1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "sysemu/cpu-timers.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 32 /* CSR function table public API */ 33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 34 { 35 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 36 } 37 38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 41 } 42 43 /* Predicates */ 44 #if !defined(CONFIG_USER_ONLY) 45 static RISCVException smstateen_acc_ok(CPURISCVState *env, int index, 46 uint64_t bit) 47 { 48 bool virt = riscv_cpu_virt_enabled(env); 49 CPUState *cs = env_cpu(env); 50 RISCVCPU *cpu = RISCV_CPU(cs); 51 52 if (env->priv == PRV_M || !cpu->cfg.ext_smstateen) { 53 return RISCV_EXCP_NONE; 54 } 55 56 if (!(env->mstateen[index] & bit)) { 57 return RISCV_EXCP_ILLEGAL_INST; 58 } 59 60 if (virt) { 61 if (!(env->hstateen[index] & bit)) { 62 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 63 } 64 65 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 66 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 67 } 68 } 69 70 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 71 if (!(env->sstateen[index] & bit)) { 72 return RISCV_EXCP_ILLEGAL_INST; 73 } 74 } 75 76 return RISCV_EXCP_NONE; 77 } 78 #endif 79 80 static RISCVException fs(CPURISCVState *env, int csrno) 81 { 82 #if !defined(CONFIG_USER_ONLY) 83 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 84 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 85 return RISCV_EXCP_ILLEGAL_INST; 86 } 87 #endif 88 return RISCV_EXCP_NONE; 89 } 90 91 static RISCVException vs(CPURISCVState *env, int csrno) 92 { 93 CPUState *cs = env_cpu(env); 94 RISCVCPU *cpu = RISCV_CPU(cs); 95 96 if (env->misa_ext & RVV || 97 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 98 #if !defined(CONFIG_USER_ONLY) 99 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 100 return RISCV_EXCP_ILLEGAL_INST; 101 } 102 #endif 103 return RISCV_EXCP_NONE; 104 } 105 return RISCV_EXCP_ILLEGAL_INST; 106 } 107 108 static RISCVException ctr(CPURISCVState *env, int csrno) 109 { 110 #if !defined(CONFIG_USER_ONLY) 111 CPUState *cs = env_cpu(env); 112 RISCVCPU *cpu = RISCV_CPU(cs); 113 int ctr_index; 114 target_ulong ctr_mask; 115 int base_csrno = CSR_CYCLE; 116 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 117 118 if (rv32 && csrno >= CSR_CYCLEH) { 119 /* Offset for RV32 hpmcounternh counters */ 120 base_csrno += 0x80; 121 } 122 ctr_index = csrno - base_csrno; 123 ctr_mask = BIT(ctr_index); 124 125 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 126 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 127 goto skip_ext_pmu_check; 128 } 129 130 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 131 /* No counter is enabled in PMU or the counter is out of range */ 132 return RISCV_EXCP_ILLEGAL_INST; 133 } 134 135 skip_ext_pmu_check: 136 137 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 138 return RISCV_EXCP_ILLEGAL_INST; 139 } 140 141 if (riscv_cpu_virt_enabled(env)) { 142 if (!get_field(env->hcounteren, ctr_mask) || 143 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 144 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 145 } 146 } 147 148 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 149 !get_field(env->scounteren, ctr_mask)) { 150 return RISCV_EXCP_ILLEGAL_INST; 151 } 152 153 #endif 154 return RISCV_EXCP_NONE; 155 } 156 157 static RISCVException ctr32(CPURISCVState *env, int csrno) 158 { 159 if (riscv_cpu_mxl(env) != MXL_RV32) { 160 return RISCV_EXCP_ILLEGAL_INST; 161 } 162 163 return ctr(env, csrno); 164 } 165 166 #if !defined(CONFIG_USER_ONLY) 167 static RISCVException mctr(CPURISCVState *env, int csrno) 168 { 169 CPUState *cs = env_cpu(env); 170 RISCVCPU *cpu = RISCV_CPU(cs); 171 int ctr_index; 172 int base_csrno = CSR_MHPMCOUNTER3; 173 174 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 175 /* Offset for RV32 mhpmcounternh counters */ 176 base_csrno += 0x80; 177 } 178 ctr_index = csrno - base_csrno; 179 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 180 /* The PMU is not enabled or counter is out of range*/ 181 return RISCV_EXCP_ILLEGAL_INST; 182 } 183 184 return RISCV_EXCP_NONE; 185 } 186 187 static RISCVException mctr32(CPURISCVState *env, int csrno) 188 { 189 if (riscv_cpu_mxl(env) != MXL_RV32) { 190 return RISCV_EXCP_ILLEGAL_INST; 191 } 192 193 return mctr(env, csrno); 194 } 195 196 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 197 { 198 CPUState *cs = env_cpu(env); 199 RISCVCPU *cpu = RISCV_CPU(cs); 200 201 if (!cpu->cfg.ext_sscofpmf) { 202 return RISCV_EXCP_ILLEGAL_INST; 203 } 204 205 return RISCV_EXCP_NONE; 206 } 207 208 static RISCVException any(CPURISCVState *env, int csrno) 209 { 210 return RISCV_EXCP_NONE; 211 } 212 213 static RISCVException any32(CPURISCVState *env, int csrno) 214 { 215 if (riscv_cpu_mxl(env) != MXL_RV32) { 216 return RISCV_EXCP_ILLEGAL_INST; 217 } 218 219 return any(env, csrno); 220 221 } 222 223 static int aia_any(CPURISCVState *env, int csrno) 224 { 225 RISCVCPU *cpu = env_archcpu(env); 226 227 if (!cpu->cfg.ext_smaia) { 228 return RISCV_EXCP_ILLEGAL_INST; 229 } 230 231 return any(env, csrno); 232 } 233 234 static int aia_any32(CPURISCVState *env, int csrno) 235 { 236 RISCVCPU *cpu = env_archcpu(env); 237 238 if (!cpu->cfg.ext_smaia) { 239 return RISCV_EXCP_ILLEGAL_INST; 240 } 241 242 return any32(env, csrno); 243 } 244 245 static RISCVException smode(CPURISCVState *env, int csrno) 246 { 247 if (riscv_has_ext(env, RVS)) { 248 return RISCV_EXCP_NONE; 249 } 250 251 return RISCV_EXCP_ILLEGAL_INST; 252 } 253 254 static int smode32(CPURISCVState *env, int csrno) 255 { 256 if (riscv_cpu_mxl(env) != MXL_RV32) { 257 return RISCV_EXCP_ILLEGAL_INST; 258 } 259 260 return smode(env, csrno); 261 } 262 263 static int aia_smode(CPURISCVState *env, int csrno) 264 { 265 RISCVCPU *cpu = env_archcpu(env); 266 267 if (!cpu->cfg.ext_ssaia) { 268 return RISCV_EXCP_ILLEGAL_INST; 269 } 270 271 return smode(env, csrno); 272 } 273 274 static int aia_smode32(CPURISCVState *env, int csrno) 275 { 276 RISCVCPU *cpu = env_archcpu(env); 277 278 if (!cpu->cfg.ext_ssaia) { 279 return RISCV_EXCP_ILLEGAL_INST; 280 } 281 282 return smode32(env, csrno); 283 } 284 285 static RISCVException hmode(CPURISCVState *env, int csrno) 286 { 287 if (riscv_has_ext(env, RVH)) { 288 return RISCV_EXCP_NONE; 289 } 290 291 return RISCV_EXCP_ILLEGAL_INST; 292 } 293 294 static RISCVException hmode32(CPURISCVState *env, int csrno) 295 { 296 if (riscv_cpu_mxl(env) != MXL_RV32) { 297 return RISCV_EXCP_ILLEGAL_INST; 298 } 299 300 return hmode(env, csrno); 301 302 } 303 304 static RISCVException umode(CPURISCVState *env, int csrno) 305 { 306 if (riscv_has_ext(env, RVU)) { 307 return RISCV_EXCP_NONE; 308 } 309 310 return RISCV_EXCP_ILLEGAL_INST; 311 } 312 313 static RISCVException umode32(CPURISCVState *env, int csrno) 314 { 315 if (riscv_cpu_mxl(env) != MXL_RV32) { 316 return RISCV_EXCP_ILLEGAL_INST; 317 } 318 319 return umode(env, csrno); 320 } 321 322 static RISCVException mstateen(CPURISCVState *env, int csrno) 323 { 324 CPUState *cs = env_cpu(env); 325 RISCVCPU *cpu = RISCV_CPU(cs); 326 327 if (!cpu->cfg.ext_smstateen) { 328 return RISCV_EXCP_ILLEGAL_INST; 329 } 330 331 return any(env, csrno); 332 } 333 334 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 335 { 336 CPUState *cs = env_cpu(env); 337 RISCVCPU *cpu = RISCV_CPU(cs); 338 339 if (!cpu->cfg.ext_smstateen) { 340 return RISCV_EXCP_ILLEGAL_INST; 341 } 342 343 if (env->priv < PRV_M) { 344 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 345 return RISCV_EXCP_ILLEGAL_INST; 346 } 347 } 348 349 return hmode(env, csrno); 350 } 351 352 static RISCVException hstateen(CPURISCVState *env, int csrno) 353 { 354 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 355 } 356 357 static RISCVException hstateenh(CPURISCVState *env, int csrno) 358 { 359 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 360 } 361 362 static RISCVException sstateen(CPURISCVState *env, int csrno) 363 { 364 bool virt = riscv_cpu_virt_enabled(env); 365 int index = csrno - CSR_SSTATEEN0; 366 CPUState *cs = env_cpu(env); 367 RISCVCPU *cpu = RISCV_CPU(cs); 368 369 if (!cpu->cfg.ext_smstateen) { 370 return RISCV_EXCP_ILLEGAL_INST; 371 } 372 373 if (env->priv < PRV_M) { 374 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 375 return RISCV_EXCP_ILLEGAL_INST; 376 } 377 378 if (virt) { 379 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 380 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 381 } 382 } 383 } 384 385 return smode(env, csrno); 386 } 387 388 /* Checks if PointerMasking registers could be accessed */ 389 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 390 { 391 /* Check if j-ext is present */ 392 if (riscv_has_ext(env, RVJ)) { 393 return RISCV_EXCP_NONE; 394 } 395 return RISCV_EXCP_ILLEGAL_INST; 396 } 397 398 static int aia_hmode(CPURISCVState *env, int csrno) 399 { 400 RISCVCPU *cpu = env_archcpu(env); 401 402 if (!cpu->cfg.ext_ssaia) { 403 return RISCV_EXCP_ILLEGAL_INST; 404 } 405 406 return hmode(env, csrno); 407 } 408 409 static int aia_hmode32(CPURISCVState *env, int csrno) 410 { 411 RISCVCPU *cpu = env_archcpu(env); 412 413 if (!cpu->cfg.ext_ssaia) { 414 return RISCV_EXCP_ILLEGAL_INST; 415 } 416 417 return hmode32(env, csrno); 418 } 419 420 static RISCVException pmp(CPURISCVState *env, int csrno) 421 { 422 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 423 return RISCV_EXCP_NONE; 424 } 425 426 return RISCV_EXCP_ILLEGAL_INST; 427 } 428 429 static RISCVException epmp(CPURISCVState *env, int csrno) 430 { 431 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 432 return RISCV_EXCP_NONE; 433 } 434 435 return RISCV_EXCP_ILLEGAL_INST; 436 } 437 438 static RISCVException debug(CPURISCVState *env, int csrno) 439 { 440 if (riscv_feature(env, RISCV_FEATURE_DEBUG)) { 441 return RISCV_EXCP_NONE; 442 } 443 444 return RISCV_EXCP_ILLEGAL_INST; 445 } 446 #endif 447 448 static RISCVException seed(CPURISCVState *env, int csrno) 449 { 450 RISCVCPU *cpu = env_archcpu(env); 451 452 if (!cpu->cfg.ext_zkr) { 453 return RISCV_EXCP_ILLEGAL_INST; 454 } 455 456 #if !defined(CONFIG_USER_ONLY) 457 /* 458 * With a CSR read-write instruction: 459 * 1) The seed CSR is always available in machine mode as normal. 460 * 2) Attempted access to seed from virtual modes VS and VU always raises 461 * an exception(virtual instruction exception only if mseccfg.sseed=1). 462 * 3) Without the corresponding access control bit set to 1, any attempted 463 * access to seed from U, S or HS modes will raise an illegal instruction 464 * exception. 465 */ 466 if (env->priv == PRV_M) { 467 return RISCV_EXCP_NONE; 468 } else if (riscv_cpu_virt_enabled(env)) { 469 if (env->mseccfg & MSECCFG_SSEED) { 470 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 471 } else { 472 return RISCV_EXCP_ILLEGAL_INST; 473 } 474 } else { 475 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 476 return RISCV_EXCP_NONE; 477 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 478 return RISCV_EXCP_NONE; 479 } else { 480 return RISCV_EXCP_ILLEGAL_INST; 481 } 482 } 483 #else 484 return RISCV_EXCP_NONE; 485 #endif 486 } 487 488 /* User Floating-Point CSRs */ 489 static RISCVException read_fflags(CPURISCVState *env, int csrno, 490 target_ulong *val) 491 { 492 *val = riscv_cpu_get_fflags(env); 493 return RISCV_EXCP_NONE; 494 } 495 496 static RISCVException write_fflags(CPURISCVState *env, int csrno, 497 target_ulong val) 498 { 499 #if !defined(CONFIG_USER_ONLY) 500 if (riscv_has_ext(env, RVF)) { 501 env->mstatus |= MSTATUS_FS; 502 } 503 #endif 504 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 505 return RISCV_EXCP_NONE; 506 } 507 508 static RISCVException read_frm(CPURISCVState *env, int csrno, 509 target_ulong *val) 510 { 511 *val = env->frm; 512 return RISCV_EXCP_NONE; 513 } 514 515 static RISCVException write_frm(CPURISCVState *env, int csrno, 516 target_ulong val) 517 { 518 #if !defined(CONFIG_USER_ONLY) 519 if (riscv_has_ext(env, RVF)) { 520 env->mstatus |= MSTATUS_FS; 521 } 522 #endif 523 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 524 return RISCV_EXCP_NONE; 525 } 526 527 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 528 target_ulong *val) 529 { 530 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 531 | (env->frm << FSR_RD_SHIFT); 532 return RISCV_EXCP_NONE; 533 } 534 535 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 536 target_ulong val) 537 { 538 #if !defined(CONFIG_USER_ONLY) 539 if (riscv_has_ext(env, RVF)) { 540 env->mstatus |= MSTATUS_FS; 541 } 542 #endif 543 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 544 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 545 return RISCV_EXCP_NONE; 546 } 547 548 static RISCVException read_vtype(CPURISCVState *env, int csrno, 549 target_ulong *val) 550 { 551 uint64_t vill; 552 switch (env->xl) { 553 case MXL_RV32: 554 vill = (uint32_t)env->vill << 31; 555 break; 556 case MXL_RV64: 557 vill = (uint64_t)env->vill << 63; 558 break; 559 default: 560 g_assert_not_reached(); 561 } 562 *val = (target_ulong)vill | env->vtype; 563 return RISCV_EXCP_NONE; 564 } 565 566 static RISCVException read_vl(CPURISCVState *env, int csrno, 567 target_ulong *val) 568 { 569 *val = env->vl; 570 return RISCV_EXCP_NONE; 571 } 572 573 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 574 { 575 *val = env_archcpu(env)->cfg.vlen >> 3; 576 return RISCV_EXCP_NONE; 577 } 578 579 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 580 target_ulong *val) 581 { 582 *val = env->vxrm; 583 return RISCV_EXCP_NONE; 584 } 585 586 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 587 target_ulong val) 588 { 589 #if !defined(CONFIG_USER_ONLY) 590 env->mstatus |= MSTATUS_VS; 591 #endif 592 env->vxrm = val; 593 return RISCV_EXCP_NONE; 594 } 595 596 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 597 target_ulong *val) 598 { 599 *val = env->vxsat; 600 return RISCV_EXCP_NONE; 601 } 602 603 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 604 target_ulong val) 605 { 606 #if !defined(CONFIG_USER_ONLY) 607 env->mstatus |= MSTATUS_VS; 608 #endif 609 env->vxsat = val; 610 return RISCV_EXCP_NONE; 611 } 612 613 static RISCVException read_vstart(CPURISCVState *env, int csrno, 614 target_ulong *val) 615 { 616 *val = env->vstart; 617 return RISCV_EXCP_NONE; 618 } 619 620 static RISCVException write_vstart(CPURISCVState *env, int csrno, 621 target_ulong val) 622 { 623 #if !defined(CONFIG_USER_ONLY) 624 env->mstatus |= MSTATUS_VS; 625 #endif 626 /* 627 * The vstart CSR is defined to have only enough writable bits 628 * to hold the largest element index, i.e. lg2(VLEN) bits. 629 */ 630 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 631 return RISCV_EXCP_NONE; 632 } 633 634 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 635 { 636 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 637 return RISCV_EXCP_NONE; 638 } 639 640 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 641 { 642 #if !defined(CONFIG_USER_ONLY) 643 env->mstatus |= MSTATUS_VS; 644 #endif 645 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 646 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 647 return RISCV_EXCP_NONE; 648 } 649 650 /* User Timers and Counters */ 651 static target_ulong get_ticks(bool shift) 652 { 653 int64_t val; 654 target_ulong result; 655 656 #if !defined(CONFIG_USER_ONLY) 657 if (icount_enabled()) { 658 val = icount_get(); 659 } else { 660 val = cpu_get_host_ticks(); 661 } 662 #else 663 val = cpu_get_host_ticks(); 664 #endif 665 666 if (shift) { 667 result = val >> 32; 668 } else { 669 result = val; 670 } 671 672 return result; 673 } 674 675 #if defined(CONFIG_USER_ONLY) 676 static RISCVException read_time(CPURISCVState *env, int csrno, 677 target_ulong *val) 678 { 679 *val = cpu_get_host_ticks(); 680 return RISCV_EXCP_NONE; 681 } 682 683 static RISCVException read_timeh(CPURISCVState *env, int csrno, 684 target_ulong *val) 685 { 686 *val = cpu_get_host_ticks() >> 32; 687 return RISCV_EXCP_NONE; 688 } 689 690 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 691 { 692 *val = get_ticks(false); 693 return RISCV_EXCP_NONE; 694 } 695 696 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 697 { 698 *val = get_ticks(true); 699 return RISCV_EXCP_NONE; 700 } 701 702 #else /* CONFIG_USER_ONLY */ 703 704 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 705 { 706 int evt_index = csrno - CSR_MCOUNTINHIBIT; 707 708 *val = env->mhpmevent_val[evt_index]; 709 710 return RISCV_EXCP_NONE; 711 } 712 713 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 714 { 715 int evt_index = csrno - CSR_MCOUNTINHIBIT; 