1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "tcg/tcg-cpu.h" 25 #include "pmu.h" 26 #include "time_helper.h" 27 #include "exec/exec-all.h" 28 #include "exec/tb-flush.h" 29 #include "sysemu/cpu-timers.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 33 /* CSR function table public API */ 34 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 35 { 36 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 37 } 38 39 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 40 { 41 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 42 } 43 44 /* Predicates */ 45 #if !defined(CONFIG_USER_ONLY) 46 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) 47 { 48 bool virt = env->virt_enabled; 49 50 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 51 return RISCV_EXCP_NONE; 52 } 53 54 if (!(env->mstateen[index] & bit)) { 55 return RISCV_EXCP_ILLEGAL_INST; 56 } 57 58 if (virt) { 59 if (!(env->hstateen[index] & bit)) { 60 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 61 } 62 63 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 64 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 65 } 66 } 67 68 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 69 if (!(env->sstateen[index] & bit)) { 70 return RISCV_EXCP_ILLEGAL_INST; 71 } 72 } 73 74 return RISCV_EXCP_NONE; 75 } 76 #endif 77 78 static RISCVException fs(CPURISCVState *env, int csrno) 79 { 80 #if !defined(CONFIG_USER_ONLY) 81 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 82 !riscv_cpu_cfg(env)->ext_zfinx) { 83 return RISCV_EXCP_ILLEGAL_INST; 84 } 85 86 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 87 return smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR); 88 } 89 #endif 90 return RISCV_EXCP_NONE; 91 } 92 93 static RISCVException vs(CPURISCVState *env, int csrno) 94 { 95 if (riscv_cpu_cfg(env)->ext_zve32x) { 96 #if !defined(CONFIG_USER_ONLY) 97 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 98 return RISCV_EXCP_ILLEGAL_INST; 99 } 100 #endif 101 return RISCV_EXCP_NONE; 102 } 103 return RISCV_EXCP_ILLEGAL_INST; 104 } 105 106 static RISCVException ctr(CPURISCVState *env, int csrno) 107 { 108 #if !defined(CONFIG_USER_ONLY) 109 RISCVCPU *cpu = env_archcpu(env); 110 int ctr_index; 111 target_ulong ctr_mask; 112 int base_csrno = CSR_CYCLE; 113 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 114 115 if (rv32 && csrno >= CSR_CYCLEH) { 116 /* Offset for RV32 hpmcounternh counters */ 117 base_csrno += 0x80; 118 } 119 ctr_index = csrno - base_csrno; 120 ctr_mask = BIT(ctr_index); 121 122 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 123 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 124 if (!riscv_cpu_cfg(env)->ext_zicntr) { 125 return RISCV_EXCP_ILLEGAL_INST; 126 } 127 128 goto skip_ext_pmu_check; 129 } 130 131 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 132 /* No counter is enabled in PMU or the counter is out of range */ 133 return RISCV_EXCP_ILLEGAL_INST; 134 } 135 136 skip_ext_pmu_check: 137 138 if (env->debugger) { 139 return RISCV_EXCP_NONE; 140 } 141 142 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 143 return RISCV_EXCP_ILLEGAL_INST; 144 } 145 146 if (env->virt_enabled) { 147 if (!get_field(env->hcounteren, ctr_mask) || 148 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 149 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 150 } 151 } 152 153 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 154 !get_field(env->scounteren, ctr_mask)) { 155 return RISCV_EXCP_ILLEGAL_INST; 156 } 157 158 #endif 159 return RISCV_EXCP_NONE; 160 } 161 162 static RISCVException ctr32(CPURISCVState *env, int csrno) 163 { 164 if (riscv_cpu_mxl(env) != MXL_RV32) { 165 return RISCV_EXCP_ILLEGAL_INST; 166 } 167 168 return ctr(env, csrno); 169 } 170 171 static RISCVException zcmt(CPURISCVState *env, int csrno) 172 { 173 if (!riscv_cpu_cfg(env)->ext_zcmt) { 174 return RISCV_EXCP_ILLEGAL_INST; 175 } 176 177 #if !defined(CONFIG_USER_ONLY) 178 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); 179 if (ret != RISCV_EXCP_NONE) { 180 return ret; 181 } 182 #endif 183 184 return RISCV_EXCP_NONE; 185 } 186 187 static RISCVException cfi_ss(CPURISCVState *env, int csrno) 188 { 189 if (!env_archcpu(env)->cfg.ext_zicfiss) { 190 return RISCV_EXCP_ILLEGAL_INST; 191 } 192 193 /* if bcfi not active for current env, access to csr is illegal */ 194 if (!cpu_get_bcfien(env)) { 195 #if !defined(CONFIG_USER_ONLY) 196 if (env->debugger) { 197 return RISCV_EXCP_NONE; 198 } 199 #endif 200 return RISCV_EXCP_ILLEGAL_INST; 201 } 202 203 return RISCV_EXCP_NONE; 204 } 205 206 #if !defined(CONFIG_USER_ONLY) 207 static RISCVException mctr(CPURISCVState *env, int csrno) 208 { 209 RISCVCPU *cpu = env_archcpu(env); 210 uint32_t pmu_avail_ctrs = cpu->pmu_avail_ctrs; 211 int ctr_index; 212 int base_csrno = CSR_MHPMCOUNTER3; 213 214 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 215 /* Offset for RV32 mhpmcounternh counters */ 216 csrno -= 0x80; 217 } 218 219 g_assert(csrno >= CSR_MHPMCOUNTER3 && csrno <= CSR_MHPMCOUNTER31); 220 221 ctr_index = csrno - base_csrno; 222 if ((BIT(ctr_index) & pmu_avail_ctrs >> 3) == 0) { 223 /* The PMU is not enabled or counter is out of range */ 224 return RISCV_EXCP_ILLEGAL_INST; 225 } 226 227 return RISCV_EXCP_NONE; 228 } 229 230 static RISCVException mctr32(CPURISCVState *env, int csrno) 231 { 232 if (riscv_cpu_mxl(env) != MXL_RV32) { 233 return RISCV_EXCP_ILLEGAL_INST; 234 } 235 236 return mctr(env, csrno); 237 } 238 239 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 240 { 241 if (!riscv_cpu_cfg(env)->ext_sscofpmf) { 242 return RISCV_EXCP_ILLEGAL_INST; 243 } 244 245 return RISCV_EXCP_NONE; 246 } 247 248 static RISCVException sscofpmf_32(CPURISCVState *env, int csrno) 249 { 250 if (riscv_cpu_mxl(env) != MXL_RV32) { 251 return RISCV_EXCP_ILLEGAL_INST; 252 } 253 254 return sscofpmf(env, csrno); 255 } 256 257 static RISCVException smcntrpmf(CPURISCVState *env, int csrno) 258 { 259 if (!riscv_cpu_cfg(env)->ext_smcntrpmf) { 260 return RISCV_EXCP_ILLEGAL_INST; 261 } 262 263 return RISCV_EXCP_NONE; 264 } 265 266 static RISCVException smcntrpmf_32(CPURISCVState *env, int csrno) 267 { 268 if (riscv_cpu_mxl(env) != MXL_RV32) { 269 return RISCV_EXCP_ILLEGAL_INST; 270 } 271 272 return smcntrpmf(env, csrno); 273 } 274 275 static RISCVException any(CPURISCVState *env, int csrno) 276 { 277 return RISCV_EXCP_NONE; 278 } 279 280 static RISCVException any32(CPURISCVState *env, int csrno) 281 { 282 if (riscv_cpu_mxl(env) != MXL_RV32) { 283 return RISCV_EXCP_ILLEGAL_INST; 284 } 285 286 return any(env, csrno); 287 288 } 289 290 static RISCVException aia_any(CPURISCVState *env, int csrno) 291 { 292 if (!riscv_cpu_cfg(env)->ext_smaia) { 293 return RISCV_EXCP_ILLEGAL_INST; 294 } 295 296 return any(env, csrno); 297 } 298 299 static RISCVException aia_any32(CPURISCVState *env, int csrno) 300 { 301 if (!riscv_cpu_cfg(env)->ext_smaia) { 302 return RISCV_EXCP_ILLEGAL_INST; 303 } 304 305 return any32(env, csrno); 306 } 307 308 static RISCVException smode(CPURISCVState *env, int csrno) 309 { 310 if (riscv_has_ext(env, RVS)) { 311 return RISCV_EXCP_NONE; 312 } 313 314 return RISCV_EXCP_ILLEGAL_INST; 315 } 316 317 static RISCVException smode32(CPURISCVState *env, int csrno) 318 { 319 if (riscv_cpu_mxl(env) != MXL_RV32) { 320 return RISCV_EXCP_ILLEGAL_INST; 321 } 322 323 return smode(env, csrno); 324 } 325 326 static RISCVException aia_smode(CPURISCVState *env, int csrno) 327 { 328 if (!riscv_cpu_cfg(env)->ext_ssaia) { 329 return RISCV_EXCP_ILLEGAL_INST; 330 } 331 332 return smode(env, csrno); 333 } 334 335 static RISCVException aia_smode32(CPURISCVState *env, int csrno) 336 { 337 if (!riscv_cpu_cfg(env)->ext_ssaia) { 338 return RISCV_EXCP_ILLEGAL_INST; 339 } 340 341 return smode32(env, csrno); 342 } 343 344 static RISCVException hmode(CPURISCVState *env, int csrno) 345 { 346 if (riscv_has_ext(env, RVH)) { 347 return RISCV_EXCP_NONE; 348 } 349 350 return RISCV_EXCP_ILLEGAL_INST; 351 } 352 353 static RISCVException hmode32(CPURISCVState *env, int csrno) 354 { 355 if (riscv_cpu_mxl(env) != MXL_RV32) { 356 return RISCV_EXCP_ILLEGAL_INST; 357 } 358 359 return hmode(env, csrno); 360 361 } 362 363 static RISCVException umode(CPURISCVState *env, int csrno) 364 { 365 if (riscv_has_ext(env, RVU)) { 366 return RISCV_EXCP_NONE; 367 } 368 369 return RISCV_EXCP_ILLEGAL_INST; 370 } 371 372 static RISCVException umode32(CPURISCVState *env, int csrno) 373 { 374 if (riscv_cpu_mxl(env) != MXL_RV32) { 375 return RISCV_EXCP_ILLEGAL_INST; 376 } 377 378 return umode(env, csrno); 379 } 380 381 static RISCVException mstateen(CPURISCVState *env, int csrno) 382 { 383 if (!riscv_cpu_cfg(env)->ext_smstateen) { 384 return RISCV_EXCP_ILLEGAL_INST; 385 } 386 387 return any(env, csrno); 388 } 389 390 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 391 { 392 if (!riscv_cpu_cfg(env)->ext_smstateen) { 393 return RISCV_EXCP_ILLEGAL_INST; 394 } 395 396 RISCVException ret = hmode(env, csrno); 397 if (ret != RISCV_EXCP_NONE) { 398 return ret; 399 } 400 401 if (env->debugger) { 402 return RISCV_EXCP_NONE; 403 } 404 405 if (env->priv < PRV_M) { 406 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 407 return RISCV_EXCP_ILLEGAL_INST; 408 } 409 } 410 411 return RISCV_EXCP_NONE; 412 } 413 414 static RISCVException hstateen(CPURISCVState *env, int csrno) 415 { 416 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 417 } 418 419 static RISCVException hstateenh(CPURISCVState *env, int csrno) 420 { 421 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 422 } 423 424 static RISCVException sstateen(CPURISCVState *env, int csrno) 425 { 426 bool virt = env->virt_enabled; 427 int index = csrno - CSR_SSTATEEN0; 428 429 if (!riscv_cpu_cfg(env)->ext_smstateen) { 430 return RISCV_EXCP_ILLEGAL_INST; 431 } 432 433 RISCVException ret = smode(env, csrno); 434 if (ret != RISCV_EXCP_NONE) { 435 return ret; 436 } 437 438 if (env->debugger) { 439 return RISCV_EXCP_NONE; 440 } 441 442 if (env->priv < PRV_M) { 443 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 444 return RISCV_EXCP_ILLEGAL_INST; 445 } 446 447 if (virt) { 448 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 449 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 450 } 451 } 452 } 453 454 return RISCV_EXCP_NONE; 455 } 456 457 static RISCVException sstc(CPURISCVState *env, int csrno) 458 { 459 bool hmode_check = false; 460 461 if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { 462 return RISCV_EXCP_ILLEGAL_INST; 463 } 464 465 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 466 hmode_check = true; 467 } 468 469 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 470 if (ret != RISCV_EXCP_NONE) { 471 return ret; 472 } 473 474 if (env->debugger) { 475 return RISCV_EXCP_NONE; 476 } 477 478 if (env->priv == PRV_M) { 479 return RISCV_EXCP_NONE; 480 } 481 482 /* 483 * No need of separate function for rv32 as menvcfg stores both menvcfg 484 * menvcfgh for RV32. 485 */ 486 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 487 get_field(env->menvcfg, MENVCFG_STCE))) { 488 return RISCV_EXCP_ILLEGAL_INST; 489 } 490 491 if (env->virt_enabled) { 492 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 493 get_field(env->henvcfg, HENVCFG_STCE))) { 494 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 495 } 496 } 497 498 return RISCV_EXCP_NONE; 499 } 500 501 static RISCVException sstc_32(CPURISCVState *env, int csrno) 502 { 503 if (riscv_cpu_mxl(env) != MXL_RV32) { 504 return RISCV_EXCP_ILLEGAL_INST; 505 } 506 507 return sstc(env, csrno); 508 } 509 510 static RISCVException satp(CPURISCVState *env, int csrno) 511 { 512 if (env->priv == PRV_S && !env->virt_enabled && 513 get_field(env->mstatus, MSTATUS_TVM)) { 514 return RISCV_EXCP_ILLEGAL_INST; 515 } 516 if (env->priv == PRV_S && env->virt_enabled && 517 get_field(env->hstatus, HSTATUS_VTVM)) { 518 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 519 } 520 521 return smode(env, csrno); 522 } 523 524 static RISCVException hgatp(CPURISCVState *env, int csrno) 525 { 526 if (env->priv == PRV_S && !env->virt_enabled && 527 get_field(env->mstatus, MSTATUS_TVM)) { 528 return RISCV_EXCP_ILLEGAL_INST; 529 } 530 531 return hmode(env, csrno); 532 } 533 534 /* Checks if PointerMasking registers could be accessed */ 535 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 536 { 537 /* Check if j-ext is present */ 538 if (riscv_has_ext(env, RVJ)) { 539 return RISCV_EXCP_NONE; 540 } 541 return RISCV_EXCP_ILLEGAL_INST; 542 } 543 544 static RISCVException aia_hmode(CPURISCVState *env, int csrno) 545 { 546 if (!riscv_cpu_cfg(env)->ext_ssaia) { 547 return RISCV_EXCP_ILLEGAL_INST; 548 } 549 550 return hmode(env, csrno); 551 } 552 553 static RISCVException aia_hmode32(CPURISCVState *env, int csrno) 554 { 555 if (!riscv_cpu_cfg(env)->ext_ssaia) { 556 return RISCV_EXCP_ILLEGAL_INST; 557 } 558 559 return hmode32(env, csrno); 560 } 561 562 static RISCVException pmp(CPURISCVState *env, int csrno) 563 { 564 if (riscv_cpu_cfg(env)->pmp) { 565 if (csrno <= CSR_PMPCFG3) { 566 uint32_t reg_index = csrno - CSR_PMPCFG0; 567 568 /* TODO: RV128 restriction check */ 569 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 570 return RISCV_EXCP_ILLEGAL_INST; 571 } 572 } 573 574 return RISCV_EXCP_NONE; 575 } 576 577 return RISCV_EXCP_ILLEGAL_INST; 578 } 579 580 static RISCVException have_mseccfg(CPURISCVState *env, int csrno) 581 { 582 if (riscv_cpu_cfg(env)->ext_smepmp) { 583 return RISCV_EXCP_NONE; 584 } 585 if (riscv_cpu_cfg(env)->ext_zkr) { 586 return RISCV_EXCP_NONE; 587 } 588 589 return RISCV_EXCP_ILLEGAL_INST; 590 } 591 592 static RISCVException debug(CPURISCVState *env, int csrno) 593 { 594 if (riscv_cpu_cfg(env)->debug) { 595 return RISCV_EXCP_NONE; 596 } 597 598 return RISCV_EXCP_ILLEGAL_INST; 599 } 600 #endif 601 602 static RISCVException seed(CPURISCVState *env, int csrno) 603 { 604 if (!riscv_cpu_cfg(env)->ext_zkr) { 605 return RISCV_EXCP_ILLEGAL_INST; 606 } 607 608 #if !defined(CONFIG_USER_ONLY) 609 if (env->debugger) { 610 return RISCV_EXCP_NONE; 611 } 612 613 /* 614 * With a CSR read-write instruction: 615 * 1) The seed CSR is always available in machine mode as normal. 616 * 2) Attempted access to seed from virtual modes VS and VU always raises 617 * an exception(virtual instruction exception only if mseccfg.sseed=1). 618 * 3) Without the corresponding access control bit set to 1, any attempted 619 * access to seed from U, S or HS modes will raise an illegal instruction 620 * exception. 621 */ 622 if (env->priv == PRV_M) { 623 return RISCV_EXCP_NONE; 624 } else if (env->virt_enabled) { 625 if (env->mseccfg & MSECCFG_SSEED) { 626 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 627 } else { 628 return RISCV_EXCP_ILLEGAL_INST; 629 } 630 } else { 631 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 632 return RISCV_EXCP_NONE; 633 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 634 return RISCV_EXCP_NONE; 635 } else { 636 return RISCV_EXCP_ILLEGAL_INST; 637 } 638 } 639 #else 640 return RISCV_EXCP_NONE; 641 #endif 642 } 643 644 /* zicfiss CSR_SSP read and write */ 645 static int read_ssp(CPURISCVState *env, int csrno, target_ulong *val) 646 { 647 *val = env->ssp; 648 return RISCV_EXCP_NONE; 649 } 650 651 static int write_ssp(CPURISCVState *env, int csrno, target_ulong val) 652 { 653 env->ssp = val; 654 return RISCV_EXCP_NONE; 655 } 656 657 /* User Floating-Point CSRs */ 658 static RISCVException read_fflags(CPURISCVState *env, int csrno, 659 target_ulong *val) 660 { 661 *val = riscv_cpu_get_fflags(env); 662 return RISCV_EXCP_NONE; 663 } 664 665 static RISCVException write_fflags(CPURISCVState *env, int csrno, 666 target_ulong val) 667 { 668 #if !defined(CONFIG_USER_ONLY) 669 if (riscv_has_ext(env, RVF)) { 670 env->mstatus |= MSTATUS_FS; 671 } 672 #endif 673 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 674 return RISCV_EXCP_NONE; 675 } 676 677 static RISCVException read_frm(CPURISCVState *env, int csrno, 678 target_ulong *val) 679 { 680 *val = env->frm; 681 return RISCV_EXCP_NONE; 682 } 683 684 static RISCVException write_frm(CPURISCVState *env, int csrno, 685 target_ulong val) 686 { 687 #if !defined(CONFIG_USER_ONLY) 688 if (riscv_has_ext(env, RVF)) { 689 env->mstatus |= MSTATUS_FS; 690 } 691 #endif 692 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 693 return RISCV_EXCP_NONE; 694 } 695 696 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 697 target_ulong *val) 698 { 699 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 700 | (env->frm << FSR_RD_SHIFT); 701 return RISCV_EXCP_NONE; 702 } 703 704 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 705 target_ulong val) 706 { 707 #if !defined(CONFIG_USER_ONLY) 708 if (riscv_has_ext(env, RVF)) { 709 env->mstatus |= MSTATUS_FS; 710 } 711 #endif 712 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 713 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 714 return RISCV_EXCP_NONE; 715 } 716 717 static RISCVException read_vtype(CPURISCVState *env, int csrno, 718 target_ulong *val) 719 { 720 uint64_t vill; 721 switch (env->xl) { 722 case MXL_RV32: 723 vill = (uint32_t)env->vill << 31; 724 break; 725 case MXL_RV64: 726 vill = (uint64_t)env->vill << 63; 727 break; 728 default: 729 g_assert_not_reached(); 730 } 731 *val = (target_ulong)vill | env->vtype; 732 return RISCV_EXCP_NONE; 733 } 734 735 static RISCVException read_vl(CPURISCVState *env, int csrno, 736 target_ulong *val) 737 { 738 *val = env->vl; 739 return RISCV_EXCP_NONE; 740 } 741 742 static RISCVException read_vlenb(CPURISCVState *env, int csrno, 743 target_ulong *val) 744 { 745 *val = riscv_cpu_cfg(env)->vlenb; 746 return RISCV_EXCP_NONE; 747 } 748 749 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 750 target_ulong *val) 751 { 752 *val = env->vxrm; 753 return RISCV_EXCP_NONE; 754 } 755 756 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 757 target_ulong val) 758 { 759 #if !defined(CONFIG_USER_ONLY) 760 env->mstatus |= MSTATUS_VS; 761 #endif 762 env->vxrm = val; 763 return RISCV_EXCP_NONE; 764 } 765 766 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 767 target_ulong *val) 768 { 769 *val = env->vxsat & BIT(0); 770 return RISCV_EXCP_NONE; 771 } 772 773 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 774 target_ulong val) 775 { 776 #if !defined(CONFIG_USER_ONLY) 777 env->mstatus |= MSTATUS_VS; 778 #endif 779 env->vxsat = val & BIT(0); 780 return RISCV_EXCP_NONE; 781 } 782 783 static RISCVException read_vstart(CPURISCVState *env, int csrno, 784 target_ulong *val) 785 { 786 *val = env->vstart; 787 return RISCV_EXCP_NONE; 788 } 789 790 static RISCVException write_vstart(CPURISCVState *env, int csrno, 791 target_ulong val) 792 { 793 #if !defined(CONFIG_USER_ONLY) 794 env->mstatus |= MSTATUS_VS; 795 #endif 796 /* 797 * The vstart CSR is defined to have only enough writable bits 798 * to hold the largest element index, i.e. lg2(VLEN) bits. 799 */ 800 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlenb << 3)); 801 return RISCV_EXCP_NONE; 802 } 803 804 static RISCVException read_vcsr(CPURISCVState *env, int csrno, 805 target_ulong *val) 806 { 807 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 808 return RISCV_EXCP_NONE; 809 } 810 811 static RISCVException write_vcsr(CPURISCVState *env, int csrno, 812 target_ulong val) 813 { 814 #if !defined(CONFIG_USER_ONLY) 815 env->mstatus |= MSTATUS_VS; 816 #endif 817 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 818 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 819 return RISCV_EXCP_NONE; 820 } 821 822 #if defined(CONFIG_USER_ONLY) 823 /* User Timers and Counters */ 824 static target_ulong get_ticks(bool shift) 825 { 826 int64_t val = cpu_get_host_ticks(); 827 target_ulong result = shift ? val >> 32 : val; 828 829 return result; 830 } 831 832 static RISCVException read_time(CPURISCVState *env, int csrno, 833 target_ulong *val) 834 { 835 *val = cpu_get_host_ticks(); 836 return RISCV_EXCP_NONE; 837 } 838 839 static RISCVException read_timeh(CPURISCVState *env, int csrno, 840 target_ulong *val) 841 { 842 *val = cpu_get_host_ticks() >> 32; 843 return RISCV_EXCP_NONE; 844 } 845 846 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 847 target_ulong *val) 848 { 849 *val = get_ticks(false); 850 return RISCV_EXCP_NONE; 851 } 852 853 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 854 target_ulong *val) 855 { 856 *val = get_ticks(true); 857 return RISCV_EXCP_NONE; 858 } 859 860 #else /* CONFIG_USER_ONLY */ 861 862 static RISCVException read_mcyclecfg(CPURISCVState *env, int csrno, 863 target_ulong *val) 864 { 865 *val = env->mcyclecfg; 866 return RISCV_EXCP_NONE; 867 } 868 869 static RISCVException write_mcyclecfg(CPURISCVState *env, int csrno, 870 target_ulong val) 871 { 872 uint64_t inh_avail_mask; 873 874 if (riscv_cpu_mxl(env) == MXL_RV32) { 875 env->mcyclecfg = val; 876 } else { 877 /* Set xINH fields if priv mode supported */ 878 