1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "cpu.h" 23 #include "qemu/main-loop.h" 24 #include "exec/exec-all.h" 25 26 /* CSR function table public API */ 27 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 28 { 29 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 30 } 31 32 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 33 { 34 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 35 } 36 37 /* Predicates */ 38 static RISCVException fs(CPURISCVState *env, int csrno) 39 { 40 #if !defined(CONFIG_USER_ONLY) 41 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 42 return RISCV_EXCP_ILLEGAL_INST; 43 } 44 #endif 45 return RISCV_EXCP_NONE; 46 } 47 48 static RISCVException vs(CPURISCVState *env, int csrno) 49 { 50 CPUState *cs = env_cpu(env); 51 RISCVCPU *cpu = RISCV_CPU(cs); 52 53 if (env->misa_ext & RVV || 54 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 55 #if !defined(CONFIG_USER_ONLY) 56 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 57 return RISCV_EXCP_ILLEGAL_INST; 58 } 59 #endif 60 return RISCV_EXCP_NONE; 61 } 62 return RISCV_EXCP_ILLEGAL_INST; 63 } 64 65 static RISCVException ctr(CPURISCVState *env, int csrno) 66 { 67 #if !defined(CONFIG_USER_ONLY) 68 CPUState *cs = env_cpu(env); 69 RISCVCPU *cpu = RISCV_CPU(cs); 70 71 if (!cpu->cfg.ext_counters) { 72 /* The Counters extensions is not enabled */ 73 return RISCV_EXCP_ILLEGAL_INST; 74 } 75 76 if (riscv_cpu_virt_enabled(env)) { 77 switch (csrno) { 78 case CSR_CYCLE: 79 if (!get_field(env->hcounteren, COUNTEREN_CY) && 80 get_field(env->mcounteren, COUNTEREN_CY)) { 81 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 82 } 83 break; 84 case CSR_TIME: 85 if (!get_field(env->hcounteren, COUNTEREN_TM) && 86 get_field(env->mcounteren, COUNTEREN_TM)) { 87 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 88 } 89 break; 90 case CSR_INSTRET: 91 if (!get_field(env->hcounteren, COUNTEREN_IR) && 92 get_field(env->mcounteren, COUNTEREN_IR)) { 93 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 94 } 95 break; 96 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 97 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3)) && 98 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3))) { 99 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 100 } 101 break; 102 } 103 if (riscv_cpu_mxl(env) == MXL_RV32) { 104 switch (csrno) { 105 case CSR_CYCLEH: 106 if (!get_field(env->hcounteren, COUNTEREN_CY) && 107 get_field(env->mcounteren, COUNTEREN_CY)) { 108 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 109 } 110 break; 111 case CSR_TIMEH: 112 if (!get_field(env->hcounteren, COUNTEREN_TM) && 113 get_field(env->mcounteren, COUNTEREN_TM)) { 114 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 115 } 116 break; 117 case CSR_INSTRETH: 118 if (!get_field(env->hcounteren, COUNTEREN_IR) && 119 get_field(env->mcounteren, COUNTEREN_IR)) { 120 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 121 } 122 break; 123 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 124 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3H)) && 125 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3H))) { 126 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 127 } 128 break; 129 } 130 } 131 } 132 #endif 133 return RISCV_EXCP_NONE; 134 } 135 136 static RISCVException ctr32(CPURISCVState *env, int csrno) 137 { 138 if (riscv_cpu_mxl(env) != MXL_RV32) { 139 return RISCV_EXCP_ILLEGAL_INST; 140 } 141 142 return ctr(env, csrno); 143 } 144 145 #if !defined(CONFIG_USER_ONLY) 146 static RISCVException any(CPURISCVState *env, int csrno) 147 { 148 return RISCV_EXCP_NONE; 149 } 150 151 static RISCVException any32(CPURISCVState *env, int csrno) 152 { 153 if (riscv_cpu_mxl(env) != MXL_RV32) { 154 return RISCV_EXCP_ILLEGAL_INST; 155 } 156 157 return any(env, csrno); 158 159 } 160 161 static RISCVException smode(CPURISCVState *env, int csrno) 162 { 163 if (riscv_has_ext(env, RVS)) { 164 return RISCV_EXCP_NONE; 165 } 166 167 return RISCV_EXCP_ILLEGAL_INST; 168 } 169 170 static RISCVException hmode(CPURISCVState *env, int csrno) 171 { 172 if (riscv_has_ext(env, RVS) && 173 riscv_has_ext(env, RVH)) { 174 /* Hypervisor extension is supported */ 175 if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 176 env->priv == PRV_M) { 177 return RISCV_EXCP_NONE; 178 } else { 179 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 180 } 181 } 182 183 return RISCV_EXCP_ILLEGAL_INST; 184 } 185 186 static RISCVException hmode32(CPURISCVState *env, int csrno) 187 { 188 if (riscv_cpu_mxl(env) != MXL_RV32) { 189 if (riscv_cpu_virt_enabled(env)) { 190 return RISCV_EXCP_ILLEGAL_INST; 191 } else { 192 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 193 } 194 } 195 196 return hmode(env, csrno); 197 198 } 199 200 /* Checks if PointerMasking registers could be accessed */ 201 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 202 { 203 /* Check if j-ext is present */ 204 if (riscv_has_ext(env, RVJ)) { 205 return RISCV_EXCP_NONE; 206 } 207 return RISCV_EXCP_ILLEGAL_INST; 208 } 209 210 static RISCVException pmp(CPURISCVState *env, int csrno) 211 { 212 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 213 return RISCV_EXCP_NONE; 214 } 215 216 return RISCV_EXCP_ILLEGAL_INST; 217 } 218 219 static RISCVException epmp(CPURISCVState *env, int csrno) 220 { 221 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 222 return RISCV_EXCP_NONE; 223 } 224 225 return RISCV_EXCP_ILLEGAL_INST; 226 } 227 #endif 228 229 /* User Floating-Point CSRs */ 230 static RISCVException read_fflags(CPURISCVState *env, int csrno, 231 target_ulong *val) 232 { 233 *val = riscv_cpu_get_fflags(env); 234 return RISCV_EXCP_NONE; 235 } 236 237 static RISCVException write_fflags(CPURISCVState *env, int csrno, 238 target_ulong val) 239 { 240 #if !defined(CONFIG_USER_ONLY) 241 env->mstatus |= MSTATUS_FS; 242 #endif 243 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 244 return RISCV_EXCP_NONE; 245 } 246 247 static RISCVException read_frm(CPURISCVState *env, int csrno, 248 target_ulong *val) 249 { 250 *val = env->frm; 251 return RISCV_EXCP_NONE; 252 } 253 254 static RISCVException write_frm(CPURISCVState *env, int csrno, 255 target_ulong val) 256 { 257 #if !defined(CONFIG_USER_ONLY) 258 env->mstatus |= MSTATUS_FS; 259 #endif 260 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 261 return RISCV_EXCP_NONE; 262 } 263 264 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 265 target_ulong *val) 266 { 267 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 268 | (env->frm << FSR_RD_SHIFT); 269 return RISCV_EXCP_NONE; 270 } 271 272 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 273 target_ulong val) 274 { 275 #if !defined(CONFIG_USER_ONLY) 276 env->mstatus |= MSTATUS_FS; 277 #endif 278 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 279 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 280 return RISCV_EXCP_NONE; 281 } 282 283 static RISCVException read_vtype(CPURISCVState *env, int csrno, 284 target_ulong *val) 285 { 286 *val = env->vtype; 287 return RISCV_EXCP_NONE; 288 } 289 290 static RISCVException read_vl(CPURISCVState *env, int csrno, 291 target_ulong *val) 292 { 293 *val = env->vl; 294 return RISCV_EXCP_NONE; 295 } 296 297 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 298 { 299 *val = env_archcpu(env)->cfg.vlen >> 3; 300 return RISCV_EXCP_NONE; 301 } 302 303 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 304 target_ulong *val) 305 { 306 *val = env->vxrm; 307 return RISCV_EXCP_NONE; 308 } 309 310 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 311 target_ulong val) 312 { 313 #if !defined(CONFIG_USER_ONLY) 314 env->mstatus |= MSTATUS_VS; 315 #endif 316 env->vxrm = val; 317 return RISCV_EXCP_NONE; 318 } 319 320 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 321 target_ulong *val) 322 { 323 *val = env->vxsat; 324 return RISCV_EXCP_NONE; 325 } 326 327 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 328 target_ulong val) 329 { 330 #if !defined(CONFIG_USER_ONLY) 331 env->mstatus |= MSTATUS_VS; 332 #endif 333 env->vxsat = val; 334 return RISCV_EXCP_NONE; 335 } 336 337 static RISCVException read_vstart(CPURISCVState *env, int csrno, 338 target_ulong *val) 339 { 340 *val = env->vstart; 341 return RISCV_EXCP_NONE; 342 } 343 344 static RISCVException