xref: /openbmc/qemu/target/riscv/csr.c (revision 83028098)
1 /*
2  * RISC-V Control and Status Registers.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "qemu/main-loop.h"
24 #include "exec/exec-all.h"
25 
26 /* CSR function table */
27 static riscv_csr_operations csr_ops[];
28 
29 /* CSR function table constants */
30 enum {
31     CSR_TABLE_SIZE = 0x1000
32 };
33 
34 /* CSR function table public API */
35 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops)
36 {
37     *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)];
38 }
39 
40 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops)
41 {
42     csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops;
43 }
44 
45 /* Predicates */
46 static int fs(CPURISCVState *env, int csrno)
47 {
48 #if !defined(CONFIG_USER_ONLY)
49     /* loose check condition for fcsr in vector extension */
50     if ((csrno == CSR_FCSR) && (env->misa & RVV)) {
51         return 0;
52     }
53     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
54         return -1;
55     }
56 #endif
57     return 0;
58 }
59 
60 static int vs(CPURISCVState *env, int csrno)
61 {
62     if (env->misa & RVV) {
63         return 0;
64     }
65     return -1;
66 }
67 
68 static int ctr(CPURISCVState *env, int csrno)
69 {
70 #if !defined(CONFIG_USER_ONLY)
71     CPUState *cs = env_cpu(env);
72     RISCVCPU *cpu = RISCV_CPU(cs);
73 
74     if (!cpu->cfg.ext_counters) {
75         /* The Counters extensions is not enabled */
76         return -1;
77     }
78 #endif
79     return 0;
80 }
81 
82 #if !defined(CONFIG_USER_ONLY)
83 static int any(CPURISCVState *env, int csrno)
84 {
85     return 0;
86 }
87 
88 static int smode(CPURISCVState *env, int csrno)
89 {
90     return -!riscv_has_ext(env, RVS);
91 }
92 
93 static int hmode(CPURISCVState *env, int csrno)
94 {
95     if (riscv_has_ext(env, RVS) &&
96         riscv_has_ext(env, RVH)) {
97         /* Hypervisor extension is supported */
98         if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
99             env->priv == PRV_M) {
100             return 0;
101         }
102     }
103 
104     return -1;
105 }
106 
107 static int pmp(CPURISCVState *env, int csrno)
108 {
109     return -!riscv_feature(env, RISCV_FEATURE_PMP);
110 }
111 #endif
112 
113 /* User Floating-Point CSRs */
114 static int read_fflags(CPURISCVState *env, int csrno, target_ulong *val)
115 {
116 #if !defined(CONFIG_USER_ONLY)
117     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
118         return -1;
119     }
120 #endif
121     *val = riscv_cpu_get_fflags(env);
122     return 0;
123 }
124 
125 static int write_fflags(CPURISCVState *env, int csrno, target_ulong val)
126 {
127 #if !defined(CONFIG_USER_ONLY)
128     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
129         return -1;
130     }
131     env->mstatus |= MSTATUS_FS;
132 #endif
133     riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT));
134     return 0;
135 }
136 
137 static int read_frm(CPURISCVState *env, int csrno, target_ulong *val)
138 {
139 #if !defined(CONFIG_USER_ONLY)
140     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
141         return -1;
142     }
143 #endif
144     *val = env->frm;
145     return 0;
146 }
147 
148 static int write_frm(CPURISCVState *env, int csrno, target_ulong val)
149 {
150 #if !defined(CONFIG_USER_ONLY)
151     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
152         return -1;
153     }
154     env->mstatus |= MSTATUS_FS;
155 #endif
156     env->frm = val & (FSR_RD >> FSR_RD_SHIFT);
157     return 0;
158 }
159 
160 static int read_fcsr(CPURISCVState *env, int csrno, target_ulong *val)
161 {
162 #if !defined(CONFIG_USER_ONLY)
163     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
164         return -1;
165     }
166 #endif
167     *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT)
168         | (env->frm << FSR_RD_SHIFT);
169     if (vs(env, csrno) >= 0) {
170         *val |= (env->vxrm << FSR_VXRM_SHIFT)
171                 | (env->vxsat << FSR_VXSAT_SHIFT);
172     }
173     return 0;
174 }
175 
176 static int write_fcsr(CPURISCVState *env, int csrno, target_ulong val)
177 {
178 #if !defined(CONFIG_USER_ONLY)
179     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
180         return -1;
181     }
182     env->mstatus |= MSTATUS_FS;
183 #endif
184     env->frm = (val & FSR_RD) >> FSR_RD_SHIFT;
185     if (vs(env, csrno) >= 0) {
186         env->vxrm = (val & FSR_VXRM) >> FSR_VXRM_SHIFT;
187         env->vxsat = (val & FSR_VXSAT) >> FSR_VXSAT_SHIFT;
188     }
189     riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT);
190     return 0;
191 }
192 
193 static int read_vtype(CPURISCVState *env, int csrno, target_ulong *val)
194 {
195     *val = env->vtype;
196     return 0;
197 }
198 
199 static int read_vl(CPURISCVState *env, int csrno, target_ulong *val)
200 {
201     *val = env->vl;
202     return 0;
203 }
204 
205 static int read_vxrm(CPURISCVState *env, int csrno, target_ulong *val)
206 {
207     *val = env->vxrm;
208     return 0;
209 }
210 
211 static int write_vxrm(CPURISCVState *env, int csrno, target_ulong val)
212 {
213     env->vxrm = val;
214     return 0;
215 }
216 
217 static int read_vxsat(CPURISCVState *env, int csrno, target_ulong *val)
218 {
219     *val = env->vxsat;
220     return 0;
221 }
222 
223 static int write_vxsat(CPURISCVState *env, int csrno, target_ulong val)
224 {
225     env->vxsat = val;
226     return 0;
227 }
228 
229 static int read_vstart(CPURISCVState *env, int csrno, target_ulong *val)
230 {
231     *val = env->vstart;
232     return 0;
233 }
234 
235 static int write_vstart(CPURISCVState *env, int csrno, target_ulong val)