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MCYCLECFG_BIT_MINH; 879 inh_avail_mask |= riscv_has_ext(env, RVU) ? MCYCLECFG_BIT_UINH : 0; 880 inh_avail_mask |= riscv_has_ext(env, RVS) ? MCYCLECFG_BIT_SINH : 0; 881 inh_avail_mask |= (riscv_has_ext(env, RVH) && 882 riscv_has_ext(env, RVU)) ? MCYCLECFG_BIT_VUINH : 0; 883 inh_avail_mask |= (riscv_has_ext(env, RVH) && 884 riscv_has_ext(env, RVS)) ? MCYCLECFG_BIT_VSINH : 0; 885 env->mcyclecfg = val & inh_avail_mask; 886 } 887 888 return RISCV_EXCP_NONE; 889 } 890 891 static RISCVException read_mcyclecfgh(CPURISCVState *env, int csrno, 892 target_ulong *val) 893 { 894 *val = env->mcyclecfgh; 895 return RISCV_EXCP_NONE; 896 } 897 898 static RISCVException write_mcyclecfgh(CPURISCVState *env, int csrno, 899 target_ulong val) 900 { 901 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 902 MCYCLECFGH_BIT_MINH); 903 904 /* Set xINH fields if priv mode supported */ 905 inh_avail_mask |= riscv_has_ext(env, RVU) ? MCYCLECFGH_BIT_UINH : 0; 906 inh_avail_mask |= riscv_has_ext(env, RVS) ? MCYCLECFGH_BIT_SINH : 0; 907 inh_avail_mask |= (riscv_has_ext(env, RVH) && 908 riscv_has_ext(env, RVU)) ? MCYCLECFGH_BIT_VUINH : 0; 909 inh_avail_mask |= (riscv_has_ext(env, RVH) && 910 riscv_has_ext(env, RVS)) ? MCYCLECFGH_BIT_VSINH : 0; 911 912 env->mcyclecfgh = val & inh_avail_mask; 913 return RISCV_EXCP_NONE; 914 } 915 916 static RISCVException read_minstretcfg(CPURISCVState *env, int csrno, 917 target_ulong *val) 918 { 919 *val = env->minstretcfg; 920 return RISCV_EXCP_NONE; 921 } 922 923 static RISCVException write_minstretcfg(CPURISCVState *env, int csrno, 924 target_ulong val) 925 { 926 uint64_t inh_avail_mask; 927 928 if (riscv_cpu_mxl(env) == MXL_RV32) { 929 env->minstretcfg = val; 930 } else { 931 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MINSTRETCFG_BIT_MINH; 932 inh_avail_mask |= riscv_has_ext(env, RVU) ? MINSTRETCFG_BIT_UINH : 0; 933 inh_avail_mask |= riscv_has_ext(env, RVS) ? MINSTRETCFG_BIT_SINH : 0; 934 inh_avail_mask |= (riscv_has_ext(env, RVH) && 935 riscv_has_ext(env, RVU)) ? MINSTRETCFG_BIT_VUINH : 0; 936 inh_avail_mask |= (riscv_has_ext(env, RVH) && 937 riscv_has_ext(env, RVS)) ? MINSTRETCFG_BIT_VSINH : 0; 938 env->minstretcfg = val & inh_avail_mask; 939 } 940 return RISCV_EXCP_NONE; 941 } 942 943 static RISCVException read_minstretcfgh(CPURISCVState *env, int csrno, 944 target_ulong *val) 945 { 946 *val = env->minstretcfgh; 947 return RISCV_EXCP_NONE; 948 } 949 950 static RISCVException write_minstretcfgh(CPURISCVState *env, int csrno, 951 target_ulong val) 952 { 953 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 954 MINSTRETCFGH_BIT_MINH); 955 956 inh_avail_mask |= riscv_has_ext(env, RVU) ? MINSTRETCFGH_BIT_UINH : 0; 957 inh_avail_mask |= riscv_has_ext(env, RVS) ? MINSTRETCFGH_BIT_SINH : 0; 958 inh_avail_mask |= (riscv_has_ext(env, RVH) && 959 riscv_has_ext(env, RVU)) ? MINSTRETCFGH_BIT_VUINH : 0; 960 inh_avail_mask |= (riscv_has_ext(env, RVH) && 961 riscv_has_ext(env, RVS)) ? MINSTRETCFGH_BIT_VSINH : 0; 962 963 env->minstretcfgh = val & inh_avail_mask; 964 return RISCV_EXCP_NONE; 965 } 966 967 static RISCVException read_mhpmevent(CPURISCVState *env, int csrno, 968 target_ulong *val) 969 { 970 int evt_index = csrno - CSR_MCOUNTINHIBIT; 971 972 *val = env->mhpmevent_val[evt_index]; 973 974 return RISCV_EXCP_NONE; 975 } 976 977 static RISCVException write_mhpmevent(CPURISCVState *env, int csrno, 978 target_ulong val) 979 { 980 int evt_index = csrno - CSR_MCOUNTINHIBIT; 981 uint64_t mhpmevt_val = val; 982 uint64_t inh_avail_mask; 983 984 if (riscv_cpu_mxl(env) == MXL_RV32) { 985 env->mhpmevent_val[evt_index] = val; 986 mhpmevt_val = mhpmevt_val | 987 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 988 } else { 989 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MHPMEVENT_BIT_MINH; 990 inh_avail_mask |= riscv_has_ext(env, RVU) ? MHPMEVENT_BIT_UINH : 0; 991 inh_avail_mask |= riscv_has_ext(env, RVS) ? MHPMEVENT_BIT_SINH : 0; 992 inh_avail_mask |= (riscv_has_ext(env, RVH) && 993 riscv_has_ext(env, RVU)) ? MHPMEVENT_BIT_VUINH : 0; 994 inh_avail_mask |= (riscv_has_ext(env, RVH) && 995 riscv_has_ext(env, RVS)) ? MHPMEVENT_BIT_VSINH : 0; 996 mhpmevt_val = val & inh_avail_mask; 997 env->mhpmevent_val[evt_index] = mhpmevt_val; 998 } 999 1000 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1001 1002 return RISCV_EXCP_NONE; 1003 } 1004 1005 static RISCVException read_mhpmeventh(CPURISCVState *env, int csrno, 1006 target_ulong *val) 1007 { 1008 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 1009 1010 *val = env->mhpmeventh_val[evt_index]; 1011 1012 return RISCV_EXCP_NONE; 1013 } 1014 1015 static RISCVException write_mhpmeventh(CPURISCVState *env, int csrno, 1016 target_ulong val) 1017 { 1018 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 1019 uint64_t mhpmevth_val; 1020 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 1021 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 1022 MHPMEVENTH_BIT_MINH); 1023 1024 inh_avail_mask |= riscv_has_ext(env, RVU) ? MHPMEVENTH_BIT_UINH : 0; 1025 inh_avail_mask |= riscv_has_ext(env, RVS) ? MHPMEVENTH_BIT_SINH : 0; 1026 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1027 riscv_has_ext(env, RVU)) ? MHPMEVENTH_BIT_VUINH : 0; 1028 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1029 riscv_has_ext(env, RVS)) ? MHPMEVENTH_BIT_VSINH : 0; 1030 1031 mhpmevth_val = val & inh_avail_mask; 1032 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 1033 env->mhpmeventh_val[evt_index] = mhpmevth_val; 1034 1035 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1036 1037 return RISCV_EXCP_NONE; 1038 } 1039 1040 static target_ulong riscv_pmu_ctr_get_fixed_counters_val(CPURISCVState *env, 1041 int counter_idx, 1042 bool upper_half) 1043 { 1044 int inst = riscv_pmu_ctr_monitor_instructions(env, counter_idx); 1045 uint64_t *counter_arr_virt = env->pmu_fixed_ctrs[inst].counter_virt; 1046 uint64_t *counter_arr = env->pmu_fixed_ctrs[inst].counter; 1047 target_ulong result = 0; 1048 uint64_t curr_val = 0; 1049 uint64_t cfg_val = 0; 1050 1051 if (counter_idx == 0) { 1052 cfg_val = upper_half ? ((uint64_t)env->mcyclecfgh << 32) : 1053 env->mcyclecfg; 1054 } else if (counter_idx == 2) { 1055 cfg_val = upper_half ? ((uint64_t)env->minstretcfgh << 32) : 1056 env->minstretcfg; 1057 } else { 1058 cfg_val = upper_half ? 1059 ((uint64_t)env->mhpmeventh_val[counter_idx] << 32) : 1060 env->mhpmevent_val[counter_idx]; 1061 cfg_val &= MHPMEVENT_FILTER_MASK; 1062 } 1063 1064 if (!cfg_val) { 1065 if (icount_enabled()) { 1066 curr_val = inst ? icount_get_raw() : icount_get(); 1067 } else { 1068 curr_val = cpu_get_host_ticks(); 1069 } 1070 1071 goto done; 1072 } 1073 1074 /* Update counter before reading. */ 1075 riscv_pmu_update_fixed_ctrs(env, env->priv, env->virt_enabled); 1076 1077 if (!(cfg_val & MCYCLECFG_BIT_MINH)) { 1078 curr_val += counter_arr[PRV_M]; 1079 } 1080 1081 if (!(cfg_val & MCYCLECFG_BIT_SINH)) { 1082 curr_val += counter_arr[PRV_S]; 1083 } 1084 1085 if (!(cfg_val & MCYCLECFG_BIT_UINH)) { 1086 curr_val += counter_arr[PRV_U]; 1087 } 1088 1089 if (!(cfg_val & MCYCLECFG_BIT_VSINH)) { 1090 curr_val += counter_arr_virt[PRV_S]; 1091 } 1092 1093 if (!(cfg_val & MCYCLECFG_BIT_VUINH)) { 1094 curr_val += counter_arr_virt[PRV_U]; 1095 } 1096 1097 done: 1098 if (riscv_cpu_mxl(env) == MXL_RV32) { 1099 result = upper_half ? curr_val >> 32 : curr_val; 1100 } else { 1101 result = curr_val; 1102 } 1103 1104 return result; 1105 } 1106 1107 static RISCVException write_mhpmcounter(CPURISCVState *env, int csrno, 1108 target_ulong val) 1109 { 1110 int ctr_idx = csrno - CSR_MCYCLE; 1111 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1112 uint64_t mhpmctr_val = val; 1113 1114 counter->mhpmcounter_val = val; 1115 if (!get_field(env->mcountinhibit, BIT(ctr_idx)) && 1116 (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1117 riscv_pmu_ctr_monitor_instructions(env, ctr_idx))) { 1118 counter->mhpmcounter_prev = riscv_pmu_ctr_get_fixed_counters_val(env, 1119 ctr_idx, false); 1120 if (ctr_idx > 2) { 1121 if (riscv_cpu_mxl(env) == MXL_RV32) { 1122 mhpmctr_val = mhpmctr_val | 1123 ((uint64_t)counter->mhpmcounterh_val << 32); 1124 } 1125 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 1126 } 1127 } else { 1128 /* Other counters can keep incrementing from the given value */ 1129 counter->mhpmcounter_prev = val; 1130 } 1131 1132 return RISCV_EXCP_NONE; 1133 } 1134 1135 static RISCVException write_mhpmcounterh(CPURISCVState *env, int csrno, 1136 target_ulong val) 1137 { 1138 int ctr_idx = csrno - CSR_MCYCLEH; 1139 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1140 uint64_t mhpmctr_val = counter->mhpmcounter_val; 1141 uint64_t mhpmctrh_val = val; 1142 1143 counter->mhpmcounterh_val = val; 1144 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 1145 if (!get_field(env->mcountinhibit, BIT(ctr_idx)) && 1146 (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1147 riscv_pmu_ctr_monitor_instructions(env, ctr_idx))) { 1148 counter->mhpmcounterh_prev = riscv_pmu_ctr_get_fixed_counters_val(env, 1149 ctr_idx, true); 1150 if (ctr_idx > 2) { 1151 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 1152 } 1153 } else { 1154 counter->mhpmcounterh_prev = val; 1155 } 1156 1157 return RISCV_EXCP_NONE; 1158 } 1159 1160 RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 1161 bool upper_half, uint32_t ctr_idx) 1162 { 1163 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1164 target_ulong ctr_prev = upper_half ? counter->mhpmcounterh_prev : 1165 counter->mhpmcounter_prev; 1166 target_ulong ctr_val = upper_half ? counter->mhpmcounterh_val : 1167 counter->mhpmcounter_val; 1168 1169 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 1170 /* 1171 * Counter should not increment if inhibit bit is set. Just return the 1172 * current counter value. 1173 */ 1174 *val = ctr_val; 1175 return RISCV_EXCP_NONE; 1176 } 1177 1178 /* 1179 * The kernel computes the perf delta by subtracting the current value from 1180 * the value it initialized previously (ctr_val). 1181 */ 1182 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1183 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 1184 *val = riscv_pmu_ctr_get_fixed_counters_val(env, ctr_idx, upper_half) - 1185 ctr_prev + ctr_val; 1186 } else { 1187 *val = ctr_val; 1188 } 1189 1190 return RISCV_EXCP_NONE; 1191 } 1192 1193 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 1194 target_ulong *val) 1195 { 1196 uint16_t ctr_index; 1197 1198 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 1199 ctr_index = csrno - CSR_MCYCLE; 1200 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 1201 ctr_index = csrno - CSR_CYCLE; 1202 } else { 1203 return RISCV_EXCP_ILLEGAL_INST; 1204 } 1205 1206 return riscv_pmu_read_ctr(env, val, false, ctr_index); 1207 } 1208 1209 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 1210 target_ulong *val) 1211 { 1212 uint16_t ctr_index; 1213 1214 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 1215 ctr_index = csrno - CSR_MCYCLEH; 1216 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 1217 ctr_index = csrno - CSR_CYCLEH; 1218 } else { 1219 return RISCV_EXCP_ILLEGAL_INST; 1220 } 1221 1222 return riscv_pmu_read_ctr(env, val, true, ctr_index); 1223 } 1224 1225 static RISCVException read_scountovf(CPURISCVState *env, int csrno, 1226 target_ulong *val) 1227 { 1228 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 1229 int i; 1230 *val = 0; 1231 target_ulong *mhpm_evt_val; 1232 uint64_t of_bit_mask; 1233 1234 if (riscv_cpu_mxl(env) == MXL_RV32) { 1235 mhpm_evt_val = env->mhpmeventh_val; 1236 of_bit_mask = MHPMEVENTH_BIT_OF; 1237 } else { 1238 mhpm_evt_val = env->mhpmevent_val; 1239 of_bit_mask = MHPMEVENT_BIT_OF; 1240 } 1241 1242 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 1243 if ((get_field(env->mcounteren, BIT(i))) && 1244 (mhpm_evt_val[i] & of_bit_mask)) { 1245 *val |= BIT(i); 1246 } 1247 } 1248 1249 return RISCV_EXCP_NONE; 1250 } 1251 1252 static RISCVException read_time(CPURISCVState *env, int csrno, 1253 target_ulong *val) 1254 { 1255 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1256 1257 if (!env->rdtime_fn) { 1258 return RISCV_EXCP_ILLEGAL_INST; 1259 } 1260 1261 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 1262 return RISCV_EXCP_NONE; 1263 } 1264 1265 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1266 target_ulong *val) 1267 { 1268 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1269 1270 if (!env->rdtime_fn) { 1271 return RISCV_EXCP_ILLEGAL_INST; 1272 } 1273 1274 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 1275 return RISCV_EXCP_NONE; 1276 } 1277 1278 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 1279 target_ulong *val) 1280 { 1281 *val = env->vstimecmp; 1282 1283 return RISCV_EXCP_NONE; 1284 } 1285 1286 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 1287 target_ulong *val) 1288 { 1289 *val = env->vstimecmp >> 32; 1290 1291 return RISCV_EXCP_NONE; 1292 } 1293 1294 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1295 target_ulong val) 1296 { 1297 if (riscv_cpu_mxl(env) == MXL_RV32) { 1298 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1299 } else { 1300 env->vstimecmp = val; 1301 } 1302 1303 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1304 env->htimedelta, MIP_VSTIP); 1305 1306 return RISCV_EXCP_NONE; 1307 } 1308 1309 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1310 target_ulong val) 1311 { 1312 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1313 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1314 env->htimedelta, MIP_VSTIP); 1315 1316 return RISCV_EXCP_NONE; 1317 } 1318 1319 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1320 target_ulong *val) 1321 { 1322 if (env->virt_enabled) { 1323 *val = env->vstimecmp; 1324 } else { 1325 *val = env->stimecmp; 1326 } 1327 1328 return RISCV_EXCP_NONE; 1329 } 1330 1331 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1332 target_ulong *val) 1333 { 1334 if (env->virt_enabled) { 1335 *val = env->vstimecmp >> 32; 1336 } else { 1337 *val = env->stimecmp >> 32; 1338 } 1339 1340 return RISCV_EXCP_NONE; 1341 } 1342 1343 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1344 target_ulong val) 1345 { 1346 if (env->virt_enabled) { 1347 if (env->hvictl & HVICTL_VTI) { 1348 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1349 } 1350 return write_vstimecmp(env, csrno, val); 1351 } 1352 1353 if (riscv_cpu_mxl(env) == MXL_RV32) { 1354 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1355 } else { 1356 env->stimecmp = val; 1357 } 1358 1359 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1360 1361 return RISCV_EXCP_NONE; 1362 } 1363 1364 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1365 target_ulong val) 1366 { 1367 if (env->virt_enabled) { 1368 if (env->hvictl & HVICTL_VTI) { 1369 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1370 } 1371 return write_vstimecmph(env, csrno, val); 1372 } 1373 1374 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1375 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1376 1377 return RISCV_EXCP_NONE; 1378 } 1379 1380 #define VSTOPI_NUM_SRCS 5 1381 1382 /* 1383 * All core local interrupts except the fixed ones 0:12. This macro is for 1384 * virtual interrupts logic so please don't change this to avoid messing up 1385 * the whole support, For reference see AIA spec: `5.3 Interrupt filtering and 1386 * virtual interrupts for supervisor level` and `6.3.2 Virtual interrupts for 1387 * VS level`. 1388 */ 1389 #define LOCAL_INTERRUPTS (~0x1FFFULL) 1390 1391 static const uint64_t delegable_ints = 1392 S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS | MIP_LCOFIP; 1393 static const uint64_t vs_delegable_ints = 1394 (VS_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & ~MIP_LCOFIP; 1395 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1396 HS_MODE_INTERRUPTS | LOCAL_INTERRUPTS; 1397 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1398 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1399 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1400 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1401 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1402 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1403 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1404 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1405 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1406 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1407 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1408 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1409 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1410 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1411 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1412 (1ULL << (RISCV_EXCP_SW_CHECK)) | \ 1413 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1414 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1415 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1416 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1417 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1418 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1419 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1420 (1ULL << (RISCV_EXCP_M_ECALL)) | 1421 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1422 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1423 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1424 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1425 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1426 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1427 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1428 1429 /* 1430 * Spec allows for bits 13:63 to be either read-only or writable. 1431 * So far we have interrupt LCOFIP in that region which is writable. 1432 * 1433 * Also, spec allows to inject virtual interrupts in this region even 1434 * without any hardware interrupts for that interrupt number. 1435 * 1436 * For now interrupt in 13:63 region are all kept writable. 13 being 1437 * LCOFIP and 14:63 being virtual only. Change this in future if we 1438 * introduce more interrupts that are not writable. 1439 */ 1440 1441 /* Bit STIP can be an alias of mip.STIP that's why it's writable in mvip. */ 1442 static const uint64_t mvip_writable_mask = MIP_SSIP | MIP_STIP | MIP_SEIP | 1443 LOCAL_INTERRUPTS; 1444 static const uint64_t mvien_writable_mask = MIP_SSIP | MIP_SEIP | 1445 LOCAL_INTERRUPTS; 1446 1447 static const uint64_t sip_writable_mask = SIP_SSIP | LOCAL_INTERRUPTS; 1448 static const uint64_t hip_writable_mask = MIP_VSSIP; 1449 static const uint64_t hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | 1450 MIP_VSEIP | LOCAL_INTERRUPTS; 1451 static const uint64_t hvien_writable_mask = LOCAL_INTERRUPTS; 1452 1453 static const uint64_t vsip_writable_mask = MIP_VSSIP | LOCAL_INTERRUPTS; 1454 1455 const bool valid_vm_1_10_32[16] = { 1456 [VM_1_10_MBARE] = true, 1457 [VM_1_10_SV32] = true 1458 }; 1459 1460 const bool valid_vm_1_10_64[16] = { 1461 [VM_1_10_MBARE] = true, 1462 [VM_1_10_SV39] = true, 1463 [VM_1_10_SV48] = true, 1464 [VM_1_10_SV57] = true 1465 }; 1466 1467 /* Machine Information Registers */ 1468 static RISCVException read_zero(CPURISCVState *env, int csrno, 1469 target_ulong *val) 1470 { 1471 *val = 0; 1472 return RISCV_EXCP_NONE; 1473 } 1474 1475 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1476 target_ulong val) 1477 { 1478 return RISCV_EXCP_NONE; 1479 } 1480 1481 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1482 target_ulong *val) 1483 { 1484 *val = riscv_cpu_cfg(env)->mvendorid; 1485 return RISCV_EXCP_NONE; 1486 } 1487 1488 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1489 target_ulong *val) 1490 { 1491 *val = riscv_cpu_cfg(env)->marchid; 1492 return RISCV_EXCP_NONE; 1493 } 1494 1495 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1496 target_ulong *val) 1497 { 1498 *val = riscv_cpu_cfg(env)->mimpid; 1499 return RISCV_EXCP_NONE; 1500 } 1501 1502 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1503 target_ulong *val) 1504 { 1505 *val = env->mhartid; 1506 return RISCV_EXCP_NONE; 1507 } 1508 1509 /* Machine Trap Setup */ 1510 1511 /* We do not store SD explicitly, only compute it on demand. */ 1512 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1513 { 1514 if ((status & MSTATUS_FS) == MSTATUS_FS || 1515 (status & MSTATUS_VS) == MSTATUS_VS || 1516 (status & MSTATUS_XS) == MSTATUS_XS) { 1517 switch (xl) { 1518 case MXL_RV32: 1519 return status | MSTATUS32_SD; 1520 case MXL_RV64: 1521 return status | MSTATUS64_SD; 1522 case MXL_RV128: 1523 return MSTATUSH128_SD; 1524 default: 1525 g_assert_not_reached(); 1526 } 1527 } 1528 return status; 1529 } 1530 1531 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1532 target_ulong *val) 1533 { 1534 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1535 return RISCV_EXCP_NONE; 1536 } 1537 1538 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1539 { 1540 uint64_t mode_supported = riscv_cpu_cfg(env)->satp_mode.map; 1541 return get_field(mode_supported, (1 << vm)); 1542 } 1543 1544 static target_ulong legalize_xatp(CPURISCVState *env, target_ulong old_xatp, 1545 target_ulong val) 1546 { 1547 target_ulong mask; 1548 bool vm; 1549 if (riscv_cpu_mxl(env) == MXL_RV32) { 1550 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1551 mask = (val ^ old_xatp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1552 } else { 1553 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1554 mask = (val ^ old_xatp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1555 } 1556 1557 if (vm && mask) { 1558 /* 1559 * The ISA defines SATP.MODE=Bare as "no translation", but we still 1560 * pass these through QEMU's TLB emulation as it improves 1561 * performance. Flushing the TLB on SATP writes with paging 1562 * enabled avoids leaking those invalid cached mappings. 