1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "qemu/main-loop.h" 24 #include "exec/exec-all.h" 25 26 /* CSR function table public API */ 27 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 28 { 29 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 30 } 31 32 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 33 { 34 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 35 } 36 37 /* Predicates */ 38 static int fs(CPURISCVState *env, int csrno) 39 { 40 #if !defined(CONFIG_USER_ONLY) 41 /* loose check condition for fcsr in vector extension */ 42 if ((csrno == CSR_FCSR) && (env->misa & RVV)) { 43 return 0; 44 } 45 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 46 return -RISCV_EXCP_ILLEGAL_INST; 47 } 48 #endif 49 return 0; 50 } 51 52 static int vs(CPURISCVState *env, int csrno) 53 { 54 if (env->misa & RVV) { 55 return 0; 56 } 57 return -1; 58 } 59 60 static int ctr(CPURISCVState *env, int csrno) 61 { 62 #if !defined(CONFIG_USER_ONLY) 63 CPUState *cs = env_cpu(env); 64 RISCVCPU *cpu = RISCV_CPU(cs); 65 66 if (!cpu->cfg.ext_counters) { 67 /* The Counters extensions is not enabled */ 68 return -RISCV_EXCP_ILLEGAL_INST; 69 } 70 71 if (riscv_cpu_virt_enabled(env)) { 72 switch (csrno) { 73 case CSR_CYCLE: 74 if (!get_field(env->hcounteren, HCOUNTEREN_CY) && 75 get_field(env->mcounteren, HCOUNTEREN_CY)) { 76 return -RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 77 } 78 break; 79 case CSR_TIME: 80 if (!get_field(env->hcounteren, HCOUNTEREN_TM) && 81 get_field(env->mcounteren, HCOUNTEREN_TM)) { 82 return -RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 83 } 84 break; 85 case CSR_INSTRET: 86 if (!get_field(env->hcounteren, HCOUNTEREN_IR) && 87 get_field(env->mcounteren, HCOUNTEREN_IR)) { 88 return -RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 89 } 90 break; 91 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 92 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3)) && 93 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3))) { 94 return -RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 95 } 96 break; 97 } 98 if (riscv_cpu_is_32bit(env)) { 99 switch (csrno) { 100 case CSR_CYCLEH: 101 if (!get_field(env->hcounteren, HCOUNTEREN_CY) && 102 get_field(env->mcounteren, HCOUNTEREN_CY)) { 103 return -RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 104 } 105 break; 106 case CSR_TIMEH: 107 if (!get_field(env->hcounteren, HCOUNTEREN_TM) && 108 get_field(env->mcounteren, HCOUNTEREN_TM)) { 109 return -RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 110 } 111 break; 112 case CSR_INSTRETH: 113 if (!get_field(env->hcounteren, HCOUNTEREN_IR) && 114 get_field(env->mcounteren, HCOUNTEREN_IR)) { 115 return -RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 116 } 117 break; 118 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 119 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3H)) && 120 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3H))) { 121 return -RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 122 } 123 break; 124 } 125 } 126 } 127 #endif 128 return 0; 129 } 130 131 static int ctr32(CPURISCVState *env, int csrno) 132 { 133 if (!riscv_cpu_is_32bit(env)) { 134 return -RISCV_EXCP_ILLEGAL_INST; 135 } 136 137 return ctr(env, csrno); 138 } 139 140 #if !defined(CONFIG_USER_ONLY) 141 static int any(CPURISCVState *env, int csrno) 142 { 143 return 0; 144 } 145 146 static int any32(CPURISCVState *env, int csrno) 147 { 148 if (!riscv_cpu_is_32bit(env)) { 149 return -RISCV_EXCP_ILLEGAL_INST; 150 } 151 152 return any(env, csrno); 153 154 } 155 156 static int smode(CPURISCVState *env, int csrno) 157 { 158 return -!riscv_has_ext(env, RVS); 159 } 160 161 static int hmode(CPURISCVState *env, int csrno) 162 { 163 if (riscv_has_ext(env, RVS) && 164 riscv_has_ext(env, RVH)) { 165 /* Hypervisor extension is supported */ 166 if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 167 env->priv == PRV_M) { 168 return 0; 169 } else { 170 return -RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 171 } 172 } 173 174 return -RISCV_EXCP_ILLEGAL_INST; 175 } 176 177 static int hmode32(CPURISCVState *env, int csrno) 178 { 179 if (!riscv_cpu_is_32bit(env)) { 180 return 0; 181 } 182 183 return hmode(env, csrno); 184 185 } 186 187 static int pmp(CPURISCVState *env, int csrno) 188 { 189 return -!riscv_feature(env, RISCV_FEATURE_PMP); 190 } 191 #endif 192 193 /* User Floating-Point CSRs */ 194 static int read_fflags(CPURISCVState *env, int csrno, target_ulong *val) 195 { 196 #if !defined(CONFIG_USER_ONLY) 197 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 198 return -RISCV_EXCP_ILLEGAL_INST; 199 } 200 #endif 201 *val = riscv_cpu_get_fflags(env); 202 return 0; 203 } 204 205 static int write_fflags(CPURISCVState *env, int csrno, target_ulong val) 206 { 207 #if !defined(CONFIG_USER_ONLY) 208 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 209 return -RISCV_EXCP_ILLEGAL_INST; 210 } 211 env->mstatus |= MSTATUS_FS; 212 #endif 213 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 214 return 0; 215 } 216 217 static int read_frm(CPURISCVState *env, int csrno, target_ulong *val) 218 { 219 #if !defined(CONFIG_USER_ONLY) 220 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 221 return -RISCV_EXCP_ILLEGAL_INST; 222 } 223 #endif 224 *val = env->frm; 225 return 0; 226 } 227 228 static int write_frm(CPURISCVState *env, int csrno, target_ulong val) 229 { 230 #if !defined(CONFIG_USER_ONLY) 231 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 232 return -RISCV_EXCP_ILLEGAL_INST; 233 } 234 env->mstatus |= MSTATUS_FS; 235 #endif 236 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 237 return 0; 238 } 239 240 static int read_fcsr(CPURISCVState *env, int csrno, target_ulong *val) 241 { 242 #if !defined(CONFIG_USER_ONLY) 243 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 244 return -RISCV_EXCP_ILLEGAL_INST; 245 } 246 #endif 247 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 248 | (env->frm << FSR_RD_SHIFT); 249 if (vs(env, csrno) >= 0) { 250 *val |= (env->vxrm << FSR_VXRM_SHIFT) 251 | (env->vxsat << FSR_VXSAT_SHIFT); 252 } 253 return 0; 254 } 255 256 static int write_fcsr(CPURISCVState *env, int csrno, target_ulong val) 257 { 258 #if !defined(CONFIG_USER_ONLY) 259 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 260 return -RISCV_EXCP_ILLEGAL_INST; 261 } 262 env->mstatus |= MSTATUS_FS; 263 #endif 264 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 265 if (vs(env, csrno) >= 0) { 266 env->vxrm = (val & FSR_VXRM) >> FSR_VXRM_SHIFT; 267 env->vxsat = (val & FSR_VXSAT) >> FSR_VXSAT_SHIFT; 268 } 269 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 270 return 0; 271 } 272 273 static int read_vtype(CPURISCVState *env, int csrno, target_ulong *val) 274 { 275 *val = env->vtype; 276 return 0; 277 } 278 279 static int read_vl(CPURISCVState *env, int csrno, target_ulong *val) 280 { 281 *val = env->vl; 282 return 0; 283 } 284 285 static int read_vxrm(CPURISCVState *env, int csrno, target_ulong *val) 286 { 287 *val = env->vxrm; 288 return 0; 289 } 290 291 static int write_vxrm(CPURISCVState *env, int csrno, target_ulong val) 292 { 293 env->vxrm = val; 294 return 0; 295 } 296 297 static int read_vxsat(CPURISCVState *env, int csrno, target_ulong *val) 298 { 299 *val = env->vxsat; 300 return 0; 301 } 302 303 static int write_vxsat(CPURISCVState *env, int csrno, target_ulong val) 304 { 305 env->vxsat = val; 306 return 0; 307 } 308 309 static int read_vstart(CPURISCVState *env, int csrno, target_ulong *val) 310 { 311 *val = env->vstart; 312 return 0; 313 } 314 315 static int write_vstart(CPURISCVState *env, int csrno, target_ulong val) 316 { 317 env->vstart = val; 318 return 0; 319 } 320 321 /* User Timers and Counters */ 322 static int read_instret(CPURISCVState *env, int csrno, target_ulong *val) 323 { 324 #if !defined(CONFIG_USER_ONLY) 325 if (icount_enabled()) { 326 *val = icount_get(); 327 } else { 328 *val = cpu_get_host_ticks(); 329 } 330 #else 331 *val = cpu_get_host_ticks(); 332 #endif 333 return 0; 334 } 335 336 static int read_instreth(CPURISCVState *env, int csrno, target_ulong *val) 337 { 338 #if !defined(CONFIG_USER_ONLY) 339 if (icount_enabled()) { 340 *val = icount_get() >> 32; 341 } else { 342 *val = cpu_get_host_ticks() >> 32; 343 } 344 #else 345 *val = cpu_get_host_ticks() >> 32; 346 #endif 347 return 0; 348 } 349 350 #if defined(CONFIG_USER_ONLY) 351 static int read_time(CPURISCVState *env, int csrno, target_ulong *val) 352 { 353 *val = cpu_get_host_ticks(); 354 return 0; 355 } 356 357 static int read_timeh(CPURISCVState *env, int csrno, target_ulong *val) 358 { 359 *val = cpu_get_host_ticks() >> 32; 360 return 0; 361 } 362 363 #else /* CONFIG_USER_ONLY */ 364 365 static int read_time(CPURISCVState *env, int csrno, target_ulong *val) 366 { 367 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 368 369 if (!env->rdtime_fn) { 370 return -RISCV_EXCP_ILLEGAL_INST; 371 } 372 373 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 374 return 0; 375 } 376 377 static int read_timeh(CPURISCVState *env, int csrno, target_ulong *val) 378 { 379 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 380 381 if (!env->rdtime_fn) { 382 return -RISCV_EXCP_ILLEGAL_INST; 383 } 384 385 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 386 return 0; 387 } 388 389 /* Machine constants */ 390 391 #define M_MODE_INTERRUPTS (MIP_MSIP | MIP_MTIP | MIP_MEIP) 392 #define S_MODE_INTERRUPTS (MIP_SSIP | MIP_STIP | MIP_SEIP) 393 #define VS_MODE_INTERRUPTS (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP) 394 395 static const target_ulong delegable_ints = S_MODE_INTERRUPTS | 396 VS_MODE_INTERRUPTS; 397 static const target_ulong all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 398 VS_MODE_INTERRUPTS; 399 static const target_ulong delegable_excps = 400 (1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | 401 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | 402 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | 403 (1ULL << (RISCV_EXCP_BREAKPOINT)) | 404 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | 405 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | 406 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | 