xref: /openbmc/qemu/target/riscv/csr.c (revision 9034e90a)
1 /*
2  * RISC-V Control and Status Registers.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "qemu/main-loop.h"
24 #include "exec/exec-all.h"
25 
26 /* CSR function table */
27 static riscv_csr_operations csr_ops[];
28 
29 /* CSR function table constants */
30 enum {
31     CSR_TABLE_SIZE = 0x1000
32 };
33 
34 /* CSR function table public API */
35 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops)
36 {
37     *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)];
38 }
39 
40 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops)
41 {
42     csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops;
43 }
44 
45 /* Predicates */
46 static int fs(CPURISCVState *env, int csrno)
47 {
48 #if !defined(CONFIG_USER_ONLY)
49     /* loose check condition for fcsr in vector extension */
50     if ((csrno == CSR_FCSR) && (env->misa & RVV)) {
51         return 0;
52     }
53     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
54         return -1;
55     }
56 #endif
57     return 0;
58 }
59 
60 static int vs(CPURISCVState *env, int csrno)
61 {
62     if (env->misa & RVV) {
63         return 0;
64     }
65     return -1;
66 }
67 
68 static int ctr(CPURISCVState *env, int csrno)
69 {
70 #if !defined(CONFIG_USER_ONLY)
71     CPUState *cs = env_cpu(env);
72     RISCVCPU *cpu = RISCV_CPU(cs);
73 
74     if (!cpu->cfg.ext_counters) {
75         /* The Counters extensions is not enabled */
76         return -1;
77     }
78 #endif
79     return 0;
80 }
81 
82 #if !defined(CONFIG_USER_ONLY)
83 static int any(CPURISCVState *env, int csrno)
84 {
85     return 0;
86 }
87 
88 static int smode(CPURISCVState *env, int csrno)
89 {
90     return -!riscv_has_ext(env, RVS);
91 }
92 
93 static int hmode(CPURISCVState *env, int csrno)
94 {
95     if (riscv_has_ext(env, RVS) &&
96         riscv_has_ext(env, RVH)) {
97         /* Hypervisor extension is supported */
98         if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
99             env->priv == PRV_M) {
100             return 0;
101         }
102     }
103 
104     return -1;
105 }
106 
107 static int pmp(CPURISCVState *env, int csrno)
108 {
109     return -!riscv_feature(env, RISCV_FEATURE_PMP);
110 }
111 #endif
112 
113 /* User Floating-Point CSRs */
114 static int read_fflags(CPURISCVState *env, int csrno, target_ulong *val)
115 {
116 #if !defined(CONFIG_USER_ONLY)
117     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
118         return -1;
119     }
120 #endif
121     *val = riscv_cpu_get_fflags(env);
122     return 0;
123 }
124 
125 static int write_fflags(CPURISCVState *env, int csrno, target_ulong val)
126 {
127 #if !defined(CONFIG_USER_ONLY)
128     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
129         return -1;
130     }
131     env->mstatus |= MSTATUS_FS;
132 #endif
133     riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT));
134     return 0;
135 }
136 
137 static int read_frm(CPURISCVState *env, int csrno, target_ulong *val)
138 {
139 #if !defined(CONFIG_USER_ONLY)
140     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
141         return -1;
142     }
143 #endif
144     *val = env->frm;
145     return 0;
146 }
147 
148 static int write_frm(CPURISCVState *env, int csrno, target_ulong val)
149 {
150 #if !defined(CONFIG_USER_ONLY)
151     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
152         return -1;
153     }
154     env->mstatus |= MSTATUS_FS;
155 #endif
156     env->frm = val & (FSR_RD >> FSR_RD_SHIFT);
157     return 0;
158 }
159 
160 static int read_fcsr(CPURISCVState *env, int csrno, target_ulong *val)
161 {
162 #if !defined(CONFIG_USER_ONLY)
163     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
164         return -1;
165     }
166 #endif
167     *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT)
168         | (env->frm << FSR_RD_SHIFT);
169     if (vs(env, csrno) >= 0) {
170         *val |= (env->vxrm << FSR_VXRM_SHIFT)
171                 | (env->vxsat << FSR_VXSAT_SHIFT);
172     }
173     return 0;
174 }
175 
176 static int write_fcsr(CPURISCVState *env, int csrno, target_ulong val)
177 {
178 #if !defined(CONFIG_USER_ONLY)
179     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
180         return -1;
181     }
182     env->mstatus |= MSTATUS_FS;
183 #endif
184     env->frm = (val & FSR_RD) >> FSR_RD_SHIFT;
185     if (vs(env, csrno) >= 0) {
186         env->vxrm = (val & FSR_VXRM) >> FSR_VXRM_SHIFT;
187         env->vxsat = (val & FSR_VXSAT) >> FSR_VXSAT_SHIFT;
188     }
189     riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT);
190     return 0;
191 }
192 
193 static int read_vtype(CPURISCVState *env, int csrno, target_ulong *val)
194 {
195     *val = env->vtype;
196     return 0;
197 }
198 
199 static int read_vl(CPURISCVState *env, int csrno, target_ulong *val)
200 {
201     *val = env->vl;
202     return 0;
203 }
204 
205 static int read_vxrm(CPURISCVState *env, int csrno, target_ulong *val)
206 {
207     *val = env->vxrm;
208     return 0;
209 }
210 
211 static int write_vxrm(CPURISCVState *env, int csrno, target_ulong val)
212 {
213     env->vxrm = val;
214     return 0;
215 }
216 
217 static int read_vxsat(CPURISCVState *env, int csrno, target_ulong *val)
218 {
219     *val = env->vxsat;
220     return 0;
221 }
222 
223 static int write_vxsat(CPURISCVState *env, int csrno, target_ulong val)
224 {
225     env->vxsat = val;
226     return 0;
227 }
228 
229 static int read_vstart(CPURISCVState *env, int csrno, target_ulong *val)
230 {
231     *val = env->vstart;
232     return 0;
233 }
234 
235 static int write_vstart(CPURISCVState *env, int csrno, target_ulong val)