716 uint64_t mhpmevt_val = val; 717 718 env->mhpmevent_val[evt_index] = val; 719 720 if (riscv_cpu_mxl(env) == MXL_RV32) { 721 mhpmevt_val = mhpmevt_val | 722 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 723 } 724 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 725 726 return RISCV_EXCP_NONE; 727 } 728 729 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 730 { 731 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 732 733 *val = env->mhpmeventh_val[evt_index]; 734 735 return RISCV_EXCP_NONE; 736 } 737 738 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 739 { 740 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 741 uint64_t mhpmevth_val = val; 742 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 743 744 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 745 env->mhpmeventh_val[evt_index] = val; 746 747 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 748 749 return RISCV_EXCP_NONE; 750 } 751 752 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 753 { 754 int ctr_idx = csrno - CSR_MCYCLE; 755 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 756 uint64_t mhpmctr_val = val; 757 758 counter->mhpmcounter_val = val; 759 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 760 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 761 counter->mhpmcounter_prev = get_ticks(false); 762 if (ctr_idx > 2) { 763 if (riscv_cpu_mxl(env) == MXL_RV32) { 764 mhpmctr_val = mhpmctr_val | 765 ((uint64_t)counter->mhpmcounterh_val << 32); 766 } 767 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 768 } 769 } else { 770 /* Other counters can keep incrementing from the given value */ 771 counter->mhpmcounter_prev = val; 772 } 773 774 return RISCV_EXCP_NONE; 775 } 776 777 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 778 { 779 int ctr_idx = csrno - CSR_MCYCLEH; 780 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 781 uint64_t mhpmctr_val = counter->mhpmcounter_val; 782 uint64_t mhpmctrh_val = val; 783 784 counter->mhpmcounterh_val = val; 785 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 786 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 787 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 788 counter->mhpmcounterh_prev = get_ticks(true); 789 if (ctr_idx > 2) { 790 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 791 } 792 } else { 793 counter->mhpmcounterh_prev = val; 794 } 795 796 return RISCV_EXCP_NONE; 797 } 798 799 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 800 bool upper_half, uint32_t ctr_idx) 801 { 802 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 803 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 804 counter.mhpmcounter_prev; 805 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 806 counter.mhpmcounter_val; 807 808 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 809 /** 810 * Counter should not increment if inhibit bit is set. We can't really 811 * stop the icount counting. Just return the counter value written by 812 * the supervisor to indicate that counter was not incremented. 813 */ 814 if (!counter.started) { 815 *val = ctr_val; 816 return RISCV_EXCP_NONE; 817 } else { 818 /* Mark that the counter has been stopped */ 819 counter.started = false; 820 } 821 } 822 823 /** 824 * The kernel computes the perf delta by subtracting the current value from 825 * the value it initialized previously (ctr_val). 826 */ 827 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 828 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 829 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 830 } else { 831 *val = ctr_val; 832 } 833 834 return RISCV_EXCP_NONE; 835 } 836 837 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 838 { 839 uint16_t ctr_index; 840 841 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 842 ctr_index = csrno - CSR_MCYCLE; 843 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 844 ctr_index = csrno - CSR_CYCLE; 845 } else { 846 return RISCV_EXCP_ILLEGAL_INST; 847 } 848 849 return riscv_pmu_read_ctr(env, val, false, ctr_index); 850 } 851 852 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 853 { 854 uint16_t ctr_index; 855 856 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 857 ctr_index = csrno - CSR_MCYCLEH; 858 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 859 ctr_index = csrno - CSR_CYCLEH; 860 } else { 861 return RISCV_EXCP_ILLEGAL_INST; 862 } 863 864 return riscv_pmu_read_ctr(env, val, true, ctr_index); 865 } 866 867 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 868 { 869 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 870 int i; 871 *val = 0; 872 target_ulong *mhpm_evt_val; 873 uint64_t of_bit_mask; 874 875 if (riscv_cpu_mxl(env) == MXL_RV32) { 876 mhpm_evt_val = env->mhpmeventh_val; 877 of_bit_mask = MHPMEVENTH_BIT_OF; 878 } else { 879 mhpm_evt_val = env->mhpmevent_val; 880 of_bit_mask = MHPMEVENT_BIT_OF; 881 } 882 883 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 884 if ((get_field(env->mcounteren, BIT(i))) && 885 (mhpm_evt_val[i] & of_bit_mask)) { 886 *val |= BIT(i); 887 } 888 } 889 890 return RISCV_EXCP_NONE; 891 } 892 893 static RISCVException read_time(CPURISCVState *env, int csrno, 894 target_ulong *val) 895 { 896 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 897 898 if (!env->rdtime_fn) { 899 return RISCV_EXCP_ILLEGAL_INST; 900 } 901 902 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 903 return RISCV_EXCP_NONE; 904 } 905 906 static RISCVException read_timeh(CPURISCVState *env, int csrno, 907 target_ulong *val) 908 { 909 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 910 911 if (!env->rdtime_fn) { 912 return RISCV_EXCP_ILLEGAL_INST; 913 } 914 915 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 916 return RISCV_EXCP_NONE; 917 } 918 919 static RISCVException sstc(CPURISCVState *env, int csrno) 920 { 921 CPUState *cs = env_cpu(env); 922 RISCVCPU *cpu = RISCV_CPU(cs); 923 bool hmode_check = false; 924 925 if (!cpu->cfg.ext_sstc || !env->rdtime_fn) { 926 return RISCV_EXCP_ILLEGAL_INST; 927 } 928 929 if (env->priv == PRV_M) { 930 return RISCV_EXCP_NONE; 931 } 932 933 /* 934 * No need of separate function for rv32 as menvcfg stores both menvcfg 935 * menvcfgh for RV32. 936 */ 937 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 938 get_field(env->menvcfg, MENVCFG_STCE))) { 939 return RISCV_EXCP_ILLEGAL_INST; 940 } 941 942 if (riscv_cpu_virt_enabled(env)) { 943 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 944 get_field(env->henvcfg, HENVCFG_STCE))) { 945 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 946 } 947 } 948 949 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 950 hmode_check = true; 951 } 952 953 return hmode_check ? hmode(env, csrno) : smode(env, csrno); 954 } 955 956 static RISCVException sstc_32(CPURISCVState *env, int csrno) 957 { 958 if (riscv_cpu_mxl(env) != MXL_RV32) { 959 return RISCV_EXCP_ILLEGAL_INST; 960 } 961 962 return sstc(env, csrno); 963 } 964 965 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 966 target_ulong *val) 967 { 968 *val = env->vstimecmp; 969 970 return RISCV_EXCP_NONE; 971 } 972 973 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 974 target_ulong *val) 975 { 976 *val = env->vstimecmp >> 32; 977 978 return RISCV_EXCP_NONE; 979 } 980 981 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 982 target_ulong val) 983 { 984 RISCVCPU *cpu = env_archcpu(env); 985 986 if (riscv_cpu_mxl(env) == MXL_RV32) { 987 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 988 } else { 989 env->vstimecmp = val; 990 } 991 992 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 993 env->htimedelta, MIP_VSTIP); 994 995 return RISCV_EXCP_NONE; 996 } 997 998 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 999 target_ulong val) 1000 { 1001 RISCVCPU *cpu = env_archcpu(env); 1002 1003 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1004 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1005 env->htimedelta, MIP_VSTIP); 1006 1007 return RISCV_EXCP_NONE; 1008 } 1009 1010 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1011 target_ulong *val) 1012 { 1013 if (riscv_cpu_virt_enabled(env)) { 1014 *val = env->vstimecmp; 1015 } else { 1016 *val = env->stimecmp; 1017 } 1018 1019 return RISCV_EXCP_NONE; 1020 } 1021 1022 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1023 target_ulong *val) 1024 { 1025 if (riscv_cpu_virt_enabled(env)) { 1026 *val = env->vstimecmp >> 32; 1027 } else { 1028 *val = env->stimecmp >> 32; 1029 } 1030 1031 return RISCV_EXCP_NONE; 1032 } 1033 1034 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1035 target_ulong val) 1036 { 1037 RISCVCPU *cpu = env_archcpu(env); 1038 1039 if (riscv_cpu_virt_enabled(env)) { 1040 if (env->hvictl & HVICTL_VTI) { 1041 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1042 } 1043 return write_vstimecmp(env, csrno, val); 1044 } 1045 1046 if (riscv_cpu_mxl(env) == MXL_RV32) { 1047 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1048 } else { 1049 env->stimecmp = val; 1050 } 1051 1052 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1053 1054 return RISCV_EXCP_NONE; 1055 } 1056 1057 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1058 target_ulong val) 1059 { 1060 RISCVCPU *cpu = env_archcpu(env); 1061 1062 if (riscv_cpu_virt_enabled(env)) { 1063 if (env->hvictl & HVICTL_VTI) { 1064 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1065 } 1066 return write_vstimecmph(env, csrno, val); 1067 } 1068 1069 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1070 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1071 1072 return RISCV_EXCP_NONE; 1073 } 1074 1075 /* Machine constants */ 1076 1077 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1078 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1079 MIP_LCOFIP)) 1080 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1081 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1082 1083 #define VSTOPI_NUM_SRCS 5 1084 1085 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1086 VS_MODE_INTERRUPTS; 1087 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1088 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1089 HS_MODE_INTERRUPTS; 1090 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1091 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1092 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1093 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1094 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1095 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1096 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1097 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1098 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1099 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1100 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1101 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1102 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1103 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1104 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1105 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1106 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1107 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1108 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1109 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1110 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1111 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1112 (1ULL << (RISCV_EXCP_M_ECALL)) | 1113 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1114 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1115 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1116 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1117 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1118 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1119 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1120 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1121 SIP_LCOFIP; 1122 static const target_ulong hip_writable_mask = MIP_VSSIP; 1123 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1124 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1125 1126 static const char valid_vm_1_10_32[16] = { 1127 [VM_1_10_MBARE] = 1, 1128 [VM_1_10_SV32] = 1 1129 }; 1130 1131 static const char valid_vm_1_10_64[16] = { 1132 [VM_1_10_MBARE] = 1, 1133 [VM_1_10_SV39] = 1, 1134 [VM_1_10_SV48] = 1, 1135 [VM_1_10_SV57] = 1 1136 }; 1137 1138 /* Machine Information Registers */ 1139 static RISCVException read_zero(CPURISCVState *env, int csrno, 1140 target_ulong *val) 1141 { 1142 *val = 0; 1143 return RISCV_EXCP_NONE; 1144 } 1145 1146 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1147 target_ulong val) 1148 { 1149 return RISCV_EXCP_NONE; 1150 } 1151 1152 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1153 target_ulong *val) 1154 { 1155 CPUState *cs = env_cpu(env); 1156 RISCVCPU *cpu = RISCV_CPU(cs); 1157 1158 *val = cpu->cfg.mvendorid; 1159 return RISCV_EXCP_NONE; 1160 } 1161 1162 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1163 target_ulong *val) 1164 { 1165 CPUState *cs = env_cpu(env); 1166 RISCVCPU *cpu = RISCV_CPU(cs); 1167 1168 *val = cpu->cfg.marchid; 1169 return RISCV_EXCP_NONE; 1170 } 1171 1172 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1173 target_ulong *val) 1174 { 1175 CPUState *cs = env_cpu(env); 1176 RISCVCPU *cpu = RISCV_CPU(cs); 1177 1178 *val = cpu->cfg.mimpid; 1179 return RISCV_EXCP_NONE; 1180 } 1181 1182 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1183 target_ulong *val) 1184 { 1185 *val = env->mhartid; 1186 return RISCV_EXCP_NONE; 1187 } 1188 1189 /* Machine Trap Setup */ 1190 1191 /* We do not store SD explicitly, only compute it on demand. */ 1192 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1193 { 1194 if ((status & MSTATUS_FS) == MSTATUS_FS || 1195 (status & MSTATUS_VS) == MSTATUS_VS || 1196 (status & MSTATUS_XS) == MSTATUS_XS) { 1197 switch (xl) { 1198 case MXL_RV32: 1199 return status | MSTATUS32_SD; 1200 case MXL_RV64: 1201 return status | MSTATUS64_SD; 1202 case MXL_RV128: 1203 return MSTATUSH128_SD; 1204 default: 1205 g_assert_not_reached(); 1206 } 1207 } 1208 return status; 1209 } 1210 1211 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1212 target_ulong *val) 1213 { 1214 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1215 return RISCV_EXCP_NONE; 1216 } 1217 1218 static int validate_vm(CPURISCVState *env, target_ulong vm) 1219 { 1220 if (riscv_cpu_mxl(env) == MXL_RV32) { 1221 return valid_vm_1_10_32[vm & 0xf]; 1222 } else { 1223 return valid_vm_1_10_64[vm & 0xf]; 1224 } 1225 } 1226 1227 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1228 target_ulong val) 1229 { 1230 uint64_t mstatus = env->mstatus; 1231 uint64_t mask = 0; 1232 RISCVMXL xl = riscv_cpu_mxl(env); 1233 1234 /* flush tlb on mstatus fields that affect VM */ 1235 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1236 MSTATUS_MPRV | MSTATUS_SUM)) { 1237 tlb_flush(env_cpu(env)); 1238 } 1239 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1240 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1241 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1242 MSTATUS_TW | MSTATUS_VS; 1243 1244 if (riscv_has_ext(env, RVF)) { 1245 mask |= MSTATUS_FS; 1246 } 1247 1248 if (xl != MXL_RV32 || env->debugger) { 1249 /* 1250 * RV32: MPV and GVA are not in mstatus. The current plan is to 1251 * add them to mstatush. For now, we just don't support it. 1252 */ 1253 mask |= MSTATUS_MPV | MSTATUS_GVA; 1254 if ((val & MSTATUS64_UXL) != 0) { 1255 mask |= MSTATUS64_UXL; 1256 } 1257 } 1258 1259 mstatus = (mstatus & ~mask) | (val & mask); 1260 1261 if (xl > MXL_RV32) { 1262 /* SXL field is for now read only */ 1263 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1264 } 1265 env->mstatus = mstatus; 1266 env->xl = cpu_recompute_xl(env); 1267 1268 return RISCV_EXCP_NONE; 1269 } 1270 1271 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1272 target_ulong *val) 1273 { 1274 *val = env->mstatus >> 32; 1275 return RISCV_EXCP_NONE; 1276 } 1277 1278 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1279 target_ulong val) 1280 { 1281 uint64_t valh = (uint64_t)val << 32; 1282 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1283 1284 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1285 tlb_flush(env_cpu(env)); 1286 } 1287 1288 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1289 1290 return RISCV_EXCP_NONE; 1291 } 1292 1293 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1294 Int128 *val) 1295 { 1296 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1297 return RISCV_EXCP_NONE; 1298 } 1299 1300 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1301 Int128 *val) 1302 { 1303 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1304 return RISCV_EXCP_NONE; 1305 } 1306 1307 static RISCVException read_misa(CPURISCVState *env, int csrno, 1308 target_ulong *val) 1309 { 1310 target_ulong misa; 1311 1312 switch (env->misa_mxl) { 1313 case MXL_RV32: 1314 misa = (target_ulong)MXL_RV32 << 30; 1315 break; 1316 #ifdef TARGET_RISCV64 1317 case MXL_RV64: 1318 misa = (target_ulong)MXL_RV64 << 62; 1319 break; 1320 #endif 1321 default: 1322 g_assert_not_reached(); 1323 } 1324 1325 *val = misa | env->misa_ext; 1326 return RISCV_EXCP_NONE; 1327 } 1328 1329 static RISCVException write_misa(CPURISCVState *env, int csrno, 1330 target_ulong val) 1331 { 1332 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 1333 /* drop write to misa */ 1334 return RISCV_EXCP_NONE; 1335 } 1336 1337 /* 'I' or 'E' must be present */ 1338 if (!