1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "sysemu/cpu-timers.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 32 /* CSR function table public API */ 33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 34 { 35 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 36 } 37 38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 41 } 42 43 /* Predicates */ 44 #if !defined(CONFIG_USER_ONLY) 45 static RISCVException smstateen_acc_ok(CPURISCVState *env, int index, 46 uint64_t bit) 47 { 48 bool virt = riscv_cpu_virt_enabled(env); 49 RISCVCPU *cpu = env_archcpu(env); 50 51 if (env->priv == PRV_M || !cpu->cfg.ext_smstateen) { 52 return RISCV_EXCP_NONE; 53 } 54 55 if (!(env->mstateen[index] & bit)) { 56 return RISCV_EXCP_ILLEGAL_INST; 57 } 58 59 if (virt) { 60 if (!(env->hstateen[index] & bit)) { 61 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 62 } 63 64 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 65 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 66 } 67 } 68 69 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 70 if (!(env->sstateen[index] & bit)) { 71 return RISCV_EXCP_ILLEGAL_INST; 72 } 73 } 74 75 return RISCV_EXCP_NONE; 76 } 77 #endif 78 79 static RISCVException fs(CPURISCVState *env, int csrno) 80 { 81 #if !defined(CONFIG_USER_ONLY) 82 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 83 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 84 return RISCV_EXCP_ILLEGAL_INST; 85 } 86 #endif 87 return RISCV_EXCP_NONE; 88 } 89 90 static RISCVException vs(CPURISCVState *env, int csrno) 91 { 92 RISCVCPU *cpu = env_archcpu(env); 93 94 if (env->misa_ext & RVV || 95 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 96 #if !defined(CONFIG_USER_ONLY) 97 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 98 return RISCV_EXCP_ILLEGAL_INST; 99 } 100 #endif 101 return RISCV_EXCP_NONE; 102 } 103 return RISCV_EXCP_ILLEGAL_INST; 104 } 105 106 static RISCVException ctr(CPURISCVState *env, int csrno) 107 { 108 #if !defined(CONFIG_USER_ONLY) 109 RISCVCPU *cpu = env_archcpu(env); 110 int ctr_index; 111 target_ulong ctr_mask; 112 int base_csrno = CSR_CYCLE; 113 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 114 115 if (rv32 && csrno >= CSR_CYCLEH) { 116 /* Offset for RV32 hpmcounternh counters */ 117 base_csrno += 0x80; 118 } 119 ctr_index = csrno - base_csrno; 120 ctr_mask = BIT(ctr_index); 121 122 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 123 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 124 goto skip_ext_pmu_check; 125 } 126 127 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 128 /* No counter is enabled in PMU or the counter is out of range */ 129 return RISCV_EXCP_ILLEGAL_INST; 130 } 131 132 skip_ext_pmu_check: 133 134 if (env->debugger) { 135 return RISCV_EXCP_NONE; 136 } 137 138 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 139 return RISCV_EXCP_ILLEGAL_INST; 140 } 141 142 if (riscv_cpu_virt_enabled(env)) { 143 if (!get_field(env->hcounteren, ctr_mask) || 144 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 145 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 146 } 147 } 148 149 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 150 !get_field(env->scounteren, ctr_mask)) { 151 return RISCV_EXCP_ILLEGAL_INST; 152 } 153 154 #endif 155 return RISCV_EXCP_NONE; 156 } 157 158 static RISCVException ctr32(CPURISCVState *env, int csrno) 159 { 160 if (riscv_cpu_mxl(env) != MXL_RV32) { 161 return RISCV_EXCP_ILLEGAL_INST; 162 } 163 164 return ctr(env, csrno); 165 } 166 167 #if !defined(CONFIG_USER_ONLY) 168 static RISCVException mctr(CPURISCVState *env, int csrno) 169 { 170 RISCVCPU *cpu = env_archcpu(env); 171 int ctr_index; 172 int base_csrno = CSR_MHPMCOUNTER3; 173 174 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 175 /* Offset for RV32 mhpmcounternh counters */ 176 base_csrno += 0x80; 177 } 178 ctr_index = csrno - base_csrno; 179 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 180 /* The PMU is not enabled or counter is out of range*/ 181 return RISCV_EXCP_ILLEGAL_INST; 182 } 183 184 return RISCV_EXCP_NONE; 185 } 186 187 static RISCVException mctr32(CPURISCVState *env, int csrno) 188 { 189 if (riscv_cpu_mxl(env) != MXL_RV32) { 190 return RISCV_EXCP_ILLEGAL_INST; 191 } 192 193 return mctr(env, csrno); 194 } 195 196 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 197 { 198 RISCVCPU *cpu = env_archcpu(env); 199 200 if (!cpu->cfg.ext_sscofpmf) { 201 return RISCV_EXCP_ILLEGAL_INST; 202 } 203 204 return RISCV_EXCP_NONE; 205 } 206 207 static RISCVException any(CPURISCVState *env, int csrno) 208 { 209 return RISCV_EXCP_NONE; 210 } 211 212 static RISCVException any32(CPURISCVState *env, int csrno) 213 { 214 if (riscv_cpu_mxl(env) != MXL_RV32) { 215 return RISCV_EXCP_ILLEGAL_INST; 216 } 217 218 return any(env, csrno); 219 220 } 221 222 static int aia_any(CPURISCVState *env, int csrno) 223 { 224 RISCVCPU *cpu = env_archcpu(env); 225 226 if (!cpu->cfg.ext_smaia) { 227 return RISCV_EXCP_ILLEGAL_INST; 228 } 229 230 return any(env, csrno); 231 } 232 233 static int aia_any32(CPURISCVState *env, int csrno) 234 { 235 RISCVCPU *cpu = env_archcpu(env); 236 237 if (!cpu->cfg.ext_smaia) { 238 return RISCV_EXCP_ILLEGAL_INST; 239 } 240 241 return any32(env, csrno); 242 } 243 244 static RISCVException smode(CPURISCVState *env, int csrno) 245 { 246 if (riscv_has_ext(env, RVS)) { 247 return RISCV_EXCP_NONE; 248 } 249 250 return RISCV_EXCP_ILLEGAL_INST; 251 } 252 253 static int smode32(CPURISCVState *env, int csrno) 254 { 255 if (riscv_cpu_mxl(env) != MXL_RV32) { 256 return RISCV_EXCP_ILLEGAL_INST; 257 } 258 259 return smode(env, csrno); 260 } 261 262 static int aia_smode(CPURISCVState *env, int csrno) 263 { 264 RISCVCPU *cpu = env_archcpu(env); 265 266 if (!cpu->cfg.ext_ssaia) { 267 return RISCV_EXCP_ILLEGAL_INST; 268 } 269 270 return smode(env, csrno); 271 } 272 273 static int aia_smode32(CPURISCVState *env, int csrno) 274 { 275 RISCVCPU *cpu = env_archcpu(env); 276 277 if (!cpu->cfg.ext_ssaia) { 278 return RISCV_EXCP_ILLEGAL_INST; 279 } 280 281 return smode32(env, csrno); 282 } 283 284 static RISCVException hmode(CPURISCVState *env, int csrno) 285 { 286 if (riscv_has_ext(env, RVH)) { 287 return RISCV_EXCP_NONE; 288 } 289 290 return RISCV_EXCP_ILLEGAL_INST; 291 } 292 293 static RISCVException hmode32(CPURISCVState *env, int csrno) 294 { 295 if (riscv_cpu_mxl(env) != MXL_RV32) { 296 return RISCV_EXCP_ILLEGAL_INST; 297 } 298 299 return hmode(env, csrno); 300 301 } 302 303 static RISCVException umode(CPURISCVState *env, int csrno) 304 { 305 if (riscv_has_ext(env, RVU)) { 306 return RISCV_EXCP_NONE; 307 } 308 309 return RISCV_EXCP_ILLEGAL_INST; 310 } 311 312 static RISCVException umode32(CPURISCVState *env, int csrno) 313 { 314 if (riscv_cpu_mxl(env) != MXL_RV32) { 315 return RISCV_EXCP_ILLEGAL_INST; 316 } 317 318 return umode(env, csrno); 319 } 320 321 static RISCVException mstateen(CPURISCVState *env, int csrno) 322 { 323 RISCVCPU *cpu = env_archcpu(env); 324 325 if (!cpu->cfg.ext_smstateen) { 326 return RISCV_EXCP_ILLEGAL_INST; 327 } 328 329 return any(env, csrno); 330 } 331 332 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 333 { 334 RISCVCPU *cpu = env_archcpu(env); 335 336 if (!cpu->cfg.ext_smstateen) { 337 return RISCV_EXCP_ILLEGAL_INST; 338 } 339 340 RISCVException ret = hmode(env, csrno); 341 if (ret != RISCV_EXCP_NONE) { 342 return ret; 343 } 344 345 if (env->debugger) { 346 return RISCV_EXCP_NONE; 347 } 348 349 if (env->priv < PRV_M) { 350 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 351 return RISCV_EXCP_ILLEGAL_INST; 352 } 353 } 354 355 return RISCV_EXCP_NONE; 356 } 357 358 static RISCVException hstateen(CPURISCVState *env, int csrno) 359 { 360 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 361 } 362 363 static RISCVException hstateenh(CPURISCVState *env, int csrno) 364 { 365 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 366 } 367 368 static RISCVException sstateen(CPURISCVState *env, int csrno) 369 { 370 bool virt = riscv_cpu_virt_enabled(env); 371 int index = csrno - CSR_SSTATEEN0; 372 RISCVCPU *cpu = env_archcpu(env); 373 374 if (!cpu->cfg.ext_smstateen) { 375 return RISCV_EXCP_ILLEGAL_INST; 376 } 377 378 RISCVException ret = smode(env, csrno); 379 if (ret != RISCV_EXCP_NONE) { 380 return ret; 381 } 382 383 if (env->debugger) { 384 return RISCV_EXCP_NONE; 385 } 386 387 if (env->priv < PRV_M) { 388 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 389 return RISCV_EXCP_ILLEGAL_INST; 390 } 391 392 if (virt) { 393 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 394 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 395 } 396 } 397 } 398 399 return RISCV_EXCP_NONE; 400 } 401 402 /* Checks if PointerMasking registers could be accessed */ 403 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 404 { 405 /* Check if j-ext is present */ 406 if (riscv_has_ext(env, RVJ)) { 407 return RISCV_EXCP_NONE; 408 } 409 return RISCV_EXCP_ILLEGAL_INST; 410 } 411 412 static int aia_hmode(CPURISCVState *env, int csrno) 413 { 414 RISCVCPU *cpu = env_archcpu(env); 415 416 if (!cpu->cfg.ext_ssaia) { 417 return RISCV_EXCP_ILLEGAL_INST; 418 } 419 420 return hmode(env, csrno); 421 } 422 423 static int aia_hmode32(CPURISCVState *env, int csrno) 424 { 425 RISCVCPU *cpu = env_archcpu(env); 426 427 if (!cpu->cfg.ext_ssaia) { 428 return RISCV_EXCP_ILLEGAL_INST; 429 } 430 431 return hmode32(env, csrno); 432 } 433 434 static RISCVException pmp(CPURISCVState *env, int csrno) 435 { 436 if (riscv_cpu_cfg(env)->pmp) { 437 if (csrno <= CSR_PMPCFG3) { 438 uint32_t reg_index = csrno - CSR_PMPCFG0; 439 440 /* TODO: RV128 restriction check */ 441 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 442 return RISCV_EXCP_ILLEGAL_INST; 443 } 444 } 445 446 return RISCV_EXCP_NONE; 447 } 448 449 return RISCV_EXCP_ILLEGAL_INST; 450 } 451 452 static RISCVException epmp(CPURISCVState *env, int csrno) 453 { 454 if (riscv_cpu_cfg(env)->epmp) { 455 return RISCV_EXCP_NONE; 456 } 457 458 return RISCV_EXCP_ILLEGAL_INST; 459 } 460 461 static RISCVException debug(CPURISCVState *env, int csrno) 462 { 463 if (riscv_cpu_cfg(env)->debug) { 464 return RISCV_EXCP_NONE; 465 } 466 467 return RISCV_EXCP_ILLEGAL_INST; 468 } 469 #endif 470 471 static RISCVException seed(CPURISCVState *env, int csrno) 472 { 473 RISCVCPU *cpu = env_archcpu(env); 474 475 if (!cpu->cfg.ext_zkr) { 476 return RISCV_EXCP_ILLEGAL_INST; 477 } 478 479 #if !defined(CONFIG_USER_ONLY) 480 if (env->debugger) { 481 return RISCV_EXCP_NONE; 482 } 483 484 /* 485 * With a CSR read-write instruction: 486 * 1) The seed CSR is always available in machine mode as normal. 487 * 2) Attempted access to seed from virtual modes VS and VU always raises 488 * an exception(virtual instruction exception only if mseccfg.sseed=1). 489 * 3) Without the corresponding access control bit set to 1, any attempted 490 * access to seed from U, S or HS modes will raise an illegal instruction 491 * exception. 492 */ 493 if (env->priv == PRV_M) { 494 return RISCV_EXCP_NONE; 495 } else if (riscv_cpu_virt_enabled(env)) { 496 if (env->mseccfg & MSECCFG_SSEED) { 497 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 498 } else { 499 return RISCV_EXCP_ILLEGAL_INST; 500 } 501 } else { 502 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 503 return RISCV_EXCP_NONE; 504 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 505 return RISCV_EXCP_NONE; 506 } else { 507 return RISCV_EXCP_ILLEGAL_INST; 508 } 509 } 510 #else 511 return RISCV_EXCP_NONE; 512 #endif 513 } 514 515 /* User Floating-Point CSRs */ 516 static RISCVException read_fflags(CPURISCVState *env, int csrno, 517 target_ulong *val) 518 { 519 *val = riscv_cpu_get_fflags(env); 520 return RISCV_EXCP_NONE; 521 } 522 523 static RISCVException write_fflags(CPURISCVState *env, int csrno, 524 target_ulong val) 525 { 526 #if !defined(CONFIG_USER_ONLY) 527 if (riscv_has_ext(env, RVF)) { 528 env->mstatus |= MSTATUS_FS; 529 } 530 #endif 531 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 532 return RISCV_EXCP_NONE; 533 } 534 535 static RISCVException read_frm(CPURISCVState *env, int csrno, 536 target_ulong *val) 537 { 538 *val = env->frm; 539 return RISCV_EXCP_NONE; 540 } 541 542 static RISCVException write_frm(CPURISCVState *env, int csrno, 543 target_ulong val) 544 { 545 #if !defined(CONFIG_USER_ONLY) 546 if (riscv_has_ext(env, RVF)) { 547 env->mstatus |= MSTATUS_FS; 548 } 549 #endif 550 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 551 return RISCV_EXCP_NONE; 552 } 553 554 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 555 target_ulong *val) 556 { 557 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 558 | (env->frm << FSR_RD_SHIFT); 559 return RISCV_EXCP_NONE; 560 } 561 562 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 563 target_ulong val) 564 { 565 #if !defined(CONFIG_USER_ONLY) 566 if (riscv_has_ext(env, RVF)) { 567 env->mstatus |= MSTATUS_FS; 568 } 569 #endif 570 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 571 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 572 return RISCV_EXCP_NONE; 573 } 574 575 static RISCVException read_vtype(CPURISCVState *env, int csrno, 576 target_ulong *val) 577 { 578 uint64_t vill; 579 switch (env->xl) { 580 case MXL_RV32: 581 vill = (uint32_t)env->vill << 31; 582 break; 583 case MXL_RV64: 584 vill = (uint64_t)env->vill << 63; 585 break; 586 default: 587 g_assert_not_reached(); 588 } 589 *val = (target_ulong)vill | env->vtype; 590 return RISCV_EXCP_NONE; 591 } 592 593 static RISCVException read_vl(CPURISCVState *env, int csrno, 594 target_ulong *val) 595 { 596 *val = env->vl; 597 return RISCV_EXCP_NONE; 598 } 599 600 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 601 { 602 *val = env_archcpu(env)->cfg.vlen >> 3; 603 return RISCV_EXCP_NONE; 604 } 605 606 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 607 target_ulong *val) 608 { 609 *val = env->vxrm; 610 return RISCV_EXCP_NONE; 611 } 612 613 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 614 target_ulong val) 615 { 616 #if !defined(CONFIG_USER_ONLY) 617 env->mstatus |= MSTATUS_VS; 618 #endif 619 env->vxrm = val; 620 return RISCV_EXCP_NONE; 621 } 622 623 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 624 target_ulong *val) 625 { 626 *val = env->vxsat; 627 return RISCV_EXCP_NONE; 628 } 629 630 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 631 target_ulong val) 632 { 633 #if !defined(CONFIG_USER_ONLY) 634 env->mstatus |= MSTATUS_VS; 635 #endif 636 env->vxsat = val; 637 return RISCV_EXCP_NONE; 638 } 639 640 static RISCVException read_vstart(CPURISCVState *env, int csrno, 641 target_ulong *val) 642 { 643 *val = env->vstart; 644 return RISCV_EXCP_NONE; 645 } 646 647 static RISCVException write_vstart(CPURISCVState *env, int csrno, 648 target_ulong val) 649 { 650 #if !defined(CONFIG_USER_ONLY) 651 env->mstatus |= MSTATUS_VS; 652 #endif 653 /* 654 * The vstart CSR is defined to have only enough writable bits 655 * to hold the largest element index, i.e. lg2(VLEN) bits. 656 */ 657 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 658 return RISCV_EXCP_NONE; 659 } 660 661 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 662 { 663 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 664 return RISCV_EXCP_NONE; 665 } 666 667 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 668 { 669 #if !defined(CONFIG_USER_ONLY) 670 env->mstatus |= MSTATUS_VS; 671 #endif 672 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 673 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 674 return RISCV_EXCP_NONE; 675 } 676 677 /* User Timers and Counters */ 678 static target_ulong get_ticks(bool shift) 679 { 680 int64_t val; 681 target_ulong result; 682 683 #if !defined(CONFIG_USER_ONLY) 684 if (icount_enabled()) { 685 val = icount_get(); 686 } else { 687 val = cpu_get_host_ticks(); 688 } 689 #else 690 val = cpu_get_host_ticks(); 691 #endif 692 693 if (shift) { 694 result = val >> 32; 695 } else { 696 result = val; 697 } 698 699 return result; 700 } 701 702 #if defined(CONFIG_USER_ONLY) 703 static RISCVException read_time(CPURISCVState *env, int csrno, 704 target_ulong *val) 705 { 706 *val = cpu_get_host_ticks(); 707 return RISCV_EXCP_NONE; 708 } 709 710 static RISCVException read_timeh(CPURISCVState *env, int csrno, 711 target_ulong *val) 712 { 713 *val = cpu_get_host_ticks() >> 32; 714 return RISCV_EXCP_NONE; 715 } 716 717 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 718 { 719 *val = get_ticks(false); 720 return RISCV_EXCP_NONE; 721 } 722 723 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 724 { 725 *val = get_ticks(true); 