236 {
237     env->vstart = val;
238     return 0;
239 }
240 
241 /* User Timers and Counters */
242 static int read_instret(CPURISCVState *env, int csrno, target_ulong *val)
243 {
244 #if !defined(CONFIG_USER_ONLY)
245     if (use_icount) {
246         *val = cpu_get_icount();
247     } else {
248         *val = cpu_get_host_ticks();
249     }
250 #else
251     *val = cpu_get_host_ticks();
252 #endif
253     return 0;
254 }
255 
256 #if defined(TARGET_RISCV32)
257 static int read_instreth(CPURISCVState *env, int csrno, target_ulong *val)
258 {
259 #if !defined(CONFIG_USER_ONLY)
260     if (use_icount) {
261         *val = cpu_get_icount() >> 32;
262     } else {
263         *val = cpu_get_host_ticks() >> 32;
264     }
265 #else
266     *val = cpu_get_host_ticks() >> 32;
267 #endif
268     return 0;
269 }
270 #endif /* TARGET_RISCV32 */
271 
272 #if defined(CONFIG_USER_ONLY)
273 static int read_time(CPURISCVState *env, int csrno, target_ulong *val)
274 {
275     *val = cpu_get_host_ticks();
276     return 0;
277 }
278 
279 #if defined(TARGET_RISCV32)
280 static int read_timeh(CPURISCVState *env, int csrno, target_ulong *val)
281 {
282     *val = cpu_get_host_ticks() >> 32;
283     return 0;
284 }
285 #endif
286 
287 #else /* CONFIG_USER_ONLY */
288 
289 static int read_time(CPURISCVState *env, int csrno, target_ulong *val)
290 {
291     uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
292 
293     if (!env->rdtime_fn) {
294         return -1;
295     }
296 
297     *val = env->rdtime_fn() + delta;
298     return 0;
299 }
300 
301 #if defined(TARGET_RISCV32)
302 static int read_timeh(CPURISCVState *env, int csrno, target_ulong *val)
303 {
304     uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
305 
306     if (!env->rdtime_fn) {
307         return -1;
308     }
309 
310     *val = (env->rdtime_fn() + delta) >> 32;
311     return 0;
312 }
313 #endif
314 
315 /* Machine constants */
316 
317 #define M_MODE_INTERRUPTS  (MIP_MSIP | MIP_MTIP | MIP_MEIP)
318 #define S_MODE_INTERRUPTS  (MIP_SSIP | MIP_STIP | MIP_SEIP)
319 #define VS_MODE_INTERRUPTS (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)
320 
321 static const target_ulong delegable_ints = S_MODE_INTERRUPTS |
322                                            VS_MODE_INTERRUPTS;
323 static const target_ulong all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS |
324                                      VS_MODE_INTERRUPTS;
325 static const target_ulong delegable_excps =
326     (1ULL << (RISCV_EXCP_INST_ADDR_MIS)) |
327     (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) |
328     (1ULL << (RISCV_EXCP_ILLEGAL_INST)) |
329     (1ULL << (RISCV_EXCP_BREAKPOINT)) |
330     (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) |
331     (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) |
332     (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) |
333     (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) |
334     (1ULL << (RISCV_EXCP_U_ECALL)) |
335     (1ULL << (RISCV_EXCP_S_ECALL)) |
336     (1ULL << (RISCV_EXCP_VS_ECALL)) |
337     (1ULL << (RISCV_EXCP_M_ECALL)) |
338     (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) |
339     (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) |
340     (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) |
341     (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) |
342     (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) |
343     (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT));
344 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE |
345     SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS |
346     SSTATUS_SUM | SSTATUS_MXR | SSTATUS_SD;
347 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP;
348 static const target_ulong hip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP;
349 static const target_ulong vsip_writable_mask = MIP_VSSIP;
350 
351 #if defined(TARGET_RISCV32)
352 static const char valid_vm_1_10[16] = {
353     [VM_1_10_MBARE] = 1,
354     [VM_1_10_SV32] = 1
355 };
356 #elif defined(TARGET_RISCV64)
357 static const char valid_vm_1_10[16] = {
358     [VM_1_10_MBARE] = 1,
359     [VM_1_10_SV39] = 1,
360     [VM_1_10_SV48] = 1,
361     [VM_1_10_SV57] = 1
362 };
363 #endif /* CONFIG_USER_ONLY */
364 
365 /* Machine Information Registers */
366 static int read_zero(CPURISCVState *env, int csrno, target_ulong *val)
367 {
368     return *val = 0;
369 }
370 
371 static int read_mhartid(CPURISCVState *env, int csrno, target_ulong *val)
372 {
373     *val = env->mhartid;
374     return 0;
375 }
376 
377 /* Machine Trap Setup */
378 static int read_mstatus(CPURISCVState *env, int csrno, target_ulong *val)
379 {
380     *val = env->mstatus;
381     return 0;
382 }
383 
384 static int validate_vm(CPURISCVState *env, target_ulong vm)
385 {
386     return valid_vm_1_10[vm & 0xf];
387 }
388 
389 static int write_mstatus(CPURISCVState *env, int csrno, target_ulong val)
390 {
391     target_ulong mstatus = env->mstatus;
392     target_ulong mask = 0;
393     int dirty;
394 
395     /* flush tlb on mstatus fields that affect VM */
396     if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV |
397             MSTATUS_MPRV | MSTATUS_SUM)) {
398         tlb_flush(env_cpu(env));
399     }
400     mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE |
401         MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM |
402         MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR |
403         MSTATUS_TW;
404 #if defined(TARGET_RISCV64)
405     /*
406      * RV32: MPV and GVA are not in mstatus. The current plan is to
407      * add them to mstatush. For now, we just don't support it.