(val & (RVI | RVE))) { 1339 /* It is not, drop write to misa */ 1340 return RISCV_EXCP_NONE; 1341 } 1342 1343 /* 'E' excludes all other extensions */ 1344 if (val & RVE) { 1345 /* when we support 'E' we can do "val = RVE;" however 1346 * for now we just drop writes if 'E' is present. 1347 */ 1348 return RISCV_EXCP_NONE; 1349 } 1350 1351 /* 1352 * misa.MXL writes are not supported by QEMU. 1353 * Drop writes to those bits. 1354 */ 1355 1356 /* Mask extensions that are not supported by this hart */ 1357 val &= env->misa_ext_mask; 1358 1359 /* Mask extensions that are not supported by QEMU */ 1360 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 1361 1362 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1363 if ((val & RVD) && !(val & RVF)) { 1364 val &= ~RVD; 1365 } 1366 1367 /* Suppress 'C' if next instruction is not aligned 1368 * TODO: this should check next_pc 1369 */ 1370 if ((val & RVC) && (GETPC() & ~3) != 0) { 1371 val &= ~RVC; 1372 } 1373 1374 /* If nothing changed, do nothing. */ 1375 if (val == env->misa_ext) { 1376 return RISCV_EXCP_NONE; 1377 } 1378 1379 if (!(val & RVF)) { 1380 env->mstatus &= ~MSTATUS_FS; 1381 } 1382 1383 /* flush translation cache */ 1384 tb_flush(env_cpu(env)); 1385 env->misa_ext = val; 1386 env->xl = riscv_cpu_mxl(env); 1387 return RISCV_EXCP_NONE; 1388 } 1389 1390 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1391 target_ulong *val) 1392 { 1393 *val = env->medeleg; 1394 return RISCV_EXCP_NONE; 1395 } 1396 1397 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1398 target_ulong val) 1399 { 1400 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1401 return RISCV_EXCP_NONE; 1402 } 1403 1404 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1405 uint64_t *ret_val, 1406 uint64_t new_val, uint64_t wr_mask) 1407 { 1408 uint64_t mask = wr_mask & delegable_ints; 1409 1410 if (ret_val) { 1411 *ret_val = env->mideleg; 1412 } 1413 1414 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1415 1416 if (riscv_has_ext(env, RVH)) { 1417 env->mideleg |= HS_MODE_INTERRUPTS; 1418 } 1419 1420 return RISCV_EXCP_NONE; 1421 } 1422 1423 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1424 target_ulong *ret_val, 1425 target_ulong new_val, target_ulong wr_mask) 1426 { 1427 uint64_t rval; 1428 RISCVException ret; 1429 1430 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1431 if (ret_val) { 1432 *ret_val = rval; 1433 } 1434 1435 return ret; 1436 } 1437 1438 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1439 target_ulong *ret_val, 1440 target_ulong new_val, 1441 target_ulong wr_mask) 1442 { 1443 uint64_t rval; 1444 RISCVException ret; 1445 1446 ret = rmw_mideleg64(env, csrno, &rval, 1447 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1448 if (ret_val) { 1449 *ret_val = rval >> 32; 1450 } 1451 1452 return ret; 1453 } 1454 1455 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1456 uint64_t *ret_val, 1457 uint64_t new_val, uint64_t wr_mask) 1458 { 1459 uint64_t mask = wr_mask & all_ints; 1460 1461 if (ret_val) { 1462 *ret_val = env->mie; 1463 } 1464 1465 env->mie = (env->mie & ~mask) | (new_val & mask); 1466 1467 if (!riscv_has_ext(env, RVH)) { 1468 env->mie &= ~((uint64_t)MIP_SGEIP); 1469 } 1470 1471 return RISCV_EXCP_NONE; 1472 } 1473 1474 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1475 target_ulong *ret_val, 1476 target_ulong new_val, target_ulong wr_mask) 1477 { 1478 uint64_t rval; 1479 RISCVException ret; 1480 1481 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1482 if (ret_val) { 1483 *ret_val = rval; 1484 } 1485 1486 return ret; 1487 } 1488 1489 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1490 target_ulong *ret_val, 1491 target_ulong new_val, target_ulong wr_mask) 1492 { 1493 uint64_t rval; 1494 RISCVException ret; 1495 1496 ret = rmw_mie64(env, csrno, &rval, 1497 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1498 if (ret_val) { 1499 *ret_val = rval >> 32; 1500 } 1501 1502 return ret; 1503 } 1504 1505 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1506 { 1507 int irq; 1508 uint8_t iprio; 1509 1510 irq = riscv_cpu_mirq_pending(env); 1511 if (irq <= 0 || irq > 63) { 1512 *val = 0; 1513 } else { 1514 iprio = env->miprio[irq]; 1515 if (!iprio) { 1516 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1517 iprio = IPRIO_MMAXIPRIO; 1518 } 1519 } 1520 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1521 *val |= iprio; 1522 } 1523 1524 return RISCV_EXCP_NONE; 1525 } 1526 1527 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1528 { 1529 if (!riscv_cpu_virt_enabled(env)) { 1530 return csrno; 1531 } 1532 1533 switch (csrno) { 1534 case CSR_SISELECT: 1535 return CSR_VSISELECT; 1536 case CSR_SIREG: 1537 return CSR_VSIREG; 1538 case CSR_STOPEI: 1539 return CSR_VSTOPEI; 1540 default: 1541 return csrno; 1542 }; 1543 } 1544 1545 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1546 target_ulong new_val, target_ulong wr_mask) 1547 { 1548 target_ulong *iselect; 1549 1550 /* Translate CSR number for VS-mode */ 1551 csrno = aia_xlate_vs_csrno(env, csrno); 1552 1553 /* Find the iselect CSR based on CSR number */ 1554 switch (csrno) { 1555 case CSR_MISELECT: 1556 iselect = &env->miselect; 1557 break; 1558 case CSR_SISELECT: 1559 iselect = &env->siselect; 1560 break; 1561 case CSR_VSISELECT: 1562 iselect = &env->vsiselect; 1563 break; 1564 default: 1565 return RISCV_EXCP_ILLEGAL_INST; 1566 }; 1567 1568 if (val) { 1569 *val = *iselect; 1570 } 1571 1572 wr_mask &= ISELECT_MASK; 1573 if (wr_mask) { 1574 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1575 } 1576 1577 return RISCV_EXCP_NONE; 1578 } 1579 1580 static int rmw_iprio(target_ulong xlen, 1581 target_ulong iselect, uint8_t *iprio, 1582 target_ulong *val, target_ulong new_val, 1583 target_ulong wr_mask, int ext_irq_no) 1584 { 1585 int i, firq, nirqs; 1586 target_ulong old_val; 1587 1588 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1589 return -EINVAL; 1590 } 1591 if (xlen != 32 && iselect & 0x1) { 1592 return -EINVAL; 1593 } 1594 1595 nirqs = 4 * (xlen / 32); 1596 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1597 1598 old_val = 0; 1599 for (i = 0; i < nirqs; i++) { 1600 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1601 } 1602 1603 if (val) { 1604 *val = old_val; 1605 } 1606 1607 if (wr_mask) { 1608 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1609 for (i = 0; i < nirqs; i++) { 1610 /* 1611 * M-level and S-level external IRQ priority always read-only 1612 * zero. This means default priority order is always preferred 1613 * for M-level and S-level external IRQs. 1614 */ 1615 if ((firq + i) == ext_irq_no) { 1616 continue; 1617 } 1618 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1619 } 1620 } 1621 1622 return 0; 1623 } 1624 1625 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1626 target_ulong new_val, target_ulong wr_mask) 1627 { 1628 bool virt; 1629 uint8_t *iprio; 1630 int ret = -EINVAL; 1631 target_ulong priv, isel, vgein; 1632 1633 /* Translate CSR number for VS-mode */ 1634 csrno = aia_xlate_vs_csrno(env, csrno); 1635 1636 /* Decode register details from CSR number */ 1637 virt = false; 1638 switch (csrno) { 1639 case CSR_MIREG: 1640 iprio = env->miprio; 1641 isel = env->miselect; 1642 priv = PRV_M; 1643 break; 1644 case CSR_SIREG: 1645 iprio = env->siprio; 1646 isel = env->siselect; 1647 priv = PRV_S; 1648 break; 1649 case CSR_VSIREG: 1650 iprio = env->hviprio; 1651 isel = env->vsiselect; 1652 priv = PRV_S; 1653 virt = true; 1654 break; 1655 default: 1656 goto done; 1657 }; 1658 1659 /* Find the selected guest interrupt file */ 1660 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1661 1662 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1663 /* Local interrupt priority registers not available for VS-mode */ 1664 if (!virt) { 1665 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1666 isel, iprio, val, new_val, wr_mask, 1667 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1668 } 1669 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1670 /* IMSIC registers only available when machine implements it. */ 1671 if (env->aia_ireg_rmw_fn[priv]) { 1672 /* Selected guest interrupt file should not be zero */ 1673 if (virt && (!vgein || env->geilen < vgein)) { 1674 goto done; 1675 } 1676 /* Call machine specific IMSIC register emulation */ 1677 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1678 AIA_MAKE_IREG(isel, priv, virt, vgein, 1679 riscv_cpu_mxl_bits(env)), 1680 val, new_val, wr_mask); 1681 } 1682 } 1683 1684 done: 1685 if (ret) { 1686 return (riscv_cpu_virt_enabled(env) && virt) ? 1687 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1688 } 1689 return RISCV_EXCP_NONE; 1690 } 1691 1692 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1693 target_ulong new_val, target_ulong wr_mask) 1694 { 1695 bool virt; 1696 int ret = -EINVAL; 1697 target_ulong priv, vgein; 1698 1699 /* Translate CSR number for VS-mode */ 1700 csrno = aia_xlate_vs_csrno(env, csrno); 1701 1702 /* Decode register details from CSR number */ 1703 virt = false; 1704 switch (csrno) { 1705 case CSR_MTOPEI: 1706 priv = PRV_M; 1707 break; 1708 case CSR_STOPEI: 1709 priv = PRV_S; 1710 break; 1711 case CSR_VSTOPEI: 1712 priv = PRV_S; 1713 virt = true; 1714 break; 1715 default: 1716 goto done; 1717 }; 1718 1719 /* IMSIC CSRs only available when machine implements IMSIC. */ 1720 if (!env->aia_ireg_rmw_fn[priv]) { 1721 goto done; 1722 } 1723 1724 /* Find the selected guest interrupt file */ 1725 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1726 1727 /* Selected guest interrupt file should be valid */ 1728 if (virt && (!vgein || env->geilen < vgein)) { 1729 goto done; 1730 } 1731 1732 /* Call machine specific IMSIC register emulation for TOPEI */ 1733 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1734 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1735 riscv_cpu_mxl_bits(env)), 1736 val, new_val, wr_mask); 1737 1738 done: 1739 if (ret) { 1740 return (riscv_cpu_virt_enabled(env) && virt) ? 1741 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1742 } 1743 return RISCV_EXCP_NONE; 1744 } 1745 1746 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1747 target_ulong *val) 1748 { 1749 *val = env->mtvec; 1750 return RISCV_EXCP_NONE; 1751 } 1752 1753 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1754 target_ulong val) 1755 { 1756 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1757 if ((val & 3) < 2) { 1758 env->mtvec = val; 1759 } else { 1760 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1761 } 1762 return RISCV_EXCP_NONE; 1763 } 1764 1765 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1766 target_ulong *val) 1767 { 1768 *val = env->mcountinhibit; 1769 return RISCV_EXCP_NONE; 1770 } 1771 1772 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1773 target_ulong val) 1774 { 1775 int cidx; 1776 PMUCTRState *counter; 1777 1778 env->mcountinhibit = val; 1779 1780 /* Check if any other counter is also monitoring cycles/instructions */ 1781 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1782 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1783 counter = &env->pmu_ctrs[cidx]; 1784 counter->started = true; 1785 } 1786 } 1787 1788 return RISCV_EXCP_NONE; 1789 } 1790 1791 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1792 target_ulong *val) 1793 { 1794 *val = env->mcounteren; 1795 return RISCV_EXCP_NONE; 1796 } 1797 1798 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1799 target_ulong val) 1800 { 1801 env->mcounteren = val; 1802 return RISCV_EXCP_NONE; 1803 } 1804 1805 /* Machine Trap Handling */ 1806 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1807 Int128 *val) 1808 { 1809 *val = int128_make128(env->mscratch, env->mscratchh); 1810 return RISCV_EXCP_NONE; 1811 } 1812 1813 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1814 Int128 val) 1815 { 1816 env->mscratch = int128_getlo(val); 1817 env->mscratchh = int128_gethi(val); 1818 return RISCV_EXCP_NONE; 1819 } 1820 1821 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1822 target_ulong *val) 1823 { 1824 *val = env->mscratch; 1825 return RISCV_EXCP_NONE; 1826 } 1827 1828 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1829 target_ulong val) 1830 { 1831 env->mscratch = val; 1832 return RISCV_EXCP_NONE; 1833 } 1834 1835 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1836 target_ulong *val) 1837 { 1838 *val = env->mepc; 1839 return RISCV_EXCP_NONE; 1840 } 1841 1842 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1843 target_ulong val) 1844 { 1845 env->mepc = val; 1846 return RISCV_EXCP_NONE; 1847 } 1848 1849 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1850 target_ulong *val) 1851 { 1852 *val = env->mcause; 1853 return RISCV_EXCP_NONE; 1854 } 1855 1856 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1857 target_ulong val) 1858 { 1859 env->mcause = val; 1860 return RISCV_EXCP_NONE; 1861 } 1862 1863 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1864 target_ulong *val) 1865 { 1866 *val = env->mtval; 1867 return RISCV_EXCP_NONE; 1868 } 1869 1870 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1871 target_ulong val) 1872 { 1873 env->mtval = val; 1874 return RISCV_EXCP_NONE; 1875 } 1876 1877 /* Execution environment configuration setup */ 1878 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1879 target_ulong *val) 1880 { 1881 *val = env->menvcfg; 1882 return RISCV_EXCP_NONE; 1883 } 1884 1885 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1886 target_ulong val) 1887 { 1888 RISCVCPUConfig *cfg = &env_archcpu(env)->cfg; 1889 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1890 1891 if (riscv_cpu_mxl(env) == MXL_RV64) { 1892 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1893 (cfg->ext_sstc ? MENVCFG_STCE : 0); 1894 } 1895 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1896 1897 return RISCV_EXCP_NONE; 1898 } 1899 1900 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1901 target_ulong *val) 1902 { 1903 *val = env->menvcfg >> 32; 1904 return RISCV_EXCP_NONE; 1905 } 1906 1907 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1908 target_ulong val) 1909 { 1910 RISCVCPUConfig *cfg = &env_archcpu(env)->cfg; 1911 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1912 (cfg->ext_sstc ? MENVCFG_STCE : 0); 1913 uint64_t valh = (uint64_t)val << 32; 1914 1915 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1916 1917 return RISCV_EXCP_NONE; 1918 } 1919 1920 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1921 target_ulong *val) 1922 { 1923 RISCVException ret; 1924 1925 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1926 if (ret != RISCV_EXCP_NONE) { 1927 return ret; 1928 } 1929 1930 *val = env->senvcfg; 1931 return RISCV_EXCP_NONE; 1932 } 1933 1934 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1935 target_ulong val) 1936 { 1937 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1938 RISCVException ret; 1939 1940 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1941 if (ret != RISCV_EXCP_NONE) { 1942 return ret; 1943 } 1944 1945 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1946 return RISCV_EXCP_NONE; 1947 } 1948 1949 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1950 target_ulong *val) 1951 { 1952 RISCVException ret; 1953 1954 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1955 if (ret != RISCV_EXCP_NONE) { 1956 return ret; 1957 } 1958 1959 *val = env->henvcfg; 1960 return RISCV_EXCP_NONE; 1961 } 1962 1963 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1964 target_ulong val) 1965 { 1966 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1967 RISCVException ret; 1968 1969 