726 return RISCV_EXCP_NONE; 727 } 728 729 #else /* CONFIG_USER_ONLY */ 730 731 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 732 { 733 int evt_index = csrno - CSR_MCOUNTINHIBIT; 734 735 *val = env->mhpmevent_val[evt_index]; 736 737 return RISCV_EXCP_NONE; 738 } 739 740 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 741 { 742 int evt_index = csrno - CSR_MCOUNTINHIBIT; 743 uint64_t mhpmevt_val = val; 744 745 env->mhpmevent_val[evt_index] = val; 746 747 if (riscv_cpu_mxl(env) == MXL_RV32) { 748 mhpmevt_val = mhpmevt_val | 749 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 750 } 751 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 752 753 return RISCV_EXCP_NONE; 754 } 755 756 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 757 { 758 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 759 760 *val = env->mhpmeventh_val[evt_index]; 761 762 return RISCV_EXCP_NONE; 763 } 764 765 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 766 { 767 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 768 uint64_t mhpmevth_val = val; 769 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 770 771 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 772 env->mhpmeventh_val[evt_index] = val; 773 774 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 775 776 return RISCV_EXCP_NONE; 777 } 778 779 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 780 { 781 int ctr_idx = csrno - CSR_MCYCLE; 782 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 783 uint64_t mhpmctr_val = val; 784 785 counter->mhpmcounter_val = val; 786 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 787 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 788 counter->mhpmcounter_prev = get_ticks(false); 789 if (ctr_idx > 2) { 790 if (riscv_cpu_mxl(env) == MXL_RV32) { 791 mhpmctr_val = mhpmctr_val | 792 ((uint64_t)counter->mhpmcounterh_val << 32); 793 } 794 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 795 } 796 } else { 797 /* Other counters can keep incrementing from the given value */ 798 counter->mhpmcounter_prev = val; 799 } 800 801 return RISCV_EXCP_NONE; 802 } 803 804 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 805 { 806 int ctr_idx = csrno - CSR_MCYCLEH; 807 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 808 uint64_t mhpmctr_val = counter->mhpmcounter_val; 809 uint64_t mhpmctrh_val = val; 810 811 counter->mhpmcounterh_val = val; 812 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 813 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 814 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 815 counter->mhpmcounterh_prev = get_ticks(true); 816 if (ctr_idx > 2) { 817 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 818 } 819 } else { 820 counter->mhpmcounterh_prev = val; 821 } 822 823 return RISCV_EXCP_NONE; 824 } 825 826 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 827 bool upper_half, uint32_t ctr_idx) 828 { 829 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 830 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 831 counter.mhpmcounter_prev; 832 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 833 counter.mhpmcounter_val; 834 835 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 836 /** 837 * Counter should not increment if inhibit bit is set. We can't really 838 * stop the icount counting. Just return the counter value written by 839 * the supervisor to indicate that counter was not incremented. 840 */ 841 if (!counter.started) { 842 *val = ctr_val; 843 return RISCV_EXCP_NONE; 844 } else { 845 /* Mark that the counter has been stopped */ 846 counter.started = false; 847 } 848 } 849 850 /** 851 * The kernel computes the perf delta by subtracting the current value from 852 * the value it initialized previously (ctr_val). 853 */ 854 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 855 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 856 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 857 } else { 858 *val = ctr_val; 859 } 860 861 return RISCV_EXCP_NONE; 862 } 863 864 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 865 { 866 uint16_t ctr_index; 867 868 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 869 ctr_index = csrno - CSR_MCYCLE; 870 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 871 ctr_index = csrno - CSR_CYCLE; 872 } else { 873 return RISCV_EXCP_ILLEGAL_INST; 874 } 875 876 return riscv_pmu_read_ctr(env, val, false, ctr_index); 877 } 878 879 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 880 { 881 uint16_t ctr_index; 882 883 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 884 ctr_index = csrno - CSR_MCYCLEH; 885 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 886 ctr_index = csrno - CSR_CYCLEH; 887 } else { 888 return RISCV_EXCP_ILLEGAL_INST; 889 } 890 891 return riscv_pmu_read_ctr(env, val, true, ctr_index); 892 } 893 894 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 895 { 896 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 897 int i; 898 *val = 0; 899 target_ulong *mhpm_evt_val; 900 uint64_t of_bit_mask; 901 902 if (riscv_cpu_mxl(env) == MXL_RV32) { 903 mhpm_evt_val = env->mhpmeventh_val; 904 of_bit_mask = MHPMEVENTH_BIT_OF; 905 } else { 906 mhpm_evt_val = env->mhpmevent_val; 907 of_bit_mask = MHPMEVENT_BIT_OF; 908 } 909 910 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 911 if ((get_field(env->mcounteren, BIT(i))) && 912 (mhpm_evt_val[i] & of_bit_mask)) { 913 *val |= BIT(i); 914 } 915 } 916 917 return RISCV_EXCP_NONE; 918 } 919 920 static RISCVException read_time(CPURISCVState *env, int csrno, 921 target_ulong *val) 922 { 923 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 924 925 if (!env->rdtime_fn) { 926 return RISCV_EXCP_ILLEGAL_INST; 927 } 928 929 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 930 return RISCV_EXCP_NONE; 931 } 932 933 static RISCVException read_timeh(CPURISCVState *env, int csrno, 934 target_ulong *val) 935 { 936 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 937 938 if (!env->rdtime_fn) { 939 return RISCV_EXCP_ILLEGAL_INST; 940 } 941 942 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 943 return RISCV_EXCP_NONE; 944 } 945 946 static RISCVException sstc(CPURISCVState *env, int csrno) 947 { 948 RISCVCPU *cpu = env_archcpu(env); 949 bool hmode_check = false; 950 951 if (!cpu->cfg.ext_sstc || !env->rdtime_fn) { 952 return RISCV_EXCP_ILLEGAL_INST; 953 } 954 955 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 956 hmode_check = true; 957 } 958 959 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 960 if (ret != RISCV_EXCP_NONE) { 961 return ret; 962 } 963 964 if (env->debugger) { 965 return RISCV_EXCP_NONE; 966 } 967 968 if (env->priv == PRV_M) { 969 return RISCV_EXCP_NONE; 970 } 971 972 /* 973 * No need of separate function for rv32 as menvcfg stores both menvcfg 974 * menvcfgh for RV32. 975 */ 976 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 977 get_field(env->menvcfg, MENVCFG_STCE))) { 978 return RISCV_EXCP_ILLEGAL_INST; 979 } 980 981 if (riscv_cpu_virt_enabled(env)) { 982 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 983 get_field(env->henvcfg, HENVCFG_STCE))) { 984 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 985 } 986 } 987 988 return RISCV_EXCP_NONE; 989 } 990 991 static RISCVException sstc_32(CPURISCVState *env, int csrno) 992 { 993 if (riscv_cpu_mxl(env) != MXL_RV32) { 994 return RISCV_EXCP_ILLEGAL_INST; 995 } 996 997 return sstc(env, csrno); 998 } 999 1000 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 1001 target_ulong *val) 1002 { 1003 *val = env->vstimecmp; 1004 1005 return RISCV_EXCP_NONE; 1006 } 1007 1008 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 1009 target_ulong *val) 1010 { 1011 *val = env->vstimecmp >> 32; 1012 1013 return RISCV_EXCP_NONE; 1014 } 1015 1016 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1017 target_ulong val) 1018 { 1019 RISCVCPU *cpu = env_archcpu(env); 1020 1021 if (riscv_cpu_mxl(env) == MXL_RV32) { 1022 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1023 } else { 1024 env->vstimecmp = val; 1025 } 1026 1027 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1028 env->htimedelta, MIP_VSTIP); 1029 1030 return RISCV_EXCP_NONE; 1031 } 1032 1033 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1034 target_ulong val) 1035 { 1036 RISCVCPU *cpu = env_archcpu(env); 1037 1038 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1039 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1040 env->htimedelta, MIP_VSTIP); 1041 1042 return RISCV_EXCP_NONE; 1043 } 1044 1045 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1046 target_ulong *val) 1047 { 1048 if (riscv_cpu_virt_enabled(env)) { 1049 *val = env->vstimecmp; 1050 } else { 1051 *val = env->stimecmp; 1052 } 1053 1054 return RISCV_EXCP_NONE; 1055 } 1056 1057 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1058 target_ulong *val) 1059 { 1060 if (riscv_cpu_virt_enabled(env)) { 1061 *val = env->vstimecmp >> 32; 1062 } else { 1063 *val = env->stimecmp >> 32; 1064 } 1065 1066 return RISCV_EXCP_NONE; 1067 } 1068 1069 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1070 target_ulong val) 1071 { 1072 RISCVCPU *cpu = env_archcpu(env); 1073 1074 if (riscv_cpu_virt_enabled(env)) { 1075 if (env->hvictl & HVICTL_VTI) { 1076 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1077 } 1078 return write_vstimecmp(env, csrno, val); 1079 } 1080 1081 if (riscv_cpu_mxl(env) == MXL_RV32) { 1082 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1083 } else { 1084 env->stimecmp = val; 1085 } 1086 1087 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1088 1089 return RISCV_EXCP_NONE; 1090 } 1091 1092 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1093 target_ulong val) 1094 { 1095 RISCVCPU *cpu = env_archcpu(env); 1096 1097 if (riscv_cpu_virt_enabled(env)) { 1098 if (env->hvictl & HVICTL_VTI) { 1099 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1100 } 1101 return write_vstimecmph(env, csrno, val); 1102 } 1103 1104 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1105 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1106 1107 return RISCV_EXCP_NONE; 1108 } 1109 1110 /* Machine constants */ 1111 1112 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1113 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1114 MIP_LCOFIP)) 1115 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1116 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1117 1118 #define VSTOPI_NUM_SRCS 5 1119 1120 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1121 VS_MODE_INTERRUPTS; 1122 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1123 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1124 HS_MODE_INTERRUPTS; 1125 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1126 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1127 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1128 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1129 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1130 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1131 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1132 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1133 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1134 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1135 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1136 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1137 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1138 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1139 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1140 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1141 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1142 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1143 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1144 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1145 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1146 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1147 (1ULL << (RISCV_EXCP_M_ECALL)) | 1148 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1149 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1150 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1151 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1152 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1153 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1154 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1155 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1156 SIP_LCOFIP; 1157 static const target_ulong hip_writable_mask = MIP_VSSIP; 1158 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1159 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1160 1161 static const char valid_vm_1_10_32[16] = { 1162 [VM_1_10_MBARE] = 1, 1163 [VM_1_10_SV32] = 1 1164 }; 1165 1166 static const char valid_vm_1_10_64[16] = { 1167 [VM_1_10_MBARE] = 1, 1168 [VM_1_10_SV39] = 1, 1169 [VM_1_10_SV48] = 1, 1170 [VM_1_10_SV57] = 1 1171 }; 1172 1173 /* Machine Information Registers */ 1174 static RISCVException read_zero(CPURISCVState *env, int csrno, 1175 target_ulong *val) 1176 { 1177 *val = 0; 1178 return RISCV_EXCP_NONE; 1179 } 1180 1181 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1182 target_ulong val) 1183 { 1184 return RISCV_EXCP_NONE; 1185 } 1186 1187 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1188 target_ulong *val) 1189 { 1190 RISCVCPU *cpu = env_archcpu(env); 1191 1192 *val = cpu->cfg.mvendorid; 1193 return RISCV_EXCP_NONE; 1194 } 1195 1196 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1197 target_ulong *val) 1198 { 1199 RISCVCPU *cpu = env_archcpu(env); 1200 1201 *val = cpu->cfg.marchid; 1202 return RISCV_EXCP_NONE; 1203 } 1204 1205 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1206 target_ulong *val) 1207 { 1208 RISCVCPU *cpu = env_archcpu(env); 1209 1210 *val = cpu->cfg.mimpid; 1211 return RISCV_EXCP_NONE; 1212 } 1213 1214 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1215 target_ulong *val) 1216 { 1217 *val = env->mhartid; 1218 return RISCV_EXCP_NONE; 1219 } 1220 1221 /* Machine Trap Setup */ 1222 1223 /* We do not store SD explicitly, only compute it on demand. */ 1224 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1225 { 1226 if ((status & MSTATUS_FS) == MSTATUS_FS || 1227 (status & MSTATUS_VS) == MSTATUS_VS || 1228 (status & MSTATUS_XS) == MSTATUS_XS) { 1229 switch (xl) { 1230 case MXL_RV32: 1231 return status | MSTATUS32_SD; 1232 case MXL_RV64: 1233 return status | MSTATUS64_SD; 1234 case MXL_RV128: 1235 return MSTATUSH128_SD; 1236 default: 1237 g_assert_not_reached(); 1238 } 1239 } 1240 return status; 1241 } 1242 1243 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1244 target_ulong *val) 1245 { 1246 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1247 return RISCV_EXCP_NONE; 1248 } 1249 1250 static int validate_vm(CPURISCVState *env, target_ulong vm) 1251 { 1252 if (riscv_cpu_mxl(env) == MXL_RV32) { 1253 return valid_vm_1_10_32[vm & 0xf]; 1254 } else { 1255 return valid_vm_1_10_64[vm & 0xf]; 1256 } 1257 } 1258 1259 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1260 target_ulong val) 1261 { 1262 uint64_t mstatus = env->mstatus; 1263 uint64_t mask = 0; 1264 RISCVMXL xl = riscv_cpu_mxl(env); 1265 1266 /* flush tlb on mstatus fields that affect VM */ 1267 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1268 MSTATUS_MPRV | MSTATUS_SUM)) { 1269 tlb_flush(env_cpu(env)); 1270 } 1271 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1272 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1273 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1274 MSTATUS_TW | MSTATUS_VS; 1275 1276 if (riscv_has_ext(env, RVF)) { 1277 mask |= MSTATUS_FS; 1278 } 1279 1280 if (xl != MXL_RV32 || env->debugger) { 1281 /* 1282 * RV32: MPV and GVA are not in mstatus. The current plan is to 1283 * add them to mstatush. For now, we just don't support it. 1284 */ 1285 mask |= MSTATUS_MPV | MSTATUS_GVA; 1286 if ((val & MSTATUS64_UXL) != 0) { 1287 mask |= MSTATUS64_UXL; 1288 } 1289 } 1290 1291 mstatus = (mstatus & ~mask) | (val & mask); 1292 1293 if (xl > MXL_RV32) { 1294 /* SXL field is for now read only */ 1295 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1296 } 1297 env->mstatus = mstatus; 1298 env->xl = cpu_recompute_xl(env); 1299 1300 return RISCV_EXCP_NONE; 1301 } 1302 1303 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1304 target_ulong *val) 1305 { 1306 *val = env->mstatus >> 32; 1307 return RISCV_EXCP_NONE; 1308 } 1309 1310 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1311 target_ulong val) 1312 { 1313 uint64_t valh = (uint64_t)val << 32; 1314 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1315 1316 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1317 tlb_flush(env_cpu(env)); 1318 } 1319 1320 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1321 1322 return RISCV_EXCP_NONE; 1323 } 1324 1325 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1326 Int128 *val) 1327 { 1328 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1329 return RISCV_EXCP_NONE; 1330 } 1331 1332 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1333 Int128 *val) 1334 { 1335 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1336 return RISCV_EXCP_NONE; 1337 } 1338 1339 static RISCVException read_misa(CPURISCVState *env, int csrno, 1340 target_ulong *val) 1341 { 1342 target_ulong misa; 1343 1344 switch (env->misa_mxl) { 1345 case MXL_RV32: 1346 misa = (target_ulong)MXL_RV32 << 30; 1347 break; 1348 #ifdef TARGET_RISCV64 1349 case MXL_RV64: 1350 misa = (target_ulong)MXL_RV64 << 62; 1351 break; 1352 #endif 1353 default: 1354 g_assert_not_reached(); 1355 } 1356 1357 *val = misa | env->misa_ext; 1358 return RISCV_EXCP_NONE; 1359 } 1360 1361 static RISCVException write_misa(CPURISCVState *env, int csrno, 1362 target_ulong val) 1363 { 1364 if (!riscv_cpu_cfg(env)->misa_w) { 1365 /* drop write to misa */ 1366 return RISCV_EXCP_NONE; 1367 } 1368 1369 /* 'I' or 'E' must be present */ 1370 if (!