write_vstart(CPURISCVState *env, int csrno, 345 target_ulong val) 346 { 347 #if !defined(CONFIG_USER_ONLY) 348 env->mstatus |= MSTATUS_VS; 349 #endif 350 /* 351 * The vstart CSR is defined to have only enough writable bits 352 * to hold the largest element index, i.e. lg2(VLEN) bits. 353 */ 354 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 355 return RISCV_EXCP_NONE; 356 } 357 358 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 359 { 360 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 361 return RISCV_EXCP_NONE; 362 } 363 364 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 365 { 366 #if !defined(CONFIG_USER_ONLY) 367 env->mstatus |= MSTATUS_VS; 368 #endif 369 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 370 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 371 return RISCV_EXCP_NONE; 372 } 373 374 /* User Timers and Counters */ 375 static RISCVException read_instret(CPURISCVState *env, int csrno, 376 target_ulong *val) 377 { 378 #if !defined(CONFIG_USER_ONLY) 379 if (icount_enabled()) { 380 *val = icount_get(); 381 } else { 382 *val = cpu_get_host_ticks(); 383 } 384 #else 385 *val = cpu_get_host_ticks(); 386 #endif 387 return RISCV_EXCP_NONE; 388 } 389 390 static RISCVException read_instreth(CPURISCVState *env, int csrno, 391 target_ulong *val) 392 { 393 #if !defined(CONFIG_USER_ONLY) 394 if (icount_enabled()) { 395 *val = icount_get() >> 32; 396 } else { 397 *val = cpu_get_host_ticks() >> 32; 398 } 399 #else 400 *val = cpu_get_host_ticks() >> 32; 401 #endif 402 return RISCV_EXCP_NONE; 403 } 404 405 #if defined(CONFIG_USER_ONLY) 406 static RISCVException read_time(CPURISCVState *env, int csrno, 407 target_ulong *val) 408 { 409 *val = cpu_get_host_ticks(); 410 return RISCV_EXCP_NONE; 411 } 412 413 static RISCVException read_timeh(CPURISCVState *env, int csrno, 414 target_ulong *val) 415 { 416 *val = cpu_get_host_ticks() >> 32; 417 return RISCV_EXCP_NONE; 418 } 419 420 #else /* CONFIG_USER_ONLY */ 421 422 static RISCVException read_time(CPURISCVState *env, int csrno, 423 target_ulong *val) 424 { 425 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 426 427 if (!env->rdtime_fn) { 428 return RISCV_EXCP_ILLEGAL_INST; 429 } 430 431 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 432 return RISCV_EXCP_NONE; 433 } 434 435 static RISCVException read_timeh(CPURISCVState *env, int csrno, 436 target_ulong *val) 437 { 438 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 439 440 if (!env->rdtime_fn) { 441 return RISCV_EXCP_ILLEGAL_INST; 442 } 443 444 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 445 return RISCV_EXCP_NONE; 446 } 447 448 /* Machine constants */ 449 450 #define M_MODE_INTERRUPTS (MIP_MSIP | MIP_MTIP | MIP_MEIP) 451 #define S_MODE_INTERRUPTS (MIP_SSIP | MIP_STIP | MIP_SEIP) 452 #define VS_MODE_INTERRUPTS (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP) 453 454 static const target_ulong delegable_ints = S_MODE_INTERRUPTS | 455 VS_MODE_INTERRUPTS; 456 static const target_ulong vs_delegable_ints = VS_MODE_INTERRUPTS; 457 static const target_ulong all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 458 VS_MODE_INTERRUPTS; 459 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 460 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 461 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 462 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 463 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 464 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 465 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 466 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 467 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 468 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 469 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 470 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 471 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 472 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 473 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 474 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 475 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 476 