1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "sysemu/cpu-timers.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 32 /* CSR function table public API */ 33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 34 { 35 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 36 } 37 38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 41 } 42 43 /* Predicates */ 44 #if !defined(CONFIG_USER_ONLY) 45 static RISCVException smstateen_acc_ok(CPURISCVState *env, int index, 46 uint64_t bit) 47 { 48 bool virt = riscv_cpu_virt_enabled(env); 49 CPUState *cs = env_cpu(env); 50 RISCVCPU *cpu = RISCV_CPU(cs); 51 52 if (env->priv == PRV_M || !cpu->cfg.ext_smstateen) { 53 return RISCV_EXCP_NONE; 54 } 55 56 if (!(env->mstateen[index] & bit)) { 57 return RISCV_EXCP_ILLEGAL_INST; 58 } 59 60 if (virt) { 61 if (!(env->hstateen[index] & bit)) { 62 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 63 } 64 65 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 66 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 67 } 68 } 69 70 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 71 if (!(env->sstateen[index] & bit)) { 72 return RISCV_EXCP_ILLEGAL_INST; 73 } 74 } 75 76 return RISCV_EXCP_NONE; 77 } 78 #endif 79 80 static RISCVException fs(CPURISCVState *env, int csrno) 81 { 82 #if !defined(CONFIG_USER_ONLY) 83 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 84 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 85 return RISCV_EXCP_ILLEGAL_INST; 86 } 87 #endif 88 return RISCV_EXCP_NONE; 89 } 90 91 static RISCVException vs(CPURISCVState *env, int csrno) 92 { 93 CPUState *cs = env_cpu(env); 94 RISCVCPU *cpu = RISCV_CPU(cs); 95 96 if (env->misa_ext & RVV || 97 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 98 #if !defined(CONFIG_USER_ONLY) 99 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 100 return RISCV_EXCP_ILLEGAL_INST; 101 } 102 #endif 103 return RISCV_EXCP_NONE; 104 } 105 return RISCV_EXCP_ILLEGAL_INST; 106 } 107 108 static RISCVException ctr(CPURISCVState *env, int csrno) 109 { 110 #if !defined(CONFIG_USER_ONLY) 111 CPUState *cs = env_cpu(env); 112 RISCVCPU *cpu = RISCV_CPU(cs); 113 int ctr_index; 114 target_ulong ctr_mask; 115 int base_csrno = CSR_CYCLE; 116 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 117 118 if (rv32 && csrno >= CSR_CYCLEH) { 119 /* Offset for RV32 hpmcounternh counters */ 120 base_csrno += 0x80; 121 } 122 ctr_index = csrno - base_csrno; 123 ctr_mask = BIT(ctr_index); 124 125 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 126 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 127 goto skip_ext_pmu_check; 128 } 129 130 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 131 /* No counter is enabled in PMU or the counter is out of range */ 132 return RISCV_EXCP_ILLEGAL_INST; 133 } 134 135 skip_ext_pmu_check: 136 137 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 138 return RISCV_EXCP_ILLEGAL_INST; 139 } 140 141 if (riscv_cpu_virt_enabled(env)) { 142 if (!get_field(env->hcounteren, ctr_mask) || 143 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 144 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 145 } 146 } 147 148 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 149 !get_field(env->scounteren, ctr_mask)) { 150 return RISCV_EXCP_ILLEGAL_INST; 151 } 152 153 #endif 154 return RISCV_EXCP_NONE; 155 } 156 157 static RISCVException ctr32(CPURISCVState *env, int csrno) 158 { 159 if (riscv_cpu_mxl(env) != MXL_RV32) { 160 return RISCV_EXCP_ILLEGAL_INST; 161 } 162 163 return ctr(env, csrno); 164 } 165 166 #if !defined(CONFIG_USER_ONLY) 167 static RISCVException mctr(CPURISCVState *env, int csrno) 168 { 169 CPUState *cs = env_cpu(env); 170 RISCVCPU *cpu = RISCV_CPU(cs); 171 int ctr_index; 172 int base_csrno = CSR_MHPMCOUNTER3; 173 174 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 175 /* Offset for RV32 mhpmcounternh counters */ 176 base_csrno += 0x80; 177 } 178 ctr_index = csrno - base_csrno; 179 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 180 /* The PMU is not enabled or counter is out of range*/ 181 return RISCV_EXCP_ILLEGAL_INST; 182 } 183 184 return RISCV_EXCP_NONE; 185 } 186 187 static RISCVException mctr32(CPURISCVState *env, int csrno) 188 { 189 if (riscv_cpu_mxl(env) != MXL_RV32) { 190 return RISCV_EXCP_ILLEGAL_INST; 191 } 192 193 return mctr(env, csrno); 194 } 195 196 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 197 { 198 CPUState *cs = env_cpu(env); 199 RISCVCPU *cpu = RISCV_CPU(cs); 200 201 if (!cpu->cfg.ext_sscofpmf) { 202 return RISCV_EXCP_ILLEGAL_INST; 203 } 204 205 return RISCV_EXCP_NONE; 206 } 207 208 static RISCVException any(CPURISCVState *env, int csrno) 209 { 210 return RISCV_EXCP_NONE; 211 } 212 213 static RISCVException any32(CPURISCVState *env, int csrno) 214 { 215 if (riscv_cpu_mxl(env) != MXL_RV32) { 216 return RISCV_EXCP_ILLEGAL_INST; 217 } 218 219 return any(env, csrno); 220 221 } 222 223 static int aia_any(CPURISCVState *env, int csrno) 224 { 225 RISCVCPU *cpu = env_archcpu(env); 226 227 if (!cpu->cfg.ext_smaia) { 228 return RISCV_EXCP_ILLEGAL_INST; 229 } 230 231 return any(env, csrno); 232 } 233 234 static int aia_any32(CPURISCVState *env, int csrno) 235 { 236 RISCVCPU *cpu = env_archcpu(env); 237 238 if (!cpu->cfg.ext_smaia) { 239 return RISCV_EXCP_ILLEGAL_INST; 240 } 241 242 return any32(env, csrno); 243 } 244 245 static RISCVException smode(CPURISCVState *env, int csrno) 246 { 247 if (riscv_has_ext(env, RVS)) { 248 return RISCV_EXCP_NONE; 249 } 250 251 return RISCV_EXCP_ILLEGAL_INST; 252 } 253 254 static int smode32(CPURISCVState *env, int csrno) 255 { 256 if (riscv_cpu_mxl(env) != MXL_RV32) { 257 return RISCV_EXCP_ILLEGAL_INST; 258 } 259 260 return smode(env, csrno); 261 } 262 263 static int aia_smode(CPURISCVState *env, int csrno) 264 { 265 RISCVCPU *cpu = env_archcpu(env); 266 267 if (!cpu->cfg.ext_ssaia) { 268 return RISCV_EXCP_ILLEGAL_INST; 269 } 270 271 return smode(env, csrno); 272 } 273 274 static int aia_smode32(CPURISCVState *env, int csrno) 275 { 276 RISCVCPU *cpu = env_archcpu(env); 277 278 if (!cpu->cfg.ext_ssaia) { 279 return RISCV_EXCP_ILLEGAL_INST; 280 } 281 282 return smode32(env, csrno); 283 } 284 285 static RISCVException hmode(CPURISCVState *env, int csrno) 286 { 287 if (riscv_has_ext(env, RVH)) { 288 return RISCV_EXCP_NONE; 289 } 290 291 return RISCV_EXCP_ILLEGAL_INST; 292 } 293 294 static RISCVException hmode32(CPURISCVState *env, int csrno) 295 { 296 if (riscv_cpu_mxl(env) != MXL_RV32) { 297 return RISCV_EXCP_ILLEGAL_INST; 298 } 299 300 return hmode(env, csrno); 301 302 } 303 304 static RISCVException umode(CPURISCVState *env, int csrno) 305 { 306 if (riscv_has_ext(env, RVU)) { 307 return RISCV_EXCP_NONE; 308 } 309 310 return RISCV_EXCP_ILLEGAL_INST; 311 } 312 313 static RISCVException umode32(CPURISCVState *env, int csrno) 314 { 315 if (riscv_cpu_mxl(env) != MXL_RV32) { 316 return RISCV_EXCP_ILLEGAL_INST; 317 } 318 319 return umode(env, csrno); 320 } 321 322 static RISCVException mstateen(CPURISCVState *env, int csrno) 323 { 324 CPUState *cs = env_cpu(env); 325 RISCVCPU *cpu = RISCV_CPU(cs); 326 327 if (!cpu->cfg.ext_smstateen) { 328 return RISCV_EXCP_ILLEGAL_INST; 329 } 330 331 return any(env, csrno); 332 } 333 334 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 335 { 336 CPUState *cs = env_cpu(env); 337 RISCVCPU *cpu = RISCV_CPU(cs); 338 339 if (!cpu->cfg.ext_smstateen) { 340 return RISCV_EXCP_ILLEGAL_INST; 341 } 342 343 if (env->priv < PRV_M) { 344 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 345 return RISCV_EXCP_ILLEGAL_INST; 346 } 347 } 348 349 return hmode(env, csrno); 350 } 351 352 static RISCVException hstateen(CPURISCVState *env, int csrno) 353 { 354 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 355 } 356 357 static RISCVException hstateenh(CPURISCVState *env, int csrno) 358 { 359 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 360 } 361 362 static RISCVException sstateen(CPURISCVState *env, int csrno) 363 { 364 bool virt = riscv_cpu_virt_enabled(env); 365 int index = csrno - CSR_SSTATEEN0; 366 CPUState *cs = env_cpu(env); 367 RISCVCPU *cpu = RISCV_CPU(cs); 368 369 if (!cpu->cfg.ext_smstateen) { 370 return RISCV_EXCP_ILLEGAL_INST; 371 } 372 373 if (env->priv < PRV_M) { 374 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 375 return RISCV_EXCP_ILLEGAL_INST; 376 } 377 378 if (virt) { 379 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 380 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 381 } 382 } 383 } 384 385 return smode(env, csrno); 386 } 387 388 /* Checks if PointerMasking registers could be accessed */ 389 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 390 { 391 /* Check if j-ext is present */ 392 if (riscv_has_ext(env, RVJ)) { 393 return RISCV_EXCP_NONE; 394 } 395 return RISCV_EXCP_ILLEGAL_INST; 396 } 397 398 static int aia_hmode(CPURISCVState *env, int csrno) 399 { 400 RISCVCPU *cpu = env_archcpu(env); 401 402 if (!cpu->cfg.ext_ssaia) { 403 return RISCV_EXCP_ILLEGAL_INST; 404 } 405 406 return hmode(env, csrno); 407 } 408 409 static int aia_hmode32(CPURISCVState *env, int csrno) 410 { 411 RISCVCPU *cpu = env_archcpu(env); 412 413 if (!cpu->cfg.ext_ssaia) { 414 return RISCV_EXCP_ILLEGAL_INST; 415 } 416 417 return hmode32(env, csrno); 418 } 419 420 static RISCVException pmp(CPURISCVState *env, int csrno) 421 { 422 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 423 return RISCV_EXCP_NONE; 424 } 425 426 return RISCV_EXCP_ILLEGAL_INST; 427 } 428 429 static RISCVException epmp(CPURISCVState *env, int csrno) 430 { 431 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 432 return RISCV_EXCP_NONE; 433 } 434 435 return RISCV_EXCP_ILLEGAL_INST; 436 } 437 438 static RISCVException debug(CPURISCVState *env, int csrno) 439 { 440 if (riscv_feature(env, RISCV_FEATURE_DEBUG)) { 441 return RISCV_EXCP_NONE; 442 } 443 444 return RISCV_EXCP_ILLEGAL_INST; 445 } 446 #endif 447 448 static RISCVException seed(CPURISCVState *env, int csrno) 449 { 450 RISCVCPU *cpu = env_archcpu(env); 451 452 if (!cpu->cfg.ext_zkr) { 453 return RISCV_EXCP_ILLEGAL_INST; 454 } 455 456 #if !defined(CONFIG_USER_ONLY) 457 /* 458 * With a CSR read-write instruction: 459 * 1) The seed CSR is always available in machine mode as normal. 460 * 2) Attempted access to seed from virtual modes VS and VU always raises 461 * an exception(virtual instruction exception only if mseccfg.sseed=1). 462 * 3) Without the corresponding access control bit set to 1, any attempted 463 * access to seed from U, S or HS modes will raise an illegal instruction 464 * exception. 465 */ 466 if (env->priv == PRV_M) { 467 return RISCV_EXCP_NONE; 468 } else if (riscv_cpu_virt_enabled(env)) { 469 if (env->mseccfg & MSECCFG_SSEED) { 470 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 471 } else { 472 return RISCV_EXCP_ILLEGAL_INST; 473 } 474 } else { 475 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 476 return RISCV_EXCP_NONE; 477 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 478 return RISCV_EXCP_NONE; 479 } else { 480 return RISCV_EXCP_ILLEGAL_INST; 481 } 482 } 483 #else 484 return RISCV_EXCP_NONE; 485 #endif 486 } 487 488 /* User Floating-Point CSRs */ 489 static RISCVException read_fflags(CPURISCVState *env, int csrno, 490 target_ulong *val) 491 { 492 *val = riscv_cpu_get_fflags(env); 493 return RISCV_EXCP_NONE; 494 } 495 496 static RISCVException write_fflags(CPURISCVState *env, int csrno, 497 target_ulong val) 498 { 499 #if !defined(CONFIG_USER_ONLY) 500 if (riscv_has_ext(env, RVF)) { 501 env->mstatus |= MSTATUS_FS; 502 } 503 #endif 504 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 505 return RISCV_EXCP_NONE; 506 } 507 508 static RISCVException read_frm(CPURISCVState *env, int csrno, 509 target_ulong *val) 510 { 511 *val = env->frm; 512 return RISCV_EXCP_NONE; 513 } 514 515 static RISCVException write_frm(CPURISCVState *env, int csrno, 516 target_ulong val) 517 { 518 #if !defined(CONFIG_USER_ONLY) 519 if (riscv_has_ext(env, RVF)) { 520 env->mstatus |= MSTATUS_FS; 521 } 522 #endif 523 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 524 return RISCV_EXCP_NONE; 525 } 526 527 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 528 target_ulong *val) 529 { 530 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 531 | (env->frm << FSR_RD_SHIFT); 532 return RISCV_EXCP_NONE; 533 } 534 535 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 536 target_ulong val) 537 { 538 #if !defined(CONFIG_USER_ONLY) 539 if (riscv_has_ext(env, RVF)) { 540 env->mstatus |= MSTATUS_FS; 541 } 542 #endif 543 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 544 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 545 return RISCV_EXCP_NONE; 546 } 547 548 static RISCVException read_vtype(CPURISCVState *env, int csrno, 549 target_ulong *val) 550 { 551 uint64_t vill; 552 switch (env->xl) { 553 case MXL_RV32: 554 vill = (uint32_t)env->vill << 31; 555 break; 556 case MXL_RV64: 557 vill = (uint64_t)env->vill << 63; 558 break; 559 default: 560 g_assert_not_reached(); 561 } 562 *val = (target_ulong)vill | env->vtype; 563 return RISCV_EXCP_NONE; 564 } 565 566 static RISCVException read_vl(CPURISCVState *env, int csrno, 567 target_ulong *val) 568 { 569 *val = env->vl; 570 return RISCV_EXCP_NONE; 571 } 572 573 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 574 { 575 *val = env_archcpu(env)->cfg.vlen >> 3; 576 return RISCV_EXCP_NONE; 577 } 578 579 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 580 target_ulong *val) 581 { 582 *val = env->vxrm; 583 return RISCV_EXCP_NONE; 584 } 585 586 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 587 target_ulong val) 588 { 589 #if !defined(CONFIG_USER_ONLY) 590 env->mstatus |= MSTATUS_VS; 591 #endif 592 env->vxrm = val; 593 return RISCV_EXCP_NONE; 594 } 595 596 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 597 target_ulong *val) 598 { 599 *val = env->vxsat; 600 return RISCV_EXCP_NONE; 601 } 602 603 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 604 target_ulong val) 605 { 606 #if !defined(CONFIG_USER_ONLY) 607 env->mstatus |= MSTATUS_VS; 608 #endif 609 env->vxsat = val; 610 return RISCV_EXCP_NONE; 611 } 612 613 static RISCVException read_vstart(CPURISCVState *env, int csrno, 614 target_ulong *val) 615 { 616 *val = env->vstart; 617 return RISCV_EXCP_NONE; 618 } 619 620 static RISCVException write_vstart(CPURISCVState *env, int csrno, 621 target_ulong val) 622 { 623 #if !defined(CONFIG_USER_ONLY) 624 env->mstatus |= MSTATUS_VS; 625 #endif 626 /* 627 * The vstart CSR is defined to have only enough writable bits 628 * to hold the largest element index, i.e. lg2(VLEN) bits. 629 */ 630 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 631 return RISCV_EXCP_NONE; 632 } 633 634 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 635 { 636 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 637 return RISCV_EXCP_NONE; 638 } 639 640 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 641 { 642 #if !defined(CONFIG_USER_ONLY) 643 env->mstatus |= MSTATUS_VS; 644 #endif 645 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 646 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 647 return RISCV_EXCP_NONE; 648 } 649 650 /* User Timers and Counters */ 651 static target_ulong get_ticks(bool shift) 652 { 653 int64_t val; 654 target_ulong result; 655 656 #if !defined(CONFIG_USER_ONLY) 657 if (icount_enabled()) { 658 val = icount_get(); 659 } else { 660 val = cpu_get_host_ticks(); 661 } 662 #else 663 val = cpu_get_host_ticks(); 664 #endif 665 666 if (shift) { 667 result = val >> 32; 668 } else { 669 result = val; 670 } 671 672 return result; 673 } 674 675 #if defined(CONFIG_USER_ONLY) 676 static RISCVException read_time(CPURISCVState *env, int csrno, 677 target_ulong *val) 678 { 679 *val = cpu_get_host_ticks(); 680 return RISCV_EXCP_NONE; 681 } 682 683 static RISCVException read_timeh(CPURISCVState *env, int csrno, 684 target_ulong *val) 685 { 686 *val = cpu_get_host_ticks() >> 32; 687 return RISCV_EXCP_NONE; 688 } 689 690 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 691 { 692 *val = get_ticks(false); 693 return RISCV_EXCP_NONE; 694 } 695 696 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 697 { 698 *val = get_ticks(true); 699 return RISCV_EXCP_NONE; 700 } 701 702 #else /* CONFIG_USER_ONLY */ 703 704 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 705 { 706 int evt_index = csrno - CSR_MCOUNTINHIBIT; 707 708 *val = env->mhpmevent_val[evt_index]; 709 710 return RISCV_EXCP_NONE; 711 } 712 713 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 714 { 715 int evt_index = csrno - CSR_MCOUNTINHIBIT; 716 uint64_t mhpmevt_val = val; 717 718 env->mhpmevent_val[evt_index] = val; 719 720 if (riscv_cpu_mxl(env) == MXL_RV32) { 721 mhpmevt_val = mhpmevt_val | 722 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 723 } 724 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 725 726 return RISCV_EXCP_NONE; 727 } 728 729 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 730 { 731 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 732 733 *val = env->mhpmeventh_val[evt_index]; 734 735 return RISCV_EXCP_NONE; 736 } 737 738 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 739 { 740 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 741 uint64_t mhpmevth_val = val; 742 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 743 744 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 745 env->mhpmeventh_val[evt_index] = val; 746 747 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 748 749 return RISCV_EXCP_NONE; 750 } 751 752 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 753 { 754 int ctr_idx = csrno - CSR_MCYCLE; 755 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 756 uint64_t mhpmctr_val = val; 757 758 counter->mhpmcounter_val = val; 759 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 760 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 761 counter->mhpmcounter_prev = get_ticks(false); 762 if (ctr_idx > 2) { 763 if (riscv_cpu_mxl(env) == MXL_RV32) { 764 mhpmctr_val = mhpmctr_val | 765 ((uint64_t)counter->mhpmcounterh_val << 32); 766 } 767 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 768 } 769 } else { 770 /* Other counters can keep incrementing from the given value */ 771 counter->mhpmcounter_prev = val; 772 } 773 774 return RISCV_EXCP_NONE; 775 } 776 777 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 778 { 779 int ctr_idx = csrno - CSR_MCYCLEH; 780 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 781 uint64_t mhpmctr_val = counter->mhpmcounter_val; 782 uint64_t mhpmctrh_val = val; 783 784 counter->mhpmcounterh_val = val; 785 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 786 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 787 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 788 counter->mhpmcounterh_prev = get_ticks(true); 789 if (ctr_idx > 2) { 790 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 791 } 792 } else { 793 counter->mhpmcounterh_prev = val; 794 } 795 796 return RISCV_EXCP_NONE; 797 } 798 799 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 800 bool upper_half, uint32_t ctr_idx) 801 { 802 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 803 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 804 counter.mhpmcounter_prev; 805 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 806 counter.mhpmcounter_val; 807 808 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 809 /** 810 * Counter should not increment if inhibit bit is set. We can't really 811 * stop the icount counting. Just return the counter value written by 812 * the supervisor to indicate that counter was not incremented. 813 */ 814 if (!counter.started) { 815 *val = ctr_val; 816 return RISCV_EXCP_NONE; 817 } else { 818 /* Mark that the counter has been stopped */ 819 counter.started = false; 820 } 821 } 822 823 /** 824 * The kernel computes the perf delta by subtracting the current value from 825 * the value it initialized previously (ctr_val). 826 */ 827 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 828 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 829 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 830 } else { 831 *val = ctr_val; 832 } 833 834 return RISCV_EXCP_NONE; 835 } 836 837 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 838 { 839 uint16_t ctr_index; 840 841 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 842 ctr_index = csrno - CSR_MCYCLE; 843 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 844 ctr_index = csrno - CSR_CYCLE; 845 } else { 846 return RISCV_EXCP_ILLEGAL_INST; 847 } 848 849 return riscv_pmu_read_ctr(env, val, false, ctr_index); 850 } 851 852 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 853 { 854 uint16_t ctr_index; 855 856 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 857 ctr_index = csrno - CSR_MCYCLEH; 858 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 859 ctr_index = csrno - CSR_CYCLEH; 860 } else { 861 return RISCV_EXCP_ILLEGAL_INST; 862 } 863 864 return riscv_pmu_read_ctr(env, val, true, ctr_index); 865 } 866 867 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 868 { 869 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 870 int i; 871 *val = 0; 872 target_ulong *mhpm_evt_val; 873 uint64_t of_bit_mask; 874 875 if (riscv_cpu_mxl(env) == MXL_RV32) { 876 mhpm_evt_val = env->mhpmeventh_val; 877 of_bit_mask = MHPMEVENTH_BIT_OF; 878 } else { 879 mhpm_evt_val = env->mhpmevent_val; 880 of_bit_mask = MHPMEVENT_BIT_OF; 881 } 882 883 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 884 if ((get_field(env->mcounteren, BIT(i))) && 885 (mhpm_evt_val[i] & of_bit_mask)) { 886 *val |= BIT(i); 887 } 888 } 889 890 return RISCV_EXCP_NONE; 891 } 892 893 static RISCVException read_time(CPURISCVState *env, int csrno, 894 target_ulong *val) 895 { 896 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 897 898 if (!env->rdtime_fn) { 899 return RISCV_EXCP_ILLEGAL_INST; 900 } 901 902 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 903 return RISCV_EXCP_NONE; 904 } 905 906 static RISCVException read_timeh(CPURISCVState *env, int csrno, 907 target_ulong *val) 908 { 909 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 910 911 if (!env->rdtime_fn) { 912 return RISCV_EXCP_ILLEGAL_INST; 913 } 914 915 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 916 return RISCV_EXCP_NONE; 917 } 918 919 static RISCVException sstc(CPURISCVState *env, int csrno) 920 { 921 CPUState *cs = env_cpu(env); 922 RISCVCPU *cpu = RISCV_CPU(cs); 923 bool hmode_check = false; 924 925 if (!cpu->cfg.ext_sstc || !env->rdtime_fn) { 926 return RISCV_EXCP_ILLEGAL_INST; 927 } 928 929 if (env->priv == PRV_M) { 930 return RISCV_EXCP_NONE; 931 } 932 933 /* 934 * No need of separate function for rv32 as menvcfg stores both menvcfg 935 * menvcfgh for RV32. 936 */ 937 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 938 get_field(env->menvcfg, MENVCFG_STCE))) { 939 return RISCV_EXCP_ILLEGAL_INST; 940 } 941 942 if (riscv_cpu_virt_enabled(env)) { 943 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 944 get_field(env->henvcfg, HENVCFG_STCE))) { 945 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 946 } 947 } 948 949 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 950 hmode_check = true; 951 } 952 953 return hmode_check ? hmode(env, csrno) : smode(env, csrno); 954 } 955 956 static RISCVException sstc_32(CPURISCVState *env, int csrno) 957 { 958 if (riscv_cpu_mxl(env) != MXL_RV32) { 959 return RISCV_EXCP_ILLEGAL_INST; 960 } 961 962 return sstc(env, csrno); 963 } 964 965 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 966 target_ulong *val) 967 { 968 *val = env->vstimecmp; 969 970 return RISCV_EXCP_NONE; 971 } 972 973 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 974 target_ulong *val) 975 { 976 *val = env->vstimecmp >> 32; 977 978 return RISCV_EXCP_NONE; 979 } 980 981 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 982 target_ulong val) 983 { 984 RISCVCPU *cpu = env_archcpu(env); 985 986 if (riscv_cpu_mxl(env) == MXL_RV32) { 987 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 988 } else { 989 env->vstimecmp = val; 990 } 991 992 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 993 env->htimedelta, MIP_VSTIP); 994 995 return RISCV_EXCP_NONE; 996 } 997 998 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 999 target_ulong val) 1000 { 1001 RISCVCPU *cpu = env_archcpu(env); 1002 1003 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1004 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1005 env->htimedelta, MIP_VSTIP); 1006 1007 return RISCV_EXCP_NONE; 1008 } 1009 1010 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1011 target_ulong *val) 1012 { 1013 if (riscv_cpu_virt_enabled(env)) { 1014 *val = env->vstimecmp; 1015 } else { 1016 *val = env->stimecmp; 1017 } 1018 1019 return RISCV_EXCP_NONE; 1020 } 1021 1022 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1023 target_ulong *val) 1024 { 1025 if (riscv_cpu_virt_enabled(env)) { 1026 *val = env->vstimecmp >> 32; 1027 } else { 1028 *val = env->stimecmp >> 32; 1029 } 1030 1031 return RISCV_EXCP_NONE; 1032 } 1033 1034 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1035 target_ulong val) 1036 { 1037 RISCVCPU *cpu = env_archcpu(env); 1038 1039 if (riscv_cpu_virt_enabled(env)) { 1040 if (env->hvictl & HVICTL_VTI) { 1041 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1042 } 1043 return write_vstimecmp(env, csrno, val); 1044 } 1045 1046 if (riscv_cpu_mxl(env) == MXL_RV32) { 1047 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1048 } else { 1049 env->stimecmp = val; 1050 } 1051 1052 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1053 1054 return RISCV_EXCP_NONE; 1055 } 1056 1057 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1058 target_ulong val) 1059 { 1060 RISCVCPU *cpu = env_archcpu(env); 1061 1062 if (riscv_cpu_virt_enabled(env)) { 1063 if (env->hvictl & HVICTL_VTI) { 1064 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1065 } 1066 return write_vstimecmph(env, csrno, val); 1067 } 1068 1069 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1070 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1071 1072 return RISCV_EXCP_NONE; 1073 } 1074 1075 /* Machine constants */ 1076 1077 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1078 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1079 MIP_LCOFIP)) 1080 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1081 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1082 1083 #define VSTOPI_NUM_SRCS 5 1084 1085 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1086 VS_MODE_INTERRUPTS; 1087 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1088 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1089 HS_MODE_INTERRUPTS; 1090 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1091 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1092 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1093 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1094 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1095 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1096 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1097 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1098 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1099 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1100 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1101 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1102 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1103 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1104 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1105 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1106 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1107 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1108 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1109 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1110 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1111 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1112 (1ULL << (RISCV_EXCP_M_ECALL)) | 1113 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1114 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1115 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1116 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1117 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1118 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1119 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1120 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1121 SIP_LCOFIP; 1122 static const target_ulong hip_writable_mask = MIP_VSSIP; 1123 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1124 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1125 1126 static const char valid_vm_1_10_32[16] = { 1127 [VM_1_10_MBARE] = 1, 1128 [VM_1_10_SV32] = 1 1129 }; 1130 1131 static const char valid_vm_1_10_64[16] = { 1132 [VM_1_10_MBARE] = 1, 1133 [VM_1_10_SV39] = 1, 1134 [VM_1_10_SV48] = 1, 1135 [VM_1_10_SV57] = 1 1136 }; 1137 1138 /* Machine Information Registers */ 1139 static RISCVException read_zero(CPURISCVState *env, int csrno, 1140 target_ulong *val) 1141 { 1142 *val = 0; 1143 return RISCV_EXCP_NONE; 1144 } 1145 1146 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1147 target_ulong val) 1148 { 1149 return RISCV_EXCP_NONE; 1150 } 1151 1152 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1153 target_ulong *val) 1154 { 1155 CPUState *cs = env_cpu(env); 1156 RISCVCPU *cpu = RISCV_CPU(cs); 1157 1158 *val = cpu->cfg.mvendorid; 1159 return RISCV_EXCP_NONE; 1160 } 1161 1162 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1163 target_ulong *val) 1164 { 1165 CPUState *cs = env_cpu(env); 1166 RISCVCPU *cpu = RISCV_CPU(cs); 1167 1168 *val = cpu->cfg.marchid; 1169 return RISCV_EXCP_NONE; 1170 } 1171 1172 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1173 target_ulong *val) 1174 { 1175 CPUState *cs = env_cpu(env); 1176 RISCVCPU *cpu = RISCV_CPU(cs); 1177 1178 *val = cpu->cfg.mimpid; 1179 return RISCV_EXCP_NONE; 1180 } 1181 1182 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1183 target_ulong *val) 1184 { 1185 *val = env->mhartid; 1186 return RISCV_EXCP_NONE; 1187 } 1188 1189 /* Machine Trap Setup */ 1190 1191 /* We do not store SD explicitly, only compute it on demand. */ 1192 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1193 { 1194 if ((status & MSTATUS_FS) == MSTATUS_FS || 1195 (status & MSTATUS_VS) == MSTATUS_VS || 1196 (status & MSTATUS_XS) == MSTATUS_XS) { 1197 switch (xl) { 1198 case MXL_RV32: 1199 return status | MSTATUS32_SD; 1200 case MXL_RV64: 1201 return status | MSTATUS64_SD; 1202 case MXL_RV128: 1203 return MSTATUSH128_SD; 1204 default: 1205 g_assert_not_reached(); 1206 } 1207 } 1208 return status; 1209 } 1210 1211 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1212 target_ulong *val) 1213 { 1214 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1215 return RISCV_EXCP_NONE; 1216 } 1217 1218 static int validate_vm(CPURISCVState *env, target_ulong vm) 1219 { 1220 if (riscv_cpu_mxl(env) == MXL_RV32) { 1221 return valid_vm_1_10_32[vm & 0xf]; 1222 } else { 1223 return valid_vm_1_10_64[vm & 0xf]; 1224 } 1225 } 1226 1227 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1228 target_ulong val) 1229 { 1230 uint64_t mstatus = env->mstatus; 1231 uint64_t mask = 0; 1232 RISCVMXL xl = riscv_cpu_mxl(env); 1233 1234 /* flush tlb on mstatus fields that affect VM */ 1235 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1236 MSTATUS_MPRV | MSTATUS_SUM)) { 1237 tlb_flush(env_cpu(env)); 1238 } 1239 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1240 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1241 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1242 MSTATUS_TW | MSTATUS_VS; 1243 1244 if (riscv_has_ext(env, RVF)) { 1245 mask |= MSTATUS_FS; 1246 } 1247 1248 if (xl != MXL_RV32 || env->debugger) { 1249 /* 1250 * RV32: MPV and GVA are not in mstatus. The current plan is to 1251 * add them to mstatush. For now, we just don't support it. 1252 */ 1253 mask |= MSTATUS_MPV | MSTATUS_GVA; 1254 if ((val & MSTATUS64_UXL) != 0) { 1255 mask |= MSTATUS64_UXL; 1256 } 1257 } 1258 1259 mstatus = (mstatus & ~mask) | (val & mask); 1260 1261 if (xl > MXL_RV32) { 1262 /* SXL field is for now read only */ 1263 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1264 } 1265 env->mstatus = mstatus; 1266 env->xl = cpu_recompute_xl(env); 1267 1268 return RISCV_EXCP_NONE; 1269 } 1270 1271 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1272 target_ulong *val) 1273 { 1274 *val = env->mstatus >> 32; 1275 return RISCV_EXCP_NONE; 1276 } 1277 1278 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1279 target_ulong val) 1280 { 1281 uint64_t valh = (uint64_t)val << 32; 1282 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1283 1284 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1285 tlb_flush(env_cpu(env)); 1286 } 1287 1288 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1289 1290 return RISCV_EXCP_NONE; 1291 } 1292 1293 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1294 Int128 *val) 1295 { 1296 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1297 return RISCV_EXCP_NONE; 1298 } 1299 1300 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1301 Int128 *val) 1302 { 1303 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1304 return RISCV_EXCP_NONE; 1305 } 1306 1307 static RISCVException read_misa(CPURISCVState *env, int csrno, 1308 target_ulong *val) 1309 { 1310 target_ulong misa; 1311 1312 switch (env->misa_mxl) { 1313 case MXL_RV32: 1314 misa = (target_ulong)MXL_RV32 << 30; 1315 break; 1316 #ifdef TARGET_RISCV64 1317 case MXL_RV64: 1318 misa = (target_ulong)MXL_RV64 << 62; 1319 break; 1320 #endif 1321 default: 1322 g_assert_not_reached(); 1323 } 1324 1325 *val = misa | env->misa_ext; 1326 return RISCV_EXCP_NONE; 1327 } 1328 1329 static RISCVException write_misa(CPURISCVState *env, int csrno, 1330 target_ulong val) 1331 { 1332 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 1333 /* drop write to misa */ 1334 return RISCV_EXCP_NONE; 1335 } 1336 1337 /* 'I' or 'E' must be present */ 1338 if (!