1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "qemu/main-loop.h" 26 #include "exec/exec-all.h" 27 #include "sysemu/cpu-timers.h" 28 #include "qemu/guest-random.h" 29 #include "qapi/error.h" 30 31 /* CSR function table public API */ 32 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 33 { 34 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 35 } 36 37 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 38 { 39 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 40 } 41 42 /* Predicates */ 43 static RISCVException fs(CPURISCVState *env, int csrno) 44 { 45 #if !defined(CONFIG_USER_ONLY) 46 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 47 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 48 return RISCV_EXCP_ILLEGAL_INST; 49 } 50 #endif 51 return RISCV_EXCP_NONE; 52 } 53 54 static RISCVException vs(CPURISCVState *env, int csrno) 55 { 56 CPUState *cs = env_cpu(env); 57 RISCVCPU *cpu = RISCV_CPU(cs); 58 59 if (env->misa_ext & RVV || 60 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 61 #if !defined(CONFIG_USER_ONLY) 62 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 63 return RISCV_EXCP_ILLEGAL_INST; 64 } 65 #endif 66 return RISCV_EXCP_NONE; 67 } 68 return RISCV_EXCP_ILLEGAL_INST; 69 } 70 71 static RISCVException ctr(CPURISCVState *env, int csrno) 72 { 73 #if !defined(CONFIG_USER_ONLY) 74 CPUState *cs = env_cpu(env); 75 RISCVCPU *cpu = RISCV_CPU(cs); 76 int ctr_index; 77 int base_csrno = CSR_HPMCOUNTER3; 78 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 79 80 if (rv32 && csrno >= CSR_CYCLEH) { 81 /* Offset for RV32 hpmcounternh counters */ 82 base_csrno += 0x80; 83 } 84 ctr_index = csrno - base_csrno; 85 86 if (!cpu->cfg.pmu_num || ctr_index >= (cpu->cfg.pmu_num)) { 87 /* No counter is enabled in PMU or the counter is out of range */ 88 return RISCV_EXCP_ILLEGAL_INST; 89 } 90 91 if (env->priv == PRV_S) { 92 switch (csrno) { 93 case CSR_CYCLE: 94 if (!get_field(env->mcounteren, COUNTEREN_CY)) { 95 return RISCV_EXCP_ILLEGAL_INST; 96 } 97 break; 98 case CSR_TIME: 99 if (!get_field(env->mcounteren, COUNTEREN_TM)) { 100 return RISCV_EXCP_ILLEGAL_INST; 101 } 102 break; 103 case CSR_INSTRET: 104 if (!get_field(env->mcounteren, COUNTEREN_IR)) { 105 return RISCV_EXCP_ILLEGAL_INST; 106 } 107 break; 108 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 109 ctr_index = csrno - CSR_CYCLE; 110 if (!get_field(env->mcounteren, 1 << ctr_index)) { 111 return RISCV_EXCP_ILLEGAL_INST; 112 } 113 break; 114 } 115 if (rv32) { 116 switch (csrno) { 117 case CSR_CYCLEH: 118 if (!get_field(env->mcounteren, COUNTEREN_CY)) { 119 return RISCV_EXCP_ILLEGAL_INST; 120 } 121 break; 122 case CSR_TIMEH: 123 if (!get_field(env->mcounteren, COUNTEREN_TM)) { 124 return RISCV_EXCP_ILLEGAL_INST; 125 } 126 break; 127 case CSR_INSTRETH: 128 if (!get_field(env->mcounteren, COUNTEREN_IR)) { 129 return RISCV_EXCP_ILLEGAL_INST; 130 } 131 break; 132 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 133 ctr_index = csrno - CSR_CYCLEH; 134 if (!get_field(env->mcounteren, 1 << ctr_index)) { 135 return RISCV_EXCP_ILLEGAL_INST; 136 } 137 break; 138 } 139 } 140 } 141 142 if (riscv_cpu_virt_enabled(env)) { 143 switch (csrno) { 144 case CSR_CYCLE: 145 if (!get_field(env->hcounteren, COUNTEREN_CY) && 146 get_field(env->mcounteren, COUNTEREN_CY)) { 147 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 148 } 149 break; 150 case CSR_TIME: 151 if (!get_field(env->hcounteren, COUNTEREN_TM) && 152 get_field(env->mcounteren, COUNTEREN_TM)) { 153 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 154 } 155 break; 156 case CSR_INSTRET: 157 if (!get_field(env->hcounteren, COUNTEREN_IR) && 158 get_field(env->mcounteren, COUNTEREN_IR)) { 159 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 160 } 161 break; 162 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 163 ctr_index = csrno - CSR_CYCLE; 164 if (!get_field(env->hcounteren, 1 << ctr_index) && 165 get_field(env->mcounteren, 1 << ctr_index)) { 166 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 167 } 168 break; 169 } 170 if (rv32) { 171 switch (csrno) { 172 case CSR_CYCLEH: 173 if (!get_field(env->hcounteren, COUNTEREN_CY) && 174 get_field(env->mcounteren, COUNTEREN_CY)) { 175 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 176 } 177 break; 178 case CSR_TIMEH: 179 if (!get_field(env->hcounteren, COUNTEREN_TM) && 180 get_field(env->mcounteren, COUNTEREN_TM)) { 181 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 182 } 183 break; 184 case CSR_INSTRETH: 185 if (!get_field(env->hcounteren, COUNTEREN_IR) && 186 get_field(env->mcounteren, COUNTEREN_IR)) { 187 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 188 } 189 break; 190 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 191 ctr_index = csrno - CSR_CYCLEH; 192 if (!get_field(env->hcounteren, 1 << ctr_index) && 193 get_field(env->mcounteren, 1 << ctr_index)) { 194 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 195 } 196 break; 197 } 198 } 199 } 200 #endif 201 return RISCV_EXCP_NONE; 202 } 203 204 static RISCVException ctr32(CPURISCVState *env, int csrno) 205 { 206 if (riscv_cpu_mxl(env) != MXL_RV32) { 207 return RISCV_EXCP_ILLEGAL_INST; 208 } 209 210 return ctr(env, csrno); 211 } 212 213 #if !defined(CONFIG_USER_ONLY) 214 static RISCVException mctr(CPURISCVState *env, int csrno) 215 { 216 CPUState *cs = env_cpu(env); 217 RISCVCPU *cpu = RISCV_CPU(cs); 218 int ctr_index; 219 int base_csrno = CSR_MHPMCOUNTER3; 220 221 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 222 /* Offset for RV32 mhpmcounternh counters */ 223 base_csrno += 0x80; 224 } 225 ctr_index = csrno - base_csrno; 226 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 227 /* The PMU is not enabled or counter is out of range*/ 228 return RISCV_EXCP_ILLEGAL_INST; 229 } 230 231 return RISCV_EXCP_NONE; 232 } 233 234 static RISCVException mctr32(CPURISCVState *env, int csrno) 235 { 236 if (riscv_cpu_mxl(env) != MXL_RV32) { 237 return RISCV_EXCP_ILLEGAL_INST; 238 } 239 240 return mctr(env, csrno); 241 } 242 243 static RISCVException any(CPURISCVState *env, int csrno) 244 { 245 return RISCV_EXCP_NONE; 246 } 247 248 static RISCVException any32(CPURISCVState *env, int csrno) 249 { 250 if (riscv_cpu_mxl(env) != MXL_RV32) { 251 return RISCV_EXCP_ILLEGAL_INST; 252 } 253 254 return any(env, csrno); 255 256 } 257 258 static int aia_any(CPURISCVState *env, int csrno) 259 { 260 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 261 return RISCV_EXCP_ILLEGAL_INST; 262 } 263 264 return any(env, csrno); 265 } 266 267 static int aia_any32(CPURISCVState *env, int csrno) 268 { 269 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 270 return RISCV_EXCP_ILLEGAL_INST; 271 } 272 273 return any32(env, csrno); 274 } 275 276 static RISCVException smode(CPURISCVState *env, int csrno) 277 { 278 if (riscv_has_ext(env, RVS)) { 279 return RISCV_EXCP_NONE; 280 } 281 282 return RISCV_EXCP_ILLEGAL_INST; 283 } 284 285 static int smode32(CPURISCVState *env, int csrno) 286 { 287 if (riscv_cpu_mxl(env) != MXL_RV32) { 288 return RISCV_EXCP_ILLEGAL_INST; 289 } 290 291 return smode(env, csrno); 292 } 293 294 static int aia_smode(CPURISCVState *env, int csrno) 295 { 296 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 297 return RISCV_EXCP_ILLEGAL_INST; 298 } 299 300 return smode(env, csrno); 301 } 302 303 static int aia_smode32(CPURISCVState *env, int csrno) 304 { 305 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 306 return RISCV_EXCP_ILLEGAL_INST; 307 } 308 309 return smode32(env, csrno); 310 } 311 312 static RISCVException hmode(CPURISCVState *env, int csrno) 313 { 314 if (riscv_has_ext(env, RVH)) { 315 /* Hypervisor extension is supported */ 316 if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 317 env->priv == PRV_M) { 318 return RISCV_EXCP_NONE; 319 } else { 320 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 321 } 322 } 323 324 return RISCV_EXCP_ILLEGAL_INST; 325 } 326 327 static RISCVException hmode32(CPURISCVState *env, int csrno) 328 { 329 if (riscv_cpu_mxl(env) != MXL_RV32) { 330 return RISCV_EXCP_ILLEGAL_INST; 331 } 332 333 return hmode(env, csrno); 334 335 } 336 337 static RISCVException umode(CPURISCVState *env, int csrno) 338 { 339 if (riscv_has_ext(env, RVU)) { 340 return RISCV_EXCP_NONE; 341 } 342 343 return RISCV_EXCP_ILLEGAL_INST; 344 } 345 346 static RISCVException umode32(CPURISCVState *env, int csrno) 347 { 348 if (riscv_cpu_mxl(env) != MXL_RV32) { 349 return RISCV_EXCP_ILLEGAL_INST; 350 } 351 352 return umode(env, csrno); 353 } 354 355 /* Checks if PointerMasking registers could be accessed */ 356 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 357 { 358 /* Check if j-ext is present */ 359 if (riscv_has_ext(env, RVJ)) { 360 return RISCV_EXCP_NONE; 361 } 362 return RISCV_EXCP_ILLEGAL_INST; 363 } 364 365 static int aia_hmode(CPURISCVState *env, int csrno) 366 { 367 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 368 return RISCV_EXCP_ILLEGAL_INST; 369 } 370 371 return hmode(env, csrno); 372 } 373 374 static int aia_hmode32(CPURISCVState *env, int csrno) 375 { 376 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 377 return RISCV_EXCP_ILLEGAL_INST; 378 } 379 380 return hmode32(env, csrno); 381 } 382 383 static RISCVException pmp(CPURISCVState *env, int csrno) 384 { 385 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 386 return RISCV_EXCP_NONE; 387 } 388 389 return RISCV_EXCP_ILLEGAL_INST; 390 } 391 392 static RISCVException epmp(CPURISCVState *env, int csrno) 393 { 394 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 395 return RISCV_EXCP_NONE; 396 } 397 398 return RISCV_EXCP_ILLEGAL_INST; 399 } 400 401 static RISCVException debug(CPURISCVState *env, int csrno) 402 { 403 if (riscv_feature(env, RISCV_FEATURE_DEBUG)) { 404 return RISCV_EXCP_NONE; 405 } 406 407 return RISCV_EXCP_ILLEGAL_INST; 408 } 409 #endif 410 411 static RISCVException seed(CPURISCVState *env, int csrno) 412 { 413 RISCVCPU *cpu = env_archcpu(env); 414 415 if (!cpu->cfg.ext_zkr) { 416 return RISCV_EXCP_ILLEGAL_INST; 417 } 418 419 #if !defined(CONFIG_USER_ONLY) 420 /* 421 * With a CSR read-write instruction: 422 * 1) The seed CSR is always available in machine mode as normal. 423 * 2) Attempted access to seed from virtual modes VS and VU always raises 424 * an exception(virtual instruction exception only if mseccfg.sseed=1). 425 * 3) Without the corresponding access control bit set to 1, any attempted 426 * access to seed from U, S or HS modes will raise an illegal instruction 427 * exception. 428 */ 429 if (env->priv == PRV_M) { 430 return RISCV_EXCP_NONE; 431 } else if (riscv_cpu_virt_enabled(env)) { 432 if (env->mseccfg & MSECCFG_SSEED) { 433 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 434 } else { 435 return RISCV_EXCP_ILLEGAL_INST; 436 } 437 } else { 438 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 439 return RISCV_EXCP_NONE; 440 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 441 return RISCV_EXCP_NONE; 442 } else { 443 return RISCV_EXCP_ILLEGAL_INST; 444 } 445 } 446 #else 447 return RISCV_EXCP_NONE; 448 #endif 449 } 450 451 /* User Floating-Point CSRs */ 452 static RISCVException read_fflags(CPURISCVState *env, int csrno, 453 target_ulong *val) 454 { 455 *val = riscv_cpu_get_fflags(env); 456 return RISCV_EXCP_NONE; 457 } 458 459 static RISCVException write_fflags(CPURISCVState *env, int csrno, 460 target_ulong val) 461 { 462 #if !defined(CONFIG_USER_ONLY) 463 if (riscv_has_ext(env, RVF)) { 464 env->mstatus |= MSTATUS_FS; 465 } 466 #endif 467 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 468 return RISCV_EXCP_NONE; 469 } 470 471 static RISCVException read_frm(CPURISCVState *env, int csrno, 472 target_ulong *val) 473 { 474 *val = env->frm; 475 return RISCV_EXCP_NONE; 476 } 477 478 static RISCVException write_frm(CPURISCVState *env, int csrno, 479 target_ulong val) 480 { 481 #if !defined(CONFIG_USER_ONLY) 482 if (riscv_has_ext(env, RVF)) { 483 env->mstatus |= MSTATUS_FS; 484 } 485 #endif 486 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 487 return RISCV_EXCP_NONE; 488 } 489 490 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 491 target_ulong *val) 492 { 493 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 494 | (env->frm << FSR_RD_SHIFT); 495 return RISCV_EXCP_NONE; 496 } 497 498 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 499 target_ulong val) 500 { 501 #if !defined(CONFIG_USER_ONLY) 502 if (riscv_has_ext(env, RVF)) { 503 env->mstatus |= MSTATUS_FS; 504 } 505 #endif 506 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 507 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 508 return RISCV_EXCP_NONE; 509 } 510 511 static RISCVException read_vtype(CPURISCVState *env, int csrno, 512 target_ulong *val) 513 { 514 uint64_t vill; 515 switch (env->xl) { 516 case MXL_RV32: 517 vill = (uint32_t)env->vill << 31; 518 break; 519 case MXL_RV64: 520 vill = (uint64_t)env->vill << 63; 521 break; 522 default: 523 g_assert_not_reached(); 524 } 525 *val = (target_ulong)vill | env->vtype; 526 return RISCV_EXCP_NONE; 527 } 528 529 static RISCVException read_vl(CPURISCVState *env, int csrno, 530 target_ulong *val) 531 { 532 *val = env->vl; 533 return RISCV_EXCP_NONE; 534 } 535 536 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 537 { 538 *val = env_archcpu(env)->cfg.vlen >> 3; 539 return RISCV_EXCP_NONE; 540 } 541 542 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 543 target_ulong *val) 544 { 545 *val = env->vxrm; 546 return RISCV_EXCP_NONE; 547 } 548 549 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 550 target_ulong val) 551 { 552 #if !defined(CONFIG_USER_ONLY) 553 env->mstatus |= MSTATUS_VS; 554 #endif 555 env->vxrm = val; 556 return RISCV_EXCP_NONE; 557 } 558 559 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 560 target_ulong *val) 561 { 562 *val = env->vxsat; 563 return RISCV_EXCP_NONE; 564 } 565 566 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 567 target_ulong val) 568 { 569 #if !defined(CONFIG_USER_ONLY) 570 env->mstatus |= MSTATUS_VS; 571 #endif 572 env->vxsat = val; 573 return RISCV_EXCP_NONE; 574 } 575 576 static RISCVException read_vstart(CPURISCVState *env, int csrno, 577 target_ulong *val) 578 { 579 *val = env->vstart; 