1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "sysemu/cpu-timers.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 32 /* CSR function table public API */ 33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 34 { 35 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 36 } 37 38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 41 } 42 43 /* Predicates */ 44 #if !defined(CONFIG_USER_ONLY) 45 static RISCVException smstateen_acc_ok(CPURISCVState *env, int index, 46 uint64_t bit) 47 { 48 bool virt = riscv_cpu_virt_enabled(env); 49 CPUState *cs = env_cpu(env); 50 RISCVCPU *cpu = RISCV_CPU(cs); 51 52 if (env->priv == PRV_M || !cpu->cfg.ext_smstateen) { 53 return RISCV_EXCP_NONE; 54 } 55 56 if (!(env->mstateen[index] & bit)) { 57 return RISCV_EXCP_ILLEGAL_INST; 58 } 59 60 if (virt) { 61 if (!(env->hstateen[index] & bit)) { 62 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 63 } 64 65 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 66 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 67 } 68 } 69 70 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 71 if (!(env->sstateen[index] & bit)) { 72 return RISCV_EXCP_ILLEGAL_INST; 73 } 74 } 75 76 return RISCV_EXCP_NONE; 77 } 78 #endif 79 80 static RISCVException fs(CPURISCVState *env, int csrno) 81 { 82 #if !defined(CONFIG_USER_ONLY) 83 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 84 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 85 return RISCV_EXCP_ILLEGAL_INST; 86 } 87 #endif 88 return RISCV_EXCP_NONE; 89 } 90 91 static RISCVException vs(CPURISCVState *env, int csrno) 92 { 93 CPUState *cs = env_cpu(env); 94 RISCVCPU *cpu = RISCV_CPU(cs); 95 96 if (env->misa_ext & RVV || 97 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 98 #if !defined(CONFIG_USER_ONLY) 99 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 100 return RISCV_EXCP_ILLEGAL_INST; 101 } 102 #endif 103 return RISCV_EXCP_NONE; 104 } 105 return RISCV_EXCP_ILLEGAL_INST; 106 } 107 108 static RISCVException ctr(CPURISCVState *env, int csrno) 109 { 110 #if !defined(CONFIG_USER_ONLY) 111 CPUState *cs = env_cpu(env); 112 RISCVCPU *cpu = RISCV_CPU(cs); 113 int ctr_index; 114 target_ulong ctr_mask; 115 int base_csrno = CSR_CYCLE; 116 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 117 118 if (rv32 && csrno >= CSR_CYCLEH) { 119 /* Offset for RV32 hpmcounternh counters */ 120 base_csrno += 0x80; 121 } 122 ctr_index = csrno - base_csrno; 123 ctr_mask = BIT(ctr_index); 124 125 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 126 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 127 goto skip_ext_pmu_check; 128 } 129 130 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 131 /* No counter is enabled in PMU or the counter is out of range */ 132 return RISCV_EXCP_ILLEGAL_INST; 133 } 134 135 skip_ext_pmu_check: 136 137 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 138 return RISCV_EXCP_ILLEGAL_INST; 139 } 140 141 if (riscv_cpu_virt_enabled(env)) { 142 if (!get_field(env->hcounteren, ctr_mask) || 143 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 144 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 145 } 146 } 147 148 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 149 !get_field(env->scounteren, ctr_mask)) { 150 return RISCV_EXCP_ILLEGAL_INST; 151 } 152 153 #endif 154 return RISCV_EXCP_NONE; 155 } 156 157 static RISCVException ctr32(CPURISCVState *env, int csrno) 158 { 159 if (riscv_cpu_mxl(env) != MXL_RV32) { 160 return RISCV_EXCP_ILLEGAL_INST; 161 } 162 163 return ctr(env, csrno); 164 } 165 166 #if !defined(CONFIG_USER_ONLY) 167 static RISCVException mctr(CPURISCVState *env, int csrno) 168 { 169 CPUState *cs = env_cpu(env); 170 RISCVCPU *cpu = RISCV_CPU(cs); 171 int ctr_index; 172 int base_csrno = CSR_MHPMCOUNTER3; 173 174 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 175 /* Offset for RV32 mhpmcounternh counters */ 176 base_csrno += 0x80; 177 } 178 ctr_index = csrno - base_csrno; 179 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 180 /* The PMU is not enabled or counter is out of range*/ 181 return RISCV_EXCP_ILLEGAL_INST; 182 } 183 184 return RISCV_EXCP_NONE; 185 } 186 187 static RISCVException mctr32(CPURISCVState *env, int csrno) 188 { 189 if (riscv_cpu_mxl(env) != MXL_RV32) { 190 return RISCV_EXCP_ILLEGAL_INST; 191 } 192 193 return mctr(env, csrno); 194 } 195 196 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 197 { 198 CPUState *cs = env_cpu(env); 199 RISCVCPU *cpu = RISCV_CPU(cs); 200 201 if (!cpu->cfg.ext_sscofpmf) { 202 return RISCV_EXCP_ILLEGAL_INST; 203 } 204 205 return RISCV_EXCP_NONE; 206 } 207 208 static RISCVException any(CPURISCVState *env, int csrno) 209 { 210 return RISCV_EXCP_NONE; 211 } 212 213 static RISCVException any32(CPURISCVState *env, int csrno) 214 { 215 if (riscv_cpu_mxl(env) != MXL_RV32) { 216 return RISCV_EXCP_ILLEGAL_INST; 217 } 218 219 return any(env, csrno); 220 221 } 222 223 static int aia_any(CPURISCVState *env, int csrno) 224 { 225 RISCVCPU *cpu = env_archcpu(env); 226 227 if (!cpu->cfg.ext_smaia) { 228 return RISCV_EXCP_ILLEGAL_INST; 229 } 230 231 return any(env, csrno); 232 } 233 234 static int aia_any32(CPURISCVState *env, int csrno) 235 { 236 RISCVCPU *cpu = env_archcpu(env); 237 238 if (!cpu->cfg.ext_smaia) { 239 return RISCV_EXCP_ILLEGAL_INST; 240 } 241 242 return any32(env, csrno); 243 } 244 245 static RISCVException smode(CPURISCVState *env, int csrno) 246 { 247 if (riscv_has_ext(env, RVS)) { 248 return RISCV_EXCP_NONE; 249 } 250 251 return RISCV_EXCP_ILLEGAL_INST; 252 } 253 254 static int smode32(CPURISCVState *env, int csrno) 255 { 256 if (riscv_cpu_mxl(env) != MXL_RV32) { 257 return RISCV_EXCP_ILLEGAL_INST; 258 } 259 260 return smode(env, csrno); 261 } 262 263 static int aia_smode(CPURISCVState *env, int csrno) 264 { 265 RISCVCPU *cpu = env_archcpu(env); 266 267 if (!cpu->cfg.ext_ssaia) { 268 return RISCV_EXCP_ILLEGAL_INST; 269 } 270 271 return smode(env, csrno); 272 } 273 274 static int aia_smode32(CPURISCVState *env, int csrno) 275 { 276 RISCVCPU *cpu = env_archcpu(env); 277 278 if (!cpu->cfg.ext_ssaia) { 279 return RISCV_EXCP_ILLEGAL_INST; 280 } 281 282 return smode32(env, csrno); 283 } 284 285 static RISCVException hmode(CPURISCVState *env, int csrno) 286 { 287 if (riscv_has_ext(env, RVH)) { 288 return RISCV_EXCP_NONE; 289 } 290 291 return RISCV_EXCP_ILLEGAL_INST; 292 } 293 294 static RISCVException hmode32(CPURISCVState *env, int csrno) 295 { 296 if (riscv_cpu_mxl(env) != MXL_RV32) { 297 return RISCV_EXCP_ILLEGAL_INST; 298 } 299 300 return hmode(env, csrno); 301 302 } 303 304 static RISCVException umode(CPURISCVState *env, int csrno) 305 { 306 if (riscv_has_ext(env, RVU)) { 307 return RISCV_EXCP_NONE; 308 } 309 310 return RISCV_EXCP_ILLEGAL_INST; 311 } 312 313 static RISCVException umode32(CPURISCVState *env, int csrno) 314 { 315 if (riscv_cpu_mxl(env) != MXL_RV32) { 316 return RISCV_EXCP_ILLEGAL_INST; 317 } 318 319 return umode(env, csrno); 320 } 321 322 static RISCVException mstateen(CPURISCVState *env, int csrno) 323 { 324 CPUState *cs = env_cpu(env); 325 RISCVCPU *cpu = RISCV_CPU(cs); 326 327 if (!cpu->cfg.ext_smstateen) { 328 return RISCV_EXCP_ILLEGAL_INST; 329 } 330 331 return any(env, csrno); 332 } 333 334 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 335 { 336 CPUState *cs = env_cpu(env); 337 RISCVCPU *cpu = RISCV_CPU(cs); 338 339 if (!cpu->cfg.ext_smstateen) { 340 return RISCV_EXCP_ILLEGAL_INST; 341 } 342 343 if (env->priv < PRV_M) { 344 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 345 return RISCV_EXCP_ILLEGAL_INST; 346 } 347 } 348 349 return hmode(env, csrno); 350 } 351 352 static RISCVException hstateen(CPURISCVState *env, int csrno) 353 { 354 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 355 } 356 357 static RISCVException hstateenh(CPURISCVState *env, int csrno) 358 { 359 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 360 } 361 362 static RISCVException sstateen(CPURISCVState *env, int csrno) 363 { 364 bool virt = riscv_cpu_virt_enabled(env); 365 int index = csrno - CSR_SSTATEEN0; 366 CPUState *cs = env_cpu(env); 367 RISCVCPU *cpu = RISCV_CPU(cs); 368 369 if (!cpu->cfg.ext_smstateen) { 370 return RISCV_EXCP_ILLEGAL_INST; 371 } 372 373 if (env->priv < PRV_M) { 374 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 375 return RISCV_EXCP_ILLEGAL_INST; 376 } 377 378 if (virt) { 379 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 380 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 381 } 382 } 383 } 384 385 return smode(env, csrno); 386 } 387 388 /* Checks if PointerMasking registers could be accessed */ 389 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 390 { 391 /* Check if j-ext is present */ 392 if (riscv_has_ext(env, RVJ)) { 393 return RISCV_EXCP_NONE; 394 } 395 return RISCV_EXCP_ILLEGAL_INST; 396 } 397 398 static int aia_hmode(CPURISCVState *env, int csrno) 399 { 400 RISCVCPU *cpu = env_archcpu(env); 401 402 if (!cpu->cfg.ext_ssaia) { 403 return RISCV_EXCP_ILLEGAL_INST; 404 } 405 406 return hmode(env, csrno); 407 } 408 409 static int aia_hmode32(CPURISCVState *env, int csrno) 410 { 411 RISCVCPU *cpu = env_archcpu(env); 412 413 if (!cpu->cfg.ext_ssaia) { 414 return RISCV_EXCP_ILLEGAL_INST; 415 } 416 417 return hmode32(env, csrno); 418 } 419 420 static RISCVException pmp(CPURISCVState *env, int csrno) 421 { 422 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 423 return RISCV_EXCP_NONE; 424 } 425 426 return RISCV_EXCP_ILLEGAL_INST; 427 } 428 429 static RISCVException epmp(CPURISCVState *env, int csrno) 430 { 431 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 432 return RISCV_EXCP_NONE; 433 } 434 435 return RISCV_EXCP_ILLEGAL_INST; 436 } 437 438 static RISCVException debug(CPURISCVState *env, int csrno) 439 { 440 if (riscv_feature(env, RISCV_FEATURE_DEBUG)) { 441 return RISCV_EXCP_NONE; 442 } 443 444 return RISCV_EXCP_ILLEGAL_INST; 445 } 446 #endif 447 448 static RISCVException seed(CPURISCVState *env, int csrno) 449 { 450 RISCVCPU *cpu = env_archcpu(env); 451 452 if (!cpu->cfg.ext_zkr) { 453 return RISCV_EXCP_ILLEGAL_INST; 454 } 455 456 #if !defined(CONFIG_USER_ONLY) 457 /* 458 * With a CSR read-write instruction: 459 * 1) The seed CSR is always available in machine mode as normal. 460 * 2) Attempted access to seed from virtual modes VS and VU always raises 461 * an exception(virtual instruction exception only if mseccfg.sseed=1). 462 * 3) Without the corresponding access control bit set to 1, any attempted 463 * access to seed from U, S or HS modes will raise an illegal instruction 464 * exception. 465 */ 466 if (env->priv == PRV_M) { 467 return RISCV_EXCP_NONE; 468 } else if (riscv_cpu_virt_enabled(env)) { 469 if (env->mseccfg & MSECCFG_SSEED) { 470 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 471 } else { 472 return RISCV_EXCP_ILLEGAL_INST; 473 } 474 } else { 475 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 476 return RISCV_EXCP_NONE; 477 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 478 return RISCV_EXCP_NONE; 479 } else { 480 return RISCV_EXCP_ILLEGAL_INST; 481 } 482 } 483 #else 484 return RISCV_EXCP_NONE; 485 #endif 486 } 487 488 /* User Floating-Point CSRs */ 489 static RISCVException read_fflags(CPURISCVState *env, int csrno, 490 target_ulong *val) 491 { 492 *val = riscv_cpu_get_fflags(env); 493 return RISCV_EXCP_NONE; 494 } 495 496 static RISCVException write_fflags(CPURISCVState *env, int csrno, 497 target_ulong val) 498 { 499 #if !defined(CONFIG_USER_ONLY) 500 if (riscv_has_ext(env, RVF)) { 501 env->mstatus |= MSTATUS_FS; 502 } 503 #endif 504 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 505 return RISCV_EXCP_NONE; 506 } 507 508 static RISCVException read_frm(CPURISCVState *env, int csrno, 509 target_ulong *val) 510 { 511 *val = env->frm; 512 return RISCV_EXCP_NONE; 513 } 514 515 static RISCVException write_frm(CPURISCVState *env, int csrno, 516 target_ulong val) 517 { 518 #if !defined(CONFIG_USER_ONLY) 519 if (riscv_has_ext(env, RVF)) { 520 env->mstatus |= MSTATUS_FS; 521 } 522 #endif 523 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 524 return RISCV_EXCP_NONE; 525 } 526 527 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 528 target_ulong *val) 529 { 530 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 531 | (env->frm << FSR_RD_SHIFT); 532 return RISCV_EXCP_NONE; 533 } 534 535 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 536 target_ulong val) 537 { 538 #if !defined(CONFIG_USER_ONLY) 539 if (riscv_has_ext(env, RVF)) { 540 env->mstatus |= MSTATUS_FS; 541 } 542 #endif 543 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 544 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 545 return RISCV_EXCP_NONE; 546 } 547 548 static RISCVException read_vtype(CPURISCVState *env, int csrno, 549 target_ulong *val) 550 { 551 uint64_t vill; 552 switch (env->xl) { 553 case MXL_RV32: 554 vill = (uint32_t)env->vill << 31; 555 break; 556 case MXL_RV64: 557 vill = (uint64_t)env->vill << 63; 558 break; 559 default: 560 g_assert_not_reached(); 561 } 562 *val = (target_ulong)vill | env->vtype; 563 return RISCV_EXCP_NONE; 564 } 565 566 static RISCVException read_vl(CPURISCVState *env, int csrno, 567 target_ulong *val) 568 { 569 *val = env->vl; 570 return RISCV_EXCP_NONE; 571 } 572 573 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 574 { 575 *val = env_archcpu(env)->cfg.vlen >> 3; 576 return RISCV_EXCP_NONE; 577 } 578 579 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 580 target_ulong *val) 581 { 582 *val = env->vxrm; 583 return RISCV_EXCP_NONE; 584 } 585 586 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 587 target_ulong val) 588 { 589 #if !defined(CONFIG_USER_ONLY) 590 env->mstatus |= MSTATUS_VS; 591 #endif 592 env->vxrm = val; 593 return RISCV_EXCP_NONE; 594 } 595 596 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 597 target_ulong *val) 598 { 599 *val = env->vxsat; 600 return RISCV_EXCP_NONE; 601 } 602 603 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 604 target_ulong val) 605 { 606 #if !defined(CONFIG_USER_ONLY) 607 env->mstatus |= MSTATUS_VS; 608 #endif 609 env->vxsat = val; 610 return RISCV_EXCP_NONE; 611 } 612 613 static RISCVException read_vstart(CPURISCVState *env, int csrno, 614 target_ulong *val) 615 { 616 *val = env->vstart; 617 return RISCV_EXCP_NONE; 618 } 619 620 static RISCVException write_vstart(CPURISCVState *env, int csrno, 621 target_ulong val) 622 { 623 #if !defined(CONFIG_USER_ONLY) 624 env->mstatus |= MSTATUS_VS; 625 #endif 626 /* 627 * The vstart CSR is defined to have only enough writable bits 628 * to hold the largest element index, i.e. lg2(VLEN) bits. 629 */ 630 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 631 return RISCV_EXCP_NONE; 632 } 633 634 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 635 { 636 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 637 return RISCV_EXCP_NONE; 638 } 639 640 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 641 { 642 #if !defined(CONFIG_USER_ONLY) 643 env->mstatus |= MSTATUS_VS; 644 #endif 645 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 646 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 647 return RISCV_EXCP_NONE; 648 } 649 650 /* User Timers and Counters */ 651 static target_ulong get_ticks(bool shift) 652 { 653 int64_t val; 654 target_ulong result; 655 656 #if !defined(CONFIG_USER_ONLY) 657 if (icount_enabled()) { 658 val = icount_get(); 659 } else { 660 val = cpu_get_host_ticks(); 661 } 662 #else 663 val = cpu_get_host_ticks(); 664 #endif 665 666 if (shift) { 667 result = val >> 32; 668 } else { 669 result = val; 670 } 671 672 return result; 673 } 674 675 #if defined(CONFIG_USER_ONLY) 676 static RISCVException read_time(CPURISCVState *env, int csrno, 677 target_ulong *val) 678 { 679 *val = cpu_get_host_ticks(); 680 return RISCV_EXCP_NONE; 681 } 682 683 static RISCVException read_timeh(CPURISCVState *env, int csrno, 684 target_ulong *val) 685 { 686 *val = cpu_get_host_ticks() >> 32; 687 return RISCV_EXCP_NONE; 688 } 689 690 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 691 { 692 *val = get_ticks(false); 693 return RISCV_EXCP_NONE; 694 } 695 696 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 697 { 698 *val = get_ticks(true); 699 return RISCV_EXCP_NONE; 700 } 701 702 #else /* CONFIG_USER_ONLY */ 703 704 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 705 { 706 int evt_index = csrno - CSR_MCOUNTINHIBIT; 707 708 *val = env->mhpmevent_val[evt_index]; 709 710 return RISCV_EXCP_NONE; 711 } 712 713 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 714 { 715 