(val & (RVI | RVE))) { 1339 /* It is not, drop write to misa */ 1340 return RISCV_EXCP_NONE; 1341 } 1342 1343 /* 'E' excludes all other extensions */ 1344 if (val & RVE) { 1345 /* when we support 'E' we can do "val = RVE;" however 1346 * for now we just drop writes if 'E' is present. 1347 */ 1348 return RISCV_EXCP_NONE; 1349 } 1350 1351 /* 1352 * misa.MXL writes are not supported by QEMU. 1353 * Drop writes to those bits. 1354 */ 1355 1356 /* Mask extensions that are not supported by this hart */ 1357 val &= env->misa_ext_mask; 1358 1359 /* Mask extensions that are not supported by QEMU */ 1360 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 1361 1362 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1363 if ((val & RVD) && !(val & RVF)) { 1364 val &= ~RVD; 1365 } 1366 1367 /* Suppress 'C' if next instruction is not aligned 1368 * TODO: this should check next_pc 1369 */ 1370 if ((val & RVC) && (GETPC() & ~3) != 0) { 1371 val &= ~RVC; 1372 } 1373 1374 /* If nothing changed, do nothing. */ 1375 if (val == env->misa_ext) { 1376 return RISCV_EXCP_NONE; 1377 } 1378 1379 if (!(val & RVF)) { 1380 env->mstatus &= ~MSTATUS_FS; 1381 } 1382 1383 /* flush translation cache */ 1384 tb_flush(env_cpu(env)); 1385 env->misa_ext = val; 1386 env->xl = riscv_cpu_mxl(env); 1387 return RISCV_EXCP_NONE; 1388 } 1389 1390 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1391 target_ulong *val) 1392 { 1393 *val = env->medeleg; 1394 return RISCV_EXCP_NONE; 1395 } 1396 1397 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1398 target_ulong val) 1399 { 1400 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1401 return RISCV_EXCP_NONE; 1402 } 1403 1404 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1405 uint64_t *ret_val, 1406 uint64_t new_val, uint64_t wr_mask) 1407 { 1408 uint64_t mask = wr_mask & delegable_ints; 1409 1410 if (ret_val) { 1411 *ret_val = env->mideleg; 1412 } 1413 1414 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1415 1416 if (riscv_has_ext(env, RVH)) { 1417 env->mideleg |= HS_MODE_INTERRUPTS; 1418 } 1419 1420 return RISCV_EXCP_NONE; 1421 } 1422 1423 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1424 target_ulong *ret_val, 1425 target_ulong new_val, target_ulong wr_mask) 1426 { 1427 uint64_t rval; 1428 RISCVException ret; 1429 1430 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1431 if (ret_val) { 1432 *ret_val = rval; 1433 } 1434 1435 return ret; 1436 } 1437 1438 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1439 target_ulong *ret_val, 1440 target_ulong new_val, 1441 target_ulong wr_mask) 1442 { 1443 uint64_t rval; 1444 RISCVException ret; 1445 1446 ret = rmw_mideleg64(env, csrno, &rval, 1447 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1448 if (ret_val) { 1449 *ret_val = rval >> 32; 1450 } 1451 1452 return ret; 1453 } 1454 1455 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1456 uint64_t *ret_val, 1457 uint64_t new_val, uint64_t wr_mask) 1458 { 1459 uint64_t mask = wr_mask & all_ints; 1460 1461 if (ret_val) { 1462 *ret_val = env->mie; 1463 } 1464 1465 env->mie = (env->mie & ~mask) | (new_val & mask); 1466 1467 if (!riscv_has_ext(env, RVH)) { 1468 env->mie &= ~((uint64_t)MIP_SGEIP); 1469 } 1470 1471 return RISCV_EXCP_NONE; 1472 } 1473 1474 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1475 target_ulong *ret_val, 1476 target_ulong new_val, target_ulong wr_mask) 1477 { 1478 uint64_t rval; 1479 RISCVException ret; 1480 1481 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1482 if (ret_val) { 1483 *ret_val = rval; 1484 } 1485 1486 return ret; 1487 } 1488 1489 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1490 target_ulong *ret_val, 1491 target_ulong new_val, target_ulong wr_mask) 1492 { 1493 uint64_t rval; 1494 RISCVException ret; 1495 1496 ret = rmw_mie64(env, csrno, &rval, 1497 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1498 if (ret_val) { 1499 *ret_val = rval >> 32; 1500 } 1501 1502 return ret; 1503 } 1504 1505 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1506 { 1507 int irq; 1508 uint8_t iprio; 1509 1510 irq = riscv_cpu_mirq_pending(env); 1511 if (irq <= 0 || irq > 63) { 1512 *val = 0; 1513 } else { 1514 iprio = env->miprio[irq]; 1515 if (!iprio) { 1516 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1517 iprio = IPRIO_MMAXIPRIO; 1518 } 1519 } 1520 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1521 *val |= iprio; 1522 } 1523 1524 return RISCV_EXCP_NONE; 1525 } 1526 1527 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1528 { 1529 if (!riscv_cpu_virt_enabled(env)) { 1530 return csrno; 1531 } 1532 1533 switch (csrno) { 1534 case CSR_SISELECT: 1535 return CSR_VSISELECT; 1536 case CSR_SIREG: 1537 return CSR_VSIREG; 1538 case CSR_STOPEI: 1539 return CSR_VSTOPEI; 1540 default: 1541 return csrno; 1542 }; 1543 } 1544 1545 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1546 target_ulong new_val, target_ulong wr_mask) 1547 { 1548 target_ulong *iselect; 1549 1550 /* Translate CSR number for VS-mode */ 1551 csrno = aia_xlate_vs_csrno(env, csrno); 1552 1553 /* Find the iselect CSR based on CSR number */ 1554 switch (csrno) { 1555 case CSR_MISELECT: 1556 iselect = &env->miselect; 1557 break; 1558 case CSR_SISELECT: 1559 iselect = &env->siselect; 1560 break; 1561 case CSR_VSISELECT: 1562 iselect = &env->vsiselect; 1563 break; 1564 default: 1565 return RISCV_EXCP_ILLEGAL_INST; 1566 }; 1567 1568 if (val) { 1569 *val = *iselect; 1570 } 1571 1572 wr_mask &= ISELECT_MASK; 1573 if (wr_mask) { 1574 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1575 } 1576 1577 return RISCV_EXCP_NONE; 1578 } 1579 1580 static int rmw_iprio(target_ulong xlen, 1581 target_ulong iselect, uint8_t *iprio, 1582 target_ulong *val, target_ulong new_val, 1583 target_ulong wr_mask, int ext_irq_no) 1584 { 1585 int i, firq, nirqs; 1586 target_ulong old_val; 1587 1588 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1589 return -EINVAL; 1590 } 1591 if (xlen != 32 && iselect & 0x1) { 1592 return -EINVAL; 1593 } 1594 1595 nirqs = 4 * (xlen / 32); 1596 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1597 1598 old_val = 0; 1599 for (i = 0; i < nirqs; i++) { 1600 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1601 } 1602 1603 if (val) { 1604 *val = old_val; 1605 } 1606 1607 if (wr_mask) { 1608 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1609 for (i = 0; i < nirqs; i++) { 1610 /* 1611 * M-level and S-level external IRQ priority always read-only 1612 * zero. This means default priority order is always preferred 1613 * for M-level and S-level external IRQs. 1614 */ 1615 if ((firq + i) == ext_irq_no) { 1616 continue; 1617 } 1618 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1619 } 1620 } 1621 1622 return 0; 1623 } 1624 1625 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1626 target_ulong new_val, target_ulong wr_mask) 1627 { 1628 bool virt; 1629 uint8_t *iprio; 1630 int ret = -EINVAL; 1631 target_ulong priv, isel, vgein; 1632 1633 /* Translate CSR number for VS-mode */ 1634 csrno = aia_xlate_vs_csrno(env, csrno); 1635 1636 /* Decode register details from CSR number */ 1637 virt = false; 1638 switch (csrno) { 1639 case CSR_MIREG: 1640 iprio = env->miprio; 1641 isel = env->miselect; 1642 priv = PRV_M; 1643 break; 1644 case CSR_SIREG: 1645 iprio = env->siprio; 1646 isel = env->siselect; 1647 priv = PRV_S; 1648 break; 1649 case CSR_VSIREG: 1650 iprio = env->hviprio; 1651 isel = env->vsiselect; 1652 priv = PRV_S; 1653 virt = true; 1654 break; 1655 default: 1656 goto done; 1657 }; 1658 1659 /* Find the selected guest interrupt file */ 1660 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1661 1662 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1663 /* Local interrupt priority registers not available for VS-mode */ 1664 if (!virt) { 1665 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1666 isel, iprio, val, new_val, wr_mask, 1667 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1668 } 1669 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1670 /* IMSIC registers only available when machine implements it. */ 1671 if (env->aia_ireg_rmw_fn[priv]) { 1672 /* Selected guest interrupt file should not be zero */ 1673 if (virt && (!vgein || env->geilen < vgein)) { 1674 goto done; 1675 } 1676 /* Call machine specific IMSIC register emulation */ 1677 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1678 AIA_MAKE_IREG(isel, priv, virt, vgein, 1679 riscv_cpu_mxl_bits(env)), 1680 val, new_val, wr_mask); 1681 } 1682 } 1683 1684 done: 1685 if (ret) { 1686 return (riscv_cpu_virt_enabled(env) && virt) ? 1687 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1688 } 1689 return RISCV_EXCP_NONE; 1690 } 1691 1692 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1693 target_ulong new_val, target_ulong wr_mask) 1694 { 1695 bool virt; 1696 int ret = -EINVAL; 1697 target_ulong priv, vgein; 1698 1699 /* Translate CSR number for VS-mode */ 1700 csrno = aia_xlate_vs_csrno(env, csrno); 1701 1702 /* Decode register details from CSR number */ 1703 virt = false; 1704 switch (csrno) { 1705 case CSR_MTOPEI: 1706 priv = PRV_M; 1707 break; 1708 case CSR_STOPEI: 1709 priv = PRV_S; 1710 break; 1711 case CSR_VSTOPEI: 1712 priv = PRV_S; 1713 virt = true; 1714 break; 1715 default: 1716 goto done; 1717 }; 1718 1719 /* IMSIC CSRs only available when machine implements IMSIC. */ 1720 if (!env->aia_ireg_rmw_fn[priv]) { 1721 goto done; 1722 } 1723 1724 /* Find the selected guest interrupt file */ 1725 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1726 1727 /* Selected guest interrupt file should be valid */ 1728 if (virt && (!vgein || env->geilen < vgein)) { 1729 goto done; 1730 } 1731 1732 /* Call machine specific IMSIC register emulation for TOPEI */ 1733 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1734 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1735 riscv_cpu_mxl_bits(env)), 1736 val, new_val, wr_mask); 1737 1738 done: 1739 if (ret) { 1740 return (riscv_cpu_virt_enabled(env) && virt) ? 1741 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1742 } 1743 return RISCV_EXCP_NONE; 1744 } 1745 1746 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1747 target_ulong *val) 1748 { 1749 *val = env->mtvec; 1750 return RISCV_EXCP_NONE; 1751 } 1752 1753 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1754 target_ulong val) 1755 { 1756 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1757 if ((val & 3) < 2) { 1758 env->mtvec = val; 1759 } else { 1760 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1761 } 1762 return RISCV_EXCP_NONE; 1763 } 1764 1765 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1766 target_ulong *val) 1767 { 1768 *val = env->mcountinhibit; 1769 return RISCV_EXCP_NONE; 1770 } 1771 1772 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1773 target_ulong val) 1774 { 1775 int cidx; 1776 PMUCTRState *counter; 1777 1778 env->mcountinhibit = val; 1779 1780 /* Check if any other counter is also monitoring cycles/instructions */ 1781 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1782 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1783 counter = &env->pmu_ctrs[cidx]; 1784 counter->started = true; 1785 } 1786 } 1787 1788 return RISCV_EXCP_NONE; 1789 } 1790 1791 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1792 target_ulong *val) 1793 { 1794 *val = env->mcounteren; 1795 return RISCV_EXCP_NONE; 1796 } 1797 1798 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1799 target_ulong val) 1800 { 1801 env->mcounteren = val; 1802 return RISCV_EXCP_NONE; 1803 } 1804 1805 /* Machine Trap Handling */ 1806 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1807 Int128 *val) 1808 { 1809 *val = int128_make128(env->mscratch, env->mscratchh); 1810 return RISCV_EXCP_NONE; 1811 } 1812 1813 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1814 Int128 val) 1815 { 1816 env->mscratch = int128_getlo(val); 1817 env->mscratchh = int128_gethi(val); 1818 return RISCV_EXCP_NONE; 1819 } 1820 1821 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1822 target_ulong *val) 1823 { 1824 *val = env->mscratch; 1825 return RISCV_EXCP_NONE; 1826 } 1827 1828 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1829 target_ulong val) 1830 { 1831 env->mscratch = val; 1832 return RISCV_EXCP_NONE; 1833 } 1834 1835 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1836 target_ulong *val) 1837 { 1838 *val = env->mepc; 1839 return RISCV_EXCP_NONE; 1840 } 1841 1842 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1843 target_ulong val) 1844 { 1845 env->mepc = val; 1846 return RISCV_EXCP_NONE; 1847 } 1848 1849 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1850 target_ulong *val) 1851 { 1852 *val = env->mcause; 1853 return RISCV_EXCP_NONE; 1854 } 1855 1856 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1857 target_ulong val) 1858 { 1859 env->mcause = val; 1860 return RISCV_EXCP_NONE; 1861 } 1862 1863 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1864 target_ulong *val) 1865 { 1866 *val = env->mtval; 1867 return RISCV_EXCP_NONE; 1868 } 1869 1870 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1871 target_ulong val) 1872 { 1873 env->mtval = val; 1874 return RISCV_EXCP_NONE; 1875 } 1876 1877 /* Execution environment configuration setup */ 1878 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1879 target_ulong *val) 1880 { 1881 *val = env->menvcfg; 1882 return RISCV_EXCP_NONE; 1883 } 1884 1885 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1886 target_ulong val) 1887 { 1888 RISCVCPUConfig *cfg = &env_archcpu(env)->cfg; 1889 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1890 1891 if (riscv_cpu_mxl(env) == MXL_RV64) { 1892 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1893 (cfg->ext_sstc ? MENVCFG_STCE : 0); 1894 } 1895 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1896 1897 return RISCV_EXCP_NONE; 1898 } 1899 1900 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1901 target_ulong *val) 1902 { 1903 *val = env->menvcfg >> 32; 1904 return RISCV_EXCP_NONE; 1905 } 1906 1907 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1908 target_ulong val) 1909 { 1910 RISCVCPUConfig *cfg = &env_archcpu(env)->cfg; 1911 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1912 (cfg->ext_sstc ? MENVCFG_STCE : 0); 1913 uint64_t valh = (uint64_t)val << 32; 1914 1915 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1916 1917 return RISCV_EXCP_NONE; 1918 } 1919 1920 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1921 target_ulong *val) 1922 { 1923 RISCVException ret; 1924 1925 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1926 if (ret != RISCV_EXCP_NONE) { 1927 return ret; 1928 } 1929 1930 *val = env->senvcfg; 1931 return RISCV_EXCP_NONE; 1932 } 1933 1934 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1935 target_ulong val) 1936 { 1937 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1938 RISCVException ret; 1939 1940 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1941 if (ret != RISCV_EXCP_NONE) { 1942 return ret; 1943 } 1944 1945 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1946 return RISCV_EXCP_NONE; 1947 } 1948 1949 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1950 target_ulong *val) 1951 { 1952 RISCVException ret; 1953 1954 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1955 if (ret != RISCV_EXCP_NONE) { 1956 return ret; 1957 } 1958 1959 /* 1960 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 1961 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 1962 */ 1963 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE) | env->menvcfg); 1964 return RISCV_EXCP_NONE; 1965 } 1966 1967 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1968 target_ulong val) 1969 { 1970 