580 return RISCV_EXCP_NONE; 581 } 582 583 static RISCVException write_vstart(CPURISCVState *env, int csrno, 584 target_ulong val) 585 { 586 #if !defined(CONFIG_USER_ONLY) 587 env->mstatus |= MSTATUS_VS; 588 #endif 589 /* 590 * The vstart CSR is defined to have only enough writable bits 591 * to hold the largest element index, i.e. lg2(VLEN) bits. 592 */ 593 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 594 return RISCV_EXCP_NONE; 595 } 596 597 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 598 { 599 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 600 return RISCV_EXCP_NONE; 601 } 602 603 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 604 { 605 #if !defined(CONFIG_USER_ONLY) 606 env->mstatus |= MSTATUS_VS; 607 #endif 608 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 609 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 610 return RISCV_EXCP_NONE; 611 } 612 613 /* User Timers and Counters */ 614 static target_ulong get_ticks(bool shift) 615 { 616 int64_t val; 617 target_ulong result; 618 619 #if !defined(CONFIG_USER_ONLY) 620 if (icount_enabled()) { 621 val = icount_get(); 622 } else { 623 val = cpu_get_host_ticks(); 624 } 625 #else 626 val = cpu_get_host_ticks(); 627 #endif 628 629 if (shift) { 630 result = val >> 32; 631 } else { 632 result = val; 633 } 634 635 return result; 636 } 637 638 #if defined(CONFIG_USER_ONLY) 639 static RISCVException read_time(CPURISCVState *env, int csrno, 640 target_ulong *val) 641 { 642 *val = cpu_get_host_ticks(); 643 return RISCV_EXCP_NONE; 644 } 645 646 static RISCVException read_timeh(CPURISCVState *env, int csrno, 647 target_ulong *val) 648 { 649 *val = cpu_get_host_ticks() >> 32; 650 return RISCV_EXCP_NONE; 651 } 652 653 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 654 { 655 *val = get_ticks(false); 656 return RISCV_EXCP_NONE; 657 } 658 659 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 660 { 661 *val = get_ticks(true); 662 return RISCV_EXCP_NONE; 663 } 664 665 #else /* CONFIG_USER_ONLY */ 666 667 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 668 { 669 int evt_index = csrno - CSR_MCOUNTINHIBIT; 670 671 *val = env->mhpmevent_val[evt_index]; 672 673 return RISCV_EXCP_NONE; 674 } 675 676 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 677 { 678 int evt_index = csrno - CSR_MCOUNTINHIBIT; 679 680 env->mhpmevent_val[evt_index] = val; 681 682 return RISCV_EXCP_NONE; 683 } 684 685 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 686 { 687 int ctr_idx = csrno - CSR_MCYCLE; 688 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 689 690 counter->mhpmcounter_val = val; 691 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 692 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 693 counter->mhpmcounter_prev = get_ticks(false); 694 } else { 695 /* Other counters can keep incrementing from the given value */ 696 counter->mhpmcounter_prev = val; 697 } 698 699 return RISCV_EXCP_NONE; 700 } 701 702 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 703 { 704 int ctr_idx = csrno - CSR_MCYCLEH; 705 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 706 707 counter->mhpmcounterh_val = val; 708 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 709 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 710 counter->mhpmcounterh_prev = get_ticks(true); 711 } else { 712 counter->mhpmcounterh_prev = val; 713 } 714 715 return RISCV_EXCP_NONE; 716 } 717 718 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 719 bool upper_half, uint32_t ctr_idx) 720 { 721 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 722 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 723 counter.mhpmcounter_prev; 724 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 725 counter.mhpmcounter_val; 726 727 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 728 /** 729 * Counter should not increment if inhibit bit is set. We can't really 730 * stop the icount counting. Just return the counter value written by 731 * the supervisor to indicate that counter was not incremented. 732 */ 733 if (!counter.started) { 734 *val = ctr_val; 735 return RISCV_EXCP_NONE; 736 } else { 737 /* Mark that the counter has been stopped */ 738 counter.started = false; 739 } 740 } 741 742 /** 743 * The kernel computes the perf delta by subtracting the current value from 744 * the value it initialized previously (ctr_val). 745 */ 746 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 747 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 748 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 749 } else { 750 *val = ctr_val; 751 } 752 753 return RISCV_EXCP_NONE; 754 } 755 756 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 757 { 758 uint16_t ctr_index; 759 760 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 761 ctr_index = csrno - CSR_MCYCLE; 762 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 763 ctr_index = csrno - CSR_CYCLE; 764 } else { 765 return RISCV_EXCP_ILLEGAL_INST; 766 } 767 768 return riscv_pmu_read_ctr(env, val, false, ctr_index); 769 } 770 771 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 772 { 773 uint16_t ctr_index; 774 775 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 776 ctr_index = csrno - CSR_MCYCLEH; 777 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 778 ctr_index = csrno - CSR_CYCLEH; 779 } else { 780 return RISCV_EXCP_ILLEGAL_INST; 781 } 782 783 return riscv_pmu_read_ctr(env, val, true, ctr_index); 784 } 785 786 static RISCVException read_time(CPURISCVState *env, int csrno, 787 target_ulong *val) 788 { 789 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 790 791 if (!env->rdtime_fn) { 792 return RISCV_EXCP_ILLEGAL_INST; 793 } 794 795 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 796 return RISCV_EXCP_NONE; 797 } 798 799 static RISCVException read_timeh(CPURISCVState *env, int csrno, 800 target_ulong *val) 801 { 802 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 803 804 if (!env->rdtime_fn) { 805 return RISCV_EXCP_ILLEGAL_INST; 806 } 807 808 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 809 return RISCV_EXCP_NONE; 810 } 811 812 /* Machine constants */ 813 814 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 815 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP)) 816 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 817 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 818 819 #define VSTOPI_NUM_SRCS 5 820 821 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 822 VS_MODE_INTERRUPTS; 823 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 824 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 825 HS_MODE_INTERRUPTS; 826 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 827 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 828 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 829 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 830 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 831 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 832 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 833 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 834 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 835 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 836 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 837 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 838 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 839 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 840 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 841 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 842 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 843 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 844 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 845 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 846 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 847 (1ULL << (RISCV_EXCP_VS_ECALL)) | 848 (1ULL << (RISCV_EXCP_M_ECALL)) | 849 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 850 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 851 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 852 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 853 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 854 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 855 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 856 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP; 857 static const target_ulong hip_writable_mask = MIP_VSSIP; 858 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 859 static const target_ulong vsip_writable_mask = MIP_VSSIP; 860 861 static const char valid_vm_1_10_32[16] = { 862 [VM_1_10_MBARE] = 1, 863 [VM_1_10_SV32] = 1 864 }; 865 866 static const char valid_vm_1_10_64[16] = { 867 [VM_1_10_MBARE] = 1, 868 [VM_1_10_SV39] = 1, 869 [VM_1_10_SV48] = 1, 870 [VM_1_10_SV57] = 1 871 }; 872 873 /* Machine Information Registers */ 874 static RISCVException read_zero(CPURISCVState *env, int csrno, 875 target_ulong *val) 876 { 877 *val = 0; 878 return RISCV_EXCP_NONE; 879 } 880 881 static RISCVException write_ignore(CPURISCVState *env, int csrno, 882 target_ulong val) 883 { 884 return RISCV_EXCP_NONE; 885 } 886 887 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 888 target_ulong *val) 889 { 890 CPUState *cs = env_cpu(env); 891 RISCVCPU *cpu = RISCV_CPU(cs); 892 893 *val = cpu->cfg.mvendorid; 894 return RISCV_EXCP_NONE; 895 } 896 897 static RISCVException read_marchid(CPURISCVState *env, int csrno, 898 target_ulong *val) 899 { 900 CPUState *cs = env_cpu(env); 901 RISCVCPU *cpu = RISCV_CPU(cs); 902 903 *val = cpu->cfg.marchid; 904 return RISCV_EXCP_NONE; 905 } 906 907 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 908 target_ulong *val) 909 { 910 CPUState *cs = env_cpu(env); 911 RISCVCPU *cpu = RISCV_CPU(cs); 912 913 *val = cpu->cfg.mimpid; 914 return RISCV_EXCP_NONE; 915 } 916 917 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 918 target_ulong *val) 919 { 920 *val = env->mhartid; 921 return RISCV_EXCP_NONE; 922 } 923 924 /* Machine Trap Setup */ 925 926 /* We do not store SD explicitly, only compute it on demand. */ 927 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 928 { 929 if ((status & MSTATUS_FS) == MSTATUS_FS || 930 (status & MSTATUS_VS) == MSTATUS_VS || 931 (status & MSTATUS_XS) == MSTATUS_XS) { 932 switch (xl) { 933 case MXL_RV32: 934 return status | MSTATUS32_SD; 935 case MXL_RV64: 936 return status | MSTATUS64_SD; 937 case MXL_RV128: 938 return MSTATUSH128_SD; 939 default: 940 g_assert_not_reached(); 941 } 942 } 943 return status; 944 } 945 946 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 947 target_ulong *val) 948 { 949 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 950 return RISCV_EXCP_NONE; 951 } 952 953 static int validate_vm(CPURISCVState *env, target_ulong vm) 954 { 955 if (riscv_cpu_mxl(env) == MXL_RV32) { 956 return valid_vm_1_10_32[vm & 0xf]; 957 } else { 958 return valid_vm_1_10_64[vm & 0xf]; 959 } 960 } 961 962 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 963 target_ulong val) 964 { 965 uint64_t mstatus = env->mstatus; 966 uint64_t mask = 0; 967 RISCVMXL xl = riscv_cpu_mxl(env); 968 969 /* flush tlb on mstatus fields that affect VM */ 970 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 971 MSTATUS_MPRV | MSTATUS_SUM)) { 972 tlb_flush(env_cpu(env)); 973 } 974 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 975 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 976 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 977 MSTATUS_TW | MSTATUS_VS; 978 979 if (riscv_has_ext(env, RVF)) { 980 mask |= MSTATUS_FS; 981 } 982 983 if (xl != MXL_RV32 || env->debugger) { 984 /* 985 * RV32: MPV and GVA are not in mstatus. The current plan is to 986 * add them to mstatush. For now, we just don't support it. 987 */ 988 mask |= MSTATUS_MPV | MSTATUS_GVA; 989 if ((val & MSTATUS64_UXL) != 0) { 990 mask |= MSTATUS64_UXL; 991 } 992 } 993 994 mstatus = (mstatus & ~mask) | (val & mask); 995 996 if (xl > MXL_RV32) { 997 /* SXL field is for now read only */ 998 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 999 } 1000 env->mstatus = mstatus; 1001 env->xl = cpu_recompute_xl(env); 1002 1003 return RISCV_EXCP_NONE; 1004 } 1005 1006 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1007 target_ulong *val) 1008 { 1009 *val = env->mstatus >> 32; 1010 return RISCV_EXCP_NONE; 1011 } 1012 1013 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1014 target_ulong val) 1015 { 1016 uint64_t valh = (uint64_t)val << 32; 1017 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1018 1019 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1020 tlb_flush(env_cpu(env)); 1021 } 1022 1023 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1024 1025 return RISCV_EXCP_NONE; 1026 } 1027 1028 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1029 Int128 *val) 1030 { 1031 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1032 return RISCV_EXCP_NONE; 1033 } 1034 1035 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1036 Int128 *val) 1037 { 1038 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1039 return RISCV_EXCP_NONE; 1040 } 1041 1042 static RISCVException read_misa(CPURISCVState *env, int csrno, 1043 target_ulong *val) 1044 { 1045 target_ulong misa; 1046 1047 switch (env->misa_mxl) { 1048 case MXL_RV32: 1049 misa = (target_ulong)MXL_RV32 << 30; 1050 break; 1051 #ifdef TARGET_RISCV64 1052 case MXL_RV64: 1053 misa = (target_ulong)MXL_RV64 << 62; 1054 break; 1055 #endif 1056 default: 1057 g_assert_not_reached(); 1058 } 1059 1060 *val = misa | env->misa_ext; 1061 return RISCV_EXCP_NONE; 1062 } 1063 1064 static RISCVException write_misa(CPURISCVState *env, int csrno, 1065 target_ulong val) 1066 { 1067 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 1068 /* drop write to misa */ 1069 return RISCV_EXCP_NONE; 1070 } 1071 1072 /* 'I' or 'E' must be present */ 1073 if (!(val & (RVI | RVE))) { 1074 /* It is not, drop write to misa */ 1075 return RISCV_EXCP_NONE; 1076 } 1077 1078 /* 'E' excludes all other extensions */ 1079 if (val & RVE) { 1080 /* when we support 'E' we can do "val = RVE;" however 1081 * for now we just drop writes if 'E' is present. 