407 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | 408 (1ULL << (RISCV_EXCP_U_ECALL)) | 409 (1ULL << (RISCV_EXCP_S_ECALL)) | 410 (1ULL << (RISCV_EXCP_VS_ECALL)) | 411 (1ULL << (RISCV_EXCP_M_ECALL)) | 412 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | 413 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | 414 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | 415 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 416 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 417 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 418 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)); 419 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 420 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 421 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_SD; 422 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP; 423 static const target_ulong hip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 424 static const target_ulong vsip_writable_mask = MIP_VSSIP; 425 426 static const char valid_vm_1_10_32[16] = { 427 [VM_1_10_MBARE] = 1, 428 [VM_1_10_SV32] = 1 429 }; 430 431 static const char valid_vm_1_10_64[16] = { 432 [VM_1_10_MBARE] = 1, 433 [VM_1_10_SV39] = 1, 434 [VM_1_10_SV48] = 1, 435 [VM_1_10_SV57] = 1 436 }; 437 438 /* Machine Information Registers */ 439 static int read_zero(CPURISCVState *env, int csrno, target_ulong *val) 440 { 441 return *val = 0; 442 } 443 444 static int read_mhartid(CPURISCVState *env, int csrno, target_ulong *val) 445 { 446 *val = env->mhartid; 447 return 0; 448 } 449 450 /* Machine Trap Setup */ 451 static int read_mstatus(CPURISCVState *env, int csrno, target_ulong *val) 452 { 453 *val = env->mstatus; 454 return 0; 455 } 456 457 static int validate_vm(CPURISCVState *env, target_ulong vm) 458 { 459 if (riscv_cpu_is_32bit(env)) { 460 return valid_vm_1_10_32[vm & 0xf]; 461 } else { 462 return valid_vm_1_10_64[vm & 0xf]; 463 } 464 } 465 466 static int write_mstatus(CPURISCVState *env, int csrno, target_ulong val) 467 { 468 uint64_t mstatus = env->mstatus; 469 uint64_t mask = 0; 470 int dirty; 471 472 /* flush tlb on mstatus fields that affect VM */ 473 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 474 MSTATUS_MPRV | MSTATUS_SUM)) { 475 tlb_flush(env_cpu(env)); 476 } 477 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 478 MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM | 479 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 480 MSTATUS_TW; 481 482 if (!riscv_cpu_is_32bit(env)) { 483 /* 484 * RV32: MPV and GVA are not in mstatus. The current plan is to 485 * add them to mstatush. For now, we just don't support it. 486 */ 487 mask |= MSTATUS_MPV | MSTATUS_GVA; 488 } 489 490 mstatus = (mstatus & ~mask) | (val & mask); 491 492 dirty = ((mstatus & MSTATUS_FS) == MSTATUS_FS) | 493 ((mstatus & MSTATUS_XS) == MSTATUS_XS); 494 mstatus = set_field(mstatus, MSTATUS_SD, dirty); 495 env->mstatus = mstatus; 496 497 return 0; 498 } 499 500 static int read_mstatush(CPURISCVState *env, int csrno, target_ulong *val) 501 { 502 *val = env->mstatus >> 32; 503 return 0; 504 } 505 506 static int write_mstatush(CPURISCVState *env, int csrno, target_ulong val) 507 { 508 uint64_t valh = (uint64_t)val << 32; 509 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 510 511 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 512 tlb_flush(env_cpu(env)); 513 } 514 515 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 516 517 return 0; 518 } 519 520 static int read_misa(CPURISCVState *env, int csrno, target_ulong *val) 521 { 522 *val = env->misa; 523 return 0; 524 } 525 526 static int write_misa(CPURISCVState *env, int csrno, target_ulong val) 527 { 528 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 529 /* drop write to misa */ 530 return 0; 531 } 532 533 /* 'I' or 'E' must be present */ 534 if (!(val & (RVI | RVE))) { 535 /* It is not, drop write to misa */ 536 return 0; 537 } 538 539 /* 'E' excludes all other extensions */ 540 if (val & RVE) { 541 /* when we support 'E' we can do "val = RVE;" however 542 * for now we just drop writes if 'E' is present. 543 */ 544 return 0; 545 } 546 547 /* Mask extensions that are not supported by this hart */ 548 val &= env->misa_mask; 549 550 /* Mask extensions that are not supported by QEMU */ 551 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU); 552 553 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 554 if ((val & RVD) && !