236 {
237     env->vstart = val;
238     return 0;
239 }
240 
241 /* User Timers and Counters */
242 static int read_instret(CPURISCVState *env, int csrno, target_ulong *val)
243 {
244 #if !defined(CONFIG_USER_ONLY)
245     if (use_icount) {
246         *val = cpu_get_icount();
247     } else {
248         *val = cpu_get_host_ticks();
249     }
250 #else
251     *val = cpu_get_host_ticks();
252 #endif
253     return 0;
254 }
255 
256 #if defined(TARGET_RISCV32)
257 static int read_instreth(CPURISCVState *env, int csrno, target_ulong *val)
258 {
259 #if !defined(CONFIG_USER_ONLY)
260     if (use_icount) {
261         *val = cpu_get_icount() >> 32;
262     } else {
263         *val = cpu_get_host_ticks() >> 32;
264     }
265 #else
266     *val = cpu_get_host_ticks() >> 32;
267 #endif
268     return 0;
269 }
270 #endif /* TARGET_RISCV32 */
271 
272 #if defined(CONFIG_USER_ONLY)
273 static int read_time(CPURISCVState *env, int csrno, target_ulong *val)
274 {
275     *val = cpu_get_host_ticks();
276     return 0;
277 }
278 
279 #if defined(TARGET_RISCV32)
280 static int read_timeh(CPURISCVState *env, int csrno, target_ulong *val)
281 {
282     *val = cpu_get_host_ticks() >> 32;
283     return 0;
284 }
285 #endif
286 
287 #else /* CONFIG_USER_ONLY */
288 
289 static int read_time(CPURISCVState *env, int csrno, target_ulong *val)
290 {
291     uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
292 
293     if (!env->rdtime_fn) {
294         return -1;
295     }
296 
297     *val = env->rdtime_fn() + delta;
298     return 0;
299 }
300 
301 #if defined(TARGET_RISCV32)
302 static int read_timeh(CPURISCVState *env, int csrno, target_ulong *val)
303 {
304     uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
305 
306     if (!env->rdtime_fn) {
307         return -1;
308     }
309 
310     *val = (env->rdtime_fn() + delta) >> 32;
311     return 0;
312 }
313 #endif
314 
315 /* Machine constants */
316 
317 #define M_MODE_INTERRUPTS  (MIP_MSIP | MIP_MTIP | MIP_MEIP)
318 #define S_MODE_INTERRUPTS  (MIP_SSIP | MIP_STIP | MIP_SEIP)
319 #define VS_MODE_INTERRUPTS (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)
320 
321 static const target_ulong delegable_ints = S_MODE_INTERRUPTS |
322                                            VS_MODE_INTERRUPTS;
323 static const target_ulong all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS |
324                                      VS_MODE_INTERRUPTS;
325 static const target_ulong delegable_excps =
326     (1ULL << (RISCV_EXCP_INST_ADDR_MIS)) |
327     (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) |
328     (1ULL << (RISCV_EXCP_ILLEGAL_INST)) |
329     (1ULL << (RISCV_EXCP_BREAKPOINT)) |
330     (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) |
331     (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) |
332     (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) |
333     (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) |
334     (1ULL << (RISCV_EXCP_U_ECALL)) |
335     (1ULL << (RISCV_EXCP_S_ECALL)) |
336     (1ULL << (RISCV_EXCP_VS_ECALL)) |
337     (1ULL << (RISCV_EXCP_M_ECALL)) |
338     (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) |
339     (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) |
340     (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) |
341     (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) |
342     (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) |
343     (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT));
344 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE |
345     SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS |
346     SSTATUS_SUM | SSTATUS_MXR | SSTATUS_SD;
347 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP;
348 static const target_ulong hip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP;
349 static const target_ulong vsip_writable_mask = MIP_VSSIP;
350 
351 #if defined(TARGET_RISCV32)
352 static const char valid_vm_1_10[16] = {
353     [VM_1_10_MBARE] = 1,
354     [VM_1_10_SV32] = 1
355 };
356 #elif defined(TARGET_RISCV64)
357 static const char valid_vm_1_10[16] = {
358     [VM_1_10_MBARE] = 1,
359     [VM_1_10_SV39] = 1,
360     [VM_1_10_SV48] = 1,
361     [VM_1_10_SV57] = 1
362 };
363 #endif /* CONFIG_USER_ONLY */
364 
365 /* Machine Information Registers */
366 static int read_zero(CPURISCVState *env, int csrno, target_ulong *val)
367 {
368     return *val = 0;
369 }
370 
371 static int read_mhartid(CPURISCVState *env, int csrno, target_ulong *val)
372 {
373     *val = env->mhartid;
374     return 0;
375 }
376 
377 /* Machine Trap Setup */
378 static int read_mstatus(CPURISCVState *env, int csrno, target_ulong *val)
379 {
380     *val = env->mstatus;
381     return 0;
382 }
383 
384 static int validate_vm(CPURISCVState *env, target_ulong vm)
385 {
386     return valid_vm_1_10[vm & 0xf];
387 }
388 
389 static int write_mstatus(CPURISCVState *env, int csrno, target_ulong val)
390 {
391     target_ulong mstatus = env->mstatus;
392     target_ulong mask = 0;
393     int dirty;
394 
395     /* flush tlb on mstatus fields that affect VM */
396     if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV |
397             MSTATUS_MPRV | MSTATUS_SUM)) {
398         tlb_flush(env_cpu(env));
399     }
400     mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE |
401         MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM |
402         MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR |
403         MSTATUS_TW;
404 #if defined(TARGET_RISCV64)
405     /*
406      * RV32: MPV and GVA are not in mstatus. The current plan is to
407      * add them to mstatush. For now, we just don't support it.