1563 */ 1564 tlb_flush(env_cpu(env)); 1565 return val; 1566 } 1567 return old_xatp; 1568 } 1569 1570 static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp, 1571 target_ulong val) 1572 { 1573 bool valid = false; 1574 target_ulong new_mpp = get_field(val, MSTATUS_MPP); 1575 1576 switch (new_mpp) { 1577 case PRV_M: 1578 valid = true; 1579 break; 1580 case PRV_S: 1581 valid = riscv_has_ext(env, RVS); 1582 break; 1583 case PRV_U: 1584 valid = riscv_has_ext(env, RVU); 1585 break; 1586 } 1587 1588 /* Remain field unchanged if new_mpp value is invalid */ 1589 if (!valid) { 1590 val = set_field(val, MSTATUS_MPP, old_mpp); 1591 } 1592 1593 return val; 1594 } 1595 1596 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1597 target_ulong val) 1598 { 1599 uint64_t mstatus = env->mstatus; 1600 uint64_t mask = 0; 1601 RISCVMXL xl = riscv_cpu_mxl(env); 1602 1603 /* 1604 * MPP field have been made WARL since priv version 1.11. However, 1605 * legalization for it will not break any software running on 1.10. 1606 */ 1607 val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val); 1608 1609 /* flush tlb on mstatus fields that affect VM */ 1610 if ((val ^ mstatus) & MSTATUS_MXR) { 1611 tlb_flush(env_cpu(env)); 1612 } 1613 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1614 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1615 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1616 MSTATUS_TW; 1617 1618 if (riscv_has_ext(env, RVF)) { 1619 mask |= MSTATUS_FS; 1620 } 1621 if (riscv_has_ext(env, RVV)) { 1622 mask |= MSTATUS_VS; 1623 } 1624 1625 if (xl != MXL_RV32 || env->debugger) { 1626 if (riscv_has_ext(env, RVH)) { 1627 mask |= MSTATUS_MPV | MSTATUS_GVA; 1628 } 1629 if ((val & MSTATUS64_UXL) != 0) { 1630 mask |= MSTATUS64_UXL; 1631 } 1632 } 1633 1634 /* If cfi lp extension is available, then apply cfi lp mask */ 1635 if (env_archcpu(env)->cfg.ext_zicfilp) { 1636 mask |= (MSTATUS_MPELP | MSTATUS_SPELP); 1637 } 1638 1639 mstatus = (mstatus & ~mask) | (val & mask); 1640 1641 env->mstatus = mstatus; 1642 1643 /* 1644 * Except in debug mode, UXL/SXL can only be modified by higher 1645 * privilege mode. So xl will not be changed in normal mode. 1646 */ 1647 if (env->debugger) { 1648 env->xl = cpu_recompute_xl(env); 1649 } 1650 1651 riscv_cpu_update_mask(env); 1652 return RISCV_EXCP_NONE; 1653 } 1654 1655 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1656 target_ulong *val) 1657 { 1658 *val = env->mstatus >> 32; 1659 return RISCV_EXCP_NONE; 1660 } 1661 1662 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1663 target_ulong val) 1664 { 1665 uint64_t valh = (uint64_t)val << 32; 1666 uint64_t mask = riscv_has_ext(env, RVH) ? MSTATUS_MPV | MSTATUS_GVA : 0; 1667 1668 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1669 1670 return RISCV_EXCP_NONE; 1671 } 1672 1673 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1674 Int128 *val) 1675 { 1676 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, 1677 env->mstatus)); 1678 return RISCV_EXCP_NONE; 1679 } 1680 1681 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1682 Int128 *val) 1683 { 1684 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1685 return RISCV_EXCP_NONE; 1686 } 1687 1688 static RISCVException read_misa(CPURISCVState *env, int csrno, 1689 target_ulong *val) 1690 { 1691 target_ulong misa; 1692 1693 switch (env->misa_mxl) { 1694 case MXL_RV32: 1695 misa = (target_ulong)MXL_RV32 << 30; 1696 break; 1697 #ifdef TARGET_RISCV64 1698 case MXL_RV64: 1699 misa = (target_ulong)MXL_RV64 << 62; 1700 break; 1701 #endif 1702 default: 1703 g_assert_not_reached(); 1704 } 1705 1706 *val = misa | env->misa_ext; 1707 return RISCV_EXCP_NONE; 1708 } 1709 1710 static RISCVException write_misa(CPURISCVState *env, int csrno, 1711 target_ulong val) 1712 { 1713 RISCVCPU *cpu = env_archcpu(env); 1714 uint32_t orig_misa_ext = env->misa_ext; 1715 Error *local_err = NULL; 1716 1717 if (!riscv_cpu_cfg(env)->misa_w) { 1718 /* drop write to misa */ 1719 return RISCV_EXCP_NONE; 1720 } 1721 1722 /* Mask extensions that are not supported by this hart */ 1723 val &= env->misa_ext_mask; 1724 1725 /* 1726 * Suppress 'C' if next instruction is not aligned 1727 * TODO: this should check next_pc 1728 */ 1729 if ((val & RVC) && (GETPC() & ~3) != 0) { 1730 val &= ~RVC; 1731 } 1732 1733 /* Disable RVG if any of its dependencies are disabled */ 1734 if (!(val & RVI && val & RVM && val & RVA && 1735 val & RVF && val & RVD)) { 1736 val &= ~RVG; 1737 } 1738 1739 /* If nothing changed, do nothing. */ 1740 if (val == env->misa_ext) { 1741 return RISCV_EXCP_NONE; 1742 } 1743 1744 env->misa_ext = val; 1745 riscv_cpu_validate_set_extensions(cpu, &local_err); 1746 if (local_err != NULL) { 1747 /* Rollback on validation error */ 1748 qemu_log_mask(LOG_GUEST_ERROR, "Unable to write MISA ext value " 1749 "0x%x, keeping existing MISA ext 0x%x\n", 1750 env->misa_ext, orig_misa_ext); 1751 1752 env->misa_ext = orig_misa_ext; 1753 1754 return RISCV_EXCP_NONE; 1755 } 1756 1757 if (!(env->misa_ext & RVF)) { 1758 env->mstatus &= ~MSTATUS_FS; 1759 } 1760 1761 /* flush translation cache */ 1762 tb_flush(env_cpu(env)); 1763 env->xl = riscv_cpu_mxl(env); 1764 return RISCV_EXCP_NONE; 1765 } 1766 1767 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1768 target_ulong *val) 1769 { 1770 *val = env->medeleg; 1771 return RISCV_EXCP_NONE; 1772 } 1773 1774 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1775 target_ulong val) 1776 { 1777 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1778 return RISCV_EXCP_NONE; 1779 } 1780 1781 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1782 uint64_t *ret_val, 1783 uint64_t new_val, uint64_t wr_mask) 1784 { 1785 uint64_t mask = wr_mask & delegable_ints; 1786 1787 if (ret_val) { 1788 *ret_val = env->mideleg; 1789 } 1790 1791 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1792 1793 if (riscv_has_ext(env, RVH)) { 1794 env->mideleg |= HS_MODE_INTERRUPTS; 1795 } 1796 1797 return RISCV_EXCP_NONE; 1798 } 1799 1800 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1801 target_ulong *ret_val, 1802 target_ulong new_val, target_ulong wr_mask) 1803 { 1804 uint64_t rval; 1805 RISCVException ret; 1806 1807 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1808 if (ret_val) { 1809 *ret_val = rval; 1810 } 1811 1812 return ret; 1813 } 1814 1815 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1816 target_ulong *ret_val, 1817 target_ulong new_val, 1818 target_ulong wr_mask) 1819 { 1820 uint64_t rval; 1821 RISCVException ret; 1822 1823 ret = rmw_mideleg64(env, csrno, &rval, 1824 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1825 if (ret_val) { 1826 *ret_val = rval >> 32; 1827 } 1828 1829 return ret; 1830 } 1831 1832 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1833 uint64_t *ret_val, 1834 uint64_t new_val, uint64_t wr_mask) 1835 { 1836 uint64_t mask = wr_mask & all_ints; 1837 1838 if (ret_val) { 1839 *ret_val = env->mie; 1840 } 1841 1842 env->mie = (env->mie & ~mask) | (new_val & mask); 1843 1844 if (!riscv_has_ext(env, RVH)) { 1845 env->mie &= ~((uint64_t)HS_MODE_INTERRUPTS); 1846 } 1847 1848 return RISCV_EXCP_NONE; 1849 } 1850 1851 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1852 target_ulong *ret_val, 1853 target_ulong new_val, target_ulong wr_mask) 1854 { 1855 uint64_t rval; 1856 RISCVException ret; 1857 1858 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1859 if (ret_val) { 1860 *ret_val = rval; 1861 } 1862 1863 return ret; 1864 } 1865 1866 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1867 target_ulong *ret_val, 1868 target_ulong new_val, target_ulong wr_mask) 1869 { 1870 uint64_t rval; 1871 RISCVException ret; 1872 1873 ret = rmw_mie64(env, csrno, &rval, 1874 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1875 if (ret_val) { 1876 *ret_val = rval >> 32; 1877 } 1878 1879 return ret; 1880 } 1881 1882 static RISCVException rmw_mvien64(CPURISCVState *env, int csrno, 1883 uint64_t *ret_val, 1884 uint64_t new_val, uint64_t wr_mask) 1885 { 1886 uint64_t mask = wr_mask & mvien_writable_mask; 1887 1888 if (ret_val) { 1889 *ret_val = env->mvien; 1890 } 1891 1892 env->mvien = (env->mvien & ~mask) | (new_val & mask); 1893 1894 return RISCV_EXCP_NONE; 1895 } 1896 1897 static RISCVException rmw_mvien(CPURISCVState *env, int csrno, 1898 target_ulong *ret_val, 1899 target_ulong new_val, target_ulong wr_mask) 1900 { 1901 uint64_t rval; 1902 RISCVException ret; 1903 1904 ret = rmw_mvien64(env, csrno, &rval, new_val, wr_mask); 1905 if (ret_val) { 1906 *ret_val = rval; 1907 } 1908 1909 return ret; 1910 } 1911 1912 static RISCVException rmw_mvienh(CPURISCVState *env, int csrno, 1913 target_ulong *ret_val, 1914 target_ulong new_val, target_ulong wr_mask) 1915 { 1916 uint64_t rval; 1917 RISCVException ret; 1918 1919 ret = rmw_mvien64(env, csrno, &rval, 1920 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1921 if (ret_val) { 1922 *ret_val = rval >> 32; 1923 } 1924 1925 return ret; 1926 } 1927 1928 static RISCVException read_mtopi(CPURISCVState *env, int csrno, 1929 target_ulong *val) 1930 { 1931 int irq; 1932 uint8_t iprio; 1933 1934 irq = riscv_cpu_mirq_pending(env); 1935 if (irq <= 0 || irq > 63) { 1936 *val = 0; 1937 } else { 1938 iprio = env->miprio[irq]; 1939 if (!iprio) { 1940 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1941 iprio = IPRIO_MMAXIPRIO; 1942 } 1943 } 1944 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1945 *val |= iprio; 1946 } 1947 1948 return RISCV_EXCP_NONE; 1949 } 1950 1951 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1952 { 1953 if (!env->virt_enabled) { 1954 return csrno; 1955 } 1956 1957 switch (csrno) { 1958 case CSR_SISELECT: 1959 return CSR_VSISELECT; 1960 case CSR_SIREG: 1961 return CSR_VSIREG; 1962 case CSR_STOPEI: 1963 return CSR_VSTOPEI; 1964 default: 1965 return csrno; 1966 }; 1967 } 1968 1969 static RISCVException rmw_xiselect(CPURISCVState *env, int csrno, 1970 target_ulong *val, target_ulong new_val, 1971 target_ulong wr_mask) 1972 { 1973 target_ulong *iselect; 1974 1975 /* Translate CSR number for VS-mode */ 1976 csrno = aia_xlate_vs_csrno(env, csrno); 1977 1978 /* Find the iselect CSR based on CSR number */ 1979 switch (csrno) { 1980 case CSR_MISELECT: 1981 iselect = &env->miselect; 1982 break; 1983 case CSR_SISELECT: 1984 iselect = &env->siselect; 1985 break; 1986 case CSR_VSISELECT: 1987 iselect = &env->vsiselect; 1988 break; 1989 default: 1990 return RISCV_EXCP_ILLEGAL_INST; 1991 }; 1992 1993 if (val) { 1994 *val = *iselect; 1995 } 1996 1997 wr_mask &= ISELECT_MASK; 1998 if (wr_mask) { 1999 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 2000 } 2001 2002 return RISCV_EXCP_NONE; 2003 } 2004 2005 static int rmw_iprio(target_ulong xlen, 2006 target_ulong iselect, uint8_t *iprio, 2007 target_ulong *val, target_ulong new_val, 2008 target_ulong wr_mask, int ext_irq_no) 2009 { 2010 int i, firq, nirqs; 2011 target_ulong old_val; 2012 2013 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 2014 return -EINVAL; 2015 } 2016 if (xlen != 32 && iselect & 0x1) { 2017 return -EINVAL; 2018 } 2019 2020 nirqs = 4 * (xlen / 32); 2021 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 2022 2023 old_val = 0; 2024 for (i = 0; i < nirqs; i++) { 2025 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 2026 } 2027 2028 if (val) { 2029 *val = old_val; 2030 } 2031 2032 if (wr_mask) { 2033 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 2034 for (i = 0; i < nirqs; i++) { 2035 /* 2036 * M-level and S-level external IRQ priority always read-only 2037 * zero. This means default priority order is always preferred 2038 * for M-level and S-level external IRQs. 2039 */ 2040 if ((firq + i) == ext_irq_no) { 2041 continue; 2042 } 2043 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 2044 } 2045 } 2046 2047 return 0; 2048 } 2049 2050 static RISCVException rmw_xireg(CPURISCVState *env, int csrno, 2051 target_ulong *val, target_ulong new_val, 2052 target_ulong wr_mask) 2053 { 2054 bool virt, isel_reserved; 2055 uint8_t *iprio; 2056 int ret = -EINVAL; 2057 target_ulong priv, isel, vgein; 2058 2059 /* Translate CSR number for VS-mode */ 2060 csrno = aia_xlate_vs_csrno(env, csrno); 2061 2062 /* Decode register details from CSR number */ 2063 virt = false; 2064 isel_reserved = false; 2065 switch (csrno) { 2066 case CSR_MIREG: 2067 iprio = env->miprio; 2068 isel = env->miselect; 2069 priv = PRV_M; 2070 break; 2071 case CSR_SIREG: 2072 if (env->priv == PRV_S && env->mvien & MIP_SEIP && 2073 env->siselect >= ISELECT_IMSIC_EIDELIVERY && 2074 env->siselect <= ISELECT_IMSIC_EIE63) { 2075 goto done; 2076 } 2077 iprio = env->siprio; 2078 isel = env->siselect; 2079 priv = PRV_S; 2080 break; 2081 case CSR_VSIREG: 2082 iprio = env->hviprio; 2083 isel = env->vsiselect; 2084 priv = PRV_S; 2085 virt = true; 2086 break; 2087 default: 2088 goto done; 2089 }; 2090 2091 /* Find the selected guest interrupt file */ 2092 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 2093 2094 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 2095 /* Local interrupt priority registers not available for VS-mode */ 2096 if (!virt) { 2097 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 2098 isel, iprio, val, new_val, wr_mask, 2099 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 2100 } 2101 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 2102 /* IMSIC registers only available when machine implements it. */ 2103 if (env->aia_ireg_rmw_fn[priv]) { 2104 /* Selected guest interrupt file should not be zero */ 2105 if (virt && (!vgein || env->geilen < vgein)) { 2106 goto done; 2107 } 2108 /* Call machine specific IMSIC register emulation */ 2109 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 2110 AIA_MAKE_IREG(isel, priv, virt, vgein, 2111 riscv_cpu_mxl_bits(env)), 2112 val, new_val, wr_mask); 2113 } 2114 } else { 2115 isel_reserved = true; 2116 } 2117 2118 done: 2119 if (ret) { 2120 return (env->virt_enabled && virt && !isel_reserved) ? 2121 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2122 } 2123 return RISCV_EXCP_NONE; 2124 } 2125 2126 static RISCVException rmw_xtopei(CPURISCVState *env, int csrno, 2127 target_ulong *val, target_ulong new_val, 2128 target_ulong wr_mask) 2129 { 2130 bool virt; 2131 int ret = -EINVAL; 2132 target_ulong priv, vgein; 2133 2134 /* Translate CSR number for VS-mode */ 2135 csrno = aia_xlate_vs_csrno(env, csrno); 2136 2137 /* Decode register details from CSR number */ 2138 virt = false; 2139 switch (csrno) { 2140 case CSR_MTOPEI: 2141 priv = PRV_M; 2142 break; 2143 case CSR_STOPEI: 2144 if (env->mvien & MIP_SEIP && env->priv == PRV_S) { 2145 goto done; 2146 } 2147 priv = PRV_S; 2148 break; 2149 case CSR_VSTOPEI: 2150 priv = PRV_S; 2151 virt = true; 2152 break; 2153 default: 2154 goto done; 2155 }; 2156 2157 /* IMSIC CSRs only available when machine implements IMSIC. */ 2158 if (!env->aia_ireg_rmw_fn[priv]) { 2159 goto done; 2160 } 2161 2162 /* Find the selected guest interrupt file */ 2163 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 2164 2165 /* Selected guest interrupt file should be valid */ 2166 if (virt && (!vgein || env->geilen < vgein)) { 2167 goto done; 2168 } 2169 2170 /* Call machine specific IMSIC register emulation for TOPEI */ 2171 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 2172 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 2173 riscv_cpu_mxl_bits(env)), 2174 val, new_val, wr_mask); 2175 2176 done: 2177 if (ret) { 2178 return (env->virt_enabled && virt) ? 2179 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2180 } 2181 return RISCV_EXCP_NONE; 2182 } 2183 2184 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 2185 target_ulong *val) 2186 { 2187 *val = env->mtvec; 2188 return RISCV_EXCP_NONE; 2189 } 2190 2191 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 2192 target_ulong val) 2193 { 2194 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2195 if ((val & 3) < 2) { 2196 env->mtvec = val; 2197 } else { 2198 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 2199 } 2200 return RISCV_EXCP_NONE; 2201 } 2202 2203 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 2204 target_ulong *val) 2205 { 2206 *val = env->mcountinhibit; 2207 return RISCV_EXCP_NONE; 2208 } 2209 2210 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 2211 target_ulong val) 2212 { 2213 int cidx; 2214 PMUCTRState *counter; 2215 RISCVCPU *cpu = env_archcpu(env); 2216 uint32_t present_ctrs = cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_IR; 2217 target_ulong updated_ctrs = (env->mcountinhibit ^ val) & present_ctrs; 2218 uint64_t mhpmctr_val, prev_count, curr_count; 2219 2220 /* WARL register - disable unavailable counters; TM bit is always 0 */ 2221 env->mcountinhibit = val & present_ctrs; 2222 2223 /* Check if any other counter is also monitoring cycles/instructions */ 2224 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 2225 if (!