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 477 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 478 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 479 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 480 (1ULL << (RISCV_EXCP_VS_ECALL)) | 481 (1ULL << (RISCV_EXCP_M_ECALL)) | 482 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 483 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 484 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 485 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 486 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 487 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 488 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS | (target_ulong)SSTATUS64_UXL; 489 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP; 490 static const target_ulong hip_writable_mask = MIP_VSSIP; 491 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 492 static const target_ulong vsip_writable_mask = MIP_VSSIP; 493 494 static const char valid_vm_1_10_32[16] = { 495 [VM_1_10_MBARE] = 1, 496 [VM_1_10_SV32] = 1 497 }; 498 499 static const char valid_vm_1_10_64[16] = { 500 [VM_1_10_MBARE] = 1, 501 [VM_1_10_SV39] = 1, 502 [VM_1_10_SV48] = 1, 503 [VM_1_10_SV57] = 1 504 }; 505 506 /* Machine Information Registers */ 507 static RISCVException read_zero(CPURISCVState *env, int csrno, 508 target_ulong *val) 509 { 510 *val = 0; 511 return RISCV_EXCP_NONE; 512 } 513 514 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 515 target_ulong *val) 516 { 517 *val = env->mhartid; 518 return RISCV_EXCP_NONE; 519 } 520 521 /* Machine Trap Setup */ 522 523 /* We do not store SD explicitly, only compute it on demand. */ 524 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 525 { 526 if ((status & MSTATUS_FS) == MSTATUS_FS || 527 (status & MSTATUS_VS) == MSTATUS_VS || 528 (status & MSTATUS_XS) == MSTATUS_XS) { 529 switch (xl) { 530 case MXL_RV32: 531 return status | MSTATUS32_SD; 532 case MXL_RV64: 533 return status | MSTATUS64_SD; 534 case MXL_RV128: 535 return MSTATUSH128_SD; 536 default: 537 g_assert_not_reached(); 538 } 539 } 540 return status; 541 } 542 543 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 544 target_ulong *val) 545 { 546 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 547 return RISCV_EXCP_NONE; 548 } 549 550 static int validate_vm(CPURISCVState *env, target_ulong vm) 551 { 552 if (riscv_cpu_mxl(env) == MXL_RV32) { 553 return valid_vm_1_10_32[vm & 0xf]; 554 } else { 555 return valid_vm_1_10_64[vm & 0xf]; 556 } 557 } 558 559 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 560 target_ulong val) 561 { 562 uint64_t mstatus = env->mstatus; 563 uint64_t mask = 0; 564 565 /* flush tlb on mstatus fields that affect VM */ 566 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 567 MSTATUS_MPRV | MSTATUS_SUM)) { 568 tlb_flush(env_cpu(env)); 569 } 570 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 571 MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM | 572 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 573 MSTATUS_TW | MSTATUS_VS; 574 575 if (riscv_cpu_mxl(env) != MXL_RV32) { 576 /* 577 * RV32: MPV and GVA are not in mstatus. The current plan is to 578 * add them to mstatush. For now, we just don't support it. 579 */ 580 mask |= MSTATUS_MPV | MSTATUS_GVA; 581 } 582 583 mstatus = (mstatus & ~mask) | (val & mask); 584 585 RISCVMXL xl = riscv_cpu_mxl(env); 586 if (xl > MXL_RV32) { 587 /* SXL and UXL fields are for now read only */ 588 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 589 mstatus = set_field(mstatus, MSTATUS64_UXL, xl); 590 } 591 env->mstatus = mstatus; 592 env->xl = cpu_recompute_xl(env); 593 594 return RISCV_EXCP_NONE; 595 } 596 597 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 598 target_ulong *val) 599 { 600 *val = env->mstatus >> 32; 601 return RISCV_EXCP_NONE; 602 } 603 604 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 605 target_ulong val) 606 { 607 uint64_t valh = (uint64_t)val << 32; 608 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 609 610 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 611 tlb_flush(env_cpu(env)); 612 } 613 614 