1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "tcg/tcg-cpu.h" 25 #include "pmu.h" 26 #include "time_helper.h" 27 #include "exec/exec-all.h" 28 #include "exec/tb-flush.h" 29 #include "sysemu/cpu-timers.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 33 34 /* CSR function table public API */ 35 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 36 { 37 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 38 } 39 40 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 41 { 42 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 43 } 44 45 /* Predicates */ 46 #if !defined(CONFIG_USER_ONLY) 47 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) 48 { 49 bool virt = env->virt_enabled; 50 51 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 52 return RISCV_EXCP_NONE; 53 } 54 55 if (!(env->mstateen[index] & bit)) { 56 return RISCV_EXCP_ILLEGAL_INST; 57 } 58 59 if (virt) { 60 if (!(env->hstateen[index] & bit)) { 61 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 62 } 63 64 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 65 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 66 } 67 } 68 69 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 70 if (!(env->sstateen[index] & bit)) { 71 return RISCV_EXCP_ILLEGAL_INST; 72 } 73 } 74 75 return RISCV_EXCP_NONE; 76 } 77 #endif 78 79 static RISCVException fs(CPURISCVState *env, int csrno) 80 { 81 #if !defined(CONFIG_USER_ONLY) 82 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 83 !riscv_cpu_cfg(env)->ext_zfinx) { 84 return RISCV_EXCP_ILLEGAL_INST; 85 } 86 87 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 88 return smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR); 89 } 90 #endif 91 return RISCV_EXCP_NONE; 92 } 93 94 static RISCVException vs(CPURISCVState *env, int csrno) 95 { 96 if (riscv_cpu_cfg(env)->ext_zve32x) { 97 #if !defined(CONFIG_USER_ONLY) 98 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 99 return RISCV_EXCP_ILLEGAL_INST; 100 } 101 #endif 102 return RISCV_EXCP_NONE; 103 } 104 return RISCV_EXCP_ILLEGAL_INST; 105 } 106 107 static RISCVException ctr(CPURISCVState *env, int csrno) 108 { 109 #if !defined(CONFIG_USER_ONLY) 110 RISCVCPU *cpu = env_archcpu(env); 111 int ctr_index; 112 target_ulong ctr_mask; 113 int base_csrno = CSR_CYCLE; 114 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 115 116 if (rv32 && csrno >= CSR_CYCLEH) { 117 /* Offset for RV32 hpmcounternh counters */ 118 base_csrno += 0x80; 119 } 120 ctr_index = csrno - base_csrno; 121 ctr_mask = BIT(ctr_index); 122 123 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 124 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 125 if (!riscv_cpu_cfg(env)->ext_zicntr) { 126 return RISCV_EXCP_ILLEGAL_INST; 127 } 128 129 goto skip_ext_pmu_check; 130 } 131 132 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 133 /* No counter is enabled in PMU or the counter is out of range */ 134 return RISCV_EXCP_ILLEGAL_INST; 135 } 136 137 skip_ext_pmu_check: 138 139 if (env->debugger) { 140 return RISCV_EXCP_NONE; 141 } 142 143 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 144 return RISCV_EXCP_ILLEGAL_INST; 145 } 146 147 if (env->virt_enabled) { 148 if (!get_field(env->hcounteren, ctr_mask) || 149 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 150 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 151 } 152 } 153 154 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 155 !get_field(env->scounteren, ctr_mask)) { 156 return RISCV_EXCP_ILLEGAL_INST; 157 } 158 159 #endif 160 return RISCV_EXCP_NONE; 161 } 162 163 static RISCVException ctr32(CPURISCVState *env, int csrno) 164 { 165 if (riscv_cpu_mxl(env) != MXL_RV32) { 166 return RISCV_EXCP_ILLEGAL_INST; 167 } 168 169 return ctr(env, csrno); 170 } 171 172 static RISCVException zcmt(CPURISCVState *env, int csrno) 173 { 174 if (!riscv_cpu_cfg(env)->ext_zcmt) { 175 return RISCV_EXCP_ILLEGAL_INST; 176 } 177 178 #if !defined(CONFIG_USER_ONLY) 179 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); 180 if (ret != RISCV_EXCP_NONE) { 181 return ret; 182 } 183 #endif 184 185 return RISCV_EXCP_NONE; 186 } 187 188 #if !defined(CONFIG_USER_ONLY) 189 static RISCVException mctr(CPURISCVState *env, int csrno) 190 { 191 RISCVCPU *cpu = env_archcpu(env); 192 uint32_t pmu_avail_ctrs = cpu->pmu_avail_ctrs; 193 int ctr_index; 194 int base_csrno = CSR_MHPMCOUNTER3; 195 196 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 197 /* Offset for RV32 mhpmcounternh counters */ 198 csrno -= 0x80; 199 } 200 201 g_assert(csrno >= CSR_MHPMCOUNTER3 && csrno <= CSR_MHPMCOUNTER31); 202 203 ctr_index = csrno - base_csrno; 204 if ((BIT(ctr_index) & pmu_avail_ctrs >> 3) == 0) { 205 /* The PMU is not enabled or counter is out of range */ 206 return RISCV_EXCP_ILLEGAL_INST; 207 } 208 209 return RISCV_EXCP_NONE; 210 } 211 212 static RISCVException mctr32(CPURISCVState *env, int csrno) 213 { 214 if (riscv_cpu_mxl(env) != MXL_RV32) { 215 return RISCV_EXCP_ILLEGAL_INST; 216 } 217 218 return mctr(env, csrno); 219 } 220 221 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 222 { 223 if (!riscv_cpu_cfg(env)->ext_sscofpmf) { 224 return RISCV_EXCP_ILLEGAL_INST; 225 } 226 227 return RISCV_EXCP_NONE; 228 } 229 230 static RISCVException any(CPURISCVState *env, int csrno) 231 { 232 return RISCV_EXCP_NONE; 233 } 234 235 static RISCVException any32(CPURISCVState *env, int csrno) 236 { 237 if (riscv_cpu_mxl(env) != MXL_RV32) { 238 return RISCV_EXCP_ILLEGAL_INST; 239 } 240 241 return any(env, csrno); 242 243 } 244 245 static RISCVException aia_any(CPURISCVState *env, int csrno) 246 { 247 if (!riscv_cpu_cfg(env)->ext_smaia) { 248 return RISCV_EXCP_ILLEGAL_INST; 249 } 250 251 return any(env, csrno); 252 } 253 254 static RISCVException aia_any32(CPURISCVState *env, int csrno) 255 { 256 if (!riscv_cpu_cfg(env)->ext_smaia) { 257 return RISCV_EXCP_ILLEGAL_INST; 258 } 259 260 return any32(env, csrno); 261 } 262 263 static RISCVException smode(CPURISCVState *env, int csrno) 264 { 265 if (riscv_has_ext(env, RVS)) { 266 return RISCV_EXCP_NONE; 267 } 268 269 return RISCV_EXCP_ILLEGAL_INST; 270 } 271 272 static RISCVException smode32(CPURISCVState *env, int csrno) 273 { 274 if (riscv_cpu_mxl(env) != MXL_RV32) { 275 return RISCV_EXCP_ILLEGAL_INST; 276 } 277 278 return smode(env, csrno); 279 } 280 281 static RISCVException aia_smode(CPURISCVState *env, int csrno) 282 { 283 if (!riscv_cpu_cfg(env)->ext_ssaia) { 284 return RISCV_EXCP_ILLEGAL_INST; 285 } 286 287 return smode(env, csrno); 288 } 289 290 static RISCVException aia_smode32(CPURISCVState *env, int csrno) 291 { 292 if (!riscv_cpu_cfg(env)->ext_ssaia) { 293 return RISCV_EXCP_ILLEGAL_INST; 294 } 295 296 return smode32(env, csrno); 297 } 298 299 static RISCVException hmode(CPURISCVState *env, int csrno) 300 { 301 if (riscv_has_ext(env, RVH)) { 302 return RISCV_EXCP_NONE; 303 } 304 305 return RISCV_EXCP_ILLEGAL_INST; 306 } 307 308 static RISCVException hmode32(CPURISCVState *env, int csrno) 309 { 310 if (riscv_cpu_mxl(env) != MXL_RV32) { 311 return RISCV_EXCP_ILLEGAL_INST; 312 } 313 314 return hmode(env, csrno); 315 316 } 317 318 static RISCVException umode(CPURISCVState *env, int csrno) 319 { 320 if (riscv_has_ext(env, RVU)) { 321 return RISCV_EXCP_NONE; 322 } 323 324 return RISCV_EXCP_ILLEGAL_INST; 325 } 326 327 static RISCVException umode32(CPURISCVState *env, int csrno) 328 { 329 if (riscv_cpu_mxl(env) != MXL_RV32) { 330 return RISCV_EXCP_ILLEGAL_INST; 331 } 332 333 return umode(env, csrno); 334 } 335 336 static RISCVException mstateen(CPURISCVState *env, int csrno) 337 { 338 if (!riscv_cpu_cfg(env)->ext_smstateen) { 339 return RISCV_EXCP_ILLEGAL_INST; 340 } 341 342 return any(env, csrno); 343 } 344 345 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 346 { 347 if (!riscv_cpu_cfg(env)->ext_smstateen) { 348 return RISCV_EXCP_ILLEGAL_INST; 349 } 350 351 RISCVException ret = hmode(env, csrno); 352 if (ret != RISCV_EXCP_NONE) { 353 return ret; 354 } 355 356 if (env->debugger) { 357 return RISCV_EXCP_NONE; 358 } 359 360 if (env->priv < PRV_M) { 361 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 362 return RISCV_EXCP_ILLEGAL_INST; 363 } 364 } 365 366 return RISCV_EXCP_NONE; 367 } 368 369 static RISCVException hstateen(CPURISCVState *env, int csrno) 370 { 371 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 372 } 373 374 static RISCVException hstateenh(CPURISCVState *env, int csrno) 375 { 376 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 377 } 378 379 static RISCVException sstateen(CPURISCVState *env, int csrno) 380 { 381 bool virt = env->virt_enabled; 382 int index = csrno - CSR_SSTATEEN0; 383 384 if (!riscv_cpu_cfg(env)->ext_smstateen) { 385 return RISCV_EXCP_ILLEGAL_INST; 386 } 387 388 RISCVException ret = smode(env, csrno); 389 if (ret != RISCV_EXCP_NONE) { 390 return ret; 391 } 392 393 if (env->debugger) { 394 return RISCV_EXCP_NONE; 395 } 396 397 if (env->priv < PRV_M) { 398 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 399 return RISCV_EXCP_ILLEGAL_INST; 400 } 401 402 if (virt) { 403 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 404 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 405 } 406 } 407 } 408 409 return RISCV_EXCP_NONE; 410 } 411 412 static RISCVException sstc(CPURISCVState *env, int csrno) 413 { 414 bool hmode_check = false; 415 416 if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { 417 return RISCV_EXCP_ILLEGAL_INST; 418 } 419 420 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 421 hmode_check = true; 422 } 423 424 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 425 if (ret != RISCV_EXCP_NONE) { 426 return ret; 427 } 428 429 if (env->debugger) { 430 return RISCV_EXCP_NONE; 431 } 432 433 if (env->priv == PRV_M) { 434 return RISCV_EXCP_NONE; 435 } 436 437 /* 438 * No need of separate function for rv32 as menvcfg stores both menvcfg 439 * menvcfgh for RV32. 440 */ 441 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 442 get_field(env->menvcfg, MENVCFG_STCE))) { 443 return RISCV_EXCP_ILLEGAL_INST; 444 } 445 446 if (env->virt_enabled) { 447 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 448 get_field(env->henvcfg, HENVCFG_STCE))) { 449 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 450 } 451 } 452 453 return RISCV_EXCP_NONE; 454 } 455 456 static RISCVException sstc_32(CPURISCVState *env, int csrno) 457 { 458 if (riscv_cpu_mxl(env) != MXL_RV32) { 459 return RISCV_EXCP_ILLEGAL_INST; 460 } 461 462 return sstc(env, csrno); 463 } 464 465 static RISCVException satp(CPURISCVState *env, int csrno) 466 { 467 if (env->priv == PRV_S && !env->virt_enabled && 468 get_field(env->mstatus, MSTATUS_TVM)) { 469 return RISCV_EXCP_ILLEGAL_INST; 470 } 471 if (env->priv == PRV_S && env->virt_enabled && 472 get_field(env->hstatus, HSTATUS_VTVM)) { 473 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 474 } 475 476 return smode(env, csrno); 477 } 478 479 static RISCVException hgatp(CPURISCVState *env, int csrno) 480 { 481 if (env->priv == PRV_S && !env->virt_enabled && 482 get_field(env->mstatus, MSTATUS_TVM)) { 483 return RISCV_EXCP_ILLEGAL_INST; 484 } 485 486 return hmode(env, csrno); 487 } 488 489 /* Checks if PointerMasking registers could be accessed */ 490 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 491 { 492 /* Check if j-ext is present */ 493 if (riscv_has_ext(env, RVJ)) { 494 return RISCV_EXCP_NONE; 495 } 496 return RISCV_EXCP_ILLEGAL_INST; 497 } 498 499 static RISCVException aia_hmode(CPURISCVState *env, int csrno) 500 { 501 if (!riscv_cpu_cfg(env)->ext_ssaia) { 502 return RISCV_EXCP_ILLEGAL_INST; 503 } 504 505 return hmode(env, csrno); 506 } 507 508 static RISCVException aia_hmode32(CPURISCVState *env, int csrno) 509 { 510 if (!riscv_cpu_cfg(env)->ext_ssaia) { 511 return RISCV_EXCP_ILLEGAL_INST; 512 } 513 514 return hmode32(env, csrno); 515 } 516 517 static RISCVException pmp(CPURISCVState *env, int csrno) 518 { 519 if (riscv_cpu_cfg(env)->pmp) { 520 if (csrno <= CSR_PMPCFG3) { 521 uint32_t reg_index = csrno - CSR_PMPCFG0; 522 523 /* TODO: RV128 restriction check */ 524 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 525 return RISCV_EXCP_ILLEGAL_INST; 526 } 527 } 528 529 return RISCV_EXCP_NONE; 530 } 531 532 return RISCV_EXCP_ILLEGAL_INST; 533 } 534 535 static RISCVException have_mseccfg(CPURISCVState *env, int csrno) 536 { 537 if (riscv_cpu_cfg(env)->ext_smepmp) { 538 return RISCV_EXCP_NONE; 539 } 540 if (riscv_cpu_cfg(env)->ext_zkr) { 541 return RISCV_EXCP_NONE; 542 } 543 544 return RISCV_EXCP_ILLEGAL_INST; 545 } 546 547 static RISCVException debug(CPURISCVState *env, int csrno) 548 { 549 if (riscv_cpu_cfg(env)->debug) { 550 return RISCV_EXCP_NONE; 551 } 552 553 return RISCV_EXCP_ILLEGAL_INST; 554 } 555 #endif 556 557 static RISCVException seed(CPURISCVState *env, int csrno) 558 { 559 if (!riscv_cpu_cfg(env)->ext_zkr) { 560 return RISCV_EXCP_ILLEGAL_INST; 561 } 562 563 #if !defined(CONFIG_USER_ONLY) 564 if (env->debugger) { 565 return RISCV_EXCP_NONE; 566 } 567 568 /* 569 * With a CSR read-write instruction: 570 * 1) The seed CSR is always available in machine mode as normal. 571 * 2) Attempted access to seed from virtual modes VS and VU always raises 572 * an exception(virtual instruction exception only if mseccfg.sseed=1). 573 * 3) Without the corresponding access control bit set to 1, any attempted 574 * access to seed from U, S or HS modes will raise an illegal instruction 575 * exception. 576 */ 577 if (env->priv == PRV_M) { 578 return RISCV_EXCP_NONE; 579 } else if (env->virt_enabled) { 580 if (env->mseccfg & MSECCFG_SSEED) { 581 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 582 } else { 583 return RISCV_EXCP_ILLEGAL_INST; 584 } 585 } else { 586 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 587 return RISCV_EXCP_NONE; 588 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 589 return RISCV_EXCP_NONE; 590 } else { 591 return RISCV_EXCP_ILLEGAL_INST; 592 } 593 } 594 #else 595 return RISCV_EXCP_NONE; 596 #endif 597 } 598 599 /* User Floating-Point CSRs */ 600 static RISCVException read_fflags(CPURISCVState *env, int csrno, 601 target_ulong *val) 602 { 603 *val = riscv_cpu_get_fflags(env); 604 return RISCV_EXCP_NONE; 605 } 606 607 static RISCVException write_fflags(CPURISCVState *env, int csrno, 608 target_ulong val) 609 { 610 #if !defined(CONFIG_USER_ONLY) 611 if (riscv_has_ext(env, RVF)) { 612 env->mstatus |= MSTATUS_FS; 613 } 614 #endif 615 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 616 return RISCV_EXCP_NONE; 617 } 618 619 static RISCVException read_frm(CPURISCVState *env, int csrno, 620 target_ulong *val) 621 { 622 *val = env->frm; 623 return RISCV_EXCP_NONE; 624 } 625 626 static RISCVException write_frm(CPURISCVState *env, int csrno, 627 target_ulong val) 628 { 629 #if !defined(CONFIG_USER_ONLY) 630 if (riscv_has_ext(env, RVF)) { 631 env->mstatus |= MSTATUS_FS; 632 } 633 #endif 634 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 635 return RISCV_EXCP_NONE; 636 } 637 638 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 639 target_ulong *val) 640 { 641 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 642 | (env->frm << FSR_RD_SHIFT); 643 return RISCV_EXCP_NONE; 644 } 645 646 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 647 target_ulong val) 648 { 649 #if !defined(CONFIG_USER_ONLY) 650 if (riscv_has_ext(env, RVF)) { 651 env->mstatus |= MSTATUS_FS; 652 } 653 #endif 654 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 655 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 656 return RISCV_EXCP_NONE; 657 } 658 659 static RISCVException read_vtype(CPURISCVState *env, int csrno, 660 target_ulong *val) 661 { 662 uint64_t vill; 663 switch (env->xl) { 664 case MXL_RV32: 665 vill = (uint32_t)env->vill << 31; 666 break; 667 case MXL_RV64: 668 vill = (uint64_t)env->vill << 63; 669 break; 670 default: 671 g_assert_not_reached(); 672 } 673 *val = (target_ulong)vill | env->vtype; 674 return RISCV_EXCP_NONE; 675 } 676 677 static RISCVException read_vl(CPURISCVState *env, int csrno, 678 target_ulong *val) 679 { 680 *val = env->vl; 681 return RISCV_EXCP_NONE; 682 } 683 684 static RISCVException read_vlenb(CPURISCVState *env, int csrno, 685 target_ulong *val) 686 { 687 *val = riscv_cpu_cfg(env)->vlenb; 688 return RISCV_EXCP_NONE; 689 } 690 691 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 692 target_ulong *val) 693 { 694 *val = env->vxrm; 695 return RISCV_EXCP_NONE; 696 } 697 698 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 699 target_ulong val) 700 { 701 #if !defined(CONFIG_USER_ONLY) 702 env->mstatus |= MSTATUS_VS; 703 #endif 704 env->vxrm = val; 705 return RISCV_EXCP_NONE; 706 } 707 708 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 709 target_ulong *val) 710 { 711 *val = env->vxsat; 712 return RISCV_EXCP_NONE; 713 } 714 715 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 716 target_ulong val) 717 { 718 #if !defined(CONFIG_USER_ONLY) 719 env->mstatus |= MSTATUS_VS; 720 #endif 721 env->vxsat = val; 722 return RISCV_EXCP_NONE; 723 } 724 725 static RISCVException read_vstart(CPURISCVState *env, int csrno, 726 target_ulong *val) 727 { 728 *val = env->vstart; 729 return RISCV_EXCP_NONE; 730 } 731 732 static RISCVException write_vstart(CPURISCVState *env, int csrno, 733 target_ulong val) 734 { 735 #if !defined(CONFIG_USER_ONLY) 736 env->mstatus |= MSTATUS_VS; 737 #endif 738 /* 739 * The vstart CSR is defined to have only enough writable bits 740 * to hold the largest element index, i.e. lg2(VLEN) bits. 741 */ 742 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlenb << 3)); 743 return RISCV_EXCP_NONE; 744 } 745 746 static RISCVException read_vcsr(CPURISCVState *env, int csrno, 747 target_ulong *val) 748 { 749 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 750 return RISCV_EXCP_NONE; 751 } 752 753 static RISCVException write_vcsr(CPURISCVState *env, int csrno, 754 target_ulong val) 755 { 756 #if !defined(CONFIG_USER_ONLY) 757 env->mstatus |= MSTATUS_VS; 758 #endif 759 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 760 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 761 return RISCV_EXCP_NONE; 762 } 763 764 /* User Timers and Counters */ 765 static target_ulong get_ticks(bool shift) 766 { 767 int64_t val; 768 target_ulong result; 769 770 #if !defined(CONFIG_USER_ONLY) 771 if (icount_enabled()) { 772 val = icount_get(); 773 } else { 774 val = cpu_get_host_ticks(); 775 } 776 #else 777 val = cpu_get_host_ticks(); 778 #endif 779 780 if (shift) { 781 result = val >> 32; 782 } else { 783 result = val; 784 } 785 786 return result; 787 } 788 789 #if defined(CONFIG_USER_ONLY) 790 static RISCVException read_time(CPURISCVState *env, int csrno, 791 target_ulong *val) 792 { 793 *val = cpu_get_host_ticks(); 794 return RISCV_EXCP_NONE; 795 } 796 797 static RISCVException read_timeh(CPURISCVState *env, int csrno, 798 target_ulong *val) 799 { 800 *val = cpu_get_host_ticks() >> 32; 801 return RISCV_EXCP_NONE; 802 } 803 804 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 