int evt_index = csrno - CSR_MCOUNTINHIBIT; 716 uint64_t mhpmevt_val = val; 717 718 env->mhpmevent_val[evt_index] = val; 719 720 if (riscv_cpu_mxl(env) == MXL_RV32) { 721 mhpmevt_val = mhpmevt_val | 722 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 723 } 724 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 725 726 return RISCV_EXCP_NONE; 727 } 728 729 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 730 { 731 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 732 733 *val = env->mhpmeventh_val[evt_index]; 734 735 return RISCV_EXCP_NONE; 736 } 737 738 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 739 { 740 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 741 uint64_t mhpmevth_val = val; 742 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 743 744 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 745 env->mhpmeventh_val[evt_index] = val; 746 747 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 748 749 return RISCV_EXCP_NONE; 750 } 751 752 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 753 { 754 int ctr_idx = csrno - CSR_MCYCLE; 755 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 756 uint64_t mhpmctr_val = val; 757 758 counter->mhpmcounter_val = val; 759 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 760 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 761 counter->mhpmcounter_prev = get_ticks(false); 762 if (ctr_idx > 2) { 763 if (riscv_cpu_mxl(env) == MXL_RV32) { 764 mhpmctr_val = mhpmctr_val | 765 ((uint64_t)counter->mhpmcounterh_val << 32); 766 } 767 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 768 } 769 } else { 770 /* Other counters can keep incrementing from the given value */ 771 counter->mhpmcounter_prev = val; 772 } 773 774 return RISCV_EXCP_NONE; 775 } 776 777 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 778 { 779 int ctr_idx = csrno - CSR_MCYCLEH; 780 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 781 uint64_t mhpmctr_val = counter->mhpmcounter_val; 782 uint64_t mhpmctrh_val = val; 783 784 counter->mhpmcounterh_val = val; 785 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 786 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 787 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 788 counter->mhpmcounterh_prev = get_ticks(true); 789 if (ctr_idx > 2) { 790 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 791 } 792 } else { 793 counter->mhpmcounterh_prev = val; 794 } 795 796 return RISCV_EXCP_NONE; 797 } 798 799 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 800 bool upper_half, uint32_t ctr_idx) 801 { 802 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 803 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 804 counter.mhpmcounter_prev; 805 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 806 counter.mhpmcounter_val; 807 808 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 809 /** 810 * Counter should not increment if inhibit bit is set. We can't really 811 * stop the icount counting. Just return the counter value written by 812 * the supervisor to indicate that counter was not incremented. 813 */ 814 if (!counter.started) { 815 *val = ctr_val; 816 return RISCV_EXCP_NONE; 817 } else { 818 /* Mark that the counter has been stopped */ 819 counter.started = false; 820 } 821 } 822 823 /** 824 * The kernel computes the perf delta by subtracting the current value from 825 * the value it initialized previously (ctr_val). 826 */ 827 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 828 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 829 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 830 } else { 831 *val = ctr_val; 832 } 833 834 return RISCV_EXCP_NONE; 835 } 836 837 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 838 { 839 uint16_t ctr_index; 840 841 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 842 ctr_index = csrno - CSR_MCYCLE; 843 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 844 ctr_index = csrno - CSR_CYCLE; 845 } else { 846 return RISCV_EXCP_ILLEGAL_INST; 847 } 848 849 return riscv_pmu_read_ctr(env, val, false, ctr_index); 850 } 851 852 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 853 { 854 uint16_t ctr_index; 855 856 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 857 ctr_index = csrno - CSR_MCYCLEH; 858 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 859 ctr_index = csrno - CSR_CYCLEH; 860 } else { 861 return RISCV_EXCP_ILLEGAL_INST; 862 } 863 864 return riscv_pmu_read_ctr(env, val, true, ctr_index); 865 } 866 867 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 868 { 869 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 870 int i; 871 *val = 0; 872 target_ulong *mhpm_evt_val; 873 uint64_t of_bit_mask; 874 875 if (riscv_cpu_mxl(env) == MXL_RV32) { 876 mhpm_evt_val = env->mhpmeventh_val; 877 of_bit_mask = MHPMEVENTH_BIT_OF; 878 } else { 879 mhpm_evt_val = env->mhpmevent_val; 880 of_bit_mask = MHPMEVENT_BIT_OF; 881 } 882 883 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 884 if ((get_field(env->mcounteren, BIT(i))) && 885 (mhpm_evt_val[i] & of_bit_mask)) { 886 *val |= BIT(i); 887 } 888 } 889 890 return RISCV_EXCP_NONE; 891 } 892 893 static RISCVException read_time(CPURISCVState *env, int csrno, 894 target_ulong *val) 895 { 896 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 897 898 if (!env->rdtime_fn) { 899 return RISCV_EXCP_ILLEGAL_INST; 900 } 901 902 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 903 return RISCV_EXCP_NONE; 904 } 905 906 static RISCVException read_timeh(CPURISCVState *env, int csrno, 907 target_ulong *val) 908 { 909 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 910 911 if (!env->rdtime_fn) { 912 return RISCV_EXCP_ILLEGAL_INST; 913 } 914 915 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 916 return RISCV_EXCP_NONE; 917 } 918 919 static RISCVException sstc(CPURISCVState *env, int csrno) 920 { 921 CPUState *cs = env_cpu(env); 922 RISCVCPU *cpu = RISCV_CPU(cs); 923 bool hmode_check = false; 924 925 if (!cpu->cfg.ext_sstc || !env->rdtime_fn) { 926 return RISCV_EXCP_ILLEGAL_INST; 927 } 928 929 if (env->priv == PRV_M) { 930 return RISCV_EXCP_NONE; 931 } 932 933 /* 934 * No need of separate function for rv32 as menvcfg stores both menvcfg 935 * menvcfgh for RV32. 936 */ 937 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 938 get_field(env->menvcfg, MENVCFG_STCE))) { 939 return RISCV_EXCP_ILLEGAL_INST; 940 } 941 942 if (riscv_cpu_virt_enabled(env)) { 943 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 944 get_field(env->henvcfg, HENVCFG_STCE))) { 945 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 946 } 947 } 948 949 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 950 hmode_check = true; 951 } 952 953 return hmode_check ? hmode(env, csrno) : smode(env, csrno); 954 } 955 956 static RISCVException sstc_32(CPURISCVState *env, int csrno) 957 { 958 if (riscv_cpu_mxl(env) != MXL_RV32) { 959 return RISCV_EXCP_ILLEGAL_INST; 960 } 961 962 return sstc(env, csrno); 963 } 964 965 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 966 target_ulong *val) 967 { 968 *val = env->vstimecmp; 969 970 return RISCV_EXCP_NONE; 971 } 972 973 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 974 target_ulong *val) 975 { 976 *val = env->vstimecmp >> 32; 977 978 return RISCV_EXCP_NONE; 979 } 980 981 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 982 target_ulong val) 983 { 984 RISCVCPU *cpu = env_archcpu(env); 985 986 if (riscv_cpu_mxl(env) == MXL_RV32) { 987 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 988 } else { 989 env->vstimecmp = val; 990 } 991 992 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 993 env->htimedelta, MIP_VSTIP); 994 995 return RISCV_EXCP_NONE; 996 } 997 998 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 999 target_ulong val) 1000 { 1001 RISCVCPU *cpu = env_archcpu(env); 1002 1003 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1004 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1005 env->htimedelta, MIP_VSTIP); 1006 1007 return RISCV_EXCP_NONE; 1008 } 1009 1010 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1011 target_ulong *val) 1012 { 1013 if (riscv_cpu_virt_enabled(env)) { 1014 *val = env->vstimecmp; 1015 } else { 1016 *val = env->stimecmp; 1017 } 1018 1019 return RISCV_EXCP_NONE; 1020 } 1021 1022 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1023 target_ulong *val) 1024 { 1025 if (riscv_cpu_virt_enabled(env)) { 1026 *val = env->vstimecmp >> 32; 1027 } else { 1028 *val = env->stimecmp >> 32; 1029 } 1030 1031 return RISCV_EXCP_NONE; 1032 } 1033 1034 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1035 target_ulong val) 1036 { 1037 RISCVCPU *cpu = env_archcpu(env); 1038 1039 if (riscv_cpu_virt_enabled(env)) { 1040 if (env->hvictl & HVICTL_VTI) { 1041 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1042 } 1043 return write_vstimecmp(env, csrno, val); 1044 } 1045 1046 if (riscv_cpu_mxl(env) == MXL_RV32) { 1047 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1048 } else { 1049 env->stimecmp = val; 1050 } 1051 1052 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1053 1054 return RISCV_EXCP_NONE; 1055 } 1056 1057 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1058 target_ulong val) 1059 { 1060 RISCVCPU *cpu = env_archcpu(env); 1061 1062 if (riscv_cpu_virt_enabled(env)) { 1063 if (env->hvictl & HVICTL_VTI) { 1064 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1065 } 1066 return write_vstimecmph(env, csrno, val); 1067 } 1068 1069 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1070 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1071 1072 return RISCV_EXCP_NONE; 1073 } 1074 1075 /* Machine constants */ 1076 1077 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1078 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1079 MIP_LCOFIP)) 1080 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1081 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1082 1083 #define VSTOPI_NUM_SRCS 5 1084 1085 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1086 VS_MODE_INTERRUPTS; 1087 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1088 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1089 HS_MODE_INTERRUPTS; 1090 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1091 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1092 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1093 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1094 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1095 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1096 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1097 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1098 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1099 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1100 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1101 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1102 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1103 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1104 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1105 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1106 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1107 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1108 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1109 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1110 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1111 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1112 (1ULL << (RISCV_EXCP_M_ECALL)) | 1113 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1114 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1115 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1116 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1117 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1118 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1119 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1120 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1121 SIP_LCOFIP; 1122 static const target_ulong hip_writable_mask = MIP_VSSIP; 1123 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1124 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1125 1126 static const char valid_vm_1_10_32[16] = { 1127 [VM_1_10_MBARE] = 1, 1128 [VM_1_10_SV32] = 1 1129 }; 1130 1131 static const char valid_vm_1_10_64[16] = { 1132 [VM_1_10_MBARE] = 1, 1133 [VM_1_10_SV39] = 1, 1134 [VM_1_10_SV48] = 1, 1135 [VM_1_10_SV57] = 1 1136 }; 1137 1138 /* Machine Information Registers */ 1139 static RISCVException read_zero(CPURISCVState *env, int csrno, 1140 target_ulong *val) 1141 { 1142 *val = 0; 1143 return RISCV_EXCP_NONE; 1144 } 1145 1146 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1147 target_ulong val) 1148 { 1149 return RISCV_EXCP_NONE; 1150 } 1151 1152 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1153 target_ulong *val) 1154 { 1155 CPUState *cs = env_cpu(env); 1156 RISCVCPU *cpu = RISCV_CPU(cs); 1157 1158 *val = cpu->cfg.mvendorid; 1159 return RISCV_EXCP_NONE; 1160 } 1161 1162 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1163 target_ulong *val) 1164 { 1165 CPUState *cs = env_cpu(env); 1166 RISCVCPU *cpu = RISCV_CPU(cs); 1167 1168 *val = cpu->cfg.marchid; 1169 return RISCV_EXCP_NONE; 1170 } 1171 1172 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1173 target_ulong *val) 1174 { 1175 CPUState *cs = env_cpu(env); 1176 RISCVCPU *cpu = RISCV_CPU(cs); 1177 1178 *val = cpu->cfg.mimpid; 1179 return RISCV_EXCP_NONE; 1180 } 1181 1182 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1183 target_ulong *val) 1184 { 1185 *val = env->mhartid; 1186 return RISCV_EXCP_NONE; 1187 } 1188 1189 /* Machine Trap Setup */ 1190 1191 /* We do not store SD explicitly, only compute it on demand. */ 1192 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1193 { 1194 if ((status & MSTATUS_FS) == MSTATUS_FS || 1195 (status & MSTATUS_VS) == MSTATUS_VS || 1196 (status & MSTATUS_XS) == MSTATUS_XS) { 1197 switch (xl) { 1198 case MXL_RV32: 1199 return status | MSTATUS32_SD; 1200 case MXL_RV64: 1201 return status | MSTATUS64_SD; 1202 case MXL_RV128: 1203 return MSTATUSH128_SD; 1204 default: 1205 g_assert_not_reached(); 1206 } 1207 } 1208 return status; 1209 } 1210 1211 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1212 target_ulong *val) 1213 { 1214 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1215 return RISCV_EXCP_NONE; 1216 } 1217 1218 static int validate_vm(CPURISCVState *env, target_ulong vm) 1219 { 1220 if (riscv_cpu_mxl(env) == MXL_RV32) { 1221 return valid_vm_1_10_32[vm & 0xf]; 1222 } else { 1223 return valid_vm_1_10_64[vm & 0xf]; 1224 } 1225 } 1226 1227 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1228 target_ulong val) 1229 { 1230 uint64_t mstatus = env->mstatus; 1231 uint64_t mask = 0; 1232 RISCVMXL xl = riscv_cpu_mxl(env); 1233 1234 /* flush tlb on mstatus fields that affect VM */ 1235 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1236 MSTATUS_MPRV | MSTATUS_SUM)) { 1237 tlb_flush(env_cpu(env)); 1238 } 1239 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1240 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1241 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1242 MSTATUS_TW | MSTATUS_VS; 1243 1244 if (riscv_has_ext(env, RVF)) { 1245 mask |= MSTATUS_FS; 1246 } 1247 1248 if (xl != MXL_RV32 || env->debugger) { 1249 /* 1250 * RV32: MPV and GVA are not in mstatus. The current plan is to 1251 * add them to mstatush. For now, we just don't support it. 1252 */ 1253 mask |= MSTATUS_MPV | MSTATUS_GVA; 1254 if ((val & MSTATUS64_UXL) != 0) { 1255 mask |= MSTATUS64_UXL; 1256 } 1257 } 1258 1259 mstatus = (mstatus & ~mask) | (val & mask); 1260 1261 if (xl > MXL_RV32) { 1262 /* SXL field is for now read only */ 1263 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1264 } 1265 env->mstatus = mstatus; 1266 env->xl = cpu_recompute_xl(env); 1267 1268 return RISCV_EXCP_NONE; 1269 } 1270 1271 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1272 target_ulong *val) 1273 { 1274 *val = env->mstatus >> 32; 1275 return RISCV_EXCP_NONE; 1276 } 1277 1278 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1279 target_ulong val) 1280 { 1281 uint64_t valh = (uint64_t)val << 32; 1282 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1283 1284 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1285 tlb_flush(env_cpu(env)); 1286 } 1287 1288 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1289 1290 return RISCV_EXCP_NONE; 1291 } 1292 1293 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1294 Int128 *val) 1295 { 1296 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1297 return RISCV_EXCP_NONE; 1298 } 1299 1300 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1301 Int128 *val) 1302 { 1303 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1304 return RISCV_EXCP_NONE; 1305 } 1306 1307 static RISCVException read_misa(CPURISCVState *env, int csrno, 1308 target_ulong *val) 1309 { 1310 target_ulong misa; 1311 1312 switch (env->misa_mxl) { 1313 case MXL_RV32: 1314 misa = (target_ulong)MXL_RV32 << 30; 1315 break; 1316 #ifdef TARGET_RISCV64 1317 case MXL_RV64: 1318 misa = (target_ulong)MXL_RV64 << 62; 1319 break; 1320 #endif 1321 default: 1322 g_assert_not_reached(); 1323 } 1324 1325 *val = misa | env->misa_ext; 1326 return RISCV_EXCP_NONE; 1327 } 1328 1329 static RISCVException write_misa(CPURISCVState *env, int csrno, 1330 target_ulong val) 1331 { 1332 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 1333 /* drop write to misa */ 1334 return RISCV_EXCP_NONE; 1335 } 1336 1337 /* 'I' or 'E' must be present */ 1338 if (!