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 615 616 return RISCV_EXCP_NONE; 617 } 618 619 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 620 Int128 *val) 621 { 622 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 623 return RISCV_EXCP_NONE; 624 } 625 626 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 627 Int128 *val) 628 { 629 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 630 return RISCV_EXCP_NONE; 631 } 632 633 static RISCVException read_misa(CPURISCVState *env, int csrno, 634 target_ulong *val) 635 { 636 target_ulong misa; 637 638 switch (env->misa_mxl) { 639 case MXL_RV32: 640 misa = (target_ulong)MXL_RV32 << 30; 641 break; 642 #ifdef TARGET_RISCV64 643 case MXL_RV64: 644 misa = (target_ulong)MXL_RV64 << 62; 645 break; 646 #endif 647 default: 648 g_assert_not_reached(); 649 } 650 651 *val = misa | env->misa_ext; 652 return RISCV_EXCP_NONE; 653 } 654 655 static RISCVException write_misa(CPURISCVState *env, int csrno, 656 target_ulong val) 657 { 658 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 659 /* drop write to misa */ 660 return RISCV_EXCP_NONE; 661 } 662 663 /* 'I' or 'E' must be present */ 664 if (!(val & (RVI | RVE))) { 665 /* It is not, drop write to misa */ 666 return RISCV_EXCP_NONE; 667 } 668 669 /* 'E' excludes all other extensions */ 670 if (val & RVE) { 671 /* when we support 'E' we can do "val = RVE;" however 672 * for now we just drop writes if 'E' is present. 673 */ 674 return RISCV_EXCP_NONE; 675 } 676 677 /* 678 * misa.MXL writes are not supported by QEMU. 679 * Drop writes to those bits. 680 */ 681 682 /* Mask extensions that are not supported by this hart */ 683 val &= env->misa_ext_mask; 684 685 /* Mask extensions that are not supported by QEMU */ 686 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 687 688 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 689 if ((val & RVD) && !(val & RVF)) { 690 val &= ~RVD; 691 } 692 693 /* Suppress 'C' if next instruction is not aligned 694 * TODO: this should check next_pc 695 */ 696 if ((val & RVC) && (GETPC() & ~3) != 0) { 697 val &= ~RVC; 698 } 699 700 /* If nothing changed, do nothing. */ 701 if (val == env->misa_ext) { 702 return RISCV_EXCP_NONE; 703 } 704 705 /* flush translation cache */ 706 tb_flush(env_cpu(env)); 707 env->misa_ext = val; 708 env->xl = riscv_cpu_mxl(env); 709 return RISCV_EXCP_NONE; 710 } 711 712 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 713 target_ulong *val) 714 { 715 *val = env->medeleg; 716 return RISCV_EXCP_NONE; 717 } 718 719 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 720 target_ulong val) 721 { 722 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 723 return RISCV_EXCP_NONE; 724 } 725 726 static RISCVException read_mideleg(CPURISCVState *env, int csrno, 727 target_ulong *val) 728 { 729 *val = env->mideleg; 730 return RISCV_EXCP_NONE; 731 } 732 733 static RISCVException write_mideleg(CPURISCVState *env, int csrno, 734 target_ulong val) 735 { 736 env->mideleg = (env->mideleg & ~delegable_ints) | (val & delegable_ints); 737 if (riscv_has_ext(env, RVH)) { 738 env->mideleg |= VS_MODE_INTERRUPTS; 739 } 740 return RISCV_EXCP_NONE; 741 } 742 743 static RISCVException read_mie(CPURISCVState *env, int csrno, 744 target_ulong *val) 745 { 746 *val = env->mie; 747 return RISCV_EXCP_NONE; 748 } 749 750 static RISCVException write_mie(CPURISCVState *env, int csrno, 751 target_ulong val) 752 { 753 env->mie = (env->mie & ~all_ints) | (val & all_ints); 754 return RISCV_EXCP_NONE; 755 } 756 757 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 758 target_ulong *val) 759 { 760 *val = env->mtvec; 761 return RISCV_EXCP_NONE; 762 } 763 764 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 765 target_ulong val) 766 { 767 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 768 if ((val & 3) < 2) { 769 env->mtvec = val; 770 } else { 771 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 772 } 773 return RISCV_EXCP_NONE; 774 } 775 776 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 777 target_ulong *val) 778 { 779 *val = env->mcounteren; 780 return RISCV_EXCP_NONE; 781 } 782 783 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 