(val & (RVI | RVE))) { 1371 /* It is not, drop write to misa */ 1372 return RISCV_EXCP_NONE; 1373 } 1374 1375 /* 'E' excludes all other extensions */ 1376 if (val & RVE) { 1377 /* 1378 * when we support 'E' we can do "val = RVE;" however 1379 * for now we just drop writes if 'E' is present. 1380 */ 1381 return RISCV_EXCP_NONE; 1382 } 1383 1384 /* 1385 * misa.MXL writes are not supported by QEMU. 1386 * Drop writes to those bits. 1387 */ 1388 1389 /* Mask extensions that are not supported by this hart */ 1390 val &= env->misa_ext_mask; 1391 1392 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1393 if ((val & RVD) && !(val & RVF)) { 1394 val &= ~RVD; 1395 } 1396 1397 /* 1398 * Suppress 'C' if next instruction is not aligned 1399 * TODO: this should check next_pc 1400 */ 1401 if ((val & RVC) && (GETPC() & ~3) != 0) { 1402 val &= ~RVC; 1403 } 1404 1405 /* If nothing changed, do nothing. */ 1406 if (val == env->misa_ext) { 1407 return RISCV_EXCP_NONE; 1408 } 1409 1410 if (!(val & RVF)) { 1411 env->mstatus &= ~MSTATUS_FS; 1412 } 1413 1414 /* flush translation cache */ 1415 tb_flush(env_cpu(env)); 1416 env->misa_ext = val; 1417 env->xl = riscv_cpu_mxl(env); 1418 return RISCV_EXCP_NONE; 1419 } 1420 1421 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1422 target_ulong *val) 1423 { 1424 *val = env->medeleg; 1425 return RISCV_EXCP_NONE; 1426 } 1427 1428 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1429 target_ulong val) 1430 { 1431 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1432 return RISCV_EXCP_NONE; 1433 } 1434 1435 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1436 uint64_t *ret_val, 1437 uint64_t new_val, uint64_t wr_mask) 1438 { 1439 uint64_t mask = wr_mask & delegable_ints; 1440 1441 if (ret_val) { 1442 *ret_val = env->mideleg; 1443 } 1444 1445 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1446 1447 if (riscv_has_ext(env, RVH)) { 1448 env->mideleg |= HS_MODE_INTERRUPTS; 1449 } 1450 1451 return RISCV_EXCP_NONE; 1452 } 1453 1454 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1455 target_ulong *ret_val, 1456 target_ulong new_val, target_ulong wr_mask) 1457 { 1458 uint64_t rval; 1459 RISCVException ret; 1460 1461 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1462 if (ret_val) { 1463 *ret_val = rval; 1464 } 1465 1466 return ret; 1467 } 1468 1469 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1470 target_ulong *ret_val, 1471 target_ulong new_val, 1472 target_ulong wr_mask) 1473 { 1474 uint64_t rval; 1475 RISCVException ret; 1476 1477 ret = rmw_mideleg64(env, csrno, &rval, 1478 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1479 if (ret_val) { 1480 *ret_val = rval >> 32; 1481 } 1482 1483 return ret; 1484 } 1485 1486 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1487 uint64_t *ret_val, 1488 uint64_t new_val, uint64_t wr_mask) 1489 { 1490 uint64_t mask = wr_mask & all_ints; 1491 1492 if (ret_val) { 1493 *ret_val = env->mie; 1494 } 1495 1496 env->mie = (env->mie & ~mask) | (new_val & mask); 1497 1498 if (!riscv_has_ext(env, RVH)) { 1499 env->mie &= ~((uint64_t)MIP_SGEIP); 1500 } 1501 1502 return RISCV_EXCP_NONE; 1503 } 1504 1505 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1506 target_ulong *ret_val, 1507 target_ulong new_val, target_ulong wr_mask) 1508 { 1509 uint64_t rval; 1510 RISCVException ret; 1511 1512 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1513 if (ret_val) { 1514 *ret_val = rval; 1515 } 1516 1517 return ret; 1518 } 1519 1520 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1521 target_ulong *ret_val, 1522 target_ulong new_val, target_ulong wr_mask) 1523 { 1524 uint64_t rval; 1525 RISCVException ret; 1526 1527 ret = rmw_mie64(env, csrno, &rval, 1528 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1529 if (ret_val) { 1530 *ret_val = rval >> 32; 1531 } 1532 1533 return ret; 1534 } 1535 1536 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1537 { 1538 int irq; 1539 uint8_t iprio; 1540 1541 irq = riscv_cpu_mirq_pending(env); 1542 if (irq <= 0 || irq > 63) { 1543 *val = 0; 1544 } else { 1545 iprio = env->miprio[irq]; 1546 if (!iprio) { 1547 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1548 iprio = IPRIO_MMAXIPRIO; 1549 } 1550 } 1551 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1552 *val |= iprio; 1553 } 1554 1555 return RISCV_EXCP_NONE; 1556 } 1557 1558 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1559 { 1560 if (!riscv_cpu_virt_enabled(env)) { 1561 return csrno; 1562 } 1563 1564 switch (csrno) { 1565 case CSR_SISELECT: 1566 return CSR_VSISELECT; 1567 case CSR_SIREG: 1568 return CSR_VSIREG; 1569 case CSR_STOPEI: 1570 return CSR_VSTOPEI; 1571 default: 1572 return csrno; 1573 }; 1574 } 1575 1576 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1577 target_ulong new_val, target_ulong wr_mask) 1578 { 1579 target_ulong *iselect; 1580 1581 /* Translate CSR number for VS-mode */ 1582 csrno = aia_xlate_vs_csrno(env, csrno); 1583 1584 /* Find the iselect CSR based on CSR number */ 1585 switch (csrno) { 1586 case CSR_MISELECT: 1587 iselect = &env->miselect; 1588 break; 1589 case CSR_SISELECT: 1590 iselect = &env->siselect; 1591 break; 1592 case CSR_VSISELECT: 1593 iselect = &env->vsiselect; 1594 break; 1595 default: 1596 return RISCV_EXCP_ILLEGAL_INST; 1597 }; 1598 1599 if (val) { 1600 *val = *iselect; 1601 } 1602 1603 wr_mask &= ISELECT_MASK; 1604 if (wr_mask) { 1605 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1606 } 1607 1608 return RISCV_EXCP_NONE; 1609 } 1610 1611 static int rmw_iprio(target_ulong xlen, 1612 target_ulong iselect, uint8_t *iprio, 1613 target_ulong *val, target_ulong new_val, 1614 target_ulong wr_mask, int ext_irq_no) 1615 { 1616 int i, firq, nirqs; 1617 target_ulong old_val; 1618 1619 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1620 return -EINVAL; 1621 } 1622 if (xlen != 32 && iselect & 0x1) { 1623 return -EINVAL; 1624 } 1625 1626 nirqs = 4 * (xlen / 32); 1627 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1628 1629 old_val = 0; 1630 for (i = 0; i < nirqs; i++) { 1631 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1632 } 1633 1634 if (val) { 1635 *val = old_val; 1636 } 1637 1638 if (wr_mask) { 1639 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1640 for (i = 0; i < nirqs; i++) { 1641 /* 1642 * M-level and S-level external IRQ priority always read-only 1643 * zero. This means default priority order is always preferred 1644 * for M-level and S-level external IRQs. 1645 */ 1646 if ((firq + i) == ext_irq_no) { 1647 continue; 1648 } 1649 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1650 } 1651 } 1652 1653 return 0; 1654 } 1655 1656 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1657 target_ulong new_val, target_ulong wr_mask) 1658 { 1659 bool virt; 1660 uint8_t *iprio; 1661 int ret = -EINVAL; 1662 target_ulong priv, isel, vgein; 1663 1664 /* Translate CSR number for VS-mode */ 1665 csrno = aia_xlate_vs_csrno(env, csrno); 1666 1667 /* Decode register details from CSR number */ 1668 virt = false; 1669 switch (csrno) { 1670 case CSR_MIREG: 1671 iprio = env->miprio; 1672 isel = env->miselect; 1673 priv = PRV_M; 1674 break; 1675 case CSR_SIREG: 1676 iprio = env->siprio; 1677 isel = env->siselect; 1678 priv = PRV_S; 1679 break; 1680 case CSR_VSIREG: 1681 iprio = env->hviprio; 1682 isel = env->vsiselect; 1683 priv = PRV_S; 1684 virt = true; 1685 break; 1686 default: 1687 goto done; 1688 }; 1689 1690 /* Find the selected guest interrupt file */ 1691 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1692 1693 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1694 /* Local interrupt priority registers not available for VS-mode */ 1695 if (!virt) { 1696 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1697 isel, iprio, val, new_val, wr_mask, 1698 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1699 } 1700 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1701 /* IMSIC registers only available when machine implements it. */ 1702 if (env->aia_ireg_rmw_fn[priv]) { 1703 /* Selected guest interrupt file should not be zero */ 1704 if (virt && (!vgein || env->geilen < vgein)) { 1705 goto done; 1706 } 1707 /* Call machine specific IMSIC register emulation */ 1708 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1709 AIA_MAKE_IREG(isel, priv, virt, vgein, 1710 riscv_cpu_mxl_bits(env)), 1711 val, new_val, wr_mask); 1712 } 1713 } 1714 1715 done: 1716 if (ret) { 1717 return (riscv_cpu_virt_enabled(env) && virt) ? 1718 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1719 } 1720 return RISCV_EXCP_NONE; 1721 } 1722 1723 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1724 target_ulong new_val, target_ulong wr_mask) 1725 { 1726 bool virt; 1727 int ret = -EINVAL; 1728 target_ulong priv, vgein; 1729 1730 /* Translate CSR number for VS-mode */ 1731 csrno = aia_xlate_vs_csrno(env, csrno); 1732 1733 /* Decode register details from CSR number */ 1734 virt = false; 1735 switch (csrno) { 1736 case CSR_MTOPEI: 1737 priv = PRV_M; 1738 break; 1739 case CSR_STOPEI: 1740 priv = PRV_S; 1741 break; 1742 case CSR_VSTOPEI: 1743 priv = PRV_S; 1744 virt = true; 1745 break; 1746 default: 1747 goto done; 1748 }; 1749 1750 /* IMSIC CSRs only available when machine implements IMSIC. */ 1751 if (!env->aia_ireg_rmw_fn[priv]) { 1752 goto done; 1753 } 1754 1755 /* Find the selected guest interrupt file */ 1756 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1757 1758 /* Selected guest interrupt file should be valid */ 1759 if (virt && (!vgein || env->geilen < vgein)) { 1760 goto done; 1761 } 1762 1763 /* Call machine specific IMSIC register emulation for TOPEI */ 1764 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1765 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1766 riscv_cpu_mxl_bits(env)), 1767 val, new_val, wr_mask); 1768 1769 done: 1770 if (ret) { 1771 return (riscv_cpu_virt_enabled(env) && virt) ? 1772 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1773 } 1774 return RISCV_EXCP_NONE; 1775 } 1776 1777 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1778 target_ulong *val) 1779 { 1780 *val = env->mtvec; 1781 return RISCV_EXCP_NONE; 1782 } 1783 1784 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1785 target_ulong val) 1786 { 1787 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1788 if ((val & 3) < 2) { 1789 env->mtvec = val; 1790 } else { 1791 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1792 } 1793 return RISCV_EXCP_NONE; 1794 } 1795 1796 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1797 target_ulong *val) 1798 { 1799 *val = env->mcountinhibit; 1800 return RISCV_EXCP_NONE; 1801 } 1802 1803 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1804 target_ulong val) 1805 { 1806 int cidx; 1807 PMUCTRState *counter; 1808 1809 env->mcountinhibit = val; 1810 1811 /* Check if any other counter is also monitoring cycles/instructions */ 1812 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1813 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1814 counter = &env->pmu_ctrs[cidx]; 1815 counter->started = true; 1816 } 1817 } 1818 1819 return RISCV_EXCP_NONE; 1820 } 1821 1822 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1823 target_ulong *val) 1824 { 1825 *val = env->mcounteren; 1826 return RISCV_EXCP_NONE; 1827 } 1828 1829 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1830 target_ulong val) 1831 { 1832 env->mcounteren = val; 1833 return RISCV_EXCP_NONE; 1834 } 1835 1836 /* Machine Trap Handling */ 1837 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1838 Int128 *val) 1839 { 1840 *val = int128_make128(env->mscratch, env->mscratchh); 1841 return RISCV_EXCP_NONE; 1842 } 1843 1844 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1845 Int128 val) 1846 { 1847 env->mscratch = int128_getlo(val); 1848 env->mscratchh = int128_gethi(val); 1849 return RISCV_EXCP_NONE; 1850 } 1851 1852 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1853 target_ulong *val) 1854 { 1855 *val = env->mscratch; 1856 return RISCV_EXCP_NONE; 1857 } 1858 1859 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1860 target_ulong val) 1861 { 1862 env->mscratch = val; 1863 return RISCV_EXCP_NONE; 1864 } 1865 1866 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1867 target_ulong *val) 1868 { 1869 *val = env->mepc; 1870 return RISCV_EXCP_NONE; 1871 } 1872 1873 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1874 target_ulong val) 1875 { 1876 env->mepc = val; 1877 return RISCV_EXCP_NONE; 1878 } 1879 1880 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1881 target_ulong *val) 1882 { 1883 *val = env->mcause; 1884 return RISCV_EXCP_NONE; 1885 } 1886 1887 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1888 target_ulong val) 1889 { 1890 env->mcause = val; 1891 return RISCV_EXCP_NONE; 1892 } 1893 1894 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1895 target_ulong *val) 1896 { 1897 *val = env->mtval; 1898 return RISCV_EXCP_NONE; 1899 } 1900 1901 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1902 target_ulong val) 1903 { 1904 env->mtval = val; 1905 return RISCV_EXCP_NONE; 1906 } 1907 1908 /* Execution environment configuration setup */ 1909 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1910 target_ulong *val) 1911 { 1912 *val = env->menvcfg; 1913 return RISCV_EXCP_NONE; 1914 } 1915 1916 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1917 target_ulong val) 1918 { 1919 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1920 1921 if (riscv_cpu_mxl(env) == MXL_RV64) { 1922 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1923 } 1924 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1925 1926 return RISCV_EXCP_NONE; 1927 } 1928 1929 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1930 target_ulong *val) 1931 { 1932 *val = env->menvcfg >> 32; 1933 return RISCV_EXCP_NONE; 1934 } 1935 1936 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1937 target_ulong val) 1938 { 1939 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1940 uint64_t valh = (uint64_t)val << 32; 1941 1942 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1943 1944 return RISCV_EXCP_NONE; 1945 } 1946 1947 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1948 target_ulong *val) 1949 { 1950 RISCVException ret; 1951 1952 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1953 if (ret != RISCV_EXCP_NONE) { 1954 return ret; 1955 } 1956 1957 *val = env->senvcfg; 1958 return RISCV_EXCP_NONE; 1959 } 1960 1961 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1962 target_ulong val) 1963 { 1964 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1965 RISCVException ret; 1966 1967 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1968 if (ret != RISCV_EXCP_NONE) { 1969 return ret; 1970 } 1971 1972 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1973 return RISCV_EXCP_NONE; 1974 } 1975 1976 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1977 target_ulong *val) 1978 { 1979 RISCVException ret; 1980 1981 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1982 if (ret != RISCV_EXCP_NONE) { 1983 return ret; 1984 } 1985 1986 *val = env->henvcfg; 1987 return RISCV_EXCP_NONE; 1988 } 1989 1990 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1991 target_ulong