805 target_ulong *val) 806 { 807 *val = get_ticks(false); 808 return RISCV_EXCP_NONE; 809 } 810 811 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 812 target_ulong *val) 813 { 814 *val = get_ticks(true); 815 return RISCV_EXCP_NONE; 816 } 817 818 #else /* CONFIG_USER_ONLY */ 819 820 static RISCVException read_mhpmevent(CPURISCVState *env, int csrno, 821 target_ulong *val) 822 { 823 int evt_index = csrno - CSR_MCOUNTINHIBIT; 824 825 *val = env->mhpmevent_val[evt_index]; 826 827 return RISCV_EXCP_NONE; 828 } 829 830 static RISCVException write_mhpmevent(CPURISCVState *env, int csrno, 831 target_ulong val) 832 { 833 int evt_index = csrno - CSR_MCOUNTINHIBIT; 834 uint64_t mhpmevt_val = val; 835 836 env->mhpmevent_val[evt_index] = val; 837 838 if (riscv_cpu_mxl(env) == MXL_RV32) { 839 mhpmevt_val = mhpmevt_val | 840 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 841 } 842 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 843 844 return RISCV_EXCP_NONE; 845 } 846 847 static RISCVException read_mhpmeventh(CPURISCVState *env, int csrno, 848 target_ulong *val) 849 { 850 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 851 852 *val = env->mhpmeventh_val[evt_index]; 853 854 return RISCV_EXCP_NONE; 855 } 856 857 static RISCVException write_mhpmeventh(CPURISCVState *env, int csrno, 858 target_ulong val) 859 { 860 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 861 uint64_t mhpmevth_val = val; 862 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 863 864 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 865 env->mhpmeventh_val[evt_index] = val; 866 867 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 868 869 return RISCV_EXCP_NONE; 870 } 871 872 static RISCVException write_mhpmcounter(CPURISCVState *env, int csrno, 873 target_ulong val) 874 { 875 int ctr_idx = csrno - CSR_MCYCLE; 876 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 877 uint64_t mhpmctr_val = val; 878 879 counter->mhpmcounter_val = val; 880 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 881 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 882 counter->mhpmcounter_prev = get_ticks(false); 883 if (ctr_idx > 2) { 884 if (riscv_cpu_mxl(env) == MXL_RV32) { 885 mhpmctr_val = mhpmctr_val | 886 ((uint64_t)counter->mhpmcounterh_val << 32); 887 } 888 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 889 } 890 } else { 891 /* Other counters can keep incrementing from the given value */ 892 counter->mhpmcounter_prev = val; 893 } 894 895 return RISCV_EXCP_NONE; 896 } 897 898 static RISCVException write_mhpmcounterh(CPURISCVState *env, int csrno, 899 target_ulong val) 900 { 901 int ctr_idx = csrno - CSR_MCYCLEH; 902 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 903 uint64_t mhpmctr_val = counter->mhpmcounter_val; 904 uint64_t mhpmctrh_val = val; 905 906 counter->mhpmcounterh_val = val; 907 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 908 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 909 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 910 counter->mhpmcounterh_prev = get_ticks(true); 911 if (ctr_idx > 2) { 912 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 913 } 914 } else { 915 counter->mhpmcounterh_prev = val; 916 } 917 918 return RISCV_EXCP_NONE; 919 } 920 921 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 922 bool upper_half, uint32_t ctr_idx) 923 { 924 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 925 target_ulong ctr_prev = upper_half ? counter->mhpmcounterh_prev : 926 counter->mhpmcounter_prev; 927 target_ulong ctr_val = upper_half ? counter->mhpmcounterh_val : 928 counter->mhpmcounter_val; 929 930 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 931 /* 932 * Counter should not increment if inhibit bit is set. We can't really 933 * stop the icount counting. Just return the counter value written by 934 * the supervisor to indicate that counter was not incremented. 935 */ 936 if (!counter->started) { 937 *val = ctr_val; 938 return RISCV_EXCP_NONE; 939 } else { 940 /* Mark that the counter has been stopped */ 941 counter->started = false; 942 } 943 } 944 945 /* 946 * The kernel computes the perf delta by subtracting the current value from 947 * the value it initialized previously (ctr_val). 948 */ 949 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 950 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 951 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 952 } else { 953 *val = ctr_val; 954 } 955 956 return RISCV_EXCP_NONE; 957 } 958 959 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 960 target_ulong *val) 961 { 962 uint16_t ctr_index; 963 964 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 965 ctr_index = csrno - CSR_MCYCLE; 966 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 967 ctr_index = csrno - CSR_CYCLE; 968 } else { 969 return RISCV_EXCP_ILLEGAL_INST; 970 } 971 972 return riscv_pmu_read_ctr(env, val, false, ctr_index); 973 } 974 975 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 976 target_ulong *val) 977 { 978 uint16_t ctr_index; 979 980 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 981 ctr_index = csrno - CSR_MCYCLEH; 982 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 983 ctr_index = csrno - CSR_CYCLEH; 984 } else { 985 return RISCV_EXCP_ILLEGAL_INST; 986 } 987 988 return riscv_pmu_read_ctr(env, val, true, ctr_index); 989 } 990 991 static RISCVException read_scountovf(CPURISCVState *env, int csrno, 992 target_ulong *val) 993 { 994 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 995 int i; 996 *val = 0; 997 target_ulong *mhpm_evt_val; 998 uint64_t of_bit_mask; 999 1000 if (riscv_cpu_mxl(env) == MXL_RV32) { 1001 mhpm_evt_val = env->mhpmeventh_val; 1002 of_bit_mask = MHPMEVENTH_BIT_OF; 1003 } else { 1004 mhpm_evt_val = env->mhpmevent_val; 1005 of_bit_mask = MHPMEVENT_BIT_OF; 1006 } 1007 1008 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 1009 if ((get_field(env->mcounteren, BIT(i))) && 1010 (mhpm_evt_val[i] & of_bit_mask)) { 1011 *val |= BIT(i); 1012 } 1013 } 1014 1015 return RISCV_EXCP_NONE; 1016 } 1017 1018 static RISCVException read_time(CPURISCVState *env, int csrno, 1019 target_ulong *val) 1020 { 1021 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1022 1023 if (!env->rdtime_fn) { 1024 return RISCV_EXCP_ILLEGAL_INST; 1025 } 1026 1027 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 1028 return RISCV_EXCP_NONE; 1029 } 1030 1031 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1032 target_ulong *val) 1033 { 1034 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1035 1036 if (!env->rdtime_fn) { 1037 return RISCV_EXCP_ILLEGAL_INST; 1038 } 1039 1040 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 1041 return RISCV_EXCP_NONE; 1042 } 1043 1044 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 1045 target_ulong *val) 1046 { 1047 *val = env->vstimecmp; 1048 1049 return RISCV_EXCP_NONE; 1050 } 1051 1052 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 1053 target_ulong *val) 1054 { 1055 *val = env->vstimecmp >> 32; 1056 1057 return RISCV_EXCP_NONE; 1058 } 1059 1060 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1061 target_ulong val) 1062 { 1063 if (riscv_cpu_mxl(env) == MXL_RV32) { 1064 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1065 } else { 1066 env->vstimecmp = val; 1067 } 1068 1069 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1070 env->htimedelta, MIP_VSTIP); 1071 1072 return RISCV_EXCP_NONE; 1073 } 1074 1075 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1076 target_ulong val) 1077 { 1078 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1079 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1080 env->htimedelta, MIP_VSTIP); 1081 1082 return RISCV_EXCP_NONE; 1083 } 1084 1085 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1086 target_ulong *val) 1087 { 1088 if (env->virt_enabled) { 1089 *val = env->vstimecmp; 1090 } else { 1091 *val = env->stimecmp; 1092 } 1093 1094 return RISCV_EXCP_NONE; 1095 } 1096 1097 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1098 target_ulong *val) 1099 { 1100 if (env->virt_enabled) { 1101 *val = env->vstimecmp >> 32; 1102 } else { 1103 *val = env->stimecmp >> 32; 1104 } 1105 1106 return RISCV_EXCP_NONE; 1107 } 1108 1109 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1110 target_ulong val) 1111 { 1112 if (env->virt_enabled) { 1113 if (env->hvictl & HVICTL_VTI) { 1114 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1115 } 1116 return write_vstimecmp(env, csrno, val); 1117 } 1118 1119 if (riscv_cpu_mxl(env) == MXL_RV32) { 1120 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1121 } else { 1122 env->stimecmp = val; 1123 } 1124 1125 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1126 1127 return RISCV_EXCP_NONE; 1128 } 1129 1130 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1131 target_ulong val) 1132 { 1133 if (env->virt_enabled) { 1134 if (env->hvictl & HVICTL_VTI) { 1135 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1136 } 1137 return write_vstimecmph(env, csrno, val); 1138 } 1139 1140 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1141 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1142 1143 return RISCV_EXCP_NONE; 1144 } 1145 1146 #define VSTOPI_NUM_SRCS 5 1147 1148 /* 1149 * All core local interrupts except the fixed ones 0:12. This macro is for 1150 * virtual interrupts logic so please don't change this to avoid messing up 1151 * the whole support, For reference see AIA spec: `5.3 Interrupt filtering and 1152 * virtual interrupts for supervisor level` and `6.3.2 Virtual interrupts for 1153 * VS level`. 1154 */ 1155 #define LOCAL_INTERRUPTS (~0x1FFFULL) 1156 1157 static const uint64_t delegable_ints = 1158 S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS | MIP_LCOFIP; 1159 static const uint64_t vs_delegable_ints = 1160 (VS_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & ~MIP_LCOFIP; 1161 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1162 HS_MODE_INTERRUPTS | LOCAL_INTERRUPTS; 1163 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1164 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1165 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1166 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1167 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1168 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1169 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1170 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1171 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1172 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1173 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1174 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1175 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1176 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1177 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1178 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1179 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1180 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1181 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1182 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1183 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1184 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1185 (1ULL << (RISCV_EXCP_M_ECALL)) | 1186 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1187 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1188 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1189 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1190 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1191 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1192 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1193 1194 /* 1195 * Spec allows for bits 13:63 to be either read-only or writable. 1196 * So far we have interrupt LCOFIP in that region which is writable. 1197 * 1198 * Also, spec allows to inject virtual interrupts in this region even 1199 * without any hardware interrupts for that interrupt number. 1200 * 1201 * For now interrupt in 13:63 region are all kept writable. 13 being 1202 * LCOFIP and 14:63 being virtual only. Change this in future if we 1203 * introduce more interrupts that are not writable. 1204 */ 1205 1206 /* Bit STIP can be an alias of mip.STIP that's why it's writable in mvip. */ 1207 static const uint64_t mvip_writable_mask = MIP_SSIP | MIP_STIP | MIP_SEIP | 1208 LOCAL_INTERRUPTS; 1209 static const uint64_t mvien_writable_mask = MIP_SSIP | MIP_SEIP | 1210 LOCAL_INTERRUPTS; 1211 1212 static const uint64_t sip_writable_mask = SIP_SSIP | LOCAL_INTERRUPTS; 1213 static const uint64_t hip_writable_mask = MIP_VSSIP; 1214 static const uint64_t hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | 1215 MIP_VSEIP | LOCAL_INTERRUPTS; 1216 static const uint64_t hvien_writable_mask = LOCAL_INTERRUPTS; 1217 1218 static const uint64_t vsip_writable_mask = MIP_VSSIP | LOCAL_INTERRUPTS; 1219 1220 const bool valid_vm_1_10_32[16] = { 1221 [VM_1_10_MBARE] = true, 1222 [VM_1_10_SV32] = true 1223 }; 1224 1225 const bool valid_vm_1_10_64[16] = { 1226 [VM_1_10_MBARE] = true, 1227 [VM_1_10_SV39] = true, 1228 [VM_1_10_SV48] = true, 1229 [VM_1_10_SV57] = true 1230 }; 1231 1232 /* Machine Information Registers */ 1233 static RISCVException read_zero(CPURISCVState *env, int csrno, 1234 target_ulong *val) 1235 { 1236 *val = 0; 1237 return RISCV_EXCP_NONE; 1238 } 1239 1240 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1241 target_ulong val) 1242 { 1243 return RISCV_EXCP_NONE; 1244 } 1245 1246 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1247 target_ulong *val) 1248 { 1249 *val = riscv_cpu_cfg(env)->mvendorid; 1250 return RISCV_EXCP_NONE; 1251 } 1252 1253 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1254 target_ulong *val) 1255 { 1256 *val = riscv_cpu_cfg(env)->marchid; 1257 return RISCV_EXCP_NONE; 1258 } 1259 1260 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1261 target_ulong *val) 1262 { 1263 *val = riscv_cpu_cfg(env)->mimpid; 1264 return RISCV_EXCP_NONE; 1265 } 1266 1267 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1268 target_ulong *val) 1269 { 1270 *val = env->mhartid; 1271 return RISCV_EXCP_NONE; 1272 } 1273 1274 /* Machine Trap Setup */ 1275 1276 /* We do not store SD explicitly, only compute it on demand. */ 1277 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1278 { 1279 if ((status & MSTATUS_FS) == MSTATUS_FS || 1280 (status & MSTATUS_VS) == MSTATUS_VS || 1281 (status & MSTATUS_XS) == MSTATUS_XS) { 1282 switch (xl) { 1283 case MXL_RV32: 1284 return status | MSTATUS32_SD; 1285 case MXL_RV64: 1286 return status | MSTATUS64_SD; 1287 case MXL_RV128: 1288 return MSTATUSH128_SD; 1289 default: 1290 g_assert_not_reached(); 1291 } 1292 } 1293 return status; 1294 } 1295 1296 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1297 target_ulong *val) 1298 { 1299 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1300 return RISCV_EXCP_NONE; 1301 } 1302 1303 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1304 { 1305 uint64_t mode_supported = riscv_cpu_cfg(env)->satp_mode.map; 1306 return get_field(mode_supported, (1 << vm)); 1307 } 1308 1309 static target_ulong legalize_xatp(CPURISCVState *env, target_ulong old_xatp, 1310 target_ulong val) 1311 { 1312 target_ulong mask; 1313 bool vm; 1314 if (riscv_cpu_mxl(env) == MXL_RV32) { 1315 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1316 mask = (val ^ old_xatp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1317 } else { 1318 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1319 mask = (val ^ old_xatp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1320 } 1321 1322 if (vm && mask) { 1323 /* 1324 * The ISA defines SATP.MODE=Bare as "no translation", but we still 1325 * pass these through QEMU's TLB emulation as it improves 1326 * performance. Flushing the TLB on SATP writes with paging 1327 * enabled avoids leaking those invalid cached mappings. 1328 */ 1329 tlb_flush(env_cpu(env)); 1330 return val; 1331 } 1332 return old_xatp; 1333 } 1334 1335 static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp, 1336 target_ulong val) 1337 { 1338 bool valid = false; 1339 target_ulong new_mpp = get_field(val, MSTATUS_MPP); 1340 1341 switch (new_mpp) { 1342 case PRV_M: 1343 valid = true; 1344 break; 1345 case PRV_S: 1346 valid = riscv_has_ext(env, RVS); 1347 break; 1348 case PRV_U: 1349 valid = riscv_has_ext(env, RVU); 1350 break; 1351 } 1352 1353 /* Remain field unchanged if new_mpp value is invalid */ 1354 if (!valid) { 1355 val = set_field(val, MSTATUS_MPP, old_mpp); 1356 } 1357 1358 return val; 1359 } 1360 1361 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1362 target_ulong val) 1363 { 1364 uint64_t mstatus = env->mstatus; 1365 uint64_t mask = 0; 1366 RISCVMXL xl = riscv_cpu_mxl(env); 1367 1368 /* 1369 * MPP field have been made WARL since priv version 1.11. However, 1370 * legalization for it will not break any software running on 1.10. 1371 */ 1372 val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val); 1373 1374 /* flush tlb on mstatus fields that affect VM */ 1375 if ((val ^ mstatus) & MSTATUS_MXR) { 1376 tlb_flush(env_cpu(env)); 1377 } 1378 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1379 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1380 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1381 MSTATUS_TW; 1382 1383 if (riscv_has_ext(env, RVF)) { 1384 mask |= MSTATUS_FS; 1385 } 1386 if (riscv_has_ext(env, RVV)) { 1387 mask |= MSTATUS_VS; 1388 } 1389 1390 if (xl != MXL_RV32 || env->debugger) { 1391 if (riscv_has_ext(env, RVH)) { 1392 mask |= MSTATUS_MPV | MSTATUS_GVA; 1393 } 1394 if ((val & MSTATUS64_UXL) != 0) { 1395 mask |= MSTATUS64_UXL; 1396 } 1397 } 1398 1399 mstatus = (mstatus & ~mask) | (val & mask); 1400 1401 env->mstatus = mstatus; 1402 1403 /* 1404 * Except in debug mode, UXL/SXL can only be modified by higher 1405 * privilege mode. So xl will not be changed in normal mode. 1406 */ 1407 if (env->debugger) { 1408 env->xl = cpu_recompute_xl(env); 1409 } 1410 1411 riscv_cpu_update_mask(env); 1412 return RISCV_EXCP_NONE; 1413 } 1414 1415 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1416 target_ulong *val) 1417 { 1418 *val = env->mstatus >> 32; 1419 return RISCV_EXCP_NONE; 1420 } 1421 1422 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1423 target_ulong val) 1424 { 1425 uint64_t valh = (uint64_t)val << 32; 1426 uint64_t mask = riscv_has_ext(env, RVH) ? MSTATUS_MPV | MSTATUS_GVA : 0; 1427 1428 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1429 1430 return RISCV_EXCP_NONE; 1431 } 1432 1433 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1434 Int128 *val) 1435 { 1436 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, 1437 env->mstatus)); 1438 return RISCV_EXCP_NONE; 1439 } 1440 1441 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1442 Int128 *val) 1443 { 1444 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1445 return RISCV_EXCP_NONE; 1446 } 1447 1448 static RISCVException read_misa(CPURISCVState *env, int csrno, 1449 target_ulong *val) 1450 { 1451 target_ulong misa; 1452 1453 switch (env->misa_mxl) { 1454 case MXL_RV32: 1455 misa = (target_ulong)MXL_RV32 << 30; 1456 break; 1457 #ifdef TARGET_RISCV64 1458 case MXL_RV64: 1459 misa = (target_ulong)MXL_RV64 << 62; 1460 break; 1461 #endif 1462 default: 1463 g_assert_not_reached(); 1464 } 1465 1466 *val = misa | env->misa_ext; 1467 return RISCV_EXCP_NONE; 1468 } 1469 1470 static RISCVException write_misa(CPURISCVState *env, int csrno, 1471 target_ulong val) 1472 { 1473 RISCVCPU *cpu = env_archcpu(env); 1474 uint32_t orig_misa_ext = env->misa_ext; 1475 Error *local_err = NULL; 1476 1477 if (!riscv_cpu_cfg(env)->misa_w) { 1478 /* drop write to misa */ 1479 return RISCV_EXCP_NONE; 1480 } 1481 1482 /* Mask extensions that are not supported by this hart */ 1483 val &= env->misa_ext_mask; 1484 1485 /* 1486 * Suppress 'C' if next instruction is not aligned 1487 * TODO: this should check next_pc 1488 */ 1489 if ((val & RVC) && (GETPC() & ~3) != 0) { 1490 val &= ~RVC; 1491 } 1492 1493 /* Disable RVG if any of its dependencies are disabled */ 1494 if (!