(val & RVF)) { 555 val &= ~RVD; 556 } 557 558 /* Suppress 'C' if next instruction is not aligned 559 * TODO: this should check next_pc 560 */ 561 if ((val & RVC) && (GETPC() & ~3) != 0) { 562 val &= ~RVC; 563 } 564 565 /* misa.MXL writes are not supported by QEMU */ 566 val = (env->misa & MISA_MXL) | (val & ~MISA_MXL); 567 568 /* flush translation cache */ 569 if (val != env->misa) { 570 tb_flush(env_cpu(env)); 571 } 572 573 env->misa = val; 574 575 return 0; 576 } 577 578 static int read_medeleg(CPURISCVState *env, int csrno, target_ulong *val) 579 { 580 *val = env->medeleg; 581 return 0; 582 } 583 584 static int write_medeleg(CPURISCVState *env, int csrno, target_ulong val) 585 { 586 env->medeleg = (env->medeleg & ~delegable_excps) | (val & delegable_excps); 587 return 0; 588 } 589 590 static int read_mideleg(CPURISCVState *env, int csrno, target_ulong *val) 591 { 592 *val = env->mideleg; 593 return 0; 594 } 595 596 static int write_mideleg(CPURISCVState *env, int csrno, target_ulong val) 597 { 598 env->mideleg = (env->mideleg & ~delegable_ints) | (val & delegable_ints); 599 if (riscv_has_ext(env, RVH)) { 600 env->mideleg |= VS_MODE_INTERRUPTS; 601 } 602 return 0; 603 } 604 605 static int read_mie(CPURISCVState *env, int csrno, target_ulong *val) 606 { 607 *val = env->mie; 608 return 0; 609 } 610 611 static int write_mie(CPURISCVState *env, int csrno, target_ulong val) 612 { 613 env->mie = (env->mie & ~all_ints) | (val & all_ints); 614 return 0; 615 } 616 617 static int read_mtvec(CPURISCVState *env, int csrno, target_ulong *val) 618 { 619 *val = env->mtvec; 620 return 0; 621 } 622 623 static int write_mtvec(CPURISCVState *env, int csrno, target_ulong val) 624 { 625 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 626 if ((val & 3) < 2) { 627 env->mtvec = val; 628 } else { 629 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 630 } 631 return 0; 632 } 633 634 static int read_mcounteren(CPURISCVState *env, int csrno, target_ulong *val) 635 { 636 *val = env->mcounteren; 637 return 0; 638 } 639 640 static int write_mcounteren(CPURISCVState *env, int csrno, target_ulong val) 641 { 642 env->mcounteren = val; 643 return 0; 644 } 645 646 /* This regiser is replaced with CSR_MCOUNTINHIBIT in 1.11.0 */ 647 static int read_mscounteren(CPURISCVState *env, int csrno, target_ulong *val) 648 { 649 if (env->priv_ver < PRIV_VERSION_1_11_0) { 650 return -RISCV_EXCP_ILLEGAL_INST; 651 } 652 *val = env->mcounteren; 653 return 0; 654 } 655 656 /* This regiser is replaced with CSR_MCOUNTINHIBIT in 1.11.0 */ 657 static int write_mscounteren(CPURISCVState *env, int csrno, target_ulong val) 658 { 659 if (env->priv_ver < PRIV_VERSION_1_11_0) { 660 return -RISCV_EXCP_ILLEGAL_INST; 661 } 662 env->mcounteren = val; 663 return 0; 664 } 665 666 /* Machine Trap Handling */ 667 static int read_mscratch(CPURISCVState *env, int csrno, target_ulong *val) 668 { 669 *val = env->mscratch; 670 return 0; 671 } 672 673 static int write_mscratch(CPURISCVState *env, int csrno, target_ulong val) 674 { 675 env->mscratch = val; 676 return 0; 677 } 678 679 static int read_mepc(CPURISCVState *env, int csrno, target_ulong *val) 680 { 681 *val = env->mepc; 682 return 0; 683 } 684 685 static int write_mepc(CPURISCVState *env, int csrno, target_ulong val) 686 { 687 env->mepc = val; 688 return 0; 689 } 690 691 static int read_mcause(CPURISCVState *env, int csrno, target_ulong *val) 692 { 693 *val = env->mcause; 694 return 0; 695 } 696 697 static int write_mcause(CPURISCVState *env, int csrno, target_ulong val) 698 { 699 env->mcause = val; 700 return 0; 701 } 702 703 static int read_mbadaddr(CPURISCVState *env, int csrno, target_ulong *val) 704 { 705 *val = env->mbadaddr; 706 return 0; 707 } 708 709 static int write_mbadaddr(CPURISCVState *env, int csrno, target_ulong val) 710 { 711 env->mbadaddr = val; 712 return 0; 713 } 714 715 static int rmw_mip(CPURISCVState *env, int csrno, target_ulong *ret_value, 716 target_ulong new_value, target_ulong write_mask) 717 { 718 RISCVCPU *cpu = env_archcpu(env); 719 /* Allow software control of delegable interrupts not claimed by hardware */ 720 target_ulong mask = write_mask & delegable_ints & ~env->miclaim; 721 uint32_t old_mip; 722 723 if (mask) { 724 old_mip = riscv_cpu_update_mip(cpu, mask, (new_value & mask)); 725 } else { 726 old_mip = env->mip; 727 } 728 729 if (ret_value) { 730 *ret_value = old_mip; 731 } 732 733 return 0; 734 } 735 736 /* Supervisor Trap Setup */ 737 static int read_sstatus(CPURISCVState *env, int csrno, target_ulong *val) 738 { 739 target_ulong mask = (sstatus_v1_10_mask); 740 *val = env->mstatus & mask; 741 return 0; 742 } 743 744 static int write_sstatus(CPURISCVState *env, int csrno, target_ulong val) 745 { 746 target_ulong mask = (sstatus_v1_10_mask); 747 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 748 return write_mstatus(env, CSR_MSTATUS, newval); 749 } 750 751 static int read_sie(CPURISCVState *env, int csrno, target_ulong *val) 752 { 753 if (riscv_cpu_virt_enabled(env)) { 754 /* Tell the guest the VS bits, shifted to the S bit locations */ 755 *val = (env->mie & env->mideleg & VS_MODE_INTERRUPTS) >> 1; 756 } else { 757 *val = env->mie & env->mideleg; 758 } 759 return 0; 760 } 761 762 static int write_sie(CPURISCVState *env, int csrno, target_ulong val) 763 { 764 target_ulong newval; 765 766 if (riscv_cpu_virt_enabled(env)) { 767 /* Shift the guests S bits to VS */ 768 newval = (env->mie & ~VS_MODE_INTERRUPTS) | 769 ((val << 1) & VS_MODE_INTERRUPTS); 770 } else { 771 newval = (env->mie & ~S_MODE_INTERRUPTS) | (val & S_MODE_INTERRUPTS); 772 } 773 774 return write_mie(env, CSR_MIE, newval); 775 } 776 777 static int read_stvec(CPURISCVState *env, int csrno, target_ulong *val) 778 { 779 *val = env->stvec; 780 return 0; 781 } 