(val & (RVI | RVE))) { 1339 /* It is not, drop write to misa */ 1340 return RISCV_EXCP_NONE; 1341 } 1342 1343 /* 'E' excludes all other extensions */ 1344 if (val & RVE) { 1345 /* when we support 'E' we can do "val = RVE;" however 1346 * for now we just drop writes if 'E' is present. 1347 */ 1348 return RISCV_EXCP_NONE; 1349 } 1350 1351 /* 1352 * misa.MXL writes are not supported by QEMU. 1353 * Drop writes to those bits. 1354 */ 1355 1356 /* Mask extensions that are not supported by this hart */ 1357 val &= env->misa_ext_mask; 1358 1359 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1360 if ((val & RVD) && !(val & RVF)) { 1361 val &= ~RVD; 1362 } 1363 1364 /* Suppress 'C' if next instruction is not aligned 1365 * TODO: this should check next_pc 1366 */ 1367 if ((val & RVC) && (GETPC() & ~3) != 0) { 1368 val &= ~RVC; 1369 } 1370 1371 /* If nothing changed, do nothing. */ 1372 if (val == env->misa_ext) { 1373 return RISCV_EXCP_NONE; 1374 } 1375 1376 if (!(val & RVF)) { 1377 env->mstatus &= ~MSTATUS_FS; 1378 } 1379 1380 /* flush translation cache */ 1381 tb_flush(env_cpu(env)); 1382 env->misa_ext = val; 1383 env->xl = riscv_cpu_mxl(env); 1384 return RISCV_EXCP_NONE; 1385 } 1386 1387 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1388 target_ulong *val) 1389 { 1390 *val = env->medeleg; 1391 return RISCV_EXCP_NONE; 1392 } 1393 1394 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1395 target_ulong val) 1396 { 1397 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1398 return RISCV_EXCP_NONE; 1399 } 1400 1401 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1402 uint64_t *ret_val, 1403 uint64_t new_val, uint64_t wr_mask) 1404 { 1405 uint64_t mask = wr_mask & delegable_ints; 1406 1407 if (ret_val) { 1408 *ret_val = env->mideleg; 1409 } 1410 1411 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1412 1413 if (riscv_has_ext(env, RVH)) { 1414 env->mideleg |= HS_MODE_INTERRUPTS; 1415 } 1416 1417 return RISCV_EXCP_NONE; 1418 } 1419 1420 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1421 target_ulong *ret_val, 1422 target_ulong new_val, target_ulong wr_mask) 1423 { 1424 uint64_t rval; 1425 RISCVException ret; 1426 1427 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1428 if (ret_val) { 1429 *ret_val = rval; 1430 } 1431 1432 return ret; 1433 } 1434 1435 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1436 target_ulong *ret_val, 1437 target_ulong new_val, 1438 target_ulong wr_mask) 1439 { 1440 uint64_t rval; 1441 RISCVException ret; 1442 1443 ret = rmw_mideleg64(env, csrno, &rval, 1444 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1445 if (ret_val) { 1446 *ret_val = rval >> 32; 1447 } 1448 1449 return ret; 1450 } 1451 1452 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1453 uint64_t *ret_val, 1454 uint64_t new_val, uint64_t wr_mask) 1455 { 1456 uint64_t mask = wr_mask & all_ints; 1457 1458 if (ret_val) { 1459 *ret_val = env->mie; 1460 } 1461 1462 env->mie = (env->mie & ~mask) | (new_val & mask); 1463 1464 if (!riscv_has_ext(env, RVH)) { 1465 env->mie &= ~((uint64_t)MIP_SGEIP); 1466 } 1467 1468 return RISCV_EXCP_NONE; 1469 } 1470 1471 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1472 target_ulong *ret_val, 1473 target_ulong new_val, target_ulong wr_mask) 1474 { 1475 uint64_t rval; 1476 RISCVException ret; 1477 1478 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1479 if (ret_val) { 1480 *ret_val = rval; 1481 } 1482 1483 return ret; 1484 } 1485 1486 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1487 target_ulong *ret_val, 1488 target_ulong new_val, target_ulong wr_mask) 1489 { 1490 uint64_t rval; 1491 RISCVException ret; 1492 1493 ret = rmw_mie64(env, csrno, &rval, 1494 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1495 if (ret_val) { 1496 *ret_val = rval >> 32; 1497 } 1498 1499 return ret; 1500 } 1501 1502 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1503 { 1504 int irq; 1505 uint8_t iprio; 1506 1507 irq = riscv_cpu_mirq_pending(env); 1508 if (irq <= 0 || irq > 63) { 1509 *val = 0; 1510 } else { 1511 iprio = env->miprio[irq]; 1512 if (!iprio) { 1513 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1514 iprio = IPRIO_MMAXIPRIO; 1515 } 1516 } 1517 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1518 *val |= iprio; 1519 } 1520 1521 return RISCV_EXCP_NONE; 1522 } 1523 1524 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1525 { 1526 if (!riscv_cpu_virt_enabled(env)) { 1527 return csrno; 1528 } 1529 1530 switch (csrno) { 1531 case CSR_SISELECT: 1532 return CSR_VSISELECT; 1533 case CSR_SIREG: 1534 return CSR_VSIREG; 1535 case CSR_STOPEI: 1536 return CSR_VSTOPEI; 1537 default: 1538 return csrno; 1539 }; 1540 } 1541 1542 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1543 target_ulong new_val, target_ulong wr_mask) 1544 { 1545 target_ulong *iselect; 1546 1547 /* Translate CSR number for VS-mode */ 1548 csrno = aia_xlate_vs_csrno(env, csrno); 1549 1550 /* Find the iselect CSR based on CSR number */ 1551 switch (csrno) { 1552 case CSR_MISELECT: 1553 iselect = &env->miselect; 1554 break; 1555 case CSR_SISELECT: 1556 iselect = &env->siselect; 1557 break; 1558 case CSR_VSISELECT: 1559 iselect = &env->vsiselect; 1560 break; 1561 default: 1562 return RISCV_EXCP_ILLEGAL_INST; 1563 }; 1564 1565 if (val) { 1566 *val = *iselect; 1567 } 1568 1569 wr_mask &= ISELECT_MASK; 1570 if (wr_mask) { 1571 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1572 } 1573 1574 return RISCV_EXCP_NONE; 1575 } 1576 1577 static int rmw_iprio(target_ulong xlen, 1578 target_ulong iselect, uint8_t *iprio, 1579 target_ulong *val, target_ulong new_val, 1580 target_ulong wr_mask, int ext_irq_no) 1581 { 1582 int i, firq, nirqs; 1583 target_ulong old_val; 1584 1585 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1586 return -EINVAL; 1587 } 1588 if (xlen != 32 && iselect & 0x1) { 1589 return -EINVAL; 1590 } 1591 1592 nirqs = 4 * (xlen / 32); 1593 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1594 1595 old_val = 0; 1596 for (i = 0; i < nirqs; i++) { 1597 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1598 } 1599 1600 if (val) { 1601 *val = old_val; 1602 } 1603 1604 if (wr_mask) { 1605 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1606 for (i = 0; i < nirqs; i++) { 1607 /* 1608 * M-level and S-level external IRQ priority always read-only 1609 * zero. This means default priority order is always preferred 1610 * for M-level and S-level external IRQs. 1611 */ 1612 if ((firq + i) == ext_irq_no) { 1613 continue; 1614 } 1615 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1616 } 1617 } 1618 1619 return 0; 1620 } 1621 1622 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1623 target_ulong new_val, target_ulong wr_mask) 1624 { 1625 bool virt; 1626 uint8_t *iprio; 1627 int ret = -EINVAL; 1628 target_ulong priv, isel, vgein; 1629 1630 /* Translate CSR number for VS-mode */ 1631 csrno = aia_xlate_vs_csrno(env, csrno); 1632 1633 /* Decode register details from CSR number */ 1634 virt = false; 1635 switch (csrno) { 1636 case CSR_MIREG: 1637 iprio = env->miprio; 1638 isel = env->miselect; 1639 priv = PRV_M; 1640 break; 1641 case CSR_SIREG: 1642 iprio = env->siprio; 1643 isel = env->siselect; 1644 priv = PRV_S; 1645 break; 1646 case CSR_VSIREG: 1647 iprio = env->hviprio; 1648 isel = env->vsiselect; 1649 priv = PRV_S; 1650 virt = true; 1651 break; 1652 default: 1653 goto done; 1654 }; 1655 1656 /* Find the selected guest interrupt file */ 1657 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1658 1659 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1660 /* Local interrupt priority registers not available for VS-mode */ 1661 if (!virt) { 1662 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1663 isel, iprio, val, new_val, wr_mask, 1664 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1665 } 1666 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1667 /* IMSIC registers only available when machine implements it. */ 1668 if (env->aia_ireg_rmw_fn[priv]) { 1669 /* Selected guest interrupt file should not be zero */ 1670 if (virt && (!vgein || env->geilen < vgein)) { 1671 goto done; 1672 } 1673 /* Call machine specific IMSIC register emulation */ 1674 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1675 AIA_MAKE_IREG(isel, priv, virt, vgein, 1676 riscv_cpu_mxl_bits(env)), 1677 val, new_val, wr_mask); 1678 } 1679 } 1680 1681 done: 1682 if (ret) { 1683 return (riscv_cpu_virt_enabled(env) && virt) ? 1684 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1685 } 1686 return RISCV_EXCP_NONE; 1687 } 1688 1689 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1690 target_ulong new_val, target_ulong wr_mask) 1691 { 1692 bool virt; 1693 int ret = -EINVAL; 1694 target_ulong priv, vgein; 1695 1696 /* Translate CSR number for VS-mode */ 1697 csrno = aia_xlate_vs_csrno(env, csrno); 1698 1699 /* Decode register details from CSR number */ 1700 virt = false; 1701 switch (csrno) { 1702 case CSR_MTOPEI: 1703 priv = PRV_M; 1704 break; 1705 case CSR_STOPEI: 1706 priv = PRV_S; 1707 break; 1708 case CSR_VSTOPEI: 1709 priv = PRV_S; 1710 virt = true; 1711 break; 1712 default: 1713 goto done; 1714 }; 1715 1716 /* IMSIC CSRs only available when machine implements IMSIC. */ 1717 if (!env->aia_ireg_rmw_fn[priv]) { 1718 goto done; 1719 } 1720 1721 /* Find the selected guest interrupt file */ 1722 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1723 1724 /* Selected guest interrupt file should be valid */ 1725 if (virt && (!vgein || env->geilen < vgein)) { 1726 goto done; 1727 } 1728 1729 /* Call machine specific IMSIC register emulation for TOPEI */ 1730 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1731 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1732 riscv_cpu_mxl_bits(env)), 1733 val, new_val, wr_mask); 1734 1735 done: 1736 if (ret) { 1737 return (riscv_cpu_virt_enabled(env) && virt) ? 1738 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1739 } 1740 return RISCV_EXCP_NONE; 1741 } 1742 1743 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1744 target_ulong *val) 1745 { 1746 *val = env->mtvec; 1747 return RISCV_EXCP_NONE; 1748 } 1749 1750 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1751 target_ulong val) 1752 { 1753 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1754 if ((val & 3) < 2) { 1755 env->mtvec = val; 1756 } else { 1757 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1758 } 1759 return RISCV_EXCP_NONE; 1760 } 1761 1762 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1763 target_ulong *val) 1764 { 1765 *val = env->mcountinhibit; 1766 return RISCV_EXCP_NONE; 1767 } 1768 1769 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1770 target_ulong val) 1771 { 1772 int cidx; 1773 PMUCTRState *counter; 1774 1775 env->mcountinhibit = val; 1776 1777 /* Check if any other counter is also monitoring cycles/instructions */ 1778 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1779 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1780 counter = &env->pmu_ctrs[cidx]; 1781 counter->started = true; 1782 } 1783 } 1784 1785 return RISCV_EXCP_NONE; 1786 } 1787 1788 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1789 target_ulong *val) 1790 { 1791 *val = env->mcounteren; 1792 return RISCV_EXCP_NONE; 1793 } 1794 1795 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1796 target_ulong val) 1797 { 1798 env->mcounteren = val; 1799 return RISCV_EXCP_NONE; 1800 } 1801 1802 /* Machine Trap Handling */ 1803 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1804 Int128 *val) 1805 { 1806 *val = int128_make128(env->mscratch, env->mscratchh); 1807 return RISCV_EXCP_NONE; 1808 } 1809 1810 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1811 Int128 val) 1812 { 1813 env->mscratch = int128_getlo(val); 1814 env->mscratchh = int128_gethi(val); 1815 return RISCV_EXCP_NONE; 1816 } 1817 1818 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1819 target_ulong *val) 1820 { 1821 *val = env->mscratch; 1822 return RISCV_EXCP_NONE; 1823 } 1824 1825 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1826 target_ulong val) 1827 { 1828 env->mscratch = val; 1829 return RISCV_EXCP_NONE; 1830 } 1831 1832 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1833 target_ulong *val) 1834 { 1835 *val = env->mepc; 1836 return RISCV_EXCP_NONE; 1837 } 1838 1839 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1840 target_ulong val) 1841 { 1842 env->mepc = val; 1843 return RISCV_EXCP_NONE; 1844 } 1845 1846 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1847 target_ulong *val) 1848 { 1849 *val = env->mcause; 1850 return RISCV_EXCP_NONE; 1851 } 1852 1853 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1854 target_ulong val) 1855 { 1856 env->mcause = val; 1857 return RISCV_EXCP_NONE; 1858 } 1859 1860 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1861 target_ulong *val) 1862 { 1863 *val = env->mtval; 1864 return RISCV_EXCP_NONE; 1865 } 1866 1867 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1868 target_ulong val) 1869 { 1870 env->mtval = val; 1871 return RISCV_EXCP_NONE; 1872 } 1873 1874 /* Execution environment configuration setup */ 1875 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1876 target_ulong *val) 1877 { 1878 *val = env->menvcfg; 1879 return RISCV_EXCP_NONE; 1880 } 1881 1882 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1883 target_ulong val) 1884 { 1885 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1886 1887 if (riscv_cpu_mxl(env) == MXL_RV64) { 1888 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1889 } 1890 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1891 1892 return RISCV_EXCP_NONE; 1893 } 1894 1895 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1896 target_ulong *val) 1897 { 1898 *val = env->menvcfg >> 32; 1899 return RISCV_EXCP_NONE; 1900 } 1901 1902 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1903 target_ulong val) 1904 { 1905 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1906 uint64_t valh = (uint64_t)val << 32; 1907 1908 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1909 1910 return RISCV_EXCP_NONE; 1911 } 1912 1913 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1914 target_ulong *val) 1915 { 1916 RISCVException ret; 1917 1918 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1919 if (ret != RISCV_EXCP_NONE) { 1920 return ret; 1921 } 1922 1923 *val = env->senvcfg; 1924 return RISCV_EXCP_NONE; 1925 } 1926 1927 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1928 target_ulong val) 1929 { 1930 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1931 RISCVException ret; 1932 1933 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1934 if (ret != RISCV_EXCP_NONE) { 1935 return ret; 1936 } 1937 1938 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1939 return RISCV_EXCP_NONE; 1940 } 1941 1942 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1943 target_ulong *val) 1944 { 1945 RISCVException ret; 1946 1947 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1948 if (ret != RISCV_EXCP_NONE) { 1949 return ret; 1950 } 1951 1952 *val = env->henvcfg; 1953 return RISCV_EXCP_NONE; 1954 } 1955 1956 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1957 target_ulong val) 1958 { 1959 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1960 RISCVException ret; 1961 1962 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1963 if (ret != RISCV_EXCP_NONE) { 1964 return ret; 1965 } 1966 1967 if (riscv_cpu_mxl(env) == MXL_RV64) { 1968 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 