(val & RVI && val & RVM && val & RVA && 1495 val & RVF && val & RVD)) { 1496 val &= ~RVG; 1497 } 1498 1499 /* If nothing changed, do nothing. */ 1500 if (val == env->misa_ext) { 1501 return RISCV_EXCP_NONE; 1502 } 1503 1504 env->misa_ext = val; 1505 riscv_cpu_validate_set_extensions(cpu, &local_err); 1506 if (local_err != NULL) { 1507 /* Rollback on validation error */ 1508 qemu_log_mask(LOG_GUEST_ERROR, "Unable to write MISA ext value " 1509 "0x%x, keeping existing MISA ext 0x%x\n", 1510 env->misa_ext, orig_misa_ext); 1511 1512 env->misa_ext = orig_misa_ext; 1513 1514 return RISCV_EXCP_NONE; 1515 } 1516 1517 if (!(env->misa_ext & RVF)) { 1518 env->mstatus &= ~MSTATUS_FS; 1519 } 1520 1521 /* flush translation cache */ 1522 tb_flush(env_cpu(env)); 1523 env->xl = riscv_cpu_mxl(env); 1524 return RISCV_EXCP_NONE; 1525 } 1526 1527 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1528 target_ulong *val) 1529 { 1530 *val = env->medeleg; 1531 return RISCV_EXCP_NONE; 1532 } 1533 1534 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1535 target_ulong val) 1536 { 1537 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1538 return RISCV_EXCP_NONE; 1539 } 1540 1541 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1542 uint64_t *ret_val, 1543 uint64_t new_val, uint64_t wr_mask) 1544 { 1545 uint64_t mask = wr_mask & delegable_ints; 1546 1547 if (ret_val) { 1548 *ret_val = env->mideleg; 1549 } 1550 1551 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1552 1553 if (riscv_has_ext(env, RVH)) { 1554 env->mideleg |= HS_MODE_INTERRUPTS; 1555 } 1556 1557 return RISCV_EXCP_NONE; 1558 } 1559 1560 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1561 target_ulong *ret_val, 1562 target_ulong new_val, target_ulong wr_mask) 1563 { 1564 uint64_t rval; 1565 RISCVException ret; 1566 1567 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1568 if (ret_val) { 1569 *ret_val = rval; 1570 } 1571 1572 return ret; 1573 } 1574 1575 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1576 target_ulong *ret_val, 1577 target_ulong new_val, 1578 target_ulong wr_mask) 1579 { 1580 uint64_t rval; 1581 RISCVException ret; 1582 1583 ret = rmw_mideleg64(env, csrno, &rval, 1584 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1585 if (ret_val) { 1586 *ret_val = rval >> 32; 1587 } 1588 1589 return ret; 1590 } 1591 1592 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1593 uint64_t *ret_val, 1594 uint64_t new_val, uint64_t wr_mask) 1595 { 1596 uint64_t mask = wr_mask & all_ints; 1597 1598 if (ret_val) { 1599 *ret_val = env->mie; 1600 } 1601 1602 env->mie = (env->mie & ~mask) | (new_val & mask); 1603 1604 if (!riscv_has_ext(env, RVH)) { 1605 env->mie &= ~((uint64_t)HS_MODE_INTERRUPTS); 1606 } 1607 1608 return RISCV_EXCP_NONE; 1609 } 1610 1611 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1612 target_ulong *ret_val, 1613 target_ulong new_val, target_ulong wr_mask) 1614 { 1615 uint64_t rval; 1616 RISCVException ret; 1617 1618 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1619 if (ret_val) { 1620 *ret_val = rval; 1621 } 1622 1623 return ret; 1624 } 1625 1626 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1627 target_ulong *ret_val, 1628 target_ulong new_val, target_ulong wr_mask) 1629 { 1630 uint64_t rval; 1631 RISCVException ret; 1632 1633 ret = rmw_mie64(env, csrno, &rval, 1634 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1635 if (ret_val) { 1636 *ret_val = rval >> 32; 1637 } 1638 1639 return ret; 1640 } 1641 1642 static RISCVException rmw_mvien64(CPURISCVState *env, int csrno, 1643 uint64_t *ret_val, 1644 uint64_t new_val, uint64_t wr_mask) 1645 { 1646 uint64_t mask = wr_mask & mvien_writable_mask; 1647 1648 if (ret_val) { 1649 *ret_val = env->mvien; 1650 } 1651 1652 env->mvien = (env->mvien & ~mask) | (new_val & mask); 1653 1654 return RISCV_EXCP_NONE; 1655 } 1656 1657 static RISCVException rmw_mvien(CPURISCVState *env, int csrno, 1658 target_ulong *ret_val, 1659 target_ulong new_val, target_ulong wr_mask) 1660 { 1661 uint64_t rval; 1662 RISCVException ret; 1663 1664 ret = rmw_mvien64(env, csrno, &rval, new_val, wr_mask); 1665 if (ret_val) { 1666 *ret_val = rval; 1667 } 1668 1669 return ret; 1670 } 1671 1672 static RISCVException rmw_mvienh(CPURISCVState *env, int csrno, 1673 target_ulong *ret_val, 1674 target_ulong new_val, target_ulong wr_mask) 1675 { 1676 uint64_t rval; 1677 RISCVException ret; 1678 1679 ret = rmw_mvien64(env, csrno, &rval, 1680 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1681 if (ret_val) { 1682 *ret_val = rval >> 32; 1683 } 1684 1685 return ret; 1686 } 1687 1688 static RISCVException read_mtopi(CPURISCVState *env, int csrno, 1689 target_ulong *val) 1690 { 1691 int irq; 1692 uint8_t iprio; 1693 1694 irq = riscv_cpu_mirq_pending(env); 1695 if (irq <= 0 || irq > 63) { 1696 *val = 0; 1697 } else { 1698 iprio = env->miprio[irq]; 1699 if (!iprio) { 1700 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1701 iprio = IPRIO_MMAXIPRIO; 1702 } 1703 } 1704 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1705 *val |= iprio; 1706 } 1707 1708 return RISCV_EXCP_NONE; 1709 } 1710 1711 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1712 { 1713 if (!env->virt_enabled) { 1714 return csrno; 1715 } 1716 1717 switch (csrno) { 1718 case CSR_SISELECT: 1719 return CSR_VSISELECT; 1720 case CSR_SIREG: 1721 return CSR_VSIREG; 1722 case CSR_STOPEI: 1723 return CSR_VSTOPEI; 1724 default: 1725 return csrno; 1726 }; 1727 } 1728 1729 static RISCVException rmw_xiselect(CPURISCVState *env, int csrno, 1730 target_ulong *val, target_ulong new_val, 1731 target_ulong wr_mask) 1732 { 1733 target_ulong *iselect; 1734 1735 /* Translate CSR number for VS-mode */ 1736 csrno = aia_xlate_vs_csrno(env, csrno); 1737 1738 /* Find the iselect CSR based on CSR number */ 1739 switch (csrno) { 1740 case CSR_MISELECT: 1741 iselect = &env->miselect; 1742 break; 1743 case CSR_SISELECT: 1744 iselect = &env->siselect; 1745 break; 1746 case CSR_VSISELECT: 1747 iselect = &env->vsiselect; 1748 break; 1749 default: 1750 return RISCV_EXCP_ILLEGAL_INST; 1751 }; 1752 1753 if (val) { 1754 *val = *iselect; 1755 } 1756 1757 wr_mask &= ISELECT_MASK; 1758 if (wr_mask) { 1759 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1760 } 1761 1762 return RISCV_EXCP_NONE; 1763 } 1764 1765 static int rmw_iprio(target_ulong xlen, 1766 target_ulong iselect, uint8_t *iprio, 1767 target_ulong *val, target_ulong new_val, 1768 target_ulong wr_mask, int ext_irq_no) 1769 { 1770 int i, firq, nirqs; 1771 target_ulong old_val; 1772 1773 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1774 return -EINVAL; 1775 } 1776 if (xlen != 32 && iselect & 0x1) { 1777 return -EINVAL; 1778 } 1779 1780 nirqs = 4 * (xlen / 32); 1781 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1782 1783 old_val = 0; 1784 for (i = 0; i < nirqs; i++) { 1785 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1786 } 1787 1788 if (val) { 1789 *val = old_val; 1790 } 1791 1792 if (wr_mask) { 1793 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1794 for (i = 0; i < nirqs; i++) { 1795 /* 1796 * M-level and S-level external IRQ priority always read-only 1797 * zero. This means default priority order is always preferred 1798 * for M-level and S-level external IRQs. 1799 */ 1800 if ((firq + i) == ext_irq_no) { 1801 continue; 1802 } 1803 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1804 } 1805 } 1806 1807 return 0; 1808 } 1809 1810 static RISCVException rmw_xireg(CPURISCVState *env, int csrno, 1811 target_ulong *val, target_ulong new_val, 1812 target_ulong wr_mask) 1813 { 1814 bool virt, isel_reserved; 1815 uint8_t *iprio; 1816 int ret = -EINVAL; 1817 target_ulong priv, isel, vgein; 1818 1819 /* Translate CSR number for VS-mode */ 1820 csrno = aia_xlate_vs_csrno(env, csrno); 1821 1822 /* Decode register details from CSR number */ 1823 virt = false; 1824 isel_reserved = false; 1825 switch (csrno) { 1826 case CSR_MIREG: 1827 iprio = env->miprio; 1828 isel = env->miselect; 1829 priv = PRV_M; 1830 break; 1831 case CSR_SIREG: 1832 if (env->priv == PRV_S && env->mvien & MIP_SEIP && 1833 env->siselect >= ISELECT_IMSIC_EIDELIVERY && 1834 env->siselect <= ISELECT_IMSIC_EIE63) { 1835 goto done; 1836 } 1837 iprio = env->siprio; 1838 isel = env->siselect; 1839 priv = PRV_S; 1840 break; 1841 case CSR_VSIREG: 1842 iprio = env->hviprio; 1843 isel = env->vsiselect; 1844 priv = PRV_S; 1845 virt = true; 1846 break; 1847 default: 1848 goto done; 1849 }; 1850 1851 /* Find the selected guest interrupt file */ 1852 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1853 1854 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1855 /* Local interrupt priority registers not available for VS-mode */ 1856 if (!virt) { 1857 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1858 isel, iprio, val, new_val, wr_mask, 1859 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1860 } 1861 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1862 /* IMSIC registers only available when machine implements it. */ 1863 if (env->aia_ireg_rmw_fn[priv]) { 1864 /* Selected guest interrupt file should not be zero */ 1865 if (virt && (!vgein || env->geilen < vgein)) { 1866 goto done; 1867 } 1868 /* Call machine specific IMSIC register emulation */ 1869 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1870 AIA_MAKE_IREG(isel, priv, virt, vgein, 1871 riscv_cpu_mxl_bits(env)), 1872 val, new_val, wr_mask); 1873 } 1874 } else { 1875 isel_reserved = true; 1876 } 1877 1878 done: 1879 if (ret) { 1880 return (env->virt_enabled && virt && !isel_reserved) ? 1881 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1882 } 1883 return RISCV_EXCP_NONE; 1884 } 1885 1886 static RISCVException rmw_xtopei(CPURISCVState *env, int csrno, 1887 target_ulong *val, target_ulong new_val, 1888 target_ulong wr_mask) 1889 { 1890 bool virt; 1891 int ret = -EINVAL; 1892 target_ulong priv, vgein; 1893 1894 /* Translate CSR number for VS-mode */ 1895 csrno = aia_xlate_vs_csrno(env, csrno); 1896 1897 /* Decode register details from CSR number */ 1898 virt = false; 1899 switch (csrno) { 1900 case CSR_MTOPEI: 1901 priv = PRV_M; 1902 break; 1903 case CSR_STOPEI: 1904 if (env->mvien & MIP_SEIP && env->priv == PRV_S) { 1905 goto done; 1906 } 1907 priv = PRV_S; 1908 break; 1909 case CSR_VSTOPEI: 1910 priv = PRV_S; 1911 virt = true; 1912 break; 1913 default: 1914 goto done; 1915 }; 1916 1917 /* IMSIC CSRs only available when machine implements IMSIC. */ 1918 if (!env->aia_ireg_rmw_fn[priv]) { 1919 goto done; 1920 } 1921 1922 /* Find the selected guest interrupt file */ 1923 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1924 1925 /* Selected guest interrupt file should be valid */ 1926 if (virt && (!vgein || env->geilen < vgein)) { 1927 goto done; 1928 } 1929 1930 /* Call machine specific IMSIC register emulation for TOPEI */ 1931 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1932 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1933 riscv_cpu_mxl_bits(env)), 1934 val, new_val, wr_mask); 1935 1936 done: 1937 if (ret) { 1938 return (env->virt_enabled && virt) ? 1939 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1940 } 1941 return RISCV_EXCP_NONE; 1942 } 1943 1944 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1945 target_ulong *val) 1946 { 1947 *val = env->mtvec; 1948 return RISCV_EXCP_NONE; 1949 } 1950 1951 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1952 target_ulong val) 1953 { 1954 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1955 if ((val & 3) < 2) { 1956 env->mtvec = val; 1957 } else { 1958 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1959 } 1960 return RISCV_EXCP_NONE; 1961 } 1962 1963 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1964 target_ulong *val) 1965 { 1966 *val = env->mcountinhibit; 1967 return RISCV_EXCP_NONE; 1968 } 1969 1970 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1971 target_ulong val) 1972 { 1973 int cidx; 1974 PMUCTRState *counter; 1975 RISCVCPU *cpu = env_archcpu(env); 1976 1977 /* WARL register - disable unavailable counters; TM bit is always 0 */ 1978 env->mcountinhibit = 1979 val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_IR); 1980 1981 /* Check if any other counter is also monitoring cycles/instructions */ 1982 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1983 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1984 counter = &env->pmu_ctrs[cidx]; 1985 counter->started = true; 1986 } 1987 } 1988 1989 return RISCV_EXCP_NONE; 1990 } 1991 1992 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1993 target_ulong *val) 1994 { 1995 *val = env->mcounteren; 1996 return RISCV_EXCP_NONE; 1997 } 1998 1999 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 2000 target_ulong val) 2001 { 2002 RISCVCPU *cpu = env_archcpu(env); 2003 2004 /* WARL register - disable unavailable counters */ 2005 env->mcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 2006 COUNTEREN_IR); 2007 return RISCV_EXCP_NONE; 2008 } 2009 2010 /* Machine Trap Handling */ 2011 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 2012 Int128 *val) 2013 { 2014 *val = int128_make128(env->mscratch, env->mscratchh); 2015 return RISCV_EXCP_NONE; 2016 } 2017 2018 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 2019 Int128 val) 2020 { 2021 env->mscratch = int128_getlo(val); 2022 env->mscratchh = int128_gethi(val); 2023 return RISCV_EXCP_NONE; 2024 } 2025 2026 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 2027 target_ulong *val) 2028 { 2029 *val = env->mscratch; 2030 return RISCV_EXCP_NONE; 2031 } 2032 2033 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 2034 target_ulong val) 2035 { 2036 env->mscratch = val; 2037 return RISCV_EXCP_NONE; 2038 } 2039 2040 static RISCVException read_mepc(CPURISCVState *env, int csrno, 2041 target_ulong *val) 2042 { 2043 *val = env->mepc; 2044 return RISCV_EXCP_NONE; 2045 } 2046 2047 static RISCVException write_mepc(CPURISCVState *env, int csrno, 2048 target_ulong val) 2049 { 2050 env->mepc = val; 2051 return RISCV_EXCP_NONE; 2052 } 2053 2054 static RISCVException read_mcause(CPURISCVState *env, int csrno, 2055 target_ulong *val) 2056 { 2057 *val = env->mcause; 2058 return RISCV_EXCP_NONE; 2059 } 2060 2061 static RISCVException write_mcause(CPURISCVState *env, int csrno, 2062 target_ulong val) 2063 { 2064 env->mcause = val; 2065 return RISCV_EXCP_NONE; 2066 } 2067 2068 static RISCVException read_mtval(CPURISCVState *env, int csrno, 2069 target_ulong *val) 2070 { 2071 *val = env->mtval; 2072 return RISCV_EXCP_NONE; 2073 } 2074 2075 static RISCVException write_mtval(CPURISCVState *env, int csrno, 2076 target_ulong val) 2077 { 2078 env->mtval = val; 2079 return RISCV_EXCP_NONE; 2080 } 2081 2082 /* Execution environment configuration setup */ 2083 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 2084 target_ulong *val) 2085 { 2086 *val = env->menvcfg; 2087 return RISCV_EXCP_NONE; 2088 } 2089 2090 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 2091 target_ulong val) 2092 { 2093 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 2094 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 2095 2096 if (riscv_cpu_mxl(env) == MXL_RV64) { 2097 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 2098 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 2099 (cfg->ext_svadu ? MENVCFG_ADUE : 0); 2100 } 2101 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 2102 2103 return RISCV_EXCP_NONE; 2104 } 2105 2106 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 2107 target_ulong *val) 2108 { 2109 *val = env->menvcfg >> 32; 2110 return RISCV_EXCP_NONE; 2111 } 2112 2113 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 2114 target_ulong val) 2115 { 2116 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 2117 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 2118 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 2119 (cfg->ext_svadu ? MENVCFG_ADUE : 0); 2120 uint64_t valh = (uint64_t)val << 32; 2121 2122 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 2123 2124 return RISCV_EXCP_NONE; 2125 } 2126 2127 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 2128 target_ulong *val) 2129 { 2130 RISCVException ret; 2131 2132 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2133 if (ret != RISCV_EXCP_NONE) { 2134 return ret; 2135 } 2136 2137 *val = env->senvcfg; 2138 return RISCV_EXCP_NONE; 2139 } 2140 2141 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 2142 target_ulong val) 2143 { 2144 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 2145 RISCVException ret; 2146 2147 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2148 if (ret != RISCV_EXCP_NONE) { 2149 return ret; 2150 } 2151 2152 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 2153 return RISCV_EXCP_NONE; 2154 } 2155 2156 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 2157 target_ulong *val) 2158 { 2159 RISCVException ret; 2160 2161 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2162 if (ret != RISCV_EXCP_NONE) { 2163 return ret; 2164 } 2165 2166 /* 2167 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 2168 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 2169 * henvcfg.adue is read_only 0 when menvcfg.adue = 0 2170 */ 2171 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | 2172 env->menvcfg); 2173 return RISCV_EXCP_NONE; 2174 } 2175 2176 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 2177 target_ulong val) 2178 { 2179 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 2180 RISCVException ret; 2181 2182 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2183 if (ret != RISCV_EXCP_NONE) { 2184 return ret; 2185 } 2186 2187 if (riscv_cpu_mxl(env) == MXL_RV64) { 2188 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE); 2189 } 2190 2191 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 2192 2193 