408      */
409     mask |= MSTATUS_MPV | MSTATUS_GVA;
410 #endif
411 
412     mstatus = (mstatus & ~mask) | (val & mask);
413 
414     dirty = ((mstatus & MSTATUS_FS) == MSTATUS_FS) |
415             ((mstatus & MSTATUS_XS) == MSTATUS_XS);
416     mstatus = set_field(mstatus, MSTATUS_SD, dirty);
417     env->mstatus = mstatus;
418 
419     return 0;
420 }
421 
422 #ifdef TARGET_RISCV32
423 static int read_mstatush(CPURISCVState *env, int csrno, target_ulong *val)
424 {
425     *val = env->mstatush;
426     return 0;
427 }
428 
429 static int write_mstatush(CPURISCVState *env, int csrno, target_ulong val)
430 {
431     if ((val ^ env->mstatush) & (MSTATUS_MPV)) {
432         tlb_flush(env_cpu(env));
433     }
434 
435     val &= MSTATUS_MPV | MSTATUS_GVA;
436 
437     env->mstatush = val;
438 
439     return 0;
440 }
441 #endif
442 
443 static int read_misa(CPURISCVState *env, int csrno, target_ulong *val)
444 {
445     *val = env->misa;
446     return 0;
447 }
448 
449 static int write_misa(CPURISCVState *env, int csrno, target_ulong val)
450 {
451     if (!riscv_feature(env, RISCV_FEATURE_MISA)) {
452         /* drop write to misa */
453         return 0;
454     }
455 
456     /* 'I' or 'E' must be present */
457     if (!(val & (RVI | RVE))) {
458         /* It is not, drop write to misa */
459         return 0;
460     }
461 
462     /* 'E' excludes all other extensions */
463     if (val & RVE) {
464         /* when we support 'E' we can do "val = RVE;" however
465          * for now we just drop writes if 'E' is present.
466          */
467         return 0;
468     }
469 
470     /* Mask extensions that are not supported by this hart */
471     val &= env->misa_mask;
472 
473     /* Mask extensions that are not supported by QEMU */
474     val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU);
475 
476     /* 'D' depends on 'F', so clear 'D' if 'F' is not present */
477     if ((val & RVD) && !(val & RVF)) {
478         val &= ~RVD;
479     }
480 
481     /* Suppress 'C' if next instruction is not aligned
482      * TODO: this should check next_pc
483      */
484     if ((val & RVC) && (GETPC() & ~3) != 0) {
485         val &= ~RVC;
486     }
487 
488     /* misa.MXL writes are not supported by QEMU */
489     val = (env->misa & MISA_MXL) | (val & ~MISA_MXL);
490 
491     /* flush translation cache */
492     if (val != env->misa) {
493         tb_flush(env_cpu(env));
494     }
495 
496     env->misa = val;
497 
498     return 0;
499 }
500 
501 static int read_medeleg(CPURISCVState *env, int csrno, target_ulong *val)
502 {
503     *val = env->medeleg;
504     return 0;
505 }
506 
507 static int write_medeleg(CPURISCVState *env, int csrno, target_ulong val)
508 {
509     env->medeleg = (env->medeleg & ~delegable_excps) | (val & delegable_excps);
510     return 0;
511 }
512 
513 static int read_mideleg(CPURISCVState *env, int csrno, target_ulong *val)
514 {
515     *val = env->mideleg;
516     return 0;
517 }
518 
519 static int write_mideleg(CPURISCVState *env, int csrno, target_ulong val)
520 {
521     env->mideleg = (env->mideleg & ~delegable_ints) | (val & delegable_ints);
522     if (riscv_has_ext(env, RVH)) {
523         env->mideleg |= VS_MODE_INTERRUPTS;
524     }
525     return 0;
526 }
527 
528 static int read_mie(CPURISCVState *env, int csrno, target_ulong *val)
529 {
530     *val = env->mie;
531     return 0;
532 }
533 
534 static int write_mie(CPURISCVState *env, int csrno, target_ulong val)
535 {
536     env->mie = (env->mie & ~all_ints) | (val & all_ints);
537     return 0;
538 }
539 
540 static int read_mtvec(CPURISCVState *env, int csrno, target_ulong *val)
541 {
542     *val = env->mtvec;
543     return 0;
544 }
545 
546 static int write_mtvec(CPURISCVState *env, int csrno, target_ulong val)
547 {
548     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
549     if ((val & 3) < 2) {
550         env->mtvec = val;
551     } else {
552         qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n");
553     }
554     return 0;
555 }
556 
557 static int read_mcounteren(CPURISCVState *env, int csrno, target_ulong *val)
558 {
559     *val = env->mcounteren;
560     return 0;
561 }
562 
563 static int write_mcounteren(CPURISCVState *env, int csrno, target_ulong val)
564 {
565     env->mcounteren = val;
566     return 0;
567 }
568 
569 /* This regiser is replaced with CSR_MCOUNTINHIBIT in 1.11.0 */
570 static int read_mscounteren(CPURISCVState *env, int csrno, target_ulong *val)
571 {
572     if (env->priv_ver < PRIV_VERSION_1_11_0) {
573         return -1;
574     }
575     *val = env->mcounteren;
576     return 0;
577 }
578 
579 /* This regiser is replaced with CSR_MCOUNTINHIBIT in 1.11.0 */
580 static int write_mscounteren(CPURISCVState *env, int csrno, target_ulong val)
581 {
582     if (env->priv_ver < PRIV_VERSION_1_11_0) {
583         return -1;
584     }
585     env->mcounteren = val;
586     return 0;
587 }
588 
589 /* Machine Trap Handling */
590 static int read_mscratch(CPURISCVState *env, int csrno, target_ulong *val)
591 {
592     *val = env->mscratch;
593     return 0;
594 }
595 
596 static int write_mscratch(CPURISCVState *env, int csrno, target_ulong val)
597 {
598     env->mscratch = val;
599     return 0;
600 }
601 
602 static int read_mepc(CPURISCVState *env, int csrno, target_ulong *val)
603 {
604     *val = env->mepc;
605     return 0;
606 }
607 
608 static int write_mepc(CPURISCVState *env, int csrno, target_ulong val)
609 {
610     env->mepc = val;
611     return 0;
612 }
613 
614 static int read_mcause(CPURISCVState *env, int csrno, target_ulong *val)
615 {
616     *val = env->mcause;
617     return 0;
