1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "qemu/main-loop.h" 24 #include "exec/exec-all.h" 25 26 /* CSR function table public API */ 27 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 28 { 29 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 30 } 31 32 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 33 { 34 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 35 } 36 37 /* Predicates */ 38 static RISCVException fs(CPURISCVState *env, int csrno) 39 { 40 #if !defined(CONFIG_USER_ONLY) 41 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 42 return RISCV_EXCP_ILLEGAL_INST; 43 } 44 #endif 45 return RISCV_EXCP_NONE; 46 } 47 48 static RISCVException vs(CPURISCVState *env, int csrno) 49 { 50 if (env->misa_ext & RVV) { 51 #if !defined(CONFIG_USER_ONLY) 52 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 53 return RISCV_EXCP_ILLEGAL_INST; 54 } 55 #endif 56 return RISCV_EXCP_NONE; 57 } 58 return RISCV_EXCP_ILLEGAL_INST; 59 } 60 61 static RISCVException ctr(CPURISCVState *env, int csrno) 62 { 63 #if !defined(CONFIG_USER_ONLY) 64 CPUState *cs = env_cpu(env); 65 RISCVCPU *cpu = RISCV_CPU(cs); 66 67 if (!cpu->cfg.ext_counters) { 68 /* The Counters extensions is not enabled */ 69 return RISCV_EXCP_ILLEGAL_INST; 70 } 71 72 if (riscv_cpu_virt_enabled(env)) { 73 switch (csrno) { 74 case CSR_CYCLE: 75 if (!get_field(env->hcounteren, COUNTEREN_CY) && 76 get_field(env->mcounteren, COUNTEREN_CY)) { 77 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 78 } 79 break; 80 case CSR_TIME: 81 if (!get_field(env->hcounteren, COUNTEREN_TM) && 82 get_field(env->mcounteren, COUNTEREN_TM)) { 83 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 84 } 85 break; 86 case CSR_INSTRET: 87 if (!get_field(env->hcounteren, COUNTEREN_IR) && 88 get_field(env->mcounteren, COUNTEREN_IR)) { 89 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 90 } 91 break; 92 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 93 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3)) && 94 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3))) { 95 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 96 } 97 break; 98 } 99 if (riscv_cpu_mxl(env) == MXL_RV32) { 100 switch (csrno) { 101 case CSR_CYCLEH: 102 if (!get_field(env->hcounteren, COUNTEREN_CY) && 103 get_field(env->mcounteren, COUNTEREN_CY)) { 104 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 105 } 106 break; 107 case CSR_TIMEH: 108 if (!get_field(env->hcounteren, COUNTEREN_TM) && 109 get_field(env->mcounteren, COUNTEREN_TM)) { 110 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 111 } 112 break; 113 case CSR_INSTRETH: 114 if (!get_field(env->hcounteren, COUNTEREN_IR) && 115 get_field(env->mcounteren, COUNTEREN_IR)) { 116 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 117 } 118 break; 119 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 120 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3H)) && 121 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3H))) { 122 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 123 } 124 break; 125 } 126 } 127 } 128 #endif 129 return RISCV_EXCP_NONE; 130 } 131 132 static RISCVException ctr32(CPURISCVState *env, int csrno) 133 { 134 if (riscv_cpu_mxl(env) != MXL_RV32) { 135 return RISCV_EXCP_ILLEGAL_INST; 136 } 137 138 return ctr(env, csrno); 139 } 140 141 #if !defined(CONFIG_USER_ONLY) 142 static RISCVException any(CPURISCVState *env, int csrno) 143 { 144 return RISCV_EXCP_NONE; 145 } 146 147 static RISCVException any32(CPURISCVState *env, int csrno) 148 { 149 if (riscv_cpu_mxl(env) != MXL_RV32) { 150 return RISCV_EXCP_ILLEGAL_INST; 151 } 152 153 return any(env, csrno); 154 155 } 156 157 static RISCVException smode(CPURISCVState *env, int csrno) 158 { 159 if (riscv_has_ext(env, RVS)) { 160 return RISCV_EXCP_NONE; 161 } 162 163 return RISCV_EXCP_ILLEGAL_INST; 164 } 165 166 static RISCVException hmode(CPURISCVState *env, int csrno) 167 { 168 if (riscv_has_ext(env, RVS) && 169 riscv_has_ext(env, RVH)) { 170 /* Hypervisor extension is supported */ 171 if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 172 env->priv == PRV_M) { 173 return RISCV_EXCP_NONE; 174 } else { 175 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 176 } 177 } 178 179 return RISCV_EXCP_ILLEGAL_INST; 180 } 181 182 static RISCVException hmode32(CPURISCVState *env, int csrno) 183 { 184 if (riscv_cpu_mxl(env) != MXL_RV32) { 185 if (riscv_cpu_virt_enabled(env)) { 186 return RISCV_EXCP_ILLEGAL_INST; 187 } else { 188 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 189 } 190 } 191 192 return hmode(env, csrno); 193 194 } 195 196 /* Checks if PointerMasking registers could be accessed */ 197 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 198 { 199 /* Check if j-ext is present */ 200 if (riscv_has_ext(env, RVJ)) { 201 return RISCV_EXCP_NONE; 202 } 203 return RISCV_EXCP_ILLEGAL_INST; 204 } 205 206 static RISCVException pmp(CPURISCVState *env, int csrno) 207 { 208 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 209 return RISCV_EXCP_NONE; 210 } 211 212 return RISCV_EXCP_ILLEGAL_INST; 213 } 214 215 static RISCVException epmp(CPURISCVState *env, int csrno) 216 { 217 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 218 return RISCV_EXCP_NONE; 219 } 220 221 return RISCV_EXCP_ILLEGAL_INST; 222 } 223 #endif 224 225 /* User Floating-Point CSRs */ 226 static RISCVException read_fflags(CPURISCVState *env, int csrno, 227 target_ulong *val) 228 { 229 *val = riscv_cpu_get_fflags(env); 230 return RISCV_EXCP_NONE; 231 } 232 233 static RISCVException write_fflags(CPURISCVState *env, int csrno, 234 target_ulong val) 235 { 236 #if !defined(CONFIG_USER_ONLY) 237 env->mstatus |= MSTATUS_FS; 238 #endif 239 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 240 return RISCV_EXCP_NONE; 241 } 242 243 static RISCVException read_frm(CPURISCVState *env, int csrno, 244 target_ulong *val) 245 { 246 *val = env->frm; 247 return RISCV_EXCP_NONE; 248 } 249 250 static RISCVException write_frm(CPURISCVState *env, int csrno, 251 target_ulong val) 252 { 253 #if !defined(CONFIG_USER_ONLY) 254 env->mstatus |= MSTATUS_FS; 255 #endif 256 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 257 return RISCV_EXCP_NONE; 258 } 259 260 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 261 target_ulong *val) 262 { 263 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 264 | (env->frm << FSR_RD_SHIFT); 265 return RISCV_EXCP_NONE; 266 } 267 268 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 269 target_ulong val) 270 { 271 #if !defined(CONFIG_USER_ONLY) 272 env->mstatus |= MSTATUS_FS; 273 #endif 274 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 275 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 276 return RISCV_EXCP_NONE; 277 } 278 279 static RISCVException read_vtype(CPURISCVState *env, int csrno, 280 target_ulong *val) 281 { 282 *val = env->vtype; 283 return RISCV_EXCP_NONE; 284 } 285 286 static RISCVException read_vl(CPURISCVState *env, int csrno, 287 target_ulong *val) 288 { 289 *val = env->vl; 290 return RISCV_EXCP_NONE; 291 } 292 293 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 294 { 295 *val = env_archcpu(env)->cfg.vlen >> 3; 296 return RISCV_EXCP_NONE; 297 } 298 299 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 300 target_ulong *val) 301 { 302 *val = env->vxrm; 303 return RISCV_EXCP_NONE; 304 } 305 306 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 307 target_ulong val) 308 { 309 #if !defined(CONFIG_USER_ONLY) 310 env->mstatus |= MSTATUS_VS; 311 #endif 312 env->vxrm = val; 313 return RISCV_EXCP_NONE; 314 } 315 316 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 317 target_ulong *val) 318 { 319 *val = env->vxsat; 320 return RISCV_EXCP_NONE; 321 } 322 323 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 324 target_ulong val) 325 { 326 #if !defined(CONFIG_USER_ONLY) 327 env->mstatus |= MSTATUS_VS; 328 #endif 329 env->vxsat = val; 330 return RISCV_EXCP_NONE; 331 } 332 333 static RISCVException read_vstart(CPURISCVState *env, int csrno, 334 target_ulong *val) 335 { 336 *val = env->vstart; 337 return RISCV_EXCP_NONE; 338 } 339 340 static RISCVException write_vstart(CPURISCVState *env, int csrno, 341 target_ulong val) 342 { 343 #if !defined(CONFIG_USER_ONLY) 344 env->mstatus |= MSTATUS_VS; 345 #endif 346 /* 347 * The vstart CSR is defined to have only enough writable bits 348 * to hold the largest element index, i.e. lg2(VLEN) bits. 349 */ 350 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 351 return RISCV_EXCP_NONE; 352 } 353 354 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 355 { 356 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 357 return RISCV_EXCP_NONE; 358 } 359 360 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 