(updated_ctrs & BIT(cidx)) || 2226 (!riscv_pmu_ctr_monitor_cycles(env, cidx) && 2227 !riscv_pmu_ctr_monitor_instructions(env, cidx))) { 2228 continue; 2229 } 2230 2231 counter = &env->pmu_ctrs[cidx]; 2232 2233 if (!get_field(env->mcountinhibit, BIT(cidx))) { 2234 counter->mhpmcounter_prev = 2235 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, false); 2236 if (riscv_cpu_mxl(env) == MXL_RV32) { 2237 counter->mhpmcounterh_prev = 2238 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, true); 2239 } 2240 2241 if (cidx > 2) { 2242 mhpmctr_val = counter->mhpmcounter_val; 2243 if (riscv_cpu_mxl(env) == MXL_RV32) { 2244 mhpmctr_val = mhpmctr_val | 2245 ((uint64_t)counter->mhpmcounterh_val << 32); 2246 } 2247 riscv_pmu_setup_timer(env, mhpmctr_val, cidx); 2248 } 2249 } else { 2250 curr_count = riscv_pmu_ctr_get_fixed_counters_val(env, cidx, false); 2251 2252 mhpmctr_val = counter->mhpmcounter_val; 2253 prev_count = counter->mhpmcounter_prev; 2254 if (riscv_cpu_mxl(env) == MXL_RV32) { 2255 uint64_t tmp = 2256 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, true); 2257 2258 curr_count = curr_count | (tmp << 32); 2259 mhpmctr_val = mhpmctr_val | 2260 ((uint64_t)counter->mhpmcounterh_val << 32); 2261 prev_count = prev_count | 2262 ((uint64_t)counter->mhpmcounterh_prev << 32); 2263 } 2264 2265 /* Adjust the counter for later reads. */ 2266 mhpmctr_val = curr_count - prev_count + mhpmctr_val; 2267 counter->mhpmcounter_val = mhpmctr_val; 2268 if (riscv_cpu_mxl(env) == MXL_RV32) { 2269 counter->mhpmcounterh_val = mhpmctr_val >> 32; 2270 } 2271 } 2272 } 2273 2274 return RISCV_EXCP_NONE; 2275 } 2276 2277 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 2278 target_ulong *val) 2279 { 2280 *val = env->mcounteren; 2281 return RISCV_EXCP_NONE; 2282 } 2283 2284 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 2285 target_ulong val) 2286 { 2287 RISCVCPU *cpu = env_archcpu(env); 2288 2289 /* WARL register - disable unavailable counters */ 2290 env->mcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 2291 COUNTEREN_IR); 2292 return RISCV_EXCP_NONE; 2293 } 2294 2295 /* Machine Trap Handling */ 2296 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 2297 Int128 *val) 2298 { 2299 *val = int128_make128(env->mscratch, env->mscratchh); 2300 return RISCV_EXCP_NONE; 2301 } 2302 2303 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 2304 Int128 val) 2305 { 2306 env->mscratch = int128_getlo(val); 2307 env->mscratchh = int128_gethi(val); 2308 return RISCV_EXCP_NONE; 2309 } 2310 2311 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 2312 target_ulong *val) 2313 { 2314 *val = env->mscratch; 2315 return RISCV_EXCP_NONE; 2316 } 2317 2318 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 2319 target_ulong val) 2320 { 2321 env->mscratch = val; 2322 return RISCV_EXCP_NONE; 2323 } 2324 2325 static RISCVException read_mepc(CPURISCVState *env, int csrno, 2326 target_ulong *val) 2327 { 2328 *val = env->mepc; 2329 return RISCV_EXCP_NONE; 2330 } 2331 2332 static RISCVException write_mepc(CPURISCVState *env, int csrno, 2333 target_ulong val) 2334 { 2335 env->mepc = val; 2336 return RISCV_EXCP_NONE; 2337 } 2338 2339 static RISCVException read_mcause(CPURISCVState *env, int csrno, 2340 target_ulong *val) 2341 { 2342 *val = env->mcause; 2343 return RISCV_EXCP_NONE; 2344 } 2345 2346 static RISCVException write_mcause(CPURISCVState *env, int csrno, 2347 target_ulong val) 2348 { 2349 env->mcause = val; 2350 return RISCV_EXCP_NONE; 2351 } 2352 2353 static RISCVException read_mtval(CPURISCVState *env, int csrno, 2354 target_ulong *val) 2355 { 2356 *val = env->mtval; 2357 return RISCV_EXCP_NONE; 2358 } 2359 2360 static RISCVException write_mtval(CPURISCVState *env, int csrno, 2361 target_ulong val) 2362 { 2363 env->mtval = val; 2364 return RISCV_EXCP_NONE; 2365 } 2366 2367 /* Execution environment configuration setup */ 2368 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 2369 target_ulong *val) 2370 { 2371 *val = env->menvcfg; 2372 return RISCV_EXCP_NONE; 2373 } 2374 2375 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 2376 target_ulong val) 2377 { 2378 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 2379 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 2380 2381 if (riscv_cpu_mxl(env) == MXL_RV64) { 2382 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 2383 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 2384 (cfg->ext_svadu ? MENVCFG_ADUE : 0); 2385 2386 if (env_archcpu(env)->cfg.ext_zicfilp) { 2387 mask |= MENVCFG_LPE; 2388 } 2389 2390 if (env_archcpu(env)->cfg.ext_zicfiss) { 2391 mask |= MENVCFG_SSE; 2392 } 2393 } 2394 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 2395 2396 return RISCV_EXCP_NONE; 2397 } 2398 2399 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 2400 target_ulong *val) 2401 { 2402 *val = env->menvcfg >> 32; 2403 return RISCV_EXCP_NONE; 2404 } 2405 2406 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 2407 target_ulong val) 2408 { 2409 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 2410 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 2411 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 2412 (cfg->ext_svadu ? MENVCFG_ADUE : 0); 2413 uint64_t valh = (uint64_t)val << 32; 2414 2415 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 2416 2417 return RISCV_EXCP_NONE; 2418 } 2419 2420 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 2421 target_ulong *val) 2422 { 2423 RISCVException ret; 2424 2425 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2426 if (ret != RISCV_EXCP_NONE) { 2427 return ret; 2428 } 2429 2430 *val = env->senvcfg; 2431 return RISCV_EXCP_NONE; 2432 } 2433 2434 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 2435 target_ulong val) 2436 { 2437 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 2438 RISCVException ret; 2439 2440 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2441 if (ret != RISCV_EXCP_NONE) { 2442 return ret; 2443 } 2444 2445 if (env_archcpu(env)->cfg.ext_zicfilp) { 2446 mask |= SENVCFG_LPE; 2447 } 2448 2449 /* Higher mode SSE must be ON for next-less mode SSE to be ON */ 2450 if (env_archcpu(env)->cfg.ext_zicfiss && 2451 get_field(env->menvcfg, MENVCFG_SSE) && 2452 (env->virt_enabled ? get_field(env->henvcfg, HENVCFG_SSE) : true)) { 2453 mask |= SENVCFG_SSE; 2454 } 2455 2456 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 2457 return RISCV_EXCP_NONE; 2458 } 2459 2460 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 2461 target_ulong *val) 2462 { 2463 RISCVException ret; 2464 2465 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2466 if (ret != RISCV_EXCP_NONE) { 2467 return ret; 2468 } 2469 2470 /* 2471 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 2472 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 2473 * henvcfg.adue is read_only 0 when menvcfg.adue = 0 2474 */ 2475 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | 2476 env->menvcfg); 2477 return RISCV_EXCP_NONE; 2478 } 2479 2480 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 2481 target_ulong val) 2482 { 2483 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 2484 RISCVException ret; 2485 2486 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2487 if (ret != RISCV_EXCP_NONE) { 2488 return ret; 2489 } 2490 2491 if (riscv_cpu_mxl(env) == MXL_RV64) { 2492 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE); 2493 2494 if (env_archcpu(env)->cfg.ext_zicfilp) { 2495 mask |= HENVCFG_LPE; 2496 } 2497 2498 /* H can light up SSE for VS only if HS had it from menvcfg */ 2499 if (env_archcpu(env)->cfg.ext_zicfiss && 2500 get_field(env->menvcfg, MENVCFG_SSE)) { 2501 mask |= HENVCFG_SSE; 2502 } 2503 } 2504 2505 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 2506 2507 return RISCV_EXCP_NONE; 2508 } 2509 2510 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 2511 target_ulong *val) 2512 { 2513 RISCVException ret; 2514 2515 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2516 if (ret != RISCV_EXCP_NONE) { 2517 return ret; 2518 } 2519 2520 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | 2521 env->menvcfg)) >> 32; 2522 return RISCV_EXCP_NONE; 2523 } 2524 2525 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2526 target_ulong val) 2527 { 2528 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 2529 HENVCFG_ADUE); 2530 uint64_t valh = (uint64_t)val << 32; 2531 RISCVException ret; 2532 2533 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2534 if (ret != RISCV_EXCP_NONE) { 2535 return ret; 2536 } 2537 2538 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2539 return RISCV_EXCP_NONE; 2540 } 2541 2542 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2543 target_ulong *val) 2544 { 2545 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2546 2547 return RISCV_EXCP_NONE; 2548 } 2549 2550 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2551 uint64_t wr_mask, target_ulong new_val) 2552 { 2553 uint64_t *reg; 2554 2555 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2556 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2557 2558 return RISCV_EXCP_NONE; 2559 } 2560 2561 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2562 target_ulong new_val) 2563 { 2564 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2565 if (!riscv_has_ext(env, RVF)) { 2566 wr_mask |= SMSTATEEN0_FCSR; 2567 } 2568 2569 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 2570 wr_mask |= SMSTATEEN0_P1P13; 2571 } 2572 2573 return write_mstateen(env, csrno, wr_mask, new_val); 2574 } 2575 2576 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2577 target_ulong new_val) 2578 { 2579 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2580 } 2581 2582 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2583 target_ulong *val) 2584 { 2585 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2586 2587 return RISCV_EXCP_NONE; 2588 } 2589 2590 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2591 uint64_t wr_mask, target_ulong new_val) 2592 { 2593 uint64_t *reg, val; 2594 2595 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2596 val = (uint64_t)new_val << 32; 2597 val |= *reg & 0xFFFFFFFF; 2598 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2599 2600 return RISCV_EXCP_NONE; 2601 } 2602 2603 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2604 target_ulong new_val) 2605 { 2606 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2607 2608 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 2609 wr_mask |= SMSTATEEN0_P1P13; 2610 } 2611 2612 return write_mstateenh(env, csrno, wr_mask, new_val); 2613 } 2614 2615 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2616 target_ulong new_val) 2617 { 2618 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2619 } 2620 2621 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2622 target_ulong *val) 2623 { 2624 int index = csrno - CSR_HSTATEEN0; 2625 2626 *val = env->hstateen[index] & env->mstateen[index]; 2627 2628 return RISCV_EXCP_NONE; 2629 } 2630 2631 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2632 uint64_t mask, target_ulong new_val) 2633 { 2634 int index = csrno - CSR_HSTATEEN0; 2635 uint64_t *reg, wr_mask; 2636 2637 reg = &env->hstateen[index]; 2638 wr_mask = env->mstateen[index] & mask; 2639 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2640 2641 return RISCV_EXCP_NONE; 2642 } 2643 2644 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2645 target_ulong new_val) 2646 { 2647 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2648 2649 if (!riscv_has_ext(env, RVF)) { 2650 wr_mask |= SMSTATEEN0_FCSR; 2651 } 2652 2653 return write_hstateen(env, csrno, wr_mask, new_val); 2654 } 2655 2656 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2657 target_ulong new_val) 2658 { 2659 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2660 } 2661 2662 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2663 target_ulong *val) 2664 { 2665 int index = csrno - CSR_HSTATEEN0H; 2666 2667 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2668 2669 return RISCV_EXCP_NONE; 2670 } 2671 2672 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2673 uint64_t mask, target_ulong new_val) 2674 { 2675 int index = csrno - CSR_HSTATEEN0H; 2676 uint64_t *reg, wr_mask, val; 2677 2678 reg = &env->hstateen[index]; 2679 val = (uint64_t)new_val << 32; 2680 val |= *reg & 0xFFFFFFFF; 2681 wr_mask = env->mstateen[index] & mask; 2682 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2683 2684 return RISCV_EXCP_NONE; 2685 } 2686 2687 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2688 target_ulong new_val) 2689 { 2690 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2691 2692 return write_hstateenh(env, csrno, wr_mask, new_val); 2693 } 2694 2695 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2696 target_ulong new_val) 2697 { 2698 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2699 } 2700 2701 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2702 target_ulong *val) 2703 { 2704 bool virt = env->virt_enabled; 2705 int index = csrno - CSR_SSTATEEN0; 2706 2707 *val = env->sstateen[index] & env->mstateen[index]; 2708 if (virt) { 2709 *val &= env->hstateen[index]; 2710 } 2711 2712 return RISCV_EXCP_NONE; 2713 } 2714 2715 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2716 uint64_t mask, target_ulong new_val) 2717 { 2718 bool virt = env->virt_enabled; 2719 int index = csrno - CSR_SSTATEEN0; 2720 uint64_t wr_mask; 2721 uint64_t *reg; 2722 2723 wr_mask = env->mstateen[index] & mask; 2724 if (virt) { 2725 wr_mask &= env->hstateen[index]; 2726 } 2727 2728 reg = &env->sstateen[index]; 2729 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2730 2731 return RISCV_EXCP_NONE; 2732 } 2733 2734 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2735 target_ulong new_val) 2736 { 2737 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2738 2739 if (!riscv_has_ext(env, RVF)) { 2740 wr_mask |= SMSTATEEN0_FCSR; 2741 } 2742 2743 return write_sstateen(env, csrno, wr_mask, new_val); 2744 } 2745 2746 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2747 target_ulong new_val) 2748 { 2749 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2750 } 2751 2752 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2753 uint64_t *ret_val, 2754 uint64_t new_val, uint64_t wr_mask) 2755 { 2756 uint64_t old_mip, mask = wr_mask & delegable_ints; 2757 uint32_t gin; 2758 2759 if (mask & MIP_SEIP) { 2760 env->software_seip = new_val & MIP_SEIP; 2761 new_val |= env->external_seip * MIP_SEIP; 2762 } 2763 2764 if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && 2765 get_field(env->menvcfg, MENVCFG_STCE)) { 2766 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2767 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2768 } 2769 2770 if (mask) { 2771 old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); 2772 } else { 2773 old_mip = env->mip; 2774 } 2775 2776 if (csrno != CSR_HVIP) { 2777 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2778 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2779 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2780 } 2781 2782 if (ret_val) { 2783 *ret_val = old_mip; 2784 } 2785 2786 return RISCV_EXCP_NONE; 2787 } 2788 2789 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2790 target_ulong *ret_val, 2791 target_ulong new_val, target_ulong wr_mask) 2792 { 2793 uint64_t rval; 2794 RISCVException ret; 2795 2796 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2797 if (ret_val) { 2798 *ret_val = rval; 2799 } 2800 2801 return ret; 2802 } 2803 2804 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2805 target_ulong *ret_val, 2806 target_ulong new_val, target_ulong wr_mask) 2807 { 2808 uint64_t rval; 2809 RISCVException ret; 2810 2811 ret = rmw_mip64(env, csrno, &rval, 2812 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2813 if (ret_val) { 2814 *ret_val = rval >> 32; 2815 } 2816 2817 return ret; 2818 } 2819 2820 /* 2821 * The function is written for two use-cases: 2822 * 1- To access mvip csr as is for m-mode access. 2823 * 2- To access sip as a combination of mip and mvip for s-mode. 2824 * 2825 * Both report bits 1, 5, 9 and 13:63 but with the exception of 2826 * STIP being read-only zero in case of mvip when sstc extension 2827 * is present. 2828 * Also, sip needs to be read-only zero when both mideleg[i] and 2829 * mvien[i] are zero but mvip needs to be an alias of mip. 2830 */ 2831 static RISCVException rmw_mvip64(CPURISCVState *env, int csrno, 2832 uint64_t *ret_val, 2833 uint64_t new_val, uint64_t wr_mask) 2834 { 2835 RISCVCPU *cpu = env_archcpu(env); 2836 target_ulong ret_mip = 0; 2837 RISCVException ret; 2838 uint64_t old_mvip; 2839 2840 /* 2841 * mideleg[i] mvien[i] 2842 * 0 0 No delegation. mvip[i] is alias of mip[i]. 2843 * 0 1 mvip[i] becomes source of interrupt, mip bypassed. 2844 * 1 X mip[i] is source of interrupt and mvip[i] aliases 2845 * mip[i]. 2846 * 2847 * So alias condition would be for bits: 2848 * ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (mideleg | ~mvien)) | 2849 * (!sstc & MIP_STIP) 2850 * 2851 * Non-alias condition will be for bits: 2852 * (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~mideleg & mvien) 2853 * 2854 * alias_mask denotes the bits that come from mip nalias_mask denotes bits 2855 * that come from hvip. 2856 */ 2857 uint64_t alias_mask = ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2858 (env->mideleg | ~env->mvien)) | MIP_STIP; 2859 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2860 (~env->mideleg & env->mvien); 2861 uint64_t wr_mask_mvip; 2862 uint64_t wr_mask_mip; 2863 2864 /* 2865 * mideleg[i] mvien[i] 2866 * 0 0 sip[i] read-only zero. 2867 * 0 1 sip[i] alias of mvip[i]. 2868 * 1 X sip[i] alias of mip[i]. 2869 * 2870 * Both alias and non-alias mask remain same for sip except for bits 2871 * which are zero in both mideleg and mvien. 2872 */ 2873 if (csrno == CSR_SIP) { 2874 /* Remove bits that are zero in both mideleg and mvien. */ 2875 alias_mask &= (env->mideleg | env->mvien); 2876 nalias_mask &= (env->mideleg | env->mvien); 2877 } 2878 2879 /* 2880 * If sstc is present, mvip.STIP is not an alias of mip.STIP so clear 2881 * that our in mip returned value. 2882 */ 2883 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2884 get_field(env->menvcfg, MENVCFG_STCE)) { 2885 alias_mask &= ~MIP_STIP; 2886 } 2887 2888 wr_mask_mip = wr_mask & alias_mask & mvip_writable_mask; 2889 wr_mask_mvip = wr_mask & nalias_mask & mvip_writable_mask; 2890 2891 /* 2892 * For bits set in alias_mask, mvip needs to be alias of mip, so forward 2893 * this to rmw_mip. 2894 */ 2895 ret = rmw_mip(env, CSR_MIP, &ret_mip, new_val, wr_mask_mip); 2896 if (ret != RISCV_EXCP_NONE) { 2897 return ret; 2898 } 2899 2900 old_mvip = env->mvip; 2901 2902 /* 2903 * Write to mvip. Update only non-alias bits. Alias bits were updated 2904 * in mip in rmw_mip above. 2905 */ 2906 if (wr_mask_mvip) { 2907 env->mvip = (env->mvip & ~wr_mask_mvip) | (new_val & wr_mask_mvip); 2908 2909 /* 2910 * Given mvip is separate source from mip, we need to trigger interrupt 2911 * from here separately. Normally this happen from riscv_cpu_update_mip. 2912 */ 2913 riscv_cpu_interrupt(env); 2914 } 2915 2916 if (ret_val) { 2917 ret_mip &= alias_mask; 2918 old_mvip &= nalias_mask; 2919 2920 *ret_val = old_mvip | ret_mip; 2921 } 2922 2923 return RISCV_EXCP_NONE; 2924 } 2925 2926 static RISCVException rmw_mvip(CPURISCVState *env, int csrno, 2927 target_ulong *ret_val, 2928 target_ulong new_val, target_ulong wr_mask) 2929 { 2930 uint64_t rval; 2931 RISCVException ret; 2932 2933 ret = rmw_mvip64(env, csrno, &rval, new_val, wr_mask); 2934 if (ret_val) { 2935 *ret_val = rval; 2936 } 2937 2938 return ret; 2939 } 2940 2941 static RISCVException rmw_mviph(CPURISCVState *env, int csrno, 2942 target_ulong *ret_val, 2943 target_ulong new_val, target_ulong wr_mask) 2944 { 2945 uint64_t rval; 2946 RISCVException ret; 2947 2948 ret = rmw_mvip64(env, csrno, &rval, 2949 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2950 if (ret_val) { 2951 *ret_val = rval >> 32; 2952 } 2953 2954 return ret; 2955 } 2956 2957 /* Supervisor Trap Setup */ 2958 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2959 Int128 *val) 2960 { 2961 uint64_t mask = sstatus_v1_10_mask; 2962 uint64_t sstatus = env->mstatus & mask; 2963 if (env->xl != MXL_RV32 || env->debugger) { 2964 mask |= SSTATUS64_UXL; 2965 } 2966 2967 if (env_archcpu(env)->cfg.ext_zicfilp) { 2968 mask |= SSTATUS_SPELP; 2969 } 2970 2971 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2972 return RISCV_EXCP_NONE; 2973 } 2974 2975 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2976 target_ulong *val) 2977 { 2978 target_ulong mask = (sstatus_v1_10_mask); 2979 if (env->xl != MXL_RV32 || env->debugger) { 2980 mask |= SSTATUS64_UXL; 2981 } 2982 2983 if (env_archcpu(env)->cfg.ext_zicfilp) { 2984 mask |= SSTATUS_SPELP; 2985 } 2986 2987 /* TODO: Use SXL not MXL. */ 2988 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2989 return RISCV_EXCP_NONE; 2990 } 2991 2992 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2993 target_ulong val) 2994 { 2995 target_ulong mask = (sstatus_v1_10_mask); 2996 2997 if (env->xl != MXL_RV32 || env->debugger) { 2998 if ((val & SSTATUS64_UXL) != 0) { 2999 mask |= SSTATUS64_UXL; 3000 } 3001 } 3002 3003 if (env_archcpu(env)->cfg.ext_zicfilp) { 3004 mask |= SSTATUS_SPELP; 3005 } 3006 3007 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 3008 return write_mstatus(env, CSR_MSTATUS, newval); 3009 } 3010 3011 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 3012 uint64_t *ret_val, 3013 uint64_t new_val, uint64_t wr_mask) 3014 { 3015 uint64_t alias_mask = (LOCAL_INTERRUPTS | VS_MODE_INTERRUPTS) & 3016 env->hideleg; 3017 uint64_t nalias_mask = LOCAL_INTERRUPTS & (~env->hideleg & env->hvien); 3018 uint64_t rval, rval_vs, vsbits; 3019 uint64_t wr_mask_vsie; 3020 uint64_t wr_mask_mie; 3021 RISCVException ret; 3022 3023 /* Bring VS-level bits to correct position */ 3024 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 3025 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 3026 new_val |= vsbits << 1; 3027 3028 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 3029 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 3030 wr_mask |= vsbits << 1; 3031 3032 wr_mask_mie = wr_mask & alias_mask; 3033 wr_mask_vsie = wr_mask & nalias_mask; 3034 3035 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask_mie); 3036 3037 rval_vs = env->vsie & nalias_mask; 3038 env->vsie = (env->vsie & ~wr_mask_vsie) | (new_val & wr_mask_vsie); 3039 3040 if (ret_val) { 3041 rval &= alias_mask; 3042 vsbits = rval & VS_MODE_INTERRUPTS; 3043 rval &= ~VS_MODE_INTERRUPTS; 3044 *ret_val = rval | (vsbits >> 1) | rval_vs; 3045 } 3046 3047 return ret; 3048 } 3049 3050 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 3051 target_ulong *ret_val, 3052 target_ulong new_val, target_ulong wr_mask) 3053 { 3054 uint64_t rval; 3055 RISCVException ret; 3056 3057 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 3058 if (ret_val) { 3059 *ret_val = rval; 3060 } 3061 3062 return ret; 3063 } 3064 3065 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 3066 target_ulong *ret_val, 3067 target_ulong new_val, target_ulong wr_mask) 3068 { 3069 uint64_t rval; 3070 RISCVException ret; 3071 3072 ret = rmw_vsie64(env, csrno, &rval, 3073 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3074 if (ret_val) { 3075 *ret_val = rval >> 32; 3076 } 3077 3078 return ret; 3079 } 3080 3081 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 3082 uint64_t *ret_val, 3083 uint64_t new_val, uint64_t wr_mask) 3084 { 3085 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 3086 (~env->mideleg & env->mvien); 3087 uint64_t alias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & env->mideleg; 3088 uint64_t sie_mask = wr_mask & nalias_mask; 3089 RISCVException ret; 3090 3091 /* 3092 * mideleg[i] mvien[i] 3093 * 0 0 sie[i] read-only zero. 3094 * 0 1 sie[i] is a separate writable bit. 3095 * 1 X sie[i] alias of mie[i]. 