618 }
619 
620 static int write_mcause(CPURISCVState *env, int csrno, target_ulong val)
621 {
622     env->mcause = val;
623     return 0;
624 }
625 
626 static int read_mbadaddr(CPURISCVState *env, int csrno, target_ulong *val)
627 {
628     *val = env->mbadaddr;
629     return 0;
630 }
631 
632 static int write_mbadaddr(CPURISCVState *env, int csrno, target_ulong val)
633 {
634     env->mbadaddr = val;
635     return 0;
636 }
637 
638 static int rmw_mip(CPURISCVState *env, int csrno, target_ulong *ret_value,
639                    target_ulong new_value, target_ulong write_mask)
640 {
641     RISCVCPU *cpu = env_archcpu(env);
642     /* Allow software control of delegable interrupts not claimed by hardware */
643     target_ulong mask = write_mask & delegable_ints & ~env->miclaim;
644     uint32_t old_mip;
645 
646     if (mask) {
647         old_mip = riscv_cpu_update_mip(cpu, mask, (new_value & mask));
648     } else {
649         old_mip = env->mip;
650     }
651 
652     if (ret_value) {
653         *ret_value = old_mip;
654     }
655 
656     return 0;
657 }
658 
659 /* Supervisor Trap Setup */
660 static int read_sstatus(CPURISCVState *env, int csrno, target_ulong *val)
661 {
662     target_ulong mask = (sstatus_v1_10_mask);
663     *val = env->mstatus & mask;
664     return 0;
665 }
666 
667 static int write_sstatus(CPURISCVState *env, int csrno, target_ulong val)
668 {
669     target_ulong mask = (sstatus_v1_10_mask);
670     target_ulong newval = (env->mstatus & ~mask) | (val & mask);
671     return write_mstatus(env, CSR_MSTATUS, newval);
672 }
673 
674 static int read_sie(CPURISCVState *env, int csrno, target_ulong *val)
675 {
676     if (riscv_cpu_virt_enabled(env)) {
677         /* Tell the guest the VS bits, shifted to the S bit locations */
678         *val = (env->mie & env->mideleg & VS_MODE_INTERRUPTS) >> 1;
679     } else {
680         *val = env->mie & env->mideleg;
681     }
682     return 0;
683 }
684 
685 static int write_sie(CPURISCVState *env, int csrno, target_ulong val)
686 {
687     target_ulong newval;
688 
689     if (riscv_cpu_virt_enabled(env)) {
690         /* Shift the guests S bits to VS */
691         newval = (env->mie & ~VS_MODE_INTERRUPTS) |
692                  ((val << 1) & VS_MODE_INTERRUPTS);
693     } else {
694         newval = (env->mie & ~S_MODE_INTERRUPTS) | (val & S_MODE_INTERRUPTS);
695     }
696 
697     return write_mie(env, CSR_MIE, newval);
698 }
699 
700 static int read_stvec(CPURISCVState *env, int csrno, target_ulong *val)
701 {
702     *val = env->stvec;
703     return 0;
704 }
705 
706 static int write_stvec(CPURISCVState *env, int csrno, target_ulong val)
707 {
708     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
709     if ((val & 3) < 2) {
710         env->stvec = val;
711     } else {
712         qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n");
713     }
714     return 0;
715 }
716 
717 static int read_scounteren(CPURISCVState *env, int csrno, target_ulong *val)
718 {
719     *val = env->scounteren;
720     return 0;
721 }
722 
723 static int write_scounteren(CPURISCVState *env, int csrno, target_ulong val)
724 {
725     env->scounteren = val;
726     return 0;
727 }
728 
729 /* Supervisor Trap Handling */
730 static int read_sscratch(CPURISCVState *env, int csrno, target_ulong *val)
731 {
732     *val = env->sscratch;
733     return 0;
734 }
735 
736 static int write_sscratch(CPURISCVState *env, int csrno, target_ulong val)
737 {
738     env->sscratch = val;
739     return 0;
740 }
741 
742 static int read_sepc(CPURISCVState *env, int csrno, target_ulong *val)
743 {
744     *val = env->sepc;
745     return 0;
746 }
747 
748 static int write_sepc(CPURISCVState *env, int csrno, target_ulong val)
749 {
750     env->sepc = val;
751     return 0;
752 }
753 
754 static int read_scause(CPURISCVState *env, int csrno, target_ulong *val)
755 {
756     *val = env->scause;
757     return 0;
758 }
759 
760 static int write_scause(CPURISCVState *env, int csrno, target_ulong val)
761 {
762     env->scause = val;
763     return 0;
764 }
765 
766 static int read_sbadaddr(CPURISCVState *env, int csrno, target_ulong *val)
767 {
768     *val = env->sbadaddr;
769     return 0;
770 }
771 
772 static int write_sbadaddr(CPURISCVState *env, int csrno, target_ulong val)
773 {
774     env->sbadaddr = val;
775     return 0;
776 }
777 
778 static int rmw_sip(CPURISCVState *env, int csrno, target_ulong *ret_value,
779                    target_ulong new_value, target_ulong write_mask)
780 {
781     int ret;
782 
783     if (riscv_cpu_virt_enabled(env)) {
784         /* Shift the new values to line up with the VS bits */
785         ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value << 1,
786                       (write_mask & sip_writable_mask) << 1 & env->mideleg);
787         ret &= vsip_writable_mask;
788         ret >>= 1;
789     } else {
790         ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value,
791                       write_mask & env->mideleg & sip_writable_mask);
792     }
793 
794     *ret_value &= env->mideleg;
795     return ret;
796 }
797 
798 /* Supervisor Protection and Translation */
799 static int read_satp(CPURISCVState *env, int csrno, target_ulong *val)
800 {
801     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
802         *val = 0;
803         return 0;
804     }
805 
806     if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
807         return -1;
808     } else {
809         *val = env->satp;
810     }
811 
812     return 0;
813 }
814 
815 static int write_satp(CPURISCVState *env, int csrno, target_ulong val)
816 {