361 { 362 #if !defined(CONFIG_USER_ONLY) 363 env->mstatus |= MSTATUS_VS; 364 #endif 365 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 366 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 367 return RISCV_EXCP_NONE; 368 } 369 370 /* User Timers and Counters */ 371 static RISCVException read_instret(CPURISCVState *env, int csrno, 372 target_ulong *val) 373 { 374 #if !defined(CONFIG_USER_ONLY) 375 if (icount_enabled()) { 376 *val = icount_get(); 377 } else { 378 *val = cpu_get_host_ticks(); 379 } 380 #else 381 *val = cpu_get_host_ticks(); 382 #endif 383 return RISCV_EXCP_NONE; 384 } 385 386 static RISCVException read_instreth(CPURISCVState *env, int csrno, 387 target_ulong *val) 388 { 389 #if !defined(CONFIG_USER_ONLY) 390 if (icount_enabled()) { 391 *val = icount_get() >> 32; 392 } else { 393 *val = cpu_get_host_ticks() >> 32; 394 } 395 #else 396 *val = cpu_get_host_ticks() >> 32; 397 #endif 398 return RISCV_EXCP_NONE; 399 } 400 401 #if defined(CONFIG_USER_ONLY) 402 static RISCVException read_time(CPURISCVState *env, int csrno, 403 target_ulong *val) 404 { 405 *val = cpu_get_host_ticks(); 406 return RISCV_EXCP_NONE; 407 } 408 409 static RISCVException read_timeh(CPURISCVState *env, int csrno, 410 target_ulong *val) 411 { 412 *val = cpu_get_host_ticks() >> 32; 413 return RISCV_EXCP_NONE; 414 } 415 416 #else /* CONFIG_USER_ONLY */ 417 418 static RISCVException read_time(CPURISCVState *env, int csrno, 419 target_ulong *val) 420 { 421 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 422 423 if (!env->rdtime_fn) { 424 return RISCV_EXCP_ILLEGAL_INST; 425 } 426 427 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 428 return RISCV_EXCP_NONE; 429 } 430 431 static RISCVException read_timeh(CPURISCVState *env, int csrno, 432 target_ulong *val) 433 { 434 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 435 436 if (!env->rdtime_fn) { 437 return RISCV_EXCP_ILLEGAL_INST; 438 } 439 440 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 441 return RISCV_EXCP_NONE; 442 } 443 444 /* Machine constants */ 445 446 #define M_MODE_INTERRUPTS (MIP_MSIP | MIP_MTIP | MIP_MEIP) 447 #define S_MODE_INTERRUPTS (MIP_SSIP | MIP_STIP | MIP_SEIP) 448 #define VS_MODE_INTERRUPTS (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP) 449 450 static const target_ulong delegable_ints = S_MODE_INTERRUPTS | 451 VS_MODE_INTERRUPTS; 452 static const target_ulong vs_delegable_ints = VS_MODE_INTERRUPTS; 453 static const target_ulong all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 454 VS_MODE_INTERRUPTS; 455 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 456 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 457 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 458 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 459 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 460 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 461 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 462 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 463 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 464 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 465 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 466 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 467 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 468 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 469 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 470 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 471 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 472 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 473 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 474 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 475 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 476 (1ULL << (RISCV_EXCP_VS_ECALL)) | 477 (1ULL << (RISCV_EXCP_M_ECALL)) | 478 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 479 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 480 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 481 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 482 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 483 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 484 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS | (target_ulong)SSTATUS64_UXL; 485 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP; 486 static const target_ulong hip_writable_mask = MIP_VSSIP; 487 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 488 static const target_ulong vsip_writable_mask = MIP_VSSIP; 489 490 static const char valid_vm_1_10_32[16] = { 491 [VM_1_10_MBARE] = 1, 492 [VM_1_10_SV32] = 1 493 }; 494 495 static const char valid_vm_1_10_64[16] = { 496 [VM_1_10_MBARE] = 1, 497 [VM_1_10_SV39] = 1, 498 [VM_1_10_SV48] = 1, 499 [VM_1_10_SV57] = 1 500 }; 501 502 /* Machine Information Registers */ 503 static RISCVException read_zero(CPURISCVState *env, int csrno, 504 target_ulong *val) 505 { 506 *val = 0; 507 return RISCV_EXCP_NONE; 508 } 509 510 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 511 target_ulong *val) 512 { 513 *val = env->mhartid; 514 return RISCV_EXCP_NONE; 515 } 516 517 /* Machine Trap Setup */ 518 519 /* We do not store SD explicitly, only compute it on demand. */ 520 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 521 { 522 if ((status & MSTATUS_FS) == MSTATUS_FS || 523 (status & MSTATUS_VS) == MSTATUS_VS || 524 (status & MSTATUS_XS) == MSTATUS_XS) { 525 switch (xl) { 526 case MXL_RV32: 527 return status | MSTATUS32_SD; 528 case MXL_RV64: 529 return status | MSTATUS64_SD; 530 case MXL_RV128: 531 return MSTATUSH128_SD; 532 default: 533 g_assert_not_reached(); 534 } 535 } 536 return status; 537 } 538 539 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 540 target_ulong *val) 541 { 542 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 543 return RISCV_EXCP_NONE; 544 } 545 546 static int validate_vm(CPURISCVState *env, target_ulong vm) 547 { 548 if (riscv_cpu_mxl(env) == MXL_RV32) { 549 return valid_vm_1_10_32[vm & 0xf]; 550 } else { 551 return valid_vm_1_10_64[vm & 0xf]; 552 } 553 } 554 555 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 556 target_ulong val) 557 { 558 uint64_t mstatus = env->mstatus; 559 uint64_t mask = 0; 560 561 /* flush tlb on mstatus fields that affect VM */ 562 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 563 MSTATUS_MPRV | MSTATUS_SUM)) { 564 tlb_flush(env_cpu(env)); 565 } 566 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 567 MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM | 568 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 569 MSTATUS_TW | MSTATUS_VS; 570 571 if (riscv_cpu_mxl(env) != MXL_RV32) { 572 /* 573 * RV32: MPV and GVA are not in mstatus. The current plan is to 574 * add them to mstatush. For now, we just don't support it. 575 */ 576 mask |= MSTATUS_MPV | MSTATUS_GVA; 577 } 578 579 mstatus = (mstatus & ~mask) | (val & mask); 580 581 RISCVMXL xl = riscv_cpu_mxl(env); 582 if (xl > MXL_RV32) { 583 /* SXL and UXL fields are for now read only */ 584 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 585 mstatus = set_field(mstatus, MSTATUS64_UXL, xl); 586 } 587 env->mstatus = mstatus; 588 589 return RISCV_EXCP_NONE; 590 } 591 592 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 593 target_ulong *val) 594 { 595 *val = env->mstatus >> 32; 596 return RISCV_EXCP_NONE; 597 } 598 599 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 600 target_ulong val) 601 { 602 uint64_t valh = (uint64_t)val << 32; 603 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 604 605 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 606 tlb_flush(env_cpu(env)); 607 } 608 609 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 610 611 return RISCV_EXCP_NONE; 612 } 613 614 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 615 Int128 *val) 616 { 617 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 618 return RISCV_EXCP_NONE; 619 } 620 621 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 622 Int128 *val) 623 { 624 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 625 return RISCV_EXCP_NONE; 626 } 627 628 static RISCVException read_misa(CPURISCVState *env, int csrno, 629 target_ulong *val) 630 { 631 target_ulong misa; 632 633 switch (env->misa_mxl) { 634 case MXL_RV32: 635 misa = (target_ulong)MXL_RV32 << 30; 636 break; 637 #ifdef TARGET_RISCV64 638 case MXL_RV64: 639 misa = (target_ulong)MXL_RV64 << 62; 640 break; 641 #endif 642 default: 643 g_assert_not_reached(); 644 } 645 646 *val = misa | env->misa_ext; 647 return RISCV_EXCP_NONE; 648 } 649 650 static RISCVException write_misa(CPURISCVState *env, int csrno, 651 target_ulong val) 652 { 653 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 654 /* drop write to misa */ 655 return RISCV_EXCP_NONE; 656 } 657 658 /* 'I' or 'E' must be present */ 659 if (!