408      */
409     mask |= MSTATUS_MPV | MSTATUS_GVA;
410 #endif
411 
412     mstatus = (mstatus & ~mask) | (val & mask);
413 
414     dirty = ((mstatus & MSTATUS_FS) == MSTATUS_FS) |
415             ((mstatus & MSTATUS_XS) == MSTATUS_XS);
416     mstatus = set_field(mstatus, MSTATUS_SD, dirty);
417     env->mstatus = mstatus;
418 
419     return 0;
420 }
421 
422 #ifdef TARGET_RISCV32
423 static int read_mstatush(CPURISCVState *env, int csrno, target_ulong *val)
424 {
425     *val = env->mstatush;
426     return 0;
427 }
428 
429 static int write_mstatush(CPURISCVState *env, int csrno, target_ulong val)
430 {
431     if ((val ^ env->mstatush) & (MSTATUS_MPV)) {
432         tlb_flush(env_cpu(env));
433     }
434 
435     val &= MSTATUS_MPV | MSTATUS_GVA;
436 
437     env->mstatush = val;
438 
439     return 0;
440 }
441 #endif
442 
443 static int read_misa(CPURISCVState *env, int csrno, target_ulong *val)
444 {
445     *val = env->misa;
446     return 0;
447 }
448 
449 static int write_misa(CPURISCVState *env, int csrno, target_ulong val)
450 {
451     if (!riscv_feature(env, RISCV_FEATURE_MISA)) {
452         /* drop write to misa */
453         return 0;
454     }
455 
456     /* 'I' or 'E' must be present */
457     if (!(val & (RVI | RVE))) {
458         /* It is not, drop write to misa */
459         return 0;
460     }
461 
462     /* 'E' excludes all other extensions */
463     if (val & RVE) {
464         /* when we support 'E' we can do "val = RVE;" however
465          * for now we just drop writes if 'E' is present.
466          */
467         return 0;
468     }
469 
470     /* Mask extensions that are not supported by this hart */
471     val &= env->misa_mask;
472 
473     /* Mask extensions that are not supported by QEMU */
474     val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU);
475 
476     /* 'D' depends on 'F', so clear 'D' if 'F' is not present */
477     if ((val & RVD) && !(val & RVF)) {
478         val &= ~RVD;
479     }
480 
481     /* Suppress 'C' if next instruction is not aligned
482      * TODO: this should check next_pc
483      */
484     if ((val & RVC) && (GETPC() & ~3) != 0) {
485         val &= ~RVC;
486     }
487 
488     /* misa.MXL writes are not supported by QEMU */
489     val = (env->misa & MISA_MXL) | (val & ~MISA_MXL);
490 
491     /* flush translation cache */
492     if (val != env->misa) {
493         tb_flush(env_cpu(env));
494     }
495 
496     env->misa = val;
497 
498     return 0;
499 }
500 
501 static int read_medeleg(CPURISCVState *env, int csrno, target_ulong *val)
502 {
503     *val = env->medeleg;
504     return 0;
505 }
506 
507 static int write_medeleg(CPURISCVState *env, int csrno, target_ulong val)
508 {
509     env->medeleg = (env->medeleg & ~delegable_excps) | (val & delegable_excps);
510     return 0;
511 }
512 
513 static int read_mideleg(CPURISCVState *env, int csrno, target_ulong *val)
514 {
515     *val = env->mideleg;
516     return 0;
517 }
518 
519 static int write_mideleg(CPURISCVState *env, int csrno, target_ulong val)
520 {
521     env->mideleg = (env->mideleg & ~delegable_ints) | (val & delegable_ints);
522     if (riscv_has_ext(env, RVH)) {
523         env->mideleg |= VS_MODE_INTERRUPTS;
524     }
525     return 0;
526 }
527 
528 static int read_mie(CPURISCVState *env, int csrno, target_ulong *val)
529 {
530     *val = env->mie;
531     return 0;
532 }
533 
534 static int write_mie(CPURISCVState *env, int csrno, target_ulong val)
535 {
536     env->mie = (env->mie & ~all_ints) | (val & all_ints);
537     return 0;
538 }
539 
540 static int read_mtvec(CPURISCVState *env, int csrno, target_ulong *val)
541 {
542     *val = env->mtvec;
543     return 0;
544 }
545 
546 static int write_mtvec(CPURISCVState *env, int csrno, target_ulong val)
547 {
548     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
549     if ((val & 3) < 2) {
550         env->mtvec = val;
551     } else {
552         qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n");
553     }
554     return 0;
555 }
556 
557 static int read_mcounteren(CPURISCVState *env, int csrno, target_ulong *val)
558 {
559     *val = env->mcounteren;
560     return 0;
561 }
562 
563 static int write_mcounteren(CPURISCVState *env, int csrno, target_ulong val)
564 {
565     env->mcounteren = val;
566     return 0;
567 }
568 
569 /* This regiser is replaced with CSR_MCOUNTINHIBIT in 1.11.0 */
570 static int read_mscounteren(CPURISCVState *env, int csrno, target_ulong *val)
571 {
572     if (env->priv_ver < PRIV_VERSION_1_11_0) {
573         return -1;
574     }
575     *val = env->mcounteren;
576     return 0;
577 }
578 
579 /* This regiser is replaced with CSR_MCOUNTINHIBIT in 1.11.0 */
580 static int write_mscounteren(CPURISCVState *env, int csrno, target_ulong val)
581 {
582     if (env->priv_ver < PRIV_VERSION_1_11_0) {
583         return -1;
584     }
585     env->mcounteren = val;
586     return 0;
587 }
588 
589 /* Machine Trap Handling */
590 static int read_mscratch(CPURISCVState *env, int csrno, target_ulong *val)
591 {
592     *val = env->mscratch;
593     return 0;
594 }
595 
596 static int write_mscratch(CPURISCVState *env, int csrno, target_ulong val)
597 {
598     env->mscratch = val;