1969 } 1970 1971 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1972 1973 return RISCV_EXCP_NONE; 1974 } 1975 1976 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1977 target_ulong *val) 1978 { 1979 RISCVException ret; 1980 1981 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1982 if (ret != RISCV_EXCP_NONE) { 1983 return ret; 1984 } 1985 1986 *val = env->henvcfg >> 32; 1987 return RISCV_EXCP_NONE; 1988 } 1989 1990 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 1991 target_ulong val) 1992 { 1993 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 1994 uint64_t valh = (uint64_t)val << 32; 1995 RISCVException ret; 1996 1997 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1998 if (ret != RISCV_EXCP_NONE) { 1999 return ret; 2000 } 2001 2002 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2003 return RISCV_EXCP_NONE; 2004 } 2005 2006 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2007 target_ulong *val) 2008 { 2009 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2010 2011 return RISCV_EXCP_NONE; 2012 } 2013 2014 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2015 uint64_t wr_mask, target_ulong new_val) 2016 { 2017 uint64_t *reg; 2018 2019 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2020 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2021 2022 return RISCV_EXCP_NONE; 2023 } 2024 2025 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2026 target_ulong new_val) 2027 { 2028 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2029 2030 return write_mstateen(env, csrno, wr_mask, new_val); 2031 } 2032 2033 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2034 target_ulong new_val) 2035 { 2036 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2037 } 2038 2039 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2040 target_ulong *val) 2041 { 2042 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2043 2044 return RISCV_EXCP_NONE; 2045 } 2046 2047 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2048 uint64_t wr_mask, target_ulong new_val) 2049 { 2050 uint64_t *reg, val; 2051 2052 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2053 val = (uint64_t)new_val << 32; 2054 val |= *reg & 0xFFFFFFFF; 2055 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2056 2057 return RISCV_EXCP_NONE; 2058 } 2059 2060 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2061 target_ulong new_val) 2062 { 2063 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2064 2065 return write_mstateenh(env, csrno, wr_mask, new_val); 2066 } 2067 2068 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2069 target_ulong new_val) 2070 { 2071 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2072 } 2073 2074 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2075 target_ulong *val) 2076 { 2077 int index = csrno - CSR_HSTATEEN0; 2078 2079 *val = env->hstateen[index] & env->mstateen[index]; 2080 2081 return RISCV_EXCP_NONE; 2082 } 2083 2084 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2085 uint64_t mask, target_ulong new_val) 2086 { 2087 int index = csrno - CSR_HSTATEEN0; 2088 uint64_t *reg, wr_mask; 2089 2090 reg = &env->hstateen[index]; 2091 wr_mask = env->mstateen[index] & mask; 2092 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2093 2094 return RISCV_EXCP_NONE; 2095 } 2096 2097 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2098 target_ulong new_val) 2099 { 2100 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2101 2102 return write_hstateen(env, csrno, wr_mask, new_val); 2103 } 2104 2105 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2106 target_ulong new_val) 2107 { 2108 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2109 } 2110 2111 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2112 target_ulong *val) 2113 { 2114 int index = csrno - CSR_HSTATEEN0H; 2115 2116 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2117 2118 return RISCV_EXCP_NONE; 2119 } 2120 2121 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2122 uint64_t mask, target_ulong new_val) 2123 { 2124 int index = csrno - CSR_HSTATEEN0H; 2125 uint64_t *reg, wr_mask, val; 2126 2127 reg = &env->hstateen[index]; 2128 val = (uint64_t)new_val << 32; 2129 val |= *reg & 0xFFFFFFFF; 2130 wr_mask = env->mstateen[index] & mask; 2131 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2132 2133 return RISCV_EXCP_NONE; 2134 } 2135 2136 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2137 target_ulong new_val) 2138 { 2139 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2140 2141 return write_hstateenh(env, csrno, wr_mask, new_val); 2142 } 2143 2144 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2145 target_ulong new_val) 2146 { 2147 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2148 } 2149 2150 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2151 target_ulong *val) 2152 { 2153 bool virt = riscv_cpu_virt_enabled(env); 2154 int index = csrno - CSR_SSTATEEN0; 2155 2156 *val = env->sstateen[index] & env->mstateen[index]; 2157 if (virt) { 2158 *val &= env->hstateen[index]; 2159 } 2160 2161 return RISCV_EXCP_NONE; 2162 } 2163 2164 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2165 uint64_t mask, target_ulong new_val) 2166 { 2167 bool virt = riscv_cpu_virt_enabled(env); 2168 int index = csrno - CSR_SSTATEEN0; 2169 uint64_t wr_mask; 2170 uint64_t *reg; 2171 2172 wr_mask = env->mstateen[index] & mask; 2173 if (virt) { 2174 wr_mask &= env->hstateen[index]; 2175 } 2176 2177 reg = &env->sstateen[index]; 2178 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2179 2180 return RISCV_EXCP_NONE; 2181 } 2182 2183 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2184 target_ulong new_val) 2185 { 2186 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2187 2188 return write_sstateen(env, csrno, wr_mask, new_val); 2189 } 2190 2191 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2192 target_ulong new_val) 2193 { 2194 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2195 } 2196 2197 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2198 uint64_t *ret_val, 2199 uint64_t new_val, uint64_t wr_mask) 2200 { 2201 RISCVCPU *cpu = env_archcpu(env); 2202 uint64_t old_mip, mask = wr_mask & delegable_ints; 2203 uint32_t gin; 2204 2205 if (mask & MIP_SEIP) { 2206 env->software_seip = new_val & MIP_SEIP; 2207 new_val |= env->external_seip * MIP_SEIP; 2208 } 2209 2210 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2211 get_field(env->menvcfg, MENVCFG_STCE)) { 2212 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2213 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2214 } 2215 2216 if (mask) { 2217 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 2218 } else { 2219 old_mip = env->mip; 2220 } 2221 2222 if (csrno != CSR_HVIP) { 2223 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2224 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2225 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2226 } 2227 2228 if (ret_val) { 2229 *ret_val = old_mip; 2230 } 2231 2232 return RISCV_EXCP_NONE; 2233 } 2234 2235 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2236 target_ulong *ret_val, 2237 target_ulong new_val, target_ulong wr_mask) 2238 { 2239 uint64_t rval; 2240 RISCVException ret; 2241 2242 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2243 if (ret_val) { 2244 *ret_val = rval; 2245 } 2246 2247 return ret; 2248 } 2249 2250 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2251 target_ulong *ret_val, 2252 target_ulong new_val, target_ulong wr_mask) 2253 { 2254 uint64_t rval; 2255 RISCVException ret; 2256 2257 ret = rmw_mip64(env, csrno, &rval, 2258 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2259 if (ret_val) { 2260 *ret_val = rval >> 32; 2261 } 2262 2263 return ret; 2264 } 2265 2266 /* Supervisor Trap Setup */ 2267 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2268 Int128 *val) 2269 { 2270 uint64_t mask = sstatus_v1_10_mask; 2271 uint64_t sstatus = env->mstatus & mask; 2272 if (env->xl != MXL_RV32 || env->debugger) { 2273 mask |= SSTATUS64_UXL; 2274 } 2275 2276 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2277 return RISCV_EXCP_NONE; 2278 } 2279 2280 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2281 target_ulong *val) 2282 { 2283 target_ulong mask = (sstatus_v1_10_mask); 2284 if (env->xl != MXL_RV32 || env->debugger) { 2285 mask |= SSTATUS64_UXL; 2286 } 2287 /* TODO: Use SXL not MXL. */ 2288 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2289 return RISCV_EXCP_NONE; 2290 } 2291 2292 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2293 target_ulong val) 2294 { 2295 target_ulong mask = (sstatus_v1_10_mask); 2296 2297 if (env->xl != MXL_RV32 || env->debugger) { 2298 if ((val & SSTATUS64_UXL) != 0) { 2299 mask |= SSTATUS64_UXL; 2300 } 2301 } 2302 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2303 return write_mstatus(env, CSR_MSTATUS, newval); 2304 } 2305 2306 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2307 uint64_t *ret_val, 2308 uint64_t new_val, uint64_t wr_mask) 2309 { 2310 RISCVException ret; 2311 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2312 2313 /* Bring VS-level bits to correct position */ 2314 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2315 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2316 2317 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2318 if (ret_val) { 2319 *ret_val = (rval & mask) >> 1; 2320 } 2321 2322 return ret; 2323 } 2324 2325 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2326 target_ulong *ret_val, 2327 target_ulong new_val, target_ulong wr_mask) 2328 { 2329 uint64_t rval; 2330 RISCVException ret; 2331 2332 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2333 if (ret_val) { 2334 *ret_val = rval; 2335 } 2336 2337 return ret; 2338 } 2339 2340 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2341 target_ulong *ret_val, 2342 target_ulong new_val, target_ulong wr_mask) 2343 { 2344 uint64_t rval; 2345 RISCVException ret; 2346 2347 ret = rmw_vsie64(env, csrno, &rval, 2348 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2349 if (ret_val) { 2350 *ret_val = rval >> 32; 2351 } 2352 2353 return ret; 2354 } 2355 2356 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2357 uint64_t *ret_val, 2358 uint64_t new_val, uint64_t wr_mask) 2359 { 2360 RISCVException ret; 2361 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2362 2363 if (riscv_cpu_virt_enabled(env)) { 2364 if (env->hvictl & HVICTL_VTI) { 2365 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2366 } 2367 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2368 } else { 2369 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2370 } 2371 2372 if (ret_val) { 2373 *ret_val &= mask; 2374 } 2375 2376 return ret; 2377 } 2378 2379 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2380 target_ulong *ret_val, 2381 target_ulong new_val, target_ulong wr_mask) 2382 { 2383 uint64_t rval; 2384 RISCVException ret; 2385 2386 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2387 if (ret == RISCV_EXCP_NONE && ret_val) { 2388 *ret_val = rval; 2389 } 2390 2391 return ret; 2392 } 2393 2394 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2395 target_ulong *ret_val, 2396 target_ulong new_val, target_ulong wr_mask) 2397 { 2398 uint64_t rval; 2399 RISCVException ret; 2400 2401 ret = rmw_sie64(env, csrno, &rval, 2402 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2403 if (ret_val) { 2404 *ret_val = rval >> 32; 2405 } 2406 2407 return ret; 2408 } 2409 2410 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2411 target_ulong *val) 2412 { 2413 *val = env->stvec; 2414 return RISCV_EXCP_NONE; 2415 } 2416 2417 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2418 target_ulong val) 2419 { 2420 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2421 if ((val & 3) < 2) { 2422 env->stvec = val; 2423 } else { 2424 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2425 } 2426 return RISCV_EXCP_NONE; 2427 } 2428 2429 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2430 target_ulong *val) 2431 { 2432 *val = env->scounteren; 2433 return RISCV_EXCP_NONE; 2434 } 2435 2436 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2437 target_ulong val) 2438 { 2439 env->scounteren = val; 2440 return RISCV_EXCP_NONE; 2441 } 2442 2443 /* Supervisor Trap Handling */ 2444 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2445 Int128 *val) 2446 { 2447 *val = int128_make128(env->sscratch, env->sscratchh); 2448 return RISCV_EXCP_NONE; 2449 } 2450 2451 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2452 Int128 val) 2453 { 2454 env->sscratch = int128_getlo(val); 2455 env->sscratchh = int128_gethi(val); 2456 return RISCV_EXCP_NONE; 2457 } 2458 2459 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2460 target_ulong *val) 2461 { 2462 *val = env->sscratch; 2463 return RISCV_EXCP_NONE; 2464 } 2465 2466 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2467 target_ulong val) 2468 { 2469 env->sscratch = val; 2470 return RISCV_EXCP_NONE; 2471 } 2472 2473 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2474 target_ulong *val) 2475 { 2476 *val = env->sepc; 2477 return RISCV_EXCP_NONE; 2478 } 2479 2480 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2481 target_ulong val) 2482 { 2483 env->sepc = val; 2484 return RISCV_EXCP_NONE; 2485 } 2486 2487 static RISCVException read_scause(CPURISCVState *env, int csrno, 2488 target_ulong *val) 2489 { 2490 *val = env->scause; 2491 return RISCV_EXCP_NONE; 2492 } 2493 2494 static RISCVException write_scause(CPURISCVState *env, int csrno, 2495 target_ulong val) 2496 { 2497 env->scause = val; 2498 return RISCV_EXCP_NONE; 2499 } 2500 2501 static RISCVException read_stval(CPURISCVState *env, int csrno, 2502 target_ulong *val) 2503 { 2504 *val = env->stval; 2505 return RISCV_EXCP_NONE; 2506 } 2507 2508 static RISCVException write_stval(CPURISCVState *env, int csrno, 2509 target_ulong val) 2510 { 2511 env->stval = val; 2512 return RISCV_EXCP_NONE; 2513 } 2514 2515 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2516 uint64_t *ret_val, 2517 uint64_t new_val, uint64_t wr_mask) 2518 { 2519 RISCVException ret; 2520 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2521 2522 /* Bring VS-level bits to correct position */ 2523 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2524 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2525 2526 ret = rmw_mip64(env, csrno, &rval, new_val, 2527 wr_mask & mask & vsip_writable_mask); 2528 if (ret_val) { 2529 *ret_val = (rval & mask) >> 1; 2530 } 2531 2532 return ret; 2533 } 2534 2535 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2536 target_ulong *ret_val, 2537 target_ulong new_val, target_ulong wr_mask) 2538 { 2539 uint64_t rval; 2540 RISCVException ret; 2541 2542 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2543 if (ret_val) { 2544 *ret_val = rval; 2545 } 2546 2547 return ret; 2548 } 2549 2550 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2551 target_ulong *ret_val, 2552 target_ulong new_val, target_ulong wr_mask) 2553 { 2554 uint64_t rval; 2555 RISCVException ret; 2556 2557 ret = rmw_vsip64(env, csrno, &rval, 2558 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2559 if (ret_val) { 2560 *ret_val = rval >> 32; 2561 } 2562 2563 return ret; 2564 } 2565 2566 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2567 uint64_t *ret_val, 2568 uint64_t new_val, uint64_t wr_mask) 2569 { 2570 RISCVException ret; 2571 uint64_t mask = env->mideleg & sip_writable_mask; 2572 2573 if (riscv_cpu_virt_enabled(env)) { 2574 if (env->hvictl & HVICTL_VTI) { 2575 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2576 } 2577 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2578 } else { 2579 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2580 } 2581 2582 if (ret_val) { 2583 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2584 } 2585 2586 return ret; 2587 } 2588 2589 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2590 target_ulong *ret_val, 2591 target_ulong new_val, target_ulong wr_mask) 2592 { 2593 uint64_t rval; 2594 RISCVException ret; 2595 2596 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2597 if (ret_val) { 2598 *ret_val = rval; 2599 } 2600 2601 return ret; 2602 } 2603 2604 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2605 target_ulong *ret_val, 2606 target_ulong new_val, target_ulong wr_mask) 2607 { 2608 uint64_t rval; 2609 RISCVException ret; 2610 2611 ret = rmw_sip64(env, csrno, &rval, 2612 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2613 if (ret_val) { 2614 *ret_val = rval >> 32; 2615 } 2616 2617 return ret; 2618 } 2619 2620 /* Supervisor Protection and Translation */ 2621 static RISCVException read_satp(CPURISCVState *env, int csrno, 2622 target_ulong *val) 2623 { 2624 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2625 *val = 0; 2626 return RISCV_EXCP_NONE; 2627 } 2628 2629 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2630 return RISCV_EXCP_ILLEGAL_INST; 2631 } else { 2632 *val = env->satp; 2633 } 2634 2635 return RISCV_EXCP_NONE; 2636 } 2637 2638 static RISCVException write_satp(CPURISCVState *env, int csrno, 2639 target_ulong val) 2640 { 2641 target_ulong vm, mask; 2642 2643 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2644 return RISCV_EXCP_NONE; 2645 } 2646 2647 if (riscv_cpu_mxl(env) == MXL_RV32) { 2648 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2649 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2650 } else { 2651 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2652 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2653 } 2654 2655 if (vm && mask) { 2656 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2657 return RISCV_EXCP_ILLEGAL_INST; 2658 } else { 2659 /* 2660 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2661 * pass these through QEMU's TLB emulation as it improves 2662 * performance. Flushing the TLB on SATP writes with paging 2663 * enabled avoids leaking those invalid cached mappings. 