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1971 RISCVException ret; 1972 1973 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1974 if (ret != RISCV_EXCP_NONE) { 1975 return ret; 1976 } 1977 1978 if (riscv_cpu_mxl(env) == MXL_RV64) { 1979 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE); 1980 } 1981 1982 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1983 1984 return RISCV_EXCP_NONE; 1985 } 1986 1987 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1988 target_ulong *val) 1989 { 1990 RISCVException ret; 1991 1992 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1993 if (ret != RISCV_EXCP_NONE) { 1994 return ret; 1995 } 1996 1997 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE) | 1998 env->menvcfg)) >> 32; 1999 return RISCV_EXCP_NONE; 2000 } 2001 2002 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2003 target_ulong val) 2004 { 2005 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE); 2006 uint64_t valh = (uint64_t)val << 32; 2007 RISCVException ret; 2008 2009 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2010 if (ret != RISCV_EXCP_NONE) { 2011 return ret; 2012 } 2013 2014 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2015 return RISCV_EXCP_NONE; 2016 } 2017 2018 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2019 target_ulong *val) 2020 { 2021 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2022 2023 return RISCV_EXCP_NONE; 2024 } 2025 2026 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2027 uint64_t wr_mask, target_ulong new_val) 2028 { 2029 uint64_t *reg; 2030 2031 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2032 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2033 2034 return RISCV_EXCP_NONE; 2035 } 2036 2037 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2038 target_ulong new_val) 2039 { 2040 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2041 2042 return write_mstateen(env, csrno, wr_mask, new_val); 2043 } 2044 2045 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2046 target_ulong new_val) 2047 { 2048 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2049 } 2050 2051 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2052 target_ulong *val) 2053 { 2054 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2055 2056 return RISCV_EXCP_NONE; 2057 } 2058 2059 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2060 uint64_t wr_mask, target_ulong new_val) 2061 { 2062 uint64_t *reg, val; 2063 2064 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2065 val = (uint64_t)new_val << 32; 2066 val |= *reg & 0xFFFFFFFF; 2067 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2068 2069 return RISCV_EXCP_NONE; 2070 } 2071 2072 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2073 target_ulong new_val) 2074 { 2075 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2076 2077 return write_mstateenh(env, csrno, wr_mask, new_val); 2078 } 2079 2080 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2081 target_ulong new_val) 2082 { 2083 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2084 } 2085 2086 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2087 target_ulong *val) 2088 { 2089 int index = csrno - CSR_HSTATEEN0; 2090 2091 *val = env->hstateen[index] & env->mstateen[index]; 2092 2093 return RISCV_EXCP_NONE; 2094 } 2095 2096 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2097 uint64_t mask, target_ulong new_val) 2098 { 2099 int index = csrno - CSR_HSTATEEN0; 2100 uint64_t *reg, wr_mask; 2101 2102 reg = &env->hstateen[index]; 2103 wr_mask = env->mstateen[index] & mask; 2104 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2105 2106 return RISCV_EXCP_NONE; 2107 } 2108 2109 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2110 target_ulong new_val) 2111 { 2112 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2113 2114 return write_hstateen(env, csrno, wr_mask, new_val); 2115 } 2116 2117 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2118 target_ulong new_val) 2119 { 2120 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2121 } 2122 2123 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2124 target_ulong *val) 2125 { 2126 int index = csrno - CSR_HSTATEEN0H; 2127 2128 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2129 2130 return RISCV_EXCP_NONE; 2131 } 2132 2133 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2134 uint64_t mask, target_ulong new_val) 2135 { 2136 int index = csrno - CSR_HSTATEEN0H; 2137 uint64_t *reg, wr_mask, val; 2138 2139 reg = &env->hstateen[index]; 2140 val = (uint64_t)new_val << 32; 2141 val |= *reg & 0xFFFFFFFF; 2142 wr_mask = env->mstateen[index] & mask; 2143 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2144 2145 return RISCV_EXCP_NONE; 2146 } 2147 2148 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2149 target_ulong new_val) 2150 { 2151 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2152 2153 return write_hstateenh(env, csrno, wr_mask, new_val); 2154 } 2155 2156 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2157 target_ulong new_val) 2158 { 2159 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2160 } 2161 2162 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2163 target_ulong *val) 2164 { 2165 bool virt = riscv_cpu_virt_enabled(env); 2166 int index = csrno - CSR_SSTATEEN0; 2167 2168 *val = env->sstateen[index] & env->mstateen[index]; 2169 if (virt) { 2170 *val &= env->hstateen[index]; 2171 } 2172 2173 return RISCV_EXCP_NONE; 2174 } 2175 2176 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2177 uint64_t mask, target_ulong new_val) 2178 { 2179 bool virt = riscv_cpu_virt_enabled(env); 2180 int index = csrno - CSR_SSTATEEN0; 2181 uint64_t wr_mask; 2182 uint64_t *reg; 2183 2184 wr_mask = env->mstateen[index] & mask; 2185 if (virt) { 2186 wr_mask &= env->hstateen[index]; 2187 } 2188 2189 reg = &env->sstateen[index]; 2190 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2191 2192 return RISCV_EXCP_NONE; 2193 } 2194 2195 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2196 target_ulong new_val) 2197 { 2198 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2199 2200 return write_sstateen(env, csrno, wr_mask, new_val); 2201 } 2202 2203 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2204 target_ulong new_val) 2205 { 2206 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2207 } 2208 2209 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2210 uint64_t *ret_val, 2211 uint64_t new_val, uint64_t wr_mask) 2212 { 2213 RISCVCPU *cpu = env_archcpu(env); 2214 uint64_t old_mip, mask = wr_mask & delegable_ints; 2215 uint32_t gin; 2216 2217 if (mask & MIP_SEIP) { 2218 env->software_seip = new_val & MIP_SEIP; 2219 new_val |= env->external_seip * MIP_SEIP; 2220 } 2221 2222 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2223 get_field(env->menvcfg, MENVCFG_STCE)) { 2224 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2225 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2226 } 2227 2228 if (mask) { 2229 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 2230 } else { 2231 old_mip = env->mip; 2232 } 2233 2234 if (csrno != CSR_HVIP) { 2235 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2236 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2237 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2238 } 2239 2240 if (ret_val) { 2241 *ret_val = old_mip; 2242 } 2243 2244 return RISCV_EXCP_NONE; 2245 } 2246 2247 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2248 target_ulong *ret_val, 2249 target_ulong new_val, target_ulong wr_mask) 2250 { 2251 uint64_t rval; 2252 RISCVException ret; 2253 2254 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2255 if (ret_val) { 2256 *ret_val = rval; 2257 } 2258 2259 return ret; 2260 } 2261 2262 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2263 target_ulong *ret_val, 2264 target_ulong new_val, target_ulong wr_mask) 2265 { 2266 uint64_t rval; 2267 RISCVException ret; 2268 2269 ret = rmw_mip64(env, csrno, &rval, 2270 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2271 if (ret_val) { 2272 *ret_val = rval >> 32; 2273 } 2274 2275 return ret; 2276 } 2277 2278 /* Supervisor Trap Setup */ 2279 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2280 Int128 *val) 2281 { 2282 uint64_t mask = sstatus_v1_10_mask; 2283 uint64_t sstatus = env->mstatus & mask; 2284 if (env->xl != MXL_RV32 || env->debugger) { 2285 mask |= SSTATUS64_UXL; 2286 } 2287 2288 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2289 return RISCV_EXCP_NONE; 2290 } 2291 2292 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2293 target_ulong *val) 2294 { 2295 target_ulong mask = (sstatus_v1_10_mask); 2296 if (env->xl != MXL_RV32 || env->debugger) { 2297 mask |= SSTATUS64_UXL; 2298 } 2299 /* TODO: Use SXL not MXL. */ 2300 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2301 return RISCV_EXCP_NONE; 2302 } 2303 2304 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2305 target_ulong val) 2306 { 2307 target_ulong mask = (sstatus_v1_10_mask); 2308 2309 if (env->xl != MXL_RV32 || env->debugger) { 2310 if ((val & SSTATUS64_UXL) != 0) { 2311 mask |= SSTATUS64_UXL; 2312 } 2313 } 2314 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2315 return write_mstatus(env, CSR_MSTATUS, newval); 2316 } 2317 2318 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2319 uint64_t *ret_val, 2320 uint64_t new_val, uint64_t wr_mask) 2321 { 2322 RISCVException ret; 2323 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2324 2325 /* Bring VS-level bits to correct position */ 2326 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2327 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2328 2329 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2330 if (ret_val) { 2331 *ret_val = (rval & mask) >> 1; 2332 } 2333 2334 return ret; 2335 } 2336 2337 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2338 target_ulong *ret_val, 2339 target_ulong new_val, target_ulong wr_mask) 2340 { 2341 uint64_t rval; 2342 RISCVException ret; 2343 2344 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2345 if (ret_val) { 2346 *ret_val = rval; 2347 } 2348 2349 return ret; 2350 } 2351 2352 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2353 target_ulong *ret_val, 2354 target_ulong new_val, target_ulong wr_mask) 2355 { 2356 uint64_t rval; 2357 RISCVException ret; 2358 2359 ret = rmw_vsie64(env, csrno, &rval, 2360 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2361 if (ret_val) { 2362 *ret_val = rval >> 32; 2363 } 2364 2365 return ret; 2366 } 2367 2368 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2369 uint64_t *ret_val, 2370 uint64_t new_val, uint64_t wr_mask) 2371 { 2372 RISCVException ret; 2373 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2374 2375 if (riscv_cpu_virt_enabled(env)) { 2376 if (env->hvictl & HVICTL_VTI) { 2377 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2378 } 2379 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2380 } else { 2381 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2382 } 2383 2384 if (ret_val) { 2385 *ret_val &= mask; 2386 } 2387 2388 return ret; 2389 } 2390 2391 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2392 target_ulong *ret_val, 2393 target_ulong new_val, target_ulong wr_mask) 2394 { 2395 uint64_t rval; 2396 RISCVException ret; 2397 2398 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2399 if (ret == RISCV_EXCP_NONE && ret_val) { 2400 *ret_val = rval; 2401 } 2402 2403 return ret; 2404 } 2405 2406 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2407 target_ulong *ret_val, 2408 target_ulong new_val, target_ulong wr_mask) 2409 { 2410 uint64_t rval; 2411 RISCVException ret; 2412 2413 ret = rmw_sie64(env, csrno, &rval, 2414 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2415 if (ret_val) { 2416 *ret_val = rval >> 32; 2417 } 2418 2419 return ret; 2420 } 2421 2422 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2423 target_ulong *val) 2424 { 2425 *val = env->stvec; 2426 return RISCV_EXCP_NONE; 2427 } 2428 2429 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2430 target_ulong val) 2431 { 2432 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2433 if ((val & 3) < 2) { 2434 env->stvec = val; 2435 } else { 2436 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2437 } 2438 return RISCV_EXCP_NONE; 2439 } 2440 2441 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2442 target_ulong *val) 2443 { 2444 *val = env->scounteren; 2445 return RISCV_EXCP_NONE; 2446 } 2447 2448 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2449 target_ulong val) 2450 { 2451 env->scounteren = val; 2452 return RISCV_EXCP_NONE; 2453 } 2454 2455 /* Supervisor Trap Handling */ 2456 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2457 Int128 *val) 2458 { 2459 *val = int128_make128(env->sscratch, env->sscratchh); 2460 return RISCV_EXCP_NONE; 2461 } 2462 2463 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2464 Int128 val) 2465 { 2466 env->sscratch = int128_getlo(val); 2467 env->sscratchh = int128_gethi(val); 2468 return RISCV_EXCP_NONE; 2469 } 2470 2471 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2472 target_ulong *val) 2473 { 2474 *val = env->sscratch; 2475 return RISCV_EXCP_NONE; 2476 } 2477 2478 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2479 target_ulong val) 2480 { 2481 env->sscratch = val; 2482 return RISCV_EXCP_NONE; 2483 } 2484 2485 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2486 target_ulong *val) 2487 { 2488 *val = env->sepc; 2489 return RISCV_EXCP_NONE; 2490 } 2491 2492 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2493 target_ulong val) 2494 { 2495 env->sepc = val; 2496 return RISCV_EXCP_NONE; 2497 } 2498 2499 static RISCVException read_scause(CPURISCVState *env, int csrno, 2500 target_ulong *val) 2501 { 2502 *val = env->scause; 2503 return RISCV_EXCP_NONE; 2504 } 2505 2506 static RISCVException write_scause(CPURISCVState *env, int csrno, 2507 target_ulong val) 2508 { 2509 env->scause = val; 2510 return RISCV_EXCP_NONE; 2511 } 2512 2513 static RISCVException read_stval(CPURISCVState *env, int csrno, 2514 target_ulong *val) 2515 { 2516 *val = env->stval; 2517 return RISCV_EXCP_NONE; 2518 } 2519 2520 static RISCVException write_stval(CPURISCVState *env, int csrno, 2521 target_ulong val) 2522 { 2523 env->stval = val; 2524 return RISCV_EXCP_NONE; 2525 } 2526 2527 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2528 uint64_t *ret_val, 2529 uint64_t new_val, uint64_t wr_mask) 2530 { 2531 RISCVException ret; 2532 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2533 2534 /* Bring VS-level bits to correct position */ 2535 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2536 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2537 2538 ret = rmw_mip64(env, csrno, &rval, new_val, 2539 wr_mask & mask & vsip_writable_mask); 2540 if (ret_val) { 2541 *ret_val = (rval & mask) >> 1; 2542 } 2543 2544 return ret; 2545 } 2546 2547 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2548 target_ulong *ret_val, 2549 target_ulong new_val, target_ulong wr_mask) 2550 { 2551 uint64_t rval; 2552 RISCVException ret; 2553 2554 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2555 if (ret_val) { 2556 *ret_val = rval; 2557 } 2558 2559 return ret; 2560 } 2561 2562 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2563 target_ulong *ret_val, 2564 target_ulong new_val, target_ulong wr_mask) 2565 { 2566 uint64_t rval; 2567 RISCVException ret; 2568 2569 ret = rmw_vsip64(env, csrno, &rval, 2570 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2571 if (ret_val) { 2572 *ret_val = rval >> 32; 2573 } 2574 2575 return ret; 2576 } 2577 2578 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2579 uint64_t *ret_val, 2580 uint64_t new_val, uint64_t wr_mask) 2581 { 2582 RISCVException ret; 2583 uint64_t mask = env->mideleg & sip_writable_mask; 2584 2585 if (riscv_cpu_virt_enabled(env)) { 2586 if (env->hvictl & HVICTL_VTI) { 2587 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2588 } 2589 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2590 } else { 2591 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2592 } 2593 2594 if (ret_val) { 2595 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2596 } 2597 2598 return ret; 2599 } 2600 2601 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2602 target_ulong *ret_val, 2603 target_ulong new_val, target_ulong wr_mask) 2604 { 2605 uint64_t rval; 2606 RISCVException ret; 2607 2608 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2609 if (ret_val) { 2610 *ret_val = rval; 2611 } 2612 2613 return ret; 2614 } 2615 2616 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2617 target_ulong *ret_val, 2618 target_ulong new_val, target_ulong wr_mask) 2619 { 2620 uint64_t rval; 2621 RISCVException ret; 2622 2623 ret = rmw_sip64(env, csrno, &rval, 2624 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2625 if (ret_val) { 2626 *ret_val = rval >> 32; 2627 } 2628 2629 return ret; 2630 } 2631 2632 /* Supervisor Protection and Translation */ 2633 static RISCVException read_satp(CPURISCVState *env, int csrno, 2634 target_ulong *val) 2635 { 2636 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2637 *val = 0; 2638 return RISCV_EXCP_NONE; 2639 } 2640 2641 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2642 return RISCV_EXCP_ILLEGAL_INST; 2643 } else { 2644 *val = env->satp; 2645 } 2646 2647 return RISCV_EXCP_NONE; 2648 } 2649 2650 static RISCVException write_satp(CPURISCVState *env, int csrno, 2651 target_ulong val) 2652 { 2653 target_ulong vm, mask; 2654 2655 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2656 return RISCV_EXCP_NONE; 2657 } 2658 2659 if (riscv_cpu_mxl(env) == MXL_RV32) { 2660 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2661 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2662 } else { 2663 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2664 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2665 } 2666 2667 if (vm && mask) { 2668 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2669 return RISCV_EXCP_ILLEGAL_INST; 2670 } else { 2671 /* 2672 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2673 * pass these through QEMU's TLB emulation as it improves 2674 * performance. Flushing the TLB on SATP writes with paging 2675 * enabled avoids leaking those invalid cached mappings. 