817     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
818         return 0;
819     }
820     if (validate_vm(env, get_field(val, SATP_MODE)) &&
821         ((val ^ env->satp) & (SATP_MODE | SATP_ASID | SATP_PPN)))
822     {
823         if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
824             return -1;
825         } else {
826             if((val ^ env->satp) & SATP_ASID) {
827                 tlb_flush(env_cpu(env));
828             }
829             env->satp = val;
830         }
831     }
832     return 0;
833 }
834 
835 /* Hypervisor Extensions */
836 static int read_hstatus(CPURISCVState *env, int csrno, target_ulong *val)
837 {
838     *val = env->hstatus;
839 #ifdef TARGET_RISCV64
840     /* We only support 64-bit VSXL */
841     *val = set_field(*val, HSTATUS_VSXL, 2);
842 #endif
843     /* We only support little endian */
844     *val = set_field(*val, HSTATUS_VSBE, 0);
845     return 0;
846 }
847 
848 static int write_hstatus(CPURISCVState *env, int csrno, target_ulong val)
849 {
850     env->hstatus = val;
851 #ifdef TARGET_RISCV64
852     if (get_field(val, HSTATUS_VSXL) != 2) {
853         qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options.");
854     }
855 #endif
856     if (get_field(val, HSTATUS_VSBE) != 0) {
857         qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests.");
858     }
859     return 0;
860 }
861 
862 static int read_hedeleg(CPURISCVState *env, int csrno, target_ulong *val)
863 {
864     *val = env->hedeleg;
865     return 0;
866 }
867 
868 static int write_hedeleg(CPURISCVState *env, int csrno, target_ulong val)
869 {
870     env->hedeleg = val;
871     return 0;
872 }
873 
874 static int read_hideleg(CPURISCVState *env, int csrno, target_ulong *val)
875 {
876     *val = env->hideleg;
877     return 0;
878 }
879 
880 static int write_hideleg(CPURISCVState *env, int csrno, target_ulong val)
881 {
882     env->hideleg = val;
883     return 0;
884 }
885 
886 static int rmw_hvip(CPURISCVState *env, int csrno, target_ulong *ret_value,
887                    target_ulong new_value, target_ulong write_mask)
888 {
889     int ret = rmw_mip(env, 0, ret_value, new_value,
890                       write_mask & hip_writable_mask);
891 
892     *ret_value &= hip_writable_mask;
893 
894     return ret;
895 }
896 
897 static int rmw_hip(CPURISCVState *env, int csrno, target_ulong *ret_value,
898                    target_ulong new_value, target_ulong write_mask)
899 {
900     int ret = rmw_mip(env, 0, ret_value, new_value,
901                       write_mask & hip_writable_mask);
902 
903     *ret_value &= hip_writable_mask;
904 
905     return ret;
906 }
907 
908 static int read_hie(CPURISCVState *env, int csrno, target_ulong *val)
909 {
910     *val = env->mie & VS_MODE_INTERRUPTS;
911     return 0;
912 }
913 
914 static int write_hie(CPURISCVState *env, int csrno, target_ulong val)
915 {
916     target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | (val & VS_MODE_INTERRUPTS);
917     return write_mie(env, CSR_MIE, newval);
918 }
919 
920 static int read_hcounteren(CPURISCVState *env, int csrno, target_ulong *val)
921 {
922     *val = env->hcounteren;
923     return 0;
924 }
925 
926 static int write_hcounteren(CPURISCVState *env, int csrno, target_ulong val)
927 {
928     env->hcounteren = val;
929     return 0;
930 }
931 
932 static int read_hgeie(CPURISCVState *env, int csrno, target_ulong *val)
933 {
934     qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN.");
935     return 0;
936 }
937 
938 static int write_hgeie(CPURISCVState *env, int csrno, target_ulong val)
939 {
940     qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN.");
941     return 0;
942 }
943 
944 static int read_htval(CPURISCVState *env, int csrno, target_ulong *val)
945 {
946     *val = env->htval;
947     return 0;
948 }
949 
950 static int write_htval(CPURISCVState *env, int csrno, target_ulong val)
951 {
952     env->htval = val;
953     return 0;
954 }
955 
956 static int read_htinst(CPURISCVState *env, int csrno, target_ulong *val)
957 {
958     *val = env->htinst;
959     return 0;
960 }
961 
962 static int write_htinst(CPURISCVState *env, int csrno, target_ulong val)
963 {
964     return 0;
965 }
966 
967 static int read_hgeip(CPURISCVState *env, int csrno, target_ulong *val)
968 {
969     qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN.");
970     return 0;
971 }
972 
973 static int write_hgeip(CPURISCVState *env, int csrno, target_ulong val)
974 {
975     qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN.");
976     return 0;
977 }
978 
979 static int read_hgatp(CPURISCVState *env, int csrno, target_ulong *val)
980 {
981     *val = env->hgatp;
982     return 0;
983 }
984 
985 static int write_hgatp(CPURISCVState *env, int csrno, target_ulong val)
986 {
987     env->hgatp = val;
988     return 0;
989 }
990 
991 static int read_htimedelta(CPURISCVState *env, int csrno, target_ulong *val)
992 {
993     if (!env->rdtime_fn) {
994         return -1;
995     }
996 
997 #if defined(TARGET_RISCV32)
998     *val = env->htimedelta & 0xffffffff;
999 #else
1000     *val = env->htimedelta;
1001 #endif
1002     return 0;
1003 }
1004 
1005 static int write_htimedelta(CPURISCVState *env, int csrno, target_ulong val)
1006 {
1007     if (!env->rdtime_fn) {
1008         return -1;
1009     }
1010 
1011 #if defined(TARGET_RISCV32)
1012     env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val);
1013 #else
1014     env->htimedelta = val;
1015 #endif
1016     return 0;
1017 }
1018 
1019 #if defined(TARGET_RISCV32)
1020 static int read_htimedeltah(CPURISCVState *env, int csrno, target_ulong *val)
1021 {