(val & (RVI | RVE))) { 660 /* It is not, drop write to misa */ 661 return RISCV_EXCP_NONE; 662 } 663 664 /* 'E' excludes all other extensions */ 665 if (val & RVE) { 666 /* when we support 'E' we can do "val = RVE;" however 667 * for now we just drop writes if 'E' is present. 668 */ 669 return RISCV_EXCP_NONE; 670 } 671 672 /* 673 * misa.MXL writes are not supported by QEMU. 674 * Drop writes to those bits. 675 */ 676 677 /* Mask extensions that are not supported by this hart */ 678 val &= env->misa_ext_mask; 679 680 /* Mask extensions that are not supported by QEMU */ 681 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 682 683 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 684 if ((val & RVD) && !(val & RVF)) { 685 val &= ~RVD; 686 } 687 688 /* Suppress 'C' if next instruction is not aligned 689 * TODO: this should check next_pc 690 */ 691 if ((val & RVC) && (GETPC() & ~3) != 0) { 692 val &= ~RVC; 693 } 694 695 /* If nothing changed, do nothing. */ 696 if (val == env->misa_ext) { 697 return RISCV_EXCP_NONE; 698 } 699 700 /* flush translation cache */ 701 tb_flush(env_cpu(env)); 702 env->misa_ext = val; 703 return RISCV_EXCP_NONE; 704 } 705 706 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 707 target_ulong *val) 708 { 709 *val = env->medeleg; 710 return RISCV_EXCP_NONE; 711 } 712 713 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 714 target_ulong val) 715 { 716 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 717 return RISCV_EXCP_NONE; 718 } 719 720 static RISCVException read_mideleg(CPURISCVState *env, int csrno, 721 target_ulong *val) 722 { 723 *val = env->mideleg; 724 return RISCV_EXCP_NONE; 725 } 726 727 static RISCVException write_mideleg(CPURISCVState *env, int csrno, 728 target_ulong val) 729 { 730 env->mideleg = (env->mideleg & ~delegable_ints) | (val & delegable_ints); 731 if (riscv_has_ext(env, RVH)) { 732 env->mideleg |= VS_MODE_INTERRUPTS; 733 } 734 return RISCV_EXCP_NONE; 735 } 736 737 static RISCVException read_mie(CPURISCVState *env, int csrno, 738 target_ulong *val) 739 { 740 *val = env->mie; 741 return RISCV_EXCP_NONE; 742 } 743 744 static RISCVException write_mie(CPURISCVState *env, int csrno, 745 target_ulong val) 746 { 747 env->mie = (env->mie & ~all_ints) | (val & all_ints); 748 return RISCV_EXCP_NONE; 749 } 750 751 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 752 target_ulong *val) 753 { 754 *val = env->mtvec; 755 return RISCV_EXCP_NONE; 756 } 757 758 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 759 target_ulong val) 760 { 761 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 762 if ((val & 3) < 2) { 763 env->mtvec = val; 764 } else { 765 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 766 } 767 return RISCV_EXCP_NONE; 768 } 769 770 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 771 target_ulong *val) 772 { 773 *val = env->mcounteren; 774 return RISCV_EXCP_NONE; 775 } 776 777 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 778 target_ulong val) 779 { 780 env->mcounteren = val; 781 return RISCV_EXCP_NONE; 782 } 783 784 /* Machine Trap Handling */ 785 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 786 Int128 *val) 787 { 788 *val = int128_make128(env->mscratch, env->mscratchh); 789 return RISCV_EXCP_NONE; 790 } 791 792 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 793 Int128 val) 794 { 795 env->mscratch = int128_getlo(val); 796 env->mscratchh = int128_gethi(val); 797 return RISCV_EXCP_NONE; 798 } 799 800 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 801 target_ulong *val) 802 { 803 *val = env->mscratch; 804 return RISCV_EXCP_NONE; 805 } 806 807 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 808 target_ulong val) 809 { 810 env->mscratch = val; 811 return RISCV_EXCP_NONE; 812 } 813 814 static RISCVException read_mepc(CPURISCVState *env, int csrno, 815 target_ulong *val) 816 { 817 *val = env->mepc; 818 return RISCV_EXCP_NONE; 819 } 820 821 static RISCVException write_mepc(CPURISCVState *env, int csrno, 822 target_ulong val) 823 { 824 env->mepc = val; 825 return RISCV_EXCP_NONE; 826 } 827 828 static RISCVException read_mcause(CPURISCVState *env, int csrno, 829 target_ulong *val) 830 { 831 *val = env->mcause; 832 return RISCV_EXCP_NONE; 833 } 834 835 static RISCVException write_mcause(CPURISCVState *env, int csrno, 836 target_ulong val) 837 { 838 env->mcause = val; 839 return RISCV_EXCP_NONE; 840 } 841 842 static RISCVException read_mtval(CPURISCVState *env, int csrno, 843 target_ulong *val) 844 { 845 *val = env->mtval; 846 return RISCV_EXCP_NONE; 847 } 848 849 static RISCVException write_mtval(CPURISCVState *env, int csrno, 850 target_ulong val) 851 { 852 env->mtval = val; 853 return RISCV_EXCP_NONE; 854 } 855 856 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 857 target_ulong *ret_value, 858 target_ulong new_value, target_ulong write_mask) 859 { 860 RISCVCPU *cpu = env_archcpu(env); 861 /* Allow software control of delegable interrupts not claimed by hardware */ 862 target_ulong mask = write_mask & delegable_ints & ~env->miclaim; 863 uint32_t old_mip; 864 865 if (mask) { 866 old_mip = riscv_cpu_update_mip(cpu, mask, (new_value & mask)); 867 } else { 868 old_mip = env->mip; 869 } 870 871 if (ret_value) { 872 *ret_value = old_mip; 873 } 874 875 return RISCV_EXCP_NONE; 876 } 877 878 /* Supervisor Trap Setup */ 879 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 880 Int128 *val) 881 { 882 uint64_t mask = sstatus_v1_10_mask; 883 uint64_t sstatus = env->mstatus & mask; 884 885 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 886 return RISCV_EXCP_NONE; 887 } 888 889 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 890 target_ulong *val) 891 { 892 target_ulong mask = (sstatus_v1_10_mask); 893 894 /* TODO: Use SXL not MXL. */ 895 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 896 return RISCV_EXCP_NONE; 897 } 898 899 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 900 target_ulong val) 901 { 902 target_ulong mask = (sstatus_v1_10_mask); 903 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 904 return write_mstatus(env, CSR_MSTATUS, newval); 905 } 906 907 static RISCVException read_vsie(CPURISCVState *env, int csrno, 908 target_ulong *val) 909 { 910 /* Shift the VS bits to their S bit location in vsie */ 911 *val = (env->mie & env->hideleg & VS_MODE_INTERRUPTS) >> 1; 912 return RISCV_EXCP_NONE; 913 } 914 915 static RISCVException read_sie(CPURISCVState *env, int csrno, 916 target_ulong *val) 917 { 918 if (riscv_cpu_virt_enabled(env)) { 919 read_vsie(env, CSR_VSIE, val); 920 } else { 921 *val = env->mie & env->mideleg; 922 } 923 return RISCV_EXCP_NONE; 924 } 925 926 static RISCVException write_vsie(CPURISCVState *env, int csrno, 927 target_ulong val) 928 { 929 /* Shift the S bits to their VS bit location in mie */ 930 target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | 931 ((val << 1) & env->hideleg & VS_MODE_INTERRUPTS); 932 return write_mie(env, CSR_MIE, newval); 933 } 934 935 static int write_sie(CPURISCVState *env, int csrno, target_ulong val) 936 { 937 if (riscv_cpu_virt_enabled(env)) { 938 write_vsie(env, CSR_VSIE, val); 939 } else { 940 target_ulong newval = (env->mie & ~S_MODE_INTERRUPTS) | 941 (val & S_MODE_INTERRUPTS); 942 write_mie(env, CSR_MIE, newval); 943 } 944 945 return RISCV_EXCP_NONE; 946 } 947 948 static RISCVException read_stvec(CPURISCVState *env, int csrno, 949 target_ulong *val) 950 { 951 *val = env->stvec; 952 return RISCV_EXCP_NONE; 953 } 954 955 static RISCVException write_stvec(CPURISCVState *env, int csrno, 956 target_ulong val) 957 { 958 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 959 if ((val & 3) < 2) { 960 env->stvec = val; 961 } else { 962 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 963 } 964 return RISCV_EXCP_NONE; 965 } 966 967 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 968 target_ulong *val) 969 { 970 *val = env->scounteren; 971 return RISCV_EXCP_NONE; 972 } 973 974 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 975 target_ulong val) 976 { 977 env->scounteren = val; 978 return RISCV_EXCP_NONE; 979 } 980 981 /* Supervisor Trap Handling */ 982 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 983 Int128 *val) 984 { 985 *val = int128_make128(env->sscratch, env->sscratchh); 986 return RISCV_EXCP_NONE; 987 } 988 989 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 990 Int128 val) 991 { 992 env->sscratch = int128_getlo(val); 993 env->sscratchh = int128_gethi(val); 994 return RISCV_EXCP_NONE; 995 } 996 997 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 998 target_ulong *val) 999 { 1000 *val = env->sscratch; 1001 return