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1970 if (ret != RISCV_EXCP_NONE) { 1971 return ret; 1972 } 1973 1974 if (riscv_cpu_mxl(env) == MXL_RV64) { 1975 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 1976 } 1977 1978 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1979 1980 return RISCV_EXCP_NONE; 1981 } 1982 1983 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1984 target_ulong *val) 1985 { 1986 RISCVException ret; 1987 1988 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1989 if (ret != RISCV_EXCP_NONE) { 1990 return ret; 1991 } 1992 1993 *val = env->henvcfg >> 32; 1994 return RISCV_EXCP_NONE; 1995 } 1996 1997 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 1998 target_ulong val) 1999 { 2000 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 2001 uint64_t valh = (uint64_t)val << 32; 2002 RISCVException ret; 2003 2004 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2005 if (ret != RISCV_EXCP_NONE) { 2006 return ret; 2007 } 2008 2009 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2010 return RISCV_EXCP_NONE; 2011 } 2012 2013 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2014 target_ulong *val) 2015 { 2016 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2017 2018 return RISCV_EXCP_NONE; 2019 } 2020 2021 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2022 uint64_t wr_mask, target_ulong new_val) 2023 { 2024 uint64_t *reg; 2025 2026 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2027 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2028 2029 return RISCV_EXCP_NONE; 2030 } 2031 2032 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2033 target_ulong new_val) 2034 { 2035 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2036 2037 return write_mstateen(env, csrno, wr_mask, new_val); 2038 } 2039 2040 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2041 target_ulong new_val) 2042 { 2043 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2044 } 2045 2046 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2047 target_ulong *val) 2048 { 2049 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2050 2051 return RISCV_EXCP_NONE; 2052 } 2053 2054 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2055 uint64_t wr_mask, target_ulong new_val) 2056 { 2057 uint64_t *reg, val; 2058 2059 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2060 val = (uint64_t)new_val << 32; 2061 val |= *reg & 0xFFFFFFFF; 2062 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2063 2064 return RISCV_EXCP_NONE; 2065 } 2066 2067 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2068 target_ulong new_val) 2069 { 2070 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2071 2072 return write_mstateenh(env, csrno, wr_mask, new_val); 2073 } 2074 2075 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2076 target_ulong new_val) 2077 { 2078 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2079 } 2080 2081 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2082 target_ulong *val) 2083 { 2084 int index = csrno - CSR_HSTATEEN0; 2085 2086 *val = env->hstateen[index] & env->mstateen[index]; 2087 2088 return RISCV_EXCP_NONE; 2089 } 2090 2091 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2092 uint64_t mask, target_ulong new_val) 2093 { 2094 int index = csrno - CSR_HSTATEEN0; 2095 uint64_t *reg, wr_mask; 2096 2097 reg = &env->hstateen[index]; 2098 wr_mask = env->mstateen[index] & mask; 2099 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2100 2101 return RISCV_EXCP_NONE; 2102 } 2103 2104 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2105 target_ulong new_val) 2106 { 2107 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2108 2109 return write_hstateen(env, csrno, wr_mask, new_val); 2110 } 2111 2112 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2113 target_ulong new_val) 2114 { 2115 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2116 } 2117 2118 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2119 target_ulong *val) 2120 { 2121 int index = csrno - CSR_HSTATEEN0H; 2122 2123 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2124 2125 return RISCV_EXCP_NONE; 2126 } 2127 2128 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2129 uint64_t mask, target_ulong new_val) 2130 { 2131 int index = csrno - CSR_HSTATEEN0H; 2132 uint64_t *reg, wr_mask, val; 2133 2134 reg = &env->hstateen[index]; 2135 val = (uint64_t)new_val << 32; 2136 val |= *reg & 0xFFFFFFFF; 2137 wr_mask = env->mstateen[index] & mask; 2138 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2139 2140 return RISCV_EXCP_NONE; 2141 } 2142 2143 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2144 target_ulong new_val) 2145 { 2146 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2147 2148 return write_hstateenh(env, csrno, wr_mask, new_val); 2149 } 2150 2151 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2152 target_ulong new_val) 2153 { 2154 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2155 } 2156 2157 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2158 target_ulong *val) 2159 { 2160 bool virt = riscv_cpu_virt_enabled(env); 2161 int index = csrno - CSR_SSTATEEN0; 2162 2163 *val = env->sstateen[index] & env->mstateen[index]; 2164 if (virt) { 2165 *val &= env->hstateen[index]; 2166 } 2167 2168 return RISCV_EXCP_NONE; 2169 } 2170 2171 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2172 uint64_t mask, target_ulong new_val) 2173 { 2174 bool virt = riscv_cpu_virt_enabled(env); 2175 int index = csrno - CSR_SSTATEEN0; 2176 uint64_t wr_mask; 2177 uint64_t *reg; 2178 2179 wr_mask = env->mstateen[index] & mask; 2180 if (virt) { 2181 wr_mask &= env->hstateen[index]; 2182 } 2183 2184 reg = &env->sstateen[index]; 2185 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2186 2187 return RISCV_EXCP_NONE; 2188 } 2189 2190 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2191 target_ulong new_val) 2192 { 2193 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2194 2195 return write_sstateen(env, csrno, wr_mask, new_val); 2196 } 2197 2198 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2199 target_ulong new_val) 2200 { 2201 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2202 } 2203 2204 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2205 uint64_t *ret_val, 2206 uint64_t new_val, uint64_t wr_mask) 2207 { 2208 RISCVCPU *cpu = env_archcpu(env); 2209 uint64_t old_mip, mask = wr_mask & delegable_ints; 2210 uint32_t gin; 2211 2212 if (mask & MIP_SEIP) { 2213 env->software_seip = new_val & MIP_SEIP; 2214 new_val |= env->external_seip * MIP_SEIP; 2215 } 2216 2217 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2218 get_field(env->menvcfg, MENVCFG_STCE)) { 2219 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2220 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2221 } 2222 2223 if (mask) { 2224 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 2225 } else { 2226 old_mip = env->mip; 2227 } 2228 2229 if (csrno != CSR_HVIP) { 2230 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2231 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2232 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2233 } 2234 2235 if (ret_val) { 2236 *ret_val = old_mip; 2237 } 2238 2239 return RISCV_EXCP_NONE; 2240 } 2241 2242 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2243 target_ulong *ret_val, 2244 target_ulong new_val, target_ulong wr_mask) 2245 { 2246 uint64_t rval; 2247 RISCVException ret; 2248 2249 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2250 if (ret_val) { 2251 *ret_val = rval; 2252 } 2253 2254 return ret; 2255 } 2256 2257 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2258 target_ulong *ret_val, 2259 target_ulong new_val, target_ulong wr_mask) 2260 { 2261 uint64_t rval; 2262 RISCVException ret; 2263 2264 ret = rmw_mip64(env, csrno, &rval, 2265 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2266 if (ret_val) { 2267 *ret_val = rval >> 32; 2268 } 2269 2270 return ret; 2271 } 2272 2273 /* Supervisor Trap Setup */ 2274 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2275 Int128 *val) 2276 { 2277 uint64_t mask = sstatus_v1_10_mask; 2278 uint64_t sstatus = env->mstatus & mask; 2279 if (env->xl != MXL_RV32 || env->debugger) { 2280 mask |= SSTATUS64_UXL; 2281 } 2282 2283 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2284 return RISCV_EXCP_NONE; 2285 } 2286 2287 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2288 target_ulong *val) 2289 { 2290 target_ulong mask = (sstatus_v1_10_mask); 2291 if (env->xl != MXL_RV32 || env->debugger) { 2292 mask |= SSTATUS64_UXL; 2293 } 2294 /* TODO: Use SXL not MXL. */ 2295 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2296 return RISCV_EXCP_NONE; 2297 } 2298 2299 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2300 target_ulong val) 2301 { 2302 target_ulong mask = (sstatus_v1_10_mask); 2303 2304 if (env->xl != MXL_RV32 || env->debugger) { 2305 if ((val & SSTATUS64_UXL) != 0) { 2306 mask |= SSTATUS64_UXL; 2307 } 2308 } 2309 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2310 return write_mstatus(env, CSR_MSTATUS, newval); 2311 } 2312 2313 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2314 uint64_t *ret_val, 2315 uint64_t new_val, uint64_t wr_mask) 2316 { 2317 RISCVException ret; 2318 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2319 2320 /* Bring VS-level bits to correct position */ 2321 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2322 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2323 2324 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2325 if (ret_val) { 2326 *ret_val = (rval & mask) >> 1; 2327 } 2328 2329 return ret; 2330 } 2331 2332 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2333 target_ulong *ret_val, 2334 target_ulong new_val, target_ulong wr_mask) 2335 { 2336 uint64_t rval; 2337 RISCVException ret; 2338 2339 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2340 if (ret_val) { 2341 *ret_val = rval; 2342 } 2343 2344 return ret; 2345 } 2346 2347 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2348 target_ulong *ret_val, 2349 target_ulong new_val, target_ulong wr_mask) 2350 { 2351 uint64_t rval; 2352 RISCVException ret; 2353 2354 ret = rmw_vsie64(env, csrno, &rval, 2355 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2356 if (ret_val) { 2357 *ret_val = rval >> 32; 2358 } 2359 2360 return ret; 2361 } 2362 2363 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2364 uint64_t *ret_val, 2365 uint64_t new_val, uint64_t wr_mask) 2366 { 2367 RISCVException ret; 2368 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2369 2370 if (riscv_cpu_virt_enabled(env)) { 2371 if (env->hvictl & HVICTL_VTI) { 2372 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2373 } 2374 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2375 } else { 2376 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2377 } 2378 2379 if (ret_val) { 2380 *ret_val &= mask; 2381 } 2382 2383 return ret; 2384 } 2385 2386 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2387 target_ulong *ret_val, 2388 target_ulong new_val, target_ulong wr_mask) 2389 { 2390 uint64_t rval; 2391 RISCVException ret; 2392 2393 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2394 if (ret == RISCV_EXCP_NONE && ret_val) { 2395 *ret_val = rval; 2396 } 2397 2398 return ret; 2399 } 2400 2401 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2402 target_ulong *ret_val, 2403 target_ulong new_val, target_ulong wr_mask) 2404 { 2405 uint64_t rval; 2406 RISCVException ret; 2407 2408 ret = rmw_sie64(env, csrno, &rval, 2409 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2410 if (ret_val) { 2411 *ret_val = rval >> 32; 2412 } 2413 2414 return ret; 2415 } 2416 2417 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2418 target_ulong *val) 2419 { 2420 *val = env->stvec; 2421 return RISCV_EXCP_NONE; 2422 } 2423 2424 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2425 target_ulong val) 2426 { 2427 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2428 if ((val & 3) < 2) { 2429 env->stvec = val; 2430 } else { 2431 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2432 } 2433 return RISCV_EXCP_NONE; 2434 } 2435 2436 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2437 target_ulong *val) 2438 { 2439 *val = env->scounteren; 2440 return RISCV_EXCP_NONE; 2441 } 2442 2443 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2444 target_ulong val) 2445 { 2446 env->scounteren = val; 2447 return RISCV_EXCP_NONE; 2448 } 2449 2450 /* Supervisor Trap Handling */ 2451 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2452 Int128 *val) 2453 { 2454 *val = int128_make128(env->sscratch, env->sscratchh); 2455 return RISCV_EXCP_NONE; 2456 } 2457 2458 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2459 Int128 val) 2460 { 2461 env->sscratch = int128_getlo(val); 2462 env->sscratchh = int128_gethi(val); 2463 return RISCV_EXCP_NONE; 2464 } 2465 2466 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2467 target_ulong *val) 2468 { 2469 *val = env->sscratch; 2470 return RISCV_EXCP_NONE; 2471 } 2472 2473 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2474 target_ulong val) 2475 { 2476 env->sscratch = val; 2477 return RISCV_EXCP_NONE; 2478 } 2479 2480 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2481 target_ulong *val) 2482 { 2483 *val = env->sepc; 2484 return RISCV_EXCP_NONE; 2485 } 2486 2487 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2488 target_ulong val) 2489 { 2490 env->sepc = val; 2491 return RISCV_EXCP_NONE; 2492 } 2493 2494 static RISCVException read_scause(CPURISCVState *env, int csrno, 2495 target_ulong *val) 2496 { 2497 *val = env->scause; 2498 return RISCV_EXCP_NONE; 2499 } 2500 2501 static RISCVException write_scause(CPURISCVState *env, int csrno, 2502 target_ulong val) 2503 { 2504 env->scause = val; 2505 return RISCV_EXCP_NONE; 2506 } 2507 2508 static RISCVException read_stval(CPURISCVState *env, int csrno, 2509 target_ulong *val) 2510 { 2511 *val = env->stval; 2512 return RISCV_EXCP_NONE; 2513 } 2514 2515 static RISCVException write_stval(CPURISCVState *env, int csrno, 2516 target_ulong val) 2517 { 2518 env->stval = val; 2519 return RISCV_EXCP_NONE; 2520 } 2521 2522 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2523 uint64_t *ret_val, 2524 uint64_t new_val, uint64_t wr_mask) 2525 { 2526 RISCVException ret; 2527 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2528 2529 /* Bring VS-level bits to correct position */ 2530 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2531 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2532 2533 ret = rmw_mip64(env, csrno, &rval, new_val, 2534 wr_mask & mask & vsip_writable_mask); 2535 if (ret_val) { 2536 *ret_val = (rval & mask) >> 1; 2537 } 2538 2539 return ret; 2540 } 2541 2542 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2543 target_ulong *ret_val, 2544 target_ulong new_val, target_ulong wr_mask) 2545 { 2546 uint64_t rval; 2547 RISCVException ret; 2548 2549 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2550 if (ret_val) { 2551 *ret_val = rval; 2552 } 2553 2554 return ret; 2555 } 2556 2557 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2558 target_ulong *ret_val, 2559 target_ulong new_val, target_ulong wr_mask) 2560 { 2561 uint64_t rval; 2562 RISCVException ret; 2563 2564 ret = rmw_vsip64(env, csrno, &rval, 2565 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2566 if (ret_val) { 2567 *ret_val = rval >> 32; 2568 } 2569 2570 return ret; 2571 } 2572 2573 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2574 uint64_t *ret_val, 2575 uint64_t new_val, uint64_t wr_mask) 2576 { 2577 RISCVException ret; 2578 uint64_t mask = env->mideleg & sip_writable_mask; 2579 2580 if (riscv_cpu_virt_enabled(env)) { 2581 if (env->hvictl & HVICTL_VTI) { 2582 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2583 } 2584 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2585 } else { 2586 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2587 } 2588 2589 if (ret_val) { 2590 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2591 } 2592 2593 return ret; 2594 } 2595 2596 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2597 target_ulong *ret_val, 2598 target_ulong new_val, target_ulong wr_mask) 2599 { 2600 uint64_t rval; 2601 RISCVException ret; 2602 2603 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2604 if (ret_val) { 2605 *ret_val = rval; 2606 } 2607 2608 return ret; 2609 } 2610 2611 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2612 target_ulong *ret_val, 2613 target_ulong new_val, target_ulong wr_mask) 2614 { 2615 uint64_t rval; 2616 RISCVException ret; 2617 2618 ret = rmw_sip64(env, csrno, &rval, 2619 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2620 if (ret_val) { 2621 *ret_val = rval >> 32; 2622 } 2623 2624 return ret; 2625 } 2626 2627 /* Supervisor Protection and Translation */ 2628 static RISCVException read_satp(CPURISCVState *env, int csrno, 2629 target_ulong *val) 2630 { 2631 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2632 *val = 0; 2633 return RISCV_EXCP_NONE; 2634 } 2635 2636 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2637 return RISCV_EXCP_ILLEGAL_INST; 2638 } else { 2639 *val = env->satp; 2640 } 2641 2642 return RISCV_EXCP_NONE; 2643 } 2644 2645 static RISCVException write_satp(CPURISCVState *env, int csrno, 2646 target_ulong val) 2647 { 2648 target_ulong vm, mask; 2649 2650 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2651 return RISCV_EXCP_NONE; 2652 } 2653 2654 if (riscv_cpu_mxl(env) == MXL_RV32) { 2655 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2656 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2657 } else { 2658 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2659 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2660 } 2661 2662 if (vm && mask) { 2663 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2664 return RISCV_EXCP_ILLEGAL_INST; 2665 } else { 2666 /* 2667 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2668 * pass these through QEMU's TLB emulation as it improves 2669 * performance. Flushing the TLB on SATP writes with paging 2670 * enabled avoids leaking those invalid cached mappings. 