return RISCV_EXCP_NONE; 2194 } 2195 2196 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 2197 target_ulong *val) 2198 { 2199 RISCVException ret; 2200 2201 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2202 if (ret != RISCV_EXCP_NONE) { 2203 return ret; 2204 } 2205 2206 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | 2207 env->menvcfg)) >> 32; 2208 return RISCV_EXCP_NONE; 2209 } 2210 2211 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2212 target_ulong val) 2213 { 2214 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 2215 HENVCFG_ADUE); 2216 uint64_t valh = (uint64_t)val << 32; 2217 RISCVException ret; 2218 2219 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2220 if (ret != RISCV_EXCP_NONE) { 2221 return ret; 2222 } 2223 2224 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2225 return RISCV_EXCP_NONE; 2226 } 2227 2228 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2229 target_ulong *val) 2230 { 2231 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2232 2233 return RISCV_EXCP_NONE; 2234 } 2235 2236 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2237 uint64_t wr_mask, target_ulong new_val) 2238 { 2239 uint64_t *reg; 2240 2241 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2242 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2243 2244 return RISCV_EXCP_NONE; 2245 } 2246 2247 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2248 target_ulong new_val) 2249 { 2250 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2251 if (!riscv_has_ext(env, RVF)) { 2252 wr_mask |= SMSTATEEN0_FCSR; 2253 } 2254 2255 return write_mstateen(env, csrno, wr_mask, new_val); 2256 } 2257 2258 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2259 target_ulong new_val) 2260 { 2261 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2262 } 2263 2264 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2265 target_ulong *val) 2266 { 2267 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2268 2269 return RISCV_EXCP_NONE; 2270 } 2271 2272 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2273 uint64_t wr_mask, target_ulong new_val) 2274 { 2275 uint64_t *reg, val; 2276 2277 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2278 val = (uint64_t)new_val << 32; 2279 val |= *reg & 0xFFFFFFFF; 2280 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2281 2282 return RISCV_EXCP_NONE; 2283 } 2284 2285 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2286 target_ulong new_val) 2287 { 2288 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2289 2290 return write_mstateenh(env, csrno, wr_mask, new_val); 2291 } 2292 2293 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2294 target_ulong new_val) 2295 { 2296 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2297 } 2298 2299 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2300 target_ulong *val) 2301 { 2302 int index = csrno - CSR_HSTATEEN0; 2303 2304 *val = env->hstateen[index] & env->mstateen[index]; 2305 2306 return RISCV_EXCP_NONE; 2307 } 2308 2309 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2310 uint64_t mask, target_ulong new_val) 2311 { 2312 int index = csrno - CSR_HSTATEEN0; 2313 uint64_t *reg, wr_mask; 2314 2315 reg = &env->hstateen[index]; 2316 wr_mask = env->mstateen[index] & mask; 2317 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2318 2319 return RISCV_EXCP_NONE; 2320 } 2321 2322 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2323 target_ulong new_val) 2324 { 2325 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2326 2327 if (!riscv_has_ext(env, RVF)) { 2328 wr_mask |= SMSTATEEN0_FCSR; 2329 } 2330 2331 return write_hstateen(env, csrno, wr_mask, new_val); 2332 } 2333 2334 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2335 target_ulong new_val) 2336 { 2337 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2338 } 2339 2340 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2341 target_ulong *val) 2342 { 2343 int index = csrno - CSR_HSTATEEN0H; 2344 2345 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2346 2347 return RISCV_EXCP_NONE; 2348 } 2349 2350 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2351 uint64_t mask, target_ulong new_val) 2352 { 2353 int index = csrno - CSR_HSTATEEN0H; 2354 uint64_t *reg, wr_mask, val; 2355 2356 reg = &env->hstateen[index]; 2357 val = (uint64_t)new_val << 32; 2358 val |= *reg & 0xFFFFFFFF; 2359 wr_mask = env->mstateen[index] & mask; 2360 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2361 2362 return RISCV_EXCP_NONE; 2363 } 2364 2365 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2366 target_ulong new_val) 2367 { 2368 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2369 2370 return write_hstateenh(env, csrno, wr_mask, new_val); 2371 } 2372 2373 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2374 target_ulong new_val) 2375 { 2376 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2377 } 2378 2379 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2380 target_ulong *val) 2381 { 2382 bool virt = env->virt_enabled; 2383 int index = csrno - CSR_SSTATEEN0; 2384 2385 *val = env->sstateen[index] & env->mstateen[index]; 2386 if (virt) { 2387 *val &= env->hstateen[index]; 2388 } 2389 2390 return RISCV_EXCP_NONE; 2391 } 2392 2393 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2394 uint64_t mask, target_ulong new_val) 2395 { 2396 bool virt = env->virt_enabled; 2397 int index = csrno - CSR_SSTATEEN0; 2398 uint64_t wr_mask; 2399 uint64_t *reg; 2400 2401 wr_mask = env->mstateen[index] & mask; 2402 if (virt) { 2403 wr_mask &= env->hstateen[index]; 2404 } 2405 2406 reg = &env->sstateen[index]; 2407 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2408 2409 return RISCV_EXCP_NONE; 2410 } 2411 2412 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2413 target_ulong new_val) 2414 { 2415 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2416 2417 if (!riscv_has_ext(env, RVF)) { 2418 wr_mask |= SMSTATEEN0_FCSR; 2419 } 2420 2421 return write_sstateen(env, csrno, wr_mask, new_val); 2422 } 2423 2424 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2425 target_ulong new_val) 2426 { 2427 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2428 } 2429 2430 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2431 uint64_t *ret_val, 2432 uint64_t new_val, uint64_t wr_mask) 2433 { 2434 uint64_t old_mip, mask = wr_mask & delegable_ints; 2435 uint32_t gin; 2436 2437 if (mask & MIP_SEIP) { 2438 env->software_seip = new_val & MIP_SEIP; 2439 new_val |= env->external_seip * MIP_SEIP; 2440 } 2441 2442 if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && 2443 get_field(env->menvcfg, MENVCFG_STCE)) { 2444 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2445 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2446 } 2447 2448 if (mask) { 2449 old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); 2450 } else { 2451 old_mip = env->mip; 2452 } 2453 2454 if (csrno != CSR_HVIP) { 2455 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2456 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2457 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2458 } 2459 2460 if (ret_val) { 2461 *ret_val = old_mip; 2462 } 2463 2464 return RISCV_EXCP_NONE; 2465 } 2466 2467 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2468 target_ulong *ret_val, 2469 target_ulong new_val, target_ulong wr_mask) 2470 { 2471 uint64_t rval; 2472 RISCVException ret; 2473 2474 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2475 if (ret_val) { 2476 *ret_val = rval; 2477 } 2478 2479 return ret; 2480 } 2481 2482 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2483 target_ulong *ret_val, 2484 target_ulong new_val, target_ulong wr_mask) 2485 { 2486 uint64_t rval; 2487 RISCVException ret; 2488 2489 ret = rmw_mip64(env, csrno, &rval, 2490 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2491 if (ret_val) { 2492 *ret_val = rval >> 32; 2493 } 2494 2495 return ret; 2496 } 2497 2498 /* 2499 * The function is written for two use-cases: 2500 * 1- To access mvip csr as is for m-mode access. 2501 * 2- To access sip as a combination of mip and mvip for s-mode. 2502 * 2503 * Both report bits 1, 5, 9 and 13:63 but with the exception of 2504 * STIP being read-only zero in case of mvip when sstc extension 2505 * is present. 2506 * Also, sip needs to be read-only zero when both mideleg[i] and 2507 * mvien[i] are zero but mvip needs to be an alias of mip. 2508 */ 2509 static RISCVException rmw_mvip64(CPURISCVState *env, int csrno, 2510 uint64_t *ret_val, 2511 uint64_t new_val, uint64_t wr_mask) 2512 { 2513 RISCVCPU *cpu = env_archcpu(env); 2514 target_ulong ret_mip = 0; 2515 RISCVException ret; 2516 uint64_t old_mvip; 2517 2518 /* 2519 * mideleg[i] mvien[i] 2520 * 0 0 No delegation. mvip[i] is alias of mip[i]. 2521 * 0 1 mvip[i] becomes source of interrupt, mip bypassed. 2522 * 1 X mip[i] is source of interrupt and mvip[i] aliases 2523 * mip[i]. 2524 * 2525 * So alias condition would be for bits: 2526 * ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (mideleg | ~mvien)) | 2527 * (!sstc & MIP_STIP) 2528 * 2529 * Non-alias condition will be for bits: 2530 * (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~mideleg & mvien) 2531 * 2532 * alias_mask denotes the bits that come from mip nalias_mask denotes bits 2533 * that come from hvip. 2534 */ 2535 uint64_t alias_mask = ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2536 (env->mideleg | ~env->mvien)) | MIP_STIP; 2537 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2538 (~env->mideleg & env->mvien); 2539 uint64_t wr_mask_mvip; 2540 uint64_t wr_mask_mip; 2541 2542 /* 2543 * mideleg[i] mvien[i] 2544 * 0 0 sip[i] read-only zero. 2545 * 0 1 sip[i] alias of mvip[i]. 2546 * 1 X sip[i] alias of mip[i]. 2547 * 2548 * Both alias and non-alias mask remain same for sip except for bits 2549 * which are zero in both mideleg and mvien. 2550 */ 2551 if (csrno == CSR_SIP) { 2552 /* Remove bits that are zero in both mideleg and mvien. */ 2553 alias_mask &= (env->mideleg | env->mvien); 2554 nalias_mask &= (env->mideleg | env->mvien); 2555 } 2556 2557 /* 2558 * If sstc is present, mvip.STIP is not an alias of mip.STIP so clear 2559 * that our in mip returned value. 2560 */ 2561 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2562 get_field(env->menvcfg, MENVCFG_STCE)) { 2563 alias_mask &= ~MIP_STIP; 2564 } 2565 2566 wr_mask_mip = wr_mask & alias_mask & mvip_writable_mask; 2567 wr_mask_mvip = wr_mask & nalias_mask & mvip_writable_mask; 2568 2569 /* 2570 * For bits set in alias_mask, mvip needs to be alias of mip, so forward 2571 * this to rmw_mip. 2572 */ 2573 ret = rmw_mip(env, CSR_MIP, &ret_mip, new_val, wr_mask_mip); 2574 if (ret != RISCV_EXCP_NONE) { 2575 return ret; 2576 } 2577 2578 old_mvip = env->mvip; 2579 2580 /* 2581 * Write to mvip. Update only non-alias bits. Alias bits were updated 2582 * in mip in rmw_mip above. 2583 */ 2584 if (wr_mask_mvip) { 2585 env->mvip = (env->mvip & ~wr_mask_mvip) | (new_val & wr_mask_mvip); 2586 2587 /* 2588 * Given mvip is separate source from mip, we need to trigger interrupt 2589 * from here separately. Normally this happen from riscv_cpu_update_mip. 2590 */ 2591 riscv_cpu_interrupt(env); 2592 } 2593 2594 if (ret_val) { 2595 ret_mip &= alias_mask; 2596 old_mvip &= nalias_mask; 2597 2598 *ret_val = old_mvip | ret_mip; 2599 } 2600 2601 return RISCV_EXCP_NONE; 2602 } 2603 2604 static RISCVException rmw_mvip(CPURISCVState *env, int csrno, 2605 target_ulong *ret_val, 2606 target_ulong new_val, target_ulong wr_mask) 2607 { 2608 uint64_t rval; 2609 RISCVException ret; 2610 2611 ret = rmw_mvip64(env, csrno, &rval, new_val, wr_mask); 2612 if (ret_val) { 2613 *ret_val = rval; 2614 } 2615 2616 return ret; 2617 } 2618 2619 static RISCVException rmw_mviph(CPURISCVState *env, int csrno, 2620 target_ulong *ret_val, 2621 target_ulong new_val, target_ulong wr_mask) 2622 { 2623 uint64_t rval; 2624 RISCVException ret; 2625 2626 ret = rmw_mvip64(env, csrno, &rval, 2627 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2628 if (ret_val) { 2629 *ret_val = rval >> 32; 2630 } 2631 2632 return ret; 2633 } 2634 2635 /* Supervisor Trap Setup */ 2636 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2637 Int128 *val) 2638 { 2639 uint64_t mask = sstatus_v1_10_mask; 2640 uint64_t sstatus = env->mstatus & mask; 2641 if (env->xl != MXL_RV32 || env->debugger) { 2642 mask |= SSTATUS64_UXL; 2643 } 2644 2645 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2646 return RISCV_EXCP_NONE; 2647 } 2648 2649 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2650 target_ulong *val) 2651 { 2652 target_ulong mask = (sstatus_v1_10_mask); 2653 if (env->xl != MXL_RV32 || env->debugger) { 2654 mask |= SSTATUS64_UXL; 2655 } 2656 /* TODO: Use SXL not MXL. */ 2657 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2658 return RISCV_EXCP_NONE; 2659 } 2660 2661 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2662 target_ulong val) 2663 { 2664 target_ulong mask = (sstatus_v1_10_mask); 2665 2666 if (env->xl != MXL_RV32 || env->debugger) { 2667 if ((val & SSTATUS64_UXL) != 0) { 2668 mask |= SSTATUS64_UXL; 2669 } 2670 } 2671 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2672 return write_mstatus(env, CSR_MSTATUS, newval); 2673 } 2674 2675 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2676 uint64_t *ret_val, 2677 uint64_t new_val, uint64_t wr_mask) 2678 { 2679 uint64_t alias_mask = (LOCAL_INTERRUPTS | VS_MODE_INTERRUPTS) & 2680 env->hideleg; 2681 uint64_t nalias_mask = LOCAL_INTERRUPTS & (~env->hideleg & env->hvien); 2682 uint64_t rval, rval_vs, vsbits; 2683 uint64_t wr_mask_vsie; 2684 uint64_t wr_mask_mie; 2685 RISCVException ret; 2686 2687 /* Bring VS-level bits to correct position */ 2688 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2689 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2690 new_val |= vsbits << 1; 2691 2692 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2693 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2694 wr_mask |= vsbits << 1; 2695 2696 wr_mask_mie = wr_mask & alias_mask; 2697 wr_mask_vsie = wr_mask & nalias_mask; 2698 2699 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask_mie); 2700 2701 rval_vs = env->vsie & nalias_mask; 2702 env->vsie = (env->vsie & ~wr_mask_vsie) | (new_val & wr_mask_vsie); 2703 2704 if (ret_val) { 2705 rval &= alias_mask; 2706 vsbits = rval & VS_MODE_INTERRUPTS; 2707 rval &= ~VS_MODE_INTERRUPTS; 2708 *ret_val = rval | (vsbits >> 1) | rval_vs; 2709 } 2710 2711 return ret; 2712 } 2713 2714 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2715 target_ulong *ret_val, 2716 target_ulong new_val, target_ulong wr_mask) 2717 { 2718 uint64_t rval; 2719 RISCVException ret; 2720 2721 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2722 if (ret_val) { 2723 *ret_val = rval; 2724 } 2725 2726 return ret; 2727 } 2728 2729 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2730 target_ulong *ret_val, 2731 target_ulong new_val, target_ulong wr_mask) 2732 { 2733 uint64_t rval; 2734 RISCVException ret; 2735 2736 ret = rmw_vsie64(env, csrno, &rval, 2737 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2738 if (ret_val) { 2739 *ret_val = rval >> 32; 2740 } 2741 2742 return ret; 2743 } 2744 2745 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2746 uint64_t *ret_val, 2747 uint64_t new_val, uint64_t wr_mask) 2748 { 2749 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2750 (~env->mideleg & env->mvien); 2751 uint64_t alias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & env->mideleg; 2752 uint64_t sie_mask = wr_mask & nalias_mask; 2753 RISCVException ret; 2754 2755 /* 2756 * mideleg[i] mvien[i] 2757 * 0 0 sie[i] read-only zero. 2758 * 0 1 sie[i] is a separate writable bit. 2759 * 1 X sie[i] alias of mie[i]. 2760 * 2761 * Both alias and non-alias mask remain same for sip except for bits 2762 * which are zero in both mideleg and mvien. 2763 */ 2764 if (env->virt_enabled) { 2765 if (env->hvictl & HVICTL_VTI) { 2766 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2767 } 2768 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2769 if (ret_val) { 2770 *ret_val &= alias_mask; 2771 } 2772 } else { 2773 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & alias_mask); 2774 if (ret_val) { 2775 *ret_val &= alias_mask; 2776 *ret_val |= env->sie & nalias_mask; 2777 } 2778 2779 env->sie = (env->sie & ~sie_mask) | (new_val & sie_mask); 2780 } 2781 2782 return ret; 2783 } 2784 2785 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2786 target_ulong *ret_val, 2787 target_ulong new_val, target_ulong wr_mask) 2788 { 2789 uint64_t rval; 2790 RISCVException ret; 2791 2792 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2793 if (ret == RISCV_EXCP_NONE && ret_val) { 2794 *ret_val = rval; 2795 } 2796 2797 return ret; 2798 } 2799 2800 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2801 target_ulong *ret_val, 2802 target_ulong new_val, target_ulong wr_mask) 2803 { 2804 uint64_t rval; 2805 RISCVException ret; 2806 2807 ret = rmw_sie64(env, csrno, &rval, 2808 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2809 if (ret_val) { 2810 *ret_val = rval >> 32; 2811 } 2812 2813 return ret; 2814 } 2815 2816 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2817 target_ulong *val) 2818 { 2819 *val = env->stvec; 2820 return RISCV_EXCP_NONE; 2821 } 2822 2823 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2824 target_ulong val) 2825 { 2826 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2827 if ((val & 3) < 2) { 2828 env->stvec = val; 2829 } else { 2830 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2831 } 2832 return RISCV_EXCP_NONE; 2833 } 2834 2835 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2836 target_ulong *val) 2837 { 2838 *val = env->scounteren; 2839 return RISCV_EXCP_NONE; 2840 } 2841 2842 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2843 target_ulong val) 2844 { 2845 env->scounteren = val; 2846 return RISCV_EXCP_NONE; 2847 } 2848 2849 /* Supervisor Trap Handling */ 2850 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2851 Int128 *val) 2852 { 2853 *val = int128_make128(env->sscratch, env->sscratchh); 2854 return RISCV_EXCP_NONE; 2855 } 2856 2857 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2858 Int128 val) 2859 { 2860 env->sscratch = int128_getlo(val); 2861 env->sscratchh = int128_gethi(val); 2862 return RISCV_EXCP_NONE; 2863 } 2864 2865 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2866 target_ulong *val) 2867 { 2868 *val = env->sscratch; 2869 return RISCV_EXCP_NONE; 2870 } 2871 2872 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2873 target_ulong val) 2874 { 2875 env->sscratch = val; 2876 return RISCV_EXCP_NONE; 2877 } 2878 2879 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2880 target_ulong *val) 2881 { 2882 *val = env->sepc; 2883 return RISCV_EXCP_NONE; 2884 } 2885 2886 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2887 target_ulong val) 2888 { 2889 env->sepc = val; 2890 