RISCV_EXCP_NONE; 1002 } 1003 1004 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 1005 target_ulong val) 1006 { 1007 env->sscratch = val; 1008 return RISCV_EXCP_NONE; 1009 } 1010 1011 static RISCVException read_sepc(CPURISCVState *env, int csrno, 1012 target_ulong *val) 1013 { 1014 *val = env->sepc; 1015 return RISCV_EXCP_NONE; 1016 } 1017 1018 static RISCVException write_sepc(CPURISCVState *env, int csrno, 1019 target_ulong val) 1020 { 1021 env->sepc = val; 1022 return RISCV_EXCP_NONE; 1023 } 1024 1025 static RISCVException read_scause(CPURISCVState *env, int csrno, 1026 target_ulong *val) 1027 { 1028 *val = env->scause; 1029 return RISCV_EXCP_NONE; 1030 } 1031 1032 static RISCVException write_scause(CPURISCVState *env, int csrno, 1033 target_ulong val) 1034 { 1035 env->scause = val; 1036 return RISCV_EXCP_NONE; 1037 } 1038 1039 static RISCVException read_stval(CPURISCVState *env, int csrno, 1040 target_ulong *val) 1041 { 1042 *val = env->stval; 1043 return RISCV_EXCP_NONE; 1044 } 1045 1046 static RISCVException write_stval(CPURISCVState *env, int csrno, 1047 target_ulong val) 1048 { 1049 env->stval = val; 1050 return RISCV_EXCP_NONE; 1051 } 1052 1053 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 1054 target_ulong *ret_value, 1055 target_ulong new_value, target_ulong write_mask) 1056 { 1057 /* Shift the S bits to their VS bit location in mip */ 1058 int ret = rmw_mip(env, 0, ret_value, new_value << 1, 1059 (write_mask << 1) & vsip_writable_mask & env->hideleg); 1060 1061 if (ret_value) { 1062 *ret_value &= VS_MODE_INTERRUPTS; 1063 /* Shift the VS bits to their S bit location in vsip */ 1064 *ret_value >>= 1; 1065 } 1066 return ret; 1067 } 1068 1069 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 1070 target_ulong *ret_value, 1071 target_ulong new_value, target_ulong write_mask) 1072 { 1073 int ret; 1074 1075 if (riscv_cpu_virt_enabled(env)) { 1076 ret = rmw_vsip(env, CSR_VSIP, ret_value, new_value, write_mask); 1077 } else { 1078 ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value, 1079 write_mask & env->mideleg & sip_writable_mask); 1080 } 1081 1082 if (ret_value) { 1083 *ret_value &= env->mideleg; 1084 } 1085 return ret; 1086 } 1087 1088 /* Supervisor Protection and Translation */ 1089 static RISCVException read_satp(CPURISCVState *env, int csrno, 1090 target_ulong *val) 1091 { 1092 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 1093 *val = 0; 1094 return RISCV_EXCP_NONE; 1095 } 1096 1097 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 1098 return RISCV_EXCP_ILLEGAL_INST; 1099 } else { 1100 *val = env->satp; 1101 } 1102 1103 return RISCV_EXCP_NONE; 1104 } 1105 1106 static RISCVException write_satp(CPURISCVState *env, int csrno, 1107 target_ulong val) 1108 { 1109 target_ulong vm, mask, asid; 1110 1111 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 1112 return RISCV_EXCP_NONE; 1113 } 1114 1115 if (riscv_cpu_mxl(env) == MXL_RV32) { 1116 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1117 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1118 asid = (val ^ env->satp) & SATP32_ASID; 1119 } else { 1120 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1121 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1122 asid = (val ^ env->satp) & SATP64_ASID; 1123 } 1124 1125 if (vm && mask) { 1126 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 1127 return RISCV_EXCP_ILLEGAL_INST; 1128 } else { 1129 if (asid) { 1130 tlb_flush(env_cpu(env)); 1131 } 1132 env->satp = val; 1133 } 1134 } 1135 return RISCV_EXCP_NONE; 1136 } 1137 1138 /* Hypervisor Extensions */ 1139 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 1140 target_ulong *val) 1141 { 1142 *val = env->hstatus; 1143 if (riscv_cpu_mxl(env) != MXL_RV32) { 1144 /* We only support 64-bit VSXL */ 1145 *val = set_field(*val, HSTATUS_VSXL, 2); 1146 } 1147 /* We only support little endian */ 1148 *val = set_field(*val, HSTATUS_VSBE, 0); 1149 return RISCV_EXCP_NONE; 1150 } 1151 1152 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 1153 target_ulong val) 1154 { 1155 env->hstatus = val; 1156 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 1157 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 1158 } 1159 if (get_field(val, HSTATUS_VSBE) != 0) { 1160 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 1161 } 1162 return RISCV_EXCP_NONE; 1163 } 1164 1165 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 1166 target_ulong *val) 1167 { 1168 *val = env->hedeleg; 1169 return RISCV_EXCP_NONE; 1170 } 1171 1172 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 1173 target_ulong val) 1174 { 1175 env->hedeleg = val & vs_delegable_excps; 1176 return RISCV_EXCP_NONE; 1177 } 1178 1179 static RISCVException read_hideleg(CPURISCVState *env, int csrno, 1180 target_ulong *val) 1181 { 1182 *val = env->hideleg; 1183 return RISCV_EXCP_NONE; 1184 } 1185 1186 static RISCVException write_hideleg(CPURISCVState *env, int csrno, 1187 target_ulong val) 1188 { 1189 env->hideleg = val & vs_delegable_ints; 1190 return RISCV_EXCP_NONE; 1191 } 1192 1193 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 1194 target_ulong *ret_value, 1195 target_ulong new_value, target_ulong write_mask) 1196 { 1197 int ret = rmw_mip(env, 0, ret_value, new_value, 1198 write_mask & hvip_writable_mask); 1199 1200 if (ret_value) { 1201 *ret_value &= hvip_writable_mask; 1202 } 1203 return ret; 1204 } 1205 1206 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 1207 target_ulong *ret_value, 1208 target_ulong new_value, target_ulong write_mask) 1209 { 1210 int ret = rmw_mip(env, 0, ret_value, new_value, 1211 write_mask & hip_writable_mask); 1212 1213 if (ret_value) { 1214 *ret_value &= hip_writable_mask; 1215 } 1216 return ret; 1217 } 1218 1219 static RISCVException read_hie(CPURISCVState *env, int csrno, 1220 target_ulong *val) 1221 { 1222 *val = env->mie & VS_MODE_INTERRUPTS; 1223 return RISCV_EXCP_NONE; 1224 } 1225 1226 static RISCVException write_hie(CPURISCVState *env, int csrno, 1227 target_ulong val) 1228 { 1229 target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | (val & VS_MODE_INTERRUPTS); 1230 return write_mie(env, CSR_MIE, newval); 1231 } 1232 1233 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 1234 target_ulong *val) 1235 { 1236 *val = env->hcounteren; 1237 return RISCV_EXCP_NONE; 1238 } 1239 1240 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 1241 target_ulong val) 1242 { 1243 env->hcounteren = val; 1244 return RISCV_EXCP_NONE; 1245 } 1246 1247 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 1248 target_ulong val) 1249 { 1250 if (val) { 1251 qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN."); 1252 } 1253 return RISCV_EXCP_NONE; 1254 } 1255 1256 static RISCVException read_htval(CPURISCVState *env, int csrno, 1257 target_ulong *val) 1258 { 1259 *val = env->htval; 1260 return RISCV_EXCP_NONE; 1261 } 1262 1263 static RISCVException write_htval(CPURISCVState *env, int csrno, 1264 target_ulong val) 1265 { 1266 env->htval = val; 1267 return RISCV_EXCP_NONE; 1268 } 1269 1270 static RISCVException read_htinst(CPURISCVState *env, int csrno, 1271 target_ulong *val) 1272 { 1273 *val = env->htinst; 1274 return RISCV_EXCP_NONE; 1275 } 1276 1277 static RISCVException write_htinst(CPURISCVState *env, int csrno, 1278 target_ulong val) 1279 { 1280 return RISCV_EXCP_NONE; 1281 } 1282 1283 static RISCVException write_hgeip(CPURISCVState *env, int csrno, 1284 target_ulong val) 1285 { 1286 if (val) { 1287 qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN."); 1288 } 1289 return RISCV_EXCP_NONE; 1290 } 1291 1292 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 1293 target_ulong *val) 1294 { 1295 *val = env->hgatp; 1296 return RISCV_EXCP_NONE; 1297 } 1298 1299 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 1300 target_ulong val) 1301 { 1302 env->hgatp = val; 1303 return RISCV_EXCP_NONE; 1304 } 1305 1306 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 1307 target_ulong *val) 1308 { 1309 if (!env->rdtime_fn) { 1310 return RISCV_EXCP_ILLEGAL_INST; 1311 } 1312 1313 *val = env->htimedelta; 1314 return RISCV_EXCP_NONE; 1315 } 1316 1317 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 1318 target_ulong val) 1319 { 1320 if (!env->rdtime_fn) { 1321 return RISCV_EXCP_ILLEGAL_INST; 1322 } 1323 1324 if (riscv_cpu_mxl(env) == MXL_RV32) { 1325 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 1326 } else { 1327 env->htimedelta = val; 1328 } 1329 return RISCV_EXCP_NONE; 1330 } 1331 1332 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 1333 target_ulong *val) 1334 { 1335 if (!env->rdtime_fn) { 1336 return RISCV_EXCP_ILLEGAL_INST; 1337 } 1338 1339 *val = env->htimedelta >> 32; 1340 return RISCV_EXCP_NONE; 1341 } 1342 1343 