3096 * 3097 * Both alias and non-alias mask remain same for sip except for bits 3098 * which are zero in both mideleg and mvien. 3099 */ 3100 if (env->virt_enabled) { 3101 if (env->hvictl & HVICTL_VTI) { 3102 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3103 } 3104 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 3105 if (ret_val) { 3106 *ret_val &= alias_mask; 3107 } 3108 } else { 3109 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & alias_mask); 3110 if (ret_val) { 3111 *ret_val &= alias_mask; 3112 *ret_val |= env->sie & nalias_mask; 3113 } 3114 3115 env->sie = (env->sie & ~sie_mask) | (new_val & sie_mask); 3116 } 3117 3118 return ret; 3119 } 3120 3121 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 3122 target_ulong *ret_val, 3123 target_ulong new_val, target_ulong wr_mask) 3124 { 3125 uint64_t rval; 3126 RISCVException ret; 3127 3128 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 3129 if (ret == RISCV_EXCP_NONE && ret_val) { 3130 *ret_val = rval; 3131 } 3132 3133 return ret; 3134 } 3135 3136 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 3137 target_ulong *ret_val, 3138 target_ulong new_val, target_ulong wr_mask) 3139 { 3140 uint64_t rval; 3141 RISCVException ret; 3142 3143 ret = rmw_sie64(env, csrno, &rval, 3144 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3145 if (ret_val) { 3146 *ret_val = rval >> 32; 3147 } 3148 3149 return ret; 3150 } 3151 3152 static RISCVException read_stvec(CPURISCVState *env, int csrno, 3153 target_ulong *val) 3154 { 3155 *val = env->stvec; 3156 return RISCV_EXCP_NONE; 3157 } 3158 3159 static RISCVException write_stvec(CPURISCVState *env, int csrno, 3160 target_ulong val) 3161 { 3162 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 3163 if ((val & 3) < 2) { 3164 env->stvec = val; 3165 } else { 3166 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 3167 } 3168 return RISCV_EXCP_NONE; 3169 } 3170 3171 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 3172 target_ulong *val) 3173 { 3174 *val = env->scounteren; 3175 return RISCV_EXCP_NONE; 3176 } 3177 3178 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 3179 target_ulong val) 3180 { 3181 RISCVCPU *cpu = env_archcpu(env); 3182 3183 /* WARL register - disable unavailable counters */ 3184 env->scounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 3185 COUNTEREN_IR); 3186 return RISCV_EXCP_NONE; 3187 } 3188 3189 /* Supervisor Trap Handling */ 3190 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 3191 Int128 *val) 3192 { 3193 *val = int128_make128(env->sscratch, env->sscratchh); 3194 return RISCV_EXCP_NONE; 3195 } 3196 3197 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 3198 Int128 val) 3199 { 3200 env->sscratch = int128_getlo(val); 3201 env->sscratchh = int128_gethi(val); 3202 return RISCV_EXCP_NONE; 3203 } 3204 3205 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 3206 target_ulong *val) 3207 { 3208 *val = env->sscratch; 3209 return RISCV_EXCP_NONE; 3210 } 3211 3212 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 3213 target_ulong val) 3214 { 3215 env->sscratch = val; 3216 return RISCV_EXCP_NONE; 3217 } 3218 3219 static RISCVException read_sepc(CPURISCVState *env, int csrno, 3220 target_ulong *val) 3221 { 3222 *val = env->sepc; 3223 return RISCV_EXCP_NONE; 3224 } 3225 3226 static RISCVException write_sepc(CPURISCVState *env, int csrno, 3227 target_ulong val) 3228 { 3229 env->sepc = val; 3230 return RISCV_EXCP_NONE; 3231 } 3232 3233 static RISCVException read_scause(CPURISCVState *env, int csrno, 3234 target_ulong *val) 3235 { 3236 *val = env->scause; 3237 return RISCV_EXCP_NONE; 3238 } 3239 3240 static RISCVException write_scause(CPURISCVState *env, int csrno, 3241 target_ulong val) 3242 { 3243 env->scause = val; 3244 return RISCV_EXCP_NONE; 3245 } 3246 3247 static RISCVException read_stval(CPURISCVState *env, int csrno, 3248 target_ulong *val) 3249 { 3250 *val = env->stval; 3251 return RISCV_EXCP_NONE; 3252 } 3253 3254 static RISCVException write_stval(CPURISCVState *env, int csrno, 3255 target_ulong val) 3256 { 3257 env->stval = val; 3258 return RISCV_EXCP_NONE; 3259 } 3260 3261 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 3262 uint64_t *ret_val, 3263 uint64_t new_val, uint64_t wr_mask); 3264 3265 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 3266 uint64_t *ret_val, 3267 uint64_t new_val, uint64_t wr_mask) 3268 { 3269 RISCVException ret; 3270 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 3271 uint64_t vsbits; 3272 3273 /* Add virtualized bits into vsip mask. */ 3274 mask |= env->hvien & ~env->hideleg; 3275 3276 /* Bring VS-level bits to correct position */ 3277 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 3278 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 3279 new_val |= vsbits << 1; 3280 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 3281 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 3282 wr_mask |= vsbits << 1; 3283 3284 ret = rmw_hvip64(env, csrno, &rval, new_val, 3285 wr_mask & mask & vsip_writable_mask); 3286 if (ret_val) { 3287 rval &= mask; 3288 vsbits = rval & VS_MODE_INTERRUPTS; 3289 rval &= ~VS_MODE_INTERRUPTS; 3290 *ret_val = rval | (vsbits >> 1); 3291 } 3292 3293 return ret; 3294 } 3295 3296 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 3297 target_ulong *ret_val, 3298 target_ulong new_val, target_ulong wr_mask) 3299 { 3300 uint64_t rval; 3301 RISCVException ret; 3302 3303 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 3304 if (ret_val) { 3305 *ret_val = rval; 3306 } 3307 3308 return ret; 3309 } 3310 3311 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 3312 target_ulong *ret_val, 3313 target_ulong new_val, target_ulong wr_mask) 3314 { 3315 uint64_t rval; 3316 RISCVException ret; 3317 3318 ret = rmw_vsip64(env, csrno, &rval, 3319 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3320 if (ret_val) { 3321 *ret_val = rval >> 32; 3322 } 3323 3324 return ret; 3325 } 3326 3327 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 3328 uint64_t *ret_val, 3329 uint64_t new_val, uint64_t wr_mask) 3330 { 3331 RISCVException ret; 3332 uint64_t mask = (env->mideleg | env->mvien) & sip_writable_mask; 3333 3334 if (env->virt_enabled) { 3335 if (env->hvictl & HVICTL_VTI) { 3336 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3337 } 3338 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 3339 } else { 3340 ret = rmw_mvip64(env, csrno, ret_val, new_val, wr_mask & mask); 3341 } 3342 3343 if (ret_val) { 3344 *ret_val &= (env->mideleg | env->mvien) & 3345 (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS); 3346 } 3347 3348 return ret; 3349 } 3350 3351 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 3352 target_ulong *ret_val, 3353 target_ulong new_val, target_ulong wr_mask) 3354 { 3355 uint64_t rval; 3356 RISCVException ret; 3357 3358 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 3359 if (ret_val) { 3360 *ret_val = rval; 3361 } 3362 3363 return ret; 3364 } 3365 3366 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 3367 target_ulong *ret_val, 3368 target_ulong new_val, target_ulong wr_mask) 3369 { 3370 uint64_t rval; 3371 RISCVException ret; 3372 3373 ret = rmw_sip64(env, csrno, &rval, 3374 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3375 if (ret_val) { 3376 *ret_val = rval >> 32; 3377 } 3378 3379 return ret; 3380 } 3381 3382 /* Supervisor Protection and Translation */ 3383 static RISCVException read_satp(CPURISCVState *env, int csrno, 3384 target_ulong *val) 3385 { 3386 if (!riscv_cpu_cfg(env)->mmu) { 3387 *val = 0; 3388 return RISCV_EXCP_NONE; 3389 } 3390 *val = env->satp; 3391 return RISCV_EXCP_NONE; 3392 } 3393 3394 static RISCVException write_satp(CPURISCVState *env, int csrno, 3395 target_ulong val) 3396 { 3397 if (!riscv_cpu_cfg(env)->mmu) { 3398 return RISCV_EXCP_NONE; 3399 } 3400 3401 env->satp = legalize_xatp(env, env->satp, val); 3402 return RISCV_EXCP_NONE; 3403 } 3404 3405 static RISCVException read_vstopi(CPURISCVState *env, int csrno, 3406 target_ulong *val) 3407 { 3408 int irq, ret; 3409 target_ulong topei; 3410 uint64_t vseip, vsgein; 3411 uint32_t iid, iprio, hviid, hviprio, gein; 3412 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 3413 3414 gein = get_field(env->hstatus, HSTATUS_VGEIN); 3415 hviid = get_field(env->hvictl, HVICTL_IID); 3416 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 3417 3418 if (gein) { 3419 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 3420 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 3421 if (gein <= env->geilen && vseip) { 3422 siid[scount] = IRQ_S_EXT; 3423 siprio[scount] = IPRIO_MMAXIPRIO + 1; 3424 if (env->aia_ireg_rmw_fn[PRV_S]) { 3425 /* 3426 * Call machine specific IMSIC register emulation for 3427 * reading TOPEI. 3428 */ 3429 ret = env->aia_ireg_rmw_fn[PRV_S]( 3430 env->aia_ireg_rmw_fn_arg[PRV_S], 3431 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 3432 riscv_cpu_mxl_bits(env)), 3433 &topei, 0, 0); 3434 if (!ret && topei) { 3435 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 3436 } 3437 } 3438 scount++; 3439 } 3440 } else { 3441 if (hviid == IRQ_S_EXT && hviprio) { 3442 siid[scount] = IRQ_S_EXT; 3443 siprio[scount] = hviprio; 3444 scount++; 3445 } 3446 } 3447 3448 if (env->hvictl & HVICTL_VTI) { 3449 if (hviid != IRQ_S_EXT) { 3450 siid[scount] = hviid; 3451 siprio[scount] = hviprio; 3452 scount++; 3453 } 3454 } else { 3455 irq = riscv_cpu_vsirq_pending(env); 3456 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 3457 siid[scount] = irq; 3458 siprio[scount] = env->hviprio[irq]; 3459 scount++; 3460 } 3461 } 3462 3463 iid = 0; 3464 iprio = UINT_MAX; 3465 for (s = 0; s < scount; s++) { 3466 if (siprio[s] < iprio) { 3467 iid = siid[s]; 3468 iprio = siprio[s]; 3469 } 3470 } 3471 3472 if (iid) { 3473 if (env->hvictl & HVICTL_IPRIOM) { 3474 if (iprio > IPRIO_MMAXIPRIO) { 3475 iprio = IPRIO_MMAXIPRIO; 3476 } 3477 if (!iprio) { 3478 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 3479 iprio = IPRIO_MMAXIPRIO; 3480 } 3481 } 3482 } else { 3483 iprio = 1; 3484 } 3485 } else { 3486 iprio = 0; 3487 } 3488 3489 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 3490 *val |= iprio; 3491 3492 return RISCV_EXCP_NONE; 3493 } 3494 3495 static RISCVException read_stopi(CPURISCVState *env, int csrno, 3496 target_ulong *val) 3497 { 3498 int irq; 3499 uint8_t iprio; 3500 3501 if (env->virt_enabled) { 3502 return read_vstopi(env, CSR_VSTOPI, val); 3503 } 3504 3505 irq = riscv_cpu_sirq_pending(env); 3506 if (irq <= 0 || irq > 63) { 3507 *val = 0; 3508 } else { 3509 iprio = env->siprio[irq]; 3510 if (!iprio) { 3511 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 3512 iprio = IPRIO_MMAXIPRIO; 3513 } 3514 } 3515 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 3516 *val |= iprio; 3517 } 3518 3519 return RISCV_EXCP_NONE; 3520 } 3521 3522 /* Hypervisor Extensions */ 3523 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 3524 target_ulong *val) 3525 { 3526 *val = env->hstatus; 3527 if (riscv_cpu_mxl(env) != MXL_RV32) { 3528 /* We only support 64-bit VSXL */ 3529 *val = set_field(*val, HSTATUS_VSXL, 2); 3530 } 3531 /* We only support little endian */ 3532 *val = set_field(*val, HSTATUS_VSBE, 0); 3533 return RISCV_EXCP_NONE; 3534 } 3535 3536 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 3537 target_ulong val) 3538 { 3539 env->hstatus = val; 3540 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 3541 qemu_log_mask(LOG_UNIMP, 3542 "QEMU does not support mixed HSXLEN options."); 3543 } 3544 if (get_field(val, HSTATUS_VSBE) != 0) { 3545 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 3546 } 3547 return RISCV_EXCP_NONE; 3548 } 3549 3550 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 3551 target_ulong *val) 3552 { 3553 *val = env->hedeleg; 3554 return RISCV_EXCP_NONE; 3555 } 3556 3557 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 3558 target_ulong val) 3559 { 3560 env->hedeleg = val & vs_delegable_excps; 3561 return RISCV_EXCP_NONE; 3562 } 3563 3564 static RISCVException read_hedelegh(CPURISCVState *env, int csrno, 3565 target_ulong *val) 3566 { 3567 RISCVException ret; 3568 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 3569 if (ret != RISCV_EXCP_NONE) { 3570 return ret; 3571 } 3572 3573 /* Reserved, now read zero */ 3574 *val = 0; 3575 return RISCV_EXCP_NONE; 3576 } 3577 3578 static RISCVException write_hedelegh(CPURISCVState *env, int csrno, 3579 target_ulong val) 3580 { 3581 RISCVException ret; 3582 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 3583 if (ret != RISCV_EXCP_NONE) { 3584 return ret; 3585 } 3586 3587 /* Reserved, now write ignore */ 3588 return RISCV_EXCP_NONE; 3589 } 3590 3591 static RISCVException rmw_hvien64(CPURISCVState *env, int csrno, 3592 uint64_t *ret_val, 3593 uint64_t new_val, uint64_t wr_mask) 3594 { 3595 uint64_t mask = wr_mask & hvien_writable_mask; 3596 3597 if (ret_val) { 3598 *ret_val = env->hvien; 3599 } 3600 3601 env->hvien = (env->hvien & ~mask) | (new_val & mask); 3602 3603 return RISCV_EXCP_NONE; 3604 } 3605 3606 static RISCVException rmw_hvien(CPURISCVState *env, int csrno, 3607 target_ulong *ret_val, 3608 target_ulong new_val, target_ulong wr_mask) 3609 { 3610 uint64_t rval; 3611 RISCVException ret; 3612 3613 ret = rmw_hvien64(env, csrno, &rval, new_val, wr_mask); 3614 if (ret_val) { 3615 *ret_val = rval; 3616 } 3617 3618 return ret; 3619 } 3620 3621 static RISCVException rmw_hvienh(CPURISCVState *env, int csrno, 3622 target_ulong *ret_val, 3623 target_ulong new_val, target_ulong wr_mask) 3624 { 3625 uint64_t rval; 3626 RISCVException ret; 3627 3628 ret = rmw_hvien64(env, csrno, &rval, 3629 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3630 if (ret_val) { 3631 *ret_val = rval >> 32; 3632 } 3633 3634 return ret; 3635 } 3636 3637 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 3638 uint64_t *ret_val, 3639 uint64_t new_val, uint64_t wr_mask) 3640 { 3641 uint64_t mask = wr_mask & vs_delegable_ints; 3642 3643 if (ret_val) { 3644 *ret_val = env->hideleg & vs_delegable_ints; 3645 } 3646 3647 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 3648 return RISCV_EXCP_NONE; 3649 } 3650 3651 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 3652 target_ulong *ret_val, 3653 target_ulong new_val, target_ulong wr_mask) 3654 { 3655 uint64_t rval; 3656 RISCVException ret; 3657 3658 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 3659 if (ret_val) { 3660 *ret_val = rval; 3661 } 3662 3663 return ret; 3664 } 3665 3666 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 3667 target_ulong *ret_val, 3668 target_ulong new_val, target_ulong wr_mask) 3669 { 3670 uint64_t rval; 3671 RISCVException ret; 3672 3673 ret = rmw_hideleg64(env, csrno, &rval, 3674 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3675 if (ret_val) { 3676 *ret_val = rval >> 32; 3677 } 3678 3679 return ret; 3680 } 3681 3682 /* 3683 * The function is written for two use-cases: 3684 * 1- To access hvip csr as is for HS-mode access. 3685 * 2- To access vsip as a combination of hvip, and mip for vs-mode. 3686 * 3687 * Both report bits 2, 6, 10 and 13:63. 3688 * vsip needs to be read-only zero when both hideleg[i] and 3689 * hvien[i] are zero. 3690 */ 3691 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 3692 uint64_t *ret_val, 3693 uint64_t new_val, uint64_t wr_mask) 3694 { 3695 RISCVException ret; 3696 uint64_t old_hvip; 3697 uint64_t ret_mip; 3698 3699 /* 3700 * For bits 10, 6 and 2, vsip[i] is an alias of hip[i]. These bits are 3701 * present in hip, hvip and mip. Where mip[i] is alias of hip[i] and hvip[i] 3702 * is OR'ed in hip[i] to inject virtual interrupts from hypervisor. These 3703 * bits are actually being maintained in mip so we read them from there. 3704 * This way we have a single source of truth and allows for easier 3705 * implementation. 3706 * 3707 * For bits 13:63 we have: 3708 * 3709 * hideleg[i] hvien[i] 3710 * 0 0 No delegation. vsip[i] readonly zero. 3711 * 0 1 vsip[i] is alias of hvip[i], sip bypassed. 3712 * 1 X vsip[i] is alias of sip[i], hvip bypassed. 3713 * 3714 * alias_mask denotes the bits that come from sip (mip here given we 3715 * maintain all bits there). nalias_mask denotes bits that come from 3716 * hvip. 3717 */ 3718 uint64_t alias_mask = (env->hideleg | ~env->hvien) | VS_MODE_INTERRUPTS; 3719 uint64_t nalias_mask = (~env->hideleg & env->hvien); 3720 uint64_t wr_mask_hvip; 3721 uint64_t wr_mask_mip; 3722 3723 /* 3724 * Both alias and non-alias mask remain same for vsip except: 3725 * 1- For VS* bits if they are zero in hideleg. 3726 * 2- For 13:63 bits if they are zero in both hideleg and hvien. 3727 */ 3728 if (csrno == CSR_VSIP) { 3729 /* zero-out VS* bits that are not delegated to VS mode. */ 3730 alias_mask &= (env->hideleg | ~VS_MODE_INTERRUPTS); 3731 3732 /* 3733 * zero-out 13:63 bits that are zero in both hideleg and hvien. 3734 * nalias_mask mask can not contain any VS* bits so only second 3735 * condition applies on it. 3736 */ 3737 nalias_mask &= (env->hideleg | env->hvien); 3738 alias_mask &= (env->hideleg | env->hvien); 3739 } 3740 3741 wr_mask_hvip = wr_mask & nalias_mask & hvip_writable_mask; 3742 wr_mask_mip = wr_mask & alias_mask & hvip_writable_mask; 3743 3744 /* Aliased bits, bits 10, 6, 2 need to come from mip. */ 3745 ret = rmw_mip64(env, csrno, &ret_mip, new_val, wr_mask_mip); 3746 if (ret != RISCV_EXCP_NONE) { 3747 return ret; 3748 } 3749 3750 old_hvip = env->hvip; 3751 3752 if (wr_mask_hvip) { 3753 env->hvip = (env->hvip & ~wr_mask_hvip) | (new_val & wr_mask_hvip); 3754 3755 /* 3756 * Given hvip is separate source from mip, we need to trigger interrupt 3757 * from here separately. Normally this happen from riscv_cpu_update_mip. 3758 */ 3759 riscv_cpu_interrupt(env); 3760 } 3761 3762 if (ret_val) { 3763 /* Only take VS* bits from mip. */ 3764 ret_mip &= alias_mask; 3765 3766 /* Take in non-delegated 13:63 bits from hvip. */ 3767 old_hvip &= nalias_mask; 3768 3769 *ret_val = ret_mip | old_hvip; 3770 } 3771 3772 return ret; 3773 } 3774 3775 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 3776 target_ulong *ret_val, 3777 target_ulong new_val, target_ulong wr_mask) 3778 { 3779 uint64_t rval; 3780 RISCVException ret; 3781 3782 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 3783 if (ret_val) { 3784 *ret_val = rval; 3785 } 3786 3787 return ret; 3788 } 3789 3790 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 3791 target_ulong *ret_val, 3792 target_ulong new_val, target_ulong wr_mask) 3793 { 3794 uint64_t rval; 3795 RISCVException ret; 3796 3797 ret = rmw_hvip64(env, csrno, &rval, 3798 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3799 if (ret_val) { 3800 *ret_val = rval >> 32; 3801 } 3802 3803 return ret; 3804 } 3805 3806 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 3807 target_ulong *ret_value, 3808 target_ulong new_value, target_ulong write_mask) 3809 { 3810 int ret = rmw_mip(env, csrno, ret_value, new_value, 3811 write_mask & hip_writable_mask); 3812 3813 if (ret_value) { 3814 *ret_value &= HS_MODE_INTERRUPTS; 3815 } 3816 return ret; 3817 } 3818 3819 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 3820 target_ulong *ret_val, 3821 target_ulong new_val, target_ulong wr_mask) 3822 { 3823 uint64_t rval; 3824 RISCVException ret; 3825 3826 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 3827 if (ret_val) { 3828 *ret_val = rval & HS_MODE_INTERRUPTS; 3829 } 3830 3831 return ret; 3832 } 3833 3834 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 3835 target_ulong *val) 3836 { 3837 *val = env->hcounteren; 3838 return RISCV_EXCP_NONE; 3839 } 3840 3841 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 3842 target_ulong val) 3843 { 3844 RISCVCPU *cpu = env_archcpu(env); 3845 3846 /* WARL register - disable unavailable counters */ 3847 env->hcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 3848 COUNTEREN_IR); 3849 return RISCV_EXCP_NONE; 3850 } 3851 3852 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 3853 target_ulong *val) 3854 { 3855 if (val) { 3856 *val = env->hgeie; 3857 } 3858 return RISCV_EXCP_NONE; 3859 } 3860 3861 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 3862 target_ulong val) 3863 { 3864 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 3865 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 3866 env->hgeie = val; 3867 /* Update mip.SGEIP bit */ 3868 riscv_cpu_update_mip(env, MIP_SGEIP, 3869 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 3870 return RISCV_EXCP_NONE; 3871 } 3872 3873 static RISCVException read_htval(CPURISCVState *env, int csrno, 3874 target_ulong *val) 3875 { 3876 *val = env->htval; 3877 return RISCV_EXCP_NONE; 3878 } 3879 3880 static RISCVException write_htval(CPURISCVState *env, int csrno, 3881 target_ulong val) 3882 { 3883 env->htval = val; 3884 return RISCV_EXCP_NONE; 3885 } 3886 3887 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3888 target_ulong *val) 3889 { 3890 *val = env->htinst; 3891 return RISCV_EXCP_NONE; 3892 } 3893 3894 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3895 target_ulong val) 3896 { 3897 return RISCV_EXCP_NONE; 3898 } 3899 3900 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3901 target_ulong *val) 3902 { 3903 if (val) { 3904 *val = env->hgeip; 3905 } 3906 return RISCV_EXCP_NONE; 3907 } 3908 3909 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3910 target_ulong *val) 3911 { 3912 *val = env->hgatp; 3913 return RISCV_EXCP_NONE; 3914 } 3915 3916 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3917 target_ulong val) 3918 { 3919 env->hgatp = legalize_xatp(env, env->hgatp, val); 3920 return RISCV_EXCP_NONE; 3921 } 3922 3923 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3924 target_ulong *val) 3925 { 3926 if (!env->rdtime_fn) { 3927 return RISCV_EXCP_ILLEGAL_INST; 3928 } 3929 3930 *val = env->htimedelta; 3931 return RISCV_EXCP_NONE; 3932 } 3933 3934 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3935 target_ulong val) 3936 { 3937 if (!env->rdtime_fn) { 3938 return RISCV_EXCP_ILLEGAL_INST; 3939 } 3940 3941 if (riscv_cpu_mxl(env) == MXL_RV32) { 3942 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3943 } else { 3944 env->htimedelta = val; 3945 } 3946 3947 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3948 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3949 env->htimedelta, MIP_VSTIP); 3950 } 3951 3952 return RISCV_EXCP_NONE; 3953 } 3954 3955 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3956 target_ulong *val) 3957 { 3958 if (!env->rdtime_fn) { 3959 return RISCV_EXCP_ILLEGAL_INST; 3960 } 3961 3962 *val = env->htimedelta >> 32; 3963 return RISCV_EXCP_NONE; 3964 } 3965 3966 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3967 target_ulong val) 3968 { 3969 if (!env->rdtime_fn) { 3970 return RISCV_EXCP_ILLEGAL_INST; 3971 } 3972 3973 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3974 3975 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3976 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3977 env->htimedelta, MIP_VSTIP); 3978 } 3979 3980 return RISCV_EXCP_NONE; 3981 } 3982 3983 static RISCVException read_hvictl(CPURISCVState *env, int csrno, 3984 target_ulong *val) 3985 { 3986 *val = env->hvictl; 3987 return RISCV_EXCP_NONE; 3988 } 3989 3990 static RISCVException write_hvictl(CPURISCVState *env, int csrno, 3991 target_ulong val) 3992 { 3993 env->hvictl = val & HVICTL_VALID_MASK; 3994 return RISCV_EXCP_NONE; 3995 } 3996 3997 static RISCVException read_hvipriox(CPURISCVState *env, int first_index, 3998 uint8_t *iprio, target_ulong *val) 3999 { 4000 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 4001 4002 /* First index has to be a multiple of number of irqs per register */ 4003 if (first_index % num_irqs) { 4004 return (env->virt_enabled) ? 