val) 1992 { 1993 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1994 RISCVException ret; 1995 1996 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1997 if (ret != RISCV_EXCP_NONE) { 1998 return ret; 1999 } 2000 2001 if (riscv_cpu_mxl(env) == MXL_RV64) { 2002 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 2003 } 2004 2005 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 2006 2007 return RISCV_EXCP_NONE; 2008 } 2009 2010 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 2011 target_ulong *val) 2012 { 2013 RISCVException ret; 2014 2015 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2016 if (ret != RISCV_EXCP_NONE) { 2017 return ret; 2018 } 2019 2020 *val = env->henvcfg >> 32; 2021 return RISCV_EXCP_NONE; 2022 } 2023 2024 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2025 target_ulong val) 2026 { 2027 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 2028 uint64_t valh = (uint64_t)val << 32; 2029 RISCVException ret; 2030 2031 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2032 if (ret != RISCV_EXCP_NONE) { 2033 return ret; 2034 } 2035 2036 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2037 return RISCV_EXCP_NONE; 2038 } 2039 2040 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2041 target_ulong *val) 2042 { 2043 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2044 2045 return RISCV_EXCP_NONE; 2046 } 2047 2048 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2049 uint64_t wr_mask, target_ulong new_val) 2050 { 2051 uint64_t *reg; 2052 2053 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2054 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2055 2056 return RISCV_EXCP_NONE; 2057 } 2058 2059 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2060 target_ulong new_val) 2061 { 2062 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2063 2064 return write_mstateen(env, csrno, wr_mask, new_val); 2065 } 2066 2067 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2068 target_ulong new_val) 2069 { 2070 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2071 } 2072 2073 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2074 target_ulong *val) 2075 { 2076 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2077 2078 return RISCV_EXCP_NONE; 2079 } 2080 2081 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2082 uint64_t wr_mask, target_ulong new_val) 2083 { 2084 uint64_t *reg, val; 2085 2086 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2087 val = (uint64_t)new_val << 32; 2088 val |= *reg & 0xFFFFFFFF; 2089 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2090 2091 return RISCV_EXCP_NONE; 2092 } 2093 2094 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2095 target_ulong new_val) 2096 { 2097 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2098 2099 return write_mstateenh(env, csrno, wr_mask, new_val); 2100 } 2101 2102 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2103 target_ulong new_val) 2104 { 2105 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2106 } 2107 2108 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2109 target_ulong *val) 2110 { 2111 int index = csrno - CSR_HSTATEEN0; 2112 2113 *val = env->hstateen[index] & env->mstateen[index]; 2114 2115 return RISCV_EXCP_NONE; 2116 } 2117 2118 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2119 uint64_t mask, target_ulong new_val) 2120 { 2121 int index = csrno - CSR_HSTATEEN0; 2122 uint64_t *reg, wr_mask; 2123 2124 reg = &env->hstateen[index]; 2125 wr_mask = env->mstateen[index] & mask; 2126 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2127 2128 return RISCV_EXCP_NONE; 2129 } 2130 2131 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2132 target_ulong new_val) 2133 { 2134 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2135 2136 return write_hstateen(env, csrno, wr_mask, new_val); 2137 } 2138 2139 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2140 target_ulong new_val) 2141 { 2142 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2143 } 2144 2145 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2146 target_ulong *val) 2147 { 2148 int index = csrno - CSR_HSTATEEN0H; 2149 2150 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2151 2152 return RISCV_EXCP_NONE; 2153 } 2154 2155 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2156 uint64_t mask, target_ulong new_val) 2157 { 2158 int index = csrno - CSR_HSTATEEN0H; 2159 uint64_t *reg, wr_mask, val; 2160 2161 reg = &env->hstateen[index]; 2162 val = (uint64_t)new_val << 32; 2163 val |= *reg & 0xFFFFFFFF; 2164 wr_mask = env->mstateen[index] & mask; 2165 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2166 2167 return RISCV_EXCP_NONE; 2168 } 2169 2170 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2171 target_ulong new_val) 2172 { 2173 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2174 2175 return write_hstateenh(env, csrno, wr_mask, new_val); 2176 } 2177 2178 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2179 target_ulong new_val) 2180 { 2181 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2182 } 2183 2184 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2185 target_ulong *val) 2186 { 2187 bool virt = riscv_cpu_virt_enabled(env); 2188 int index = csrno - CSR_SSTATEEN0; 2189 2190 *val = env->sstateen[index] & env->mstateen[index]; 2191 if (virt) { 2192 *val &= env->hstateen[index]; 2193 } 2194 2195 return RISCV_EXCP_NONE; 2196 } 2197 2198 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2199 uint64_t mask, target_ulong new_val) 2200 { 2201 bool virt = riscv_cpu_virt_enabled(env); 2202 int index = csrno - CSR_SSTATEEN0; 2203 uint64_t wr_mask; 2204 uint64_t *reg; 2205 2206 wr_mask = env->mstateen[index] & mask; 2207 if (virt) { 2208 wr_mask &= env->hstateen[index]; 2209 } 2210 2211 reg = &env->sstateen[index]; 2212 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2213 2214 return RISCV_EXCP_NONE; 2215 } 2216 2217 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2218 target_ulong new_val) 2219 { 2220 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2221 2222 return write_sstateen(env, csrno, wr_mask, new_val); 2223 } 2224 2225 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2226 target_ulong new_val) 2227 { 2228 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2229 } 2230 2231 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2232 uint64_t *ret_val, 2233 uint64_t new_val, uint64_t wr_mask) 2234 { 2235 RISCVCPU *cpu = env_archcpu(env); 2236 uint64_t old_mip, mask = wr_mask & delegable_ints; 2237 uint32_t gin; 2238 2239 if (mask & MIP_SEIP) { 2240 env->software_seip = new_val & MIP_SEIP; 2241 new_val |= env->external_seip * MIP_SEIP; 2242 } 2243 2244 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2245 get_field(env->menvcfg, MENVCFG_STCE)) { 2246 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2247 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2248 } 2249 2250 if (mask) { 2251 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 2252 } else { 2253 old_mip = env->mip; 2254 } 2255 2256 if (csrno != CSR_HVIP) { 2257 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2258 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2259 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2260 } 2261 2262 if (ret_val) { 2263 *ret_val = old_mip; 2264 } 2265 2266 return RISCV_EXCP_NONE; 2267 } 2268 2269 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2270 target_ulong *ret_val, 2271 target_ulong new_val, target_ulong wr_mask) 2272 { 2273 uint64_t rval; 2274 RISCVException ret; 2275 2276 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2277 if (ret_val) { 2278 *ret_val = rval; 2279 } 2280 2281 return ret; 2282 } 2283 2284 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2285 target_ulong *ret_val, 2286 target_ulong new_val, target_ulong wr_mask) 2287 { 2288 uint64_t rval; 2289 RISCVException ret; 2290 2291 ret = rmw_mip64(env, csrno, &rval, 2292 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2293 if (ret_val) { 2294 *ret_val = rval >> 32; 2295 } 2296 2297 return ret; 2298 } 2299 2300 /* Supervisor Trap Setup */ 2301 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2302 Int128 *val) 2303 { 2304 uint64_t mask = sstatus_v1_10_mask; 2305 uint64_t sstatus = env->mstatus & mask; 2306 if (env->xl != MXL_RV32 || env->debugger) { 2307 mask |= SSTATUS64_UXL; 2308 } 2309 2310 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2311 return RISCV_EXCP_NONE; 2312 } 2313 2314 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2315 target_ulong *val) 2316 { 2317 target_ulong mask = (sstatus_v1_10_mask); 2318 if (env->xl != MXL_RV32 || env->debugger) { 2319 mask |= SSTATUS64_UXL; 2320 } 2321 /* TODO: Use SXL not MXL. */ 2322 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2323 return RISCV_EXCP_NONE; 2324 } 2325 2326 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2327 target_ulong val) 2328 { 2329 target_ulong mask = (sstatus_v1_10_mask); 2330 2331 if (env->xl != MXL_RV32 || env->debugger) { 2332 if ((val & SSTATUS64_UXL) != 0) { 2333 mask |= SSTATUS64_UXL; 2334 } 2335 } 2336 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2337 return write_mstatus(env, CSR_MSTATUS, newval); 2338 } 2339 2340 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2341 uint64_t *ret_val, 2342 uint64_t new_val, uint64_t wr_mask) 2343 { 2344 RISCVException ret; 2345 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2346 2347 /* Bring VS-level bits to correct position */ 2348 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2349 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2350 2351 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2352 if (ret_val) { 2353 *ret_val = (rval & mask) >> 1; 2354 } 2355 2356 return ret; 2357 } 2358 2359 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2360 target_ulong *ret_val, 2361 target_ulong new_val, target_ulong wr_mask) 2362 { 2363 uint64_t rval; 2364 RISCVException ret; 2365 2366 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2367 if (ret_val) { 2368 *ret_val = rval; 2369 } 2370 2371 return ret; 2372 } 2373 2374 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2375 target_ulong *ret_val, 2376 target_ulong new_val, target_ulong wr_mask) 2377 { 2378 uint64_t rval; 2379 RISCVException ret; 2380 2381 ret = rmw_vsie64(env, csrno, &rval, 2382 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2383 if (ret_val) { 2384 *ret_val = rval >> 32; 2385 } 2386 2387 return ret; 2388 } 2389 2390 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2391 uint64_t *ret_val, 2392 uint64_t new_val, uint64_t wr_mask) 2393 { 2394 RISCVException ret; 2395 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2396 2397 if (riscv_cpu_virt_enabled(env)) { 2398 if (env->hvictl & HVICTL_VTI) { 2399 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2400 } 2401 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2402 } else { 2403 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2404 } 2405 2406 if (ret_val) { 2407 *ret_val &= mask; 2408 } 2409 2410 return ret; 2411 } 2412 2413 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2414 target_ulong *ret_val, 2415 target_ulong new_val, target_ulong wr_mask) 2416 { 2417 uint64_t rval; 2418 RISCVException ret; 2419 2420 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2421 if (ret == RISCV_EXCP_NONE && ret_val) { 2422 *ret_val = rval; 2423 } 2424 2425 return ret; 2426 } 2427 2428 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2429 target_ulong *ret_val, 2430 target_ulong new_val, target_ulong wr_mask) 2431 { 2432 uint64_t rval; 2433 RISCVException ret; 2434 2435 ret = rmw_sie64(env, csrno, &rval, 2436 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2437 if (ret_val) { 2438 *ret_val = rval >> 32; 2439 } 2440 2441 return ret; 2442 } 2443 2444 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2445 target_ulong *val) 2446 { 2447 *val = env->stvec; 2448 return RISCV_EXCP_NONE; 2449 } 2450 2451 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2452 target_ulong val) 2453 { 2454 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2455 if ((val & 3) < 2) { 2456 env->stvec = val; 2457 } else { 2458 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2459 } 2460 return RISCV_EXCP_NONE; 2461 } 2462 2463 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2464 target_ulong *val) 2465 { 2466 *val = env->scounteren; 2467 return RISCV_EXCP_NONE; 2468 } 2469 2470 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2471 target_ulong val) 2472 { 2473 env->scounteren = val; 2474 return RISCV_EXCP_NONE; 2475 } 2476 2477 /* Supervisor Trap Handling */ 2478 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2479 Int128 *val) 2480 { 2481 *val = int128_make128(env->sscratch, env->sscratchh); 2482 return RISCV_EXCP_NONE; 2483 } 2484 2485 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2486 Int128 val) 2487 { 2488 env->sscratch = int128_getlo(val); 2489 env->sscratchh = int128_gethi(val); 2490 return RISCV_EXCP_NONE; 2491 } 2492 2493 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2494 target_ulong *val) 2495 { 2496 *val = env->sscratch; 2497 return RISCV_EXCP_NONE; 2498 } 2499 2500 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2501 target_ulong val) 2502 { 2503 env->sscratch = val; 2504 return RISCV_EXCP_NONE; 2505 } 2506 2507 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2508 target_ulong *val) 2509 { 2510 *val = env->sepc; 2511 return RISCV_EXCP_NONE; 2512 } 2513 2514 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2515 target_ulong val) 2516 { 2517 env->sepc = val; 2518 return RISCV_EXCP_NONE; 2519 } 2520 2521 static RISCVException read_scause(CPURISCVState *env, int csrno, 2522 target_ulong *val) 2523 { 2524 *val = env->scause; 2525 return RISCV_EXCP_NONE; 2526 } 2527 2528 static RISCVException write_scause(CPURISCVState *env, int csrno, 2529 target_ulong val) 2530 { 2531 env->scause = val; 2532 return RISCV_EXCP_NONE; 2533 } 2534 2535 static RISCVException read_stval(CPURISCVState *env, int csrno, 2536 target_ulong *val) 2537 { 2538 *val = env->stval; 2539 return RISCV_EXCP_NONE; 2540 } 2541 2542 static RISCVException write_stval(CPURISCVState *env, int csrno, 2543 target_ulong val) 2544 { 2545 env->stval = val; 2546 return RISCV_EXCP_NONE; 2547 } 2548 2549 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2550 uint64_t *ret_val, 2551 uint64_t new_val, uint64_t wr_mask) 2552 { 2553 RISCVException ret; 2554 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2555 2556 /* Bring VS-level bits to correct position */ 2557 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2558 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2559 2560 ret = rmw_mip64(env, csrno, &rval, new_val, 2561 wr_mask & mask & vsip_writable_mask); 2562 if (ret_val) { 2563 *ret_val = (rval & mask) >> 1; 2564 } 2565 2566 return ret; 2567 } 2568 2569 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2570 target_ulong *ret_val, 2571 target_ulong new_val, target_ulong wr_mask) 2572 { 2573 uint64_t rval; 2574 RISCVException ret; 2575 2576 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2577 if (ret_val) { 2578 *ret_val = rval; 2579 } 2580 2581 return ret; 2582 } 2583 2584 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2585 target_ulong *ret_val, 2586 target_ulong new_val, target_ulong wr_mask) 2587 { 2588 uint64_t rval; 2589 RISCVException ret; 2590 2591 ret = rmw_vsip64(env, csrno, &rval, 2592 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2593 if (ret_val) { 2594 *ret_val = rval >> 32; 2595 } 2596 2597 return ret; 2598 } 2599 2600 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2601 uint64_t *ret_val, 2602 uint64_t new_val, uint64_t wr_mask) 2603 { 2604 RISCVException ret; 2605 uint64_t mask = env->mideleg & sip_writable_mask; 2606 2607 if (riscv_cpu_virt_enabled(env)) { 2608 if (env->hvictl & HVICTL_VTI) { 2609 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2610 } 2611 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2612 } else { 2613 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2614 } 2615 2616 if (ret_val) { 2617 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2618 } 2619 2620 return ret; 2621 } 2622 2623 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2624 target_ulong *ret_val, 2625 target_ulong new_val, target_ulong wr_mask) 2626 { 2627 uint64_t rval; 2628 RISCVException ret; 2629 2630 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2631 if (ret_val) { 2632 *ret_val = rval; 2633 } 2634 2635 return ret; 2636 } 2637 2638 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2639 target_ulong *ret_val, 2640 target_ulong new_val, target_ulong wr_mask) 2641 { 2642 uint64_t rval; 2643 RISCVException ret; 2644 2645 ret = rmw_sip64(env, csrno, &rval, 2646 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2647 if (ret_val) { 2648 *ret_val = rval >> 32; 2649 } 2650 2651 return ret; 2652 } 2653 2654 /* Supervisor Protection and Translation */ 2655 static RISCVException read_satp(CPURISCVState *env, int csrno, 2656 target_ulong *val) 2657 { 2658 if (!riscv_cpu_cfg(env)->mmu) { 2659 *val = 0; 2660 return RISCV_EXCP_NONE; 2661 } 2662 2663 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2664 return RISCV_EXCP_ILLEGAL_INST; 2665 } else { 2666 *val = env->satp; 2667 } 2668 2669 return RISCV_EXCP_NONE; 2670 } 2671 2672 static RISCVException write_satp(CPURISCVState *env, int csrno, 2673 target_ulong val) 2674 { 2675 target_ulong vm, mask; 2676 2677 if (!riscv_cpu_cfg(env)->mmu) { 2678 return RISCV_EXCP_NONE; 2679 } 2680 2681 if (riscv_cpu_mxl(env) == MXL_RV32) { 2682 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2683 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2684 } else { 2685 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2686 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2687 } 2688 2689 if (vm && mask) { 2690 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2691 return RISCV_EXCP_ILLEGAL_INST; 2692 } else { 2693 /* 2694 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2695 * pass these through QEMU's TLB emulation as it improves 2696 * performance. Flushing the TLB on SATP writes with paging 2697 * enabled avoids leaking those invalid cached mappings. 