2671 */ 2672 tlb_flush(env_cpu(env)); 2673 env->satp = val; 2674 } 2675 } 2676 return RISCV_EXCP_NONE; 2677 } 2678 2679 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2680 { 2681 int irq, ret; 2682 target_ulong topei; 2683 uint64_t vseip, vsgein; 2684 uint32_t iid, iprio, hviid, hviprio, gein; 2685 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2686 2687 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2688 hviid = get_field(env->hvictl, HVICTL_IID); 2689 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2690 2691 if (gein) { 2692 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2693 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2694 if (gein <= env->geilen && vseip) { 2695 siid[scount] = IRQ_S_EXT; 2696 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2697 if (env->aia_ireg_rmw_fn[PRV_S]) { 2698 /* 2699 * Call machine specific IMSIC register emulation for 2700 * reading TOPEI. 2701 */ 2702 ret = env->aia_ireg_rmw_fn[PRV_S]( 2703 env->aia_ireg_rmw_fn_arg[PRV_S], 2704 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2705 riscv_cpu_mxl_bits(env)), 2706 &topei, 0, 0); 2707 if (!ret && topei) { 2708 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2709 } 2710 } 2711 scount++; 2712 } 2713 } else { 2714 if (hviid == IRQ_S_EXT && hviprio) { 2715 siid[scount] = IRQ_S_EXT; 2716 siprio[scount] = hviprio; 2717 scount++; 2718 } 2719 } 2720 2721 if (env->hvictl & HVICTL_VTI) { 2722 if (hviid != IRQ_S_EXT) { 2723 siid[scount] = hviid; 2724 siprio[scount] = hviprio; 2725 scount++; 2726 } 2727 } else { 2728 irq = riscv_cpu_vsirq_pending(env); 2729 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2730 siid[scount] = irq; 2731 siprio[scount] = env->hviprio[irq]; 2732 scount++; 2733 } 2734 } 2735 2736 iid = 0; 2737 iprio = UINT_MAX; 2738 for (s = 0; s < scount; s++) { 2739 if (siprio[s] < iprio) { 2740 iid = siid[s]; 2741 iprio = siprio[s]; 2742 } 2743 } 2744 2745 if (iid) { 2746 if (env->hvictl & HVICTL_IPRIOM) { 2747 if (iprio > IPRIO_MMAXIPRIO) { 2748 iprio = IPRIO_MMAXIPRIO; 2749 } 2750 if (!iprio) { 2751 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2752 iprio = IPRIO_MMAXIPRIO; 2753 } 2754 } 2755 } else { 2756 iprio = 1; 2757 } 2758 } else { 2759 iprio = 0; 2760 } 2761 2762 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2763 *val |= iprio; 2764 return RISCV_EXCP_NONE; 2765 } 2766 2767 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2768 { 2769 int irq; 2770 uint8_t iprio; 2771 2772 if (riscv_cpu_virt_enabled(env)) { 2773 return read_vstopi(env, CSR_VSTOPI, val); 2774 } 2775 2776 irq = riscv_cpu_sirq_pending(env); 2777 if (irq <= 0 || irq > 63) { 2778 *val = 0; 2779 } else { 2780 iprio = env->siprio[irq]; 2781 if (!iprio) { 2782 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2783 iprio = IPRIO_MMAXIPRIO; 2784 } 2785 } 2786 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2787 *val |= iprio; 2788 } 2789 2790 return RISCV_EXCP_NONE; 2791 } 2792 2793 /* Hypervisor Extensions */ 2794 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2795 target_ulong *val) 2796 { 2797 *val = env->hstatus; 2798 if (riscv_cpu_mxl(env) != MXL_RV32) { 2799 /* We only support 64-bit VSXL */ 2800 *val = set_field(*val, HSTATUS_VSXL, 2); 2801 } 2802 /* We only support little endian */ 2803 *val = set_field(*val, HSTATUS_VSBE, 0); 2804 return RISCV_EXCP_NONE; 2805 } 2806 2807 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2808 target_ulong val) 2809 { 2810 env->hstatus = val; 2811 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2812 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2813 } 2814 if (get_field(val, HSTATUS_VSBE) != 0) { 2815 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2816 } 2817 return RISCV_EXCP_NONE; 2818 } 2819 2820 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2821 target_ulong *val) 2822 { 2823 *val = env->hedeleg; 2824 return RISCV_EXCP_NONE; 2825 } 2826 2827 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2828 target_ulong val) 2829 { 2830 env->hedeleg = val & vs_delegable_excps; 2831 return RISCV_EXCP_NONE; 2832 } 2833 2834 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2835 uint64_t *ret_val, 2836 uint64_t new_val, uint64_t wr_mask) 2837 { 2838 uint64_t mask = wr_mask & vs_delegable_ints; 2839 2840 if (ret_val) { 2841 *ret_val = env->hideleg & vs_delegable_ints; 2842 } 2843 2844 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2845 return RISCV_EXCP_NONE; 2846 } 2847 2848 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2849 target_ulong *ret_val, 2850 target_ulong new_val, target_ulong wr_mask) 2851 { 2852 uint64_t rval; 2853 RISCVException ret; 2854 2855 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2856 if (ret_val) { 2857 *ret_val = rval; 2858 } 2859 2860 return ret; 2861 } 2862 2863 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2864 target_ulong *ret_val, 2865 target_ulong new_val, target_ulong wr_mask) 2866 { 2867 uint64_t rval; 2868 RISCVException ret; 2869 2870 ret = rmw_hideleg64(env, csrno, &rval, 2871 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2872 if (ret_val) { 2873 *ret_val = rval >> 32; 2874 } 2875 2876 return ret; 2877 } 2878 2879 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2880 uint64_t *ret_val, 2881 uint64_t new_val, uint64_t wr_mask) 2882 { 2883 RISCVException ret; 2884 2885 ret = rmw_mip64(env, csrno, ret_val, new_val, 2886 wr_mask & hvip_writable_mask); 2887 if (ret_val) { 2888 *ret_val &= VS_MODE_INTERRUPTS; 2889 } 2890 2891 return ret; 2892 } 2893 2894 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2895 target_ulong *ret_val, 2896 target_ulong new_val, target_ulong wr_mask) 2897 { 2898 uint64_t rval; 2899 RISCVException ret; 2900 2901 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2902 if (ret_val) { 2903 *ret_val = rval; 2904 } 2905 2906 return ret; 2907 } 2908 2909 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2910 target_ulong *ret_val, 2911 target_ulong new_val, target_ulong wr_mask) 2912 { 2913 uint64_t rval; 2914 RISCVException ret; 2915 2916 ret = rmw_hvip64(env, csrno, &rval, 2917 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2918 if (ret_val) { 2919 *ret_val = rval >> 32; 2920 } 2921 2922 return ret; 2923 } 2924 2925 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2926 target_ulong *ret_value, 2927 target_ulong new_value, target_ulong write_mask) 2928 { 2929 int ret = rmw_mip(env, csrno, ret_value, new_value, 2930 write_mask & hip_writable_mask); 2931 2932 if (ret_value) { 2933 *ret_value &= HS_MODE_INTERRUPTS; 2934 } 2935 return ret; 2936 } 2937 2938 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2939 target_ulong *ret_val, 2940 target_ulong new_val, target_ulong wr_mask) 2941 { 2942 uint64_t rval; 2943 RISCVException ret; 2944 2945 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2946 if (ret_val) { 2947 *ret_val = rval & HS_MODE_INTERRUPTS; 2948 } 2949 2950 return ret; 2951 } 2952 2953 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2954 target_ulong *val) 2955 { 2956 *val = env->hcounteren; 2957 return RISCV_EXCP_NONE; 2958 } 2959 2960 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2961 target_ulong val) 2962 { 2963 env->hcounteren = val; 2964 return RISCV_EXCP_NONE; 2965 } 2966 2967 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2968 target_ulong *val) 2969 { 2970 if (val) { 2971 *val = env->hgeie; 2972 } 2973 return RISCV_EXCP_NONE; 2974 } 2975 2976 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2977 target_ulong val) 2978 { 2979 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2980 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2981 env->hgeie = val; 2982 /* Update mip.SGEIP bit */ 2983 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2984 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2985 return RISCV_EXCP_NONE; 2986 } 2987 2988 static RISCVException read_htval(CPURISCVState *env, int csrno, 2989 target_ulong *val) 2990 { 2991 *val = env->htval; 2992 return RISCV_EXCP_NONE; 2993 } 2994 2995 static RISCVException write_htval(CPURISCVState *env, int csrno, 2996 target_ulong val) 2997 { 2998 env->htval = val; 2999 return RISCV_EXCP_NONE; 3000 } 3001 3002 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3003 target_ulong *val) 3004 { 3005 *val = env->htinst; 3006 return RISCV_EXCP_NONE; 3007 } 3008 3009 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3010 target_ulong val) 3011 { 3012 return RISCV_EXCP_NONE; 3013 } 3014 3015 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3016 target_ulong *val) 3017 { 3018 if (val) { 3019 *val = env->hgeip; 3020 } 3021 return RISCV_EXCP_NONE; 3022 } 3023 3024 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3025 target_ulong *val) 3026 { 3027 *val = env->hgatp; 3028 return RISCV_EXCP_NONE; 3029 } 3030 3031 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3032 target_ulong val) 3033 { 3034 env->hgatp = val; 3035 return RISCV_EXCP_NONE; 3036 } 3037 3038 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3039 target_ulong *val) 3040 { 3041 if (!env->rdtime_fn) { 3042 return RISCV_EXCP_ILLEGAL_INST; 3043 } 3044 3045 *val = env->htimedelta; 3046 return RISCV_EXCP_NONE; 3047 } 3048 3049 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3050 target_ulong val) 3051 { 3052 RISCVCPU *cpu = env_archcpu(env); 3053 3054 if (!env->rdtime_fn) { 3055 return RISCV_EXCP_ILLEGAL_INST; 3056 } 3057 3058 if (riscv_cpu_mxl(env) == MXL_RV32) { 3059 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3060 } else { 3061 env->htimedelta = val; 3062 } 3063 3064 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3065 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3066 env->htimedelta, MIP_VSTIP); 3067 } 3068 3069 return RISCV_EXCP_NONE; 3070 } 3071 3072 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3073 target_ulong *val) 3074 { 3075 if (!env->rdtime_fn) { 3076 return RISCV_EXCP_ILLEGAL_INST; 3077 } 3078 3079 *val = env->htimedelta >> 32; 3080 return RISCV_EXCP_NONE; 3081 } 3082 3083 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3084 target_ulong val) 3085 { 3086 RISCVCPU *cpu = env_archcpu(env); 3087 3088 if (!env->rdtime_fn) { 3089 return RISCV_EXCP_ILLEGAL_INST; 3090 } 3091 3092 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3093 3094 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3095 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3096 env->htimedelta, MIP_VSTIP); 3097 } 3098 3099 return RISCV_EXCP_NONE; 3100 } 3101 3102 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3103 { 3104 *val = env->hvictl; 3105 return RISCV_EXCP_NONE; 3106 } 3107 3108 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3109 { 3110 env->hvictl = val & HVICTL_VALID_MASK; 3111 return RISCV_EXCP_NONE; 3112 } 3113 3114 static int read_hvipriox(CPURISCVState *env, int first_index, 3115 uint8_t *iprio, target_ulong *val) 3116 { 3117 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3118 3119 /* First index has to be a multiple of number of irqs per register */ 3120 if (first_index % num_irqs) { 3121 return (riscv_cpu_virt_enabled(env)) ? 3122 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3123 } 3124 3125 /* Fill-up return value */ 3126 *val = 0; 3127 for (i = 0; i < num_irqs; i++) { 3128 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3129 continue; 3130 } 3131 if (rdzero) { 3132 continue; 3133 } 3134 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3135 } 3136 3137 return RISCV_EXCP_NONE; 3138 } 3139 3140 static int write_hvipriox(CPURISCVState *env, int first_index, 3141 uint8_t *iprio, target_ulong val) 3142 { 3143 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3144 3145 /* First index has to be a multiple of number of irqs per register */ 3146 if (first_index % num_irqs) { 3147 return (riscv_cpu_virt_enabled(env)) ? 3148 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3149 } 3150 3151 /* Fill-up priority arrary */ 3152 for (i = 0; i < num_irqs; i++) { 3153 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3154 continue; 3155 } 3156 if (rdzero) { 3157 iprio[irq] = 0; 3158 } else { 3159 iprio[irq] = (val >> (i * 8)) & 0xff; 3160 } 3161 } 3162 3163 return RISCV_EXCP_NONE; 3164 } 3165 3166 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3167 { 3168 return read_hvipriox(env, 0, env->hviprio, val); 3169 } 3170 3171 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3172 { 3173 return write_hvipriox(env, 0, env->hviprio, val); 3174 } 3175 3176 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3177 { 3178 return read_hvipriox(env, 4, env->hviprio, val); 3179 } 3180 3181 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3182 { 3183 return write_hvipriox(env, 4, env->hviprio, val); 3184 } 3185 3186 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3187 { 3188 return read_hvipriox(env, 8, env->hviprio, val); 3189 } 3190 3191 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3192 { 3193 return write_hvipriox(env, 8, env->hviprio, val); 3194 } 3195 3196 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3197 { 3198 return read_hvipriox(env, 12, env->hviprio, val); 3199 } 3200 3201 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3202 { 3203 return write_hvipriox(env, 12, env->hviprio, val); 3204 } 3205 3206 /* Virtual CSR Registers */ 3207 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3208 target_ulong *val) 3209 { 3210 *val = env->vsstatus; 3211 return RISCV_EXCP_NONE; 3212 } 3213 3214 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3215 target_ulong val) 3216 { 3217 uint64_t mask = (target_ulong)-1; 3218 if ((val & VSSTATUS64_UXL) == 0) { 3219 mask &= ~VSSTATUS64_UXL; 3220 } 3221 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3222 return RISCV_EXCP_NONE; 3223 } 3224 3225 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3226 { 3227 *val = env->vstvec; 3228 return RISCV_EXCP_NONE; 3229 } 3230 3231 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3232 target_ulong val) 3233 { 3234 env->vstvec = val; 3235 return RISCV_EXCP_NONE; 3236 } 3237 3238 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3239 target_ulong *val) 3240 { 3241 *val = env->vsscratch; 3242 return RISCV_EXCP_NONE; 3243 } 3244 3245 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3246 target_ulong val) 3247 { 3248 env->vsscratch = val; 3249 return RISCV_EXCP_NONE; 3250 } 3251 3252 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3253 target_ulong *val) 3254 { 3255 *val = env->vsepc; 3256 return RISCV_EXCP_NONE; 3257 } 3258 3259 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3260 target_ulong val) 3261 { 3262 env->vsepc = val; 3263 return RISCV_EXCP_NONE; 3264 } 3265 3266 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3267 target_ulong *val) 3268 { 3269 *val = env->vscause; 3270 return RISCV_EXCP_NONE; 3271 } 3272 3273 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3274 target_ulong val) 3275 { 3276 env->vscause = val; 3277 return RISCV_EXCP_NONE; 3278 } 3279 3280 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3281 