2676 */ 2677 tlb_flush(env_cpu(env)); 2678 env->satp = val; 2679 } 2680 } 2681 return RISCV_EXCP_NONE; 2682 } 2683 2684 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2685 { 2686 int irq, ret; 2687 target_ulong topei; 2688 uint64_t vseip, vsgein; 2689 uint32_t iid, iprio, hviid, hviprio, gein; 2690 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2691 2692 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2693 hviid = get_field(env->hvictl, HVICTL_IID); 2694 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2695 2696 if (gein) { 2697 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2698 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2699 if (gein <= env->geilen && vseip) { 2700 siid[scount] = IRQ_S_EXT; 2701 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2702 if (env->aia_ireg_rmw_fn[PRV_S]) { 2703 /* 2704 * Call machine specific IMSIC register emulation for 2705 * reading TOPEI. 2706 */ 2707 ret = env->aia_ireg_rmw_fn[PRV_S]( 2708 env->aia_ireg_rmw_fn_arg[PRV_S], 2709 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2710 riscv_cpu_mxl_bits(env)), 2711 &topei, 0, 0); 2712 if (!ret && topei) { 2713 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2714 } 2715 } 2716 scount++; 2717 } 2718 } else { 2719 if (hviid == IRQ_S_EXT && hviprio) { 2720 siid[scount] = IRQ_S_EXT; 2721 siprio[scount] = hviprio; 2722 scount++; 2723 } 2724 } 2725 2726 if (env->hvictl & HVICTL_VTI) { 2727 if (hviid != IRQ_S_EXT) { 2728 siid[scount] = hviid; 2729 siprio[scount] = hviprio; 2730 scount++; 2731 } 2732 } else { 2733 irq = riscv_cpu_vsirq_pending(env); 2734 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2735 siid[scount] = irq; 2736 siprio[scount] = env->hviprio[irq]; 2737 scount++; 2738 } 2739 } 2740 2741 iid = 0; 2742 iprio = UINT_MAX; 2743 for (s = 0; s < scount; s++) { 2744 if (siprio[s] < iprio) { 2745 iid = siid[s]; 2746 iprio = siprio[s]; 2747 } 2748 } 2749 2750 if (iid) { 2751 if (env->hvictl & HVICTL_IPRIOM) { 2752 if (iprio > IPRIO_MMAXIPRIO) { 2753 iprio = IPRIO_MMAXIPRIO; 2754 } 2755 if (!iprio) { 2756 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2757 iprio = IPRIO_MMAXIPRIO; 2758 } 2759 } 2760 } else { 2761 iprio = 1; 2762 } 2763 } else { 2764 iprio = 0; 2765 } 2766 2767 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2768 *val |= iprio; 2769 return RISCV_EXCP_NONE; 2770 } 2771 2772 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2773 { 2774 int irq; 2775 uint8_t iprio; 2776 2777 if (riscv_cpu_virt_enabled(env)) { 2778 return read_vstopi(env, CSR_VSTOPI, val); 2779 } 2780 2781 irq = riscv_cpu_sirq_pending(env); 2782 if (irq <= 0 || irq > 63) { 2783 *val = 0; 2784 } else { 2785 iprio = env->siprio[irq]; 2786 if (!iprio) { 2787 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2788 iprio = IPRIO_MMAXIPRIO; 2789 } 2790 } 2791 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2792 *val |= iprio; 2793 } 2794 2795 return RISCV_EXCP_NONE; 2796 } 2797 2798 /* Hypervisor Extensions */ 2799 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2800 target_ulong *val) 2801 { 2802 *val = env->hstatus; 2803 if (riscv_cpu_mxl(env) != MXL_RV32) { 2804 /* We only support 64-bit VSXL */ 2805 *val = set_field(*val, HSTATUS_VSXL, 2); 2806 } 2807 /* We only support little endian */ 2808 *val = set_field(*val, HSTATUS_VSBE, 0); 2809 return RISCV_EXCP_NONE; 2810 } 2811 2812 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2813 target_ulong val) 2814 { 2815 env->hstatus = val; 2816 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2817 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2818 } 2819 if (get_field(val, HSTATUS_VSBE) != 0) { 2820 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2821 } 2822 return RISCV_EXCP_NONE; 2823 } 2824 2825 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2826 target_ulong *val) 2827 { 2828 *val = env->hedeleg; 2829 return RISCV_EXCP_NONE; 2830 } 2831 2832 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2833 target_ulong val) 2834 { 2835 env->hedeleg = val & vs_delegable_excps; 2836 return RISCV_EXCP_NONE; 2837 } 2838 2839 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2840 uint64_t *ret_val, 2841 uint64_t new_val, uint64_t wr_mask) 2842 { 2843 uint64_t mask = wr_mask & vs_delegable_ints; 2844 2845 if (ret_val) { 2846 *ret_val = env->hideleg & vs_delegable_ints; 2847 } 2848 2849 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2850 return RISCV_EXCP_NONE; 2851 } 2852 2853 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2854 target_ulong *ret_val, 2855 target_ulong new_val, target_ulong wr_mask) 2856 { 2857 uint64_t rval; 2858 RISCVException ret; 2859 2860 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2861 if (ret_val) { 2862 *ret_val = rval; 2863 } 2864 2865 return ret; 2866 } 2867 2868 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2869 target_ulong *ret_val, 2870 target_ulong new_val, target_ulong wr_mask) 2871 { 2872 uint64_t rval; 2873 RISCVException ret; 2874 2875 ret = rmw_hideleg64(env, csrno, &rval, 2876 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2877 if (ret_val) { 2878 *ret_val = rval >> 32; 2879 } 2880 2881 return ret; 2882 } 2883 2884 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2885 uint64_t *ret_val, 2886 uint64_t new_val, uint64_t wr_mask) 2887 { 2888 RISCVException ret; 2889 2890 ret = rmw_mip64(env, csrno, ret_val, new_val, 2891 wr_mask & hvip_writable_mask); 2892 if (ret_val) { 2893 *ret_val &= VS_MODE_INTERRUPTS; 2894 } 2895 2896 return ret; 2897 } 2898 2899 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2900 target_ulong *ret_val, 2901 target_ulong new_val, target_ulong wr_mask) 2902 { 2903 uint64_t rval; 2904 RISCVException ret; 2905 2906 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2907 if (ret_val) { 2908 *ret_val = rval; 2909 } 2910 2911 return ret; 2912 } 2913 2914 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2915 target_ulong *ret_val, 2916 target_ulong new_val, target_ulong wr_mask) 2917 { 2918 uint64_t rval; 2919 RISCVException ret; 2920 2921 ret = rmw_hvip64(env, csrno, &rval, 2922 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2923 if (ret_val) { 2924 *ret_val = rval >> 32; 2925 } 2926 2927 return ret; 2928 } 2929 2930 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2931 target_ulong *ret_value, 2932 target_ulong new_value, target_ulong write_mask) 2933 { 2934 int ret = rmw_mip(env, csrno, ret_value, new_value, 2935 write_mask & hip_writable_mask); 2936 2937 if (ret_value) { 2938 *ret_value &= HS_MODE_INTERRUPTS; 2939 } 2940 return ret; 2941 } 2942 2943 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2944 target_ulong *ret_val, 2945 target_ulong new_val, target_ulong wr_mask) 2946 { 2947 uint64_t rval; 2948 RISCVException ret; 2949 2950 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2951 if (ret_val) { 2952 *ret_val = rval & HS_MODE_INTERRUPTS; 2953 } 2954 2955 return ret; 2956 } 2957 2958 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2959 target_ulong *val) 2960 { 2961 *val = env->hcounteren; 2962 return RISCV_EXCP_NONE; 2963 } 2964 2965 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2966 target_ulong val) 2967 { 2968 env->hcounteren = val; 2969 return RISCV_EXCP_NONE; 2970 } 2971 2972 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2973 target_ulong *val) 2974 { 2975 if (val) { 2976 *val = env->hgeie; 2977 } 2978 return RISCV_EXCP_NONE; 2979 } 2980 2981 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2982 target_ulong val) 2983 { 2984 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2985 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2986 env->hgeie = val; 2987 /* Update mip.SGEIP bit */ 2988 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2989 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2990 return RISCV_EXCP_NONE; 2991 } 2992 2993 static RISCVException read_htval(CPURISCVState *env, int csrno, 2994 target_ulong *val) 2995 { 2996 *val = env->htval; 2997 return RISCV_EXCP_NONE; 2998 } 2999 3000 static RISCVException write_htval(CPURISCVState *env, int csrno, 3001 target_ulong val) 3002 { 3003 env->htval = val; 3004 return RISCV_EXCP_NONE; 3005 } 3006 3007 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3008 target_ulong *val) 3009 { 3010 *val = env->htinst; 3011 return RISCV_EXCP_NONE; 3012 } 3013 3014 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3015 target_ulong val) 3016 { 3017 return RISCV_EXCP_NONE; 3018 } 3019 3020 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3021 target_ulong *val) 3022 { 3023 if (val) { 3024 *val = env->hgeip; 3025 } 3026 return RISCV_EXCP_NONE; 3027 } 3028 3029 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3030 target_ulong *val) 3031 { 3032 *val = env->hgatp; 3033 return RISCV_EXCP_NONE; 3034 } 3035 3036 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3037 target_ulong val) 3038 { 3039 env->hgatp = val; 3040 return RISCV_EXCP_NONE; 3041 } 3042 3043 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3044 target_ulong *val) 3045 { 3046 if (!env->rdtime_fn) { 3047 return RISCV_EXCP_ILLEGAL_INST; 3048 } 3049 3050 *val = env->htimedelta; 3051 return RISCV_EXCP_NONE; 3052 } 3053 3054 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3055 target_ulong val) 3056 { 3057 RISCVCPU *cpu = env_archcpu(env); 3058 3059 if (!env->rdtime_fn) { 3060 return RISCV_EXCP_ILLEGAL_INST; 3061 } 3062 3063 if (riscv_cpu_mxl(env) == MXL_RV32) { 3064 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3065 } else { 3066 env->htimedelta = val; 3067 } 3068 3069 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3070 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3071 env->htimedelta, MIP_VSTIP); 3072 } 3073 3074 return RISCV_EXCP_NONE; 3075 } 3076 3077 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3078 target_ulong *val) 3079 { 3080 if (!env->rdtime_fn) { 3081 return RISCV_EXCP_ILLEGAL_INST; 3082 } 3083 3084 *val = env->htimedelta >> 32; 3085 return RISCV_EXCP_NONE; 3086 } 3087 3088 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3089 target_ulong val) 3090 { 3091 RISCVCPU *cpu = env_archcpu(env); 3092 3093 if (!env->rdtime_fn) { 3094 return RISCV_EXCP_ILLEGAL_INST; 3095 } 3096 3097 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3098 3099 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3100 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3101 env->htimedelta, MIP_VSTIP); 3102 } 3103 3104 return RISCV_EXCP_NONE; 3105 } 3106 3107 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3108 { 3109 *val = env->hvictl; 3110 return RISCV_EXCP_NONE; 3111 } 3112 3113 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3114 { 3115 env->hvictl = val & HVICTL_VALID_MASK; 3116 return RISCV_EXCP_NONE; 3117 } 3118 3119 static int read_hvipriox(CPURISCVState *env, int first_index, 3120 uint8_t *iprio, target_ulong *val) 3121 { 3122 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3123 3124 /* First index has to be a multiple of number of irqs per register */ 3125 if (first_index % num_irqs) { 3126 return (riscv_cpu_virt_enabled(env)) ? 3127 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3128 } 3129 3130 /* Fill-up return value */ 3131 *val = 0; 3132 for (i = 0; i < num_irqs; i++) { 3133 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3134 continue; 3135 } 3136 if (rdzero) { 3137 continue; 3138 } 3139 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3140 } 3141 3142 return RISCV_EXCP_NONE; 3143 } 3144 3145 static int write_hvipriox(CPURISCVState *env, int first_index, 3146 uint8_t *iprio, target_ulong val) 3147 { 3148 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3149 3150 /* First index has to be a multiple of number of irqs per register */ 3151 if (first_index % num_irqs) { 3152 return (riscv_cpu_virt_enabled(env)) ? 3153 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3154 } 3155 3156 /* Fill-up priority arrary */ 3157 for (i = 0; i < num_irqs; i++) { 3158 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3159 continue; 3160 } 3161 if (rdzero) { 3162 iprio[irq] = 0; 3163 } else { 3164 iprio[irq] = (val >> (i * 8)) & 0xff; 3165 } 3166 } 3167 3168 return RISCV_EXCP_NONE; 3169 } 3170 3171 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3172 { 3173 return read_hvipriox(env, 0, env->hviprio, val); 3174 } 3175 3176 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3177 { 3178 return write_hvipriox(env, 0, env->hviprio, val); 3179 } 3180 3181 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3182 { 3183 return read_hvipriox(env, 4, env->hviprio, val); 3184 } 3185 3186 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3187 { 3188 return write_hvipriox(env, 4, env->hviprio, val); 3189 } 3190 3191 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3192 { 3193 return read_hvipriox(env, 8, env->hviprio, val); 3194 } 3195 3196 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3197 { 3198 return write_hvipriox(env, 8, env->hviprio, val); 3199 } 3200 3201 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3202 { 3203 return read_hvipriox(env, 12, env->hviprio, val); 3204 } 3205 3206 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3207 { 3208 return write_hvipriox(env, 12, env->hviprio, val); 3209 } 3210 3211 /* Virtual CSR Registers */ 3212 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3213 target_ulong *val) 3214 { 3215 *val = env->vsstatus; 3216 return RISCV_EXCP_NONE; 3217 } 3218 3219 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3220 target_ulong val) 3221 { 3222 uint64_t mask = (target_ulong)-1; 3223 if ((val & VSSTATUS64_UXL) == 0) { 3224 mask &= ~VSSTATUS64_UXL; 3225 } 3226 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3227 return RISCV_EXCP_NONE; 3228 } 3229 3230 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3231 { 3232 *val = env->vstvec; 3233 return RISCV_EXCP_NONE; 3234 } 3235 3236 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3237 target_ulong val) 3238 { 3239 env->vstvec = val; 3240 return RISCV_EXCP_NONE; 3241 } 3242 3243 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3244 target_ulong *val) 3245 { 3246 *val = env->vsscratch; 3247 return RISCV_EXCP_NONE; 3248 } 3249 3250 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3251 target_ulong val) 3252 { 3253 env->vsscratch = val; 3254 return RISCV_EXCP_NONE; 3255 } 3256 3257 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3258 target_ulong *val) 3259 { 3260 *val = env->vsepc; 3261 return RISCV_EXCP_NONE; 3262 } 3263 3264 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3265 target_ulong val) 3266 { 3267 env->vsepc = val; 3268 return RISCV_EXCP_NONE; 3269 } 3270 3271 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3272 target_ulong *val) 3273 { 3274 *val = env->vscause; 3275 return RISCV_EXCP_NONE; 3276 } 3277 3278 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3279 target_ulong val) 3280 { 3281 env->vscause = val; 