2664 */ 2665 tlb_flush(env_cpu(env)); 2666 env->satp = val; 2667 } 2668 } 2669 return RISCV_EXCP_NONE; 2670 } 2671 2672 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2673 { 2674 int irq, ret; 2675 target_ulong topei; 2676 uint64_t vseip, vsgein; 2677 uint32_t iid, iprio, hviid, hviprio, gein; 2678 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2679 2680 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2681 hviid = get_field(env->hvictl, HVICTL_IID); 2682 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2683 2684 if (gein) { 2685 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2686 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2687 if (gein <= env->geilen && vseip) { 2688 siid[scount] = IRQ_S_EXT; 2689 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2690 if (env->aia_ireg_rmw_fn[PRV_S]) { 2691 /* 2692 * Call machine specific IMSIC register emulation for 2693 * reading TOPEI. 2694 */ 2695 ret = env->aia_ireg_rmw_fn[PRV_S]( 2696 env->aia_ireg_rmw_fn_arg[PRV_S], 2697 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2698 riscv_cpu_mxl_bits(env)), 2699 &topei, 0, 0); 2700 if (!ret && topei) { 2701 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2702 } 2703 } 2704 scount++; 2705 } 2706 } else { 2707 if (hviid == IRQ_S_EXT && hviprio) { 2708 siid[scount] = IRQ_S_EXT; 2709 siprio[scount] = hviprio; 2710 scount++; 2711 } 2712 } 2713 2714 if (env->hvictl & HVICTL_VTI) { 2715 if (hviid != IRQ_S_EXT) { 2716 siid[scount] = hviid; 2717 siprio[scount] = hviprio; 2718 scount++; 2719 } 2720 } else { 2721 irq = riscv_cpu_vsirq_pending(env); 2722 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2723 siid[scount] = irq; 2724 siprio[scount] = env->hviprio[irq]; 2725 scount++; 2726 } 2727 } 2728 2729 iid = 0; 2730 iprio = UINT_MAX; 2731 for (s = 0; s < scount; s++) { 2732 if (siprio[s] < iprio) { 2733 iid = siid[s]; 2734 iprio = siprio[s]; 2735 } 2736 } 2737 2738 if (iid) { 2739 if (env->hvictl & HVICTL_IPRIOM) { 2740 if (iprio > IPRIO_MMAXIPRIO) { 2741 iprio = IPRIO_MMAXIPRIO; 2742 } 2743 if (!iprio) { 2744 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2745 iprio = IPRIO_MMAXIPRIO; 2746 } 2747 } 2748 } else { 2749 iprio = 1; 2750 } 2751 } else { 2752 iprio = 0; 2753 } 2754 2755 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2756 *val |= iprio; 2757 return RISCV_EXCP_NONE; 2758 } 2759 2760 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2761 { 2762 int irq; 2763 uint8_t iprio; 2764 2765 if (riscv_cpu_virt_enabled(env)) { 2766 return read_vstopi(env, CSR_VSTOPI, val); 2767 } 2768 2769 irq = riscv_cpu_sirq_pending(env); 2770 if (irq <= 0 || irq > 63) { 2771 *val = 0; 2772 } else { 2773 iprio = env->siprio[irq]; 2774 if (!iprio) { 2775 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2776 iprio = IPRIO_MMAXIPRIO; 2777 } 2778 } 2779 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2780 *val |= iprio; 2781 } 2782 2783 return RISCV_EXCP_NONE; 2784 } 2785 2786 /* Hypervisor Extensions */ 2787 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2788 target_ulong *val) 2789 { 2790 *val = env->hstatus; 2791 if (riscv_cpu_mxl(env) != MXL_RV32) { 2792 /* We only support 64-bit VSXL */ 2793 *val = set_field(*val, HSTATUS_VSXL, 2); 2794 } 2795 /* We only support little endian */ 2796 *val = set_field(*val, HSTATUS_VSBE, 0); 2797 return RISCV_EXCP_NONE; 2798 } 2799 2800 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2801 target_ulong val) 2802 { 2803 env->hstatus = val; 2804 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2805 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2806 } 2807 if (get_field(val, HSTATUS_VSBE) != 0) { 2808 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2809 } 2810 return RISCV_EXCP_NONE; 2811 } 2812 2813 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2814 target_ulong *val) 2815 { 2816 *val = env->hedeleg; 2817 return RISCV_EXCP_NONE; 2818 } 2819 2820 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2821 target_ulong val) 2822 { 2823 env->hedeleg = val & vs_delegable_excps; 2824 return RISCV_EXCP_NONE; 2825 } 2826 2827 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2828 uint64_t *ret_val, 2829 uint64_t new_val, uint64_t wr_mask) 2830 { 2831 uint64_t mask = wr_mask & vs_delegable_ints; 2832 2833 if (ret_val) { 2834 *ret_val = env->hideleg & vs_delegable_ints; 2835 } 2836 2837 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2838 return RISCV_EXCP_NONE; 2839 } 2840 2841 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2842 target_ulong *ret_val, 2843 target_ulong new_val, target_ulong wr_mask) 2844 { 2845 uint64_t rval; 2846 RISCVException ret; 2847 2848 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2849 if (ret_val) { 2850 *ret_val = rval; 2851 } 2852 2853 return ret; 2854 } 2855 2856 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2857 target_ulong *ret_val, 2858 target_ulong new_val, target_ulong wr_mask) 2859 { 2860 uint64_t rval; 2861 RISCVException ret; 2862 2863 ret = rmw_hideleg64(env, csrno, &rval, 2864 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2865 if (ret_val) { 2866 *ret_val = rval >> 32; 2867 } 2868 2869 return ret; 2870 } 2871 2872 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2873 uint64_t *ret_val, 2874 uint64_t new_val, uint64_t wr_mask) 2875 { 2876 RISCVException ret; 2877 2878 ret = rmw_mip64(env, csrno, ret_val, new_val, 2879 wr_mask & hvip_writable_mask); 2880 if (ret_val) { 2881 *ret_val &= VS_MODE_INTERRUPTS; 2882 } 2883 2884 return ret; 2885 } 2886 2887 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2888 target_ulong *ret_val, 2889 target_ulong new_val, target_ulong wr_mask) 2890 { 2891 uint64_t rval; 2892 RISCVException ret; 2893 2894 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2895 if (ret_val) { 2896 *ret_val = rval; 2897 } 2898 2899 return ret; 2900 } 2901 2902 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2903 target_ulong *ret_val, 2904 target_ulong new_val, target_ulong wr_mask) 2905 { 2906 uint64_t rval; 2907 RISCVException ret; 2908 2909 ret = rmw_hvip64(env, csrno, &rval, 2910 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2911 if (ret_val) { 2912 *ret_val = rval >> 32; 2913 } 2914 2915 return ret; 2916 } 2917 2918 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2919 target_ulong *ret_value, 2920 target_ulong new_value, target_ulong write_mask) 2921 { 2922 int ret = rmw_mip(env, csrno, ret_value, new_value, 2923 write_mask & hip_writable_mask); 2924 2925 if (ret_value) { 2926 *ret_value &= HS_MODE_INTERRUPTS; 2927 } 2928 return ret; 2929 } 2930 2931 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2932 target_ulong *ret_val, 2933 target_ulong new_val, target_ulong wr_mask) 2934 { 2935 uint64_t rval; 2936 RISCVException ret; 2937 2938 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2939 if (ret_val) { 2940 *ret_val = rval & HS_MODE_INTERRUPTS; 2941 } 2942 2943 return ret; 2944 } 2945 2946 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2947 target_ulong *val) 2948 { 2949 *val = env->hcounteren; 2950 return RISCV_EXCP_NONE; 2951 } 2952 2953 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2954 target_ulong val) 2955 { 2956 env->hcounteren = val; 2957 return RISCV_EXCP_NONE; 2958 } 2959 2960 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2961 target_ulong *val) 2962 { 2963 if (val) { 2964 *val = env->hgeie; 2965 } 2966 return RISCV_EXCP_NONE; 2967 } 2968 2969 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2970 target_ulong val) 2971 { 2972 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2973 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2974 env->hgeie = val; 2975 /* Update mip.SGEIP bit */ 2976 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2977 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2978 return RISCV_EXCP_NONE; 2979 } 2980 2981 static RISCVException read_htval(CPURISCVState *env, int csrno, 2982 target_ulong *val) 2983 { 2984 *val = env->htval; 2985 return RISCV_EXCP_NONE; 2986 } 2987 2988 static RISCVException write_htval(CPURISCVState *env, int csrno, 2989 target_ulong val) 2990 { 2991 env->htval = val; 2992 return RISCV_EXCP_NONE; 2993 } 2994 2995 static RISCVException read_htinst(CPURISCVState *env, int csrno, 2996 target_ulong *val) 2997 { 2998 *val = env->htinst; 2999 return RISCV_EXCP_NONE; 3000 } 3001 3002 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3003 target_ulong val) 3004 { 3005 return RISCV_EXCP_NONE; 3006 } 3007 3008 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3009 target_ulong *val) 3010 { 3011 if (val) { 3012 *val = env->hgeip; 3013 } 3014 return RISCV_EXCP_NONE; 3015 } 3016 3017 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3018 target_ulong *val) 3019 { 3020 *val = env->hgatp; 3021 return RISCV_EXCP_NONE; 3022 } 3023 3024 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3025 target_ulong val) 3026 { 3027 env->hgatp = val; 3028 return RISCV_EXCP_NONE; 3029 } 3030 3031 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3032 target_ulong *val) 3033 { 3034 if (!env->rdtime_fn) { 3035 return RISCV_EXCP_ILLEGAL_INST; 3036 } 3037 3038 *val = env->htimedelta; 3039 return RISCV_EXCP_NONE; 3040 } 3041 3042 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3043 target_ulong val) 3044 { 3045 RISCVCPU *cpu = env_archcpu(env); 3046 3047 if (!env->rdtime_fn) { 3048 return RISCV_EXCP_ILLEGAL_INST; 3049 } 3050 3051 if (riscv_cpu_mxl(env) == MXL_RV32) { 3052 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3053 } else { 3054 env->htimedelta = val; 3055 } 3056 3057 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3058 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3059 env->htimedelta, MIP_VSTIP); 3060 } 3061 3062 return RISCV_EXCP_NONE; 3063 } 3064 3065 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3066 target_ulong *val) 3067 { 3068 if (!env->rdtime_fn) { 3069 return RISCV_EXCP_ILLEGAL_INST; 3070 } 3071 3072 *val = env->htimedelta >> 32; 3073 return RISCV_EXCP_NONE; 3074 } 3075 3076 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3077 target_ulong val) 3078 { 3079 RISCVCPU *cpu = env_archcpu(env); 3080 3081 if (!env->rdtime_fn) { 3082 return RISCV_EXCP_ILLEGAL_INST; 3083 } 3084 3085 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3086 3087 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3088 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3089 env->htimedelta, MIP_VSTIP); 3090 } 3091 3092 return RISCV_EXCP_NONE; 3093 } 3094 3095 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3096 { 3097 *val = env->hvictl; 3098 return RISCV_EXCP_NONE; 3099 } 3100 3101 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3102 { 3103 env->hvictl = val & HVICTL_VALID_MASK; 3104 return RISCV_EXCP_NONE; 3105 } 3106 3107 static int read_hvipriox(CPURISCVState *env, int first_index, 3108 uint8_t *iprio, target_ulong *val) 3109 { 3110 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3111 3112 /* First index has to be a multiple of number of irqs per register */ 3113 if (first_index % num_irqs) { 3114 return (riscv_cpu_virt_enabled(env)) ? 3115 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3116 } 3117 3118 /* Fill-up return value */ 3119 *val = 0; 3120 for (i = 0; i < num_irqs; i++) { 3121 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3122 continue; 3123 } 3124 if (rdzero) { 3125 continue; 3126 } 3127 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3128 } 3129 3130 return RISCV_EXCP_NONE; 3131 } 3132 3133 static int write_hvipriox(CPURISCVState *env, int first_index, 3134 uint8_t *iprio, target_ulong val) 3135 { 3136 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3137 3138 /* First index has to be a multiple of number of irqs per register */ 3139 if (first_index % num_irqs) { 3140 return (riscv_cpu_virt_enabled(env)) ? 3141 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3142 } 3143 3144 /* Fill-up priority arrary */ 3145 for (i = 0; i < num_irqs; i++) { 3146 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3147 continue; 3148 } 3149 if (rdzero) { 3150 iprio[irq] = 0; 3151 } else { 3152 iprio[irq] = (val >> (i * 8)) & 0xff; 3153 } 3154 } 3155 3156 return RISCV_EXCP_NONE; 3157 } 3158 3159 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3160 { 3161 return read_hvipriox(env, 0, env->hviprio, val); 3162 } 3163 3164 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3165 { 3166 return write_hvipriox(env, 0, env->hviprio, val); 3167 } 3168 3169 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3170 { 3171 return read_hvipriox(env, 4, env->hviprio, val); 3172 } 3173 3174 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3175 { 3176 return write_hvipriox(env, 4, env->hviprio, val); 3177 } 3178 3179 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3180 { 3181 return read_hvipriox(env, 8, env->hviprio, val); 3182 } 3183 3184 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3185 { 3186 return write_hvipriox(env, 8, env->hviprio, val); 3187 } 3188 3189 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3190 { 3191 return read_hvipriox(env, 12, env->hviprio, val); 3192 } 3193 3194 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3195 { 3196 return write_hvipriox(env, 12, env->hviprio, val); 3197 } 3198 3199 /* Virtual CSR Registers */ 3200 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3201 target_ulong *val) 3202 { 3203 *val = env->vsstatus; 3204 return RISCV_EXCP_NONE; 3205 } 3206 3207 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3208 target_ulong val) 3209 { 3210 uint64_t mask = (target_ulong)-1; 3211 if ((val & VSSTATUS64_UXL) == 0) { 3212 mask &= ~VSSTATUS64_UXL; 3213 } 3214 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3215 return RISCV_EXCP_NONE; 3216 } 3217 3218 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3219 { 3220 *val = env->vstvec; 3221 return RISCV_EXCP_NONE; 3222 } 3223 3224 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3225 target_ulong val) 3226 { 3227 env->vstvec = val; 3228 return RISCV_EXCP_NONE; 3229 } 3230 3231 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3232 target_ulong *val) 3233 { 3234 *val = env->vsscratch; 3235 return RISCV_EXCP_NONE; 3236 } 3237 3238 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3239 target_ulong val) 3240 { 3241 env->vsscratch = val; 3242 return RISCV_EXCP_NONE; 3243 } 3244 3245 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3246 target_ulong *val) 3247 { 3248 *val = env->vsepc; 3249 return RISCV_EXCP_NONE; 3250 } 3251 3252 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3253 target_ulong val) 3254 { 3255 env->vsepc = val; 3256 return RISCV_EXCP_NONE; 3257 } 3258 3259 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3260 target_ulong *val) 3261 { 3262 *val = env->vscause; 3263 return RISCV_EXCP_NONE; 3264 } 3265 3266 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3267 target_ulong val) 3268 { 3269 env->vscause = val; 3270 return RISCV_EXCP_NONE; 3271 } 3272 3273 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3274 target_ulong *val) 3275 { 3276 *val = env->vstval; 3277 return RISCV_EXCP_NONE; 3278 } 3279 3280 