return RISCV_EXCP_NONE; 2891 } 2892 2893 static RISCVException read_scause(CPURISCVState *env, int csrno, 2894 target_ulong *val) 2895 { 2896 *val = env->scause; 2897 return RISCV_EXCP_NONE; 2898 } 2899 2900 static RISCVException write_scause(CPURISCVState *env, int csrno, 2901 target_ulong val) 2902 { 2903 env->scause = val; 2904 return RISCV_EXCP_NONE; 2905 } 2906 2907 static RISCVException read_stval(CPURISCVState *env, int csrno, 2908 target_ulong *val) 2909 { 2910 *val = env->stval; 2911 return RISCV_EXCP_NONE; 2912 } 2913 2914 static RISCVException write_stval(CPURISCVState *env, int csrno, 2915 target_ulong val) 2916 { 2917 env->stval = val; 2918 return RISCV_EXCP_NONE; 2919 } 2920 2921 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2922 uint64_t *ret_val, 2923 uint64_t new_val, uint64_t wr_mask); 2924 2925 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2926 uint64_t *ret_val, 2927 uint64_t new_val, uint64_t wr_mask) 2928 { 2929 RISCVException ret; 2930 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2931 uint64_t vsbits; 2932 2933 /* Add virtualized bits into vsip mask. */ 2934 mask |= env->hvien & ~env->hideleg; 2935 2936 /* Bring VS-level bits to correct position */ 2937 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2938 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2939 new_val |= vsbits << 1; 2940 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2941 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2942 wr_mask |= vsbits << 1; 2943 2944 ret = rmw_hvip64(env, csrno, &rval, new_val, 2945 wr_mask & mask & vsip_writable_mask); 2946 if (ret_val) { 2947 rval &= mask; 2948 vsbits = rval & VS_MODE_INTERRUPTS; 2949 rval &= ~VS_MODE_INTERRUPTS; 2950 *ret_val = rval | (vsbits >> 1); 2951 } 2952 2953 return ret; 2954 } 2955 2956 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2957 target_ulong *ret_val, 2958 target_ulong new_val, target_ulong wr_mask) 2959 { 2960 uint64_t rval; 2961 RISCVException ret; 2962 2963 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2964 if (ret_val) { 2965 *ret_val = rval; 2966 } 2967 2968 return ret; 2969 } 2970 2971 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2972 target_ulong *ret_val, 2973 target_ulong new_val, target_ulong wr_mask) 2974 { 2975 uint64_t rval; 2976 RISCVException ret; 2977 2978 ret = rmw_vsip64(env, csrno, &rval, 2979 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2980 if (ret_val) { 2981 *ret_val = rval >> 32; 2982 } 2983 2984 return ret; 2985 } 2986 2987 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2988 uint64_t *ret_val, 2989 uint64_t new_val, uint64_t wr_mask) 2990 { 2991 RISCVException ret; 2992 uint64_t mask = (env->mideleg | env->mvien) & sip_writable_mask; 2993 2994 if (env->virt_enabled) { 2995 if (env->hvictl & HVICTL_VTI) { 2996 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2997 } 2998 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2999 } else { 3000 ret = rmw_mvip64(env, csrno, ret_val, new_val, wr_mask & mask); 3001 } 3002 3003 if (ret_val) { 3004 *ret_val &= (env->mideleg | env->mvien) & 3005 (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS); 3006 } 3007 3008 return ret; 3009 } 3010 3011 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 3012 target_ulong *ret_val, 3013 target_ulong new_val, target_ulong wr_mask) 3014 { 3015 uint64_t rval; 3016 RISCVException ret; 3017 3018 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 3019 if (ret_val) { 3020 *ret_val = rval; 3021 } 3022 3023 return ret; 3024 } 3025 3026 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 3027 target_ulong *ret_val, 3028 target_ulong new_val, target_ulong wr_mask) 3029 { 3030 uint64_t rval; 3031 RISCVException ret; 3032 3033 ret = rmw_sip64(env, csrno, &rval, 3034 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3035 if (ret_val) { 3036 *ret_val = rval >> 32; 3037 } 3038 3039 return ret; 3040 } 3041 3042 /* Supervisor Protection and Translation */ 3043 static RISCVException read_satp(CPURISCVState *env, int csrno, 3044 target_ulong *val) 3045 { 3046 if (!riscv_cpu_cfg(env)->mmu) { 3047 *val = 0; 3048 return RISCV_EXCP_NONE; 3049 } 3050 *val = env->satp; 3051 return RISCV_EXCP_NONE; 3052 } 3053 3054 static RISCVException write_satp(CPURISCVState *env, int csrno, 3055 target_ulong val) 3056 { 3057 if (!riscv_cpu_cfg(env)->mmu) { 3058 return RISCV_EXCP_NONE; 3059 } 3060 3061 env->satp = legalize_xatp(env, env->satp, val); 3062 return RISCV_EXCP_NONE; 3063 } 3064 3065 static RISCVException read_vstopi(CPURISCVState *env, int csrno, 3066 target_ulong *val) 3067 { 3068 int irq, ret; 3069 target_ulong topei; 3070 uint64_t vseip, vsgein; 3071 uint32_t iid, iprio, hviid, hviprio, gein; 3072 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 3073 3074 gein = get_field(env->hstatus, HSTATUS_VGEIN); 3075 hviid = get_field(env->hvictl, HVICTL_IID); 3076 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 3077 3078 if (gein) { 3079 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 3080 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 3081 if (gein <= env->geilen && vseip) { 3082 siid[scount] = IRQ_S_EXT; 3083 siprio[scount] = IPRIO_MMAXIPRIO + 1; 3084 if (env->aia_ireg_rmw_fn[PRV_S]) { 3085 /* 3086 * Call machine specific IMSIC register emulation for 3087 * reading TOPEI. 3088 */ 3089 ret = env->aia_ireg_rmw_fn[PRV_S]( 3090 env->aia_ireg_rmw_fn_arg[PRV_S], 3091 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 3092 riscv_cpu_mxl_bits(env)), 3093 &topei, 0, 0); 3094 if (!ret && topei) { 3095 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 3096 } 3097 } 3098 scount++; 3099 } 3100 } else { 3101 if (hviid == IRQ_S_EXT && hviprio) { 3102 siid[scount] = IRQ_S_EXT; 3103 siprio[scount] = hviprio; 3104 scount++; 3105 } 3106 } 3107 3108 if (env->hvictl & HVICTL_VTI) { 3109 if (hviid != IRQ_S_EXT) { 3110 siid[scount] = hviid; 3111 siprio[scount] = hviprio; 3112 scount++; 3113 } 3114 } else { 3115 irq = riscv_cpu_vsirq_pending(env); 3116 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 3117 siid[scount] = irq; 3118 siprio[scount] = env->hviprio[irq]; 3119 scount++; 3120 } 3121 } 3122 3123 iid = 0; 3124 iprio = UINT_MAX; 3125 for (s = 0; s < scount; s++) { 3126 if (siprio[s] < iprio) { 3127 iid = siid[s]; 3128 iprio = siprio[s]; 3129 } 3130 } 3131 3132 if (iid) { 3133 if (env->hvictl & HVICTL_IPRIOM) { 3134 if (iprio > IPRIO_MMAXIPRIO) { 3135 iprio = IPRIO_MMAXIPRIO; 3136 } 3137 if (!iprio) { 3138 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 3139 iprio = IPRIO_MMAXIPRIO; 3140 } 3141 } 3142 } else { 3143 iprio = 1; 3144 } 3145 } else { 3146 iprio = 0; 3147 } 3148 3149 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 3150 *val |= iprio; 3151 3152 return RISCV_EXCP_NONE; 3153 } 3154 3155 static RISCVException read_stopi(CPURISCVState *env, int csrno, 3156 target_ulong *val) 3157 { 3158 int irq; 3159 uint8_t iprio; 3160 3161 if (env->virt_enabled) { 3162 return read_vstopi(env, CSR_VSTOPI, val); 3163 } 3164 3165 irq = riscv_cpu_sirq_pending(env); 3166 if (irq <= 0 || irq > 63) { 3167 *val = 0; 3168 } else { 3169 iprio = env->siprio[irq]; 3170 if (!iprio) { 3171 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 3172 iprio = IPRIO_MMAXIPRIO; 3173 } 3174 } 3175 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 3176 *val |= iprio; 3177 } 3178 3179 return RISCV_EXCP_NONE; 3180 } 3181 3182 /* Hypervisor Extensions */ 3183 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 3184 target_ulong *val) 3185 { 3186 *val = env->hstatus; 3187 if (riscv_cpu_mxl(env) != MXL_RV32) { 3188 /* We only support 64-bit VSXL */ 3189 *val = set_field(*val, HSTATUS_VSXL, 2); 3190 } 3191 /* We only support little endian */ 3192 *val = set_field(*val, HSTATUS_VSBE, 0); 3193 return RISCV_EXCP_NONE; 3194 } 3195 3196 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 3197 target_ulong val) 3198 { 3199 env->hstatus = val; 3200 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 3201 qemu_log_mask(LOG_UNIMP, 3202 "QEMU does not support mixed HSXLEN options."); 3203 } 3204 if (get_field(val, HSTATUS_VSBE) != 0) { 3205 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 3206 } 3207 return RISCV_EXCP_NONE; 3208 } 3209 3210 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 3211 target_ulong *val) 3212 { 3213 *val = env->hedeleg; 3214 return RISCV_EXCP_NONE; 3215 } 3216 3217 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 3218 target_ulong val) 3219 { 3220 env->hedeleg = val & vs_delegable_excps; 3221 return RISCV_EXCP_NONE; 3222 } 3223 3224 static RISCVException rmw_hvien64(CPURISCVState *env, int csrno, 3225 uint64_t *ret_val, 3226 uint64_t new_val, uint64_t wr_mask) 3227 { 3228 uint64_t mask = wr_mask & hvien_writable_mask; 3229 3230 if (ret_val) { 3231 *ret_val = env->hvien; 3232 } 3233 3234 env->hvien = (env->hvien & ~mask) | (new_val & mask); 3235 3236 return RISCV_EXCP_NONE; 3237 } 3238 3239 static RISCVException rmw_hvien(CPURISCVState *env, int csrno, 3240 target_ulong *ret_val, 3241 target_ulong new_val, target_ulong wr_mask) 3242 { 3243 uint64_t rval; 3244 RISCVException ret; 3245 3246 ret = rmw_hvien64(env, csrno, &rval, new_val, wr_mask); 3247 if (ret_val) { 3248 *ret_val = rval; 3249 } 3250 3251 return ret; 3252 } 3253 3254 static RISCVException rmw_hvienh(CPURISCVState *env, int csrno, 3255 target_ulong *ret_val, 3256 target_ulong new_val, target_ulong wr_mask) 3257 { 3258 uint64_t rval; 3259 RISCVException ret; 3260 3261 ret = rmw_hvien64(env, csrno, &rval, 3262 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3263 if (ret_val) { 3264 *ret_val = rval >> 32; 3265 } 3266 3267 return ret; 3268 } 3269 3270 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 3271 uint64_t *ret_val, 3272 uint64_t new_val, uint64_t wr_mask) 3273 { 3274 uint64_t mask = wr_mask & vs_delegable_ints; 3275 3276 if (ret_val) { 3277 *ret_val = env->hideleg & vs_delegable_ints; 3278 } 3279 3280 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 3281 return RISCV_EXCP_NONE; 3282 } 3283 3284 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 3285 target_ulong *ret_val, 3286 target_ulong new_val, target_ulong wr_mask) 3287 { 3288 uint64_t rval; 3289 RISCVException ret; 3290 3291 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 3292 if (ret_val) { 3293 *ret_val = rval; 3294 } 3295 3296 return ret; 3297 } 3298 3299 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 3300 target_ulong *ret_val, 3301 target_ulong new_val, target_ulong wr_mask) 3302 { 3303 uint64_t rval; 3304 RISCVException ret; 3305 3306 ret = rmw_hideleg64(env, csrno, &rval, 3307 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3308 if (ret_val) { 3309 *ret_val = rval >> 32; 3310 } 3311 3312 return ret; 3313 } 3314 3315 /* 3316 * The function is written for two use-cases: 3317 * 1- To access hvip csr as is for HS-mode access. 3318 * 2- To access vsip as a combination of hvip, and mip for vs-mode. 3319 * 3320 * Both report bits 2, 6, 10 and 13:63. 3321 * vsip needs to be read-only zero when both hideleg[i] and 3322 * hvien[i] are zero. 3323 */ 3324 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 3325 uint64_t *ret_val, 3326 uint64_t new_val, uint64_t wr_mask) 3327 { 3328 RISCVException ret; 3329 uint64_t old_hvip; 3330 uint64_t ret_mip; 3331 3332 /* 3333 * For bits 10, 6 and 2, vsip[i] is an alias of hip[i]. These bits are 3334 * present in hip, hvip and mip. Where mip[i] is alias of hip[i] and hvip[i] 3335 * is OR'ed in hip[i] to inject virtual interrupts from hypervisor. These 3336 * bits are actually being maintained in mip so we read them from there. 3337 * This way we have a single source of truth and allows for easier 3338 * implementation. 3339 * 3340 * For bits 13:63 we have: 3341 * 3342 * hideleg[i] hvien[i] 3343 * 0 0 No delegation. vsip[i] readonly zero. 3344 * 0 1 vsip[i] is alias of hvip[i], sip bypassed. 3345 * 1 X vsip[i] is alias of sip[i], hvip bypassed. 3346 * 3347 * alias_mask denotes the bits that come from sip (mip here given we 3348 * maintain all bits there). nalias_mask denotes bits that come from 3349 * hvip. 3350 */ 3351 uint64_t alias_mask = (env->hideleg | ~env->hvien) | VS_MODE_INTERRUPTS; 3352 uint64_t nalias_mask = (~env->hideleg & env->hvien); 3353 uint64_t wr_mask_hvip; 3354 uint64_t wr_mask_mip; 3355 3356 /* 3357 * Both alias and non-alias mask remain same for vsip except: 3358 * 1- For VS* bits if they are zero in hideleg. 3359 * 2- For 13:63 bits if they are zero in both hideleg and hvien. 3360 */ 3361 if (csrno == CSR_VSIP) { 3362 /* zero-out VS* bits that are not delegated to VS mode. */ 3363 alias_mask &= (env->hideleg | ~VS_MODE_INTERRUPTS); 3364 3365 /* 3366 * zero-out 13:63 bits that are zero in both hideleg and hvien. 3367 * nalias_mask mask can not contain any VS* bits so only second 3368 * condition applies on it. 3369 */ 3370 nalias_mask &= (env->hideleg | env->hvien); 3371 alias_mask &= (env->hideleg | env->hvien); 3372 } 3373 3374 wr_mask_hvip = wr_mask & nalias_mask & hvip_writable_mask; 3375 wr_mask_mip = wr_mask & alias_mask & hvip_writable_mask; 3376 3377 /* Aliased bits, bits 10, 6, 2 need to come from mip. */ 3378 ret = rmw_mip64(env, csrno, &ret_mip, new_val, wr_mask_mip); 3379 if (ret != RISCV_EXCP_NONE) { 3380 return ret; 3381 } 3382 3383 old_hvip = env->hvip; 3384 3385 if (wr_mask_hvip) { 3386 env->hvip = (env->hvip & ~wr_mask_hvip) | (new_val & wr_mask_hvip); 3387 3388 /* 3389 * Given hvip is separate source from mip, we need to trigger interrupt 3390 * from here separately. Normally this happen from riscv_cpu_update_mip. 3391 */ 3392 riscv_cpu_interrupt(env); 3393 } 3394 3395 if (ret_val) { 3396 /* Only take VS* bits from mip. */ 3397 ret_mip &= alias_mask; 3398 3399 /* Take in non-delegated 13:63 bits from hvip. */ 3400 old_hvip &= nalias_mask; 3401 3402 *ret_val = ret_mip | old_hvip; 3403 } 3404 3405 return ret; 3406 } 3407 3408 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 3409 target_ulong *ret_val, 3410 target_ulong new_val, target_ulong wr_mask) 3411 { 3412 uint64_t rval; 3413 RISCVException ret; 3414 3415 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 3416 if (ret_val) { 3417 *ret_val = rval; 3418 } 3419 3420 return ret; 3421 } 3422 3423 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 3424 target_ulong *ret_val, 3425 target_ulong new_val, target_ulong wr_mask) 3426 { 3427 uint64_t rval; 3428 RISCVException ret; 3429 3430 ret = rmw_hvip64(env, csrno, &rval, 3431 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3432 if (ret_val) { 3433 *ret_val = rval >> 32; 3434 } 3435 3436 return ret; 3437 } 3438 3439 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 3440 target_ulong *ret_value, 3441 target_ulong new_value, target_ulong write_mask) 3442 { 3443 int ret = rmw_mip(env, csrno, ret_value, new_value, 3444 write_mask & hip_writable_mask); 3445 3446 if (ret_value) { 3447 *ret_value &= HS_MODE_INTERRUPTS; 3448 } 3449 return ret; 3450 } 3451 3452 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 3453 target_ulong *ret_val, 3454 target_ulong new_val, target_ulong wr_mask) 3455 { 3456 uint64_t rval; 3457 RISCVException ret; 3458 3459 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 3460 if (ret_val) { 3461 *ret_val = rval & HS_MODE_INTERRUPTS; 3462 } 3463 3464 return ret; 3465 } 3466 3467 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 3468 target_ulong *val) 3469 { 3470 *val = env->hcounteren; 3471 return RISCV_EXCP_NONE; 3472 } 3473 3474 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 3475 target_ulong val) 3476 { 3477 env->hcounteren = val; 3478 return RISCV_EXCP_NONE; 3479 } 3480 3481 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 3482 target_ulong *val) 3483 { 3484 if (val) { 3485 *val = env->hgeie; 3486 } 3487 return RISCV_EXCP_NONE; 3488 } 3489 3490 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 3491 target_ulong val) 3492 { 3493 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 3494 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 3495 env->hgeie = val; 3496 /* Update mip.SGEIP bit */ 3497 riscv_cpu_update_mip(env, MIP_SGEIP, 3498 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 3499 return RISCV_EXCP_NONE; 3500 } 3501 3502 static RISCVException read_htval(CPURISCVState *env, int csrno, 3503 target_ulong *val) 3504 { 3505 *val = env->htval; 3506 return RISCV_EXCP_NONE; 3507 } 3508 3509 static RISCVException write_htval(CPURISCVState *env, int csrno, 3510 target_ulong val) 3511 { 3512 env->htval = val; 3513 return RISCV_EXCP_NONE; 3514 } 3515 3516 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3517 target_ulong *val) 3518 { 3519 *val = env->htinst; 3520 return RISCV_EXCP_NONE; 3521 } 3522 3523 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3524 target_ulong val) 3525 { 3526 return RISCV_EXCP_NONE; 3527 } 3528 3529 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3530 target_ulong *val) 3531 { 3532 if (val) { 3533 *val = env->hgeip; 3534 } 3535 return RISCV_EXCP_NONE; 3536 } 3537 3538 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3539 target_ulong *val) 3540 { 3541 *val = env->hgatp; 3542 return RISCV_EXCP_NONE; 3543 } 3544 3545 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3546 target_ulong val) 3547 { 3548 env->hgatp = legalize_xatp(env, env->hgatp, val); 3549 return RISCV_EXCP_NONE; 3550 } 3551 3552 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3553 target_ulong *val) 3554 { 3555 if (!env->rdtime_fn) { 3556 return RISCV_EXCP_ILLEGAL_INST; 3557 } 3558 3559 *val = env->htimedelta; 3560 return RISCV_EXCP_NONE; 3561 } 3562 3563 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3564 target_ulong val) 3565 { 3566 if (!env->rdtime_fn) { 3567 return RISCV_EXCP_ILLEGAL_INST; 3568 } 3569 3570 if (riscv_cpu_mxl(env) == MXL_RV32) { 3571 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3572 } else { 3573 env->htimedelta = val; 3574 } 3575 3576 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3577 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3578 env->htimedelta, MIP_VSTIP); 3579 } 3580 3581 return RISCV_EXCP_NONE; 3582 } 3583 3584 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3585 target_ulong *val) 3586 { 3587 if (!env->rdtime_fn) { 3588 return RISCV_EXCP_ILLEGAL_INST; 3589 } 3590 3591 *val = env->htimedelta >> 32; 3592 return RISCV_EXCP_NONE; 3593 } 3594 3595 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3596 target_ulong val) 3597 { 3598 if (!env->rdtime_fn) { 3599 return RISCV_EXCP_ILLEGAL_INST; 3600 } 3601 3602 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3603 3604 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3605 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3606 env->htimedelta, MIP_VSTIP); 3607 } 3608 3609 return RISCV_EXCP_NONE; 3610 } 3611 3612 static RISCVException read_hvictl(CPURISCVState *env, int csrno, 3613 target_ulong *val) 3614 { 3615 *val = env->hvictl; 3616 return RISCV_EXCP_NONE; 3617 } 3618 3619 static RISCVException write_hvictl(CPURISCVState *env, int csrno, 3620 target_ulong val) 3621 { 3622 env->hvictl = val & HVICTL_VALID_MASK; 3623 return RISCV_EXCP_NONE; 3624 } 3625 3626 static RISCVException read_hvipriox(CPURISCVState *env, int first_index, 3627 uint8_t *iprio, target_ulong *val) 3628 { 3629 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3630 3631 /* First index has to be a multiple of number of irqs per register */ 3632 if (first_index % num_irqs) { 3633 return (env->virt_enabled) ? 