2698 */ 2699 tlb_flush(env_cpu(env)); 2700 env->satp = val; 2701 } 2702 } 2703 return RISCV_EXCP_NONE; 2704 } 2705 2706 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2707 { 2708 int irq, ret; 2709 target_ulong topei; 2710 uint64_t vseip, vsgein; 2711 uint32_t iid, iprio, hviid, hviprio, gein; 2712 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2713 2714 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2715 hviid = get_field(env->hvictl, HVICTL_IID); 2716 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2717 2718 if (gein) { 2719 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2720 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2721 if (gein <= env->geilen && vseip) { 2722 siid[scount] = IRQ_S_EXT; 2723 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2724 if (env->aia_ireg_rmw_fn[PRV_S]) { 2725 /* 2726 * Call machine specific IMSIC register emulation for 2727 * reading TOPEI. 2728 */ 2729 ret = env->aia_ireg_rmw_fn[PRV_S]( 2730 env->aia_ireg_rmw_fn_arg[PRV_S], 2731 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2732 riscv_cpu_mxl_bits(env)), 2733 &topei, 0, 0); 2734 if (!ret && topei) { 2735 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2736 } 2737 } 2738 scount++; 2739 } 2740 } else { 2741 if (hviid == IRQ_S_EXT && hviprio) { 2742 siid[scount] = IRQ_S_EXT; 2743 siprio[scount] = hviprio; 2744 scount++; 2745 } 2746 } 2747 2748 if (env->hvictl & HVICTL_VTI) { 2749 if (hviid != IRQ_S_EXT) { 2750 siid[scount] = hviid; 2751 siprio[scount] = hviprio; 2752 scount++; 2753 } 2754 } else { 2755 irq = riscv_cpu_vsirq_pending(env); 2756 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2757 siid[scount] = irq; 2758 siprio[scount] = env->hviprio[irq]; 2759 scount++; 2760 } 2761 } 2762 2763 iid = 0; 2764 iprio = UINT_MAX; 2765 for (s = 0; s < scount; s++) { 2766 if (siprio[s] < iprio) { 2767 iid = siid[s]; 2768 iprio = siprio[s]; 2769 } 2770 } 2771 2772 if (iid) { 2773 if (env->hvictl & HVICTL_IPRIOM) { 2774 if (iprio > IPRIO_MMAXIPRIO) { 2775 iprio = IPRIO_MMAXIPRIO; 2776 } 2777 if (!iprio) { 2778 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2779 iprio = IPRIO_MMAXIPRIO; 2780 } 2781 } 2782 } else { 2783 iprio = 1; 2784 } 2785 } else { 2786 iprio = 0; 2787 } 2788 2789 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2790 *val |= iprio; 2791 return RISCV_EXCP_NONE; 2792 } 2793 2794 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2795 { 2796 int irq; 2797 uint8_t iprio; 2798 2799 if (riscv_cpu_virt_enabled(env)) { 2800 return read_vstopi(env, CSR_VSTOPI, val); 2801 } 2802 2803 irq = riscv_cpu_sirq_pending(env); 2804 if (irq <= 0 || irq > 63) { 2805 *val = 0; 2806 } else { 2807 iprio = env->siprio[irq]; 2808 if (!iprio) { 2809 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2810 iprio = IPRIO_MMAXIPRIO; 2811 } 2812 } 2813 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2814 *val |= iprio; 2815 } 2816 2817 return RISCV_EXCP_NONE; 2818 } 2819 2820 /* Hypervisor Extensions */ 2821 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2822 target_ulong *val) 2823 { 2824 *val = env->hstatus; 2825 if (riscv_cpu_mxl(env) != MXL_RV32) { 2826 /* We only support 64-bit VSXL */ 2827 *val = set_field(*val, HSTATUS_VSXL, 2); 2828 } 2829 /* We only support little endian */ 2830 *val = set_field(*val, HSTATUS_VSBE, 0); 2831 return RISCV_EXCP_NONE; 2832 } 2833 2834 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2835 target_ulong val) 2836 { 2837 env->hstatus = val; 2838 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2839 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2840 } 2841 if (get_field(val, HSTATUS_VSBE) != 0) { 2842 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2843 } 2844 return RISCV_EXCP_NONE; 2845 } 2846 2847 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2848 target_ulong *val) 2849 { 2850 *val = env->hedeleg; 2851 return RISCV_EXCP_NONE; 2852 } 2853 2854 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2855 target_ulong val) 2856 { 2857 env->hedeleg = val & vs_delegable_excps; 2858 return RISCV_EXCP_NONE; 2859 } 2860 2861 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2862 uint64_t *ret_val, 2863 uint64_t new_val, uint64_t wr_mask) 2864 { 2865 uint64_t mask = wr_mask & vs_delegable_ints; 2866 2867 if (ret_val) { 2868 *ret_val = env->hideleg & vs_delegable_ints; 2869 } 2870 2871 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2872 return RISCV_EXCP_NONE; 2873 } 2874 2875 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2876 target_ulong *ret_val, 2877 target_ulong new_val, target_ulong wr_mask) 2878 { 2879 uint64_t rval; 2880 RISCVException ret; 2881 2882 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2883 if (ret_val) { 2884 *ret_val = rval; 2885 } 2886 2887 return ret; 2888 } 2889 2890 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2891 target_ulong *ret_val, 2892 target_ulong new_val, target_ulong wr_mask) 2893 { 2894 uint64_t rval; 2895 RISCVException ret; 2896 2897 ret = rmw_hideleg64(env, csrno, &rval, 2898 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2899 if (ret_val) { 2900 *ret_val = rval >> 32; 2901 } 2902 2903 return ret; 2904 } 2905 2906 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2907 uint64_t *ret_val, 2908 uint64_t new_val, uint64_t wr_mask) 2909 { 2910 RISCVException ret; 2911 2912 ret = rmw_mip64(env, csrno, ret_val, new_val, 2913 wr_mask & hvip_writable_mask); 2914 if (ret_val) { 2915 *ret_val &= VS_MODE_INTERRUPTS; 2916 } 2917 2918 return ret; 2919 } 2920 2921 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2922 target_ulong *ret_val, 2923 target_ulong new_val, target_ulong wr_mask) 2924 { 2925 uint64_t rval; 2926 RISCVException ret; 2927 2928 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2929 if (ret_val) { 2930 *ret_val = rval; 2931 } 2932 2933 return ret; 2934 } 2935 2936 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2937 target_ulong *ret_val, 2938 target_ulong new_val, target_ulong wr_mask) 2939 { 2940 uint64_t rval; 2941 RISCVException ret; 2942 2943 ret = rmw_hvip64(env, csrno, &rval, 2944 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2945 if (ret_val) { 2946 *ret_val = rval >> 32; 2947 } 2948 2949 return ret; 2950 } 2951 2952 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2953 target_ulong *ret_value, 2954 target_ulong new_value, target_ulong write_mask) 2955 { 2956 int ret = rmw_mip(env, csrno, ret_value, new_value, 2957 write_mask & hip_writable_mask); 2958 2959 if (ret_value) { 2960 *ret_value &= HS_MODE_INTERRUPTS; 2961 } 2962 return ret; 2963 } 2964 2965 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2966 target_ulong *ret_val, 2967 target_ulong new_val, target_ulong wr_mask) 2968 { 2969 uint64_t rval; 2970 RISCVException ret; 2971 2972 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2973 if (ret_val) { 2974 *ret_val = rval & HS_MODE_INTERRUPTS; 2975 } 2976 2977 return ret; 2978 } 2979 2980 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2981 target_ulong *val) 2982 { 2983 *val = env->hcounteren; 2984 return RISCV_EXCP_NONE; 2985 } 2986 2987 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2988 target_ulong val) 2989 { 2990 env->hcounteren = val; 2991 return RISCV_EXCP_NONE; 2992 } 2993 2994 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2995 target_ulong *val) 2996 { 2997 if (val) { 2998 *val = env->hgeie; 2999 } 3000 return RISCV_EXCP_NONE; 3001 } 3002 3003 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 3004 target_ulong val) 3005 { 3006 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 3007 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 3008 env->hgeie = val; 3009 /* Update mip.SGEIP bit */ 3010 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 3011 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 3012 return RISCV_EXCP_NONE; 3013 } 3014 3015 static RISCVException read_htval(CPURISCVState *env, int csrno, 3016 target_ulong *val) 3017 { 3018 *val = env->htval; 3019 return RISCV_EXCP_NONE; 3020 } 3021 3022 static RISCVException write_htval(CPURISCVState *env, int csrno, 3023 target_ulong val) 3024 { 3025 env->htval = val; 3026 return RISCV_EXCP_NONE; 3027 } 3028 3029 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3030 target_ulong *val) 3031 { 3032 *val = env->htinst; 3033 return RISCV_EXCP_NONE; 3034 } 3035 3036 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3037 target_ulong val) 3038 { 3039 return RISCV_EXCP_NONE; 3040 } 3041 3042 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3043 target_ulong *val) 3044 { 3045 if (val) { 3046 *val = env->hgeip; 3047 } 3048 return RISCV_EXCP_NONE; 3049 } 3050 3051 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3052 target_ulong *val) 3053 { 3054 *val = env->hgatp; 3055 return RISCV_EXCP_NONE; 3056 } 3057 3058 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3059 target_ulong val) 3060 { 3061 env->hgatp = val; 3062 return RISCV_EXCP_NONE; 3063 } 3064 3065 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3066 target_ulong *val) 3067 { 3068 if (!env->rdtime_fn) { 3069 return RISCV_EXCP_ILLEGAL_INST; 3070 } 3071 3072 *val = env->htimedelta; 3073 return RISCV_EXCP_NONE; 3074 } 3075 3076 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3077 target_ulong val) 3078 { 3079 RISCVCPU *cpu = env_archcpu(env); 3080 3081 if (!env->rdtime_fn) { 3082 return RISCV_EXCP_ILLEGAL_INST; 3083 } 3084 3085 if (riscv_cpu_mxl(env) == MXL_RV32) { 3086 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3087 } else { 3088 env->htimedelta = val; 3089 } 3090 3091 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3092 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3093 env->htimedelta, MIP_VSTIP); 3094 } 3095 3096 return RISCV_EXCP_NONE; 3097 } 3098 3099 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3100 target_ulong *val) 3101 { 3102 if (!env->rdtime_fn) { 3103 return RISCV_EXCP_ILLEGAL_INST; 3104 } 3105 3106 *val = env->htimedelta >> 32; 3107 return RISCV_EXCP_NONE; 3108 } 3109 3110 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3111 target_ulong val) 3112 { 3113 RISCVCPU *cpu = env_archcpu(env); 3114 3115 if (!env->rdtime_fn) { 3116 return RISCV_EXCP_ILLEGAL_INST; 3117 } 3118 3119 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3120 3121 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3122 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3123 env->htimedelta, MIP_VSTIP); 3124 } 3125 3126 return RISCV_EXCP_NONE; 3127 } 3128 3129 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3130 { 3131 *val = env->hvictl; 3132 return RISCV_EXCP_NONE; 3133 } 3134 3135 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3136 { 3137 env->hvictl = val & HVICTL_VALID_MASK; 3138 return RISCV_EXCP_NONE; 3139 } 3140 3141 static int read_hvipriox(CPURISCVState *env, int first_index, 3142 uint8_t *iprio, target_ulong *val) 3143 { 3144 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3145 3146 /* First index has to be a multiple of number of irqs per register */ 3147 if (first_index % num_irqs) { 3148 return (riscv_cpu_virt_enabled(env)) ? 3149 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3150 } 3151 3152 /* Fill-up return value */ 3153 *val = 0; 3154 for (i = 0; i < num_irqs; i++) { 3155 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3156 continue; 3157 } 3158 if (rdzero) { 3159 continue; 3160 } 3161 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3162 } 3163 3164 return RISCV_EXCP_NONE; 3165 } 3166 3167 static int write_hvipriox(CPURISCVState *env, int first_index, 3168 uint8_t *iprio, target_ulong val) 3169 { 3170 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3171 3172 /* First index has to be a multiple of number of irqs per register */ 3173 if (first_index % num_irqs) { 3174 return (riscv_cpu_virt_enabled(env)) ? 3175 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3176 } 3177 3178 /* Fill-up priority arrary */ 3179 for (i = 0; i < num_irqs; i++) { 3180 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3181 continue; 3182 } 3183 if (rdzero) { 3184 iprio[irq] = 0; 3185 } else { 3186 iprio[irq] = (val >> (i * 8)) & 0xff; 3187 } 3188 } 3189 3190 return RISCV_EXCP_NONE; 3191 } 3192 3193 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3194 { 3195 return read_hvipriox(env, 0, env->hviprio, val); 3196 } 3197 3198 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3199 { 3200 return write_hvipriox(env, 0, env->hviprio, val); 3201 } 3202 3203 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3204 { 3205 return read_hvipriox(env, 4, env->hviprio, val); 3206 } 3207 3208 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3209 { 3210 return write_hvipriox(env, 4, env->hviprio, val); 3211 } 3212 3213 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3214 { 3215 return read_hvipriox(env, 8, env->hviprio, val); 3216 } 3217 3218 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3219 { 3220 return write_hvipriox(env, 8, env->hviprio, val); 3221 } 3222 3223 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3224 { 3225 return read_hvipriox(env, 12, env->hviprio, val); 3226 } 3227 3228 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3229 { 3230 return write_hvipriox(env, 12, env->hviprio, val); 3231 } 3232 3233 /* Virtual CSR Registers */ 3234 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3235 target_ulong *val) 3236 { 3237 *val = env->vsstatus; 3238 return RISCV_EXCP_NONE; 3239 } 3240 3241 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3242 target_ulong val) 3243 { 3244 uint64_t mask = (target_ulong)-1; 3245 if ((val & VSSTATUS64_UXL) == 0) { 3246 mask &= ~VSSTATUS64_UXL; 3247 } 3248 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3249 return RISCV_EXCP_NONE; 3250 } 3251 3252 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3253 { 3254 *val = env->vstvec; 3255 return RISCV_EXCP_NONE; 3256 } 3257 3258 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3259 target_ulong val) 3260 { 3261 env->vstvec = val; 3262 return RISCV_EXCP_NONE; 3263 } 3264 3265 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3266 target_ulong *val) 3267 { 3268 *val = env->vsscratch; 3269 return RISCV_EXCP_NONE; 3270 } 3271 3272 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3273 target_ulong val) 3274 { 3275 env->vsscratch = val; 3276 return RISCV_EXCP_NONE; 3277 } 3278 3279 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3280 target_ulong *val) 3281 { 3282 *val = env->vsepc; 3283 return RISCV_EXCP_NONE; 3284 } 3285 3286 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3287 target_ulong val) 3288 { 3289 env->vsepc = val; 3290 return RISCV_EXCP_NONE; 3291 } 3292 3293 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3294 target_ulong *val) 3295 { 3296 *val = env->vscause; 3297 return RISCV_EXCP_NONE; 3298 } 3299 3300 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3301 target_ulong val) 3302 { 3303 env->vscause = val; 3304 return RISCV_EXCP_NONE; 3305 } 3306 3307 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3308 target_ulong *val) 3309 { 3310 *val = env->vstval; 3311 return RISCV_EXCP_NONE; 3312 } 3313 3314 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3315 target_ulong val) 3316 { 3317 env->vstval = val; 3318 return RISCV_EXCP_NONE; 3319 } 3320 3321 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3322 target_ulong *val) 3323 { 3324 *val = env->vsatp; 3325 return RISCV_EXCP_NONE; 3326 } 3327 3328 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3329 target_ulong val) 3330 { 3331 env->vsatp = val; 3332 return RISCV_EXCP_NONE; 3333 } 3334 3335 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3336 target_ulong *val) 3337 { 3338 *val = env->mtval2; 3339 return RISCV_EXCP_NONE; 3340 } 3341 3342 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3343 target_ulong val) 3344 { 3345 env->mtval2 = val; 3346 return RISCV_EXCP_NONE; 3347 } 3348 3349 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3350 target_ulong *val) 3351 { 3352 *val = env->mtinst; 3353 return RISCV_EXCP_NONE; 3354 } 3355 3356 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3357 target_ulong val) 3358 { 3359 env->mtinst = val; 3360 return RISCV_EXCP_NONE; 3361 } 3362 3363 /* Physical Memory Protection */ 3364 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3365 target_ulong *val) 3366 { 3367 *val = mseccfg_csr_read(env); 3368 return RISCV_EXCP_NONE; 3369 } 3370 3371 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3372 target_ulong val) 3373 { 3374 mseccfg_csr_write(env, val); 3375 return RISCV_EXCP_NONE; 3376 } 3377 3378 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3379 target_ulong *val) 3380 { 3381 uint32_t reg_index = csrno - CSR_PMPCFG0; 3382 3383 *val = pmpcfg_csr_read(env, reg_index); 3384 return RISCV_EXCP_NONE; 3385 } 3386 3387 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3388 target_ulong val) 3389 { 3390 uint32_t reg_index = csrno - CSR_PMPCFG0; 3391 3392 pmpcfg_csr_write(env, reg_index, val); 3393 return RISCV_EXCP_NONE; 3394 } 3395 3396 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3397 target_ulong *val) 3398 { 3399 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3400 return RISCV_EXCP_NONE; 3401 } 3402 3403 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3404 target_ulong val) 3405 { 3406 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3407 return RISCV_EXCP_NONE; 3408 } 3409 3410 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3411 target_ulong *val) 3412 { 3413 *val = tselect_csr_read(env); 3414 return RISCV_EXCP_NONE; 3415 } 3416 3417 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3418 target_ulong val) 3419 { 3420 tselect_csr_write(env, val); 3421 return RISCV_EXCP_NONE; 3422 } 3423 3424 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3425 target_ulong *val) 3426 { 3427 /* return 0 in tdata1 to end the trigger enumeration */ 3428 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3429 *val = 0; 3430 return RISCV_EXCP_NONE; 3431 } 3432 3433 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3434 return RISCV_EXCP_ILLEGAL_INST; 3435 } 3436 3437 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3438 return RISCV_EXCP_NONE; 3439 } 3440 3441 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3442 target_ulong val) 3443 { 3444 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3445 return RISCV_EXCP_ILLEGAL_INST; 3446 } 3447 3448 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3449 return RISCV_EXCP_NONE; 3450 } 3451 3452 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3453 target_ulong *val) 3454 { 3455 *val = tinfo_csr_read(env); 3456 return RISCV_EXCP_NONE; 3457 } 3458 3459 /* 3460 * Functions to access Pointer Masking feature registers 3461 * We have to check if current priv lvl could modify 3462 * csr in given mode 3463 */ 3464 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3465 { 3466 int csr_priv = get_field(csrno, 0x300); 3467 int pm_current; 3468 3469 if (env->debugger) { 3470 return false; 3471 } 3472 /* 3473 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3474 * so allow the access 3475 */ 3476 if (env->priv != csr_priv) { 3477 return false; 3478 } 3479 switch (env->priv) { 3480 case PRV_M: 3481 pm_current = get_field(env->mmte, M_PM_CURRENT); 3482 break; 3483 case PRV_S: 3484 pm_current = get_field(env->mmte, S_PM_CURRENT); 3485 break; 3486 case PRV_U: 3487 pm_current = get_field(env->mmte, U_PM_CURRENT); 3488 break; 3489 default: 3490 g_assert_not_reached(); 3491 } 3492 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3493 return !pm_current; 3494 } 3495 3496 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3497 target_ulong *val) 3498 { 3499 *val = env->mmte & MMTE_MASK; 3500 return RISCV_EXCP_NONE; 3501 } 3502 3503 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3504 target_ulong val) 3505 { 3506 uint64_t mstatus; 3507 target_ulong wpri_val = val & MMTE_MASK; 3508 3509 if (val != wpri_val) { 3510 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3511 "MMTE: WPRI violation written 0x", val, 3512 "vs expected 0x", wpri_val); 3513 } 3514 /* for machine mode pm.current is hardwired to 1 */ 3515 wpri_val |= MMTE_M_PM_CURRENT; 3516 3517 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3518 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3519 env->mmte = wpri_val | PM_EXT_DIRTY; 3520 riscv_cpu_update_mask(env); 3521 3522 /* Set XS and SD bits, since PM CSRs are dirty */ 3523 mstatus = env->mstatus | MSTATUS_XS; 3524 write_mstatus(env, csrno, mstatus); 3525 return RISCV_EXCP_NONE; 3526 } 3527 3528 static RISCVException read_smte(CPURISCVState *env, int csrno, 3529 target_ulong *val) 3530 { 3531 *val = env->mmte & SMTE_MASK; 3532 return RISCV_EXCP_NONE; 3533 } 3534 3535 static RISCVException write_smte(CPURISCVState *env, int csrno, 3536 target_ulong val) 3537 { 3538 target_ulong wpri_val = val & SMTE_MASK; 3539 3540 if (val != wpri_val) { 3541 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3542 "SMTE: WPRI violation written 0x", val, 3543 "vs expected 0x", wpri_val); 3544 } 3545 3546 /* if pm.current==0 we can't modify current PM CSRs */ 3547 if (check_pm_current_disabled(env, csrno)) { 3548 return RISCV_EXCP_NONE; 3549 } 3550 3551 wpri_val |= (env->mmte & ~SMTE_MASK); 3552 write_mmte(env, csrno, wpri_val); 3553 return RISCV_EXCP_NONE; 3554 } 3555 3556 static RISCVException read_umte(CPURISCVState *env, int csrno, 3557 target_ulong *val) 3558 { 3559 *val = env->mmte & UMTE_MASK; 3560 return RISCV_EXCP_NONE; 3561 } 3562 3563 static RISCVException write_umte(CPURISCVState *env, int csrno, 3564 target_ulong val) 3565 { 3566 target_ulong wpri_val = val & UMTE_MASK; 3567 3568 if (val != wpri_val) { 3569 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3570 "UMTE: WPRI violation written 0x", val, 3571 "vs expected 0x", wpri_val); 3572 } 3573 3574 if (check_pm_current_disabled(env, csrno)) { 3575 return RISCV_EXCP_NONE; 3576 } 3577 3578 wpri_val |= (env->mmte & ~UMTE_MASK); 3579 write_mmte(env, csrno, wpri_val); 3580 return RISCV_EXCP_NONE; 3581 } 3582 3583 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3584 target_ulong *val) 3585 { 3586 *val = env->mpmmask; 3587 return RISCV_EXCP_NONE; 3588 } 3589 3590 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3591 target_ulong val) 3592 { 3593 uint64_t mstatus; 3594 3595 env->mpmmask = val; 3596 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3597 env->cur_pmmask = val; 3598 } 3599 env->mmte |= PM_EXT_DIRTY; 3600 3601 /* Set XS and SD bits, since PM CSRs are dirty */ 3602 mstatus = env->mstatus | MSTATUS_XS; 3603 write_mstatus(env, csrno, mstatus); 3604 return RISCV_EXCP_NONE; 3605 } 3606 3607 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3608 target_ulong *val) 3609 { 3610 *val = env->spmmask; 3611 return RISCV_EXCP_NONE; 3612 } 3613 3614 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3615 target_ulong val) 3616 { 3617 uint64_t mstatus; 3618 3619 /* if pm.current==0 we can't modify current PM CSRs */ 3620 if (check_pm_current_disabled(env, csrno)) { 3621 return RISCV_EXCP_NONE; 3622 } 3623 env->spmmask = val; 3624 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3625 env->cur_pmmask = val; 3626 } 3627 env->mmte |= PM_EXT_DIRTY; 3628 3629 /* Set XS and SD bits, since PM CSRs are dirty */ 3630 mstatus = env->mstatus | MSTATUS_XS; 3631 write_mstatus(env, csrno, mstatus); 3632 return RISCV_EXCP_NONE; 3633 } 3634 3635 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3636 target_ulong *val) 3637 { 3638 *val = env->upmmask; 3639 return RISCV_EXCP_NONE; 3640 } 3641 3642 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3643 target_ulong val) 3644 { 3645 uint64_t mstatus; 3646 3647 /* if pm.current==0 we can't modify current PM CSRs */ 3648 if (check_pm_current_disabled(env, csrno)) { 3649 return RISCV_EXCP_NONE; 3650 } 3651 env->upmmask = val; 3652 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3653 env->cur_pmmask = val; 3654 } 3655 env->mmte |= PM_EXT_DIRTY; 3656 3657 /* Set XS and SD bits, since PM CSRs are dirty */ 3658 mstatus = env->mstatus | MSTATUS_XS; 3659 write_mstatus(env, csrno, mstatus); 3660 return RISCV_EXCP_NONE; 3661 } 3662 3663 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3664 target_ulong *val) 3665 { 3666 *val = env->mpmbase; 3667 return RISCV_EXCP_NONE; 3668 } 3669 3670 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3671 target_ulong val) 3672 { 3673 uint64_t mstatus; 3674 3675 env->mpmbase = val; 3676 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3677 env->cur_pmbase = val; 3678 } 3679 env->mmte |= PM_EXT_DIRTY; 3680 3681 /* Set XS and SD bits, since PM CSRs are dirty */ 3682 mstatus = env->mstatus | MSTATUS_XS; 3683 write_mstatus(env, csrno, mstatus); 3684 return RISCV_EXCP_NONE; 3685 } 3686 3687 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3688 target_ulong *val) 3689 { 3690 *val = env->spmbase; 3691 return RISCV_EXCP_NONE; 3692 } 3693 3694 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3695 target_ulong val) 3696 { 3697 uint64_t mstatus; 3698 3699 /* if pm.current==0 we can't modify current PM CSRs */ 3700 if (check_pm_current_disabled(env, csrno)) { 3701 return RISCV_EXCP_NONE; 3702 } 3703 env->spmbase = val; 3704 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3705 env->cur_pmbase = val; 3706 } 3707 env->mmte |= PM_EXT_DIRTY; 3708 3709 /* Set XS and SD bits, since PM CSRs are dirty */ 3710 mstatus = env->mstatus | MSTATUS_XS; 3711 write_mstatus(env, csrno, mstatus); 3712 return RISCV_EXCP_NONE; 3713 } 3714 3715 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3716 target_ulong *val) 3717 { 3718 *val = env->upmbase; 3719 return RISCV_EXCP_NONE; 3720 } 3721 3722 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3723 target_ulong val) 3724 { 3725 uint64_t mstatus; 3726 3727 /* if pm.current==0 we can't modify current PM CSRs */ 3728 if (check_pm_current_disabled(env, csrno)) { 3729 return RISCV_EXCP_NONE; 3730 } 3731 env->upmbase = val; 3732 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3733 env->cur_pmbase = val; 3734 } 3735 env->mmte |= PM_EXT_DIRTY; 3736 3737 /* Set XS and SD bits, since PM CSRs are dirty */ 3738 mstatus = env->mstatus | MSTATUS_XS; 3739 write_mstatus(env, csrno, mstatus); 3740 return RISCV_EXCP_NONE; 3741 } 3742 3743 #endif 3744 3745 /* Crypto Extension */ 3746 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3747 target_ulong *ret_value, 3748 target_ulong new_value, 3749 target_ulong write_mask) 3750 { 3751 uint16_t random_v; 3752 Error *random_e = NULL; 3753 int random_r; 3754 target_ulong rval; 3755 3756 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3757 if (unlikely(random_r < 0)) { 3758 /* 3759 * Failed, for unknown reasons in the crypto subsystem. 3760 * The best we can do is log the reason and return a 3761 * failure indication to the guest. There is no reason 3762 * we know to expect the failure to be transitory, so 3763 * indicate DEAD to avoid having the guest spin on WAIT. 3764 */ 3765 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3766 __func__, error_get_pretty(random_e)); 3767 error_free(random_e); 3768 rval = SEED_OPST_DEAD; 3769 } else { 3770 rval = random_v | SEED_OPST_ES16; 3771 } 3772 3773 if (ret_value) { 3774 *ret_value = rval; 3775 } 3776 3777 return RISCV_EXCP_NONE; 3778 } 3779 3780 /* 3781 * riscv_csrrw - read and/or update control and status register 3782 * 3783 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3784 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3785 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3786 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3787 */ 3788 3789 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3790 int csrno, 3791 bool write_mask, 3792 RISCVCPU *cpu) 3793 { 3794 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3795 bool read_only = get_field(csrno, 0xC00) == 3; 3796 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3797 3798 /* ensure the CSR extension is enabled */ 3799 if (!cpu->cfg.ext_icsr) { 3800 return RISCV_EXCP_ILLEGAL_INST; 3801 } 3802 3803 /* privileged spec version check */ 3804 if (env->priv_ver < csr_min_priv) { 3805 return RISCV_EXCP_ILLEGAL_INST; 3806 } 3807 3808 /* read / write check */ 3809 if (write_mask && read_only) { 3810 return RISCV_EXCP_ILLEGAL_INST; 3811 } 3812 3813 /* 3814 * The predicate() not only does existence check but also does some 3815 * access control check which triggers for example virtual instruction 3816 * exception in some cases. When writing read-only CSRs in those cases 3817 * illegal instruction exception should be triggered instead of virtual 3818 * instruction exception. Hence this comes after the read / write check. 3819 */ 3820 g_assert(csr_ops[csrno].predicate != NULL); 3821 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3822 if (ret != RISCV_EXCP_NONE) { 3823 return ret; 3824 } 3825 3826 #if !defined(CONFIG_USER_ONLY) 3827 int csr_priv, effective_priv = env->priv; 3828 3829 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3830 !riscv_cpu_virt_enabled(env)) { 3831 /* 3832 * We are in HS mode. Add 1 to the effective privledge level to 3833 * allow us to access the Hypervisor CSRs. 3834 */ 3835 effective_priv++; 3836 } 3837 3838 csr_priv = get_field(csrno, 0x300); 3839 if (!env->debugger && (effective_priv < csr_priv)) { 3840 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3841 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3842 } 3843 return RISCV_EXCP_ILLEGAL_INST; 3844 } 3845 #endif 3846 return RISCV_EXCP_NONE; 3847 } 3848 3849 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3850 target_ulong *ret_value, 3851 target_ulong new_value, 3852 target_ulong write_mask) 3853 { 3854 RISCVException ret; 3855 target_ulong old_value; 3856 3857 /* execute combined read/write operation if it exists */ 3858 if (csr_ops[csrno].op) { 3859 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3860 } 3861 3862 /* if no accessor exists then return failure */ 3863 if (!csr_ops[csrno].read) { 3864 return RISCV_EXCP_ILLEGAL_INST; 3865 } 3866 /* read old value */ 3867 ret = csr_ops[csrno].read(env, csrno, &old_value); 3868 if (ret != RISCV_EXCP_NONE) { 3869 return ret; 3870 } 3871 3872 /* write value if writable and write mask set, otherwise drop writes */ 3873 if (write_mask) { 3874 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3875 if (csr_ops[csrno].write) { 3876 ret = csr_ops[csrno].write(env, csrno, new_value); 3877 if (ret != RISCV_EXCP_NONE) { 3878 return ret; 3879 } 3880 } 3881 } 3882 3883 /* return old value */ 3884 if (ret_value) { 3885 *ret_value = old_value; 3886 } 3887 3888 return RISCV_EXCP_NONE; 3889 } 3890 3891 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3892 target_ulong *ret_value, 3893 target_ulong new_value, target_ulong write_mask) 3894 { 3895 RISCVCPU *cpu = env_archcpu(env); 3896 3897 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3898 if (ret != RISCV_EXCP_NONE) { 3899 return ret; 3900 } 3901 3902 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3903 } 3904 3905 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3906 Int128 *ret_value, 3907 Int128 new_value, 3908 Int128 write_mask) 3909 { 3910 RISCVException ret; 3911 Int128 old_value; 3912 3913 /* read old value */ 3914 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3915 if (ret != RISCV_EXCP_NONE) { 3916 return ret; 3917 } 3918 3919 /* write value if writable and write mask set, otherwise drop writes */ 3920 if (int128_nz(write_mask)) { 3921 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3922 int128_and(new_value, write_mask)); 3923 if (csr_ops[csrno].write128) { 3924 ret = csr_ops[csrno].write128(env, csrno, new_value); 3925 if (ret != RISCV_EXCP_NONE) { 3926 return ret; 3927 } 3928 } else if (csr_ops[csrno].write) { 3929 /* avoids having to write wrappers for all registers */ 3930 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3931 if (ret != RISCV_EXCP_NONE) { 3932 return ret; 3933 } 3934 } 3935 } 3936 3937 /* return old value */ 3938 if (ret_value) { 3939 *ret_value = old_value; 3940 } 3941 3942 return RISCV_EXCP_NONE; 3943 } 3944 3945 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3946 Int128 *ret_value, 3947 Int128 new_value, Int128 write_mask) 3948 { 3949 RISCVException ret; 3950 RISCVCPU *cpu = env_archcpu(env); 3951 3952 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3953 if (ret != RISCV_EXCP_NONE) { 3954 return ret; 3955 } 3956 3957 if (csr_ops[csrno].read128) { 3958 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3959 } 3960 3961 /* 3962 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3963 * at all defined. 