599     return 0;
600 }
601 
602 static int read_mepc(CPURISCVState *env, int csrno, target_ulong *val)
603 {
604     *val = env->mepc;
605     return 0;
606 }
607 
608 static int write_mepc(CPURISCVState *env, int csrno, target_ulong val)
609 {
610     env->mepc = val;
611     return 0;
612 }
613 
614 static int read_mcause(CPURISCVState *env, int csrno, target_ulong *val)
615 {
616     *val = env->mcause;
617     return 0;
618 }
619 
620 static int write_mcause(CPURISCVState *env, int csrno, target_ulong val)
621 {
622     env->mcause = val;
623     return 0;
624 }
625 
626 static int read_mbadaddr(CPURISCVState *env, int csrno, target_ulong *val)
627 {
628     *val = env->mbadaddr;
629     return 0;
630 }
631 
632 static int write_mbadaddr(CPURISCVState *env, int csrno, target_ulong val)
633 {
634     env->mbadaddr = val;
635     return 0;
636 }
637 
638 static int rmw_mip(CPURISCVState *env, int csrno, target_ulong *ret_value,
639                    target_ulong new_value, target_ulong write_mask)
640 {
641     RISCVCPU *cpu = env_archcpu(env);
642     /* Allow software control of delegable interrupts not claimed by hardware */
643     target_ulong mask = write_mask & delegable_ints & ~env->miclaim;
644     uint32_t old_mip;
645 
646     if (mask) {
647         old_mip = riscv_cpu_update_mip(cpu, mask, (new_value & mask));
648     } else {
649         old_mip = env->mip;
650     }
651 
652     if (ret_value) {
653         *ret_value = old_mip;
654     }
655 
656     return 0;
657 }
658 
659 /* Supervisor Trap Setup */
660 static int read_sstatus(CPURISCVState *env, int csrno, target_ulong *val)
661 {
662     target_ulong mask = (sstatus_v1_10_mask);
663     *val = env->mstatus & mask;
664     return 0;
665 }
666 
667 static int write_sstatus(CPURISCVState *env, int csrno, target_ulong val)
668 {
669     target_ulong mask = (sstatus_v1_10_mask);
670     target_ulong newval = (env->mstatus & ~mask) | (val & mask);
671     return write_mstatus(env, CSR_MSTATUS, newval);
672 }
673 
674 static int read_sie(CPURISCVState *env, int csrno, target_ulong *val)
675 {
676     if (riscv_cpu_virt_enabled(env)) {
677         /* Tell the guest the VS bits, shifted to the S bit locations */
678         *val = (env->mie & env->mideleg & VS_MODE_INTERRUPTS) >> 1;
679     } else {
680         *val = env->mie & env->mideleg;
681     }
682     return 0;
683 }
684 
685 static int write_sie(CPURISCVState *env, int csrno, target_ulong val)
686 {
687     target_ulong newval;
688 
689     if (riscv_cpu_virt_enabled(env)) {
690         /* Shift the guests S bits to VS */
691         newval = (env->mie & ~VS_MODE_INTERRUPTS) |
692                  ((val << 1) & VS_MODE_INTERRUPTS);
693     } else {
694         newval = (env->mie & ~S_MODE_INTERRUPTS) | (val & S_MODE_INTERRUPTS);
695     }
696 
697     return write_mie(env, CSR_MIE, newval);
698 }
699 
700 static int read_stvec(CPURISCVState *env, int csrno, target_ulong *val)
701 {
702     *val = env->stvec;
703     return 0;
704 }
705 
706 static int write_stvec(CPURISCVState *env, int csrno, target_ulong val)
707 {
708     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
709     if ((val & 3) < 2) {
710         env->stvec = val;
711     } else {
712         qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n");
713     }
714     return 0;
715 }
716 
717 static int read_scounteren(CPURISCVState *env, int csrno, target_ulong *val)
718 {
719     *val = env->scounteren;
720     return 0;
721 }
722 
723 static int write_scounteren(CPURISCVState *env, int csrno, target_ulong val)
724 {
725     env->scounteren = val;
726     return 0;
727 }
728 
729 /* Supervisor Trap Handling */
730 static int read_sscratch(CPURISCVState *env, int csrno, target_ulong *val)
731 {
732     *val = env->sscratch;
733     return 0;
734 }
735 
736 static int write_sscratch(CPURISCVState *env, int csrno, target_ulong val)
737 {
738     env->sscratch = val;
739     return 0;
740 }
741 
742 static int read_sepc(CPURISCVState *env, int csrno, target_ulong *val)
743 {
744     *val = env->sepc;
745     return 0;
746 }
747 
748 static int write_sepc(CPURISCVState *env, int csrno, target_ulong val)
749 {
750     env->sepc = val;
751     return 0;
752 }
753 
754 static int read_scause(CPURISCVState *env, int csrno, target_ulong *val)
755 {
756     *val = env->scause;
757     return 0;
758 }
759 
760 static int write_scause(CPURISCVState *env, int csrno, target_ulong val)
761 {
762     env->scause = val;
763     return 0;
764 }
765 
766 static int read_sbadaddr(CPURISCVState *env, int csrno, target_ulong *val)
767 {
768     *val = env->sbadaddr;
769     return 0;
770 }
771 
772 static int write_sbadaddr(CPURISCVState *env, int csrno, target_ulong val)
773 {
774     env->sbadaddr = val;
775     return 0;
776 }
777 
778 static int rmw_sip(CPURISCVState *env, int csrno, target_ulong *ret_value,
779                    target_ulong new_value, target_ulong write_mask)
780 {
781     int ret;
782 
783     if (riscv_cpu_virt_enabled(env)) {
784         /* Shift the new values to line up with the VS bits */
785         ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value << 1,
786                       (write_mask & sip_writable_mask) << 1 & env->mideleg);