4005 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 4006 } 4007 4008 /* Fill-up return value */ 4009 *val = 0; 4010 for (i = 0; i < num_irqs; i++) { 4011 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 4012 continue; 4013 } 4014 if (rdzero) { 4015 continue; 4016 } 4017 *val |= ((target_ulong)iprio[irq]) << (i * 8); 4018 } 4019 4020 return RISCV_EXCP_NONE; 4021 } 4022 4023 static RISCVException write_hvipriox(CPURISCVState *env, int first_index, 4024 uint8_t *iprio, target_ulong val) 4025 { 4026 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 4027 4028 /* First index has to be a multiple of number of irqs per register */ 4029 if (first_index % num_irqs) { 4030 return (env->virt_enabled) ? 4031 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 4032 } 4033 4034 /* Fill-up priority array */ 4035 for (i = 0; i < num_irqs; i++) { 4036 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 4037 continue; 4038 } 4039 if (rdzero) { 4040 iprio[irq] = 0; 4041 } else { 4042 iprio[irq] = (val >> (i * 8)) & 0xff; 4043 } 4044 } 4045 4046 return RISCV_EXCP_NONE; 4047 } 4048 4049 static RISCVException read_hviprio1(CPURISCVState *env, int csrno, 4050 target_ulong *val) 4051 { 4052 return read_hvipriox(env, 0, env->hviprio, val); 4053 } 4054 4055 static RISCVException write_hviprio1(CPURISCVState *env, int csrno, 4056 target_ulong val) 4057 { 4058 return write_hvipriox(env, 0, env->hviprio, val); 4059 } 4060 4061 static RISCVException read_hviprio1h(CPURISCVState *env, int csrno, 4062 target_ulong *val) 4063 { 4064 return read_hvipriox(env, 4, env->hviprio, val); 4065 } 4066 4067 static RISCVException write_hviprio1h(CPURISCVState *env, int csrno, 4068 target_ulong val) 4069 { 4070 return write_hvipriox(env, 4, env->hviprio, val); 4071 } 4072 4073 static RISCVException read_hviprio2(CPURISCVState *env, int csrno, 4074 target_ulong *val) 4075 { 4076 return read_hvipriox(env, 8, env->hviprio, val); 4077 } 4078 4079 static RISCVException write_hviprio2(CPURISCVState *env, int csrno, 4080 target_ulong val) 4081 { 4082 return write_hvipriox(env, 8, env->hviprio, val); 4083 } 4084 4085 static RISCVException read_hviprio2h(CPURISCVState *env, int csrno, 4086 target_ulong *val) 4087 { 4088 return read_hvipriox(env, 12, env->hviprio, val); 4089 } 4090 4091 static RISCVException write_hviprio2h(CPURISCVState *env, int csrno, 4092 target_ulong val) 4093 { 4094 return write_hvipriox(env, 12, env->hviprio, val); 4095 } 4096 4097 /* Virtual CSR Registers */ 4098 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 4099 target_ulong *val) 4100 { 4101 *val = env->vsstatus; 4102 return RISCV_EXCP_NONE; 4103 } 4104 4105 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 4106 target_ulong val) 4107 { 4108 uint64_t mask = (target_ulong)-1; 4109 if ((val & VSSTATUS64_UXL) == 0) { 4110 mask &= ~VSSTATUS64_UXL; 4111 } 4112 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 4113 return RISCV_EXCP_NONE; 4114 } 4115 4116 static RISCVException read_vstvec(CPURISCVState *env, int csrno, 4117 target_ulong *val) 4118 { 4119 *val = env->vstvec; 4120 return RISCV_EXCP_NONE; 4121 } 4122 4123 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 4124 target_ulong val) 4125 { 4126 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 4127 if ((val & 3) < 2) { 4128 env->vstvec = val; 4129 } else { 4130 qemu_log_mask(LOG_UNIMP, "CSR_VSTVEC: reserved mode not supported\n"); 4131 } 4132 return RISCV_EXCP_NONE; 4133 } 4134 4135 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 4136 target_ulong *val) 4137 { 4138 *val = env->vsscratch; 4139 return RISCV_EXCP_NONE; 4140 } 4141 4142 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 4143 target_ulong val) 4144 { 4145 env->vsscratch = val; 4146 return RISCV_EXCP_NONE; 4147 } 4148 4149 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 4150 target_ulong *val) 4151 { 4152 *val = env->vsepc; 4153 return RISCV_EXCP_NONE; 4154 } 4155 4156 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 4157 target_ulong val) 4158 { 4159 env->vsepc = val; 4160 return RISCV_EXCP_NONE; 4161 } 4162 4163 static RISCVException read_vscause(CPURISCVState *env, int csrno, 4164 target_ulong *val) 4165 { 4166 *val = env->vscause; 4167 return RISCV_EXCP_NONE; 4168 } 4169 4170 static RISCVException write_vscause(CPURISCVState *env, int csrno, 4171 target_ulong val) 4172 { 4173 env->vscause = val; 4174 return RISCV_EXCP_NONE; 4175 } 4176 4177 static RISCVException read_vstval(CPURISCVState *env, int csrno, 4178 target_ulong *val) 4179 { 4180 *val = env->vstval; 4181 return RISCV_EXCP_NONE; 4182 } 4183 4184 static RISCVException write_vstval(CPURISCVState *env, int csrno, 4185 target_ulong val) 4186 { 4187 env->vstval = val; 4188 return RISCV_EXCP_NONE; 4189 } 4190 4191 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 4192 target_ulong *val) 4193 { 4194 *val = env->vsatp; 4195 return RISCV_EXCP_NONE; 4196 } 4197 4198 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 4199 target_ulong val) 4200 { 4201 env->vsatp = legalize_xatp(env, env->vsatp, val); 4202 return RISCV_EXCP_NONE; 4203 } 4204 4205 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 4206 target_ulong *val) 4207 { 4208 *val = env->mtval2; 4209 return RISCV_EXCP_NONE; 4210 } 4211 4212 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 4213 target_ulong val) 4214 { 4215 env->mtval2 = val; 4216 return RISCV_EXCP_NONE; 4217 } 4218 4219 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 4220 target_ulong *val) 4221 { 4222 *val = env->mtinst; 4223 return RISCV_EXCP_NONE; 4224 } 4225 4226 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 4227 target_ulong val) 4228 { 4229 env->mtinst = val; 4230 return RISCV_EXCP_NONE; 4231 } 4232 4233 /* Physical Memory Protection */ 4234 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 4235 target_ulong *val) 4236 { 4237 *val = mseccfg_csr_read(env); 4238 return RISCV_EXCP_NONE; 4239 } 4240 4241 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 4242 target_ulong val) 4243 { 4244 mseccfg_csr_write(env, val); 4245 return RISCV_EXCP_NONE; 4246 } 4247 4248 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 4249 target_ulong *val) 4250 { 4251 uint32_t reg_index = csrno - CSR_PMPCFG0; 4252 4253 *val = pmpcfg_csr_read(env, reg_index); 4254 return RISCV_EXCP_NONE; 4255 } 4256 4257 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 4258 target_ulong val) 4259 { 4260 uint32_t reg_index = csrno - CSR_PMPCFG0; 4261 4262 pmpcfg_csr_write(env, reg_index, val); 4263 return RISCV_EXCP_NONE; 4264 } 4265 4266 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 4267 target_ulong *val) 4268 { 4269 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 4270 return RISCV_EXCP_NONE; 4271 } 4272 4273 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 4274 target_ulong val) 4275 { 4276 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 4277 return RISCV_EXCP_NONE; 4278 } 4279 4280 static RISCVException read_tselect(CPURISCVState *env, int csrno, 4281 target_ulong *val) 4282 { 4283 *val = tselect_csr_read(env); 4284 return RISCV_EXCP_NONE; 4285 } 4286 4287 static RISCVException write_tselect(CPURISCVState *env, int csrno, 4288 target_ulong val) 4289 { 4290 tselect_csr_write(env, val); 4291 return RISCV_EXCP_NONE; 4292 } 4293 4294 static RISCVException read_tdata(CPURISCVState *env, int csrno, 4295 target_ulong *val) 4296 { 4297 /* return 0 in tdata1 to end the trigger enumeration */ 4298 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 4299 *val = 0; 4300 return RISCV_EXCP_NONE; 4301 } 4302 4303 if (!tdata_available(env, csrno - CSR_TDATA1)) { 4304 return RISCV_EXCP_ILLEGAL_INST; 4305 } 4306 4307 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 4308 return RISCV_EXCP_NONE; 4309 } 4310 4311 static RISCVException write_tdata(CPURISCVState *env, int csrno, 4312 target_ulong val) 4313 { 4314 if (!tdata_available(env, csrno - CSR_TDATA1)) { 4315 return RISCV_EXCP_ILLEGAL_INST; 4316 } 4317 4318 tdata_csr_write(env, csrno - CSR_TDATA1, val); 4319 return RISCV_EXCP_NONE; 4320 } 4321 4322 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 4323 target_ulong *val) 4324 { 4325 *val = tinfo_csr_read(env); 4326 return RISCV_EXCP_NONE; 4327 } 4328 4329 static RISCVException read_mcontext(CPURISCVState *env, int csrno, 4330 target_ulong *val) 4331 { 4332 *val = env->mcontext; 4333 return RISCV_EXCP_NONE; 4334 } 4335 4336 static RISCVException write_mcontext(CPURISCVState *env, int csrno, 4337 target_ulong val) 4338 { 4339 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 4340 int32_t mask; 4341 4342 if (riscv_has_ext(env, RVH)) { 4343 /* Spec suggest 7-bit for RV32 and 14-bit for RV64 w/ H extension */ 4344 mask = rv32 ? MCONTEXT32_HCONTEXT : MCONTEXT64_HCONTEXT; 4345 } else { 4346 /* Spec suggest 6-bit for RV32 and 13-bit for RV64 w/o H extension */ 4347 mask = rv32 ? MCONTEXT32 : MCONTEXT64; 4348 } 4349 4350 env->mcontext = val & mask; 4351 return RISCV_EXCP_NONE; 4352 } 4353 4354 /* 4355 * Functions to access Pointer Masking feature registers 4356 * We have to check if current priv lvl could modify 4357 * csr in given mode 4358 */ 4359 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 4360 { 4361 int csr_priv = get_field(csrno, 0x300); 4362 int pm_current; 4363 4364 if (env->debugger) { 4365 return false; 4366 } 4367 /* 4368 * If priv lvls differ that means we're accessing csr from higher priv lvl, 4369 * so allow the access 4370 */ 4371 if (env->priv != csr_priv) { 4372 return false; 4373 } 4374 switch (env->priv) { 4375 case PRV_M: 4376 pm_current = get_field(env->mmte, M_PM_CURRENT); 4377 break; 4378 case PRV_S: 4379 pm_current = get_field(env->mmte, S_PM_CURRENT); 4380 break; 4381 case PRV_U: 4382 pm_current = get_field(env->mmte, U_PM_CURRENT); 4383 break; 4384 default: 4385 g_assert_not_reached(); 4386 } 4387 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 4388 return !pm_current; 4389 } 4390 4391 static RISCVException read_mmte(CPURISCVState *env, int csrno, 4392 target_ulong *val) 4393 { 4394 *val = env->mmte & MMTE_MASK; 4395 return RISCV_EXCP_NONE; 4396 } 4397 4398 static RISCVException write_mmte(CPURISCVState *env, int csrno, 4399 target_ulong val) 4400 { 4401 uint64_t mstatus; 4402 target_ulong wpri_val = val & MMTE_MASK; 4403 4404 if (val != wpri_val) { 4405 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4406 TARGET_FMT_lx "\n", "MMTE: WPRI violation written 0x", 4407 val, "vs expected 0x", wpri_val); 4408 } 4409 /* for machine mode pm.current is hardwired to 1 */ 4410 wpri_val |= MMTE_M_PM_CURRENT; 4411 4412 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 4413 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 4414 env->mmte = wpri_val | EXT_STATUS_DIRTY; 4415 riscv_cpu_update_mask(env); 4416 4417 /* Set XS and SD bits, since PM CSRs are dirty */ 4418 mstatus = env->mstatus | MSTATUS_XS; 4419 write_mstatus(env, csrno, mstatus); 4420 return RISCV_EXCP_NONE; 4421 } 4422 4423 static RISCVException read_smte(CPURISCVState *env, int csrno, 4424 target_ulong *val) 4425 { 4426 *val = env->mmte & SMTE_MASK; 4427 return RISCV_EXCP_NONE; 4428 } 4429 4430 static RISCVException write_smte(CPURISCVState *env, int csrno, 4431 target_ulong val) 4432 { 4433 target_ulong wpri_val = val & SMTE_MASK; 4434 4435 if (val != wpri_val) { 4436 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4437 TARGET_FMT_lx "\n", "SMTE: WPRI violation written 0x", 4438 val, "vs expected 0x", wpri_val); 4439 } 4440 4441 /* if pm.current==0 we can't modify current PM CSRs */ 4442 if (check_pm_current_disabled(env, csrno)) { 4443 return RISCV_EXCP_NONE; 4444 } 4445 4446 wpri_val |= (env->mmte & ~SMTE_MASK); 4447 write_mmte(env, csrno, wpri_val); 4448 return RISCV_EXCP_NONE; 4449 } 4450 4451 static RISCVException read_umte(CPURISCVState *env, int csrno, 4452 target_ulong *val) 4453 { 4454 *val = env->mmte & UMTE_MASK; 4455 return RISCV_EXCP_NONE; 4456 } 4457 4458 static RISCVException write_umte(CPURISCVState *env, int csrno, 4459 target_ulong val) 4460 { 4461 target_ulong wpri_val = val & UMTE_MASK; 4462 4463 if (val != wpri_val) { 4464 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4465 TARGET_FMT_lx "\n", "UMTE: WPRI violation written 0x", 4466 val, "vs expected 0x", wpri_val); 4467 } 4468 4469 if (check_pm_current_disabled(env, csrno)) { 4470 return RISCV_EXCP_NONE; 4471 } 4472 4473 wpri_val |= (env->mmte & ~UMTE_MASK); 4474 write_mmte(env, csrno, wpri_val); 4475 return RISCV_EXCP_NONE; 4476 } 4477 4478 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 4479 target_ulong *val) 4480 { 4481 *val = env->mpmmask; 4482 return RISCV_EXCP_NONE; 4483 } 4484 4485 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 4486 target_ulong val) 4487 { 4488 uint64_t mstatus; 4489 4490 env->mpmmask = val; 4491 if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { 4492 env->cur_pmmask = val; 4493 } 4494 env->mmte |= EXT_STATUS_DIRTY; 4495 4496 /* Set XS and SD bits, since PM CSRs are dirty */ 4497 mstatus = env->mstatus | MSTATUS_XS; 4498 write_mstatus(env, csrno, mstatus); 4499 return RISCV_EXCP_NONE; 4500 } 4501 4502 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 4503 target_ulong *val) 4504 { 4505 *val = env->spmmask; 4506 return RISCV_EXCP_NONE; 4507 } 4508 4509 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 4510 target_ulong val) 4511 { 4512 uint64_t mstatus; 4513 4514 /* if pm.current==0 we can't modify current PM CSRs */ 4515 if (check_pm_current_disabled(env, csrno)) { 4516 return RISCV_EXCP_NONE; 4517 } 4518 env->spmmask = val; 4519 if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { 4520 env->cur_pmmask = val; 4521 if (cpu_get_xl(env, PRV_S) == MXL_RV32) { 4522 env->cur_pmmask &= UINT32_MAX; 4523 } 4524 } 4525 env->mmte |= EXT_STATUS_DIRTY; 4526 4527 /* Set XS and SD bits, since PM CSRs are dirty */ 4528 mstatus = env->mstatus | MSTATUS_XS; 4529 write_mstatus(env, csrno, mstatus); 4530 return RISCV_EXCP_NONE; 4531 } 4532 4533 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 4534 target_ulong *val) 4535 { 4536 *val = env->upmmask; 4537 return RISCV_EXCP_NONE; 4538 } 4539 4540 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 4541 target_ulong val) 4542 { 4543 uint64_t mstatus; 4544 4545 /* if pm.current==0 we can't modify current PM CSRs */ 4546 if (check_pm_current_disabled(env, csrno)) { 4547 return RISCV_EXCP_NONE; 4548 } 4549 env->upmmask = val; 4550 if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { 4551 env->cur_pmmask = val; 4552 if (cpu_get_xl(env, PRV_U) == MXL_RV32) { 4553 env->cur_pmmask &= UINT32_MAX; 4554 } 4555 } 4556 env->mmte |= EXT_STATUS_DIRTY; 4557 4558 /* Set XS and SD bits, since PM CSRs are dirty */ 4559 mstatus = env->mstatus | MSTATUS_XS; 4560 write_mstatus(env, csrno, mstatus); 4561 return RISCV_EXCP_NONE; 4562 } 4563 4564 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 4565 target_ulong *val) 4566 { 4567 *val = env->mpmbase; 4568 return RISCV_EXCP_NONE; 4569 } 4570 4571 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 4572 target_ulong val) 4573 { 4574 uint64_t mstatus; 4575 4576 env->mpmbase = val; 4577 if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { 4578 env->cur_pmbase = val; 4579 } 4580 env->mmte |= EXT_STATUS_DIRTY; 4581 4582 /* Set XS and SD bits, since PM CSRs are dirty */ 4583 mstatus = env->mstatus | MSTATUS_XS; 4584 write_mstatus(env, csrno, mstatus); 4585 return RISCV_EXCP_NONE; 4586 } 4587 4588 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 4589 target_ulong *val) 4590 { 4591 *val = env->spmbase; 4592 return RISCV_EXCP_NONE; 4593 } 4594 4595 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 4596 target_ulong val) 4597 { 4598 uint64_t mstatus; 4599 4600 /* if pm.current==0 we can't modify current PM CSRs */ 4601 if (check_pm_current_disabled(env, csrno)) { 4602 return RISCV_EXCP_NONE; 4603 } 4604 env->spmbase = val; 4605 if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { 4606 env->cur_pmbase = val; 4607 if (cpu_get_xl(env, PRV_S) == MXL_RV32) { 4608 env->cur_pmbase &= UINT32_MAX; 4609 } 4610 } 4611 env->mmte |= EXT_STATUS_DIRTY; 4612 4613 /* Set XS and SD bits, since PM CSRs are dirty */ 4614 mstatus = env->mstatus | MSTATUS_XS; 4615 write_mstatus(env, csrno, mstatus); 4616 return RISCV_EXCP_NONE; 4617 } 4618 4619 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 4620 target_ulong *val) 4621 { 4622 *val = env->upmbase; 4623 return RISCV_EXCP_NONE; 4624 } 4625 4626 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 4627 target_ulong val) 4628 { 4629 uint64_t mstatus; 4630 4631 /* if pm.current==0 we can't modify current PM CSRs */ 4632 if (check_pm_current_disabled(env, csrno)) { 4633 return RISCV_EXCP_NONE; 4634 } 4635 env->upmbase = val; 4636 if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { 4637 env->cur_pmbase = val; 4638 if (cpu_get_xl(env, PRV_U) == MXL_RV32) { 4639 env->cur_pmbase &= UINT32_MAX; 4640 } 4641 } 4642 env->mmte |= EXT_STATUS_DIRTY; 4643 4644 /* Set XS and SD bits, since PM CSRs are dirty */ 4645 mstatus = env->mstatus | MSTATUS_XS; 4646 write_mstatus(env, csrno, mstatus); 4647 return RISCV_EXCP_NONE; 4648 } 4649 4650 #endif 4651 4652 /* Crypto Extension */ 4653 target_ulong riscv_new_csr_seed(target_ulong new_value, 4654 target_ulong write_mask) 4655 { 4656 uint16_t random_v; 4657 Error *random_e = NULL; 4658 int random_r; 4659 target_ulong rval; 4660 4661 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 4662 if (unlikely(random_r < 0)) { 4663 /* 4664 * Failed, for unknown reasons in the crypto subsystem. 