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 1344 target_ulong val) 1345 { 1346 if (!env->rdtime_fn) { 1347 return RISCV_EXCP_ILLEGAL_INST; 1348 } 1349 1350 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 1351 return RISCV_EXCP_NONE; 1352 } 1353 1354 /* Virtual CSR Registers */ 1355 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 1356 target_ulong *val) 1357 { 1358 *val = env->vsstatus; 1359 return RISCV_EXCP_NONE; 1360 } 1361 1362 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 1363 target_ulong val) 1364 { 1365 uint64_t mask = (target_ulong)-1; 1366 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 1367 return RISCV_EXCP_NONE; 1368 } 1369 1370 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 1371 { 1372 *val = env->vstvec; 1373 return RISCV_EXCP_NONE; 1374 } 1375 1376 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 1377 target_ulong val) 1378 { 1379 env->vstvec = val; 1380 return RISCV_EXCP_NONE; 1381 } 1382 1383 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 1384 target_ulong *val) 1385 { 1386 *val = env->vsscratch; 1387 return RISCV_EXCP_NONE; 1388 } 1389 1390 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 1391 target_ulong val) 1392 { 1393 env->vsscratch = val; 1394 return RISCV_EXCP_NONE; 1395 } 1396 1397 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 1398 target_ulong *val) 1399 { 1400 *val = env->vsepc; 1401 return RISCV_EXCP_NONE; 1402 } 1403 1404 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 1405 target_ulong val) 1406 { 1407 env->vsepc = val; 1408 return RISCV_EXCP_NONE; 1409 } 1410 1411 static RISCVException read_vscause(CPURISCVState *env, int csrno, 1412 target_ulong *val) 1413 { 1414 *val = env->vscause; 1415 return RISCV_EXCP_NONE; 1416 } 1417 1418 static RISCVException write_vscause(CPURISCVState *env, int csrno, 1419 target_ulong val) 1420 { 1421 env->vscause = val; 1422 return RISCV_EXCP_NONE; 1423 } 1424 1425 static RISCVException read_vstval(CPURISCVState *env, int csrno, 1426 target_ulong *val) 1427 { 1428 *val = env->vstval; 1429 return RISCV_EXCP_NONE; 1430 } 1431 1432 static RISCVException write_vstval(CPURISCVState *env, int csrno, 1433 target_ulong val) 1434 { 1435 env->vstval = val; 1436 return RISCV_EXCP_NONE; 1437 } 1438 1439 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 1440 target_ulong *val) 1441 { 1442 *val = env->vsatp; 1443 return RISCV_EXCP_NONE; 1444 } 1445 1446 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 1447 target_ulong val) 1448 { 1449 env->vsatp = val; 1450 return RISCV_EXCP_NONE; 1451 } 1452 1453 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 1454 target_ulong *val) 1455 { 1456 *val = env->mtval2; 1457 return RISCV_EXCP_NONE; 1458 } 1459 1460 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 1461 target_ulong val) 1462 { 1463 env->mtval2 = val; 1464 return RISCV_EXCP_NONE; 1465 } 1466 1467 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 1468 target_ulong *val) 1469 { 1470 *val = env->mtinst; 1471 return RISCV_EXCP_NONE; 1472 } 1473 1474 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 1475 target_ulong val) 1476 { 1477 env->mtinst = val; 1478 return RISCV_EXCP_NONE; 1479 } 1480 1481 /* Physical Memory Protection */ 1482 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 1483 target_ulong *val) 1484 { 1485 *val = mseccfg_csr_read(env); 1486 return RISCV_EXCP_NONE; 1487 } 1488 1489 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 1490 target_ulong val) 1491 { 1492 mseccfg_csr_write(env, val); 1493 return RISCV_EXCP_NONE; 1494 } 1495 1496 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 1497 target_ulong *val) 1498 { 1499 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 1500 return RISCV_EXCP_NONE; 1501 } 1502 1503 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 1504 target_ulong val) 1505 { 1506 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 1507 return RISCV_EXCP_NONE; 1508 } 1509 1510 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 1511 target_ulong *val) 1512 { 1513 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 1514 return RISCV_EXCP_NONE; 1515 } 1516 1517 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 1518 target_ulong val) 1519 { 1520 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 1521 return RISCV_EXCP_NONE; 1522 } 1523 1524 /* 1525 * Functions to access Pointer Masking feature registers 1526 * We have to check if current priv lvl could modify 1527 * csr in given mode 1528 */ 1529 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 1530 { 1531 int csr_priv = get_field(csrno, 0x300); 1532 int pm_current; 1533 1534 /* 1535 * If priv lvls differ that means we're accessing csr from higher priv lvl, 1536 * so allow the access 1537 */ 1538 if (env->priv != csr_priv) { 1539 return false; 1540 } 1541 switch (env->priv) { 1542 case PRV_M: 1543 pm_current = get_field(env->mmte, M_PM_CURRENT); 1544 break; 1545 case PRV_S: 1546 pm_current = get_field(env->mmte, S_PM_CURRENT); 1547 break; 1548 case PRV_U: 1549 pm_current = get_field(env->mmte, U_PM_CURRENT); 1550 break; 1551 default: 1552 g_assert_not_reached(); 1553 } 1554 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 1555 return !pm_current; 1556 } 1557 1558 static RISCVException read_mmte(CPURISCVState *env, int csrno, 1559 target_ulong *val) 1560 { 1561 *val = env->mmte & MMTE_MASK; 1562 return RISCV_EXCP_NONE; 1563 } 1564 1565 static RISCVException write_mmte(CPURISCVState *env, int csrno, 1566 target_ulong val) 1567 { 1568 uint64_t mstatus; 1569 target_ulong wpri_val = val & MMTE_MASK; 1570 1571 if (val != wpri_val) { 1572 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1573 "MMTE: WPRI violation written 0x", val, 1574 "vs expected 0x", wpri_val); 1575 } 1576 /* for machine mode pm.current is hardwired to 1 */ 1577 wpri_val |= MMTE_M_PM_CURRENT; 1578 1579 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 1580 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 1581 env->mmte = wpri_val | PM_EXT_DIRTY; 1582 1583 /* Set XS and SD bits, since PM CSRs are dirty */ 1584 mstatus = env->mstatus | MSTATUS_XS; 1585 write_mstatus(env, csrno, mstatus); 1586 return RISCV_EXCP_NONE; 1587 } 1588 1589 static RISCVException read_smte(CPURISCVState *env, int csrno, 1590 target_ulong *val) 1591 { 1592 *val = env->mmte & SMTE_MASK; 1593 return RISCV_EXCP_NONE; 1594 } 1595 1596 static RISCVException write_smte(CPURISCVState *env, int csrno, 1597 target_ulong val) 1598 { 1599 target_ulong wpri_val = val & SMTE_MASK; 1600 1601 if (val != wpri_val) { 1602 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1603 "SMTE: WPRI violation written 0x", val, 1604 "vs expected 0x", wpri_val); 1605 } 1606 1607 /* if pm.current==0 we can't modify current PM CSRs */ 1608 if (check_pm_current_disabled(env, csrno)) { 1609 return RISCV_EXCP_NONE; 1610 } 1611 1612 wpri_val |= (env->mmte & ~SMTE_MASK); 1613 write_mmte(env, csrno, wpri_val); 1614 return RISCV_EXCP_NONE; 1615 } 1616 1617 static RISCVException read_umte(CPURISCVState *env, int csrno, 1618 target_ulong *val) 1619 { 1620 *val = env->mmte & UMTE_MASK; 1621 return RISCV_EXCP_NONE; 1622 } 1623 1624 static RISCVException write_umte(CPURISCVState *env, int csrno, 1625 target_ulong val) 1626 { 1627 target_ulong wpri_val = val & UMTE_MASK; 1628 1629 if (val != wpri_val) { 1630 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1631 "UMTE: WPRI violation written 0x", val, 1632 "vs expected 0x", wpri_val); 1633 } 1634 1635 if (check_pm_current_disabled(env, csrno)) { 1636 return RISCV_EXCP_NONE; 1637 } 1638 1639 wpri_val |= (env->mmte & ~UMTE_MASK); 1640 write_mmte(env, csrno, wpri_val); 1641 return RISCV_EXCP_NONE; 1642 } 1643 1644 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 1645 target_ulong *val) 1646 { 1647 *val = env->mpmmask; 1648 return RISCV_EXCP_NONE; 1649 } 1650 1651 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 1652 target_ulong val) 1653 { 1654 uint64_t mstatus; 1655 1656 env->mpmmask = val; 1657 env->mmte |= PM_EXT_DIRTY; 1658 1659 /* Set XS and SD bits, since PM CSRs are dirty */ 1660 mstatus = env->mstatus | MSTATUS_XS; 1661 write_mstatus(env, csrno, mstatus); 1662 return RISCV_EXCP_NONE; 1663 } 1664 1665 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 1666 target_ulong *val) 1667 { 1668 *val = env->spmmask; 1669 return RISCV_EXCP_NONE; 1670 } 1671 1672 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 1673 target_ulong val) 1674 { 1675 uint64_t mstatus; 1676 1677 /* if pm.current==0 we can't modify current PM CSRs */ 1678 if (check_pm_current_disabled(env, csrno)) { 1679 return RISCV_EXCP_NONE; 1680 } 1681 env->spmmask = val; 1682 env->mmte |= PM_EXT_DIRTY; 1683 1684 /* Set XS and SD bits, since PM CSRs are dirty */ 1685 mstatus = env->mstatus | MSTATUS_XS; 1686 write_mstatus(env, csrno, mstatus); 1687 return RISCV_EXCP_NONE; 1688 } 1689 1690 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 1691 target_ulong *val) 1692 { 1693 *val = env->upmmask; 1694 return RISCV_EXCP_NONE; 1695 } 1696 1697 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 1698 target_ulong val) 1699 { 1700 uint64_t mstatus; 1701 1702 /* if pm.current==0 we can't modify current PM CSRs */ 1703 if (check_pm_current_disabled(env, csrno)) { 1704 return RISCV_EXCP_NONE; 1705 } 1706 env->upmmask = val; 1707 env->mmte |= PM_EXT_DIRTY; 1708 1709 /* Set XS and SD bits, since PM CSRs are dirty */ 1710 mstatus = env->mstatus | MSTATUS_XS; 1711 write_mstatus(env, csrno, mstatus); 1712 return RISCV_EXCP_NONE; 1713 } 1714 1715 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 1716 target_ulong *val) 1717 { 1718 *val = env->mpmbase; 1719 return RISCV_EXCP_NONE; 1720 } 1721 1722 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 1723 target_ulong val) 1724 { 1725 uint64_t mstatus; 1726 1727 env->mpmbase = val; 1728 env->mmte |= PM_EXT_DIRTY; 1729 1730 /* Set XS and SD bits, since PM CSRs are dirty */ 1731 mstatus = env->mstatus | MSTATUS_XS; 1732 write_mstatus(env, csrno, mstatus); 1733 return RISCV_EXCP_NONE; 1734 } 1735 1736 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 1737 target_ulong *val) 1738 { 1739 *val = env->spmbase; 1740 return RISCV_EXCP_NONE; 1741 } 1742 1743 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 1744 target_ulong val) 1745 { 1746 uint64_t mstatus; 1747 1748 /* if pm.current==0 we can't modify current PM CSRs */ 1749 if (check_pm_current_disabled(env, csrno)) { 1750 return RISCV_EXCP_NONE; 1751 } 1752 env->spmbase = val; 1753 env->mmte |= PM_EXT_DIRTY; 1754 1755 /* Set XS and SD bits, since PM CSRs are dirty */ 1756 mstatus = env->mstatus | MSTATUS_XS; 1757 write_mstatus(env, csrno, mstatus); 1758 return RISCV_EXCP_NONE; 1759 } 1760 1761 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 1762 target_ulong *val) 1763 { 1764 *val = env->upmbase; 1765 return RISCV_EXCP_NONE; 1766 } 1767 1768 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 1769 target_ulong val) 1770 { 1771 uint64_t mstatus; 1772 1773 /* if pm.current==0 we can't modify current PM CSRs */ 1774 if (check_pm_current_disabled(env, csrno)) { 1775 return RISCV_EXCP_NONE; 1776 } 1777 env->upmbase = val; 1778 env->mmte |= PM_EXT_DIRTY; 1779 1780 /* Set XS and SD bits, since PM CSRs are dirty */ 1781 mstatus = env->mstatus | MSTATUS_XS; 1782 write_mstatus(env, csrno, mstatus); 1783 return RISCV_EXCP_NONE; 1784 } 1785 1786 #endif 1787 1788 /* 1789 * riscv_csrrw - read and/or update control and status register 1790 * 1791 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 1792 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 1793 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 1794 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 1795 */ 1796 1797 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 1798 int csrno, 1799 bool write_mask, 1800 RISCVCPU *cpu) 1801 { 1802 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 1803 int read_only = get_field(csrno, 0xC00) == 3; 1804 #if !defined(CONFIG_USER_ONLY) 1805 int effective_priv = env->priv; 1806 1807 if (riscv_has_ext(env, RVH) && 1808 env->priv == PRV_S && 1809 !riscv_cpu_virt_enabled(env)) { 1810 /* 1811 * We are in S mode without virtualisation, therefore we are in HS Mode. 1812 * Add 1 to the effective privledge level to allow us to access the 1813 * Hypervisor CSRs. 1814 */ 1815 effective_priv++; 1816 } 1817 1818 if (!env->debugger && (effective_priv < get_field(csrno, 0x300))) { 1819 return RISCV_EXCP_ILLEGAL_INST; 1820 } 1821 #endif 1822 if (write_mask && read_only) { 1823 return RISCV_EXCP_ILLEGAL_INST; 1824 } 1825 1826 /* ensure the CSR extension is enabled. */ 1827 if (!cpu->cfg.ext_icsr) { 1828 return RISCV_EXCP_ILLEGAL_INST; 1829 } 1830 1831 /* check predicate */ 1832 if (!csr_ops[csrno].predicate) { 1833 return RISCV_EXCP_ILLEGAL_INST; 1834 } 1835 1836 return csr_ops[csrno].predicate(env, csrno); 1837 } 1838 1839 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 1840 target_ulong *ret_value, 1841 target_ulong new_value, 1842 target_ulong write_mask) 1843 { 1844 RISCVException ret; 1845 target_ulong old_value; 1846 1847 /* execute combined read/write operation if it exists */ 1848 if (csr_ops[csrno].op) { 1849 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 1850 } 1851 1852 /* if no accessor exists then return failure */ 1853 if (!csr_ops[csrno].read) { 1854 return RISCV_EXCP_ILLEGAL_INST; 1855 } 1856 /* read old value */ 1857 ret = csr_ops[csrno].read(env, csrno, &old_value); 1858 if (ret != RISCV_EXCP_NONE) { 1859 return ret; 1860 } 1861 1862 /* write value if writable and write mask set, otherwise drop writes */ 1863 if (write_mask) { 1864 new_value = (old_value & ~write_mask) | (new_value & write_mask); 1865 if (csr_ops[csrno].write) { 1866 ret = csr_ops[csrno].write(env, csrno, new_value); 1867 if (ret != RISCV_EXCP_NONE) { 1868 return ret; 1869 } 1870 } 1871 } 1872 1873 /* return old value */ 1874 if (ret_value) { 1875 *ret_value = old_value; 1876 } 1877 1878 return RISCV_EXCP_NONE; 1879 } 1880 1881 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 1882 target_ulong *ret_value, 1883 target_ulong new_value, target_ulong write_mask) 1884 { 1885 RISCVCPU *cpu = env_archcpu(env); 1886 1887 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 1888 if (ret != RISCV_EXCP_NONE) { 1889 return ret; 1890 } 1891 1892 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 1893 } 1894 1895 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 1896 Int128 *ret_value, 1897 Int128 new_value, 1898 Int128 write_mask) 1899 { 1900 RISCVException ret; 1901 Int128 old_value; 1902 1903 /* read old value */ 1904 ret = csr_ops[csrno].read128(env, csrno, &old_value); 1905 if (ret != RISCV_EXCP_NONE) { 1906 return ret; 1907 } 1908 1909 /* write value if writable and write mask set, otherwise drop writes */ 1910 if (int128_nz(write_mask)) { 1911 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 1912 int128_and(new_value, write_mask)); 1913 if (csr_ops[csrno].write128) { 1914 ret = csr_ops[csrno].write128(env, csrno, new_value); 1915 if (ret != RISCV_EXCP_NONE) { 1916 return ret; 1917 } 1918 } else if (csr_ops[csrno].write) { 1919 /* avoids having to write wrappers for all registers */ 1920 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 1921 if (ret != RISCV_EXCP_NONE) { 1922 return ret; 1923 } 1924 } 1925 } 1926 1927 /* return old value */ 1928 if (ret_value) { 1929 *ret_value = old_value; 1930 } 1931 1932 return RISCV_EXCP_NONE; 1933 } 1934 1935 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 1936 Int128 *ret_value, 1937 Int128 new_value, Int128 write_mask) 1938 { 1939 RISCVException ret; 1940 RISCVCPU *cpu = env_archcpu(env); 1941 1942 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 1943 if (ret != RISCV_EXCP_NONE) { 1944 return ret; 1945 } 1946 1947 if (csr_ops[csrno].read128) { 1948 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 1949 } 1950 1951 /* 1952 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 1953 * at all defined. 1954 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 1955 * significant), for those, this fallback is correctly handling the accesses 1956 */ 1957 target_ulong old_value; 1958 ret = riscv_csrrw_do64(env, csrno, &old_value, 1959 int128_getlo(new_value), 1960 int128_getlo(write_mask)); 1961 if (ret == RISCV_EXCP_NONE && ret_value) { 1962 *ret_value = int128_make64(old_value); 1963 } 1964 return ret; 1965 } 1966 1967 /* 1968 * Debugger support. If not in user mode, set env->debugger before the 1969 * riscv_csrrw call and clear it after the call. 1970 */ 1971 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 1972 target_ulong *ret_value, 1973 target_ulong new_value, 1974 target_ulong write_mask) 1975 { 1976 RISCVException ret; 1977 #if !defined(CONFIG_USER_ONLY) 1978 env->debugger = true; 1979 #endif 1980 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 1981 #if !defined(CONFIG_USER_ONLY) 1982 env->debugger = false; 1983 #endif 1984 return ret; 1985 } 1986 1987 /* Control and Status Register function table */ 1988 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 1989 /* User Floating-Point CSRs */ 1990 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 1991 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 1992 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 1993 /* Vector CSRs */ 1994 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 1995 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 1996 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 1997 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 1998 [CSR_VL] = { "vl", vs, read_vl }, 1999 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 2000 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 2001 /* User Timers and Counters */ 2002 [CSR_CYCLE] = { "cycle", ctr, read_instret }, 2003 [CSR_INSTRET] = { "instret", ctr, read_instret }, 2004 [CSR_CYCLEH] = { "cycleh", ctr32, read_instreth }, 2005 [CSR_INSTRETH] = { "instreth", ctr32, read_instreth }, 2006 2007 /* 2008 * In privileged mode, the monitor will have to emulate TIME CSRs only if 2009 * rdtime callback is not provided by machine/platform emulation. 