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3281 target_ulong val) 3282 { 3283 env->vstval = val; 3284 return RISCV_EXCP_NONE; 3285 } 3286 3287 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3288 target_ulong *val) 3289 { 3290 *val = env->vsatp; 3291 return RISCV_EXCP_NONE; 3292 } 3293 3294 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3295 target_ulong val) 3296 { 3297 env->vsatp = val; 3298 return RISCV_EXCP_NONE; 3299 } 3300 3301 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3302 target_ulong *val) 3303 { 3304 *val = env->mtval2; 3305 return RISCV_EXCP_NONE; 3306 } 3307 3308 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3309 target_ulong val) 3310 { 3311 env->mtval2 = val; 3312 return RISCV_EXCP_NONE; 3313 } 3314 3315 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3316 target_ulong *val) 3317 { 3318 *val = env->mtinst; 3319 return RISCV_EXCP_NONE; 3320 } 3321 3322 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3323 target_ulong val) 3324 { 3325 env->mtinst = val; 3326 return RISCV_EXCP_NONE; 3327 } 3328 3329 /* Physical Memory Protection */ 3330 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3331 target_ulong *val) 3332 { 3333 *val = mseccfg_csr_read(env); 3334 return RISCV_EXCP_NONE; 3335 } 3336 3337 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3338 target_ulong val) 3339 { 3340 mseccfg_csr_write(env, val); 3341 return RISCV_EXCP_NONE; 3342 } 3343 3344 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 3345 { 3346 /* TODO: RV128 restriction check */ 3347 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 3348 return false; 3349 } 3350 return true; 3351 } 3352 3353 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3354 target_ulong *val) 3355 { 3356 uint32_t reg_index = csrno - CSR_PMPCFG0; 3357 3358 if (!check_pmp_reg_index(env, reg_index)) { 3359 return RISCV_EXCP_ILLEGAL_INST; 3360 } 3361 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 3362 return RISCV_EXCP_NONE; 3363 } 3364 3365 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3366 target_ulong val) 3367 { 3368 uint32_t reg_index = csrno - CSR_PMPCFG0; 3369 3370 if (!check_pmp_reg_index(env, reg_index)) { 3371 return RISCV_EXCP_ILLEGAL_INST; 3372 } 3373 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 3374 return RISCV_EXCP_NONE; 3375 } 3376 3377 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3378 target_ulong *val) 3379 { 3380 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3381 return RISCV_EXCP_NONE; 3382 } 3383 3384 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3385 target_ulong val) 3386 { 3387 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3388 return RISCV_EXCP_NONE; 3389 } 3390 3391 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3392 target_ulong *val) 3393 { 3394 *val = tselect_csr_read(env); 3395 return RISCV_EXCP_NONE; 3396 } 3397 3398 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3399 target_ulong val) 3400 { 3401 tselect_csr_write(env, val); 3402 return RISCV_EXCP_NONE; 3403 } 3404 3405 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3406 target_ulong *val) 3407 { 3408 /* return 0 in tdata1 to end the trigger enumeration */ 3409 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3410 *val = 0; 3411 return RISCV_EXCP_NONE; 3412 } 3413 3414 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3415 return RISCV_EXCP_ILLEGAL_INST; 3416 } 3417 3418 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3419 return RISCV_EXCP_NONE; 3420 } 3421 3422 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3423 target_ulong val) 3424 { 3425 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3426 return RISCV_EXCP_ILLEGAL_INST; 3427 } 3428 3429 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3430 return RISCV_EXCP_NONE; 3431 } 3432 3433 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3434 target_ulong *val) 3435 { 3436 *val = tinfo_csr_read(env); 3437 return RISCV_EXCP_NONE; 3438 } 3439 3440 /* 3441 * Functions to access Pointer Masking feature registers 3442 * We have to check if current priv lvl could modify 3443 * csr in given mode 3444 */ 3445 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3446 { 3447 int csr_priv = get_field(csrno, 0x300); 3448 int pm_current; 3449 3450 if (env->debugger) { 3451 return false; 3452 } 3453 /* 3454 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3455 * so allow the access 3456 */ 3457 if (env->priv != csr_priv) { 3458 return false; 3459 } 3460 switch (env->priv) { 3461 case PRV_M: 3462 pm_current = get_field(env->mmte, M_PM_CURRENT); 3463 break; 3464 case PRV_S: 3465 pm_current = get_field(env->mmte, S_PM_CURRENT); 3466 break; 3467 case PRV_U: 3468 pm_current = get_field(env->mmte, U_PM_CURRENT); 3469 break; 3470 default: 3471 g_assert_not_reached(); 3472 } 3473 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3474 return !pm_current; 3475 } 3476 3477 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3478 target_ulong *val) 3479 { 3480 *val = env->mmte & MMTE_MASK; 3481 return RISCV_EXCP_NONE; 3482 } 3483 3484 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3485 target_ulong val) 3486 { 3487 uint64_t mstatus; 3488 target_ulong wpri_val = val & MMTE_MASK; 3489 3490 if (val != wpri_val) { 3491 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3492 "MMTE: WPRI violation written 0x", val, 3493 "vs expected 0x", wpri_val); 3494 } 3495 /* for machine mode pm.current is hardwired to 1 */ 3496 wpri_val |= MMTE_M_PM_CURRENT; 3497 3498 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3499 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3500 env->mmte = wpri_val | PM_EXT_DIRTY; 3501 riscv_cpu_update_mask(env); 3502 3503 /* Set XS and SD bits, since PM CSRs are dirty */ 3504 mstatus = env->mstatus | MSTATUS_XS; 3505 write_mstatus(env, csrno, mstatus); 3506 return RISCV_EXCP_NONE; 3507 } 3508 3509 static RISCVException read_smte(CPURISCVState *env, int csrno, 3510 target_ulong *val) 3511 { 3512 *val = env->mmte & SMTE_MASK; 3513 return RISCV_EXCP_NONE; 3514 } 3515 3516 static RISCVException write_smte(CPURISCVState *env, int csrno, 3517 target_ulong val) 3518 { 3519 target_ulong wpri_val = val & SMTE_MASK; 3520 3521 if (val != wpri_val) { 3522 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3523 "SMTE: WPRI violation written 0x", val, 3524 "vs expected 0x", wpri_val); 3525 } 3526 3527 /* if pm.current==0 we can't modify current PM CSRs */ 3528 if (check_pm_current_disabled(env, csrno)) { 3529 return RISCV_EXCP_NONE; 3530 } 3531 3532 wpri_val |= (env->mmte & ~SMTE_MASK); 3533 write_mmte(env, csrno, wpri_val); 3534 return RISCV_EXCP_NONE; 3535 } 3536 3537 static RISCVException read_umte(CPURISCVState *env, int csrno, 3538 target_ulong *val) 3539 { 3540 *val = env->mmte & UMTE_MASK; 3541 return RISCV_EXCP_NONE; 3542 } 3543 3544 static RISCVException write_umte(CPURISCVState *env, int csrno, 3545 target_ulong val) 3546 { 3547 target_ulong wpri_val = val & UMTE_MASK; 3548 3549 if (val != wpri_val) { 3550 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3551 "UMTE: WPRI violation written 0x", val, 3552 "vs expected 0x", wpri_val); 3553 } 3554 3555 if (check_pm_current_disabled(env, csrno)) { 3556 return RISCV_EXCP_NONE; 3557 } 3558 3559 wpri_val |= (env->mmte & ~UMTE_MASK); 3560 write_mmte(env, csrno, wpri_val); 3561 return RISCV_EXCP_NONE; 3562 } 3563 3564 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3565 target_ulong *val) 3566 { 3567 *val = env->mpmmask; 3568 return RISCV_EXCP_NONE; 3569 } 3570 3571 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3572 target_ulong val) 3573 { 3574 uint64_t mstatus; 3575 3576 env->mpmmask = val; 3577 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3578 env->cur_pmmask = val; 3579 } 3580 env->mmte |= PM_EXT_DIRTY; 3581 3582 /* Set XS and SD bits, since PM CSRs are dirty */ 3583 mstatus = env->mstatus | MSTATUS_XS; 3584 write_mstatus(env, csrno, mstatus); 3585 return RISCV_EXCP_NONE; 3586 } 3587 3588 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3589 target_ulong *val) 3590 { 3591 *val = env->spmmask; 3592 return RISCV_EXCP_NONE; 3593 } 3594 3595 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3596 target_ulong val) 3597 { 3598 uint64_t mstatus; 3599 3600 /* if pm.current==0 we can't modify current PM CSRs */ 3601 if (check_pm_current_disabled(env, csrno)) { 3602 return RISCV_EXCP_NONE; 3603 } 3604 env->spmmask = val; 3605 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3606 env->cur_pmmask = val; 3607 } 3608 env->mmte |= PM_EXT_DIRTY; 3609 3610 /* Set XS and SD bits, since PM CSRs are dirty */ 3611 mstatus = env->mstatus | MSTATUS_XS; 3612 write_mstatus(env, csrno, mstatus); 3613 return RISCV_EXCP_NONE; 3614 } 3615 3616 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3617 target_ulong *val) 3618 { 3619 *val = env->upmmask; 3620 return RISCV_EXCP_NONE; 3621 } 3622 3623 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3624 target_ulong val) 3625 { 3626 uint64_t mstatus; 3627 3628 /* if pm.current==0 we can't modify current PM CSRs */ 3629 if (check_pm_current_disabled(env, csrno)) { 3630 return RISCV_EXCP_NONE; 3631 } 3632 env->upmmask = val; 3633 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3634 env->cur_pmmask = val; 3635 } 3636 env->mmte |= PM_EXT_DIRTY; 3637 3638 /* Set XS and SD bits, since PM CSRs are dirty */ 3639 mstatus = env->mstatus | MSTATUS_XS; 3640 write_mstatus(env, csrno, mstatus); 3641 return RISCV_EXCP_NONE; 3642 } 3643 3644 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3645 target_ulong *val) 3646 { 3647 *val = env->mpmbase; 3648 return RISCV_EXCP_NONE; 3649 } 3650 3651 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3652 target_ulong val) 3653 { 3654 uint64_t mstatus; 3655 3656 env->mpmbase = val; 3657 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3658 env->cur_pmbase = val; 3659 } 3660 env->mmte |= PM_EXT_DIRTY; 3661 3662 /* Set XS and SD bits, since PM CSRs are dirty */ 3663 mstatus = env->mstatus | MSTATUS_XS; 3664 write_mstatus(env, csrno, mstatus); 3665 return RISCV_EXCP_NONE; 3666 } 3667 3668 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3669 target_ulong *val) 3670 { 3671 *val = env->spmbase; 3672 return RISCV_EXCP_NONE; 3673 } 3674 3675 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3676 target_ulong val) 3677 { 3678 uint64_t mstatus; 3679 3680 /* if pm.current==0 we can't modify current PM CSRs */ 3681 if (check_pm_current_disabled(env, csrno)) { 3682 return RISCV_EXCP_NONE; 3683 } 3684 env->spmbase = val; 3685 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3686 env->cur_pmbase = val; 3687 } 3688 env->mmte |= PM_EXT_DIRTY; 3689 3690 /* Set XS and SD bits, since PM CSRs are dirty */ 3691 mstatus = env->mstatus | MSTATUS_XS; 3692 write_mstatus(env, csrno, mstatus); 3693 return RISCV_EXCP_NONE; 3694 } 3695 3696 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3697 target_ulong *val) 3698 { 3699 *val = env->upmbase; 3700 return RISCV_EXCP_NONE; 3701 } 3702 3703 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3704 target_ulong val) 3705 { 3706 uint64_t mstatus; 3707 3708 /* if pm.current==0 we can't modify current PM CSRs */ 3709 if (check_pm_current_disabled(env, csrno)) { 3710 return RISCV_EXCP_NONE; 3711 } 3712 env->upmbase = val; 3713 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3714 env->cur_pmbase = val; 3715 } 3716 env->mmte |= PM_EXT_DIRTY; 3717 3718 /* Set XS and SD bits, since PM CSRs are dirty */ 3719 mstatus = env->mstatus | MSTATUS_XS; 3720 write_mstatus(env, csrno, mstatus); 3721 return RISCV_EXCP_NONE; 3722 } 3723 3724 #endif 3725 3726 /* Crypto Extension */ 3727 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3728 target_ulong *ret_value, 3729 target_ulong new_value, 3730 target_ulong write_mask) 3731 { 3732 uint16_t random_v; 3733 Error *random_e = NULL; 3734 int random_r; 3735 target_ulong rval; 3736 3737 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3738 if (unlikely(random_r < 0)) { 3739 /* 3740 * Failed, for unknown reasons in the crypto subsystem. 3741 * The best we can do is log the reason and return a 3742 * failure indication to the guest. There is no reason 3743 * we know to expect the failure to be transitory, so 3744 * indicate DEAD to avoid having the guest spin on WAIT. 3745 */ 3746 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3747 __func__, error_get_pretty(random_e)); 3748 error_free(random_e); 3749 rval = SEED_OPST_DEAD; 3750 } else { 3751 rval = random_v | SEED_OPST_ES16; 3752 } 3753 3754 if (ret_value) { 3755 *ret_value = rval; 3756 } 3757 3758 return RISCV_EXCP_NONE; 3759 } 3760 3761 /* 3762 * riscv_csrrw - read and/or update control and status register 3763 * 3764 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3765 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3766 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3767 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3768 */ 3769 3770 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3771 int csrno, 3772 bool write_mask, 3773 RISCVCPU *cpu) 3774 { 3775 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3776 int read_only = get_field(csrno, 0xC00) == 3; 3777 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3778 3779 /* ensure the CSR extension is enabled. */ 3780 if (!cpu->cfg.ext_icsr) { 3781 return RISCV_EXCP_ILLEGAL_INST; 3782 } 3783 3784 if (env->priv_ver < csr_min_priv) { 3785 return RISCV_EXCP_ILLEGAL_INST; 3786 } 3787 3788 /* check predicate */ 3789 if (!csr_ops[csrno].predicate) { 3790 return RISCV_EXCP_ILLEGAL_INST; 3791 } 3792 3793 if (write_mask && read_only) { 3794 return RISCV_EXCP_ILLEGAL_INST; 3795 } 3796 3797 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3798 if (ret != RISCV_EXCP_NONE) { 3799 return ret; 3800 } 3801 3802 #if !defined(CONFIG_USER_ONLY) 3803 int csr_priv, effective_priv = env->priv; 3804 3805 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3806 !riscv_cpu_virt_enabled(env)) { 3807 /* 3808 * We are in HS mode. Add 1 to the effective privledge level to 3809 * allow us to access the Hypervisor CSRs. 3810 */ 3811 effective_priv++; 3812 } 3813 3814 csr_priv = get_field(csrno, 0x300); 3815 if (!env->debugger && (effective_priv < csr_priv)) { 3816 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3817 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3818 } 3819 return RISCV_EXCP_ILLEGAL_INST; 3820 } 3821 #endif 3822 return RISCV_EXCP_NONE; 3823 } 3824 3825 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3826 target_ulong *ret_value, 3827 target_ulong new_value, 3828 target_ulong write_mask) 3829 { 3830 RISCVException ret; 3831 target_ulong old_value; 3832 3833 /* execute combined read/write operation if it exists */ 3834 if (csr_ops[csrno].op) { 3835 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3836 } 3837 3838 /* if no accessor exists then return failure */ 3839 if (!csr_ops[csrno].read) { 3840 return RISCV_EXCP_ILLEGAL_INST; 3841 } 3842 /* read old value */ 3843 ret = csr_ops[csrno].read(env, csrno, &old_value); 3844 if (ret != RISCV_EXCP_NONE) { 3845 return ret; 3846 } 3847 3848 /* write value if writable and write mask set, otherwise drop writes */ 3849 if (write_mask) { 3850 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3851 if (csr_ops[csrno].write) { 3852 ret = csr_ops[csrno].write(env, csrno, new_value); 3853 if (ret != RISCV_EXCP_NONE) { 3854 return ret; 3855 } 3856 } 3857 } 3858 3859 /* return old value */ 3860 if (ret_value) { 3861 *ret_value = old_value; 3862 } 3863 3864 return RISCV_EXCP_NONE; 3865 } 3866 3867 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3868 target_ulong *ret_value, 3869 target_ulong new_value, target_ulong write_mask) 3870 { 3871 RISCVCPU *cpu = env_archcpu(env); 3872 3873 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3874 if (ret != RISCV_EXCP_NONE) { 3875 return ret; 3876 } 3877 3878 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3879 } 3880 3881 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3882 Int128 *ret_value, 3883 Int128 new_value, 3884 Int128 write_mask) 3885 { 3886 RISCVException ret; 3887 Int128 old_value; 3888 3889 /* read old value */ 3890 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3891 if (ret != RISCV_EXCP_NONE) { 3892 return ret; 3893 } 3894 3895 /* write value if writable and write mask set, otherwise drop writes */ 3896 if (int128_nz(write_mask)) { 3897 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3898 int128_and(new_value, write_mask)); 3899 if (csr_ops[csrno].write128) { 3900 ret = csr_ops[csrno].write128(env, csrno, new_value); 3901 if (ret != RISCV_EXCP_NONE) { 3902 return ret; 3903 } 3904 } else if (csr_ops[csrno].write) { 3905 /* avoids having to write wrappers for all registers */ 3906 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3907 if (ret != RISCV_EXCP_NONE) { 3908 return ret; 3909 } 3910 } 3911 } 3912 3913 /* return old value */ 3914 if (ret_value) { 3915 *ret_value = old_value; 3916 } 3917 3918 return RISCV_EXCP_NONE; 3919 } 3920 3921 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3922 Int128 *ret_value, 3923 Int128 new_value, Int128 write_mask) 3924 { 3925 RISCVException ret; 3926 RISCVCPU *cpu = env_archcpu(env); 3927 3928 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3929 if (ret != RISCV_EXCP_NONE) { 3930 return ret; 3931 } 3932 3933 if (csr_ops[csrno].read128) { 3934 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3935 } 3936 3937 /* 3938 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3939 * at all defined. 