4665 * The best we can do is log the reason and return a 4666 * failure indication to the guest. There is no reason 4667 * we know to expect the failure to be transitory, so 4668 * indicate DEAD to avoid having the guest spin on WAIT. 4669 */ 4670 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 4671 __func__, error_get_pretty(random_e)); 4672 error_free(random_e); 4673 rval = SEED_OPST_DEAD; 4674 } else { 4675 rval = random_v | SEED_OPST_ES16; 4676 } 4677 4678 return rval; 4679 } 4680 4681 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 4682 target_ulong *ret_value, 4683 target_ulong new_value, 4684 target_ulong write_mask) 4685 { 4686 target_ulong rval; 4687 4688 rval = riscv_new_csr_seed(new_value, write_mask); 4689 4690 if (ret_value) { 4691 *ret_value = rval; 4692 } 4693 4694 return RISCV_EXCP_NONE; 4695 } 4696 4697 /* 4698 * riscv_csrrw - read and/or update control and status register 4699 * 4700 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 4701 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 4702 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 4703 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 4704 */ 4705 4706 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 4707 int csrno, 4708 bool write) 4709 { 4710 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 4711 bool read_only = get_field(csrno, 0xC00) == 3; 4712 int csr_min_priv = csr_ops[csrno].min_priv_ver; 4713 4714 /* ensure the CSR extension is enabled */ 4715 if (!riscv_cpu_cfg(env)->ext_zicsr) { 4716 return RISCV_EXCP_ILLEGAL_INST; 4717 } 4718 4719 /* ensure CSR is implemented by checking predicate */ 4720 if (!csr_ops[csrno].predicate) { 4721 return RISCV_EXCP_ILLEGAL_INST; 4722 } 4723 4724 /* privileged spec version check */ 4725 if (env->priv_ver < csr_min_priv) { 4726 return RISCV_EXCP_ILLEGAL_INST; 4727 } 4728 4729 /* read / write check */ 4730 if (write && read_only) { 4731 return RISCV_EXCP_ILLEGAL_INST; 4732 } 4733 4734 /* 4735 * The predicate() not only does existence check but also does some 4736 * access control check which triggers for example virtual instruction 4737 * exception in some cases. When writing read-only CSRs in those cases 4738 * illegal instruction exception should be triggered instead of virtual 4739 * instruction exception. Hence this comes after the read / write check. 4740 */ 4741 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 4742 if (ret != RISCV_EXCP_NONE) { 4743 return ret; 4744 } 4745 4746 #if !defined(CONFIG_USER_ONLY) 4747 int csr_priv, effective_priv = env->priv; 4748 4749 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 4750 !env->virt_enabled) { 4751 /* 4752 * We are in HS mode. Add 1 to the effective privilege level to 4753 * allow us to access the Hypervisor CSRs. 4754 */ 4755 effective_priv++; 4756 } 4757 4758 csr_priv = get_field(csrno, 0x300); 4759 if (!env->debugger && (effective_priv < csr_priv)) { 4760 if (csr_priv == (PRV_S + 1) && env->virt_enabled) { 4761 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 4762 } 4763 return RISCV_EXCP_ILLEGAL_INST; 4764 } 4765 #endif 4766 return RISCV_EXCP_NONE; 4767 } 4768 4769 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 4770 target_ulong *ret_value, 4771 target_ulong new_value, 4772 target_ulong write_mask) 4773 { 4774 RISCVException ret; 4775 target_ulong old_value = 0; 4776 4777 /* execute combined read/write operation if it exists */ 4778 if (csr_ops[csrno].op) { 4779 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 4780 } 4781 4782 /* 4783 * ret_value == NULL means that rd=x0 and we're coming from helper_csrw() 4784 * and we can't throw side effects caused by CSR reads. 4785 */ 4786 if (ret_value) { 4787 /* if no accessor exists then return failure */ 4788 if (!csr_ops[csrno].read) { 4789 return RISCV_EXCP_ILLEGAL_INST; 4790 } 4791 /* read old value */ 4792 ret = csr_ops[csrno].read(env, csrno, &old_value); 4793 if (ret != RISCV_EXCP_NONE) { 4794 return ret; 4795 } 4796 } 4797 4798 /* write value if writable and write mask set, otherwise drop writes */ 4799 if (write_mask) { 4800 new_value = (old_value & ~write_mask) | (new_value & write_mask); 4801 if (csr_ops[csrno].write) { 4802 ret = csr_ops[csrno].write(env, csrno, new_value); 4803 if (ret != RISCV_EXCP_NONE) { 4804 return ret; 4805 } 4806 } 4807 } 4808 4809 /* return old value */ 4810 if (ret_value) { 4811 *ret_value = old_value; 4812 } 4813 4814 return RISCV_EXCP_NONE; 4815 } 4816 4817 RISCVException riscv_csrr(CPURISCVState *env, int csrno, 4818 target_ulong *ret_value) 4819 { 4820 RISCVException ret = riscv_csrrw_check(env, csrno, false); 4821 if (ret != RISCV_EXCP_NONE) { 4822 return ret; 4823 } 4824 4825 return riscv_csrrw_do64(env, csrno, ret_value, 0, 0); 4826 } 4827 4828 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 4829 target_ulong *ret_value, 4830 target_ulong new_value, target_ulong write_mask) 4831 { 4832 RISCVException ret = riscv_csrrw_check(env, csrno, true); 4833 if (ret != RISCV_EXCP_NONE) { 4834 return ret; 4835 } 4836 4837 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 4838 } 4839 4840 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 4841 Int128 *ret_value, 4842 Int128 new_value, 4843 Int128 write_mask) 4844 { 4845 RISCVException ret; 4846 Int128 old_value; 4847 4848 /* read old value */ 4849 ret = csr_ops[csrno].read128(env, csrno, &old_value); 4850 if (ret != RISCV_EXCP_NONE) { 4851 return ret; 4852 } 4853 4854 /* write value if writable and write mask set, otherwise drop writes */ 4855 if (int128_nz(write_mask)) { 4856 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 4857 int128_and(new_value, write_mask)); 4858 if (csr_ops[csrno].write128) { 4859 ret = csr_ops[csrno].write128(env, csrno, new_value); 4860 if (ret != RISCV_EXCP_NONE) { 4861 return ret; 4862 } 4863 } else if (csr_ops[csrno].write) { 4864 /* avoids having to write wrappers for all registers */ 4865 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 4866 if (ret != RISCV_EXCP_NONE) { 4867 return ret; 4868 } 4869 } 4870 } 4871 4872 /* return old value */ 4873 if (ret_value) { 4874 *ret_value = old_value; 4875 } 4876 4877 return RISCV_EXCP_NONE; 4878 } 4879 4880 RISCVException riscv_csrr_i128(CPURISCVState *env, int csrno, 4881 Int128 *ret_value) 4882 { 4883 RISCVException ret; 4884 4885 ret = riscv_csrrw_check(env, csrno, false); 4886 if (ret != RISCV_EXCP_NONE) { 4887 return ret; 4888 } 4889 4890 if (csr_ops[csrno].read128) { 4891 return riscv_csrrw_do128(env, csrno, ret_value, 4892 int128_zero(), int128_zero()); 4893 } 4894 4895 /* 4896 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 4897 * at all defined. 4898 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 4899 * significant), for those, this fallback is correctly handling the 4900 * accesses 4901 */ 4902 target_ulong old_value; 4903 ret = riscv_csrrw_do64(env, csrno, &old_value, 4904 (target_ulong)0, 4905 (target_ulong)0); 4906 if (ret == RISCV_EXCP_NONE && ret_value) { 4907 *ret_value = int128_make64(old_value); 4908 } 4909 return ret; 4910 } 4911 4912 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 4913 Int128 *ret_value, 4914 Int128 new_value, Int128 write_mask) 4915 { 4916 RISCVException ret; 4917 4918 ret = riscv_csrrw_check(env, csrno, true); 4919 if (ret != RISCV_EXCP_NONE) { 4920 return ret; 4921 } 4922 4923 if (csr_ops[csrno].read128) { 4924 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 4925 } 4926 4927 /* 4928 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 4929 * at all defined. 4930 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 4931 * significant), for those, this fallback is correctly handling the 4932 * accesses 4933 */ 4934 target_ulong old_value; 4935 ret = riscv_csrrw_do64(env, csrno, &old_value, 4936 int128_getlo(new_value), 4937 int128_getlo(write_mask)); 4938 if (ret == RISCV_EXCP_NONE && ret_value) { 4939 *ret_value = int128_make64(old_value); 4940 } 4941 return ret; 4942 } 4943 4944 /* 4945 * Debugger support. If not in user mode, set env->debugger before the 4946 * riscv_csrrw call and clear it after the call. 4947 */ 4948 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 4949 target_ulong *ret_value, 4950 target_ulong new_value, 4951 target_ulong write_mask) 4952 { 4953 RISCVException ret; 4954 #if !defined(CONFIG_USER_ONLY) 4955 env->debugger = true; 4956 #endif 4957 if (!write_mask) { 4958 ret = riscv_csrr(env, csrno, ret_value); 4959 } else { 4960 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 4961 } 4962 #if !defined(CONFIG_USER_ONLY) 4963 env->debugger = false; 4964 #endif 4965 return ret; 4966 } 4967 4968 static RISCVException read_jvt(CPURISCVState *env, int csrno, 4969 target_ulong *val) 4970 { 4971 *val = env->jvt; 4972 return RISCV_EXCP_NONE; 4973 } 4974 4975 static RISCVException write_jvt(CPURISCVState *env, int csrno, 4976 target_ulong val) 4977 { 4978 env->jvt = val; 4979 return RISCV_EXCP_NONE; 4980 } 4981 4982 /* 4983 * Control and Status Register function table 4984 * riscv_csr_operations::predicate() must be provided for an implemented CSR 4985 */ 4986 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 4987 /* User Floating-Point CSRs */ 4988 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 4989 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 4990 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 4991 /* Vector CSRs */ 4992 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 4993 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 4994 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4995 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4996 [CSR_VL] = { "vl", vs, read_vl }, 4997 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4998 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4999 /* User Timers and Counters */ 5000 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 5001 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 5002 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 5003 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 5004 5005 /* 5006 * In privileged mode, the monitor will have to emulate TIME CSRs only if 5007 * rdtime callback is not provided by machine/platform emulation. 5008 */ 5009 [CSR_TIME] = { "time", ctr, read_time }, 5010 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 5011 5012 /* Crypto Extension */ 5013 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 5014 5015 /* Zcmt Extension */ 5016 [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, 5017 5018 /* zicfiss Extension, shadow stack register */ 5019 [CSR_SSP] = { "ssp", cfi_ss, read_ssp, write_ssp }, 5020 5021 #if !defined(CONFIG_USER_ONLY) 5022 /* Machine Timers and Counters */ 5023 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 5024 write_mhpmcounter }, 5025 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 5026 write_mhpmcounter }, 5027 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 5028 write_mhpmcounterh }, 5029 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 5030 write_mhpmcounterh }, 5031 5032 /* Machine Information Registers */ 5033 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 5034 [CSR_MARCHID] = { "marchid", any, read_marchid }, 5035 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 5036 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 5037 5038 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 5039 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5040 /* Machine Trap Setup */ 5041 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 5042 NULL, read_mstatus_i128 }, 5043 [CSR_MISA] = { "misa", any, read_misa, write_misa, 5044 NULL, read_misa_i128 }, 5045 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 5046 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 5047 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 5048 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 5049 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 5050 write_mcounteren }, 5051 5052 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 5053 write_mstatush }, 5054 [CSR_MEDELEGH] = { "medelegh", any32, read_zero, write_ignore, 5055 .min_priv_ver = PRIV_VERSION_1_13_0 }, 5056 [CSR_HEDELEGH] = { "hedelegh", hmode32, read_hedelegh, write_hedelegh, 5057 .min_priv_ver = PRIV_VERSION_1_13_0 }, 5058 5059 /* Machine Trap Handling */ 5060 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 5061 NULL, read_mscratch_i128, write_mscratch_i128 }, 5062 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 5063 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 5064 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 5065 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 5066 5067 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 5068 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 5069 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 5070 5071 /* Machine-Level Interrupts (AIA) */ 5072 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 5073 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 5074 5075 /* Virtual Interrupts for Supervisor Level (AIA) */ 5076 [CSR_MVIEN] = { "mvien", aia_any, NULL, NULL, rmw_mvien }, 5077 [CSR_MVIP] = { "mvip", aia_any, NULL, NULL, rmw_mvip }, 5078 5079 /* Machine-Level High-Half CSRs (AIA) */ 5080 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 5081 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 5082 [CSR_MVIENH] = { "mvienh", aia_any32, NULL, NULL, rmw_mvienh }, 5083 [CSR_MVIPH] = { "mviph", aia_any32, NULL, NULL, rmw_mviph }, 5084 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 5085 5086 /* Execution environment configuration */ 5087 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 5088 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5089 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 5090 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5091 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 5092 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5093 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 5094 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5095 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 5096 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5097 5098 /* Smstateen extension CSRs */ 5099 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 5100 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5101 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 5102 write_mstateen0h, 5103 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5104 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 5105 write_mstateen_1_3, 5106 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5107 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 5108 write_mstateenh_1_3, 5109 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5110 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 5111 write_mstateen_1_3, 5112 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5113 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 5114 write_mstateenh_1_3, 5115 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5116 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 5117 write_mstateen_1_3, 5118 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5119 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 5120 write_mstateenh_1_3, 5121 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5122 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 5123 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5124 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 5125 write_hstateen0h, 5126 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5127 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 5128 write_hstateen_1_3, 5129 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5130 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 5131 write_hstateenh_1_3, 5132 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5133 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 5134 write_hstateen_1_3, 5135 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5136 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 5137 write_hstateenh_1_3, 5138 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5139 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 5140 write_hstateen_1_3, 5141 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5142 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 5143 write_hstateenh_1_3, 5144 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5145 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 5146 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5147 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 5148 write_sstateen_1_3, 5149 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5150 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 5151 write_sstateen_1_3, 5152 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5153 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 5154 write_sstateen_1_3, 5155 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5156 5157 /* Supervisor Trap Setup */ 5158 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 5159 NULL, read_sstatus_i128 }, 5160 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 5161 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 5162 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 5163 write_scounteren }, 5164 5165 /* Supervisor Trap Handling */ 5166 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 5167 NULL, read_sscratch_i128, write_sscratch_i128 }, 5168 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 5169 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 5170 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 5171 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 5172 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 5173 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5174 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 5175 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5176 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 5177 write_vstimecmp, 5178 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5179 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 5180 write_vstimecmph, 5181 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5182 5183 /* Supervisor Protection and Translation */ 5184 [CSR_SATP] = { "satp", satp, read_satp, write_satp }, 5185 5186 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 5187 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 5188 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 5189 5190 /* Supervisor-Level Interrupts (AIA) */ 5191 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 5192 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 5193 5194 /* Supervisor-Level High-Half CSRs (AIA) */ 5195 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 5196 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 5197 5198 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 5199 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5200 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 5201 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5202 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 5203 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5204 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 5205 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5206 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 5207 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5208 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 5209 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5210 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 5211 write_hcounteren, 5212 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5213 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 5214 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5215 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 5216 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5217 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 5218 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5219 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 5220 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5221 [CSR_HGATP] = { "hgatp", hgatp, read_hgatp, write_hgatp, 5222 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5223 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 5224 write_htimedelta, 5225 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5226 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 5227 write_htimedeltah, 5228 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5229 5230 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 5231 write_vsstatus, 5232 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5233 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 5234 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5235 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 5236 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5237 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 5238 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5239 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 5240 write_vsscratch, 5241 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5242 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 5243 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5244 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 