1022     if (!env->rdtime_fn) {
1023         return -1;
1024     }
1025 
1026     *val = env->htimedelta >> 32;
1027     return 0;
1028 }
1029 
1030 static int write_htimedeltah(CPURISCVState *env, int csrno, target_ulong val)
1031 {
1032     if (!env->rdtime_fn) {
1033         return -1;
1034     }
1035 
1036     env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val);
1037     return 0;
1038 }
1039 #endif
1040 
1041 /* Virtual CSR Registers */
1042 static int read_vsstatus(CPURISCVState *env, int csrno, target_ulong *val)
1043 {
1044     *val = env->vsstatus;
1045     return 0;
1046 }
1047 
1048 static int write_vsstatus(CPURISCVState *env, int csrno, target_ulong val)
1049 {
1050     env->vsstatus = val;
1051     return 0;
1052 }
1053 
1054 static int rmw_vsip(CPURISCVState *env, int csrno, target_ulong *ret_value,
1055                     target_ulong new_value, target_ulong write_mask)
1056 {
1057     int ret = rmw_mip(env, 0, ret_value, new_value,
1058                       write_mask & env->mideleg & vsip_writable_mask);
1059     return ret;
1060 }
1061 
1062 static int read_vsie(CPURISCVState *env, int csrno, target_ulong *val)
1063 {
1064     *val = env->mie & env->mideleg & VS_MODE_INTERRUPTS;
1065     return 0;
1066 }
1067 
1068 static int write_vsie(CPURISCVState *env, int csrno, target_ulong val)
1069 {
1070     target_ulong newval = (env->mie & ~env->mideleg) | (val & env->mideleg & MIP_VSSIP);
1071     return write_mie(env, CSR_MIE, newval);
1072 }
1073 
1074 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val)
1075 {
1076     *val = env->vstvec;
1077     return 0;
1078 }
1079 
1080 static int write_vstvec(CPURISCVState *env, int csrno, target_ulong val)
1081 {
1082     env->vstvec = val;
1083     return 0;
1084 }
1085 
1086 static int read_vsscratch(CPURISCVState *env, int csrno, target_ulong *val)
1087 {
1088     *val = env->vsscratch;
1089     return 0;
1090 }
1091 
1092 static int write_vsscratch(CPURISCVState *env, int csrno, target_ulong val)
1093 {
1094     env->vsscratch = val;
1095     return 0;
1096 }
1097 
1098 static int read_vsepc(CPURISCVState *env, int csrno, target_ulong *val)
1099 {
1100     *val = env->vsepc;
1101     return 0;
1102 }
1103 
1104 static int write_vsepc(CPURISCVState *env, int csrno, target_ulong val)
1105 {
1106     env->vsepc = val;
1107     return 0;
1108 }
1109 
1110 static int read_vscause(CPURISCVState *env, int csrno, target_ulong *val)
1111 {
1112     *val = env->vscause;
1113     return 0;
1114 }
1115 
1116 static int write_vscause(CPURISCVState *env, int csrno, target_ulong val)
1117 {
1118     env->vscause = val;
1119     return 0;
1120 }
1121 
1122 static int read_vstval(CPURISCVState *env, int csrno, target_ulong *val)
1123 {
1124     *val = env->vstval;
1125     return 0;
1126 }
1127 
1128 static int write_vstval(CPURISCVState *env, int csrno, target_ulong val)
1129 {
1130     env->vstval = val;
1131     return 0;
1132 }
1133 
1134 static int read_vsatp(CPURISCVState *env, int csrno, target_ulong *val)
1135 {
1136     *val = env->vsatp;
1137     return 0;
1138 }
1139 
1140 static int write_vsatp(CPURISCVState *env, int csrno, target_ulong val)
1141 {
1142     env->vsatp = val;
1143     return 0;
1144 }
1145 
1146 static int read_mtval2(CPURISCVState *env, int csrno, target_ulong *val)
1147 {
1148     *val = env->mtval2;
1149     return 0;
1150 }
1151 
1152 static int write_mtval2(CPURISCVState *env, int csrno, target_ulong val)
1153 {
1154     env->mtval2 = val;
1155     return 0;
1156 }
1157 
1158 static int read_mtinst(CPURISCVState *env, int csrno, target_ulong *val)
1159 {
1160     *val = env->mtinst;
1161     return 0;
1162 }
1163 
1164 static int write_mtinst(CPURISCVState *env, int csrno, target_ulong val)
1165 {
1166     env->mtinst = val;
1167     return 0;
1168 }
1169 
1170 /* Physical Memory Protection */
1171 static int read_pmpcfg(CPURISCVState *env, int csrno, target_ulong *val)
1172 {
1173     *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0);
1174     return 0;
1175 }
1176 
1177 static int write_pmpcfg(CPURISCVState *env, int csrno, target_ulong val)
1178 {
1179     pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val);
1180     return 0;
1181 }
1182 
1183 static int read_pmpaddr(CPURISCVState *env, int csrno, target_ulong *val)
1184 {
1185     *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0);
1186     return 0;
1187 }
1188 
1189 static int write_pmpaddr(CPURISCVState *env, int csrno, target_ulong val)
1190 {
1191     pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val);
1192     return 0;
1193 }
1194 
1195 #endif
1196 
1197 /*
1198  * riscv_csrrw - read and/or update control and status register
1199  *
1200  * csrr   <->  riscv_csrrw(env, csrno, ret_value, 0, 0);
1201  * csrrw  <->  riscv_csrrw(env, csrno, ret_value, value, -1);
1202  * csrrs  <->  riscv_csrrw(env, csrno, ret_value, -1, value);
1203  * csrrc  <->  riscv_csrrw(env, csrno, ret_value, 0, value);
1204  */
1205 
1206 int riscv_csrrw(CPURISCVState *env, int csrno, target_ulong *ret_value,
1207                 target_ulong new_value, target_ulong write_mask)
1208 {
1209     int ret;
1210     target_ulong old_value;
1211     RISCVCPU *cpu = env_archcpu(env);
1212 
1213     /* check privileges and return -1 if check fails */
1214 #if !defined(CONFIG_USER_ONLY)
1215     int effective_priv = env->priv;
1216     int read_only = get_field(csrno, 0xC00) == 3;
1217 
1218     if (riscv_has_ext(env, RVH) &&
1219         env->priv == PRV_S &&
1220         !riscv_cpu_virt_enabled(env)) {
1221         /*
1222          * We are in S mode without virtualisation, therefore we are in HS Mode.