target_ulong *val) 3282 { 3283 *val = env->vstval; 3284 return RISCV_EXCP_NONE; 3285 } 3286 3287 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3288 target_ulong val) 3289 { 3290 env->vstval = val; 3291 return RISCV_EXCP_NONE; 3292 } 3293 3294 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3295 target_ulong *val) 3296 { 3297 *val = env->vsatp; 3298 return RISCV_EXCP_NONE; 3299 } 3300 3301 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3302 target_ulong val) 3303 { 3304 env->vsatp = val; 3305 return RISCV_EXCP_NONE; 3306 } 3307 3308 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3309 target_ulong *val) 3310 { 3311 *val = env->mtval2; 3312 return RISCV_EXCP_NONE; 3313 } 3314 3315 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3316 target_ulong val) 3317 { 3318 env->mtval2 = val; 3319 return RISCV_EXCP_NONE; 3320 } 3321 3322 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3323 target_ulong *val) 3324 { 3325 *val = env->mtinst; 3326 return RISCV_EXCP_NONE; 3327 } 3328 3329 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3330 target_ulong val) 3331 { 3332 env->mtinst = val; 3333 return RISCV_EXCP_NONE; 3334 } 3335 3336 /* Physical Memory Protection */ 3337 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3338 target_ulong *val) 3339 { 3340 *val = mseccfg_csr_read(env); 3341 return RISCV_EXCP_NONE; 3342 } 3343 3344 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3345 target_ulong val) 3346 { 3347 mseccfg_csr_write(env, val); 3348 return RISCV_EXCP_NONE; 3349 } 3350 3351 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 3352 { 3353 /* TODO: RV128 restriction check */ 3354 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 3355 return false; 3356 } 3357 return true; 3358 } 3359 3360 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3361 target_ulong *val) 3362 { 3363 uint32_t reg_index = csrno - CSR_PMPCFG0; 3364 3365 if (!check_pmp_reg_index(env, reg_index)) { 3366 return RISCV_EXCP_ILLEGAL_INST; 3367 } 3368 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 3369 return RISCV_EXCP_NONE; 3370 } 3371 3372 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3373 target_ulong val) 3374 { 3375 uint32_t reg_index = csrno - CSR_PMPCFG0; 3376 3377 if (!check_pmp_reg_index(env, reg_index)) { 3378 return RISCV_EXCP_ILLEGAL_INST; 3379 } 3380 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 3381 return RISCV_EXCP_NONE; 3382 } 3383 3384 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3385 target_ulong *val) 3386 { 3387 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3388 return RISCV_EXCP_NONE; 3389 } 3390 3391 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3392 target_ulong val) 3393 { 3394 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3395 return RISCV_EXCP_NONE; 3396 } 3397 3398 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3399 target_ulong *val) 3400 { 3401 *val = tselect_csr_read(env); 3402 return RISCV_EXCP_NONE; 3403 } 3404 3405 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3406 target_ulong val) 3407 { 3408 tselect_csr_write(env, val); 3409 return RISCV_EXCP_NONE; 3410 } 3411 3412 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3413 target_ulong *val) 3414 { 3415 /* return 0 in tdata1 to end the trigger enumeration */ 3416 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3417 *val = 0; 3418 return RISCV_EXCP_NONE; 3419 } 3420 3421 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3422 return RISCV_EXCP_ILLEGAL_INST; 3423 } 3424 3425 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3426 return RISCV_EXCP_NONE; 3427 } 3428 3429 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3430 target_ulong val) 3431 { 3432 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3433 return RISCV_EXCP_ILLEGAL_INST; 3434 } 3435 3436 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3437 return RISCV_EXCP_NONE; 3438 } 3439 3440 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3441 target_ulong *val) 3442 { 3443 *val = tinfo_csr_read(env); 3444 return RISCV_EXCP_NONE; 3445 } 3446 3447 /* 3448 * Functions to access Pointer Masking feature registers 3449 * We have to check if current priv lvl could modify 3450 * csr in given mode 3451 */ 3452 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3453 { 3454 int csr_priv = get_field(csrno, 0x300); 3455 int pm_current; 3456 3457 if (env->debugger) { 3458 return false; 3459 } 3460 /* 3461 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3462 * so allow the access 3463 */ 3464 if (env->priv != csr_priv) { 3465 return false; 3466 } 3467 switch (env->priv) { 3468 case PRV_M: 3469 pm_current = get_field(env->mmte, M_PM_CURRENT); 3470 break; 3471 case PRV_S: 3472 pm_current = get_field(env->mmte, S_PM_CURRENT); 3473 break; 3474 case PRV_U: 3475 pm_current = get_field(env->mmte, U_PM_CURRENT); 3476 break; 3477 default: 3478 g_assert_not_reached(); 3479 } 3480 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3481 return !pm_current; 3482 } 3483 3484 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3485 target_ulong *val) 3486 { 3487 *val = env->mmte & MMTE_MASK; 3488 return RISCV_EXCP_NONE; 3489 } 3490 3491 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3492 target_ulong val) 3493 { 3494 uint64_t mstatus; 3495 target_ulong wpri_val = val & MMTE_MASK; 3496 3497 if (val != wpri_val) { 3498 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3499 "MMTE: WPRI violation written 0x", val, 3500 "vs expected 0x", wpri_val); 3501 } 3502 /* for machine mode pm.current is hardwired to 1 */ 3503 wpri_val |= MMTE_M_PM_CURRENT; 3504 3505 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3506 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3507 env->mmte = wpri_val | PM_EXT_DIRTY; 3508 riscv_cpu_update_mask(env); 3509 3510 /* Set XS and SD bits, since PM CSRs are dirty */ 3511 mstatus = env->mstatus | MSTATUS_XS; 3512 write_mstatus(env, csrno, mstatus); 3513 return RISCV_EXCP_NONE; 3514 } 3515 3516 static RISCVException read_smte(CPURISCVState *env, int csrno, 3517 target_ulong *val) 3518 { 3519 *val = env->mmte & SMTE_MASK; 3520 return RISCV_EXCP_NONE; 3521 } 3522 3523 static RISCVException write_smte(CPURISCVState *env, int csrno, 3524 target_ulong val) 3525 { 3526 target_ulong wpri_val = val & SMTE_MASK; 3527 3528 if (val != wpri_val) { 3529 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3530 "SMTE: WPRI violation written 0x", val, 3531 "vs expected 0x", wpri_val); 3532 } 3533 3534 /* if pm.current==0 we can't modify current PM CSRs */ 3535 if (check_pm_current_disabled(env, csrno)) { 3536 return RISCV_EXCP_NONE; 3537 } 3538 3539 wpri_val |= (env->mmte & ~SMTE_MASK); 3540 write_mmte(env, csrno, wpri_val); 3541 return RISCV_EXCP_NONE; 3542 } 3543 3544 static RISCVException read_umte(CPURISCVState *env, int csrno, 3545 target_ulong *val) 3546 { 3547 *val = env->mmte & UMTE_MASK; 3548 return RISCV_EXCP_NONE; 3549 } 3550 3551 static RISCVException write_umte(CPURISCVState *env, int csrno, 3552 target_ulong val) 3553 { 3554 target_ulong wpri_val = val & UMTE_MASK; 3555 3556 if (val != wpri_val) { 3557 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3558 "UMTE: WPRI violation written 0x", val, 3559 "vs expected 0x", wpri_val); 3560 } 3561 3562 if (check_pm_current_disabled(env, csrno)) { 3563 return RISCV_EXCP_NONE; 3564 } 3565 3566 wpri_val |= (env->mmte & ~UMTE_MASK); 3567 write_mmte(env, csrno, wpri_val); 3568 return RISCV_EXCP_NONE; 3569 } 3570 3571 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3572 target_ulong *val) 3573 { 3574 *val = env->mpmmask; 3575 return RISCV_EXCP_NONE; 3576 } 3577 3578 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3579 target_ulong val) 3580 { 3581 uint64_t mstatus; 3582 3583 env->mpmmask = val; 3584 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3585 env->cur_pmmask = val; 3586 } 3587 env->mmte |= PM_EXT_DIRTY; 3588 3589 /* Set XS and SD bits, since PM CSRs are dirty */ 3590 mstatus = env->mstatus | MSTATUS_XS; 3591 write_mstatus(env, csrno, mstatus); 3592 return RISCV_EXCP_NONE; 3593 } 3594 3595 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3596 target_ulong *val) 3597 { 3598 *val = env->spmmask; 3599 return RISCV_EXCP_NONE; 3600 } 3601 3602 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3603 target_ulong val) 3604 { 3605 uint64_t mstatus; 3606 3607 /* if pm.current==0 we can't modify current PM CSRs */ 3608 if (check_pm_current_disabled(env, csrno)) { 3609 return RISCV_EXCP_NONE; 3610 } 3611 env->spmmask = val; 3612 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3613 env->cur_pmmask = val; 3614 } 3615 env->mmte |= PM_EXT_DIRTY; 3616 3617 /* Set XS and SD bits, since PM CSRs are dirty */ 3618 mstatus = env->mstatus | MSTATUS_XS; 3619 write_mstatus(env, csrno, mstatus); 3620 return RISCV_EXCP_NONE; 3621 } 3622 3623 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3624 target_ulong *val) 3625 { 3626 *val = env->upmmask; 3627 return RISCV_EXCP_NONE; 3628 } 3629 3630 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3631 target_ulong val) 3632 { 3633 uint64_t mstatus; 3634 3635 /* if pm.current==0 we can't modify current PM CSRs */ 3636 if (check_pm_current_disabled(env, csrno)) { 3637 return RISCV_EXCP_NONE; 3638 } 3639 env->upmmask = val; 3640 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3641 env->cur_pmmask = val; 3642 } 3643 env->mmte |= PM_EXT_DIRTY; 3644 3645 /* Set XS and SD bits, since PM CSRs are dirty */ 3646 mstatus = env->mstatus | MSTATUS_XS; 3647 write_mstatus(env, csrno, mstatus); 3648 return RISCV_EXCP_NONE; 3649 } 3650 3651 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3652 target_ulong *val) 3653 { 3654 *val = env->mpmbase; 3655 return RISCV_EXCP_NONE; 3656 } 3657 3658 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3659 target_ulong val) 3660 { 3661 uint64_t mstatus; 3662 3663 env->mpmbase = val; 3664 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3665 env->cur_pmbase = val; 3666 } 3667 env->mmte |= PM_EXT_DIRTY; 3668 3669 /* Set XS and SD bits, since PM CSRs are dirty */ 3670 mstatus = env->mstatus | MSTATUS_XS; 3671 write_mstatus(env, csrno, mstatus); 3672 return RISCV_EXCP_NONE; 3673 } 3674 3675 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3676 target_ulong *val) 3677 { 3678 *val = env->spmbase; 3679 return RISCV_EXCP_NONE; 3680 } 3681 3682 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3683 target_ulong val) 3684 { 3685 uint64_t mstatus; 3686 3687 /* if pm.current==0 we can't modify current PM CSRs */ 3688 if (check_pm_current_disabled(env, csrno)) { 3689 return RISCV_EXCP_NONE; 3690 } 3691 env->spmbase = val; 3692 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3693 env->cur_pmbase = val; 3694 } 3695 env->mmte |= PM_EXT_DIRTY; 3696 3697 /* Set XS and SD bits, since PM CSRs are dirty */ 3698 mstatus = env->mstatus | MSTATUS_XS; 3699 write_mstatus(env, csrno, mstatus); 3700 return RISCV_EXCP_NONE; 3701 } 3702 3703 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3704 target_ulong *val) 3705 { 3706 *val = env->upmbase; 3707 return RISCV_EXCP_NONE; 3708 } 3709 3710 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3711 target_ulong val) 3712 { 3713 uint64_t mstatus; 3714 3715 /* if pm.current==0 we can't modify current PM CSRs */ 3716 if (check_pm_current_disabled(env, csrno)) { 3717 return RISCV_EXCP_NONE; 3718 } 3719 env->upmbase = val; 3720 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3721 env->cur_pmbase = val; 3722 } 3723 env->mmte |= PM_EXT_DIRTY; 3724 3725 /* Set XS and SD bits, since PM CSRs are dirty */ 3726 mstatus = env->mstatus | MSTATUS_XS; 3727 write_mstatus(env, csrno, mstatus); 3728 return RISCV_EXCP_NONE; 3729 } 3730 3731 #endif 3732 3733 /* Crypto Extension */ 3734 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3735 target_ulong *ret_value, 3736 target_ulong new_value, 3737 target_ulong write_mask) 3738 { 3739 uint16_t random_v; 3740 Error *random_e = NULL; 3741 int random_r; 3742 target_ulong rval; 3743 3744 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3745 if (unlikely(random_r < 0)) { 3746 /* 3747 * Failed, for unknown reasons in the crypto subsystem. 3748 * The best we can do is log the reason and return a 3749 * failure indication to the guest. There is no reason 3750 * we know to expect the failure to be transitory, so 3751 * indicate DEAD to avoid having the guest spin on WAIT. 3752 */ 3753 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3754 __func__, error_get_pretty(random_e)); 3755 error_free(random_e); 3756 rval = SEED_OPST_DEAD; 3757 } else { 3758 rval = random_v | SEED_OPST_ES16; 3759 } 3760 3761 if (ret_value) { 3762 *ret_value = rval; 3763 } 3764 3765 return RISCV_EXCP_NONE; 3766 } 3767 3768 /* 3769 * riscv_csrrw - read and/or update control and status register 3770 * 3771 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3772 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3773 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3774 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3775 */ 3776 3777 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3778 int csrno, 3779 bool write_mask, 3780 RISCVCPU *cpu) 3781 { 3782 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3783 int read_only = get_field(csrno, 0xC00) == 3; 3784 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3785 3786 /* ensure the CSR extension is enabled. */ 3787 if (!cpu->cfg.ext_icsr) { 3788 return RISCV_EXCP_ILLEGAL_INST; 3789 } 3790 3791 if (env->priv_ver < csr_min_priv) { 3792 return RISCV_EXCP_ILLEGAL_INST; 3793 } 3794 3795 /* check predicate */ 3796 if (!csr_ops[csrno].predicate) { 3797 return RISCV_EXCP_ILLEGAL_INST; 3798 } 3799 3800 if (write_mask && read_only) { 3801 return RISCV_EXCP_ILLEGAL_INST; 3802 } 3803 3804 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3805 if (ret != RISCV_EXCP_NONE) { 3806 return ret; 3807 } 3808 3809 #if !defined(CONFIG_USER_ONLY) 3810 int csr_priv, effective_priv = env->priv; 3811 3812 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3813 !riscv_cpu_virt_enabled(env)) { 3814 /* 3815 * We are in HS mode. Add 1 to the effective privledge level to 3816 * allow us to access the Hypervisor CSRs. 3817 */ 3818 effective_priv++; 3819 } 3820 3821 csr_priv = get_field(csrno, 0x300); 3822 if (!env->debugger && (effective_priv < csr_priv)) { 3823 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3824 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3825 } 3826 return RISCV_EXCP_ILLEGAL_INST; 3827 } 3828 #endif 3829 return RISCV_EXCP_NONE; 3830 } 3831 3832 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3833 target_ulong *ret_value, 3834 target_ulong new_value, 3835 target_ulong write_mask) 3836 { 3837 RISCVException ret; 3838 target_ulong old_value; 3839 3840 /* execute combined read/write operation if it exists */ 3841 if (csr_ops[csrno].op) { 3842 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3843 } 3844 3845 /* if no accessor exists then return failure */ 3846 if (!csr_ops[csrno].read) { 3847 return RISCV_EXCP_ILLEGAL_INST; 3848 } 3849 /* read old value */ 3850 ret = csr_ops[csrno].read(env, csrno, &old_value); 3851 if (ret != RISCV_EXCP_NONE) { 3852 return ret; 3853 } 3854 3855 /* write value if writable and write mask set, otherwise drop writes */ 3856 if (write_mask) { 3857 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3858 if (csr_ops[csrno].write) { 3859 ret = csr_ops[csrno].write(env, csrno, new_value); 3860 if (ret != RISCV_EXCP_NONE) { 3861 return ret; 3862 } 3863 } 3864 } 3865 3866 /* return old value */ 3867 if (ret_value) { 3868 *ret_value = old_value; 3869 } 3870 3871 return RISCV_EXCP_NONE; 3872 } 3873 3874 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3875 target_ulong *ret_value, 3876 target_ulong new_value, target_ulong write_mask) 3877 { 3878 RISCVCPU *cpu = env_archcpu(env); 3879 3880 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3881 if (ret != RISCV_EXCP_NONE) { 3882 return ret; 3883 } 3884 3885 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3886 } 3887 3888 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3889 Int128 *ret_value, 3890 Int128 new_value, 3891 Int128 write_mask) 3892 { 3893 RISCVException ret; 3894 Int128 old_value; 3895 3896 /* read old value */ 3897 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3898 if (ret != RISCV_EXCP_NONE) { 3899 return ret; 3900 } 3901 3902 /* write value if writable and write mask set, otherwise drop writes */ 3903 if (int128_nz(write_mask)) { 3904 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3905 int128_and(new_value, write_mask)); 3906 if (csr_ops[csrno].write128) { 3907 ret = csr_ops[csrno].write128(env, csrno, new_value); 3908 if (ret != RISCV_EXCP_NONE) { 3909 return ret; 3910 } 3911 } else if (csr_ops[csrno].write) { 3912 /* avoids having to write wrappers for all registers */ 3913 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3914 if (ret != RISCV_EXCP_NONE) { 3915 return ret; 3916 } 3917 } 3918 } 3919 3920 /* return old value */ 3921 if (ret_value) { 3922 *ret_value = old_value; 3923 } 3924 3925 return RISCV_EXCP_NONE; 3926 } 3927 3928 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3929 Int128 *ret_value, 3930 Int128 new_value, Int128 write_mask) 3931 { 3932 RISCVException ret; 3933 RISCVCPU *cpu = env_archcpu(env); 3934 3935 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3936 if (ret != RISCV_EXCP_NONE) { 3937 return ret; 3938 } 3939 3940 if (csr_ops[csrno].read128) { 3941 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3942 } 3943 3944 /* 3945 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3946 * at all defined. 