3940 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3941 * significant), for those, this fallback is correctly handling the accesses 3942 */ 3943 target_ulong old_value; 3944 ret = riscv_csrrw_do64(env, csrno, &old_value, 3945 int128_getlo(new_value), 3946 int128_getlo(write_mask)); 3947 if (ret == RISCV_EXCP_NONE && ret_value) { 3948 *ret_value = int128_make64(old_value); 3949 } 3950 return ret; 3951 } 3952 3953 /* 3954 * Debugger support. If not in user mode, set env->debugger before the 3955 * riscv_csrrw call and clear it after the call. 3956 */ 3957 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3958 target_ulong *ret_value, 3959 target_ulong new_value, 3960 target_ulong write_mask) 3961 { 3962 RISCVException ret; 3963 #if !defined(CONFIG_USER_ONLY) 3964 env->debugger = true; 3965 #endif 3966 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3967 #if !defined(CONFIG_USER_ONLY) 3968 env->debugger = false; 3969 #endif 3970 return ret; 3971 } 3972 3973 /* Control and Status Register function table */ 3974 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3975 /* User Floating-Point CSRs */ 3976 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3977 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3978 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3979 /* Vector CSRs */ 3980 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 3981 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 3982 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 3983 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 3984 [CSR_VL] = { "vl", vs, read_vl }, 3985 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 3986 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 3987 /* User Timers and Counters */ 3988 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 3989 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 3990 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 3991 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 3992 3993 /* 3994 * In privileged mode, the monitor will have to emulate TIME CSRs only if 3995 * rdtime callback is not provided by machine/platform emulation. 3996 */ 3997 [CSR_TIME] = { "time", ctr, read_time }, 3998 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 3999 4000 /* Crypto Extension */ 4001 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4002 4003 #if !defined(CONFIG_USER_ONLY) 4004 /* Machine Timers and Counters */ 4005 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4006 write_mhpmcounter }, 4007 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4008 write_mhpmcounter }, 4009 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4010 write_mhpmcounterh }, 4011 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4012 write_mhpmcounterh }, 4013 4014 /* Machine Information Registers */ 4015 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4016 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4017 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4018 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4019 4020 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4021 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4022 /* Machine Trap Setup */ 4023 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4024 NULL, read_mstatus_i128 }, 4025 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4026 NULL, read_misa_i128 }, 4027 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4028 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4029 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4030 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4031 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4032 write_mcounteren }, 4033 4034 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4035 write_mstatush }, 4036 4037 /* Machine Trap Handling */ 4038 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4039 NULL, read_mscratch_i128, write_mscratch_i128 }, 4040 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4041 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4042 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4043 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4044 4045 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4046 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4047 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4048 4049 /* Machine-Level Interrupts (AIA) */ 4050 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4051 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4052 4053 /* Virtual Interrupts for Supervisor Level (AIA) */ 4054 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4055 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4056 4057 /* Machine-Level High-Half CSRs (AIA) */ 4058 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4059 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4060 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4061 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4062 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4063 4064 /* Execution environment configuration */ 4065 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4066 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4067 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4068 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4069 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4070 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4071 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4072 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4073 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4074 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4075 4076 /* Smstateen extension CSRs */ 4077 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4078 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4079 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4080 write_mstateen0h, 4081 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4082 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4083 write_mstateen_1_3, 4084 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4085 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4086 write_mstateenh_1_3, 4087 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4088 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4089 write_mstateen_1_3, 4090 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4091 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4092 write_mstateenh_1_3, 4093 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4094 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4095 write_mstateen_1_3, 4096 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4097 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4098 write_mstateenh_1_3, 4099 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4100 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4101 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4102 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4103 write_hstateen0h, 4104 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4105 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4106 write_hstateen_1_3, 4107 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4108 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4109 write_hstateenh_1_3, 4110 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4111 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4112 write_hstateen_1_3, 4113 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4114 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4115 write_hstateenh_1_3, 4116 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4117 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4118 write_hstateen_1_3, 4119 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4120 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4121 write_hstateenh_1_3, 4122 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4123 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4124 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4125 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4126 write_sstateen_1_3, 4127 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4128 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4129 write_sstateen_1_3, 4130 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4131 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4132 write_sstateen_1_3, 4133 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4134 4135 /* Supervisor Trap Setup */ 4136 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4137 NULL, read_sstatus_i128 }, 4138 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4139 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4140 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4141 write_scounteren }, 4142 4143 /* Supervisor Trap Handling */ 4144 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4145 NULL, read_sscratch_i128, write_sscratch_i128 }, 4146 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4147 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4148 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4149 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4150 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4151 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4152 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4153 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4154 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4155 write_vstimecmp, 4156 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4157 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4158 write_vstimecmph, 4159 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4160 4161 /* Supervisor Protection and Translation */ 4162 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 4163 4164 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4165 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4166 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4167 4168 /* Supervisor-Level Interrupts (AIA) */ 4169 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4170 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4171 4172 /* Supervisor-Level High-Half CSRs (AIA) */ 4173 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4174 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4175 4176 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4177 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4178 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4179 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4180 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4181 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4182 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4183 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4184 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4185 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4186 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4187 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4188 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4189 write_hcounteren, 4190 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4191 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4192 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4193 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4194 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4195 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4196 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4197 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4198 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4199 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 4200 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4201 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4202 write_htimedelta, 4203 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4204 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4205 write_htimedeltah, 4206 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4207 4208 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4209 write_vsstatus, 4210 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4211 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4212 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4213 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4214 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4215 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4216 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4217 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4218 write_vsscratch, 4219 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4220 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4221 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4222 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4223 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4224 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4225 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4226 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4227 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4228 4229 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4230 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4231 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4232 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4233 4234 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4235 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4236 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4237 write_hvictl }, 4238 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4239 write_hviprio1 }, 4240 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4241 write_hviprio2 }, 4242 4243 /* 4244 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4245 */ 4246 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4247 rmw_xiselect }, 4248 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4249 4250 /* VS-Level Interrupts (H-extension with AIA) */ 4251 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4252 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4253 4254 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4255 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4256 rmw_hidelegh }, 4257 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4258 write_ignore }, 4259 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4260 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4261 write_hviprio1h }, 4262 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4263 write_hviprio2h }, 4264 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4265 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4266 4267 /* Physical Memory Protection */ 4268 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4269 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4270 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4271 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4272 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4273 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4274 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4275 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4276 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4277 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4278 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4279 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4280 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4281 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4282 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4283 