1223          * Add 1 to the effective privledge level to allow us to access the
1224          * Hypervisor CSRs.
1225          */
1226         effective_priv++;
1227     }
1228 
1229     if ((write_mask && read_only) ||
1230         (!env->debugger && (effective_priv < get_field(csrno, 0x300)))) {
1231         return -1;
1232     }
1233 #endif
1234 
1235     /* ensure the CSR extension is enabled. */
1236     if (!cpu->cfg.ext_icsr) {
1237         return -1;
1238     }
1239 
1240     /* check predicate */
1241     if (!csr_ops[csrno].predicate || csr_ops[csrno].predicate(env, csrno) < 0) {
1242         return -1;
1243     }
1244 
1245     /* execute combined read/write operation if it exists */
1246     if (csr_ops[csrno].op) {
1247         return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask);
1248     }
1249 
1250     /* if no accessor exists then return failure */
1251     if (!csr_ops[csrno].read) {
1252         return -1;
1253     }
1254 
1255     /* read old value */
1256     ret = csr_ops[csrno].read(env, csrno, &old_value);
1257     if (ret < 0) {
1258         return ret;
1259     }
1260 
1261     /* write value if writable and write mask set, otherwise drop writes */
1262     if (write_mask) {
1263         new_value = (old_value & ~write_mask) | (new_value & write_mask);
1264         if (csr_ops[csrno].write) {
1265             ret = csr_ops[csrno].write(env, csrno, new_value);
1266             if (ret < 0) {
1267                 return ret;
1268             }
1269         }
1270     }
1271 
1272     /* return old value */
1273     if (ret_value) {
1274         *ret_value = old_value;
1275     }
1276 
1277     return 0;
1278 }
1279 
1280 /*
1281  * Debugger support.  If not in user mode, set env->debugger before the
1282  * riscv_csrrw call and clear it after the call.
1283  */
1284 int riscv_csrrw_debug(CPURISCVState *env, int csrno, target_ulong *ret_value,
1285                 target_ulong new_value, target_ulong write_mask)
1286 {
1287     int ret;
1288 #if !defined(CONFIG_USER_ONLY)
1289     env->debugger = true;
1290 #endif
1291     ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask);
1292 #if !defined(CONFIG_USER_ONLY)
1293     env->debugger = false;
1294 #endif
1295     return ret;
1296 }
1297 
1298 /* Control and Status Register function table */
1299 static riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = {
1300     /* User Floating-Point CSRs */
1301     [CSR_FFLAGS] =              { fs,   read_fflags,      write_fflags      },
1302     [CSR_FRM] =                 { fs,   read_frm,         write_frm         },
1303     [CSR_FCSR] =                { fs,   read_fcsr,        write_fcsr        },
1304     /* Vector CSRs */
1305     [CSR_VSTART] =              { vs,   read_vstart,      write_vstart      },
1306     [CSR_VXSAT] =               { vs,   read_vxsat,       write_vxsat       },
1307     [CSR_VXRM] =                { vs,   read_vxrm,        write_vxrm        },
1308     [CSR_VL] =                  { vs,   read_vl                             },
1309     [CSR_VTYPE] =               { vs,   read_vtype                          },
1310     /* User Timers and Counters */
1311     [CSR_CYCLE] =               { ctr,  read_instret                        },
1312     [CSR_INSTRET] =             { ctr,  read_instret                        },
1313 #if defined(TARGET_RISCV32)
1314     [CSR_CYCLEH] =              { ctr,  read_instreth                       },
1315     [CSR_INSTRETH] =            { ctr,  read_instreth                       },
1316 #endif
1317 
1318     /* In privileged mode, the monitor will have to emulate TIME CSRs only if
1319      * rdtime callback is not provided by machine/platform emulation */
1320     [CSR_TIME] =                { ctr,  read_time                           },
1321 #if defined(TARGET_RISCV32)
1322     [CSR_TIMEH] =               { ctr,  read_timeh                          },
1323 #endif
1324 
1325 #if !defined(CONFIG_USER_ONLY)
1326     /* Machine Timers and Counters */
1327     [CSR_MCYCLE] =              { any,  read_instret                        },
1328     [CSR_MINSTRET] =            { any,  read_instret                        },
1329 #if defined(TARGET_RISCV32)
1330     [CSR_MCYCLEH] =             { any,  read_instreth                       },
1331     [CSR_MINSTRETH] =           { any,  read_instreth                       },
1332 #endif
1333 
1334     /* Machine Information Registers */
1335     [CSR_MVENDORID] =           { any,  read_zero                           },
1336     [CSR_MARCHID] =             { any,  read_zero                           },
1337     [CSR_MIMPID] =              { any,  read_zero                           },
1338     [CSR_MHARTID] =             { any,  read_mhartid                        },
1339 
1340     /* Machine Trap Setup */
1341     [CSR_MSTATUS] =             { any,  read_mstatus,     write_mstatus     },
1342     [CSR_MISA] =                { any,  read_misa,        write_misa        },
1343     [CSR_MIDELEG] =             { any,  read_mideleg,     write_mideleg     },