3947 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3948 * significant), for those, this fallback is correctly handling the accesses 3949 */ 3950 target_ulong old_value; 3951 ret = riscv_csrrw_do64(env, csrno, &old_value, 3952 int128_getlo(new_value), 3953 int128_getlo(write_mask)); 3954 if (ret == RISCV_EXCP_NONE && ret_value) { 3955 *ret_value = int128_make64(old_value); 3956 } 3957 return ret; 3958 } 3959 3960 /* 3961 * Debugger support. If not in user mode, set env->debugger before the 3962 * riscv_csrrw call and clear it after the call. 3963 */ 3964 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3965 target_ulong *ret_value, 3966 target_ulong new_value, 3967 target_ulong write_mask) 3968 { 3969 RISCVException ret; 3970 #if !defined(CONFIG_USER_ONLY) 3971 env->debugger = true; 3972 #endif 3973 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3974 #if !defined(CONFIG_USER_ONLY) 3975 env->debugger = false; 3976 #endif 3977 return ret; 3978 } 3979 3980 /* Control and Status Register function table */ 3981 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3982 /* User Floating-Point CSRs */ 3983 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3984 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3985 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3986 /* Vector CSRs */ 3987 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 3988 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 3989 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 3990 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 3991 [CSR_VL] = { "vl", vs, read_vl }, 3992 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 3993 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 3994 /* User Timers and Counters */ 3995 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 3996 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 3997 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 3998 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 3999 4000 /* 4001 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4002 * rdtime callback is not provided by machine/platform emulation. 4003 */ 4004 [CSR_TIME] = { "time", ctr, read_time }, 4005 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4006 4007 /* Crypto Extension */ 4008 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4009 4010 #if !defined(CONFIG_USER_ONLY) 4011 /* Machine Timers and Counters */ 4012 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4013 write_mhpmcounter }, 4014 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4015 write_mhpmcounter }, 4016 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4017 write_mhpmcounterh }, 4018 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4019 write_mhpmcounterh }, 4020 4021 /* Machine Information Registers */ 4022 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4023 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4024 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4025 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4026 4027 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4028 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4029 /* Machine Trap Setup */ 4030 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4031 NULL, read_mstatus_i128 }, 4032 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4033 NULL, read_misa_i128 }, 4034 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4035 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4036 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4037 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4038 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4039 write_mcounteren }, 4040 4041 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4042 write_mstatush }, 4043 4044 /* Machine Trap Handling */ 4045 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4046 NULL, read_mscratch_i128, write_mscratch_i128 }, 4047 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4048 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4049 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4050 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4051 4052 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4053 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4054 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4055 4056 /* Machine-Level Interrupts (AIA) */ 4057 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4058 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4059 4060 /* Virtual Interrupts for Supervisor Level (AIA) */ 4061 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4062 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4063 4064 /* Machine-Level High-Half CSRs (AIA) */ 4065 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4066 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4067 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4068 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4069 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4070 4071 /* Execution environment configuration */ 4072 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4073 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4074 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4075 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4076 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4077 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4078 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4079 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4080 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4081 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4082 4083 /* Smstateen extension CSRs */ 4084 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4085 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4086 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4087 write_mstateen0h, 4088 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4089 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4090 write_mstateen_1_3, 4091 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4092 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4093 write_mstateenh_1_3, 4094 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4095 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4096 write_mstateen_1_3, 4097 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4098 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4099 write_mstateenh_1_3, 4100 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4101 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4102 write_mstateen_1_3, 4103 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4104 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4105 write_mstateenh_1_3, 4106 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4107 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4108 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4109 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4110 write_hstateen0h, 4111 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4112 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4113 write_hstateen_1_3, 4114 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4115 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4116 write_hstateenh_1_3, 4117 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4118 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4119 write_hstateen_1_3, 4120 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4121 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4122 write_hstateenh_1_3, 4123 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4124 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4125 write_hstateen_1_3, 4126 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4127 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4128 write_hstateenh_1_3, 4129 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4130 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4131 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4132 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4133 write_sstateen_1_3, 4134 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4135 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4136 write_sstateen_1_3, 4137 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4138 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4139 write_sstateen_1_3, 4140 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4141 4142 /* Supervisor Trap Setup */ 4143 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4144 NULL, read_sstatus_i128 }, 4145 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4146 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4147 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4148 write_scounteren }, 4149 4150 /* Supervisor Trap Handling */ 4151 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4152 NULL, read_sscratch_i128, write_sscratch_i128 }, 4153 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4154 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4155 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4156 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4157 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4158 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4159 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4160 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4161 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4162 write_vstimecmp, 4163 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4164 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4165 write_vstimecmph, 4166 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4167 4168 /* Supervisor Protection and Translation */ 4169 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 4170 4171 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4172 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4173 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4174 4175 /* Supervisor-Level Interrupts (AIA) */ 4176 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4177 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4178 4179 /* Supervisor-Level High-Half CSRs (AIA) */ 4180 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4181 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4182 4183 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4184 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4185 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4186 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4187 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4188 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4189 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4190 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4191 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4192 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4193 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4194 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4195 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4196 write_hcounteren, 4197 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4198 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4199 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4200 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4201 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4202 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4203 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4204 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4205 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4206 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 4207 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4208 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4209 write_htimedelta, 4210 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4211 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4212 write_htimedeltah, 4213 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4214 4215 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4216 write_vsstatus, 4217 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4218 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4219 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4220 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4221 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4222 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4223 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4224 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4225 write_vsscratch, 4226 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4227 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4228 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4229 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4230 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4231 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4232 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4233 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4234 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4235 4236 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4237 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4238 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4239 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4240 4241 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4242 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4243 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4244 write_hvictl }, 4245 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4246 write_hviprio1 }, 4247 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4248 write_hviprio2 }, 4249 4250 /* 4251 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4252 */ 4253 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4254 rmw_xiselect }, 4255 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4256 4257 /* VS-Level Interrupts (H-extension with AIA) */ 4258 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4259 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4260 4261 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4262 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4263 rmw_hidelegh }, 4264 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4265 write_ignore }, 4266 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4267 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4268 write_hviprio1h }, 4269 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4270 write_hviprio2h }, 4271 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4272 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4273 4274 /* Physical Memory Protection */ 4275 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4276 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4277 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4278 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4279 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4280 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4281 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4282 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4283 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4284 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4285 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4286 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4287 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4288 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4289 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4290 