3282 return RISCV_EXCP_NONE; 3283 } 3284 3285 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3286 target_ulong *val) 3287 { 3288 *val = env->vstval; 3289 return RISCV_EXCP_NONE; 3290 } 3291 3292 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3293 target_ulong val) 3294 { 3295 env->vstval = val; 3296 return RISCV_EXCP_NONE; 3297 } 3298 3299 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3300 target_ulong *val) 3301 { 3302 *val = env->vsatp; 3303 return RISCV_EXCP_NONE; 3304 } 3305 3306 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3307 target_ulong val) 3308 { 3309 env->vsatp = val; 3310 return RISCV_EXCP_NONE; 3311 } 3312 3313 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3314 target_ulong *val) 3315 { 3316 *val = env->mtval2; 3317 return RISCV_EXCP_NONE; 3318 } 3319 3320 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3321 target_ulong val) 3322 { 3323 env->mtval2 = val; 3324 return RISCV_EXCP_NONE; 3325 } 3326 3327 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3328 target_ulong *val) 3329 { 3330 *val = env->mtinst; 3331 return RISCV_EXCP_NONE; 3332 } 3333 3334 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3335 target_ulong val) 3336 { 3337 env->mtinst = val; 3338 return RISCV_EXCP_NONE; 3339 } 3340 3341 /* Physical Memory Protection */ 3342 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3343 target_ulong *val) 3344 { 3345 *val = mseccfg_csr_read(env); 3346 return RISCV_EXCP_NONE; 3347 } 3348 3349 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3350 target_ulong val) 3351 { 3352 mseccfg_csr_write(env, val); 3353 return RISCV_EXCP_NONE; 3354 } 3355 3356 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 3357 { 3358 /* TODO: RV128 restriction check */ 3359 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 3360 return false; 3361 } 3362 return true; 3363 } 3364 3365 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3366 target_ulong *val) 3367 { 3368 uint32_t reg_index = csrno - CSR_PMPCFG0; 3369 3370 if (!check_pmp_reg_index(env, reg_index)) { 3371 return RISCV_EXCP_ILLEGAL_INST; 3372 } 3373 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 3374 return RISCV_EXCP_NONE; 3375 } 3376 3377 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3378 target_ulong val) 3379 { 3380 uint32_t reg_index = csrno - CSR_PMPCFG0; 3381 3382 if (!check_pmp_reg_index(env, reg_index)) { 3383 return RISCV_EXCP_ILLEGAL_INST; 3384 } 3385 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 3386 return RISCV_EXCP_NONE; 3387 } 3388 3389 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3390 target_ulong *val) 3391 { 3392 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3393 return RISCV_EXCP_NONE; 3394 } 3395 3396 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3397 target_ulong val) 3398 { 3399 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3400 return RISCV_EXCP_NONE; 3401 } 3402 3403 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3404 target_ulong *val) 3405 { 3406 *val = tselect_csr_read(env); 3407 return RISCV_EXCP_NONE; 3408 } 3409 3410 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3411 target_ulong val) 3412 { 3413 tselect_csr_write(env, val); 3414 return RISCV_EXCP_NONE; 3415 } 3416 3417 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3418 target_ulong *val) 3419 { 3420 /* return 0 in tdata1 to end the trigger enumeration */ 3421 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3422 *val = 0; 3423 return RISCV_EXCP_NONE; 3424 } 3425 3426 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3427 return RISCV_EXCP_ILLEGAL_INST; 3428 } 3429 3430 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3431 return RISCV_EXCP_NONE; 3432 } 3433 3434 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3435 target_ulong val) 3436 { 3437 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3438 return RISCV_EXCP_ILLEGAL_INST; 3439 } 3440 3441 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3442 return RISCV_EXCP_NONE; 3443 } 3444 3445 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3446 target_ulong *val) 3447 { 3448 *val = tinfo_csr_read(env); 3449 return RISCV_EXCP_NONE; 3450 } 3451 3452 /* 3453 * Functions to access Pointer Masking feature registers 3454 * We have to check if current priv lvl could modify 3455 * csr in given mode 3456 */ 3457 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3458 { 3459 int csr_priv = get_field(csrno, 0x300); 3460 int pm_current; 3461 3462 if (env->debugger) { 3463 return false; 3464 } 3465 /* 3466 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3467 * so allow the access 3468 */ 3469 if (env->priv != csr_priv) { 3470 return false; 3471 } 3472 switch (env->priv) { 3473 case PRV_M: 3474 pm_current = get_field(env->mmte, M_PM_CURRENT); 3475 break; 3476 case PRV_S: 3477 pm_current = get_field(env->mmte, S_PM_CURRENT); 3478 break; 3479 case PRV_U: 3480 pm_current = get_field(env->mmte, U_PM_CURRENT); 3481 break; 3482 default: 3483 g_assert_not_reached(); 3484 } 3485 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3486 return !pm_current; 3487 } 3488 3489 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3490 target_ulong *val) 3491 { 3492 *val = env->mmte & MMTE_MASK; 3493 return RISCV_EXCP_NONE; 3494 } 3495 3496 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3497 target_ulong val) 3498 { 3499 uint64_t mstatus; 3500 target_ulong wpri_val = val & MMTE_MASK; 3501 3502 if (val != wpri_val) { 3503 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3504 "MMTE: WPRI violation written 0x", val, 3505 "vs expected 0x", wpri_val); 3506 } 3507 /* for machine mode pm.current is hardwired to 1 */ 3508 wpri_val |= MMTE_M_PM_CURRENT; 3509 3510 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3511 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3512 env->mmte = wpri_val | PM_EXT_DIRTY; 3513 riscv_cpu_update_mask(env); 3514 3515 /* Set XS and SD bits, since PM CSRs are dirty */ 3516 mstatus = env->mstatus | MSTATUS_XS; 3517 write_mstatus(env, csrno, mstatus); 3518 return RISCV_EXCP_NONE; 3519 } 3520 3521 static RISCVException read_smte(CPURISCVState *env, int csrno, 3522 target_ulong *val) 3523 { 3524 *val = env->mmte & SMTE_MASK; 3525 return RISCV_EXCP_NONE; 3526 } 3527 3528 static RISCVException write_smte(CPURISCVState *env, int csrno, 3529 target_ulong val) 3530 { 3531 target_ulong wpri_val = val & SMTE_MASK; 3532 3533 if (val != wpri_val) { 3534 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3535 "SMTE: WPRI violation written 0x", val, 3536 "vs expected 0x", wpri_val); 3537 } 3538 3539 /* if pm.current==0 we can't modify current PM CSRs */ 3540 if (check_pm_current_disabled(env, csrno)) { 3541 return RISCV_EXCP_NONE; 3542 } 3543 3544 wpri_val |= (env->mmte & ~SMTE_MASK); 3545 write_mmte(env, csrno, wpri_val); 3546 return RISCV_EXCP_NONE; 3547 } 3548 3549 static RISCVException read_umte(CPURISCVState *env, int csrno, 3550 target_ulong *val) 3551 { 3552 *val = env->mmte & UMTE_MASK; 3553 return RISCV_EXCP_NONE; 3554 } 3555 3556 static RISCVException write_umte(CPURISCVState *env, int csrno, 3557 target_ulong val) 3558 { 3559 target_ulong wpri_val = val & UMTE_MASK; 3560 3561 if (val != wpri_val) { 3562 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3563 "UMTE: WPRI violation written 0x", val, 3564 "vs expected 0x", wpri_val); 3565 } 3566 3567 if (check_pm_current_disabled(env, csrno)) { 3568 return RISCV_EXCP_NONE; 3569 } 3570 3571 wpri_val |= (env->mmte & ~UMTE_MASK); 3572 write_mmte(env, csrno, wpri_val); 3573 return RISCV_EXCP_NONE; 3574 } 3575 3576 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3577 target_ulong *val) 3578 { 3579 *val = env->mpmmask; 3580 return RISCV_EXCP_NONE; 3581 } 3582 3583 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3584 target_ulong val) 3585 { 3586 uint64_t mstatus; 3587 3588 env->mpmmask = val; 3589 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3590 env->cur_pmmask = val; 3591 } 3592 env->mmte |= PM_EXT_DIRTY; 3593 3594 /* Set XS and SD bits, since PM CSRs are dirty */ 3595 mstatus = env->mstatus | MSTATUS_XS; 3596 write_mstatus(env, csrno, mstatus); 3597 return RISCV_EXCP_NONE; 3598 } 3599 3600 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3601 target_ulong *val) 3602 { 3603 *val = env->spmmask; 3604 return RISCV_EXCP_NONE; 3605 } 3606 3607 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3608 target_ulong val) 3609 { 3610 uint64_t mstatus; 3611 3612 /* if pm.current==0 we can't modify current PM CSRs */ 3613 if (check_pm_current_disabled(env, csrno)) { 3614 return RISCV_EXCP_NONE; 3615 } 3616 env->spmmask = val; 3617 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3618 env->cur_pmmask = val; 3619 } 3620 env->mmte |= PM_EXT_DIRTY; 3621 3622 /* Set XS and SD bits, since PM CSRs are dirty */ 3623 mstatus = env->mstatus | MSTATUS_XS; 3624 write_mstatus(env, csrno, mstatus); 3625 return RISCV_EXCP_NONE; 3626 } 3627 3628 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3629 target_ulong *val) 3630 { 3631 *val = env->upmmask; 3632 return RISCV_EXCP_NONE; 3633 } 3634 3635 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3636 target_ulong val) 3637 { 3638 uint64_t mstatus; 3639 3640 /* if pm.current==0 we can't modify current PM CSRs */ 3641 if (check_pm_current_disabled(env, csrno)) { 3642 return RISCV_EXCP_NONE; 3643 } 3644 env->upmmask = val; 3645 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3646 env->cur_pmmask = val; 3647 } 3648 env->mmte |= PM_EXT_DIRTY; 3649 3650 /* Set XS and SD bits, since PM CSRs are dirty */ 3651 mstatus = env->mstatus | MSTATUS_XS; 3652 write_mstatus(env, csrno, mstatus); 3653 return RISCV_EXCP_NONE; 3654 } 3655 3656 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3657 target_ulong *val) 3658 { 3659 *val = env->mpmbase; 3660 return RISCV_EXCP_NONE; 3661 } 3662 3663 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3664 target_ulong val) 3665 { 3666 uint64_t mstatus; 3667 3668 env->mpmbase = val; 3669 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3670 env->cur_pmbase = val; 3671 } 3672 env->mmte |= PM_EXT_DIRTY; 3673 3674 /* Set XS and SD bits, since PM CSRs are dirty */ 3675 mstatus = env->mstatus | MSTATUS_XS; 3676 write_mstatus(env, csrno, mstatus); 3677 return RISCV_EXCP_NONE; 3678 } 3679 3680 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3681 target_ulong *val) 3682 { 3683 *val = env->spmbase; 3684 return RISCV_EXCP_NONE; 3685 } 3686 3687 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3688 target_ulong val) 3689 { 3690 uint64_t mstatus; 3691 3692 /* if pm.current==0 we can't modify current PM CSRs */ 3693 if (check_pm_current_disabled(env, csrno)) { 3694 return RISCV_EXCP_NONE; 3695 } 3696 env->spmbase = val; 3697 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3698 env->cur_pmbase = val; 3699 } 3700 env->mmte |= PM_EXT_DIRTY; 3701 3702 /* Set XS and SD bits, since PM CSRs are dirty */ 3703 mstatus = env->mstatus | MSTATUS_XS; 3704 write_mstatus(env, csrno, mstatus); 3705 return RISCV_EXCP_NONE; 3706 } 3707 3708 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3709 target_ulong *val) 3710 { 3711 *val = env->upmbase; 3712 return RISCV_EXCP_NONE; 3713 } 3714 3715 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3716 target_ulong val) 3717 { 3718 uint64_t mstatus; 3719 3720 /* if pm.current==0 we can't modify current PM CSRs */ 3721 if (check_pm_current_disabled(env, csrno)) { 3722 return RISCV_EXCP_NONE; 3723 } 3724 env->upmbase = val; 3725 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3726 env->cur_pmbase = val; 3727 } 3728 env->mmte |= PM_EXT_DIRTY; 3729 3730 /* Set XS and SD bits, since PM CSRs are dirty */ 3731 mstatus = env->mstatus | MSTATUS_XS; 3732 write_mstatus(env, csrno, mstatus); 3733 return RISCV_EXCP_NONE; 3734 } 3735 3736 #endif 3737 3738 /* Crypto Extension */ 3739 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3740 target_ulong *ret_value, 3741 target_ulong new_value, 3742 target_ulong write_mask) 3743 { 3744 uint16_t random_v; 3745 Error *random_e = NULL; 3746 int random_r; 3747 target_ulong rval; 3748 3749 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3750 if (unlikely(random_r < 0)) { 3751 /* 3752 * Failed, for unknown reasons in the crypto subsystem. 3753 * The best we can do is log the reason and return a 3754 * failure indication to the guest. There is no reason 3755 * we know to expect the failure to be transitory, so 3756 * indicate DEAD to avoid having the guest spin on WAIT. 3757 */ 3758 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3759 __func__, error_get_pretty(random_e)); 3760 error_free(random_e); 3761 rval = SEED_OPST_DEAD; 3762 } else { 3763 rval = random_v | SEED_OPST_ES16; 3764 } 3765 3766 if (ret_value) { 3767 *ret_value = rval; 3768 } 3769 3770 return RISCV_EXCP_NONE; 3771 } 3772 3773 /* 3774 * riscv_csrrw - read and/or update control and status register 3775 * 3776 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3777 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3778 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3779 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3780 */ 3781 3782 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3783 int csrno, 3784 bool write_mask, 3785 RISCVCPU *cpu) 3786 { 3787 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3788 int read_only = get_field(csrno, 0xC00) == 3; 3789 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3790 3791 /* ensure the CSR extension is enabled. */ 3792 if (!cpu->cfg.ext_icsr) { 3793 return RISCV_EXCP_ILLEGAL_INST; 3794 } 3795 3796 if (env->priv_ver < csr_min_priv) { 3797 return RISCV_EXCP_ILLEGAL_INST; 3798 } 3799 3800 /* check predicate */ 3801 if (!csr_ops[csrno].predicate) { 3802 return RISCV_EXCP_ILLEGAL_INST; 3803 } 3804 3805 if (write_mask && read_only) { 3806 return RISCV_EXCP_ILLEGAL_INST; 3807 } 3808 3809 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3810 if (ret != RISCV_EXCP_NONE) { 3811 return ret; 3812 } 3813 3814 #if !defined(CONFIG_USER_ONLY) 3815 int csr_priv, effective_priv = env->priv; 3816 3817 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3818 !riscv_cpu_virt_enabled(env)) { 3819 /* 3820 * We are in HS mode. Add 1 to the effective privledge level to 3821 * allow us to access the Hypervisor CSRs. 3822 */ 3823 effective_priv++; 3824 } 3825 3826 csr_priv = get_field(csrno, 0x300); 3827 if (!env->debugger && (effective_priv < csr_priv)) { 3828 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3829 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3830 } 3831 return RISCV_EXCP_ILLEGAL_INST; 3832 } 3833 #endif 3834 return RISCV_EXCP_NONE; 3835 } 3836 3837 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3838 target_ulong *ret_value, 3839 target_ulong new_value, 3840 target_ulong write_mask) 3841 { 3842 RISCVException ret; 3843 target_ulong old_value; 3844 3845 /* execute combined read/write operation if it exists */ 3846 if (csr_ops[csrno].op) { 3847 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3848 } 3849 3850 /* if no accessor exists then return failure */ 3851 if (!csr_ops[csrno].read) { 3852 return RISCV_EXCP_ILLEGAL_INST; 3853 } 3854 /* read old value */ 3855 ret = csr_ops[csrno].read(env, csrno, &old_value); 3856 if (ret != RISCV_EXCP_NONE) { 3857 return ret; 3858 } 3859 3860 /* write value if writable and write mask set, otherwise drop writes */ 3861 if (write_mask) { 3862 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3863 if (csr_ops[csrno].write) { 3864 ret = csr_ops[csrno].write(env, csrno, new_value); 3865 if (ret != RISCV_EXCP_NONE) { 3866 return ret; 3867 } 3868 } 3869 } 3870 3871 /* return old value */ 3872 if (ret_value) { 3873 *ret_value = old_value; 3874 } 3875 3876 return RISCV_EXCP_NONE; 3877 } 3878 3879 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3880 target_ulong *ret_value, 3881 target_ulong new_value, target_ulong write_mask) 3882 { 3883 RISCVCPU *cpu = env_archcpu(env); 3884 3885 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3886 if (ret != RISCV_EXCP_NONE) { 3887 return ret; 3888 } 3889 3890 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3891 } 3892 3893 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3894 Int128 *ret_value, 3895 Int128 new_value, 3896 Int128 write_mask) 3897 { 3898 RISCVException ret; 3899 Int128 old_value; 3900 3901 /* read old value */ 3902 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3903 if (ret != RISCV_EXCP_NONE) { 3904 return ret; 3905 } 3906 3907 /* write value if writable and write mask set, otherwise drop writes */ 3908 if (int128_nz(write_mask)) { 3909 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3910 int128_and(new_value, write_mask)); 3911 if (csr_ops[csrno].write128) { 3912 ret = csr_ops[csrno].write128(env, csrno, new_value); 3913 if (ret != RISCV_EXCP_NONE) { 3914 return ret; 3915 } 3916 } else if (csr_ops[csrno].write) { 3917 /* avoids having to write wrappers for all registers */ 3918 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3919 if (ret != RISCV_EXCP_NONE) { 3920 return ret; 3921 } 3922 } 3923 } 3924 3925 /* return old value */ 3926 if (ret_value) { 3927 *ret_value = old_value; 3928 } 3929 3930 return RISCV_EXCP_NONE; 3931 } 3932 3933 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3934 Int128 *ret_value, 3935 Int128 new_value, Int128 write_mask) 3936 { 3937 RISCVException ret; 3938 RISCVCPU *cpu = env_archcpu(env); 3939 3940 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3941 if (ret != RISCV_EXCP_NONE) { 3942 return ret; 3943 } 3944 3945 if (csr_ops[csrno].read128) { 3946 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3947 } 3948 3949 /* 3950 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3951 * at all defined. 