3634 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3635 } 3636 3637 /* Fill-up return value */ 3638 *val = 0; 3639 for (i = 0; i < num_irqs; i++) { 3640 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3641 continue; 3642 } 3643 if (rdzero) { 3644 continue; 3645 } 3646 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3647 } 3648 3649 return RISCV_EXCP_NONE; 3650 } 3651 3652 static RISCVException write_hvipriox(CPURISCVState *env, int first_index, 3653 uint8_t *iprio, target_ulong val) 3654 { 3655 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3656 3657 /* First index has to be a multiple of number of irqs per register */ 3658 if (first_index % num_irqs) { 3659 return (env->virt_enabled) ? 3660 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3661 } 3662 3663 /* Fill-up priority array */ 3664 for (i = 0; i < num_irqs; i++) { 3665 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3666 continue; 3667 } 3668 if (rdzero) { 3669 iprio[irq] = 0; 3670 } else { 3671 iprio[irq] = (val >> (i * 8)) & 0xff; 3672 } 3673 } 3674 3675 return RISCV_EXCP_NONE; 3676 } 3677 3678 static RISCVException read_hviprio1(CPURISCVState *env, int csrno, 3679 target_ulong *val) 3680 { 3681 return read_hvipriox(env, 0, env->hviprio, val); 3682 } 3683 3684 static RISCVException write_hviprio1(CPURISCVState *env, int csrno, 3685 target_ulong val) 3686 { 3687 return write_hvipriox(env, 0, env->hviprio, val); 3688 } 3689 3690 static RISCVException read_hviprio1h(CPURISCVState *env, int csrno, 3691 target_ulong *val) 3692 { 3693 return read_hvipriox(env, 4, env->hviprio, val); 3694 } 3695 3696 static RISCVException write_hviprio1h(CPURISCVState *env, int csrno, 3697 target_ulong val) 3698 { 3699 return write_hvipriox(env, 4, env->hviprio, val); 3700 } 3701 3702 static RISCVException read_hviprio2(CPURISCVState *env, int csrno, 3703 target_ulong *val) 3704 { 3705 return read_hvipriox(env, 8, env->hviprio, val); 3706 } 3707 3708 static RISCVException write_hviprio2(CPURISCVState *env, int csrno, 3709 target_ulong val) 3710 { 3711 return write_hvipriox(env, 8, env->hviprio, val); 3712 } 3713 3714 static RISCVException read_hviprio2h(CPURISCVState *env, int csrno, 3715 target_ulong *val) 3716 { 3717 return read_hvipriox(env, 12, env->hviprio, val); 3718 } 3719 3720 static RISCVException write_hviprio2h(CPURISCVState *env, int csrno, 3721 target_ulong val) 3722 { 3723 return write_hvipriox(env, 12, env->hviprio, val); 3724 } 3725 3726 /* Virtual CSR Registers */ 3727 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3728 target_ulong *val) 3729 { 3730 *val = env->vsstatus; 3731 return RISCV_EXCP_NONE; 3732 } 3733 3734 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3735 target_ulong val) 3736 { 3737 uint64_t mask = (target_ulong)-1; 3738 if ((val & VSSTATUS64_UXL) == 0) { 3739 mask &= ~VSSTATUS64_UXL; 3740 } 3741 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3742 return RISCV_EXCP_NONE; 3743 } 3744 3745 static RISCVException read_vstvec(CPURISCVState *env, int csrno, 3746 target_ulong *val) 3747 { 3748 *val = env->vstvec; 3749 return RISCV_EXCP_NONE; 3750 } 3751 3752 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3753 target_ulong val) 3754 { 3755 env->vstvec = val; 3756 return RISCV_EXCP_NONE; 3757 } 3758 3759 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3760 target_ulong *val) 3761 { 3762 *val = env->vsscratch; 3763 return RISCV_EXCP_NONE; 3764 } 3765 3766 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3767 target_ulong val) 3768 { 3769 env->vsscratch = val; 3770 return RISCV_EXCP_NONE; 3771 } 3772 3773 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3774 target_ulong *val) 3775 { 3776 *val = env->vsepc; 3777 return RISCV_EXCP_NONE; 3778 } 3779 3780 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3781 target_ulong val) 3782 { 3783 env->vsepc = val; 3784 return RISCV_EXCP_NONE; 3785 } 3786 3787 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3788 target_ulong *val) 3789 { 3790 *val = env->vscause; 3791 return RISCV_EXCP_NONE; 3792 } 3793 3794 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3795 target_ulong val) 3796 { 3797 env->vscause = val; 3798 return RISCV_EXCP_NONE; 3799 } 3800 3801 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3802 target_ulong *val) 3803 { 3804 *val = env->vstval; 3805 return RISCV_EXCP_NONE; 3806 } 3807 3808 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3809 target_ulong val) 3810 { 3811 env->vstval = val; 3812 return RISCV_EXCP_NONE; 3813 } 3814 3815 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3816 target_ulong *val) 3817 { 3818 *val = env->vsatp; 3819 return RISCV_EXCP_NONE; 3820 } 3821 3822 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3823 target_ulong val) 3824 { 3825 env->vsatp = legalize_xatp(env, env->vsatp, val); 3826 return RISCV_EXCP_NONE; 3827 } 3828 3829 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3830 target_ulong *val) 3831 { 3832 *val = env->mtval2; 3833 return RISCV_EXCP_NONE; 3834 } 3835 3836 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3837 target_ulong val) 3838 { 3839 env->mtval2 = val; 3840 return RISCV_EXCP_NONE; 3841 } 3842 3843 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3844 target_ulong *val) 3845 { 3846 *val = env->mtinst; 3847 return RISCV_EXCP_NONE; 3848 } 3849 3850 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3851 target_ulong val) 3852 { 3853 env->mtinst = val; 3854 return RISCV_EXCP_NONE; 3855 } 3856 3857 /* Physical Memory Protection */ 3858 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3859 target_ulong *val) 3860 { 3861 *val = mseccfg_csr_read(env); 3862 return RISCV_EXCP_NONE; 3863 } 3864 3865 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3866 target_ulong val) 3867 { 3868 mseccfg_csr_write(env, val); 3869 return RISCV_EXCP_NONE; 3870 } 3871 3872 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3873 target_ulong *val) 3874 { 3875 uint32_t reg_index = csrno - CSR_PMPCFG0; 3876 3877 *val = pmpcfg_csr_read(env, reg_index); 3878 return RISCV_EXCP_NONE; 3879 } 3880 3881 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3882 target_ulong val) 3883 { 3884 uint32_t reg_index = csrno - CSR_PMPCFG0; 3885 3886 pmpcfg_csr_write(env, reg_index, val); 3887 return RISCV_EXCP_NONE; 3888 } 3889 3890 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3891 target_ulong *val) 3892 { 3893 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3894 return RISCV_EXCP_NONE; 3895 } 3896 3897 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3898 target_ulong val) 3899 { 3900 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3901 return RISCV_EXCP_NONE; 3902 } 3903 3904 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3905 target_ulong *val) 3906 { 3907 *val = tselect_csr_read(env); 3908 return RISCV_EXCP_NONE; 3909 } 3910 3911 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3912 target_ulong val) 3913 { 3914 tselect_csr_write(env, val); 3915 return RISCV_EXCP_NONE; 3916 } 3917 3918 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3919 target_ulong *val) 3920 { 3921 /* return 0 in tdata1 to end the trigger enumeration */ 3922 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3923 *val = 0; 3924 return RISCV_EXCP_NONE; 3925 } 3926 3927 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3928 return RISCV_EXCP_ILLEGAL_INST; 3929 } 3930 3931 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3932 return RISCV_EXCP_NONE; 3933 } 3934 3935 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3936 target_ulong val) 3937 { 3938 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3939 return RISCV_EXCP_ILLEGAL_INST; 3940 } 3941 3942 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3943 return RISCV_EXCP_NONE; 3944 } 3945 3946 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3947 target_ulong *val) 3948 { 3949 *val = tinfo_csr_read(env); 3950 return RISCV_EXCP_NONE; 3951 } 3952 3953 static RISCVException read_mcontext(CPURISCVState *env, int csrno, 3954 target_ulong *val) 3955 { 3956 *val = env->mcontext; 3957 return RISCV_EXCP_NONE; 3958 } 3959 3960 static RISCVException write_mcontext(CPURISCVState *env, int csrno, 3961 target_ulong val) 3962 { 3963 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 3964 int32_t mask; 3965 3966 if (riscv_has_ext(env, RVH)) { 3967 /* Spec suggest 7-bit for RV32 and 14-bit for RV64 w/ H extension */ 3968 mask = rv32 ? MCONTEXT32_HCONTEXT : MCONTEXT64_HCONTEXT; 3969 } else { 3970 /* Spec suggest 6-bit for RV32 and 13-bit for RV64 w/o H extension */ 3971 mask = rv32 ? MCONTEXT32 : MCONTEXT64; 3972 } 3973 3974 env->mcontext = val & mask; 3975 return RISCV_EXCP_NONE; 3976 } 3977 3978 /* 3979 * Functions to access Pointer Masking feature registers 3980 * We have to check if current priv lvl could modify 3981 * csr in given mode 3982 */ 3983 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3984 { 3985 int csr_priv = get_field(csrno, 0x300); 3986 int pm_current; 3987 3988 if (env->debugger) { 3989 return false; 3990 } 3991 /* 3992 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3993 * so allow the access 3994 */ 3995 if (env->priv != csr_priv) { 3996 return false; 3997 } 3998 switch (env->priv) { 3999 case PRV_M: 4000 pm_current = get_field(env->mmte, M_PM_CURRENT); 4001 break; 4002 case PRV_S: 4003 pm_current = get_field(env->mmte, S_PM_CURRENT); 4004 break; 4005 case PRV_U: 4006 pm_current = get_field(env->mmte, U_PM_CURRENT); 4007 break; 4008 default: 4009 g_assert_not_reached(); 4010 } 4011 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 4012 return !pm_current; 4013 } 4014 4015 static RISCVException read_mmte(CPURISCVState *env, int csrno, 4016 target_ulong *val) 4017 { 4018 *val = env->mmte & MMTE_MASK; 4019 return RISCV_EXCP_NONE; 4020 } 4021 4022 static RISCVException write_mmte(CPURISCVState *env, int csrno, 4023 target_ulong val) 4024 { 4025 uint64_t mstatus; 4026 target_ulong wpri_val = val & MMTE_MASK; 4027 4028 if (val != wpri_val) { 4029 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4030 TARGET_FMT_lx "\n", "MMTE: WPRI violation written 0x", 4031 val, "vs expected 0x", wpri_val); 4032 } 4033 /* for machine mode pm.current is hardwired to 1 */ 4034 wpri_val |= MMTE_M_PM_CURRENT; 4035 4036 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 4037 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 4038 env->mmte = wpri_val | EXT_STATUS_DIRTY; 4039 riscv_cpu_update_mask(env); 4040 4041 /* Set XS and SD bits, since PM CSRs are dirty */ 4042 mstatus = env->mstatus | MSTATUS_XS; 4043 write_mstatus(env, csrno, mstatus); 4044 return RISCV_EXCP_NONE; 4045 } 4046 4047 static RISCVException read_smte(CPURISCVState *env, int csrno, 4048 target_ulong *val) 4049 { 4050 *val = env->mmte & SMTE_MASK; 4051 return RISCV_EXCP_NONE; 4052 } 4053 4054 static RISCVException write_smte(CPURISCVState *env, int csrno, 4055 target_ulong val) 4056 { 4057 target_ulong wpri_val = val & SMTE_MASK; 4058 4059 if (val != wpri_val) { 4060 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4061 TARGET_FMT_lx "\n", "SMTE: WPRI violation written 0x", 4062 val, "vs expected 0x", wpri_val); 4063 } 4064 4065 /* if pm.current==0 we can't modify current PM CSRs */ 4066 if (check_pm_current_disabled(env, csrno)) { 4067 return RISCV_EXCP_NONE; 4068 } 4069 4070 wpri_val |= (env->mmte & ~SMTE_MASK); 4071 write_mmte(env, csrno, wpri_val); 4072 return RISCV_EXCP_NONE; 4073 } 4074 4075 static RISCVException read_umte(CPURISCVState *env, int csrno, 4076 target_ulong *val) 4077 { 4078 *val = env->mmte & UMTE_MASK; 4079 return RISCV_EXCP_NONE; 4080 } 4081 4082 static RISCVException write_umte(CPURISCVState *env, int csrno, 4083 target_ulong val) 4084 { 4085 target_ulong wpri_val = val & UMTE_MASK; 4086 4087 if (val != wpri_val) { 4088 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4089 TARGET_FMT_lx "\n", "UMTE: WPRI violation written 0x", 4090 val, "vs expected 0x", wpri_val); 4091 } 4092 4093 if (check_pm_current_disabled(env, csrno)) { 4094 return RISCV_EXCP_NONE; 4095 } 4096 4097 wpri_val |= (env->mmte & ~UMTE_MASK); 4098 write_mmte(env, csrno, wpri_val); 4099 return RISCV_EXCP_NONE; 4100 } 4101 4102 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 4103 target_ulong *val) 4104 { 4105 *val = env->mpmmask; 4106 return RISCV_EXCP_NONE; 4107 } 4108 4109 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 4110 target_ulong val) 4111 { 4112 uint64_t mstatus; 4113 4114 env->mpmmask = val; 4115 if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { 4116 env->cur_pmmask = val; 4117 } 4118 env->mmte |= EXT_STATUS_DIRTY; 4119 4120 /* Set XS and SD bits, since PM CSRs are dirty */ 4121 mstatus = env->mstatus | MSTATUS_XS; 4122 write_mstatus(env, csrno, mstatus); 4123 return RISCV_EXCP_NONE; 4124 } 4125 4126 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 4127 target_ulong *val) 4128 { 4129 *val = env->spmmask; 4130 return RISCV_EXCP_NONE; 4131 } 4132 4133 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 4134 target_ulong val) 4135 { 4136 uint64_t mstatus; 4137 4138 /* if pm.current==0 we can't modify current PM CSRs */ 4139 if (check_pm_current_disabled(env, csrno)) { 4140 return RISCV_EXCP_NONE; 4141 } 4142 env->spmmask = val; 4143 if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { 4144 env->cur_pmmask = val; 4145 if (cpu_get_xl(env, PRV_S) == MXL_RV32) { 4146 env->cur_pmmask &= UINT32_MAX; 4147 } 4148 } 4149 env->mmte |= EXT_STATUS_DIRTY; 4150 4151 /* Set XS and SD bits, since PM CSRs are dirty */ 4152 mstatus = env->mstatus | MSTATUS_XS; 4153 write_mstatus(env, csrno, mstatus); 4154 return RISCV_EXCP_NONE; 4155 } 4156 4157 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 4158 target_ulong *val) 4159 { 4160 *val = env->upmmask; 4161 return RISCV_EXCP_NONE; 4162 } 4163 4164 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 4165 target_ulong val) 4166 { 4167 uint64_t mstatus; 4168 4169 /* if pm.current==0 we can't modify current PM CSRs */ 4170 if (check_pm_current_disabled(env, csrno)) { 4171 return RISCV_EXCP_NONE; 4172 } 4173 env->upmmask = val; 4174 if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { 4175 env->cur_pmmask = val; 4176 if (cpu_get_xl(env, PRV_U) == MXL_RV32) { 4177 env->cur_pmmask &= UINT32_MAX; 4178 } 4179 } 4180 env->mmte |= EXT_STATUS_DIRTY; 4181 4182 /* Set XS and SD bits, since PM CSRs are dirty */ 4183 mstatus = env->mstatus | MSTATUS_XS; 4184 write_mstatus(env, csrno, mstatus); 4185 return RISCV_EXCP_NONE; 4186 } 4187 4188 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 4189 target_ulong *val) 4190 { 4191 *val = env->mpmbase; 4192 return RISCV_EXCP_NONE; 4193 } 4194 4195 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 4196 target_ulong val) 4197 { 4198 uint64_t mstatus; 4199 4200 env->mpmbase = val; 4201 if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { 4202 env->cur_pmbase = val; 4203 } 4204 env->mmte |= EXT_STATUS_DIRTY; 4205 4206 /* Set XS and SD bits, since PM CSRs are dirty */ 4207 mstatus = env->mstatus | MSTATUS_XS; 4208 write_mstatus(env, csrno, mstatus); 4209 return RISCV_EXCP_NONE; 4210 } 4211 4212 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 4213 target_ulong *val) 4214 { 4215 *val = env->spmbase; 4216 return RISCV_EXCP_NONE; 4217 } 4218 4219 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 4220 target_ulong val) 4221 { 4222 uint64_t mstatus; 4223 4224 /* if pm.current==0 we can't modify current PM CSRs */ 4225 if (check_pm_current_disabled(env, csrno)) { 4226 return RISCV_EXCP_NONE; 4227 } 4228 env->spmbase = val; 4229 if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { 4230 env->cur_pmbase = val; 4231 if (cpu_get_xl(env, PRV_S) == MXL_RV32) { 4232 env->cur_pmbase &= UINT32_MAX; 4233 } 4234 } 4235 env->mmte |= EXT_STATUS_DIRTY; 4236 4237 /* Set XS and SD bits, since PM CSRs are dirty */ 4238 mstatus = env->mstatus | MSTATUS_XS; 4239 write_mstatus(env, csrno, mstatus); 4240 return RISCV_EXCP_NONE; 4241 } 4242 4243 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 4244 target_ulong *val) 4245 { 4246 *val = env->upmbase; 4247 return RISCV_EXCP_NONE; 4248 } 4249 4250 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 4251 target_ulong val) 4252 { 4253 uint64_t mstatus; 4254 4255 /* if pm.current==0 we can't modify current PM CSRs */ 4256 if (check_pm_current_disabled(env, csrno)) { 4257 return RISCV_EXCP_NONE; 4258 } 4259 env->upmbase = val; 4260 if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { 4261 env->cur_pmbase = val; 4262 if (cpu_get_xl(env, PRV_U) == MXL_RV32) { 4263 env->cur_pmbase &= UINT32_MAX; 4264 } 4265 } 4266 env->mmte |= EXT_STATUS_DIRTY; 4267 4268 /* Set XS and SD bits, since PM CSRs are dirty */ 4269 mstatus = env->mstatus | MSTATUS_XS; 4270 write_mstatus(env, csrno, mstatus); 4271 return RISCV_EXCP_NONE; 4272 } 4273 4274 #endif 4275 4276 /* Crypto Extension */ 4277 target_ulong riscv_new_csr_seed(target_ulong new_value, 4278 target_ulong write_mask) 4279 { 4280 uint16_t random_v; 4281 Error *random_e = NULL; 4282 int random_r; 4283 target_ulong rval; 4284 4285 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 4286 if (unlikely(random_r < 0)) { 4287 /* 4288 * Failed, for unknown reasons in the crypto subsystem. 4289 * The best we can do is log the reason and return a 4290 * failure indication to the guest. There is no reason 4291 * we know to expect the failure to be transitory, so 4292 * indicate DEAD to avoid having the guest spin on WAIT. 4293 */ 4294 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 4295 __func__, error_get_pretty(random_e)); 4296 error_free(random_e); 4297 rval = SEED_OPST_DEAD; 4298 } else { 4299 rval = random_v | SEED_OPST_ES16; 4300 } 4301 4302 return rval; 4303 } 4304 4305 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 4306 target_ulong *ret_value, 4307 target_ulong new_value, 4308 target_ulong write_mask) 4309 { 4310 target_ulong rval; 4311 4312 rval = riscv_new_csr_seed(new_value, write_mask); 4313 4314 if (ret_value) { 4315 *ret_value = rval; 4316 } 4317 4318 return RISCV_EXCP_NONE; 4319 } 4320 4321 /* 4322 * riscv_csrrw - read and/or update control and status register 4323 * 4324 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 4325 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 4326 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 4327 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 4328 */ 4329 4330 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 4331 int csrno, 4332 bool write_mask) 4333 { 4334 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 4335 bool read_only = get_field(csrno, 0xC00) == 3; 4336 int csr_min_priv = csr_ops[csrno].min_priv_ver; 4337 4338 /* ensure the CSR extension is enabled */ 4339 if (!riscv_cpu_cfg(env)->ext_zicsr) { 4340 return RISCV_EXCP_ILLEGAL_INST; 4341 } 4342 4343 /* ensure CSR is implemented by checking predicate */ 4344 if (!csr_ops[csrno].predicate) { 4345 return RISCV_EXCP_ILLEGAL_INST; 4346 } 4347 4348 /* privileged spec version check */ 4349 if (env->priv_ver < csr_min_priv) { 4350 return RISCV_EXCP_ILLEGAL_INST; 4351 } 4352 4353 /* read / write check */ 4354 if (write_mask && read_only) { 4355 return RISCV_EXCP_ILLEGAL_INST; 4356 } 4357 4358 /* 4359 * The predicate() not only does existence check but also does some 4360 * access control check which triggers for example virtual instruction 4361 * exception in some cases. When writing read-only CSRs in those cases 4362 * illegal instruction exception should be triggered instead of virtual 4363 * instruction exception. Hence this comes after the read / write check. 