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4291 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4292 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4293 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4294 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4295 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4296 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4297 4298 /* Debug CSRs */ 4299 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4300 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4301 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4302 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4303 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4304 4305 /* User Pointer Masking */ 4306 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4307 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4308 write_upmmask }, 4309 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4310 write_upmbase }, 4311 /* Machine Pointer Masking */ 4312 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4313 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4314 write_mpmmask }, 4315 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4316 write_mpmbase }, 4317 /* Supervisor Pointer Masking */ 4318 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4319 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4320 write_spmmask }, 4321 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4322 write_spmbase }, 4323 4324 /* Performance Counters */ 4325 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4326 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4327 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4328 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4329 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4330 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4331 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4332 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4333 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4334 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4335 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4336 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4337 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4338 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4339 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4340 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4341 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4342 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4343 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4344 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4345 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4346 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4347 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4348 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4349 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4350 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4351 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4352 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4353 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4354 4355 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4356 write_mhpmcounter }, 4357 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4358 write_mhpmcounter }, 4359 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4360 write_mhpmcounter }, 4361 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4362 write_mhpmcounter }, 4363 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4364 write_mhpmcounter }, 4365 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4366 write_mhpmcounter }, 4367 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4368 write_mhpmcounter }, 4369 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4370 write_mhpmcounter }, 4371 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4372 write_mhpmcounter }, 4373 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4374 write_mhpmcounter }, 4375 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4376 write_mhpmcounter }, 4377 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4378 write_mhpmcounter }, 4379 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4380 write_mhpmcounter }, 4381 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4382 write_mhpmcounter }, 4383 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4384 write_mhpmcounter }, 4385 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4386 write_mhpmcounter }, 4387 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4388 write_mhpmcounter }, 4389 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4390 write_mhpmcounter }, 4391 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4392 write_mhpmcounter }, 4393 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4394 write_mhpmcounter }, 4395 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4396 write_mhpmcounter }, 4397 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4398 write_mhpmcounter }, 4399 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4400 write_mhpmcounter }, 4401 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4402 write_mhpmcounter }, 4403 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4404 write_mhpmcounter }, 4405 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4406 write_mhpmcounter }, 4407 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4408 write_mhpmcounter }, 4409 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4410 write_mhpmcounter }, 4411 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4412 write_mhpmcounter }, 4413 4414 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4415 write_mcountinhibit, 4416 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4417 4418 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4419 write_mhpmevent }, 4420 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4421 write_mhpmevent }, 4422 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4423 write_mhpmevent }, 4424 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4425 write_mhpmevent }, 4426 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4427 write_mhpmevent }, 4428 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4429 write_mhpmevent }, 4430 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4431 write_mhpmevent }, 4432 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4433 write_mhpmevent }, 4434 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4435 write_mhpmevent }, 4436 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4437 write_mhpmevent }, 4438 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4439 write_mhpmevent }, 4440 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4441 write_mhpmevent }, 4442 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4443 write_mhpmevent }, 4444 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4445 write_mhpmevent }, 4446 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4447 write_mhpmevent }, 4448 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4449 write_mhpmevent }, 4450 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4451 write_mhpmevent }, 4452 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4453 write_mhpmevent }, 4454 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4455 write_mhpmevent }, 4456 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4457 write_mhpmevent }, 4458 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4459 write_mhpmevent }, 4460 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4461 write_mhpmevent }, 4462 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4463 write_mhpmevent }, 4464 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4465 write_mhpmevent }, 4466 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4467 write_mhpmevent }, 4468 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4469 write_mhpmevent }, 4470 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4471 write_mhpmevent }, 4472 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4473 write_mhpmevent }, 4474 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4475 write_mhpmevent }, 4476 4477 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4478 write_mhpmeventh, 4479 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4480 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4481 write_mhpmeventh, 4482 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4483 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4484 write_mhpmeventh, 4485 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4486 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4487 write_mhpmeventh, 4488 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4489 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4490 write_mhpmeventh, 4491 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4492 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4493 write_mhpmeventh, 4494 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4495 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4496 write_mhpmeventh, 4497 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4498 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4499 write_mhpmeventh, 4500 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4501 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4502 write_mhpmeventh, 4503 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4504 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4505 write_mhpmeventh, 4506 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4507 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4508 write_mhpmeventh, 4509 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4510 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4511 write_mhpmeventh, 4512 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4513 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4514 write_mhpmeventh, 4515 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4516 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4517 write_mhpmeventh, 4518 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4519 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4520 write_mhpmeventh, 4521 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4522 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4523 write_mhpmeventh, 4524 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4525 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4526 write_mhpmeventh, 4527 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4528 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4529 write_mhpmeventh, 4530 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4531 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4532 write_mhpmeventh, 4533 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4534 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4535 write_mhpmeventh, 4536 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4537 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4538 write_mhpmeventh, 4539 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4540 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4541 write_mhpmeventh, 4542 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4543 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4544 write_mhpmeventh, 4545 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4546 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4547 write_mhpmeventh, 4548 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4549 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4550 write_mhpmeventh, 4551 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4552 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4553 write_mhpmeventh, 4554 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4555 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4556 write_mhpmeventh, 4557 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4558 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4559 write_mhpmeventh, 4560 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4561 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4562 write_mhpmeventh, 4563 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4564 4565 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4566 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4567 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4568 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4569 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4570 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4571 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4572 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4573 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4574 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4575 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4576 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4577 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4578 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4579 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4580 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4581 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4582 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4583 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4584 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4585 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4586 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4587 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4588 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4589 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4590 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4591 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4592 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4593 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4594 4595 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4596 write_mhpmcounterh }, 4597 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4598 write_mhpmcounterh }, 4599 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4600 write_mhpmcounterh }, 4601 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4602 write_mhpmcounterh }, 4603 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4604 write_mhpmcounterh }, 4605 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4606 write_mhpmcounterh }, 4607 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4608 write_mhpmcounterh }, 4609 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4610 write_mhpmcounterh }, 4611 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4612 write_mhpmcounterh }, 4613 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4614 write_mhpmcounterh }, 4615 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4616 write_mhpmcounterh }, 4617 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4618 write_mhpmcounterh }, 4619 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4620 write_mhpmcounterh }, 4621 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4622 write_mhpmcounterh }, 4623 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4624 write_mhpmcounterh }, 4625 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4626 write_mhpmcounterh }, 4627 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4628 write_mhpmcounterh }, 4629 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4630 write_mhpmcounterh }, 4631 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4632 write_mhpmcounterh }, 4633 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4634 write_mhpmcounterh }, 4635 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4636 write_mhpmcounterh }, 4637 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4638 write_mhpmcounterh }, 4639 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4640 write_mhpmcounterh }, 4641 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4642 write_mhpmcounterh }, 4643 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4644 write_mhpmcounterh }, 4645 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4646 write_mhpmcounterh }, 4647 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4648 write_mhpmcounterh }, 4649 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4650 write_mhpmcounterh }, 4651 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4652 write_mhpmcounterh }, 4653 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4654 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4655 4656 #endif /* !CONFIG_USER_ONLY */ 4657 }; 4658