787         ret &= vsip_writable_mask;
788         ret >>= 1;
789     } else {
790         ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value,
791                       write_mask & env->mideleg & sip_writable_mask);
792     }
793 
794     *ret_value &= env->mideleg;
795     return ret;
796 }
797 
798 /* Supervisor Protection and Translation */
799 static int read_satp(CPURISCVState *env, int csrno, target_ulong *val)
800 {
801     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
802         *val = 0;
803         return 0;
804     }
805 
806     if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
807         return -1;
808     } else {
809         *val = env->satp;
810     }
811 
812     return 0;
813 }
814 
815 static int write_satp(CPURISCVState *env, int csrno, target_ulong val)
816 {
817     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
818         return 0;
819     }
820     if (validate_vm(env, get_field(val, SATP_MODE)) &&
821         ((val ^ env->satp) & (SATP_MODE | SATP_ASID | SATP_PPN)))
822     {
823         if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
824             return -1;
825         } else {
826             if((val ^ env->satp) & SATP_ASID) {
827                 tlb_flush(env_cpu(env));
828             }
829             env->satp = val;
830         }
831     }
832     return 0;
833 }
834 
835 /* Hypervisor Extensions */
836 static int read_hstatus(CPURISCVState *env, int csrno, target_ulong *val)
837 {
838     *val = env->hstatus;
839     return 0;
840 }
841 
842 static int write_hstatus(CPURISCVState *env, int csrno, target_ulong val)
843 {
844     env->hstatus = val;
845     return 0;
846 }
847 
848 static int read_hedeleg(CPURISCVState *env, int csrno, target_ulong *val)
849 {
850     *val = env->hedeleg;
851     return 0;
852 }
853 
854 static int write_hedeleg(CPURISCVState *env, int csrno, target_ulong val)
855 {
856     env->hedeleg = val;
857     return 0;
858 }
859 
860 static int read_hideleg(CPURISCVState *env, int csrno, target_ulong *val)
861 {
862     *val = env->hideleg;
863     return 0;
864 }
865 
866 static int write_hideleg(CPURISCVState *env, int csrno, target_ulong val)
867 {
868     env->hideleg = val;
869     return 0;
870 }
871 
872 static int rmw_hip(CPURISCVState *env, int csrno, target_ulong *ret_value,
873                    target_ulong new_value, target_ulong write_mask)
874 {
875     int ret = rmw_mip(env, 0, ret_value, new_value,
876                       write_mask & hip_writable_mask);
877 
878     return ret;
879 }
880 
881 static int read_hie(CPURISCVState *env, int csrno, target_ulong *val)
882 {
883     *val = env->mie & VS_MODE_INTERRUPTS;
884     return 0;
885 }
886 
887 static int write_hie(CPURISCVState *env, int csrno, target_ulong val)
888 {
889     target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | (val & VS_MODE_INTERRUPTS);
890     return write_mie(env, CSR_MIE, newval);
891 }
892 
893 static int read_hcounteren(CPURISCVState *env, int csrno, target_ulong *val)
894 {
895     *val = env->hcounteren;
896     return 0;
897 }
898 
899 static int write_hcounteren(CPURISCVState *env, int csrno, target_ulong val)
900 {
901     env->hcounteren = val;
902     return 0;
903 }
904 
905 static int read_htval(CPURISCVState *env, int csrno, target_ulong *val)
906 {
907     *val = env->htval;
908     return 0;
909 }
910 
911 static int write_htval(CPURISCVState *env, int csrno, target_ulong val)
912 {
913     env->htval = val;
914     return 0;
915 }
916 
917 static int read_htinst(CPURISCVState *env, int csrno, target_ulong *val)
918 {
919     *val = env->htinst;
920     return 0;
921 }
922 
923 static int write_htinst(CPURISCVState *env, int csrno, target_ulong val)
924 {
925     return 0;
926 }
927 
928 static int read_hgatp(CPURISCVState *env, int csrno, target_ulong *val)
929 {
930     *val = env->hgatp;
931     return 0;
932 }
933 
934 static int write_hgatp(CPURISCVState *env, int csrno, target_ulong val)
935 {
936     env->hgatp = val;
937     return 0;
938 }
939 
940 static int read_htimedelta(CPURISCVState *env, int csrno, target_ulong *val)
941 {
942     if (!env->rdtime_fn) {
943         return -1;
944     }
945 
946 #if defined(TARGET_RISCV32)
947     *val = env->htimedelta & 0xffffffff;
948 #else
949     *val = env->htimedelta;
950 #endif
951     return 0;
952 }
953 
954 static int write_htimedelta(CPURISCVState *env, int csrno, target_ulong val)
955 {
956     if (!env->rdtime_fn) {
957         return -1;
958     }
959 
960 #if defined(TARGET_RISCV32)
961     env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val);
962 #else
963     env->htimedelta = val;
964 #endif
965     return 0;
966 }
967 
968 #if defined(TARGET_RISCV32)
969 static int read_htimedeltah(CPURISCVState *env, int csrno, target_ulong *val)
970 {
971     if (!env->rdtime_fn) {
972         return -1;
973     }
974 
975     *val = env->htimedelta >> 32;
976     return 0;
977 }
978 
979 static int write_htimedeltah(CPURISCVState *env, int csrno, target_ulong val)
980 {
981     if (!env->rdtime_fn) {
982         return -1;
983     }
984 
985     env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val);
986     return 0;
987 }
988 #endif