5245 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5246 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 5247 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5248 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 5249 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5250 5251 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 5252 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5253 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 5254 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5255 5256 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 5257 [CSR_HVIEN] = { "hvien", aia_hmode, NULL, NULL, rmw_hvien }, 5258 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 5259 write_hvictl }, 5260 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 5261 write_hviprio1 }, 5262 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 5263 write_hviprio2 }, 5264 /* 5265 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 5266 */ 5267 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 5268 rmw_xiselect }, 5269 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 5270 5271 /* VS-Level Interrupts (H-extension with AIA) */ 5272 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 5273 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 5274 5275 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 5276 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 5277 rmw_hidelegh }, 5278 [CSR_HVIENH] = { "hvienh", aia_hmode32, NULL, NULL, rmw_hvienh }, 5279 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 5280 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 5281 write_hviprio1h }, 5282 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 5283 write_hviprio2h }, 5284 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 5285 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 5286 5287 /* Physical Memory Protection */ 5288 [CSR_MSECCFG] = { "mseccfg", have_mseccfg, read_mseccfg, write_mseccfg, 5289 .min_priv_ver = PRIV_VERSION_1_11_0 }, 5290 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 5291 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 5292 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 5293 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 5294 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 5295 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 5296 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 5297 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 5298 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 5299 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 5300 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 5301 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 5302 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 5303 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 5304 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 5305 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 5306 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 5307 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 5308 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 5309 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 5310 5311 /* Debug CSRs */ 5312 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 5313 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 5314 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 5315 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 5316 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 5317 [CSR_MCONTEXT] = { "mcontext", debug, read_mcontext, write_mcontext }, 5318 5319 /* User Pointer Masking */ 5320 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 5321 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 5322 write_upmmask }, 5323 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 5324 write_upmbase }, 5325 /* Machine Pointer Masking */ 5326 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 5327 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 5328 write_mpmmask }, 5329 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 5330 write_mpmbase }, 5331 /* Supervisor Pointer Masking */ 5332 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 5333 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 5334 write_spmmask }, 5335 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 5336 write_spmbase }, 5337 5338 /* Performance Counters */ 5339 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 5340 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 5341 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 5342 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 5343 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 5344 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 5345 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 5346 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 5347 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 5348 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 5349 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 5350 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 5351 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 5352 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 5353 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 5354 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 5355 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 5356 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 5357 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 5358 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 5359 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 5360 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 5361 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 5362 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 5363 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 5364 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 5365 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 5366 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 5367 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 5368 5369 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 5370 write_mhpmcounter }, 5371 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 5372 write_mhpmcounter }, 5373 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 5374 write_mhpmcounter }, 5375 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 5376 write_mhpmcounter }, 5377 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 5378 write_mhpmcounter }, 5379 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 5380 write_mhpmcounter }, 5381 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 5382 write_mhpmcounter }, 5383 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 5384 write_mhpmcounter }, 5385 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 5386 write_mhpmcounter }, 5387 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 5388 write_mhpmcounter }, 5389 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 5390 write_mhpmcounter }, 5391 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 5392 write_mhpmcounter }, 5393 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 5394 write_mhpmcounter }, 5395 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 5396 write_mhpmcounter }, 5397 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 5398 write_mhpmcounter }, 5399 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 5400 write_mhpmcounter }, 5401 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 5402 write_mhpmcounter }, 5403 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 5404 write_mhpmcounter }, 5405 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 5406 write_mhpmcounter }, 5407 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 5408 write_mhpmcounter }, 5409 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 5410 write_mhpmcounter }, 5411 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 5412 write_mhpmcounter }, 5413 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 5414 write_mhpmcounter }, 5415 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 5416 write_mhpmcounter }, 5417 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 5418 write_mhpmcounter }, 5419 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 5420 write_mhpmcounter }, 5421 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 5422 write_mhpmcounter }, 5423 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 5424 write_mhpmcounter }, 5425 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 5426 write_mhpmcounter }, 5427 5428 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 5429 write_mcountinhibit, 5430 .min_priv_ver = PRIV_VERSION_1_11_0 }, 5431 5432 [CSR_MCYCLECFG] = { "mcyclecfg", smcntrpmf, read_mcyclecfg, 5433 write_mcyclecfg, 5434 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5435 [CSR_MINSTRETCFG] = { "minstretcfg", smcntrpmf, read_minstretcfg, 5436 write_minstretcfg, 5437 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5438 5439 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 5440 write_mhpmevent }, 5441 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 5442 write_mhpmevent }, 5443 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 5444 write_mhpmevent }, 5445 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 5446 write_mhpmevent }, 5447 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 5448 write_mhpmevent }, 5449 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 5450 write_mhpmevent }, 5451 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 5452 write_mhpmevent }, 5453 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 5454 write_mhpmevent }, 5455 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 5456 write_mhpmevent }, 5457 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 5458 write_mhpmevent }, 5459 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 5460 write_mhpmevent }, 5461 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 5462 write_mhpmevent }, 5463 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 5464 write_mhpmevent }, 5465 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 5466 write_mhpmevent }, 5467 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 5468 write_mhpmevent }, 5469 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 5470 write_mhpmevent }, 5471 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 5472 write_mhpmevent }, 5473 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 5474 write_mhpmevent }, 5475 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 5476 write_mhpmevent }, 5477 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 5478 write_mhpmevent }, 5479 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 5480 write_mhpmevent }, 5481 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 5482 write_mhpmevent }, 5483 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 5484 write_mhpmevent }, 5485 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 5486 write_mhpmevent }, 5487 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 5488 write_mhpmevent }, 5489 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 5490 write_mhpmevent }, 5491 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 5492 write_mhpmevent }, 5493 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 5494 write_mhpmevent }, 5495 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 5496 write_mhpmevent }, 5497 5498 [CSR_MCYCLECFGH] = { "mcyclecfgh", smcntrpmf_32, read_mcyclecfgh, 5499 write_mcyclecfgh, 5500 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5501 [CSR_MINSTRETCFGH] = { "minstretcfgh", smcntrpmf_32, read_minstretcfgh, 5502 write_minstretcfgh, 5503 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5504 5505 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf_32, read_mhpmeventh, 5506 write_mhpmeventh, 5507 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5508 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf_32, read_mhpmeventh, 5509 write_mhpmeventh, 5510 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5511 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf_32, read_mhpmeventh, 5512 write_mhpmeventh, 5513 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5514 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf_32, read_mhpmeventh, 5515 write_mhpmeventh, 5516 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5517 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf_32, read_mhpmeventh, 5518 write_mhpmeventh, 5519 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5520 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf_32, read_mhpmeventh, 5521 write_mhpmeventh, 5522 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5523 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf_32, read_mhpmeventh, 5524 write_mhpmeventh, 5525 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5526 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf_32, read_mhpmeventh, 5527 write_mhpmeventh, 5528 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5529 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf_32, read_mhpmeventh, 5530 write_mhpmeventh, 5531 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5532 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf_32, read_mhpmeventh, 5533 write_mhpmeventh, 5534 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5535 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf_32, read_mhpmeventh, 5536 write_mhpmeventh, 5537 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5538 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf_32, read_mhpmeventh, 5539 write_mhpmeventh, 5540 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5541 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf_32, read_mhpmeventh, 5542 write_mhpmeventh, 5543 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5544 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf_32, read_mhpmeventh, 5545 write_mhpmeventh, 5546 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5547 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf_32, read_mhpmeventh, 5548 write_mhpmeventh, 5549 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5550 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf_32, read_mhpmeventh, 5551 write_mhpmeventh, 5552 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5553 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf_32, read_mhpmeventh, 5554 write_mhpmeventh, 5555 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5556 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf_32, read_mhpmeventh, 5557 write_mhpmeventh, 5558 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5559 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf_32, read_mhpmeventh, 5560 write_mhpmeventh, 5561 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5562 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf_32, read_mhpmeventh, 5563 write_mhpmeventh, 5564 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5565 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf_32, read_mhpmeventh, 5566 write_mhpmeventh, 5567 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5568 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf_32, read_mhpmeventh, 5569 write_mhpmeventh, 5570 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5571 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf_32, read_mhpmeventh, 5572 write_mhpmeventh, 5573 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5574 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf_32, read_mhpmeventh, 5575 write_mhpmeventh, 5576 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5577 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf_32, read_mhpmeventh, 5578 write_mhpmeventh, 5579 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5580 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf_32, read_mhpmeventh, 5581 write_mhpmeventh, 5582 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5583 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf_32, read_mhpmeventh, 5584 write_mhpmeventh, 5585 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5586 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf_32, read_mhpmeventh, 5587 write_mhpmeventh, 5588 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5589 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf_32, read_mhpmeventh, 5590 write_mhpmeventh, 5591 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5592 5593 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 5594 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 5595 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 5596 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 5597 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 5598 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 5599 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 5600 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 5601 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 5602 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 5603 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 5604 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 5605 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 5606 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 5607 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 5608 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 5609 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 5610 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 5611 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 5612 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 5613 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 5614 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 5615 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 5616 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 5617 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 5618 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 5619 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 5620 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 5621 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 5622 5623 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 5624 write_mhpmcounterh }, 5625 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 5626 write_mhpmcounterh }, 5627 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 5628 write_mhpmcounterh }, 5629 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 5630 write_mhpmcounterh }, 5631 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 5632 write_mhpmcounterh }, 5633 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 5634 write_mhpmcounterh }, 5635 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 5636 write_mhpmcounterh }, 5637 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 5638 write_mhpmcounterh }, 5639 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 5640 write_mhpmcounterh }, 5641 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 5642 write_mhpmcounterh }, 5643 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 5644 write_mhpmcounterh }, 5645 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 5646 write_mhpmcounterh }, 5647 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 5648 write_mhpmcounterh }, 5649 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 5650 write_mhpmcounterh }, 5651 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 5652 write_mhpmcounterh }, 5653 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 5654 write_mhpmcounterh }, 5655 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 5656 write_mhpmcounterh }, 5657 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 5658 write_mhpmcounterh }, 5659 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 5660 write_mhpmcounterh }, 5661 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 5662 write_mhpmcounterh }, 5663 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 5664 write_mhpmcounterh }, 5665 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 5666 write_mhpmcounterh }, 5667 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 5668 write_mhpmcounterh }, 5669 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 5670 write_mhpmcounterh }, 5671 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 5672 write_mhpmcounterh }, 5673 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 5674 write_mhpmcounterh }, 5675 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 5676 write_mhpmcounterh }, 5677 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 5678 write_mhpmcounterh }, 5679 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 5680 write_mhpmcounterh }, 5681 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 5682 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5683 5684 #endif /* !CONFIG_USER_ONLY */ 5685 }; 5686