782 783 static int write_stvec(CPURISCVState *env, int csrno, target_ulong val) 784 { 785 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 786 if ((val & 3) < 2) { 787 env->stvec = val; 788 } else { 789 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 790 } 791 return 0; 792 } 793 794 static int read_scounteren(CPURISCVState *env, int csrno, target_ulong *val) 795 { 796 *val = env->scounteren; 797 return 0; 798 } 799 800 static int write_scounteren(CPURISCVState *env, int csrno, target_ulong val) 801 { 802 env->scounteren = val; 803 return 0; 804 } 805 806 /* Supervisor Trap Handling */ 807 static int read_sscratch(CPURISCVState *env, int csrno, target_ulong *val) 808 { 809 *val = env->sscratch; 810 return 0; 811 } 812 813 static int write_sscratch(CPURISCVState *env, int csrno, target_ulong val) 814 { 815 env->sscratch = val; 816 return 0; 817 } 818 819 static int read_sepc(CPURISCVState *env, int csrno, target_ulong *val) 820 { 821 *val = env->sepc; 822 return 0; 823 } 824 825 static int write_sepc(CPURISCVState *env, int csrno, target_ulong val) 826 { 827 env->sepc = val; 828 return 0; 829 } 830 831 static int read_scause(CPURISCVState *env, int csrno, target_ulong *val) 832 { 833 *val = env->scause; 834 return 0; 835 } 836 837 static int write_scause(CPURISCVState *env, int csrno, target_ulong val) 838 { 839 env->scause = val; 840 return 0; 841 } 842 843 static int read_sbadaddr(CPURISCVState *env, int csrno, target_ulong *val) 844 { 845 *val = env->sbadaddr; 846 return 0; 847 } 848 849 static int write_sbadaddr(CPURISCVState *env, int csrno, target_ulong val) 850 { 851 env->sbadaddr = val; 852 return 0; 853 } 854 855 static int rmw_sip(CPURISCVState *env, int csrno, target_ulong *ret_value, 856 target_ulong new_value, target_ulong write_mask) 857 { 858 int ret; 859 860 if (riscv_cpu_virt_enabled(env)) { 861 /* Shift the new values to line up with the VS bits */ 862 ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value << 1, 863 (write_mask & sip_writable_mask) << 1 & env->mideleg); 864 ret &= vsip_writable_mask; 865 ret >>= 1; 866 } else { 867 ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value, 868 write_mask & env->mideleg & sip_writable_mask); 869 } 870 871 *ret_value &= env->mideleg; 872 return ret; 873 } 874 875 /* Supervisor Protection and Translation */ 876 static int read_satp(CPURISCVState *env, int csrno, target_ulong *val) 877 { 878 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 879 *val = 0; 880 return 0; 881 } 882 883 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 884 return -RISCV_EXCP_ILLEGAL_INST; 885 } else { 886 *val = env->satp; 887 } 888 889 return 0; 890 } 891 892 static int write_satp(CPURISCVState *env, int csrno, target_ulong val) 893 { 894 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 895 return 0; 896 } 897 if (validate_vm(env, get_field(val, SATP_MODE)) && 898 ((val ^ env->satp) & (SATP_MODE | SATP_ASID | SATP_PPN))) 899 { 900 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 901 return -RISCV_EXCP_ILLEGAL_INST; 902 } else { 903 if ((val ^ env->satp) & SATP_ASID) { 904 tlb_flush(env_cpu(env)); 905 } 906 env->satp = val; 907 } 908 } 909 return 0; 910 } 911 912 /* Hypervisor Extensions */ 913 static int read_hstatus(CPURISCVState *env, int csrno, target_ulong *val) 914 { 915 *val = env->hstatus; 916 if (!riscv_cpu_is_32bit(env)) { 917 /* We only support 64-bit VSXL */ 918 *val = set_field(*val, HSTATUS_VSXL, 2); 919 } 920 /* We only support little endian */ 921 *val = set_field(*val, HSTATUS_VSBE, 0); 922 return 0; 923 } 924 925 static int write_hstatus(CPURISCVState *env, int csrno, target_ulong val) 926 { 927 env->hstatus = val; 928 if (!riscv_cpu_is_32bit(env) && get_field(val, HSTATUS_VSXL) != 2) { 929 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 930 } 931 if (get_field(val, HSTATUS_VSBE) != 0) { 932 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 933 } 934 return 0; 935 } 936 937 static int read_hedeleg(CPURISCVState *env, int csrno, target_ulong *val) 938 { 939 *val = env->hedeleg; 940 return 0; 941 } 942 943 static int write_hedeleg(CPURISCVState *env, int csrno, target_ulong val) 944 { 945 env->hedeleg = val; 946 return 0; 947 } 948 949 static int read_hideleg(CPURISCVState *env, int csrno, target_ulong *val) 950 { 951 *val = env->hideleg; 952 return 0; 953 } 954 955 static int write_hideleg(CPURISCVState *env, int csrno, target_ulong val) 956 { 957 env->hideleg = val; 958 return 0; 959 } 960 961 static int rmw_hvip(CPURISCVState *env, int csrno, target_ulong *ret_value, 962 target_ulong new_value, target_ulong write_mask) 963 { 964 int ret = rmw_mip(env, 0, ret_value, new_value, 965 write_mask & hip_writable_mask); 966 967 *ret_value &= hip_writable_mask; 968 969 return ret; 970 } 971 972 static int rmw_hip(CPURISCVState *env, int csrno, target_ulong *ret_value, 973 target_ulong new_value, target_ulong write_mask) 974 { 975 int ret = rmw_mip(env, 0, ret_value, new_value, 976 write_mask & hip_writable_mask); 977 978 *ret_value &= hip_writable_mask; 979 980 return ret; 981 } 982 983 static int read_hie(CPURISCVState *env, int csrno, target_ulong *val) 984 { 985 *val = env->mie & VS_MODE_INTERRUPTS; 986 return 0; 987 } 988 989 static int write_hie(CPURISCVState *env, int csrno, target_ulong val) 990 { 991 target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | (val & VS_MODE_INTERRUPTS); 992 return write_mie(env, CSR_MIE, newval); 993 } 994 995 static int read_hcounteren(CPURISCVState *env, int csrno, target_ulong *val) 996 { 997 *val = env->hcounteren; 998 return 0; 999 } 1000 1001 static int write_hcounteren(CPURISCVState *env, int csrno, target_ulong val) 1002 { 1003 env->hcounteren = val; 1004 return 0; 1005 } 1006 1007 static int read_hgeie(CPURISCVState *env, int csrno, target_ulong *val) 1008 { 1009 qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN."); 1010 return 0; 1011 } 1012 1013 static int write_hgeie(CPURISCVState *env, int csrno, target_ulong val) 1014 { 1015 qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN."); 1016 return 0; 1017 } 1018 1019 static int read_htval(CPURISCVState *env, int csrno, target_ulong *val) 1020 { 1021 *val = env->htval; 1022 return 0; 1023 } 1024 1025 static int write_htval(CPURISCVState *env, int csrno, target_ulong val) 1026 { 1027 env->htval = val; 1028 return 0; 1029 } 1030 1031 static int read_htinst(CPURISCVState *env, int csrno, target_ulong *val) 1032 { 1033 *val = env->htinst; 1034 return 0; 1035 } 1036 1037 static int write_htinst(CPURISCVState *env, int csrno, target_ulong val) 1038 { 1039 return 0; 1040 } 1041 1042 static int read_hgeip(CPURISCVState *env, int csrno, target_ulong *val) 1043 { 1044 qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN."); 1045 return 0; 1046 } 1047 1048 static int write_hgeip(CPURISCVState *env, int csrno, target_ulong val) 1049 { 1050 qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN."); 1051 return 0; 1052 } 1053 1054 static int read_hgatp(CPURISCVState *env, int csrno, target_ulong *val) 1055 { 1056 *val = env->hgatp; 1057 return 0; 1058 } 1059 1060 static int write_hgatp(CPURISCVState *env, int csrno, target_ulong val) 1061 { 1062 env->hgatp = val; 1063 return 0; 1064 } 1065 1066 static int read_htimedelta(CPURISCVState *env, int csrno, target_ulong *val) 1067 { 1068 if (!env->rdtime_fn) { 1069 return -RISCV_EXCP_ILLEGAL_INST; 1070 } 1071 1072 *val = env->htimedelta; 1073 return 0; 1074 } 1075 1076 static int write_htimedelta(CPURISCVState *env, int csrno, target_ulong val) 1077 { 1078 if (!env->rdtime_fn) { 1079 return -RISCV_EXCP_ILLEGAL_INST; 1080 } 1081 1082 if (riscv_cpu_is_32bit(env)) { 1083 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 1084 } else { 1085 env->htimedelta = val; 1086 } 1087 return 0; 1088 } 1089 1090 static int read_htimedeltah(CPURISCVState *env, int csrno, target_ulong *val) 1091 { 1092 if (!env->rdtime_fn) { 1093 return -RISCV_EXCP_ILLEGAL_INST; 1094 } 1095 1096 *val = env->htimedelta >> 32; 1097 return 0; 1098 } 1099 1100 static int write_htimedeltah(CPURISCVState *env, int csrno, target_ulong val) 1101 { 1102 if (!env->rdtime_fn) { 1103 return -RISCV_EXCP_ILLEGAL_INST; 1104 } 1105 1106 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 1107 return 0; 1108 } 1109 1110 /* Virtual CSR Registers */ 1111 static int read_vsstatus(CPURISCVState *env, int csrno, target_ulong *val) 1112 { 1113 *val = env->vsstatus; 1114 return 0; 1115 } 1116 1117 static int write_vsstatus(CPURISCVState *env, int csrno, target_ulong val) 1118 { 1119 uint64_t mask = (target_ulong)-1; 1120 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 1121 return 0; 1122 } 1123 1124 static int rmw_vsip(CPURISCVState *env, int csrno, target_ulong *ret_value, 1125 target_ulong new_value, target_ulong write_mask) 1126 { 1127 int ret = rmw_mip(env, 0, ret_value, new_value, 1128 write_mask & env->mideleg & vsip_writable_mask); 1129 return ret; 1130 } 1131 1132 static int read_vsie(CPURISCVState *env, int csrno, target_ulong *val) 1133 { 1134 *val = env->mie & env->mideleg & VS_MODE_INTERRUPTS; 1135 return 0; 1136 } 1137 1138 static int write_vsie(CPURISCVState *env, int csrno, target_ulong val) 1139 { 1140 target_ulong newval = (env->mie & ~env->mideleg) | (val & env->mideleg & MIP_VSSIP); 1141 return write_mie(env, CSR_MIE, newval); 1142 } 1143 1144 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 1145 { 1146 *val = env->vstvec; 1147 return 0; 1148 } 1149 1150 static int write_vstvec(CPURISCVState *env, int csrno, target_ulong val) 1151 { 1152 env->vstvec = val; 1153 return 0; 1154 } 1155 1156 static int read_vsscratch(CPURISCVState *env, int csrno, target_ulong *val) 1157 { 1158 *val = env->vsscratch; 1159 return 0; 1160 } 1161 1162 static int write_vsscratch(CPURISCVState *env, int csrno, target_ulong val) 1163 { 1164 env->vsscratch = val; 1165 return 0; 1166 } 1167 1168 static int read_vsepc(CPURISCVState *env, int csrno, target_ulong *val) 1169 { 1170 *val = env->vsepc; 1171 return 0; 1172 } 1173 1174 static int write_vsepc(CPURISCVState *env, int csrno, target_ulong val) 1175 { 1176 env->vsepc = val; 1177 return 0; 1178 } 1179 1180 static int read_vscause(CPURISCVState *env, int csrno, target_ulong *val) 1181 { 1182 *val = env->vscause; 1183 return 0; 1184 } 1185 1186 static int write_vscause(CPURISCVState *env, int csrno, target_ulong val) 1187 { 1188 env->vscause = val; 1189 return 0; 1190 } 1191 1192 static int read_vstval(CPURISCVState *env, int csrno, target_ulong *val) 1193 { 1194 *val = env->vstval; 1195 return 0; 1196 } 1197 1198 static int write_vstval(CPURISCVState *env, int csrno, target_ulong val) 1199 { 1200 env->vstval = val; 1201 return 0; 1202 } 1203 1204 static int read_vsatp(CPURISCVState *env, int csrno, target_ulong *val) 1205 { 1206 *val = env->vsatp; 1207 return 0; 1208 } 1209 1210 static int write_vsatp(CPURISCVState *env, int csrno, target_ulong val) 1211 { 1212 env->vsatp = val; 1213 return 0; 1214 } 1215 1216 static int read_mtval2(CPURISCVState *env, int csrno, target_ulong *val) 1217 { 1218 *val = env->mtval2; 1219 return 0; 1220 } 1221 1222 static int write_mtval2(CPURISCVState *env, int csrno, target_ulong val) 1223 { 1224 env->mtval2 = val; 1225 return 0; 1226 } 1227 1228 static int read_mtinst(CPURISCVState *env, int csrno, target_ulong *val) 1229 { 1230 *val = env->mtinst; 1231 return 0; 1232 } 1233 1234 static int write_mtinst(CPURISCVState *env, int csrno, target_ulong val) 1235 { 1236 env->mtinst = val; 1237 return 0; 1238 } 1239 1240 /* Physical Memory Protection */ 1241 static int read_pmpcfg(CPURISCVState *env, int csrno, target_ulong *val) 1242 { 1243 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 1244 return 0; 1245 } 1246 1247 static int write_pmpcfg(CPURISCVState *env, int csrno, target_ulong val) 1248 { 1249 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 1250 return 0; 1251 } 1252 1253 static int read_pmpaddr(CPURISCVState *env, int csrno, target_ulong *val) 1254 { 1255 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 1256 return 0; 1257 } 1258 1259 static int write_pmpaddr(CPURISCVState *env, int csrno, target_ulong val) 1260 { 1261 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 1262 return 0; 1263 } 1264 1265 #endif 1266 1267 /* 1268 * riscv_csrrw - read and/or update control and status register 1269 * 1270 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 1271 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 1272 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 1273 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 1274 */ 1275 1276 int riscv_csrrw(CPURISCVState *env, int csrno, target_ulong *ret_value, 1277 target_ulong new_value, target_ulong write_mask) 1278 { 1279 int ret; 1280 target_ulong old_value; 1281 RISCVCPU *cpu = env_archcpu(env); 1282 1283 /* check privileges and return -1 if check fails */ 1284 #if !defined(CONFIG_USER_ONLY) 1285 int effective_priv = env->priv; 1286 int read_only = get_field(csrno, 0xC00) == 3; 1287 1288 if (riscv_has_ext(env, RVH) && 1289 env->priv == PRV_S && 1290 !riscv_cpu_virt_enabled(env)) { 1291 /* 1292 * We are in S mode without virtualisation, therefore we are in HS Mode. 1293 * Add 1 to the effective privledge level to allow us to access the 1294 * Hypervisor CSRs. 1295 */ 1296 effective_priv++; 1297 } 1298 1299 if ((write_mask && read_only) || 1300 (!env->debugger && (effective_priv < get_field(csrno, 0x300)))) { 1301 return -RISCV_EXCP_ILLEGAL_INST; 1302 } 1303 #endif 1304 1305 /* ensure the CSR extension is enabled. */ 1306 if (!cpu->cfg.ext_icsr) { 1307 return -RISCV_EXCP_ILLEGAL_INST; 1308 } 1309 1310 /* check predicate */ 1311 if (!csr_ops[csrno].predicate) { 1312 return -RISCV_EXCP_ILLEGAL_INST; 1313 } 1314 ret = csr_ops[csrno].predicate(env, csrno); 1315 if (ret < 0) { 1316 return ret; 1317 } 1318 1319 /* execute combined read/write operation if it exists */ 1320 if (csr_ops[csrno].op) { 1321 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 1322 } 1323 1324 /* if no accessor exists then return failure */ 1325 if (!csr_ops[csrno].read) { 1326 return -RISCV_EXCP_ILLEGAL_INST; 1327 } 1328 1329 /* read old value */ 1330 ret = csr_ops[csrno].read(env, csrno, &old_value); 1331 if (ret < 0) { 1332 return ret; 1333 } 1334 1335 /* write value if writable and write mask set, otherwise drop writes */ 1336 if (write_mask) { 1337 new_value = (old_value & ~write_mask) | (new_value & write_mask); 1338 if (csr_ops[csrno].write) { 1339 ret = csr_ops[csrno].write(env, csrno, new_value); 1340 if (ret < 0) { 1341 return ret; 1342 } 1343 } 1344 } 1345 1346 /* return old value */ 1347 if (ret_value) { 1348 *ret_value = old_value; 1349 } 1350 1351 return 0; 1352 } 1353 1354 /* 1355 * Debugger support. If not in user mode, set env->debugger before the 1356 * riscv_csrrw call and clear it after the call. 1357 */ 1358 int riscv_csrrw_debug(CPURISCVState *env, int csrno, target_ulong *ret_value, 1359 target_ulong new_value, target_ulong write_mask) 1360 { 1361 int ret; 1362 #if !defined(CONFIG_USER_ONLY) 1363 env->debugger = true; 1364 #endif 1365 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 1366 #if !defined(CONFIG_USER_ONLY) 1367 env->debugger = false; 1368 #endif 1369 return ret; 1370 } 1371 1372 /* Control and Status Register function table */ 1373 