1082 */ 1083 return RISCV_EXCP_NONE; 1084 } 1085 1086 /* 1087 * misa.MXL writes are not supported by QEMU. 1088 * Drop writes to those bits. 1089 */ 1090 1091 /* Mask extensions that are not supported by this hart */ 1092 val &= env->misa_ext_mask; 1093 1094 /* Mask extensions that are not supported by QEMU */ 1095 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 1096 1097 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1098 if ((val & RVD) && !(val & RVF)) { 1099 val &= ~RVD; 1100 } 1101 1102 /* Suppress 'C' if next instruction is not aligned 1103 * TODO: this should check next_pc 1104 */ 1105 if ((val & RVC) && (GETPC() & ~3) != 0) { 1106 val &= ~RVC; 1107 } 1108 1109 /* If nothing changed, do nothing. */ 1110 if (val == env->misa_ext) { 1111 return RISCV_EXCP_NONE; 1112 } 1113 1114 if (!(val & RVF)) { 1115 env->mstatus &= ~MSTATUS_FS; 1116 } 1117 1118 /* flush translation cache */ 1119 tb_flush(env_cpu(env)); 1120 env->misa_ext = val; 1121 env->xl = riscv_cpu_mxl(env); 1122 return RISCV_EXCP_NONE; 1123 } 1124 1125 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1126 target_ulong *val) 1127 { 1128 *val = env->medeleg; 1129 return RISCV_EXCP_NONE; 1130 } 1131 1132 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1133 target_ulong val) 1134 { 1135 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1136 return RISCV_EXCP_NONE; 1137 } 1138 1139 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1140 uint64_t *ret_val, 1141 uint64_t new_val, uint64_t wr_mask) 1142 { 1143 uint64_t mask = wr_mask & delegable_ints; 1144 1145 if (ret_val) { 1146 *ret_val = env->mideleg; 1147 } 1148 1149 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1150 1151 if (riscv_has_ext(env, RVH)) { 1152 env->mideleg |= HS_MODE_INTERRUPTS; 1153 } 1154 1155 return RISCV_EXCP_NONE; 1156 } 1157 1158 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1159 target_ulong *ret_val, 1160 target_ulong new_val, target_ulong wr_mask) 1161 { 1162 uint64_t rval; 1163 RISCVException ret; 1164 1165 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1166 if (ret_val) { 1167 *ret_val = rval; 1168 } 1169 1170 return ret; 1171 } 1172 1173 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1174 target_ulong *ret_val, 1175 target_ulong new_val, 1176 target_ulong wr_mask) 1177 { 1178 uint64_t rval; 1179 RISCVException ret; 1180 1181 ret = rmw_mideleg64(env, csrno, &rval, 1182 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1183 if (ret_val) { 1184 *ret_val = rval >> 32; 1185 } 1186 1187 return ret; 1188 } 1189 1190 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1191 uint64_t *ret_val, 1192 uint64_t new_val, uint64_t wr_mask) 1193 { 1194 uint64_t mask = wr_mask & all_ints; 1195 1196 if (ret_val) { 1197 *ret_val = env->mie; 1198 } 1199 1200 env->mie = (env->mie & ~mask) | (new_val & mask); 1201 1202 if (!riscv_has_ext(env, RVH)) { 1203 env->mie &= ~((uint64_t)MIP_SGEIP); 1204 } 1205 1206 return RISCV_EXCP_NONE; 1207 } 1208 1209 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1210 target_ulong *ret_val, 1211 target_ulong new_val, target_ulong wr_mask) 1212 { 1213 uint64_t rval; 1214 RISCVException ret; 1215 1216 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1217 if (ret_val) { 1218 *ret_val = rval; 1219 } 1220 1221 return ret; 1222 } 1223 1224 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1225 target_ulong *ret_val, 1226 target_ulong new_val, target_ulong wr_mask) 1227 { 1228 uint64_t rval; 1229 RISCVException ret; 1230 1231 ret = rmw_mie64(env, csrno, &rval, 1232 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1233 if (ret_val) { 1234 *ret_val = rval >> 32; 1235 } 1236 1237 return ret; 1238 } 1239 1240 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1241 { 1242 int irq; 1243 uint8_t iprio; 1244 1245 irq = riscv_cpu_mirq_pending(env); 1246 if (irq <= 0 || irq > 63) { 1247 *val = 0; 1248 } else { 1249 iprio = env->miprio[irq]; 1250 if (!iprio) { 1251 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1252 iprio = IPRIO_MMAXIPRIO; 1253 } 1254 } 1255 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1256 *val |= iprio; 1257 } 1258 1259 return RISCV_EXCP_NONE; 1260 } 1261 1262 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1263 { 1264 if (!riscv_cpu_virt_enabled(env)) { 1265 return csrno; 1266 } 1267 1268 switch (csrno) { 1269 case CSR_SISELECT: 1270 return CSR_VSISELECT; 1271 case CSR_SIREG: 1272 return CSR_VSIREG; 1273 case CSR_STOPEI: 1274 return CSR_VSTOPEI; 1275 default: 1276 return csrno; 1277 }; 1278 } 1279 1280 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1281 target_ulong new_val, target_ulong wr_mask) 1282 { 1283 target_ulong *iselect; 1284 1285 /* Translate CSR number for VS-mode */ 1286 csrno = aia_xlate_vs_csrno(env, csrno); 1287 1288 /* Find the iselect CSR based on CSR number */ 1289 switch (csrno) { 1290 case CSR_MISELECT: 1291 iselect = &env->miselect; 1292 break; 1293 case CSR_SISELECT: 1294 iselect = &env->siselect; 1295 break; 1296 case CSR_VSISELECT: 1297 iselect = &env->vsiselect; 1298 break; 1299 default: 1300 return RISCV_EXCP_ILLEGAL_INST; 1301 }; 1302 1303 if (val) { 1304 *val = *iselect; 1305 } 1306 1307 wr_mask &= ISELECT_MASK; 1308 if (wr_mask) { 1309 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1310 } 1311 1312 return RISCV_EXCP_NONE; 1313 } 1314 1315 static int rmw_iprio(target_ulong xlen, 1316 target_ulong iselect, uint8_t *iprio, 1317 target_ulong *val, target_ulong new_val, 1318 target_ulong wr_mask, int ext_irq_no) 1319 { 1320 int i, firq, nirqs; 1321 target_ulong old_val; 1322 1323 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1324 return -EINVAL; 1325 } 1326 if (xlen != 32 && iselect & 0x1) { 1327 return -EINVAL; 1328 } 1329 1330 nirqs = 4 * (xlen / 32); 1331 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1332 1333 old_val = 0; 1334 for (i = 0; i < nirqs; i++) { 1335 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1336 } 1337 1338 if (val) { 1339 *val = old_val; 1340 } 1341 1342 if (wr_mask) { 1343 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1344 for (i = 0; i < nirqs; i++) { 1345 /* 1346 * M-level and S-level external IRQ priority always read-only 1347 * zero. This means default priority order is always preferred 1348 * for M-level and S-level external IRQs. 1349 */ 1350 if ((firq + i) == ext_irq_no) { 1351 continue; 1352 } 1353 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1354 } 1355 } 1356 1357 return 0; 1358 } 1359 1360 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1361 target_ulong new_val, target_ulong wr_mask) 1362 { 1363 bool virt; 1364 uint8_t *iprio; 1365 int ret = -EINVAL; 1366 target_ulong priv, isel, vgein; 1367 1368 /* Translate CSR number for VS-mode */ 1369 csrno = aia_xlate_vs_csrno(env, csrno); 1370 1371 /* Decode register details from CSR number */ 1372 virt = false; 1373 switch (csrno) { 1374 case CSR_MIREG: 1375 iprio = env->miprio; 1376 isel = env->miselect; 1377 priv = PRV_M; 1378 break; 1379 case CSR_SIREG: 1380 iprio = env->siprio; 1381 isel = env->siselect; 1382 priv = PRV_S; 1383 break; 1384 case CSR_VSIREG: 1385 iprio = env->hviprio; 1386 isel = env->vsiselect; 1387 priv = PRV_S; 1388 virt = true; 1389 break; 1390 default: 1391 goto done; 1392 }; 1393 1394 /* Find the selected guest interrupt file */ 1395 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1396 1397 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1398 /* Local interrupt priority registers not available for VS-mode */ 1399 if (!virt) { 1400 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1401 isel, iprio, val, new_val, wr_mask, 1402 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1403 } 1404 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1405 /* IMSIC registers only available when machine implements it. */ 1406 if (env->aia_ireg_rmw_fn[priv]) { 1407 /* Selected guest interrupt file should not be zero */ 1408 if (virt && (!vgein || env->geilen < vgein)) { 1409 goto done; 1410 } 1411 /* Call machine specific IMSIC register emulation */ 1412 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1413 AIA_MAKE_IREG(isel, priv, virt, vgein, 1414 riscv_cpu_mxl_bits(env)), 1415 val, new_val, wr_mask); 1416 } 1417 } 1418 1419 done: 1420 if (ret) { 1421 return (riscv_cpu_virt_enabled(env) && virt) ? 1422 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1423 } 1424 return RISCV_EXCP_NONE; 1425 } 1426 1427 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1428 target_ulong new_val, target_ulong wr_mask) 1429 { 1430 bool virt; 1431 int ret = -EINVAL; 1432 target_ulong priv, vgein; 1433 1434 /* Translate CSR number for VS-mode */ 1435 csrno = aia_xlate_vs_csrno(env, csrno); 1436 1437 /* Decode register details from CSR number */ 1438 virt = false; 1439 switch (csrno) { 1440 case CSR_MTOPEI: 1441 priv = PRV_M; 1442 break; 1443 case CSR_STOPEI: 1444 priv = PRV_S; 1445 break; 1446 case CSR_VSTOPEI: 1447 priv = PRV_S; 1448 virt = true; 1449 break; 1450 default: 1451 goto done; 1452 }; 1453 1454 /* IMSIC CSRs only available when machine implements IMSIC. */ 1455 if (!env->aia_ireg_rmw_fn[priv]) { 1456 goto done; 1457 } 1458 1459 /* Find the selected guest interrupt file */ 1460 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1461 1462 /* Selected guest interrupt file should be valid */ 1463 if (virt && (!vgein || env->geilen < vgein)) { 1464 goto done; 1465 } 1466 1467 /* Call machine specific IMSIC register emulation for TOPEI */ 1468 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1469 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1470 riscv_cpu_mxl_bits(env)), 1471 val, new_val, wr_mask); 1472 1473 done: 1474 if (ret) { 1475 return (riscv_cpu_virt_enabled(env) && virt) ? 1476 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1477 } 1478 return RISCV_EXCP_NONE; 1479 } 1480 1481 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1482 target_ulong *val) 1483 { 1484 *val = env->mtvec; 1485 return RISCV_EXCP_NONE; 1486 } 1487 1488 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1489 target_ulong val) 1490 { 1491 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1492 if ((val & 3) < 2) { 1493 env->mtvec = val; 1494 } else { 1495 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1496 } 1497 return RISCV_EXCP_NONE; 1498 } 1499 1500 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1501 target_ulong *val) 1502 { 1503 if (env->priv_ver < PRIV_VERSION_1_11_0) { 1504 return RISCV_EXCP_ILLEGAL_INST; 1505 } 1506 1507 *val = env->mcountinhibit; 1508 return RISCV_EXCP_NONE; 1509 } 1510 1511 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1512 target_ulong val) 1513 { 1514 int cidx; 1515 PMUCTRState *counter; 1516 1517 if (env->priv_ver < PRIV_VERSION_1_11_0) { 1518 return RISCV_EXCP_ILLEGAL_INST; 1519 } 1520 1521 env->mcountinhibit = val; 1522 1523 /* Check if any other counter is also monitoring cycles/instructions */ 1524 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1525 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1526 counter = &env->pmu_ctrs[cidx]; 1527 counter->started = true; 1528 } 1529 } 1530 1531 return RISCV_EXCP_NONE; 1532 } 1533 1534 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1535 target_ulong *val) 1536 { 1537 *val = env->mcounteren; 1538 return RISCV_EXCP_NONE; 1539 } 1540 1541 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1542 target_ulong val) 1543 { 1544 env->mcounteren = val; 1545 return RISCV_EXCP_NONE; 1546 } 1547 1548 /* Machine Trap Handling */ 1549 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1550 Int128 *val) 1551 { 1552 *val = int128_make128(env->mscratch, env->mscratchh); 1553 return RISCV_EXCP_NONE; 1554 } 1555 1556 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1557 Int128 val) 1558 { 1559 env->mscratch = int128_getlo(val); 1560 env->mscratchh = int128_gethi(val); 1561 return RISCV_EXCP_NONE; 1562 } 1563 1564 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1565 target_ulong *val) 1566 { 1567 *val = env->mscratch; 1568 return RISCV_EXCP_NONE; 1569 } 1570 1571 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1572 target_ulong val) 1573 { 1574 env->mscratch = val; 1575 return RISCV_EXCP_NONE; 1576 } 1577 1578 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1579 target_ulong *val) 1580 { 1581 *val = env->mepc; 1582 return RISCV_EXCP_NONE; 1583 } 1584 1585 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1586 target_ulong val) 1587 { 1588 env->mepc = val; 1589 return RISCV_EXCP_NONE; 1590 } 1591 1592 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1593 target_ulong *val) 1594 { 1595 *val = env->mcause; 1596 return RISCV_EXCP_NONE; 1597 } 1598 1599 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1600 target_ulong val) 1601 { 1602 env->mcause = val; 1603 return RISCV_EXCP_NONE; 1604 } 1605 1606 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1607 target_ulong *val) 1608 { 1609 *val = env->mtval; 1610 return RISCV_EXCP_NONE; 1611 } 1612 1613 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1614 target_ulong val) 1615 { 1616 env->mtval = val; 1617 return RISCV_EXCP_NONE; 1618 } 1619 1620 /* Execution environment configuration setup */ 1621 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1622 target_ulong *val) 1623 { 1624 *val = env->menvcfg; 1625 return RISCV_EXCP_NONE; 1626 } 1627 1628 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1629 target_ulong val) 1630 { 1631 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1632 1633 if (riscv_cpu_mxl(env) == MXL_RV64) { 1634 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1635 } 1636 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1637 1638 return RISCV_EXCP_NONE; 1639 } 1640 1641 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1642 target_ulong *val) 1643 { 1644 *val = env->menvcfg >> 32; 1645 return RISCV_EXCP_NONE; 1646 } 1647 1648 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1649 target_ulong val) 1650 { 1651 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1652 uint64_t valh = (uint64_t)val << 32; 1653 1654 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1655 1656 return RISCV_EXCP_NONE; 1657 } 1658 1659 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1660 target_ulong *val) 1661 { 1662 *val = env->senvcfg; 1663 return