989 
990 /* Virtual CSR Registers */
991 static int read_vsstatus(CPURISCVState *env, int csrno, target_ulong *val)
992 {
993     *val = env->vsstatus;
994     return 0;
995 }
996 
997 static int write_vsstatus(CPURISCVState *env, int csrno, target_ulong val)
998 {
999     env->vsstatus = val;
1000     return 0;
1001 }
1002 
1003 static int rmw_vsip(CPURISCVState *env, int csrno, target_ulong *ret_value,
1004                     target_ulong new_value, target_ulong write_mask)
1005 {
1006     int ret = rmw_mip(env, 0, ret_value, new_value,
1007                       write_mask & env->mideleg & vsip_writable_mask);
1008     return ret;
1009 }
1010 
1011 static int read_vsie(CPURISCVState *env, int csrno, target_ulong *val)
1012 {
1013     *val = env->mie & env->mideleg & VS_MODE_INTERRUPTS;
1014     return 0;
1015 }
1016 
1017 static int write_vsie(CPURISCVState *env, int csrno, target_ulong val)
1018 {
1019     target_ulong newval = (env->mie & ~env->mideleg) | (val & env->mideleg & MIP_VSSIP);
1020     return write_mie(env, CSR_MIE, newval);
1021 }
1022 
1023 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val)
1024 {
1025     *val = env->vstvec;
1026     return 0;
1027 }
1028 
1029 static int write_vstvec(CPURISCVState *env, int csrno, target_ulong val)
1030 {
1031     env->vstvec = val;
1032     return 0;
1033 }
1034 
1035 static int read_vsscratch(CPURISCVState *env, int csrno, target_ulong *val)
1036 {
1037     *val = env->vsscratch;
1038     return 0;
1039 }
1040 
1041 static int write_vsscratch(CPURISCVState *env, int csrno, target_ulong val)
1042 {
1043     env->vsscratch = val;
1044     return 0;
1045 }
1046 
1047 static int read_vsepc(CPURISCVState *env, int csrno, target_ulong *val)
1048 {
1049     *val = env->vsepc;
1050     return 0;
1051 }
1052 
1053 static int write_vsepc(CPURISCVState *env, int csrno, target_ulong val)
1054 {
1055     env->vsepc = val;
1056     return 0;
1057 }
1058 
1059 static int read_vscause(CPURISCVState *env, int csrno, target_ulong *val)
1060 {
1061     *val = env->vscause;
1062     return 0;
1063 }
1064 
1065 static int write_vscause(CPURISCVState *env, int csrno, target_ulong val)
1066 {
1067     env->vscause = val;
1068     return 0;
1069 }
1070 
1071 static int read_vstval(CPURISCVState *env, int csrno, target_ulong *val)
1072 {
1073     *val = env->vstval;
1074     return 0;
1075 }
1076 
1077 static int write_vstval(CPURISCVState *env, int csrno, target_ulong val)
1078 {
1079     env->vstval = val;
1080     return 0;
1081 }
1082 
1083 static int read_vsatp(CPURISCVState *env, int csrno, target_ulong *val)
1084 {
1085     *val = env->vsatp;
1086     return 0;
1087 }
1088 
1089 static int write_vsatp(CPURISCVState *env, int csrno, target_ulong val)
1090 {
1091     env->vsatp = val;
1092     return 0;
1093 }
1094 
1095 static int read_mtval2(CPURISCVState *env, int csrno, target_ulong *val)
1096 {
1097     *val = env->mtval2;
1098     return 0;
1099 }
1100 
1101 static int write_mtval2(CPURISCVState *env, int csrno, target_ulong val)
1102 {
1103     env->mtval2 = val;
1104     return 0;
1105 }
1106 
1107 static int read_mtinst(CPURISCVState *env, int csrno, target_ulong *val)
1108 {
1109     *val = env->mtinst;
1110     return 0;
1111 }
1112 
1113 static int write_mtinst(CPURISCVState *env, int csrno, target_ulong val)
1114 {
1115     env->mtinst = val;
1116     return 0;
1117 }
1118 
1119 /* Physical Memory Protection */
1120 static int read_pmpcfg(CPURISCVState *env, int csrno, target_ulong *val)
1121 {
1122     *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0);
1123     return 0;
1124 }
1125 
1126 static int write_pmpcfg(CPURISCVState *env, int csrno, target_ulong val)
1127 {
1128     pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val);
1129     return 0;
1130 }
1131 
1132 static int read_pmpaddr(CPURISCVState *env, int csrno, target_ulong *val)
1133 {
1134     *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0);
1135     return 0;
1136 }
1137 
1138 static int write_pmpaddr(CPURISCVState *env, int csrno, target_ulong val)
1139 {
1140     pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val);
1141     return 0;
1142 }
1143 
1144 #endif
1145 
1146 /*
1147  * riscv_csrrw - read and/or update control and status register
1148  *
1149  * csrr   <->  riscv_csrrw(env, csrno, ret_value, 0, 0);
1150  * csrrw  <->  riscv_csrrw(env, csrno, ret_value, value, -1);
1151  * csrrs  <->  riscv_csrrw(env, csrno, ret_value, -1, value);
1152  * csrrc  <->  riscv_csrrw(env, csrno, ret_value, 0, value);
1153  */
1154 
1155 int riscv_csrrw(CPURISCVState *env, int csrno, target_ulong *ret_value,
1156                 target_ulong new_value, target_ulong write_mask)
1157 {
1158     int ret;
1159     target_ulong old_value;
1160     RISCVCPU *cpu = env_archcpu(env);
1161 
1162     /* check privileges and return -1 if check fails */
1163 #if !defined(CONFIG_USER_ONLY)
1164     int effective_priv = env->priv;
1165     int read_only = get_field(csrno, 0xC00) == 3;
1166 
1167     if (riscv_has_ext(env, RVH) &&
1168         env->priv == PRV_S &&
1169         !riscv_cpu_virt_enabled(env)) {
1170         /*
1171          * We are in S mode without virtualisation, therefore we are in HS Mode.
