 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 3923 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 3924 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 3925 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 3926 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 3927 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 3928 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 3929 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 3930 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 3931 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 3932 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 3933 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 3934 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 3935 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 3936 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 3937 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 3938 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 3939 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 3940 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 3941 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 3942 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 3943 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 3944 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 3945 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 3946 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 3947 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 3948 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 3949 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 3950 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 3951 3952 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 3953 write_mhpmcounter }, 3954 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 3955 write_mhpmcounter }, 3956 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 3957 write_mhpmcounter }, 3958 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 3959 write_mhpmcounter }, 3960 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 3961 write_mhpmcounter }, 3962 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 3963 write_mhpmcounter }, 3964 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 3965 write_mhpmcounter }, 3966 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 3967 write_mhpmcounter }, 3968 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 3969 write_mhpmcounter }, 3970 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 3971 write_mhpmcounter }, 3972 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 3973 write_mhpmcounter }, 3974 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 3975 write_mhpmcounter }, 3976 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 3977 write_mhpmcounter }, 3978 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 3979 write_mhpmcounter }, 3980 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 3981 write_mhpmcounter }, 3982 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 3983 write_mhpmcounter }, 3984 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 3985 write_mhpmcounter }, 3986 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 3987 write_mhpmcounter }, 3988 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 3989 write_mhpmcounter }, 3990 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 3991 write_mhpmcounter }, 3992 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 3993 write_mhpmcounter }, 3994 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 3995 write_mhpmcounter }, 3996 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 3997 write_mhpmcounter }, 3998 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 3999 write_mhpmcounter }, 4000 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4001 write_mhpmcounter }, 4002 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4003 write_mhpmcounter }, 4004 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4005 write_mhpmcounter }, 4006 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4007 write_mhpmcounter }, 4008 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4009 write_mhpmcounter }, 4010 4011 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4012 write_mcountinhibit, 4013 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4014 4015 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4016 write_mhpmevent }, 4017 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4018 write_mhpmevent }, 4019 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4020 write_mhpmevent }, 4021 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4022 write_mhpmevent }, 4023 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4024 write_mhpmevent }, 4025 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4026 write_mhpmevent }, 4027 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4028 write_mhpmevent }, 4029 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4030 write_mhpmevent }, 4031 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4032 write_mhpmevent }, 4033 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4034 write_mhpmevent }, 4035 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4036 write_mhpmevent }, 4037 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4038 write_mhpmevent }, 4039 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4040 write_mhpmevent }, 4041 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4042 write_mhpmevent }, 4043 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4044 write_mhpmevent }, 4045 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4046 write_mhpmevent }, 4047 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4048 write_mhpmevent }, 4049 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4050 write_mhpmevent }, 4051 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4052 write_mhpmevent }, 4053 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4054 write_mhpmevent }, 4055 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4056 write_mhpmevent }, 4057 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4058 write_mhpmevent }, 4059 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4060 write_mhpmevent }, 4061 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4062 write_mhpmevent }, 4063 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4064 write_mhpmevent }, 4065 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4066 write_mhpmevent }, 4067 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4068 write_mhpmevent }, 4069 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4070 write_mhpmevent }, 4071 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4072 write_mhpmevent }, 4073 4074 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4075 write_mhpmeventh, 4076 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4077 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4078 write_mhpmeventh, 4079 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4080 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4081 write_mhpmeventh, 4082 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4083 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4084 write_mhpmeventh, 4085 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4086 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4087 write_mhpmeventh, 4088 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4089 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4090 write_mhpmeventh, 4091 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4092 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4093 write_mhpmeventh, 4094 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4095 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4096 write_mhpmeventh, 4097 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4098 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4099 write_mhpmeventh, 4100 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4101 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4102 write_mhpmeventh, 4103 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4104 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4105 write_mhpmeventh, 4106 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4107 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4108 write_mhpmeventh, 4109 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4110 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4111 write_mhpmeventh, 4112 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4113 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4114 write_mhpmeventh, 4115 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4116 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4117 write_mhpmeventh, 4118 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4119 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4120 write_mhpmeventh, 4121 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4122 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4123 write_mhpmeventh, 4124 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4125 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4126 write_mhpmeventh, 4127 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4128 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4129 write_mhpmeventh, 4130 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4131 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4132 write_mhpmeventh, 4133 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4134 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4135 write_mhpmeventh, 4136 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4137 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4138 write_mhpmeventh, 4139 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4140 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4141 write_mhpmeventh, 4142 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4143 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4144 write_mhpmeventh, 4145 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4146 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4147 write_mhpmeventh, 4148 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4149 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4150 write_mhpmeventh, 4151 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4152 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4153 write_mhpmeventh, 4154 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4155 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4156 write_mhpmeventh, 4157 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4158 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4159 write_mhpmeventh, 4160 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4161 4162 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4163 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4164 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4165 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4166 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4167 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4168 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4169 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4170 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4171 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4172 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4173 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4174 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4175 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4176 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4177 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4178 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4179 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4180 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4181 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4182 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4183 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4184 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4185 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4186 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4187 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4188 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4189 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4190 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4191 4192 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4193 write_mhpmcounterh }, 4194 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4195 write_mhpmcounterh }, 4196 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4197 write_mhpmcounterh }, 4198 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4199 write_mhpmcounterh }, 4200 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4201 write_mhpmcounterh }, 4202 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4203 write_mhpmcounterh }, 4204 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4205 write_mhpmcounterh }, 4206 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4207 write_mhpmcounterh }, 4208 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4209 write_mhpmcounterh }, 4210 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4211 write_mhpmcounterh }, 4212 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4213 write_mhpmcounterh }, 4214 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4215 write_mhpmcounterh }, 4216 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4217 write_mhpmcounterh }, 4218 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4219 write_mhpmcounterh }, 4220 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4221 write_mhpmcounterh }, 4222 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4223 write_mhpmcounterh }, 4224 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4225 write_mhpmcounterh }, 4226 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4227 write_mhpmcounterh }, 4228 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4229 write_mhpmcounterh }, 4230 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4231 write_mhpmcounterh }, 4232 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4233 write_mhpmcounterh }, 4234 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4235 write_mhpmcounterh }, 4236 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4237 write_mhpmcounterh }, 4238 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4239 write_mhpmcounterh }, 4240 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4241 write_mhpmcounterh }, 4242 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4243 write_mhpmcounterh }, 4244 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4245 write_mhpmcounterh }, 4246 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4247 write_mhpmcounterh }, 4248 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4249 write_mhpmcounterh }, 4250 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4251 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4252 4253 #endif /* !CONFIG_USER_ONLY */ 4254 }; 4255