RISCV_EXCP_NONE; 1664 } 1665 1666 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1667 target_ulong val) 1668 { 1669 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1670 1671 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1672 1673 return RISCV_EXCP_NONE; 1674 } 1675 1676 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1677 target_ulong *val) 1678 { 1679 *val = env->henvcfg; 1680 return RISCV_EXCP_NONE; 1681 } 1682 1683 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1684 target_ulong val) 1685 { 1686 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1687 1688 if (riscv_cpu_mxl(env) == MXL_RV64) { 1689 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 1690 } 1691 1692 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1693 1694 return RISCV_EXCP_NONE; 1695 } 1696 1697 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1698 target_ulong *val) 1699 { 1700 *val = env->henvcfg >> 32; 1701 return RISCV_EXCP_NONE; 1702 } 1703 1704 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 1705 target_ulong val) 1706 { 1707 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 1708 uint64_t valh = (uint64_t)val << 32; 1709 1710 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 1711 1712 return RISCV_EXCP_NONE; 1713 } 1714 1715 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 1716 uint64_t *ret_val, 1717 uint64_t new_val, uint64_t wr_mask) 1718 { 1719 RISCVCPU *cpu = env_archcpu(env); 1720 uint64_t old_mip, mask = wr_mask & delegable_ints; 1721 uint32_t gin; 1722 1723 if (mask & MIP_SEIP) { 1724 env->software_seip = new_val & MIP_SEIP; 1725 new_val |= env->external_seip * MIP_SEIP; 1726 } 1727 1728 if (mask) { 1729 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 1730 } else { 1731 old_mip = env->mip; 1732 } 1733 1734 if (csrno != CSR_HVIP) { 1735 gin = get_field(env->hstatus, HSTATUS_VGEIN); 1736 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 1737 } 1738 1739 if (ret_val) { 1740 *ret_val = old_mip; 1741 } 1742 1743 return RISCV_EXCP_NONE; 1744 } 1745 1746 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 1747 target_ulong *ret_val, 1748 target_ulong new_val, target_ulong wr_mask) 1749 { 1750 uint64_t rval; 1751 RISCVException ret; 1752 1753 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 1754 if (ret_val) { 1755 *ret_val = rval; 1756 } 1757 1758 return ret; 1759 } 1760 1761 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 1762 target_ulong *ret_val, 1763 target_ulong new_val, target_ulong wr_mask) 1764 { 1765 uint64_t rval; 1766 RISCVException ret; 1767 1768 ret = rmw_mip64(env, csrno, &rval, 1769 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1770 if (ret_val) { 1771 *ret_val = rval >> 32; 1772 } 1773 1774 return ret; 1775 } 1776 1777 /* Supervisor Trap Setup */ 1778 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 1779 Int128 *val) 1780 { 1781 uint64_t mask = sstatus_v1_10_mask; 1782 uint64_t sstatus = env->mstatus & mask; 1783 if (env->xl != MXL_RV32 || env->debugger) { 1784 mask |= SSTATUS64_UXL; 1785 } 1786 1787 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 1788 return RISCV_EXCP_NONE; 1789 } 1790 1791 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 1792 target_ulong *val) 1793 { 1794 target_ulong mask = (sstatus_v1_10_mask); 1795 if (env->xl != MXL_RV32 || env->debugger) { 1796 mask |= SSTATUS64_UXL; 1797 } 1798 /* TODO: Use SXL not MXL. */ 1799 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 1800 return RISCV_EXCP_NONE; 1801 } 1802 1803 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 1804 target_ulong val) 1805 { 1806 target_ulong mask = (sstatus_v1_10_mask); 1807 1808 if (env->xl != MXL_RV32 || env->debugger) { 1809 if ((val & SSTATUS64_UXL) != 0) { 1810 mask |= SSTATUS64_UXL; 1811 } 1812 } 1813 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 1814 return write_mstatus(env, CSR_MSTATUS, newval); 1815 } 1816 1817 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 1818 uint64_t *ret_val, 1819 uint64_t new_val, uint64_t wr_mask) 1820 { 1821 RISCVException ret; 1822 uint64_t rval, vsbits, mask = env->hideleg & VS_MODE_INTERRUPTS; 1823 1824 /* Bring VS-level bits to correct position */ 1825 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 1826 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 1827 new_val |= vsbits << 1; 1828 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 1829 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 1830 wr_mask |= vsbits << 1; 1831 1832 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 1833 if (ret_val) { 1834 rval &= mask; 1835 vsbits = rval & VS_MODE_INTERRUPTS; 1836 rval &= ~VS_MODE_INTERRUPTS; 1837 *ret_val = rval | (vsbits >> 1); 1838 } 1839 1840 return ret; 1841 } 1842 1843 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 1844 target_ulong *ret_val, 1845 target_ulong new_val, target_ulong wr_mask) 1846 { 1847 uint64_t rval; 1848 RISCVException ret; 1849 1850 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 1851 if (ret_val) { 1852 *ret_val = rval; 1853 } 1854 1855 return ret; 1856 } 1857 1858 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 1859 target_ulong *ret_val, 1860 target_ulong new_val, target_ulong wr_mask) 1861 { 1862 uint64_t rval; 1863 RISCVException ret; 1864 1865 ret = rmw_vsie64(env, csrno, &rval, 1866 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1867 if (ret_val) { 1868 *ret_val = rval >> 32; 1869 } 1870 1871 return ret; 1872 } 1873 1874 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 1875 uint64_t *ret_val, 1876 uint64_t new_val, uint64_t wr_mask) 1877 { 1878 RISCVException ret; 1879 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 1880 1881 if (riscv_cpu_virt_enabled(env)) { 1882 if (env->hvictl & HVICTL_VTI) { 1883 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1884 } 1885 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 1886 } else { 1887 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 1888 } 1889 1890 if (ret_val) { 1891 *ret_val &= mask; 1892 } 1893 1894 return ret; 1895 } 1896 1897 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 1898 target_ulong *ret_val, 1899 target_ulong new_val, target_ulong wr_mask) 1900 { 1901 uint64_t rval; 1902 RISCVException ret; 1903 1904 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 1905 if (ret == RISCV_EXCP_NONE && ret_val) { 1906 *ret_val = rval; 1907 } 1908 1909 return ret; 1910 } 1911 1912 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 1913 target_ulong *ret_val, 1914 target_ulong new_val, target_ulong wr_mask) 1915 { 1916 uint64_t rval; 1917 RISCVException ret; 1918 1919 ret = rmw_sie64(env, csrno, &rval, 1920 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1921 if (ret_val) { 1922 *ret_val = rval >> 32; 1923 } 1924 1925 return ret; 1926 } 1927 1928 static RISCVException read_stvec(CPURISCVState *env, int csrno, 1929 target_ulong *val) 1930 { 1931 *val = env->stvec; 1932 return RISCV_EXCP_NONE; 1933 } 1934 1935 static RISCVException write_stvec(CPURISCVState *env, int csrno, 1936 target_ulong val) 1937 { 1938 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1939 if ((val & 3) < 2) { 1940 env->stvec = val; 1941 } else { 1942 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 1943 } 1944 return RISCV_EXCP_NONE; 1945 } 1946 1947 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 1948 target_ulong *val) 1949 { 1950 *val = env->scounteren; 1951 return RISCV_EXCP_NONE; 1952 } 1953 1954 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 1955 target_ulong val) 1956 { 1957 env->scounteren = val; 1958 return RISCV_EXCP_NONE; 1959 } 1960 1961 /* Supervisor Trap Handling */ 1962 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 1963 Int128 *val) 1964 { 1965 *val = int128_make128(env->sscratch, env->sscratchh); 1966 return RISCV_EXCP_NONE; 1967 } 1968 1969 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 1970 Int128 val) 1971 { 1972 env->sscratch = int128_getlo(val); 1973 env->sscratchh = int128_gethi(val); 1974 return RISCV_EXCP_NONE; 1975 } 1976 1977 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 1978 target_ulong *val) 1979 { 1980 *val = env->sscratch; 1981 return RISCV_EXCP_NONE; 1982 } 1983 1984 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 1985 target_ulong val) 1986 { 1987 env->sscratch = val; 1988 return RISCV_EXCP_NONE; 1989 } 1990 1991 static RISCVException read_sepc(CPURISCVState *env, int csrno, 1992 target_ulong *val) 1993 { 1994 *val = env->sepc; 1995 return RISCV_EXCP_NONE; 1996 } 1997 1998 static RISCVException write_sepc(CPURISCVState *env, int csrno, 1999 target_ulong val) 2000 { 2001 env->sepc = val; 2002 return RISCV_EXCP_NONE; 2003 } 2004 2005 static RISCVException read_scause(CPURISCVState *env, int csrno, 2006 target_ulong *val) 2007 { 2008 *val = env->scause; 2009 return RISCV_EXCP_NONE; 2010 } 2011 2012 static RISCVException write_scause(CPURISCVState *env, int csrno, 2013 target_ulong val) 2014 { 2015 env->scause = val; 2016 return RISCV_EXCP_NONE; 2017 } 2018 2019 static RISCVException read_stval(CPURISCVState *env, int csrno, 2020 target_ulong *val) 2021 { 2022 *val = env->stval; 2023 return RISCV_EXCP_NONE; 2024 } 2025 2026 static RISCVException write_stval(CPURISCVState *env, int csrno, 2027 target_ulong val) 2028 { 2029 env->stval = val; 2030 return RISCV_EXCP_NONE; 2031 } 2032 2033 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2034 uint64_t *ret_val, 2035 uint64_t new_val, uint64_t wr_mask) 2036 { 2037 RISCVException ret; 2038 uint64_t rval, vsbits, mask = env->hideleg & vsip_writable_mask; 2039 2040 /* Bring VS-level bits to correct position */ 2041 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2042 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2043 new_val |= vsbits << 1; 2044 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2045 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2046 wr_mask |= vsbits << 1; 2047 2048 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask & mask); 2049 if (ret_val) { 2050 rval &= mask; 2051 vsbits = rval & VS_MODE_INTERRUPTS; 2052 rval &= ~VS_MODE_INTERRUPTS; 2053 *ret_val = rval | (vsbits >> 1); 2054 } 2055 2056 return ret; 2057 } 2058 2059 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2060 target_ulong *ret_val, 2061 target_ulong new_val, target_ulong wr_mask) 2062 { 2063 uint64_t rval; 2064 RISCVException ret; 2065 2066 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2067 if (ret_val) { 2068 *ret_val = rval; 2069 } 2070 2071 return ret; 2072 } 2073 2074 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2075 target_ulong *ret_val, 2076 target_ulong new_val, target_ulong wr_mask) 2077 { 2078 uint64_t rval; 2079 RISCVException ret; 2080 2081 ret = rmw_vsip64(env, csrno, &rval, 2082 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2083 if (ret_val) { 2084 *ret_val = rval >> 32; 2085 } 2086 2087 return ret; 2088 } 2089 2090 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2091 uint64_t *ret_val, 2092 uint64_t new_val, uint64_t wr_mask) 2093 { 2094 RISCVException ret; 2095 uint64_t mask = env->mideleg & sip_writable_mask; 2096 2097 if (riscv_cpu_virt_enabled(env)) { 2098 if (env->hvictl & HVICTL_VTI) { 2099 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2100 } 2101 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2102 } else { 2103 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2104 } 2105 2106 if (ret_val) { 2107 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2108 } 2109 2110 return ret; 2111 } 2112 2113 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2114 target_ulong *ret_val, 2115 target_ulong new_val, target_ulong wr_mask) 2116 { 2117 uint64_t rval; 2118 RISCVException ret; 2119 2120 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2121 if (ret_val) { 2122 *ret_val = rval; 2123 } 2124 2125 return ret; 2126 } 2127 2128 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2129 target_ulong *ret_val, 2130 target_ulong new_val, target_ulong wr_mask) 2131 { 2132 uint64_t rval; 2133 RISCVException ret; 2134 2135 ret = rmw_sip64(env, csrno, &rval, 2136 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2137 if (ret_val) { 2138 *ret_val = rval >> 32; 2139 } 2140 2141 return ret; 2142 } 2143 2144 /* Supervisor Protection and Translation */ 2145 static RISCVException read_satp(CPURISCVState *env, int csrno, 2146 target_ulong *val) 2147 { 2148 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2149 *val = 0; 2150 return RISCV_EXCP_NONE; 2151 } 2152 2153 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2154 return RISCV_EXCP_ILLEGAL_INST; 2155 } else { 2156 *val = env->satp; 2157 } 2158 2159 return RISCV_EXCP_NONE; 2160 } 2161 2162 static RISCVException write_satp(CPURISCVState *env, int csrno, 2163 target_ulong val) 2164 { 2165 target_ulong vm, mask; 2166 2167 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2168 return RISCV_EXCP_NONE; 2169 } 2170 2171 if (riscv_cpu_mxl(env) == MXL_RV32) { 2172 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2173 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2174 } else { 2175 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2176 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2177 } 2178 2179 if (vm && mask) { 2180 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2181 return RISCV_EXCP_ILLEGAL_INST; 2182 } else { 2183 /* 2184 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2185 * pass these through QEMU's TLB emulation as it improves 2186 * performance. Flushing the TLB on SATP writes with paging 2187 * enabled avoids leaking those invalid cached mappings. 2188 */ 2189 tlb_flush(env_cpu(env)); 2190 env->satp = val; 2191 } 2192 } 2193 return RISCV_EXCP_NONE; 2194 } 2195 2196 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2197 { 2198 int irq, ret; 2199 target_ulong topei; 2200 uint64_t vseip, vsgein; 2201 uint32_t iid, iprio, hviid, hviprio, gein; 2202 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2203 2204 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2205 hviid = get_field(env->hvictl, HVICTL_IID); 2206 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2207 2208 if (gein) { 2209 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2210 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2211 if (gein <= env->geilen && vseip) { 2212 siid[scount] = IRQ_S_EXT; 2213 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2214 if (env->aia_ireg_rmw_fn[PRV_S]) { 2215 /* 2216 * Call machine specific IMSIC register emulation for 2217 * reading TOPEI. 