1172          * Add 1 to the effective privledge level to allow us to access the
1173          * Hypervisor CSRs.
1174          */
1175         effective_priv++;
1176     }
1177 
1178     if ((write_mask && read_only) ||
1179         (!env->debugger && (effective_priv < get_field(csrno, 0x300)))) {
1180         return -1;
1181     }
1182 #endif
1183 
1184     /* ensure the CSR extension is enabled. */
1185     if (!cpu->cfg.ext_icsr) {
1186         return -1;
1187     }
1188 
1189     /* check predicate */
1190     if (!csr_ops[csrno].predicate || csr_ops[csrno].predicate(env, csrno) < 0) {
1191         return -1;
1192     }
1193 
1194     /* execute combined read/write operation if it exists */
1195     if (csr_ops[csrno].op) {
1196         return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask);
1197     }
1198 
1199     /* if no accessor exists then return failure */
1200     if (!csr_ops[csrno].read) {
1201         return -1;
1202     }
1203 
1204     /* read old value */
1205     ret = csr_ops[csrno].read(env, csrno, &old_value);
1206     if (ret < 0) {
1207         return ret;
1208     }
1209 
1210     /* write value if writable and write mask set, otherwise drop writes */
1211     if (write_mask) {
1212         new_value = (old_value & ~write_mask) | (new_value & write_mask);
1213         if (csr_ops[csrno].write) {
1214             ret = csr_ops[csrno].write(env, csrno, new_value);
1215             if (ret < 0) {
1216                 return ret;
1217             }
1218         }
1219     }
1220 
1221     /* return old value */
1222     if (ret_value) {
1223         *ret_value = old_value;
1224     }
1225 
1226     return 0;
1227 }
1228 
1229 /*
1230  * Debugger support.  If not in user mode, set env->debugger before the
1231  * riscv_csrrw call and clear it after the call.
1232  */
1233 int riscv_csrrw_debug(CPURISCVState *env, int csrno, target_ulong *ret_value,
1234                 target_ulong new_value, target_ulong write_mask)
1235 {
1236     int ret;
1237 #if !defined(CONFIG_USER_ONLY)
1238     env->debugger = true;
1239 #endif
1240     ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask);
1241 #if !defined(CONFIG_USER_ONLY)
1242     env->debugger = false;
1243 #endif
1244     return ret;
1245 }
1246 
1247 /* Control and Status Register function table */
1248 static riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = {
1249     /* User Floating-Point CSRs */
1250     [CSR_FFLAGS] =              { fs,   read_fflags,      write_fflags      },
1251     [CSR_FRM] =                 { fs,   read_frm,         write_frm         },
1252     [CSR_FCSR] =                { fs,   read_fcsr,        write_fcsr        },
1253     /* Vector CSRs */
1254     [CSR_VSTART] =              { vs,   read_vstart,      write_vstart      },
1255     [CSR_VXSAT] =               { vs,   read_vxsat,       write_vxsat       },
1256     [CSR_VXRM] =                { vs,   read_vxrm,        write_vxrm        },
1257     [CSR_VL] =                  { vs,   read_vl                             },
1258     [CSR_VTYPE] =               { vs,   read_vtype                          },
1259     /* User Timers and Counters */
1260     [CSR_CYCLE] =               { ctr,  read_instret                        },
1261     [CSR_INSTRET] =             { ctr,  read_instret                        },
1262 #if defined(TARGET_RISCV32)
1263     [CSR_CYCLEH] =              { ctr,  read_instreth                       },
1264     [CSR_INSTRETH] =            { ctr,  read_instreth                       },
1265 #endif
1266 
1267     /* In privileged mode, the monitor will have to emulate TIME CSRs only if
1268      * rdtime callback is not provided by machine/platform emulation */
1269     [CSR_TIME] =                { ctr,  read_time                           },
1270 #if defined(TARGET_RISCV32)
1271     [CSR_TIMEH] =               { ctr,  read_timeh                          },
1272 #endif
1273 
1274 #if !defined(CONFIG_USER_ONLY)
1275     /* Machine Timers and Counters */
1276     [CSR_MCYCLE] =              { any,  read_instret                        },
1277     [CSR_MINSTRET] =            { any,  read_instret                        },
1278 #if defined(TARGET_RISCV32)
1279     [CSR_MCYCLEH] =             { any,  read_instreth                       },
1280     [CSR_MINSTRETH] =           { any,  read_instreth                       },
1281 #endif
1282 
1283     /* Machine Information Registers */
1284     [CSR_MVENDORID] =           { any,  read_zero                           },
1285     [CSR_MARCHID] =             { any,  read_zero                           },
1286     [CSR_MIMPID] =              { any,  read_zero                           },
1287     [CSR_MHARTID] =             { any,  read_mhartid                        },
1288 
1289     /* Machine Trap Setup */
1290     [CSR_MSTATUS] =             { any,  read_mstatus,     write_mstatus     },