3952 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3953 * significant), for those, this fallback is correctly handling the accesses 3954 */ 3955 target_ulong old_value; 3956 ret = riscv_csrrw_do64(env, csrno, &old_value, 3957 int128_getlo(new_value), 3958 int128_getlo(write_mask)); 3959 if (ret == RISCV_EXCP_NONE && ret_value) { 3960 *ret_value = int128_make64(old_value); 3961 } 3962 return ret; 3963 } 3964 3965 /* 3966 * Debugger support. If not in user mode, set env->debugger before the 3967 * riscv_csrrw call and clear it after the call. 3968 */ 3969 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3970 target_ulong *ret_value, 3971 target_ulong new_value, 3972 target_ulong write_mask) 3973 { 3974 RISCVException ret; 3975 #if !defined(CONFIG_USER_ONLY) 3976 env->debugger = true; 3977 #endif 3978 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3979 #if !defined(CONFIG_USER_ONLY) 3980 env->debugger = false; 3981 #endif 3982 return ret; 3983 } 3984 3985 /* Control and Status Register function table */ 3986 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3987 /* User Floating-Point CSRs */ 3988 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3989 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3990 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3991 /* Vector CSRs */ 3992 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 3993 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 3994 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 3995 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 3996 [CSR_VL] = { "vl", vs, read_vl }, 3997 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 3998 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 3999 /* User Timers and Counters */ 4000 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4001 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4002 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4003 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4004 4005 /* 4006 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4007 * rdtime callback is not provided by machine/platform emulation. 4008 */ 4009 [CSR_TIME] = { "time", ctr, read_time }, 4010 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4011 4012 /* Crypto Extension */ 4013 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4014 4015 #if !defined(CONFIG_USER_ONLY) 4016 /* Machine Timers and Counters */ 4017 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4018 write_mhpmcounter }, 4019 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4020 write_mhpmcounter }, 4021 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4022 write_mhpmcounterh }, 4023 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4024 write_mhpmcounterh }, 4025 4026 /* Machine Information Registers */ 4027 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4028 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4029 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4030 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4031 4032 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4033 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4034 /* Machine Trap Setup */ 4035 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4036 NULL, read_mstatus_i128 }, 4037 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4038 NULL, read_misa_i128 }, 4039 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4040 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4041 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4042 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4043 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4044 write_mcounteren }, 4045 4046 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4047 write_mstatush }, 4048 4049 /* Machine Trap Handling */ 4050 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4051 NULL, read_mscratch_i128, write_mscratch_i128 }, 4052 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4053 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4054 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4055 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4056 4057 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4058 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4059 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4060 4061 /* Machine-Level Interrupts (AIA) */ 4062 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4063 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4064 4065 /* Virtual Interrupts for Supervisor Level (AIA) */ 4066 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4067 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4068 4069 /* Machine-Level High-Half CSRs (AIA) */ 4070 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4071 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4072 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4073 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4074 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4075 4076 /* Execution environment configuration */ 4077 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4078 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4079 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4080 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4081 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4082 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4083 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4084 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4085 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4086 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4087 4088 /* Smstateen extension CSRs */ 4089 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4090 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4091 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4092 write_mstateen0h, 4093 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4094 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4095 write_mstateen_1_3, 4096 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4097 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4098 write_mstateenh_1_3, 4099 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4100 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4101 write_mstateen_1_3, 4102 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4103 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4104 write_mstateenh_1_3, 4105 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4106 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4107 write_mstateen_1_3, 4108 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4109 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4110 write_mstateenh_1_3, 4111 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4112 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4113 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4114 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4115 write_hstateen0h, 4116 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4117 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4118 write_hstateen_1_3, 4119 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4120 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4121 write_hstateenh_1_3, 4122 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4123 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4124 write_hstateen_1_3, 4125 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4126 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4127 write_hstateenh_1_3, 4128 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4129 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4130 write_hstateen_1_3, 4131 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4132 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4133 write_hstateenh_1_3, 4134 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4135 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4136 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4137 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4138 write_sstateen_1_3, 4139 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4140 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4141 write_sstateen_1_3, 4142 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4143 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4144 write_sstateen_1_3, 4145 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4146 4147 /* Supervisor Trap Setup */ 4148 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4149 NULL, read_sstatus_i128 }, 4150 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4151 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4152 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4153 write_scounteren }, 4154 4155 /* Supervisor Trap Handling */ 4156 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4157 NULL, read_sscratch_i128, write_sscratch_i128 }, 4158 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4159 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4160 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4161 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4162 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4163 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4164 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4165 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4166 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4167 write_vstimecmp, 4168 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4169 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4170 write_vstimecmph, 4171 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4172 4173 /* Supervisor Protection and Translation */ 4174 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 4175 4176 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4177 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4178 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4179 4180 /* Supervisor-Level Interrupts (AIA) */ 4181 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4182 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4183 4184 /* Supervisor-Level High-Half CSRs (AIA) */ 4185 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4186 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4187 4188 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4189 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4190 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4191 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4192 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4193 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4194 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4195 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4196 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4197 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4198 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4199 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4200 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4201 write_hcounteren, 4202 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4203 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4204 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4205 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4206 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4207 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4208 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4209 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4210 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4211 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 4212 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4213 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4214 write_htimedelta, 4215 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4216 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4217 write_htimedeltah, 4218 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4219 4220 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4221 write_vsstatus, 4222 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4223 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4224 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4225 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4226 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4227 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4228 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4229 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4230 write_vsscratch, 4231 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4232 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4233 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4234 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4235 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4236 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4237 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4238 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4239 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4240 4241 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4242 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4243 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4244 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4245 4246 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4247 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4248 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4249 write_hvictl }, 4250 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4251 write_hviprio1 }, 4252 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4253 write_hviprio2 }, 4254 4255 /* 4256 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4257 */ 4258 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4259 rmw_xiselect }, 4260 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4261 4262 /* VS-Level Interrupts (H-extension with AIA) */ 4263 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4264 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4265 4266 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4267 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4268 rmw_hidelegh }, 4269 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4270 write_ignore }, 4271 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4272 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4273 write_hviprio1h }, 4274 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4275 write_hviprio2h }, 4276 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4277 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4278 4279 /* Physical Memory Protection */ 4280 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4281 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4282 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4283 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4284 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4285 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4286 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4287 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4288 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4289 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4290 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4291 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4292 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4293 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4294 