3964 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3965 * significant), for those, this fallback is correctly handling the accesses 3966 */ 3967 target_ulong old_value; 3968 ret = riscv_csrrw_do64(env, csrno, &old_value, 3969 int128_getlo(new_value), 3970 int128_getlo(write_mask)); 3971 if (ret == RISCV_EXCP_NONE && ret_value) { 3972 *ret_value = int128_make64(old_value); 3973 } 3974 return ret; 3975 } 3976 3977 /* 3978 * Debugger support. If not in user mode, set env->debugger before the 3979 * riscv_csrrw call and clear it after the call. 3980 */ 3981 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3982 target_ulong *ret_value, 3983 target_ulong new_value, 3984 target_ulong write_mask) 3985 { 3986 RISCVException ret; 3987 #if !defined(CONFIG_USER_ONLY) 3988 env->debugger = true; 3989 #endif 3990 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3991 #if !defined(CONFIG_USER_ONLY) 3992 env->debugger = false; 3993 #endif 3994 return ret; 3995 } 3996 3997 /* Control and Status Register function table */ 3998 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3999 /* User Floating-Point CSRs */ 4000 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 4001 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 4002 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 4003 /* Vector CSRs */ 4004 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 4005 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 4006 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4007 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4008 [CSR_VL] = { "vl", vs, read_vl }, 4009 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4010 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4011 /* User Timers and Counters */ 4012 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4013 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4014 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4015 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4016 4017 /* 4018 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4019 * rdtime callback is not provided by machine/platform emulation. 4020 */ 4021 [CSR_TIME] = { "time", ctr, read_time }, 4022 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4023 4024 /* Crypto Extension */ 4025 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4026 4027 #if !defined(CONFIG_USER_ONLY) 4028 /* Machine Timers and Counters */ 4029 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4030 write_mhpmcounter }, 4031 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4032 write_mhpmcounter }, 4033 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4034 write_mhpmcounterh }, 4035 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4036 write_mhpmcounterh }, 4037 4038 /* Machine Information Registers */ 4039 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4040 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4041 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4042 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4043 4044 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4045 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4046 /* Machine Trap Setup */ 4047 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4048 NULL, read_mstatus_i128 }, 4049 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4050 NULL, read_misa_i128 }, 4051 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4052 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4053 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4054 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4055 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4056 write_mcounteren }, 4057 4058 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4059 write_mstatush }, 4060 4061 /* Machine Trap Handling */ 4062 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4063 NULL, read_mscratch_i128, write_mscratch_i128 }, 4064 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4065 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4066 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4067 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4068 4069 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4070 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4071 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4072 4073 /* Machine-Level Interrupts (AIA) */ 4074 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4075 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4076 4077 /* Virtual Interrupts for Supervisor Level (AIA) */ 4078 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4079 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4080 4081 /* Machine-Level High-Half CSRs (AIA) */ 4082 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4083 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4084 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4085 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4086 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4087 4088 /* Execution environment configuration */ 4089 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4090 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4091 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4092 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4093 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4094 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4095 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4096 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4097 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4098 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4099 4100 /* Smstateen extension CSRs */ 4101 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4102 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4103 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4104 write_mstateen0h, 4105 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4106 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4107 write_mstateen_1_3, 4108 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4109 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4110 write_mstateenh_1_3, 4111 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4112 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4113 write_mstateen_1_3, 4114 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4115 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4116 write_mstateenh_1_3, 4117 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4118 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4119 write_mstateen_1_3, 4120 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4121 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4122 write_mstateenh_1_3, 4123 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4124 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4125 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4126 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4127 write_hstateen0h, 4128 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4129 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4130 write_hstateen_1_3, 4131 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4132 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4133 write_hstateenh_1_3, 4134 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4135 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4136 write_hstateen_1_3, 4137 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4138 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4139 write_hstateenh_1_3, 4140 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4141 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4142 write_hstateen_1_3, 4143 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4144 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4145 write_hstateenh_1_3, 4146 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4147 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4148 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4149 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4150 write_sstateen_1_3, 4151 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4152 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4153 write_sstateen_1_3, 4154 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4155 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4156 write_sstateen_1_3, 4157 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4158 4159 /* Supervisor Trap Setup */ 4160 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4161 NULL, read_sstatus_i128 }, 4162 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4163 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4164 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4165 write_scounteren }, 4166 4167 /* Supervisor Trap Handling */ 4168 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4169 NULL, read_sscratch_i128, write_sscratch_i128 }, 4170 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4171 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4172 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4173 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4174 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4175 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4176 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4177 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4178 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4179 write_vstimecmp, 4180 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4181 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4182 write_vstimecmph, 4183 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4184 4185 /* Supervisor Protection and Translation */ 4186 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 4187 4188 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4189 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4190 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4191 4192 /* Supervisor-Level Interrupts (AIA) */ 4193 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4194 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4195 4196 /* Supervisor-Level High-Half CSRs (AIA) */ 4197 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4198 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4199 4200 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4201 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4202 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4203 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4204 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4205 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4206 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4207 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4208 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4209 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4210 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4211 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4212 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4213 write_hcounteren, 4214 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4215 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4216 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4217 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4218 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4219 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4220 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4221 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4222 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4223 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 4224 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4225 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4226 write_htimedelta, 4227 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4228 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4229 write_htimedeltah, 4230 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4231 4232 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4233 write_vsstatus, 4234 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4235 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4236 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4237 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4238 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4239 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4240 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4241 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4242 write_vsscratch, 4243 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4244 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4245 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4246 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4247 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4248 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4249 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4250 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4251 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4252 4253 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4254 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4255 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4256 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4257 4258 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4259 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4260 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4261 write_hvictl }, 4262 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4263 write_hviprio1 }, 4264 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4265 write_hviprio2 }, 4266 4267 /* 4268 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4269 */ 4270 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4271 rmw_xiselect }, 4272 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4273 4274 /* VS-Level Interrupts (H-extension with AIA) */ 4275 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4276 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4277 4278 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4279 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4280 rmw_hidelegh }, 4281 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4282 write_ignore }, 4283 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4284 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4285 write_hviprio1h }, 4286 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4287 write_hviprio2h }, 4288 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4289 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4290 4291 /* Physical Memory Protection */ 4292 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4293 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4294 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4295 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4296 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4297 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4298 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4299 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4300 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4301 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4302 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4303 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4304 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4305 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4306 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4307 