1291     [CSR_MISA] =                { any,  read_misa,        write_misa        },
1292     [CSR_MIDELEG] =             { any,  read_mideleg,     write_mideleg     },
1293     [CSR_MEDELEG] =             { any,  read_medeleg,     write_medeleg     },
1294     [CSR_MIE] =                 { any,  read_mie,         write_mie         },
1295     [CSR_MTVEC] =               { any,  read_mtvec,       write_mtvec       },
1296     [CSR_MCOUNTEREN] =          { any,  read_mcounteren,  write_mcounteren  },
1297 
1298 #if defined(TARGET_RISCV32)
1299     [CSR_MSTATUSH] =            { any,  read_mstatush,    write_mstatush    },
1300 #endif
1301 
1302     [CSR_MSCOUNTEREN] =         { any,  read_mscounteren, write_mscounteren },
1303 
1304     /* Machine Trap Handling */
1305     [CSR_MSCRATCH] =            { any,  read_mscratch,    write_mscratch    },
1306     [CSR_MEPC] =                { any,  read_mepc,        write_mepc        },
1307     [CSR_MCAUSE] =              { any,  read_mcause,      write_mcause      },
1308     [CSR_MBADADDR] =            { any,  read_mbadaddr,    write_mbadaddr    },
1309     [CSR_MIP] =                 { any,  NULL,     NULL,     rmw_mip         },
1310 
1311     /* Supervisor Trap Setup */
1312     [CSR_SSTATUS] =             { smode, read_sstatus,     write_sstatus     },
1313     [CSR_SIE] =                 { smode, read_sie,         write_sie         },
1314     [CSR_STVEC] =               { smode, read_stvec,       write_stvec       },
1315     [CSR_SCOUNTEREN] =          { smode, read_scounteren,  write_scounteren  },
1316 
1317     /* Supervisor Trap Handling */
1318     [CSR_SSCRATCH] =            { smode, read_sscratch,    write_sscratch    },
1319     [CSR_SEPC] =                { smode, read_sepc,        write_sepc        },
1320     [CSR_SCAUSE] =              { smode, read_scause,      write_scause      },
1321     [CSR_SBADADDR] =            { smode, read_sbadaddr,    write_sbadaddr    },
1322     [CSR_SIP] =                 { smode, NULL,     NULL,     rmw_sip         },
1323 
1324     /* Supervisor Protection and Translation */
1325     [CSR_SATP] =                { smode, read_satp,        write_satp        },
1326 
1327     [CSR_HSTATUS] =             { hmode,   read_hstatus,     write_hstatus    },
1328     [CSR_HEDELEG] =             { hmode,   read_hedeleg,     write_hedeleg    },
1329     [CSR_HIDELEG] =             { hmode,   read_hideleg,     write_hideleg    },
1330     [CSR_HIP] =                 { hmode,   NULL,     NULL,     rmw_hip        },
1331     [CSR_HIE] =                 { hmode,   read_hie,         write_hie        },
1332     [CSR_HCOUNTEREN] =          { hmode,   read_hcounteren,  write_hcounteren },
1333     [CSR_HTVAL] =               { hmode,   read_htval,       write_htval      },
1334     [CSR_HTINST] =              { hmode,   read_htinst,      write_htinst     },
1335     [CSR_HGATP] =               { hmode,   read_hgatp,       write_hgatp      },
1336     [CSR_HTIMEDELTA] =          { hmode,   read_htimedelta,  write_htimedelta },
1337 #if defined(TARGET_RISCV32)
1338     [CSR_HTIMEDELTAH] =         { hmode,   read_htimedeltah, write_htimedeltah},
1339 #endif
1340 
1341     [CSR_VSSTATUS] =            { hmode,   read_vsstatus,    write_vsstatus   },
1342     [CSR_VSIP] =                { hmode,   NULL,     NULL,     rmw_vsip       },
1343     [CSR_VSIE] =                { hmode,   read_vsie,        write_vsie       },
1344     [CSR_VSTVEC] =              { hmode,   read_vstvec,      write_vstvec     },
1345     [CSR_VSSCRATCH] =           { hmode,   read_vsscratch,   write_vsscratch  },
1346     [CSR_VSEPC] =               { hmode,   read_vsepc,       write_vsepc      },
1347     [CSR_VSCAUSE] =             { hmode,   read_vscause,     write_vscause    },
1348     [CSR_VSTVAL] =              { hmode,   read_vstval,      write_vstval     },
1349     [CSR_VSATP] =               { hmode,   read_vsatp,       write_vsatp      },
1350 
1351     [CSR_MTVAL2] =              { hmode,   read_mtval2,      write_mtval2     },
1352     [CSR_MTINST] =              { hmode,   read_mtinst,      write_mtinst     },
1353 
1354     /* Physical Memory Protection */
1355     [CSR_PMPCFG0  ... CSR_PMPCFG3]   = { pmp,   read_pmpcfg,  write_pmpcfg   },
1356     [CSR_PMPADDR0 ... CSR_PMPADDR15] = { pmp,   read_pmpaddr, write_pmpaddr  },
1357 
1358     /* Performance Counters */
1359     [CSR_HPMCOUNTER3   ... CSR_HPMCOUNTER31] =    { ctr,  read_zero          },
1360     [CSR_MHPMCOUNTER3  ... CSR_MHPMCOUNTER31] =   { any,  read_zero          },
1361     [CSR_MHPMEVENT3    ... CSR_MHPMEVENT31] =     { any,  read_zero          },
1362 #if defined(TARGET_RISCV32)
1363     [CSR_HPMCOUNTER3H  ... CSR_HPMCOUNTER31H] =   { ctr,  read_zero          },
1364     [CSR_MHPMCOUNTER3H ... CSR_MHPMCOUNTER31H] =  { any,  read_zero          },
1365 #endif
1366 #endif /* !CONFIG_USER_ONLY */
1367 };
1368