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4284 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4285 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4286 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4287 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4288 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4289 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4290 4291 /* Debug CSRs */ 4292 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4293 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4294 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4295 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4296 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4297 4298 /* User Pointer Masking */ 4299 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4300 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4301 write_upmmask }, 4302 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4303 write_upmbase }, 4304 /* Machine Pointer Masking */ 4305 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4306 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4307 write_mpmmask }, 4308 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4309 write_mpmbase }, 4310 /* Supervisor Pointer Masking */ 4311 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4312 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4313 write_spmmask }, 4314 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4315 write_spmbase }, 4316 4317 /* Performance Counters */ 4318 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4319 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4320 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4321 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4322 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4323 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4324 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4325 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4326 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4327 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4328 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4329 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4330 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4331 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4332 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4333 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4334 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4335 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4336 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4337 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4338 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4339 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4340 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4341 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4342 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4343 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4344 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4345 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4346 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4347 4348 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4349 write_mhpmcounter }, 4350 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4351 write_mhpmcounter }, 4352 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4353 write_mhpmcounter }, 4354 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4355 write_mhpmcounter }, 4356 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4357 write_mhpmcounter }, 4358 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4359 write_mhpmcounter }, 4360 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4361 write_mhpmcounter }, 4362 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4363 write_mhpmcounter }, 4364 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4365 write_mhpmcounter }, 4366 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4367 write_mhpmcounter }, 4368 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4369 write_mhpmcounter }, 4370 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4371 write_mhpmcounter }, 4372 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4373 write_mhpmcounter }, 4374 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4375 write_mhpmcounter }, 4376 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4377 write_mhpmcounter }, 4378 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4379 write_mhpmcounter }, 4380 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4381 write_mhpmcounter }, 4382 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4383 write_mhpmcounter }, 4384 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4385 write_mhpmcounter }, 4386 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4387 write_mhpmcounter }, 4388 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4389 write_mhpmcounter }, 4390 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4391 write_mhpmcounter }, 4392 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4393 write_mhpmcounter }, 4394 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4395 write_mhpmcounter }, 4396 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4397 write_mhpmcounter }, 4398 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4399 write_mhpmcounter }, 4400 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4401 write_mhpmcounter }, 4402 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4403 write_mhpmcounter }, 4404 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4405 write_mhpmcounter }, 4406 4407 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4408 write_mcountinhibit, 4409 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4410 4411 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4412 write_mhpmevent }, 4413 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4414 write_mhpmevent }, 4415 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4416 write_mhpmevent }, 4417 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4418 write_mhpmevent }, 4419 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4420 write_mhpmevent }, 4421 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4422 write_mhpmevent }, 4423 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4424 write_mhpmevent }, 4425 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4426 write_mhpmevent }, 4427 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4428 write_mhpmevent }, 4429 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4430 write_mhpmevent }, 4431 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4432 write_mhpmevent }, 4433 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4434 write_mhpmevent }, 4435 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4436 write_mhpmevent }, 4437 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4438 write_mhpmevent }, 4439 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4440 write_mhpmevent }, 4441 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4442 write_mhpmevent }, 4443 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4444 write_mhpmevent }, 4445 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4446 write_mhpmevent }, 4447 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4448 write_mhpmevent }, 4449 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4450 write_mhpmevent }, 4451 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4452 write_mhpmevent }, 4453 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4454 write_mhpmevent }, 4455 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4456 write_mhpmevent }, 4457 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4458 write_mhpmevent }, 4459 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4460 write_mhpmevent }, 4461 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4462 write_mhpmevent }, 4463 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4464 write_mhpmevent }, 4465 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4466 write_mhpmevent }, 4467 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4468 write_mhpmevent }, 4469 4470 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4471 write_mhpmeventh, 4472 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4473 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4474 write_mhpmeventh, 4475 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4476 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4477 write_mhpmeventh, 4478 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4479 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4480 write_mhpmeventh, 4481 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4482 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4483 write_mhpmeventh, 4484 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4485 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4486 write_mhpmeventh, 4487 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4488 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4489 write_mhpmeventh, 4490 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4491 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4492 write_mhpmeventh, 4493 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4494 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4495 write_mhpmeventh, 4496 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4497 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4498 write_mhpmeventh, 4499 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4500 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4501 write_mhpmeventh, 4502 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4503 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4504 write_mhpmeventh, 4505 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4506 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4507 write_mhpmeventh, 4508 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4509 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4510 write_mhpmeventh, 4511 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4512 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4513 write_mhpmeventh, 4514 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4515 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4516 write_mhpmeventh, 4517 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4518 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4519 write_mhpmeventh, 4520 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4521 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4522 write_mhpmeventh, 4523 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4524 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4525 write_mhpmeventh, 4526 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4527 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4528 write_mhpmeventh, 4529 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4530 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4531 write_mhpmeventh, 4532 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4533 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4534 write_mhpmeventh, 4535 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4536 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4537 write_mhpmeventh, 4538 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4539 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4540 write_mhpmeventh, 4541 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4542 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4543 write_mhpmeventh, 4544 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4545 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4546 write_mhpmeventh, 4547 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4548 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4549 write_mhpmeventh, 4550 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4551 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4552 write_mhpmeventh, 4553 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4554 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4555 write_mhpmeventh, 4556 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4557 4558 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4559 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4560 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4561 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4562 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4563 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4564 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4565 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4566 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4567 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4568 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4569 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4570 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4571 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4572 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4573 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4574 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4575 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4576 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4577 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4578 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4579 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4580 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4581 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4582 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4583 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4584 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4585 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4586 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4587 4588 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4589 write_mhpmcounterh }, 4590 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4591 write_mhpmcounterh }, 4592 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4593 write_mhpmcounterh }, 4594 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4595 write_mhpmcounterh }, 4596 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4597 write_mhpmcounterh }, 4598 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4599 write_mhpmcounterh }, 4600 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4601 write_mhpmcounterh }, 4602 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4603 write_mhpmcounterh }, 4604 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4605 write_mhpmcounterh }, 4606 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4607 write_mhpmcounterh }, 4608 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4609 write_mhpmcounterh }, 4610 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4611 write_mhpmcounterh }, 4612 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4613 write_mhpmcounterh }, 4614 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4615 write_mhpmcounterh }, 4616 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4617 write_mhpmcounterh }, 4618 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4619 write_mhpmcounterh }, 4620 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4621 write_mhpmcounterh }, 4622 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4623 write_mhpmcounterh }, 4624 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4625 write_mhpmcounterh }, 4626 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4627 write_mhpmcounterh }, 4628 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4629 write_mhpmcounterh }, 4630 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4631 write_mhpmcounterh }, 4632 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4633 write_mhpmcounterh }, 4634 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4635 write_mhpmcounterh }, 4636 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4637 write_mhpmcounterh }, 4638 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4639 write_mhpmcounterh }, 4640 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4641 write_mhpmcounterh }, 4642 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4643 write_mhpmcounterh }, 4644 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4645 write_mhpmcounterh }, 4646 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4647 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4648 4649 #endif /* !CONFIG_USER_ONLY */ 4650 }; 4651