4364 */ 4365 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 4366 if (ret != RISCV_EXCP_NONE) { 4367 return ret; 4368 } 4369 4370 #if !defined(CONFIG_USER_ONLY) 4371 int csr_priv, effective_priv = env->priv; 4372 4373 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 4374 !env->virt_enabled) { 4375 /* 4376 * We are in HS mode. Add 1 to the effective privilege level to 4377 * allow us to access the Hypervisor CSRs. 4378 */ 4379 effective_priv++; 4380 } 4381 4382 csr_priv = get_field(csrno, 0x300); 4383 if (!env->debugger && (effective_priv < csr_priv)) { 4384 if (csr_priv == (PRV_S + 1) && env->virt_enabled) { 4385 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 4386 } 4387 return RISCV_EXCP_ILLEGAL_INST; 4388 } 4389 #endif 4390 return RISCV_EXCP_NONE; 4391 } 4392 4393 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 4394 target_ulong *ret_value, 4395 target_ulong new_value, 4396 target_ulong write_mask) 4397 { 4398 RISCVException ret; 4399 target_ulong old_value = 0; 4400 4401 /* execute combined read/write operation if it exists */ 4402 if (csr_ops[csrno].op) { 4403 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 4404 } 4405 4406 /* 4407 * ret_value == NULL means that rd=x0 and we're coming from helper_csrw() 4408 * and we can't throw side effects caused by CSR reads. 4409 */ 4410 if (ret_value) { 4411 /* if no accessor exists then return failure */ 4412 if (!csr_ops[csrno].read) { 4413 return RISCV_EXCP_ILLEGAL_INST; 4414 } 4415 /* read old value */ 4416 ret = csr_ops[csrno].read(env, csrno, &old_value); 4417 if (ret != RISCV_EXCP_NONE) { 4418 return ret; 4419 } 4420 } 4421 4422 /* write value if writable and write mask set, otherwise drop writes */ 4423 if (write_mask) { 4424 new_value = (old_value & ~write_mask) | (new_value & write_mask); 4425 if (csr_ops[csrno].write) { 4426 ret = csr_ops[csrno].write(env, csrno, new_value); 4427 if (ret != RISCV_EXCP_NONE) { 4428 return ret; 4429 } 4430 } 4431 } 4432 4433 /* return old value */ 4434 if (ret_value) { 4435 *ret_value = old_value; 4436 } 4437 4438 return RISCV_EXCP_NONE; 4439 } 4440 4441 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 4442 target_ulong *ret_value, 4443 target_ulong new_value, target_ulong write_mask) 4444 { 4445 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask); 4446 if (ret != RISCV_EXCP_NONE) { 4447 return ret; 4448 } 4449 4450 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 4451 } 4452 4453 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 4454 Int128 *ret_value, 4455 Int128 new_value, 4456 Int128 write_mask) 4457 { 4458 RISCVException ret; 4459 Int128 old_value; 4460 4461 /* read old value */ 4462 ret = csr_ops[csrno].read128(env, csrno, &old_value); 4463 if (ret != RISCV_EXCP_NONE) { 4464 return ret; 4465 } 4466 4467 /* write value if writable and write mask set, otherwise drop writes */ 4468 if (int128_nz(write_mask)) { 4469 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 4470 int128_and(new_value, write_mask)); 4471 if (csr_ops[csrno].write128) { 4472 ret = csr_ops[csrno].write128(env, csrno, new_value); 4473 if (ret != RISCV_EXCP_NONE) { 4474 return ret; 4475 } 4476 } else if (csr_ops[csrno].write) { 4477 /* avoids having to write wrappers for all registers */ 4478 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 4479 if (ret != RISCV_EXCP_NONE) { 4480 return ret; 4481 } 4482 } 4483 } 4484 4485 /* return old value */ 4486 if (ret_value) { 4487 *ret_value = old_value; 4488 } 4489 4490 return RISCV_EXCP_NONE; 4491 } 4492 4493 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 4494 Int128 *ret_value, 4495 Int128 new_value, Int128 write_mask) 4496 { 4497 RISCVException ret; 4498 4499 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask)); 4500 if (ret != RISCV_EXCP_NONE) { 4501 return ret; 4502 } 4503 4504 if (csr_ops[csrno].read128) { 4505 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 4506 } 4507 4508 /* 4509 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 4510 * at all defined. 4511 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 4512 * significant), for those, this fallback is correctly handling the 4513 * accesses 4514 */ 4515 target_ulong old_value; 4516 ret = riscv_csrrw_do64(env, csrno, &old_value, 4517 int128_getlo(new_value), 4518 int128_getlo(write_mask)); 4519 if (ret == RISCV_EXCP_NONE && ret_value) { 4520 *ret_value = int128_make64(old_value); 4521 } 4522 return ret; 4523 } 4524 4525 /* 4526 * Debugger support. If not in user mode, set env->debugger before the 4527 * riscv_csrrw call and clear it after the call. 4528 */ 4529 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 4530 target_ulong *ret_value, 4531 target_ulong new_value, 4532 target_ulong write_mask) 4533 { 4534 RISCVException ret; 4535 #if !defined(CONFIG_USER_ONLY) 4536 env->debugger = true; 4537 #endif 4538 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 4539 #if !defined(CONFIG_USER_ONLY) 4540 env->debugger = false; 4541 #endif 4542 return ret; 4543 } 4544 4545 static RISCVException read_jvt(CPURISCVState *env, int csrno, 4546 target_ulong *val) 4547 { 4548 *val = env->jvt; 4549 return RISCV_EXCP_NONE; 4550 } 4551 4552 static RISCVException write_jvt(CPURISCVState *env, int csrno, 4553 target_ulong val) 4554 { 4555 env->jvt = val; 4556 return RISCV_EXCP_NONE; 4557 } 4558 4559 /* 4560 * Control and Status Register function table 4561 * riscv_csr_operations::predicate() must be provided for an implemented CSR 4562 */ 4563 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 4564 /* User Floating-Point CSRs */ 4565 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 4566 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 4567 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 4568 /* Vector CSRs */ 4569 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 4570 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 4571 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4572 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4573 [CSR_VL] = { "vl", vs, read_vl }, 4574 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4575 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4576 /* User Timers and Counters */ 4577 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4578 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4579 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4580 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4581 4582 /* 4583 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4584 * rdtime callback is not provided by machine/platform emulation. 4585 */ 4586 [CSR_TIME] = { "time", ctr, read_time }, 4587 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4588 4589 /* Crypto Extension */ 4590 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4591 4592 /* Zcmt Extension */ 4593 [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, 4594 4595 #if !defined(CONFIG_USER_ONLY) 4596 /* Machine Timers and Counters */ 4597 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4598 write_mhpmcounter }, 4599 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4600 write_mhpmcounter }, 4601 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4602 write_mhpmcounterh }, 4603 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4604 write_mhpmcounterh }, 4605 4606 /* Machine Information Registers */ 4607 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4608 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4609 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4610 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4611 4612 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4613 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4614 /* Machine Trap Setup */ 4615 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4616 NULL, read_mstatus_i128 }, 4617 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4618 NULL, read_misa_i128 }, 4619 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4620 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4621 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4622 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4623 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4624 write_mcounteren }, 4625 4626 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4627 write_mstatush }, 4628 4629 /* Machine Trap Handling */ 4630 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4631 NULL, read_mscratch_i128, write_mscratch_i128 }, 4632 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4633 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4634 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4635 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4636 4637 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4638 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4639 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4640 4641 /* Machine-Level Interrupts (AIA) */ 4642 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4643 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4644 4645 /* Virtual Interrupts for Supervisor Level (AIA) */ 4646 [CSR_MVIEN] = { "mvien", aia_any, NULL, NULL, rmw_mvien }, 4647 [CSR_MVIP] = { "mvip", aia_any, NULL, NULL, rmw_mvip }, 4648 4649 /* Machine-Level High-Half CSRs (AIA) */ 4650 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4651 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4652 [CSR_MVIENH] = { "mvienh", aia_any32, NULL, NULL, rmw_mvienh }, 4653 [CSR_MVIPH] = { "mviph", aia_any32, NULL, NULL, rmw_mviph }, 4654 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4655 4656 /* Execution environment configuration */ 4657 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4658 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4659 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4660 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4661 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4662 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4663 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4664 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4665 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4666 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4667 4668 /* Smstateen extension CSRs */ 4669 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4670 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4671 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4672 write_mstateen0h, 4673 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4674 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4675 write_mstateen_1_3, 4676 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4677 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4678 write_mstateenh_1_3, 4679 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4680 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4681 write_mstateen_1_3, 4682 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4683 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4684 write_mstateenh_1_3, 4685 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4686 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4687 write_mstateen_1_3, 4688 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4689 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4690 write_mstateenh_1_3, 4691 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4692 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4693 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4694 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4695 write_hstateen0h, 4696 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4697 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4698 write_hstateen_1_3, 4699 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4700 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4701 write_hstateenh_1_3, 4702 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4703 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4704 write_hstateen_1_3, 4705 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4706 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4707 write_hstateenh_1_3, 4708 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4709 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4710 write_hstateen_1_3, 4711 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4712 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4713 write_hstateenh_1_3, 4714 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4715 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4716 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4717 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4718 write_sstateen_1_3, 4719 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4720 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4721 write_sstateen_1_3, 4722 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4723 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4724 write_sstateen_1_3, 4725 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4726 4727 /* Supervisor Trap Setup */ 4728 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4729 NULL, read_sstatus_i128 }, 4730 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4731 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4732 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4733 write_scounteren }, 4734 4735 /* Supervisor Trap Handling */ 4736 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4737 NULL, read_sscratch_i128, write_sscratch_i128 }, 4738 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4739 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4740 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4741 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4742 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4743 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4744 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4745 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4746 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4747 write_vstimecmp, 4748 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4749 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4750 write_vstimecmph, 4751 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4752 4753 /* Supervisor Protection and Translation */ 4754 [CSR_SATP] = { "satp", satp, read_satp, write_satp }, 4755 4756 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4757 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4758 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4759 4760 /* Supervisor-Level Interrupts (AIA) */ 4761 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4762 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4763 4764 /* Supervisor-Level High-Half CSRs (AIA) */ 4765 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4766 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4767 4768 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4769 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4770 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4771 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4772 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4773 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4774 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4775 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4776 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4777 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4778 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4779 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4780 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4781 write_hcounteren, 4782 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4783 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4784 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4785 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4786 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4787 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4788 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4789 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4790 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4791 [CSR_HGATP] = { "hgatp", hgatp, read_hgatp, write_hgatp, 4792 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4793 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4794 write_htimedelta, 4795 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4796 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4797 write_htimedeltah, 4798 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4799 4800 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4801 write_vsstatus, 4802 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4803 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4804 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4805 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4806 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4807 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4808 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4809 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4810 write_vsscratch, 4811 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4812 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4813 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4814 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4815 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4816 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4817 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4818 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4819 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4820 4821 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4822 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4823 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4824 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4825 4826 