2218 */ 2219 ret = env->aia_ireg_rmw_fn[PRV_S]( 2220 env->aia_ireg_rmw_fn_arg[PRV_S], 2221 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2222 riscv_cpu_mxl_bits(env)), 2223 &topei, 0, 0); 2224 if (!ret && topei) { 2225 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2226 } 2227 } 2228 scount++; 2229 } 2230 } else { 2231 if (hviid == IRQ_S_EXT && hviprio) { 2232 siid[scount] = IRQ_S_EXT; 2233 siprio[scount] = hviprio; 2234 scount++; 2235 } 2236 } 2237 2238 if (env->hvictl & HVICTL_VTI) { 2239 if (hviid != IRQ_S_EXT) { 2240 siid[scount] = hviid; 2241 siprio[scount] = hviprio; 2242 scount++; 2243 } 2244 } else { 2245 irq = riscv_cpu_vsirq_pending(env); 2246 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2247 siid[scount] = irq; 2248 siprio[scount] = env->hviprio[irq]; 2249 scount++; 2250 } 2251 } 2252 2253 iid = 0; 2254 iprio = UINT_MAX; 2255 for (s = 0; s < scount; s++) { 2256 if (siprio[s] < iprio) { 2257 iid = siid[s]; 2258 iprio = siprio[s]; 2259 } 2260 } 2261 2262 if (iid) { 2263 if (env->hvictl & HVICTL_IPRIOM) { 2264 if (iprio > IPRIO_MMAXIPRIO) { 2265 iprio = IPRIO_MMAXIPRIO; 2266 } 2267 if (!iprio) { 2268 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2269 iprio = IPRIO_MMAXIPRIO; 2270 } 2271 } 2272 } else { 2273 iprio = 1; 2274 } 2275 } else { 2276 iprio = 0; 2277 } 2278 2279 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2280 *val |= iprio; 2281 return RISCV_EXCP_NONE; 2282 } 2283 2284 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2285 { 2286 int irq; 2287 uint8_t iprio; 2288 2289 if (riscv_cpu_virt_enabled(env)) { 2290 return read_vstopi(env, CSR_VSTOPI, val); 2291 } 2292 2293 irq = riscv_cpu_sirq_pending(env); 2294 if (irq <= 0 || irq > 63) { 2295 *val = 0; 2296 } else { 2297 iprio = env->siprio[irq]; 2298 if (!iprio) { 2299 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2300 iprio = IPRIO_MMAXIPRIO; 2301 } 2302 } 2303 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2304 *val |= iprio; 2305 } 2306 2307 return RISCV_EXCP_NONE; 2308 } 2309 2310 /* Hypervisor Extensions */ 2311 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2312 target_ulong *val) 2313 { 2314 *val = env->hstatus; 2315 if (riscv_cpu_mxl(env) != MXL_RV32) { 2316 /* We only support 64-bit VSXL */ 2317 *val = set_field(*val, HSTATUS_VSXL, 2); 2318 } 2319 /* We only support little endian */ 2320 *val = set_field(*val, HSTATUS_VSBE, 0); 2321 return RISCV_EXCP_NONE; 2322 } 2323 2324 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2325 target_ulong val) 2326 { 2327 env->hstatus = val; 2328 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2329 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2330 } 2331 if (get_field(val, HSTATUS_VSBE) != 0) { 2332 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2333 } 2334 return RISCV_EXCP_NONE; 2335 } 2336 2337 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2338 target_ulong *val) 2339 { 2340 *val = env->hedeleg; 2341 return RISCV_EXCP_NONE; 2342 } 2343 2344 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2345 target_ulong val) 2346 { 2347 env->hedeleg = val & vs_delegable_excps; 2348 return RISCV_EXCP_NONE; 2349 } 2350 2351 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2352 uint64_t *ret_val, 2353 uint64_t new_val, uint64_t wr_mask) 2354 { 2355 uint64_t mask = wr_mask & vs_delegable_ints; 2356 2357 if (ret_val) { 2358 *ret_val = env->hideleg & vs_delegable_ints; 2359 } 2360 2361 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2362 return RISCV_EXCP_NONE; 2363 } 2364 2365 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2366 target_ulong *ret_val, 2367 target_ulong new_val, target_ulong wr_mask) 2368 { 2369 uint64_t rval; 2370 RISCVException ret; 2371 2372 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2373 if (ret_val) { 2374 *ret_val = rval; 2375 } 2376 2377 return ret; 2378 } 2379 2380 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2381 target_ulong *ret_val, 2382 target_ulong new_val, target_ulong wr_mask) 2383 { 2384 uint64_t rval; 2385 RISCVException ret; 2386 2387 ret = rmw_hideleg64(env, csrno, &rval, 2388 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2389 if (ret_val) { 2390 *ret_val = rval >> 32; 2391 } 2392 2393 return ret; 2394 } 2395 2396 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2397 uint64_t *ret_val, 2398 uint64_t new_val, uint64_t wr_mask) 2399 { 2400 RISCVException ret; 2401 2402 ret = rmw_mip64(env, csrno, ret_val, new_val, 2403 wr_mask & hvip_writable_mask); 2404 if (ret_val) { 2405 *ret_val &= VS_MODE_INTERRUPTS; 2406 } 2407 2408 return ret; 2409 } 2410 2411 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2412 target_ulong *ret_val, 2413 target_ulong new_val, target_ulong wr_mask) 2414 { 2415 uint64_t rval; 2416 RISCVException ret; 2417 2418 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2419 if (ret_val) { 2420 *ret_val = rval; 2421 } 2422 2423 return ret; 2424 } 2425 2426 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2427 target_ulong *ret_val, 2428 target_ulong new_val, target_ulong wr_mask) 2429 { 2430 uint64_t rval; 2431 RISCVException ret; 2432 2433 ret = rmw_hvip64(env, csrno, &rval, 2434 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2435 if (ret_val) { 2436 *ret_val = rval >> 32; 2437 } 2438 2439 return ret; 2440 } 2441 2442 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2443 target_ulong *ret_value, 2444 target_ulong new_value, target_ulong write_mask) 2445 { 2446 int ret = rmw_mip(env, csrno, ret_value, new_value, 2447 write_mask & hip_writable_mask); 2448 2449 if (ret_value) { 2450 *ret_value &= HS_MODE_INTERRUPTS; 2451 } 2452 return ret; 2453 } 2454 2455 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2456 target_ulong *ret_val, 2457 target_ulong new_val, target_ulong wr_mask) 2458 { 2459 uint64_t rval; 2460 RISCVException ret; 2461 2462 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2463 if (ret_val) { 2464 *ret_val = rval & HS_MODE_INTERRUPTS; 2465 } 2466 2467 return ret; 2468 } 2469 2470 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2471 target_ulong *val) 2472 { 2473 *val = env->hcounteren; 2474 return RISCV_EXCP_NONE; 2475 } 2476 2477 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2478 target_ulong val) 2479 { 2480 env->hcounteren = val; 2481 return RISCV_EXCP_NONE; 2482 } 2483 2484 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2485 target_ulong *val) 2486 { 2487 if (val) { 2488 *val = env->hgeie; 2489 } 2490 return RISCV_EXCP_NONE; 2491 } 2492 2493 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2494 target_ulong val) 2495 { 2496 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2497 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2498 env->hgeie = val; 2499 /* Update mip.SGEIP bit */ 2500 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2501 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2502 return RISCV_EXCP_NONE; 2503 } 2504 2505 static RISCVException read_htval(CPURISCVState *env, int csrno, 2506 target_ulong *val) 2507 { 2508 *val = env->htval; 2509 return RISCV_EXCP_NONE; 2510 } 2511 2512 static RISCVException write_htval(CPURISCVState *env, int csrno, 2513 target_ulong val) 2514 { 2515 env->htval = val; 2516 return RISCV_EXCP_NONE; 2517 } 2518 2519 static RISCVException read_htinst(CPURISCVState *env, int csrno, 2520 target_ulong *val) 2521 { 2522 *val = env->htinst; 2523 return RISCV_EXCP_NONE; 2524 } 2525 2526 static RISCVException write_htinst(CPURISCVState *env, int csrno, 2527 target_ulong val) 2528 { 2529 return RISCV_EXCP_NONE; 2530 } 2531 2532 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 2533 target_ulong *val) 2534 { 2535 if (val) { 2536 *val = env->hgeip; 2537 } 2538 return RISCV_EXCP_NONE; 2539 } 2540 2541 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 2542 target_ulong *val) 2543 { 2544 *val = env->hgatp; 2545 return RISCV_EXCP_NONE; 2546 } 2547 2548 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 2549 target_ulong val) 2550 { 2551 env->hgatp = val; 2552 return RISCV_EXCP_NONE; 2553 } 2554 2555 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 2556 target_ulong *val) 2557 { 2558 if (!env->rdtime_fn) { 2559 return RISCV_EXCP_ILLEGAL_INST; 2560 } 2561 2562 *val = env->htimedelta; 2563 return RISCV_EXCP_NONE; 2564 } 2565 2566 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 2567 target_ulong val) 2568 { 2569 if (!env->rdtime_fn) { 2570 return RISCV_EXCP_ILLEGAL_INST; 2571 } 2572 2573 if (riscv_cpu_mxl(env) == MXL_RV32) { 2574 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 2575 } else { 2576 env->htimedelta = val; 2577 } 2578 return RISCV_EXCP_NONE; 2579 } 2580 2581 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 2582 target_ulong *val) 2583 { 2584 if (!env->rdtime_fn) { 2585 return RISCV_EXCP_ILLEGAL_INST; 2586 } 2587 2588 *val = env->htimedelta >> 32; 2589 return RISCV_EXCP_NONE; 2590 } 2591 2592 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 2593 target_ulong val) 2594 { 2595 if (!env->rdtime_fn) { 2596 return RISCV_EXCP_ILLEGAL_INST; 2597 } 2598 2599 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 2600 return RISCV_EXCP_NONE; 2601 } 2602 2603 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 2604 { 2605 *val = env->hvictl; 2606 return RISCV_EXCP_NONE; 2607 } 2608 2609 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 2610 { 2611 env->hvictl = val & HVICTL_VALID_MASK; 2612 return RISCV_EXCP_NONE; 2613 } 2614 2615 static int read_hvipriox(CPURISCVState *env, int first_index, 2616 uint8_t *iprio, target_ulong *val) 2617 { 2618 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2619 2620 /* First index has to be a multiple of number of irqs per register */ 2621 if (first_index % num_irqs) { 2622 return (riscv_cpu_virt_enabled(env)) ? 2623 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2624 } 2625 2626 /* Fill-up return value */ 2627 *val = 0; 2628 for (i = 0; i < num_irqs; i++) { 2629 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2630 continue; 2631 } 2632 if (rdzero) { 2633 continue; 2634 } 2635 *val |= ((target_ulong)iprio[irq]) << (i * 8); 2636 } 2637 2638 return RISCV_EXCP_NONE; 2639 } 2640 2641 static int write_hvipriox(CPURISCVState *env, int first_index, 2642 uint8_t *iprio, target_ulong val) 2643 { 2644 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2645 2646 /* First index has to be a multiple of number of irqs per register */ 2647 if (first_index % num_irqs) { 2648 return (riscv_cpu_virt_enabled(env)) ? 2649 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2650 } 2651 2652 /* Fill-up priority arrary */ 2653 for (i = 0; i < num_irqs; i++) { 2654 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2655 continue; 2656 } 2657 if (rdzero) { 2658 iprio[irq] = 0; 2659 } else { 2660 iprio[irq] = (val >> (i * 8)) & 0xff; 2661 } 2662 } 2663 2664 return RISCV_EXCP_NONE; 2665 } 2666 2667 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 2668 { 2669 return read_hvipriox(env, 0, env->hviprio, val); 2670 } 2671 2672 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 2673 { 2674 return write_hvipriox(env, 0, env->hviprio, val); 2675 } 2676 2677 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 2678 { 2679 return read_hvipriox(env, 4, env->hviprio, val); 2680 } 2681 2682 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 2683 { 2684 return write_hvipriox(env, 4, env->hviprio, val); 2685 } 2686 2687 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 2688 { 2689 return read_hvipriox(env, 8, env->hviprio, val); 2690 } 2691 2692 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 2693 { 2694 return write_hvipriox(env, 8, env->hviprio, val); 2695 } 2696 2697 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 2698 { 2699 return read_hvipriox(env, 12, env->hviprio, val); 2700 } 2701 2702 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 2703 { 2704 return write_hvipriox(env, 12, env->hviprio, val); 2705 } 2706 2707 /* Virtual CSR Registers */ 2708 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 2709 target_ulong *val) 2710 { 2711 *val = env->vsstatus; 2712 return RISCV_EXCP_NONE; 2713 } 2714 2715 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 2716 target_ulong val) 2717 { 2718 uint64_t mask = (target_ulong)-1; 2719 if ((val & VSSTATUS64_UXL) == 0) { 2720 mask &= ~VSSTATUS64_UXL; 2721 } 2722 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 2723 return RISCV_EXCP_NONE; 2724 } 2725 2726 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 2727 { 2728 *val = env->vstvec; 2729 return RISCV_EXCP_NONE; 2730 } 2731 2732 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 2733 target_ulong val) 2734 { 2735 env->vstvec = val; 2736 return RISCV_EXCP_NONE; 2737 } 2738 2739 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 2740 target_ulong *val) 2741 { 2742 *val = env->vsscratch; 2743 return RISCV_EXCP_NONE; 2744 } 2745 2746 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 2747 target_ulong val) 2748 { 2749 env->vsscratch = val; 2750 return RISCV_EXCP_NONE; 2751 } 2752 2753 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 2754 target_ulong *val) 2755 { 2756 *val = env->vsepc; 2757 return RISCV_EXCP_NONE; 2758 } 2759 2760 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 2761 target_ulong val) 2762 { 2763 env->vsepc = val; 2764 return RISCV_EXCP_NONE; 2765 } 2766 2767 static RISCVException read_vscause(CPURISCVState *env, int csrno, 2768 target_ulong *val) 2769 { 2770 *val = env->vscause; 2771 return RISCV_EXCP_NONE; 2772 } 2773 2774 static RISCVException write_vscause(CPURISCVState *env, int csrno, 2775 target_ulong val) 2776 { 2777 env->vscause = val; 2778 return RISCV_EXCP_NONE; 2779 } 2780 2781 static RISCVException read_vstval(CPURISCVState *env, int csrno, 2782 target_ulong *val) 2783 { 2784 *val = env->vstval; 2785 return RISCV_EXCP_NONE; 2786 } 2787 2788 static RISCVException write_vstval(CPURISCVState *env, int csrno, 2789 target_ulong val) 2790 { 2791 env->vstval = val; 2792 return RISCV_EXCP_NONE; 2793 } 2794 2795 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 2796 target_ulong *val) 2797 { 2798 *val = env->vsatp; 2799 return RISCV_EXCP_NONE; 2800 } 2801 2802 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 2803 target_ulong val) 2804 { 2805 env->vsatp = val; 2806 return RISCV_EXCP_NONE; 2807 } 2808 2809 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 2810 target_ulong *val) 2811 { 2812 *val = env->mtval2; 2813 return RISCV_EXCP_NONE; 2814 } 2815 2816 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 2817 target_ulong val) 2818 { 2819 env->mtval2 = val; 2820 return RISCV_EXCP_NONE; 2821 } 2822 2823 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 2824 target_ulong *val) 2825 { 2826 *val = env->mtinst; 2827 return RISCV_EXCP_NONE; 2828 } 2829 2830 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 2831 target_ulong val) 2832 { 2833 env->mtinst = val; 2834 return RISCV_EXCP_NONE; 2835 } 2836 2837 /* Physical Memory Protection */ 2838 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 2839 target_ulong *val) 2840 { 2841 *val = mseccfg_csr_read(env); 2842 return RISCV_EXCP_NONE; 2843 } 2844 2845 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 2846 target_ulong val) 2847 { 2848 mseccfg_csr_write(env, val); 2849 return RISCV_EXCP_NONE; 2850 } 2851 2852 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 2853 { 2854 /* TODO: RV128 restriction check */ 2855 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 2856 return false; 2857 } 2858 return true; 2859 } 2860 2861 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 2862 target_ulong *val) 2863 { 2864 uint32_t reg_index = csrno - CSR_PMPCFG0; 2865 2866 if (!check_pmp_reg_index(env, reg_index)) { 2867 return RISCV_EXCP_ILLEGAL_INST; 2868 } 2869 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 2870 return RISCV_EXCP_NONE; 2871 } 2872 2873 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 2874 target_ulong val) 2875 { 2876 uint32_t reg_index = csrno - CSR_PMPCFG0; 2877 2878 if (!check_pmp_reg_index(env, reg_index)) { 2879 return RISCV_EXCP_ILLEGAL_INST; 2880 } 2881 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 2882 return RISCV_EXCP_NONE; 2883 } 2884 2885 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 2886 target_ulong *val) 2887 { 2888 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 2889 return RISCV_EXCP_NONE; 2890 } 2891 2892 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 2893 target_ulong val) 2894 { 2895 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 2896 return RISCV_EXCP_NONE; 2897 } 2898 2899 static RISCVException read_tselect(CPURISCVState *env, int csrno, 2900 target_ulong *val) 2901 { 2902 *val = tselect_csr_read(env); 2903 return RISCV_EXCP_NONE; 2904 } 2905 2906 static RISCVException write_tselect(CPURISCVState *env, int csrno, 2907 target_ulong val) 2908 { 2909 tselect_csr_write(env, val); 2910 return RISCV_EXCP_NONE; 2911 } 2912 2913 static RISCVException read_tdata(CPURISCVState *env, int csrno, 2914 target_ulong *val) 2915 { 2916 /* return 0 in tdata1 to end the trigger enumeration */ 2917 if (env->trigger_cur >= TRIGGER_NUM && csrno == CSR_TDATA1) { 2918 *val = 0; 2919 return RISCV_EXCP_NONE; 2920 } 2921 2922 if (!tdata_available(env, csrno - CSR_TDATA1)) { 2923 return RISCV_EXCP_ILLEGAL_INST; 2924 } 2925 2926 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 2927 return RISCV_EXCP_NONE; 2928 } 2929 2930 static RISCVException write_tdata(CPURISCVState *env, int csrno, 2931 target_ulong val) 2932 { 2933 if (!tdata_available(env, csrno - CSR_TDATA1)) { 2934 return RISCV_EXCP_ILLEGAL_INST; 2935 } 2936 2937 tdata_csr_write(env, csrno - CSR_TDATA1, val); 2938 return RISCV_EXCP_NONE; 2939 } 2940 2941 /* 2942 * Functions to access Pointer Masking feature registers 2943 * We have to check if current priv lvl could modify 2944 * csr in given mode 2945 */ 2946 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 2947 { 2948 int csr_priv = get_field(csrno, 0x300); 2949 int pm_current; 2950 2951 if (env->debugger) { 2952 return false; 2953 } 2954 /* 2955 * If priv lvls differ that means we're accessing csr from higher priv lvl, 2956 * so allow the access 2957 */ 2958 if (env->priv != csr_priv) { 2959 return false; 2960 } 2961 switch (env->priv) { 2962 case PRV_M: 2963 pm_current = get_field(env->mmte, M_PM_CURRENT); 2964 break; 2965 case PRV_S: 2966 pm_current = get_field(env->mmte, S_PM_CURRENT); 2967 break; 2968 case PRV_U: 2969 pm_current = get_field(env->mmte, U_PM_CURRENT); 2970 break; 2971 default: 2972 g_assert_not_reached(); 2973 } 2974 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 2975 return !pm_current; 2976 } 2977 2978 static RISCVException read_mmte(CPURISCVState *env, int csrno, 2979 target_ulong *val) 2980 { 2981 *val = env->mmte & MMTE_MASK; 2982 return RISCV_EXCP_NONE; 2983 } 2984 2985 static RISCVException write_mmte(CPURISCVState *env, int csrno, 2986 target_ulong val) 2987 { 2988 uint64_t mstatus; 2989 target_ulong wpri_val = val & MMTE_MASK; 2990 2991 if (val != wpri_val) { 2992 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 2993 "MMTE: WPRI violation written 0x", val, 2994 "vs expected 0x", wpri_val); 2995 } 2996 /* for machine mode pm.current is hardwired to 1 */ 2997 wpri_val |= MMTE_M_PM_CURRENT; 2998 2999 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3000 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3001 env->mmte = wpri_val | PM_EXT_DIRTY; 3002 riscv_cpu_update_mask(env); 3003 3004 /* Set XS and SD bits, since PM CSRs are dirty */ 3005 mstatus = env->mstatus | MSTATUS_XS; 3006 write_mstatus(env, csrno, mstatus); 3007 return RISCV_EXCP_NONE; 3008 } 3009 3010 static RISCVException read_smte(CPURISCVState *env, int csrno, 3011 target_ulong *val) 3012 { 3013 *val = env->mmte & SMTE_MASK; 3014 return RISCV_EXCP_NONE; 3015 } 3016 3017 static RISCVException write_smte(CPURISCVState *env, int csrno, 3018 target_ulong val) 3019 { 3020 target_ulong wpri_val = val & SMTE_MASK; 3021 3022 if (val != wpri_val) { 3023 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3024 "SMTE: WPRI violation written 0x", val, 3025 "vs expected 0x", wpri_val); 3026 } 3027 3028 /* if pm.current==0 we can't modify current PM CSRs */ 3029 if (check_pm_current_disabled(env, csrno)) { 3030 return RISCV_EXCP_NONE; 3031 } 3032 3033 wpri_val |= (env->mmte & ~SMTE_MASK); 3034 write_mmte(env, csrno, wpri_val); 3035 return RISCV_EXCP_NONE; 3036 } 3037 3038 static RISCVException read_umte(CPURISCVState *env, int csrno, 3039 target_ulong *val) 3040 { 3041 *val = env->mmte & UMTE_MASK; 3042 return RISCV_EXCP_NONE; 3043 } 3044 3045 static RISCVException write_umte(CPURISCVState *env, int csrno, 3046 target_ulong val) 3047 { 3048 target_ulong wpri_val = val & UMTE_MASK; 3049 3050 if (val != wpri_val) { 3051 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3052 "UMTE: WPRI violation written 0x", val, 3053 "vs expected 0x", wpri_val); 3054 } 3055 3056 if (check_pm_current_disabled(env, csrno)) { 3057 return RISCV_EXCP_NONE; 3058 } 3059 3060 wpri_val |= (env->mmte & ~UMTE_MASK); 3061 write_mmte(env, csrno, wpri_val); 3062 return RISCV_EXCP_NONE; 3063 } 3064 3065 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3066 target_ulong *val) 3067 { 3068 *val = env->mpmmask; 3069 return RISCV_EXCP_NONE; 3070 } 3071 3072 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3073 target_ulong val) 3074 { 3075 uint64_t mstatus; 3076 3077 env->mpmmask = val; 3078 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3079 env->cur_pmmask = val; 3080 } 3081 env->mmte |= PM_EXT_DIRTY; 3082 3083 /* Set XS and SD bits, since PM CSRs are dirty */ 3084 mstatus = env->mstatus | MSTATUS_XS; 3085 write_mstatus(env, csrno, mstatus); 3086 return RISCV_EXCP_NONE; 3087 } 3088 3089 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3090 target_ulong *val) 3091 { 3092 *val = env->spmmask; 3093 return RISCV_EXCP_NONE; 3094 } 3095 3096 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3097 target_ulong val) 3098 { 3099 uint64_t mstatus; 3100 3101 /* if pm.current==0 we can't modify current PM CSRs */ 3102 if (check_pm_current_disabled(env, csrno)) { 3103 return RISCV_EXCP_NONE; 3104 } 3105 env->spmmask = val; 3106 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3107 env->cur_pmmask = val; 3108 } 3109 env->mmte |= PM_EXT_DIRTY; 3110 3111 /* Set XS and SD bits, since PM CSRs are dirty */ 3112 mstatus = env->mstatus | MSTATUS_XS; 3113 write_mstatus(env, csrno, mstatus); 3114 return RISCV_EXCP_NONE; 3115 } 3116 3117 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3118 target_ulong *val) 3119 { 3120 *val = env->upmmask; 3121 return RISCV_EXCP_NONE; 3122 } 3123 3124 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3125 target_ulong val) 3126 { 3127 uint64_t mstatus; 3128 3129 /* if pm.current==0 we can't modify current PM CSRs */ 3130 if (check_pm_current_disabled(env, csrno)) { 3131 return RISCV_EXCP_NONE; 3132 } 3133 env->upmmask = val; 3134 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3135 env->cur_pmmask = val; 3136 } 3137 env->mmte |= PM_EXT_DIRTY; 3138 3139 /* Set XS and SD bits, since PM CSRs are dirty */ 3140 mstatus = env->mstatus | MSTATUS_XS; 3141 write_mstatus(env, csrno, mstatus); 3142 return RISCV_EXCP_NONE; 3143 } 3144 3145 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3146 target_ulong *val) 3147 { 3148 *val = env->mpmbase; 3149 return RISCV_EXCP_NONE; 3150 } 3151 3152 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3153 target_ulong val) 3154 { 3155 uint64_t mstatus; 3156 3157 env->mpmbase = val; 3158 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3159 env->cur_pmbase = val; 3160 } 3161 env->mmte |= PM_EXT_DIRTY; 3162 3163 /* Set XS and SD bits, since PM CSRs are dirty */ 3164 mstatus = env->mstatus | MSTATUS_XS; 3165 write_mstatus(env, csrno, mstatus); 3166 return RISCV_EXCP_NONE; 3167 } 3168 3169 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3170 target_ulong *val) 3171 { 3172 *val = env->spmbase; 3173 return RISCV_EXCP_NONE; 3174 } 3175 3176 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3177 target_ulong val) 3178 { 3179 uint64_t mstatus; 3180 3181 /* if pm.current==0 we can't modify current PM CSRs */ 3182 if (check_pm_current_disabled(env, csrno)) { 3183 return RISCV_EXCP_NONE; 3184 } 3185 env->spmbase = val; 3186 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3187 env->cur_pmbase = val; 3188 } 3189 env->mmte |= PM_EXT_DIRTY; 3190 3191 /* Set XS and SD bits, since PM CSRs are dirty */ 3192 mstatus = env->mstatus | MSTATUS_XS; 3193 write_mstatus(env, csrno, mstatus); 3194 return RISCV_EXCP_NONE; 3195 } 3196 3197 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3198 target_ulong *val) 3199 { 3200 *val = env->upmbase; 3201 return RISCV_EXCP_NONE; 3202 } 3203 3204 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3205 target_ulong val) 3206 { 3207 uint64_t mstatus; 3208 3209 /* if pm.current==0 we can't modify current PM CSRs */ 3210 if (check_pm_current_disabled(env, csrno)) { 3211 return RISCV_EXCP_NONE; 3212 } 3213 env->upmbase = val; 3214 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3215 env->cur_pmbase = val; 3216 } 3217 env->mmte |= PM_EXT_DIRTY; 3218 3219 /* Set XS and SD bits, since PM CSRs are dirty */ 3220 mstatus = env->mstatus | MSTATUS_XS; 3221 write_mstatus(env, csrno, mstatus); 3222 return RISCV_EXCP_NONE; 3223 } 3224 3225 #endif 3226 3227 /* Crypto Extension */ 3228 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3229 target_ulong *ret_value, 3230 target_ulong new_value, 3231 target_ulong write_mask) 3232 { 3233 uint16_t random_v; 3234 Error *random_e = NULL; 3235 int random_r; 3236 target_ulong rval; 3237 3238 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3239 if (unlikely(random_r < 0)) { 3240 /* 3241 * Failed, for unknown reasons in the crypto subsystem. 3242 * The best we can do is log the reason and return a 3243 * failure indication to the guest. There is no reason 3244 * we know to expect the failure to be transitory, so 3245 * indicate DEAD to avoid having the guest spin on WAIT. 3246 */ 3247 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3248 __func__, error_get_pretty(random_e)); 3249 error_free(random_e); 3250 rval = SEED_OPST_DEAD; 3251 } else { 3252 rval = random_v | SEED_OPST_ES16; 3253 } 3254 3255 if (ret_value) { 3256 *ret_value = rval; 3257 } 3258 3259 return RISCV_EXCP_NONE; 3260 } 3261 3262 /* 3263 * riscv_csrrw - read and/or update control and status register 3264 * 3265 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3266 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3267 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3268 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3269 */ 3270 3271 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3272 int csrno, 3273 bool write_mask, 3274 RISCVCPU *cpu) 3275 { 3276 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3277 int read_only = get_field(csrno, 0xC00) == 3; 3278 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3279 #if !defined(CONFIG_USER_ONLY) 3280 int csr_priv, effective_priv = env->priv; 3281 3282 if (riscv_has_ext(env, RVH) && env->priv == PRV_S) { 3283 /* 3284 * We are in either HS or VS mode. 3285 * Add 1 to the effective privledge level to allow us to access the 3286 * Hypervisor CSRs. The `hmode` predicate will determine if access 3287 * should be allowed(HS) or if a virtual instruction exception should be 3288 * raised(VS). 