1344     [CSR_MEDELEG] =             { any,  read_medeleg,     write_medeleg     },
1345     [CSR_MIE] =                 { any,  read_mie,         write_mie         },
1346     [CSR_MTVEC] =               { any,  read_mtvec,       write_mtvec       },
1347     [CSR_MCOUNTEREN] =          { any,  read_mcounteren,  write_mcounteren  },
1348 
1349 #if defined(TARGET_RISCV32)
1350     [CSR_MSTATUSH] =            { any,  read_mstatush,    write_mstatush    },
1351 #endif
1352 
1353     [CSR_MSCOUNTEREN] =         { any,  read_mscounteren, write_mscounteren },
1354 
1355     /* Machine Trap Handling */
1356     [CSR_MSCRATCH] =            { any,  read_mscratch,    write_mscratch    },
1357     [CSR_MEPC] =                { any,  read_mepc,        write_mepc        },
1358     [CSR_MCAUSE] =              { any,  read_mcause,      write_mcause      },
1359     [CSR_MBADADDR] =            { any,  read_mbadaddr,    write_mbadaddr    },
1360     [CSR_MIP] =                 { any,  NULL,     NULL,     rmw_mip         },
1361 
1362     /* Supervisor Trap Setup */
1363     [CSR_SSTATUS] =             { smode, read_sstatus,     write_sstatus     },
1364     [CSR_SIE] =                 { smode, read_sie,         write_sie         },
1365     [CSR_STVEC] =               { smode, read_stvec,       write_stvec       },
1366     [CSR_SCOUNTEREN] =          { smode, read_scounteren,  write_scounteren  },
1367 
1368     /* Supervisor Trap Handling */
1369     [CSR_SSCRATCH] =            { smode, read_sscratch,    write_sscratch    },
1370     [CSR_SEPC] =                { smode, read_sepc,        write_sepc        },
1371     [CSR_SCAUSE] =              { smode, read_scause,      write_scause      },
1372     [CSR_SBADADDR] =            { smode, read_sbadaddr,    write_sbadaddr    },
1373     [CSR_SIP] =                 { smode, NULL,     NULL,     rmw_sip         },
1374 
1375     /* Supervisor Protection and Translation */
1376     [CSR_SATP] =                { smode, read_satp,        write_satp        },
1377 
1378     [CSR_HSTATUS] =             { hmode,   read_hstatus,     write_hstatus    },
1379     [CSR_HEDELEG] =             { hmode,   read_hedeleg,     write_hedeleg    },
1380     [CSR_HIDELEG] =             { hmode,   read_hideleg,     write_hideleg    },
1381     [CSR_HVIP] =                { hmode,   NULL,     NULL,     rmw_hvip       },
1382     [CSR_HIP] =                 { hmode,   NULL,     NULL,     rmw_hip        },
1383     [CSR_HIE] =                 { hmode,   read_hie,         write_hie        },
1384     [CSR_HCOUNTEREN] =          { hmode,   read_hcounteren,  write_hcounteren },
1385     [CSR_HGEIE] =               { hmode,   read_hgeie,       write_hgeie      },
1386     [CSR_HTVAL] =               { hmode,   read_htval,       write_htval      },
1387     [CSR_HTINST] =              { hmode,   read_htinst,      write_htinst     },
1388     [CSR_HGEIP] =               { hmode,   read_hgeip,       write_hgeip      },
1389     [CSR_HGATP] =               { hmode,   read_hgatp,       write_hgatp      },
1390     [CSR_HTIMEDELTA] =          { hmode,   read_htimedelta,  write_htimedelta },
1391 #if defined(TARGET_RISCV32)
1392     [CSR_HTIMEDELTAH] =         { hmode,   read_htimedeltah, write_htimedeltah},
1393 #endif
1394 
1395     [CSR_VSSTATUS] =            { hmode,   read_vsstatus,    write_vsstatus   },
1396     [CSR_VSIP] =                { hmode,   NULL,     NULL,     rmw_vsip       },
1397     [CSR_VSIE] =                { hmode,   read_vsie,        write_vsie       },
1398     [CSR_VSTVEC] =              { hmode,   read_vstvec,      write_vstvec     },
1399     [CSR_VSSCRATCH] =           { hmode,   read_vsscratch,   write_vsscratch  },
1400     [CSR_VSEPC] =               { hmode,   read_vsepc,       write_vsepc      },
1401     [CSR_VSCAUSE] =             { hmode,   read_vscause,     write_vscause    },
1402     [CSR_VSTVAL] =              { hmode,   read_vstval,      write_vstval     },
1403     [CSR_VSATP] =               { hmode,   read_vsatp,       write_vsatp      },
1404 
1405     [CSR_MTVAL2] =              { hmode,   read_mtval2,      write_mtval2     },
1406     [CSR_MTINST] =              { hmode,   read_mtinst,      write_mtinst     },
1407 
1408     /* Physical Memory Protection */
1409     [CSR_PMPCFG0  ... CSR_PMPCFG3]   = { pmp,   read_pmpcfg,  write_pmpcfg   },
1410     [CSR_PMPADDR0 ... CSR_PMPADDR15] = { pmp,   read_pmpaddr, write_pmpaddr  },
1411 
1412     /* Performance Counters */
1413     [CSR_HPMCOUNTER3   ... CSR_HPMCOUNTER31] =    { ctr,  read_zero          },
1414     [CSR_MHPMCOUNTER3  ... CSR_MHPMCOUNTER31] =   { any,  read_zero          },
1415     [CSR_MHPMEVENT3    ... CSR_MHPMEVENT31] =     { any,  read_zero          },
1416 #if defined(TARGET_RISCV32)
1417     [CSR_HPMCOUNTER3H  ... CSR_HPMCOUNTER31H] =   { ctr,  read_zero          },
1418     [CSR_MHPMCOUNTER3H ... CSR_MHPMCOUNTER31H] =  { any,  read_zero          },
1419 #endif
1420 #endif /* !CONFIG_USER_ONLY */
1421 };
1422