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4827 [CSR_HVIEN] = { "hvien", aia_hmode, NULL, NULL, rmw_hvien }, 4828 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4829 write_hvictl }, 4830 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4831 write_hviprio1 }, 4832 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4833 write_hviprio2 }, 4834 /* 4835 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4836 */ 4837 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4838 rmw_xiselect }, 4839 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4840 4841 /* VS-Level Interrupts (H-extension with AIA) */ 4842 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4843 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4844 4845 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4846 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4847 rmw_hidelegh }, 4848 [CSR_HVIENH] = { "hvienh", aia_hmode32, NULL, NULL, rmw_hvienh }, 4849 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4850 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4851 write_hviprio1h }, 4852 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4853 write_hviprio2h }, 4854 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4855 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4856 4857 /* Physical Memory Protection */ 4858 [CSR_MSECCFG] = { "mseccfg", have_mseccfg, read_mseccfg, write_mseccfg, 4859 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4860 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4861 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4862 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4863 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4864 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4865 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4866 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4867 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4868 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4869 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4870 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4871 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4872 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4873 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4874 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4875 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4876 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4877 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4878 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4879 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4880 4881 /* Debug CSRs */ 4882 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4883 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4884 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4885 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4886 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4887 [CSR_MCONTEXT] = { "mcontext", debug, read_mcontext, write_mcontext }, 4888 4889 /* User Pointer Masking */ 4890 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4891 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4892 write_upmmask }, 4893 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4894 write_upmbase }, 4895 /* Machine Pointer Masking */ 4896 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4897 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4898 write_mpmmask }, 4899 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4900 write_mpmbase }, 4901 /* Supervisor Pointer Masking */ 4902 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4903 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4904 write_spmmask }, 4905 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4906 write_spmbase }, 4907 4908 /* Performance Counters */ 4909 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4910 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4911 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4912 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4913 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4914 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4915 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4916 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4917 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4918 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4919 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4920 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4921 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4922 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4923 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4924 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4925 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4926 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4927 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4928 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4929 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4930 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4931 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4932 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4933 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4934 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4935 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4936 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4937 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4938 4939 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4940 write_mhpmcounter }, 4941 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4942 write_mhpmcounter }, 4943 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4944 write_mhpmcounter }, 4945 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4946 write_mhpmcounter }, 4947 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4948 write_mhpmcounter }, 4949 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4950 write_mhpmcounter }, 4951 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4952 write_mhpmcounter }, 4953 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4954 write_mhpmcounter }, 4955 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4956 write_mhpmcounter }, 4957 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4958 write_mhpmcounter }, 4959 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4960 write_mhpmcounter }, 4961 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4962 write_mhpmcounter }, 4963 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4964 write_mhpmcounter }, 4965 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4966 write_mhpmcounter }, 4967 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4968 write_mhpmcounter }, 4969 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4970 write_mhpmcounter }, 4971 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4972 write_mhpmcounter }, 4973 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4974 write_mhpmcounter }, 4975 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4976 write_mhpmcounter }, 4977 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4978 write_mhpmcounter }, 4979 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4980 write_mhpmcounter }, 4981 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4982 write_mhpmcounter }, 4983 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4984 write_mhpmcounter }, 4985 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4986 write_mhpmcounter }, 4987 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4988 write_mhpmcounter }, 4989 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4990 write_mhpmcounter }, 4991 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4992 write_mhpmcounter }, 4993 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4994 write_mhpmcounter }, 4995 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4996 write_mhpmcounter }, 4997 4998 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4999 write_mcountinhibit, 5000 .min_priv_ver = PRIV_VERSION_1_11_0 }, 5001 5002 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 5003 write_mhpmevent }, 5004 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 5005 write_mhpmevent }, 5006 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 5007 write_mhpmevent }, 5008 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 5009 write_mhpmevent }, 5010 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 5011 write_mhpmevent }, 5012 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 5013 write_mhpmevent }, 5014 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 5015 write_mhpmevent }, 5016 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 5017 write_mhpmevent }, 5018 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 5019 write_mhpmevent }, 5020 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 5021 write_mhpmevent }, 5022 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 5023 write_mhpmevent }, 5024 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 5025 write_mhpmevent }, 5026 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 5027 write_mhpmevent }, 5028 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 5029 write_mhpmevent }, 5030 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 5031 write_mhpmevent }, 5032 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 5033 write_mhpmevent }, 5034 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 5035 write_mhpmevent }, 5036 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 5037 write_mhpmevent }, 5038 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 5039 write_mhpmevent }, 5040 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 5041 write_mhpmevent }, 5042 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 5043 write_mhpmevent }, 5044 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 5045 write_mhpmevent }, 5046 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 5047 write_mhpmevent }, 5048 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 5049 write_mhpmevent }, 5050 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 5051 write_mhpmevent }, 5052 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 5053 write_mhpmevent }, 5054 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 5055 write_mhpmevent }, 5056 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 5057 write_mhpmevent }, 5058 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 5059 write_mhpmevent }, 5060 5061 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 5062 write_mhpmeventh, 5063 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5064 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 5065 write_mhpmeventh, 5066 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5067 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 5068 write_mhpmeventh, 5069 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5070 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 5071 write_mhpmeventh, 5072 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5073 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 5074 write_mhpmeventh, 5075 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5076 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 5077 write_mhpmeventh, 5078 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5079 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 5080 write_mhpmeventh, 5081 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5082 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 5083 write_mhpmeventh, 5084 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5085 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 5086 write_mhpmeventh, 5087 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5088 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 5089 write_mhpmeventh, 5090 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5091 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 5092 write_mhpmeventh, 5093 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5094 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 5095 write_mhpmeventh, 5096 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5097 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 5098 write_mhpmeventh, 5099 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5100 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 5101 write_mhpmeventh, 5102 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5103 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 5104 write_mhpmeventh, 5105 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5106 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 5107 write_mhpmeventh, 5108 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5109 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 5110 write_mhpmeventh, 5111 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5112 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 5113 write_mhpmeventh, 5114 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5115 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 5116 write_mhpmeventh, 5117 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5118 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 5119 write_mhpmeventh, 5120 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5121 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 5122 write_mhpmeventh, 5123 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5124 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 5125 write_mhpmeventh, 5126 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5127 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 5128 write_mhpmeventh, 5129 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5130 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 5131 write_mhpmeventh, 5132 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5133 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 5134 write_mhpmeventh, 5135 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5136 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 5137 write_mhpmeventh, 5138 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5139 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 5140 write_mhpmeventh, 5141 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5142 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 5143 write_mhpmeventh, 5144 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5145 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 5146 write_mhpmeventh, 5147 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5148 5149 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 5150 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 5151 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 5152 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 5153 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 5154 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 5155 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 5156 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 5157 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 5158 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 5159 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 5160 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 5161 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 5162 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 5163 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 5164 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 5165 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 5166 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 5167 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 5168 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 5169 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 5170 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 5171 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 5172 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 5173 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 5174 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 5175 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 5176 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 5177 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 5178 5179 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 5180 write_mhpmcounterh }, 5181 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 5182 write_mhpmcounterh }, 5183 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 5184 write_mhpmcounterh }, 5185 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 5186 write_mhpmcounterh }, 5187 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 5188 write_mhpmcounterh }, 5189 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 5190 write_mhpmcounterh }, 5191 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 5192 write_mhpmcounterh }, 5193 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 5194 write_mhpmcounterh }, 5195 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 5196 write_mhpmcounterh }, 5197 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 5198 write_mhpmcounterh }, 5199 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 5200 write_mhpmcounterh }, 5201 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 5202 write_mhpmcounterh }, 5203 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 5204 write_mhpmcounterh }, 5205 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 5206 write_mhpmcounterh }, 5207 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 5208 write_mhpmcounterh }, 5209 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 5210 write_mhpmcounterh }, 5211 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 5212 write_mhpmcounterh }, 5213 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 5214 write_mhpmcounterh }, 5215 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 5216 write_mhpmcounterh }, 5217 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 5218 write_mhpmcounterh }, 5219 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 5220 write_mhpmcounterh }, 5221 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 5222 write_mhpmcounterh }, 5223 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 5224 write_mhpmcounterh }, 5225 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 5226 write_mhpmcounterh }, 5227 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 5228 write_mhpmcounterh }, 5229 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 5230 write_mhpmcounterh }, 5231 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 5232 write_mhpmcounterh }, 5233 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 5234 write_mhpmcounterh }, 5235 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 5236 write_mhpmcounterh }, 5237 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 5238 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5239 5240 #endif /* !CONFIG_USER_ONLY */ 5241 }; 5242