3289 */ 3290 effective_priv++; 3291 } 3292 3293 csr_priv = get_field(csrno, 0x300); 3294 if (!env->debugger && (effective_priv < csr_priv)) { 3295 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3296 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3297 } 3298 return RISCV_EXCP_ILLEGAL_INST; 3299 } 3300 #endif 3301 if (write_mask && read_only) { 3302 return RISCV_EXCP_ILLEGAL_INST; 3303 } 3304 3305 /* ensure the CSR extension is enabled. */ 3306 if (!cpu->cfg.ext_icsr) { 3307 return RISCV_EXCP_ILLEGAL_INST; 3308 } 3309 3310 /* check predicate */ 3311 if (!csr_ops[csrno].predicate) { 3312 return RISCV_EXCP_ILLEGAL_INST; 3313 } 3314 3315 if (env->priv_ver < csr_min_priv) { 3316 return RISCV_EXCP_ILLEGAL_INST; 3317 } 3318 3319 return csr_ops[csrno].predicate(env, csrno); 3320 } 3321 3322 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3323 target_ulong *ret_value, 3324 target_ulong new_value, 3325 target_ulong write_mask) 3326 { 3327 RISCVException ret; 3328 target_ulong old_value; 3329 3330 /* execute combined read/write operation if it exists */ 3331 if (csr_ops[csrno].op) { 3332 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3333 } 3334 3335 /* if no accessor exists then return failure */ 3336 if (!csr_ops[csrno].read) { 3337 return RISCV_EXCP_ILLEGAL_INST; 3338 } 3339 /* read old value */ 3340 ret = csr_ops[csrno].read(env, csrno, &old_value); 3341 if (ret != RISCV_EXCP_NONE) { 3342 return ret; 3343 } 3344 3345 /* write value if writable and write mask set, otherwise drop writes */ 3346 if (write_mask) { 3347 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3348 if (csr_ops[csrno].write) { 3349 ret = csr_ops[csrno].write(env, csrno, new_value); 3350 if (ret != RISCV_EXCP_NONE) { 3351 return ret; 3352 } 3353 } 3354 } 3355 3356 /* return old value */ 3357 if (ret_value) { 3358 *ret_value = old_value; 3359 } 3360 3361 return RISCV_EXCP_NONE; 3362 } 3363 3364 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3365 target_ulong *ret_value, 3366 target_ulong new_value, target_ulong write_mask) 3367 { 3368 RISCVCPU *cpu = env_archcpu(env); 3369 3370 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3371 if (ret != RISCV_EXCP_NONE) { 3372 return ret; 3373 } 3374 3375 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3376 } 3377 3378 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3379 Int128 *ret_value, 3380 Int128 new_value, 3381 Int128 write_mask) 3382 { 3383 RISCVException ret; 3384 Int128 old_value; 3385 3386 /* read old value */ 3387 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3388 if (ret != RISCV_EXCP_NONE) { 3389 return ret; 3390 } 3391 3392 /* write value if writable and write mask set, otherwise drop writes */ 3393 if (int128_nz(write_mask)) { 3394 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3395 int128_and(new_value, write_mask)); 3396 if (csr_ops[csrno].write128) { 3397 ret = csr_ops[csrno].write128(env, csrno, new_value); 3398 if (ret != RISCV_EXCP_NONE) { 3399 return ret; 3400 } 3401 } else if (csr_ops[csrno].write) { 3402 /* avoids having to write wrappers for all registers */ 3403 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3404 if (ret != RISCV_EXCP_NONE) { 3405 return ret; 3406 } 3407 } 3408 } 3409 3410 /* return old value */ 3411 if (ret_value) { 3412 *ret_value = old_value; 3413 } 3414 3415 return RISCV_EXCP_NONE; 3416 } 3417 3418 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3419 Int128 *ret_value, 3420 Int128 new_value, Int128 write_mask) 3421 { 3422 RISCVException ret; 3423 RISCVCPU *cpu = env_archcpu(env); 3424 3425 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3426 if (ret != RISCV_EXCP_NONE) { 3427 return ret; 3428 } 3429 3430 if (csr_ops[csrno].read128) { 3431 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3432 } 3433 3434 /* 3435 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3436 * at all defined. 3437 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3438 * significant), for those, this fallback is correctly handling the accesses 3439 */ 3440 target_ulong old_value; 3441 ret = riscv_csrrw_do64(env, csrno, &old_value, 3442 int128_getlo(new_value), 3443 int128_getlo(write_mask)); 3444 if (ret == RISCV_EXCP_NONE && ret_value) { 3445 *ret_value = int128_make64(old_value); 3446 } 3447 return ret; 3448 } 3449 3450 /* 3451 * Debugger support. If not in user mode, set env->debugger before the 3452 * riscv_csrrw call and clear it after the call. 3453 */ 3454 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3455 target_ulong *ret_value, 3456 target_ulong new_value, 3457 target_ulong write_mask) 3458 { 3459 RISCVException ret; 3460 #if !defined(CONFIG_USER_ONLY) 3461 env->debugger = true; 3462 #endif 3463 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3464 #if !defined(CONFIG_USER_ONLY) 3465 env->debugger = false; 3466 #endif 3467 return ret; 3468 } 3469 3470 /* Control and Status Register function table */ 3471 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3472 /* User Floating-Point CSRs */ 3473 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3474 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3475 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3476 /* Vector CSRs */ 3477 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart, 3478 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3479 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat, 3480 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3481 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm, 3482 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3483 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr, 3484 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3485 [CSR_VL] = { "vl", vs, read_vl, 3486 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3487 [CSR_VTYPE] = { "vtype", vs, read_vtype, 3488 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3489 [CSR_VLENB] = { "vlenb", vs, read_vlenb, 3490 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3491 /* User Timers and Counters */ 3492 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 3493 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 3494 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 3495 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 3496 3497 /* 3498 * In privileged mode, the monitor will have to emulate TIME CSRs only if 3499 * rdtime callback is not provided by machine/platform emulation. 3500 */ 3501 [CSR_TIME] = { "time", ctr, read_time }, 3502 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 3503 3504 /* Crypto Extension */ 3505 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 3506 3507 #if !defined(CONFIG_USER_ONLY) 3508 /* Machine Timers and Counters */ 3509 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 3510 write_mhpmcounter }, 3511 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 3512 write_mhpmcounter }, 3513 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 3514 write_mhpmcounterh }, 3515 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 3516 write_mhpmcounterh }, 3517 3518 /* Machine Information Registers */ 3519 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 3520 [CSR_MARCHID] = { "marchid", any, read_marchid }, 3521 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 3522 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 3523 3524 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 3525 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3526 /* Machine Trap Setup */ 3527 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 3528 NULL, read_mstatus_i128 }, 3529 [CSR_MISA] = { "misa", any, read_misa, write_misa, 3530 NULL, read_misa_i128 }, 3531 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 3532 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 3533 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 3534 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 3535 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 3536 write_mcounteren }, 3537 3538 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 3539 write_mstatush }, 3540 3541 /* Machine Trap Handling */ 3542 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 3543 NULL, read_mscratch_i128, write_mscratch_i128 }, 3544 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 3545 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 3546 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 3547 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 3548 3549 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 3550 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 3551 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 3552 3553 /* Machine-Level Interrupts (AIA) */ 3554 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 3555 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 3556 3557 /* Virtual Interrupts for Supervisor Level (AIA) */ 3558 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 3559 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 3560 3561 /* Machine-Level High-Half CSRs (AIA) */ 3562 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 3563 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 3564 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 3565 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 3566 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 3567 3568 /* Execution environment configuration */ 3569 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 3570 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3571 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 3572 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3573 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 3574 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3575 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 3576 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3577 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 3578 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3579 3580 /* Supervisor Trap Setup */ 3581 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 3582 NULL, read_sstatus_i128 }, 3583 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 3584 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 3585 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 3586 write_scounteren }, 3587 3588 /* Supervisor Trap Handling */ 3589 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 3590 NULL, read_sscratch_i128, write_sscratch_i128 }, 3591 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 3592 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 3593 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 3594 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 3595 3596 /* Supervisor Protection and Translation */ 3597 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 3598 3599 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 3600 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 3601 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 3602 3603 /* Supervisor-Level Interrupts (AIA) */ 3604 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 3605 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 3606 3607 /* Supervisor-Level High-Half CSRs (AIA) */ 3608 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 3609 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 3610 3611 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 3612 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3613 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 3614 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3615 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 3616 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3617 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 3618 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3619 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 3620 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3621 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 3622 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3623 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 3624 write_hcounteren, 3625 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3626 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 3627 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3628 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 3629 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3630 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 3631 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3632 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 3633 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3634 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 3635 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3636 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 3637 write_htimedelta, 3638 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3639 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 3640 write_htimedeltah, 3641 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3642 3643 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 3644 write_vsstatus, 3645 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3646 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 3647 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3648 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 3649 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3650 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 3651 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3652 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 3653 write_vsscratch, 3654 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3655 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 3656 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3657 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 3658 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3659 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 3660 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3661 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 3662 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3663 3664 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 3665 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3666 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 3667 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3668 3669 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 3670 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 3671 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 3672 write_hvictl }, 3673 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 3674 write_hviprio1 }, 3675 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 3676 write_hviprio2 }, 3677 3678 /* 3679 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 3680 */ 3681 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 3682 rmw_xiselect }, 3683 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 3684 3685 /* VS-Level Interrupts (H-extension with AIA) */ 3686 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 3687 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 3688 3689 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 3690 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 3691 rmw_hidelegh }, 3692 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 3693 write_ignore }, 3694 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 3695 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 3696 write_hviprio1h }, 3697 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 3698 write_hviprio2h }, 3699 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 3700 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 3701 3702 /* Physical Memory Protection */ 3703 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 3704 .min_priv_ver = PRIV_VERSION_1_11_0 }, 3705 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 3706 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 3707 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 3708 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 3709 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 3710 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 3711 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 3712 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 3713 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 3714 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 3715 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 3716 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 3717 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 3718 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 3719 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 3720 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 3721 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 3722 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 3723 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 3724 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 3725 3726 /* Debug CSRs */ 3727 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 3728 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 3729 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 3730 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 3731 3732 /* User Pointer Masking */ 3733 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 3734 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 3735 write_upmmask }, 3736 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 3737 write_upmbase }, 3738 /* Machine Pointer Masking */ 3739 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 3740 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 3741 write_mpmmask }, 3742 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 3743 write_mpmbase }, 3744 /* Supervisor Pointer Masking */ 3745 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 3746 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 3747 write_spmmask }, 3748 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 3749 write_spmbase }, 3750 3751 /* Performance Counters */ 3752 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 3753 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 3754 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 3755 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 3756 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 3757 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 3758 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 3759 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 3760 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 3761 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 3762 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 3763 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 3764 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 3765 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 3766 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 3767 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 3768 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 3769 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 3770 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 3771 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 3772 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 3773 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 3774 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 3775 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 3776 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 3777 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 3778 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 3779 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 3780 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 3781 3782 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 3783 write_mhpmcounter }, 3784 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 3785 write_mhpmcounter }, 3786 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 3787 write_mhpmcounter }, 3788 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 3789 write_mhpmcounter }, 3790 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 3791 write_mhpmcounter }, 3792 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 3793 write_mhpmcounter }, 3794 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 3795 write_mhpmcounter }, 3796 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 3797 write_mhpmcounter }, 3798 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 3799 write_mhpmcounter }, 3800 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 3801 write_mhpmcounter }, 3802 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 3803 write_mhpmcounter }, 3804 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 3805 write_mhpmcounter }, 3806 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 3807 write_mhpmcounter }, 3808 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 3809 write_mhpmcounter }, 3810 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 3811 write_mhpmcounter }, 3812 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 3813 write_mhpmcounter }, 3814 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 3815 write_mhpmcounter }, 3816 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 3817 write_mhpmcounter }, 3818 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 3819 write_mhpmcounter }, 3820 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 3821 write_mhpmcounter }, 3822 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 3823 write_mhpmcounter }, 3824 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 3825 write_mhpmcounter }, 3826 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 3827 write_mhpmcounter }, 3828 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 3829 write_mhpmcounter }, 3830 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 3831 write_mhpmcounter }, 3832 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 3833 write_mhpmcounter }, 3834 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 3835 write_mhpmcounter }, 3836 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 3837 write_mhpmcounter }, 3838 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 3839 write_mhpmcounter }, 3840 3841 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 3842 write_mcountinhibit, 3843 .min_priv_ver = PRIV_VERSION_1_11_0 }, 3844 3845 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 3846 write_mhpmevent }, 3847 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 3848 write_mhpmevent }, 3849 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 3850 write_mhpmevent }, 3851 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 3852 write_mhpmevent }, 3853 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 3854 write_mhpmevent }, 3855 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 3856 write_mhpmevent }, 3857 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 3858 write_mhpmevent }, 3859 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 3860 write_mhpmevent }, 3861 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 3862 write_mhpmevent }, 3863 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 3864 write_mhpmevent }, 3865 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 3866 write_mhpmevent }, 3867 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 3868 write_mhpmevent }, 3869 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 3870 write_mhpmevent }, 3871 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 3872 write_mhpmevent }, 3873 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 3874 write_mhpmevent }, 3875 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 3876 write_mhpmevent }, 3877 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 3878 write_mhpmevent }, 3879 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 3880 write_mhpmevent }, 3881 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 3882 write_mhpmevent }, 3883 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 3884 write_mhpmevent }, 3885 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 3886 write_mhpmevent }, 3887 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 3888 write_mhpmevent }, 3889 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 3890 write_mhpmevent }, 3891 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 3892 write_mhpmevent }, 3893 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 3894 write_mhpmevent }, 3895 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 3896 write_mhpmevent }, 3897 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 3898 write_mhpmevent }, 3899 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 3900 write_mhpmevent }, 3901 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 3902 write_mhpmevent }, 3903 3904 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 3905 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 3906 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 3907 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 3908 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 3909 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 3910 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 3911 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 3912 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 3913 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 3914 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 3915 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 3916 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 3917 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 3918 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 3919 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 3920 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 3921 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 3922 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 3923 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 3924 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 3925 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 3926 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 3927 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 3928 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 3929 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 3930 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 3931 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 3932 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 3933 3934 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 3935 write_mhpmcounterh }, 3936 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 3937 write_mhpmcounterh }, 3938 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 3939 write_mhpmcounterh }, 3940 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 3941 write_mhpmcounterh }, 3942 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 3943 write_mhpmcounterh }, 3944 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 3945 write_mhpmcounterh }, 3946 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 3947 write_mhpmcounterh }, 3948 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 3949 write_mhpmcounterh }, 3950 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 3951 write_mhpmcounterh }, 3952 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 3953 write_mhpmcounterh }, 3954 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 3955 write_mhpmcounterh }, 3956 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 3957 write_mhpmcounterh }, 3958 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 3959 write_mhpmcounterh }, 3960 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 3961 write_mhpmcounterh }, 3962 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 3963 write_mhpmcounterh }, 3964 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 3965 write_mhpmcounterh }, 3966 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 3967 write_mhpmcounterh }, 3968 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 3969 write_mhpmcounterh }, 3970 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 3971 write_mhpmcounterh }, 3972 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 3973 write_mhpmcounterh }, 3974 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 3975 write_mhpmcounterh }, 3976 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 3977 write_mhpmcounterh }, 3978 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 3979 write_mhpmcounterh }, 3980 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 3981 write_mhpmcounterh }, 3982 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 3983 write_mhpmcounterh }, 3984 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 3985 write_mhpmcounterh }, 3986 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 3987 write_mhpmcounterh }, 3988 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 3989 write_mhpmcounterh }, 3990 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 3991 write_mhpmcounterh }, 3992 #endif /* !CONFIG_USER_ONLY */ 3993 }; 3994