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 1374 /* User Floating-Point CSRs */ 1375 [CSR_FFLAGS] = { fs, read_fflags, write_fflags }, 1376 [CSR_FRM] = { fs, read_frm, write_frm }, 1377 [CSR_FCSR] = { fs, read_fcsr, write_fcsr }, 1378 /* Vector CSRs */ 1379 [CSR_VSTART] = { vs, read_vstart, write_vstart }, 1380 [CSR_VXSAT] = { vs, read_vxsat, write_vxsat }, 1381 [CSR_VXRM] = { vs, read_vxrm, write_vxrm }, 1382 [CSR_VL] = { vs, read_vl }, 1383 [CSR_VTYPE] = { vs, read_vtype }, 1384 /* User Timers and Counters */ 1385 [CSR_CYCLE] = { ctr, read_instret }, 1386 [CSR_INSTRET] = { ctr, read_instret }, 1387 [CSR_CYCLEH] = { ctr32, read_instreth }, 1388 [CSR_INSTRETH] = { ctr32, read_instreth }, 1389 1390 /* In privileged mode, the monitor will have to emulate TIME CSRs only if 1391 * rdtime callback is not provided by machine/platform emulation */ 1392 [CSR_TIME] = { ctr, read_time }, 1393 [CSR_TIMEH] = { ctr32, read_timeh }, 1394 1395 #if !defined(CONFIG_USER_ONLY) 1396 /* Machine Timers and Counters */ 1397 [CSR_MCYCLE] = { any, read_instret }, 1398 [CSR_MINSTRET] = { any, read_instret }, 1399 [CSR_MCYCLEH] = { any32, read_instreth }, 1400 [CSR_MINSTRETH] = { any32, read_instreth }, 1401 1402 /* Machine Information Registers */ 1403 [CSR_MVENDORID] = { any, read_zero }, 1404 [CSR_MARCHID] = { any, read_zero }, 1405 [CSR_MIMPID] = { any, read_zero }, 1406 [CSR_MHARTID] = { any, read_mhartid }, 1407 1408 /* Machine Trap Setup */ 1409 [CSR_MSTATUS] = { any, read_mstatus, write_mstatus }, 1410 [CSR_MISA] = { any, read_misa, write_misa }, 1411 [CSR_MIDELEG] = { any, read_mideleg, write_mideleg }, 1412 [CSR_MEDELEG] = { any, read_medeleg, write_medeleg }, 1413 [CSR_MIE] = { any, read_mie, write_mie }, 1414 [CSR_MTVEC] = { any, read_mtvec, write_mtvec }, 1415 [CSR_MCOUNTEREN] = { any, read_mcounteren, write_mcounteren }, 1416 1417 [CSR_MSTATUSH] = { any32, read_mstatush, write_mstatush }, 1418 1419 [CSR_MSCOUNTEREN] = { any, read_mscounteren, write_mscounteren }, 1420 1421 /* Machine Trap Handling */ 1422 [CSR_MSCRATCH] = { any, read_mscratch, write_mscratch }, 1423 [CSR_MEPC] = { any, read_mepc, write_mepc }, 1424 [CSR_MCAUSE] = { any, read_mcause, write_mcause }, 1425 [CSR_MBADADDR] = { any, read_mbadaddr, write_mbadaddr }, 1426 [CSR_MIP] = { any, NULL, NULL, rmw_mip }, 1427 1428 /* Supervisor Trap Setup */ 1429 [CSR_SSTATUS] = { smode, read_sstatus, write_sstatus }, 1430 [CSR_SIE] = { smode, read_sie, write_sie }, 1431 [CSR_STVEC] = { smode, read_stvec, write_stvec }, 1432 [CSR_SCOUNTEREN] = { smode, read_scounteren, write_scounteren }, 1433 1434 /* Supervisor Trap Handling */ 1435 [CSR_SSCRATCH] = { smode, read_sscratch, write_sscratch }, 1436 [CSR_SEPC] = { smode, read_sepc, write_sepc }, 1437 [CSR_SCAUSE] = { smode, read_scause, write_scause }, 1438 [CSR_SBADADDR] = { smode, read_sbadaddr, write_sbadaddr }, 1439 [CSR_SIP] = { smode, NULL, NULL, rmw_sip }, 1440 1441 /* Supervisor Protection and Translation */ 1442 [CSR_SATP] = { smode, read_satp, write_satp }, 1443 1444 [CSR_HSTATUS] = { hmode, read_hstatus, write_hstatus }, 1445 [CSR_HEDELEG] = { hmode, read_hedeleg, write_hedeleg }, 1446 [CSR_HIDELEG] = { hmode, read_hideleg, write_hideleg }, 1447 [CSR_HVIP] = { hmode, NULL, NULL, rmw_hvip }, 1448 [CSR_HIP] = { hmode, NULL, NULL, rmw_hip }, 1449 [CSR_HIE] = { hmode, read_hie, write_hie }, 1450 [CSR_HCOUNTEREN] = { hmode, read_hcounteren, write_hcounteren }, 1451 [CSR_HGEIE] = { hmode, read_hgeie, write_hgeie }, 1452 [CSR_HTVAL] = { hmode, read_htval, write_htval }, 1453 [CSR_HTINST] = { hmode, read_htinst, write_htinst }, 1454 [CSR_HGEIP] = { hmode, read_hgeip, write_hgeip }, 1455 [CSR_HGATP] = { hmode, read_hgatp, write_hgatp }, 1456 [CSR_HTIMEDELTA] = { hmode, read_htimedelta, write_htimedelta }, 1457 [CSR_HTIMEDELTAH] = { hmode32, read_htimedeltah, write_htimedeltah}, 1458 1459 [CSR_VSSTATUS] = { hmode, read_vsstatus, write_vsstatus }, 1460 [CSR_VSIP] = { hmode, NULL, NULL, rmw_vsip }, 1461 [CSR_VSIE] = { hmode, read_vsie, write_vsie }, 1462 [CSR_VSTVEC] = { hmode, read_vstvec, write_vstvec }, 1463 [CSR_VSSCRATCH] = { hmode, read_vsscratch, write_vsscratch }, 1464 [CSR_VSEPC] = { hmode, read_vsepc, write_vsepc }, 1465 [CSR_VSCAUSE] = { hmode, read_vscause, write_vscause }, 1466 [CSR_VSTVAL] = { hmode, read_vstval, write_vstval }, 1467 [CSR_VSATP] = { hmode, read_vsatp, write_vsatp }, 1468 1469 [CSR_MTVAL2] = { hmode, read_mtval2, write_mtval2 }, 1470 [CSR_MTINST] = { hmode, read_mtinst, write_mtinst }, 1471 1472 /* Physical Memory Protection */ 1473 [CSR_PMPCFG0 ... CSR_PMPCFG3] = { pmp, read_pmpcfg, write_pmpcfg }, 1474 [CSR_PMPADDR0 ... CSR_PMPADDR15] = { pmp, read_pmpaddr, write_pmpaddr }, 1475 1476 /* Performance Counters */ 1477 [CSR_HPMCOUNTER3 ... CSR_HPMCOUNTER31] = { ctr, read_zero }, 1478 [CSR_MHPMCOUNTER3 ... CSR_MHPMCOUNTER31] = { any, read_zero }, 1479 [CSR_MHPMEVENT3 ... CSR_MHPMEVENT31] = { any, read_zero }, 1480 [CSR_HPMCOUNTER3H ... CSR_HPMCOUNTER31H] = { ctr32, read_zero }, 1481 [CSR_MHPMCOUNTER3H ... CSR_MHPMCOUNTER31H] = { any32, read_zero }, 1482 #endif /* !CONFIG_USER_ONLY */ 1483 }; 1484