2010 */ 2011 [CSR_TIME] = { "time", ctr, read_time }, 2012 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 2013 2014 #if !defined(CONFIG_USER_ONLY) 2015 /* Machine Timers and Counters */ 2016 [CSR_MCYCLE] = { "mcycle", any, read_instret }, 2017 [CSR_MINSTRET] = { "minstret", any, read_instret }, 2018 [CSR_MCYCLEH] = { "mcycleh", any32, read_instreth }, 2019 [CSR_MINSTRETH] = { "minstreth", any32, read_instreth }, 2020 2021 /* Machine Information Registers */ 2022 [CSR_MVENDORID] = { "mvendorid", any, read_zero }, 2023 [CSR_MARCHID] = { "marchid", any, read_zero }, 2024 [CSR_MIMPID] = { "mimpid", any, read_zero }, 2025 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 2026 2027 /* Machine Trap Setup */ 2028 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, NULL, 2029 read_mstatus_i128 }, 2030 [CSR_MISA] = { "misa", any, read_misa, write_misa, NULL, 2031 read_misa_i128 }, 2032 [CSR_MIDELEG] = { "mideleg", any, read_mideleg, write_mideleg }, 2033 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 2034 [CSR_MIE] = { "mie", any, read_mie, write_mie }, 2035 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 2036 [CSR_MCOUNTEREN] = { "mcounteren", any, read_mcounteren, write_mcounteren }, 2037 2038 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, write_mstatush }, 2039 2040 /* Machine Trap Handling */ 2041 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, NULL, 2042 read_mscratch_i128, write_mscratch_i128 }, 2043 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 2044 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 2045 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 2046 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 2047 2048 /* Supervisor Trap Setup */ 2049 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, NULL, 2050 read_sstatus_i128 }, 2051 [CSR_SIE] = { "sie", smode, read_sie, write_sie }, 2052 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 2053 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, write_scounteren }, 2054 2055 /* Supervisor Trap Handling */ 2056 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, NULL, 2057 read_sscratch_i128, write_sscratch_i128 }, 2058 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 2059 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 2060 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 2061 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 2062 2063 /* Supervisor Protection and Translation */ 2064 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 2065 2066 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus }, 2067 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg }, 2068 [CSR_HIDELEG] = { "hideleg", hmode, read_hideleg, write_hideleg }, 2069 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip }, 2070 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip }, 2071 [CSR_HIE] = { "hie", hmode, read_hie, write_hie }, 2072 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, write_hcounteren }, 2073 [CSR_HGEIE] = { "hgeie", hmode, read_zero, write_hgeie }, 2074 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval }, 2075 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst }, 2076 [CSR_HGEIP] = { "hgeip", hmode, read_zero, write_hgeip }, 2077 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp }, 2078 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, write_htimedelta }, 2079 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, write_htimedeltah }, 2080 2081 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, write_vsstatus }, 2082 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip }, 2083 [CSR_VSIE] = { "vsie", hmode, read_vsie, write_vsie }, 2084 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec }, 2085 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, write_vsscratch }, 2086 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc }, 2087 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause }, 2088 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval }, 2089 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp }, 2090 2091 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2 }, 2092 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst }, 2093 2094 /* Physical Memory Protection */ 2095 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg }, 2096 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 2097 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 2098 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 2099 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 2100 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 2101 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 2102 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 2103 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 2104 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 2105 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 2106 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 2107 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 2108 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 2109 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 2110 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 2111 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 2112 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 2113 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 2114 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 2115 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 2116 2117 /* User Pointer Masking */ 2118 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 2119 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, write_upmmask }, 2120 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, write_upmbase }, 2121 /* Machine Pointer Masking */ 2122 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 2123 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, write_mpmmask }, 2124 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, write_mpmbase }, 2125 /* Supervisor Pointer Masking */ 2126 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 2127 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, write_spmmask }, 2128 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, write_spmbase }, 2129 2130 /* Performance Counters */ 2131 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_zero }, 2132 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_zero }, 2133 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_zero }, 2134 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_zero }, 2135 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_zero }, 2136 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_zero }, 2137 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_zero }, 2138 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_zero }, 2139 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_zero }, 2140 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_zero }, 2141 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_zero }, 2142 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_zero }, 2143 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_zero }, 2144 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_zero }, 2145 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_zero }, 2146 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_zero }, 2147 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_zero }, 2148 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_zero }, 2149 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_zero }, 2150 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_zero }, 2151 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_zero }, 2152 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_zero }, 2153 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_zero }, 2154 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_zero }, 2155 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_zero }, 2156 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_zero }, 2157 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_zero }, 2158 