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4308 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4309 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4310 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4311 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4312 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4313 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4314 4315 /* Debug CSRs */ 4316 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4317 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4318 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4319 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4320 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4321 4322 /* User Pointer Masking */ 4323 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4324 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4325 write_upmmask }, 4326 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4327 write_upmbase }, 4328 /* Machine Pointer Masking */ 4329 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4330 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4331 write_mpmmask }, 4332 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4333 write_mpmbase }, 4334 /* Supervisor Pointer Masking */ 4335 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4336 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4337 write_spmmask }, 4338 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4339 write_spmbase }, 4340 4341 /* Performance Counters */ 4342 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4343 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4344 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4345 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4346 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4347 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4348 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4349 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4350 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4351 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4352 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4353 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4354 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4355 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4356 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4357 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4358 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4359 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4360 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4361 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4362 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4363 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4364 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4365 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4366 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4367 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4368 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4369 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4370 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4371 4372 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4373 write_mhpmcounter }, 4374 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4375 write_mhpmcounter }, 4376 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4377 write_mhpmcounter }, 4378 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4379 write_mhpmcounter }, 4380 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4381 write_mhpmcounter }, 4382 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4383 write_mhpmcounter }, 4384 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4385 write_mhpmcounter }, 4386 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4387 write_mhpmcounter }, 4388 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4389 write_mhpmcounter }, 4390 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4391 write_mhpmcounter }, 4392 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4393 write_mhpmcounter }, 4394 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4395 write_mhpmcounter }, 4396 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4397 write_mhpmcounter }, 4398 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4399 write_mhpmcounter }, 4400 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4401 write_mhpmcounter }, 4402 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4403 write_mhpmcounter }, 4404 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4405 write_mhpmcounter }, 4406 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4407 write_mhpmcounter }, 4408 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4409 write_mhpmcounter }, 4410 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4411 write_mhpmcounter }, 4412 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4413 write_mhpmcounter }, 4414 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4415 write_mhpmcounter }, 4416 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4417 write_mhpmcounter }, 4418 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4419 write_mhpmcounter }, 4420 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4421 write_mhpmcounter }, 4422 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4423 write_mhpmcounter }, 4424 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4425 write_mhpmcounter }, 4426 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4427 write_mhpmcounter }, 4428 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4429 write_mhpmcounter }, 4430 4431 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4432 write_mcountinhibit, 4433 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4434 4435 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4436 write_mhpmevent }, 4437 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4438 write_mhpmevent }, 4439 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4440 write_mhpmevent }, 4441 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4442 write_mhpmevent }, 4443 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4444 write_mhpmevent }, 4445 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4446 write_mhpmevent }, 4447 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4448 write_mhpmevent }, 4449 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4450 write_mhpmevent }, 4451 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4452 write_mhpmevent }, 4453 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4454 write_mhpmevent }, 4455 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4456 write_mhpmevent }, 4457 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4458 write_mhpmevent }, 4459 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4460 write_mhpmevent }, 4461 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4462 write_mhpmevent }, 4463 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4464 write_mhpmevent }, 4465 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4466 write_mhpmevent }, 4467 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4468 write_mhpmevent }, 4469 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4470 write_mhpmevent }, 4471 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4472 write_mhpmevent }, 4473 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4474 write_mhpmevent }, 4475 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4476 write_mhpmevent }, 4477 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4478 write_mhpmevent }, 4479 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4480 write_mhpmevent }, 4481 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4482 write_mhpmevent }, 4483 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4484 write_mhpmevent }, 4485 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4486 write_mhpmevent }, 4487 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4488 write_mhpmevent }, 4489 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4490 write_mhpmevent }, 4491 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4492 write_mhpmevent }, 4493 4494 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4495 write_mhpmeventh, 4496 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4497 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4498 write_mhpmeventh, 4499 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4500 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4501 write_mhpmeventh, 4502 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4503 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4504 write_mhpmeventh, 4505 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4506 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4507 write_mhpmeventh, 4508 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4509 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4510 write_mhpmeventh, 4511 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4512 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4513 write_mhpmeventh, 4514 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4515 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4516 write_mhpmeventh, 4517 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4518 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4519 write_mhpmeventh, 4520 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4521 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4522 write_mhpmeventh, 4523 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4524 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4525 write_mhpmeventh, 4526 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4527 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4528 write_mhpmeventh, 4529 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4530 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4531 write_mhpmeventh, 4532 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4533 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4534 write_mhpmeventh, 4535 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4536 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4537 write_mhpmeventh, 4538 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4539 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4540 write_mhpmeventh, 4541 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4542 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4543 write_mhpmeventh, 4544 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4545 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4546 write_mhpmeventh, 4547 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4548 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4549 write_mhpmeventh, 4550 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4551 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4552 write_mhpmeventh, 4553 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4554 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4555 write_mhpmeventh, 4556 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4557 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4558 write_mhpmeventh, 4559 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4560 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4561 write_mhpmeventh, 4562 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4563 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4564 write_mhpmeventh, 4565 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4566 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4567 write_mhpmeventh, 4568 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4569 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4570 write_mhpmeventh, 4571 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4572 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4573 write_mhpmeventh, 4574 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4575 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4576 write_mhpmeventh, 4577 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4578 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4579 write_mhpmeventh, 4580 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4581 4582 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4583 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4584 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4585 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4586 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4587 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4588 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4589 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4590 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4591 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4592 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4593 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4594 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4595 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4596 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4597 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4598 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4599 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4600 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4601 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4602 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4603 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4604 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4605 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4606 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4607 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4608 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4609 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4610 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4611 4612 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4613 write_mhpmcounterh }, 4614 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4615 write_mhpmcounterh }, 4616 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4617 write_mhpmcounterh }, 4618 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4619 write_mhpmcounterh }, 4620 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4621 write_mhpmcounterh }, 4622 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4623 write_mhpmcounterh }, 4624 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4625 write_mhpmcounterh }, 4626 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4627 write_mhpmcounterh }, 4628 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4629 write_mhpmcounterh }, 4630 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4631 write_mhpmcounterh }, 4632 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4633 write_mhpmcounterh }, 4634 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4635 write_mhpmcounterh }, 4636 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4637 write_mhpmcounterh }, 4638 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4639 write_mhpmcounterh }, 4640 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4641 write_mhpmcounterh }, 4642 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4643 write_mhpmcounterh }, 4644 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4645 write_mhpmcounterh }, 4646 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4647 write_mhpmcounterh }, 4648 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4649 write_mhpmcounterh }, 4650 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4651 write_mhpmcounterh }, 4652 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4653 write_mhpmcounterh }, 4654 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4655 write_mhpmcounterh }, 4656 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4657 write_mhpmcounterh }, 4658 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4659 write_mhpmcounterh }, 4660 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4661 write_mhpmcounterh }, 4662 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4663 write_mhpmcounterh }, 4664 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4665 write_mhpmcounterh }, 4666 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4667 write_mhpmcounterh }, 4668 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4669 write_mhpmcounterh }, 4670 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4671 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4672 4673 #endif /* !CONFIG_USER_ONLY */ 4674 }; 4675