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4295 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4296 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4297 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4298 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4299 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4300 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4301 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4302 4303 /* Debug CSRs */ 4304 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4305 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4306 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4307 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4308 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4309 4310 /* User Pointer Masking */ 4311 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4312 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4313 write_upmmask }, 4314 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4315 write_upmbase }, 4316 /* Machine Pointer Masking */ 4317 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4318 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4319 write_mpmmask }, 4320 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4321 write_mpmbase }, 4322 /* Supervisor Pointer Masking */ 4323 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4324 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4325 write_spmmask }, 4326 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4327 write_spmbase }, 4328 4329 /* Performance Counters */ 4330 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4331 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4332 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4333 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4334 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4335 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4336 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4337 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4338 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4339 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4340 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4341 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4342 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4343 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4344 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4345 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4346 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4347 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4348 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4349 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4350 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4351 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4352 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4353 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4354 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4355 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4356 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4357 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4358 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4359 4360 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4361 write_mhpmcounter }, 4362 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4363 write_mhpmcounter }, 4364 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4365 write_mhpmcounter }, 4366 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4367 write_mhpmcounter }, 4368 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4369 write_mhpmcounter }, 4370 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4371 write_mhpmcounter }, 4372 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4373 write_mhpmcounter }, 4374 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4375 write_mhpmcounter }, 4376 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4377 write_mhpmcounter }, 4378 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4379 write_mhpmcounter }, 4380 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4381 write_mhpmcounter }, 4382 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4383 write_mhpmcounter }, 4384 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4385 write_mhpmcounter }, 4386 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4387 write_mhpmcounter }, 4388 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4389 write_mhpmcounter }, 4390 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4391 write_mhpmcounter }, 4392 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4393 write_mhpmcounter }, 4394 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4395 write_mhpmcounter }, 4396 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4397 write_mhpmcounter }, 4398 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4399 write_mhpmcounter }, 4400 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4401 write_mhpmcounter }, 4402 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4403 write_mhpmcounter }, 4404 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4405 write_mhpmcounter }, 4406 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4407 write_mhpmcounter }, 4408 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4409 write_mhpmcounter }, 4410 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4411 write_mhpmcounter }, 4412 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4413 write_mhpmcounter }, 4414 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4415 write_mhpmcounter }, 4416 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4417 write_mhpmcounter }, 4418 4419 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4420 write_mcountinhibit, 4421 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4422 4423 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4424 write_mhpmevent }, 4425 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4426 write_mhpmevent }, 4427 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4428 write_mhpmevent }, 4429 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4430 write_mhpmevent }, 4431 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4432 write_mhpmevent }, 4433 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4434 write_mhpmevent }, 4435 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4436 write_mhpmevent }, 4437 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4438 write_mhpmevent }, 4439 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4440 write_mhpmevent }, 4441 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4442 write_mhpmevent }, 4443 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4444 write_mhpmevent }, 4445 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4446 write_mhpmevent }, 4447 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4448 write_mhpmevent }, 4449 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4450 write_mhpmevent }, 4451 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4452 write_mhpmevent }, 4453 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4454 write_mhpmevent }, 4455 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4456 write_mhpmevent }, 4457 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4458 write_mhpmevent }, 4459 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4460 write_mhpmevent }, 4461 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4462 write_mhpmevent }, 4463 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4464 write_mhpmevent }, 4465 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4466 write_mhpmevent }, 4467 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4468 write_mhpmevent }, 4469 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4470 write_mhpmevent }, 4471 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4472 write_mhpmevent }, 4473 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4474 write_mhpmevent }, 4475 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4476 write_mhpmevent }, 4477 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4478 write_mhpmevent }, 4479 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4480 write_mhpmevent }, 4481 4482 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4483 write_mhpmeventh, 4484 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4485 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4486 write_mhpmeventh, 4487 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4488 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4489 write_mhpmeventh, 4490 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4491 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4492 write_mhpmeventh, 4493 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4494 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4495 write_mhpmeventh, 4496 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4497 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4498 write_mhpmeventh, 4499 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4500 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4501 write_mhpmeventh, 4502 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4503 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4504 write_mhpmeventh, 4505 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4506 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4507 write_mhpmeventh, 4508 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4509 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4510 write_mhpmeventh, 4511 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4512 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4513 write_mhpmeventh, 4514 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4515 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4516 write_mhpmeventh, 4517 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4518 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4519 write_mhpmeventh, 4520 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4521 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4522 write_mhpmeventh, 4523 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4524 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4525 write_mhpmeventh, 4526 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4527 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4528 write_mhpmeventh, 4529 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4530 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4531 write_mhpmeventh, 4532 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4533 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4534 write_mhpmeventh, 4535 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4536 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4537 write_mhpmeventh, 4538 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4539 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4540 write_mhpmeventh, 4541 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4542 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4543 write_mhpmeventh, 4544 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4545 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4546 write_mhpmeventh, 4547 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4548 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4549 write_mhpmeventh, 4550 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4551 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4552 write_mhpmeventh, 4553 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4554 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4555 write_mhpmeventh, 4556 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4557 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4558 write_mhpmeventh, 4559 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4560 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4561 write_mhpmeventh, 4562 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4563 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4564 write_mhpmeventh, 4565 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4566 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4567 write_mhpmeventh, 4568 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4569 4570 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4571 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4572 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4573 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4574 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4575 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4576 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4577 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4578 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4579 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4580 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4581 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4582 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4583 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4584 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4585 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4586 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4587 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4588 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4589 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4590 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4591 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4592 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4593 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4594 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4595 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4596 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4597 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4598 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4599 4600 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4601 write_mhpmcounterh }, 4602 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4603 write_mhpmcounterh }, 4604 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4605 write_mhpmcounterh }, 4606 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4607 write_mhpmcounterh }, 4608 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4609 write_mhpmcounterh }, 4610 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4611 write_mhpmcounterh }, 4612 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4613 write_mhpmcounterh }, 4614 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4615 write_mhpmcounterh }, 4616 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4617 write_mhpmcounterh }, 4618 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4619 write_mhpmcounterh }, 4620 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4621 write_mhpmcounterh }, 4622 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4623 write_mhpmcounterh }, 4624 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4625 write_mhpmcounterh }, 4626 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4627 write_mhpmcounterh }, 4628 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4629 write_mhpmcounterh }, 4630 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4631 write_mhpmcounterh }, 4632 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4633 write_mhpmcounterh }, 4634 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4635 write_mhpmcounterh }, 4636 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4637 write_mhpmcounterh }, 4638 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4639 write_mhpmcounterh }, 4640 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4641 write_mhpmcounterh }, 4642 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4643 write_mhpmcounterh }, 4644 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4645 write_mhpmcounterh }, 4646 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4647 write_mhpmcounterh }, 4648 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4649 write_mhpmcounterh }, 4650 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4651 write_mhpmcounterh }, 4652 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4653 write_mhpmcounterh }, 4654 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4655 write_mhpmcounterh }, 4656 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4657 write_mhpmcounterh }, 4658 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4659 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4660 4661 #endif /* !CONFIG_USER_ONLY */ 4662 }; 4663