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_zero }, 2159 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_zero }, 2160 2161 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", any, read_zero }, 2162 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", any, read_zero }, 2163 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", any, read_zero }, 2164 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", any, read_zero }, 2165 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", any, read_zero }, 2166 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", any, read_zero }, 2167 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", any, read_zero }, 2168 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", any, read_zero }, 2169 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", any, read_zero }, 2170 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", any, read_zero }, 2171 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", any, read_zero }, 2172 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", any, read_zero }, 2173 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", any, read_zero }, 2174 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", any, read_zero }, 2175 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", any, read_zero }, 2176 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", any, read_zero }, 2177 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", any, read_zero }, 2178 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", any, read_zero }, 2179 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", any, read_zero }, 2180 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", any, read_zero }, 2181 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", any, read_zero }, 2182 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", any, read_zero }, 2183 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", any, read_zero }, 2184 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", any, read_zero }, 2185 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", any, read_zero }, 2186 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", any, read_zero }, 2187 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", any, read_zero }, 2188 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", any, read_zero }, 2189 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", any, read_zero }, 2190 2191 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_zero }, 2192 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_zero }, 2193 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_zero }, 2194 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_zero }, 2195 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_zero }, 2196 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_zero }, 2197 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_zero }, 2198 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_zero }, 2199 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_zero }, 2200 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_zero }, 2201 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_zero }, 2202 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_zero }, 2203 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_zero }, 2204 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_zero }, 2205 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_zero }, 2206 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_zero }, 2207 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_zero }, 2208 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_zero }, 2209 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_zero }, 2210 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_zero }, 2211 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_zero }, 2212 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_zero }, 2213 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_zero }, 2214 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_zero }, 2215 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_zero }, 2216 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_zero }, 2217 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_zero }, 2218 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_zero }, 2219 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_zero }, 2220 2221 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_zero }, 2222 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_zero }, 2223 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_zero }, 2224 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_zero }, 2225 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_zero }, 2226 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_zero }, 2227 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_zero }, 2228 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_zero }, 2229 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_zero }, 2230 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_zero }, 2231 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_zero }, 2232 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_zero }, 2233 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_zero }, 2234 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_zero }, 2235 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_zero }, 2236 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_zero }, 2237 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_zero }, 2238 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_zero }, 2239 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_zero }, 2240 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_zero }, 2241 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_zero }, 2242 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_zero }, 2243 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_zero }, 2244 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_zero }, 2245 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_zero }, 2246 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_zero }, 2247 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_zero }, 2248 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_zero }, 2249 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_zero }, 2250 2251 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", any32, read_zero }, 2252 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", any32, read_zero }, 2253 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", any32, read_zero }, 2254 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", any32, read_zero }, 2255 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", any32, read_zero }, 2256 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", any32, read_zero }, 2257 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", any32, read_zero }, 2258 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", any32, read_zero }, 2259 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", any32, read_zero }, 2260 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", any32, read_zero }, 2261 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", any32, read_zero }, 2262 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", any32, read_zero }, 2263 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", any32, read_zero }, 2264 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", any32, read_zero }, 2265 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", any32, read_zero }, 2266 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", any32, read_zero }, 2267 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", any32, read_zero }, 2268 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", any32, read_zero }, 2269 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", any32, read_zero }, 2270 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", any32, read_zero }, 2271 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", any32, read_zero }, 2272 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", any32, read_zero }, 2273 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", any32, read_zero }, 2274 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", any32, read_zero }, 2275 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", any32, read_zero }, 2276 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", any32, read_zero }, 2277 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", any32, read_zero }, 2278 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", any32, read_zero }, 2279 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", any32, read_zero }, 2280 #endif /* !CONFIG_USER_ONLY */ 2281 }; 2282