784 target_ulong val) 785 { 786 env->mcounteren = val; 787 return RISCV_EXCP_NONE; 788 } 789 790 /* Machine Trap Handling */ 791 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 792 Int128 *val) 793 { 794 *val = int128_make128(env->mscratch, env->mscratchh); 795 return RISCV_EXCP_NONE; 796 } 797 798 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 799 Int128 val) 800 { 801 env->mscratch = int128_getlo(val); 802 env->mscratchh = int128_gethi(val); 803 return RISCV_EXCP_NONE; 804 } 805 806 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 807 target_ulong *val) 808 { 809 *val = env->mscratch; 810 return RISCV_EXCP_NONE; 811 } 812 813 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 814 target_ulong val) 815 { 816 env->mscratch = val; 817 return RISCV_EXCP_NONE; 818 } 819 820 static RISCVException read_mepc(CPURISCVState *env, int csrno, 821 target_ulong *val) 822 { 823 *val = env->mepc; 824 return RISCV_EXCP_NONE; 825 } 826 827 static RISCVException write_mepc(CPURISCVState *env, int csrno, 828 target_ulong val) 829 { 830 env->mepc = val; 831 return RISCV_EXCP_NONE; 832 } 833 834 static RISCVException read_mcause(CPURISCVState *env, int csrno, 835 target_ulong *val) 836 { 837 *val = env->mcause; 838 return RISCV_EXCP_NONE; 839 } 840 841 static RISCVException write_mcause(CPURISCVState *env, int csrno, 842 target_ulong val) 843 { 844 env->mcause = val; 845 return RISCV_EXCP_NONE; 846 } 847 848 static RISCVException read_mtval(CPURISCVState *env, int csrno, 849 target_ulong *val) 850 { 851 *val = env->mtval; 852 return RISCV_EXCP_NONE; 853 } 854 855 static RISCVException write_mtval(CPURISCVState *env, int csrno, 856 target_ulong val) 857 { 858 env->mtval = val; 859 return RISCV_EXCP_NONE; 860 } 861 862 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 863 target_ulong *ret_value, 864 target_ulong new_value, target_ulong write_mask) 865 { 866 RISCVCPU *cpu = env_archcpu(env); 867 /* Allow software control of delegable interrupts not claimed by hardware */ 868 target_ulong mask = write_mask & delegable_ints & ~env->miclaim; 869 uint32_t old_mip; 870 871 if (mask) { 872 old_mip = riscv_cpu_update_mip(cpu, mask, (new_value & mask)); 873 } else { 874 old_mip = env->mip; 875 } 876 877 if (ret_value) { 878 *ret_value = old_mip; 879 } 880 881 return RISCV_EXCP_NONE; 882 } 883 884 /* Supervisor Trap Setup */ 885 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 886 Int128 *val) 887 { 888 uint64_t mask = sstatus_v1_10_mask; 889 uint64_t sstatus = env->mstatus & mask; 890 891 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 892 return RISCV_EXCP_NONE; 893 } 894 895 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 896 target_ulong *val) 897 { 898 target_ulong mask = (sstatus_v1_10_mask); 899 900 /* TODO: Use SXL not MXL. */ 901 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 902 return RISCV_EXCP_NONE; 903 } 904 905 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 906 target_ulong val) 907 { 908 target_ulong mask = (sstatus_v1_10_mask); 909 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 910 return write_mstatus(env, CSR_MSTATUS, newval); 911 } 912 913 static RISCVException read_vsie(CPURISCVState *env, int csrno, 914 target_ulong *val) 915 { 916 /* Shift the VS bits to their S bit location in vsie */ 917 *val = (env->mie & env->hideleg & VS_MODE_INTERRUPTS) >> 1; 918 return RISCV_EXCP_NONE; 919 } 920 921 static RISCVException read_sie(CPURISCVState *env, int csrno, 922 target_ulong *val) 923 { 924 if (riscv_cpu_virt_enabled(env)) { 925 read_vsie(env, CSR_VSIE, val); 926 } else { 927 *val = env->mie & env->mideleg; 928 } 929 return RISCV_EXCP_NONE; 930 } 931 932 static RISCVException write_vsie(CPURISCVState *env, int csrno, 933 target_ulong val) 934 { 935 /* Shift the S bits to their VS bit location in mie */ 936 target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | 937 ((val << 1) & env->hideleg & VS_MODE_INTERRUPTS); 938 return write_mie(env, CSR_MIE, newval); 939 } 940 941 static int write_sie(CPURISCVState *env, int csrno, target_ulong val) 942 { 943 if (riscv_cpu_virt_enabled(env)) { 944 write_vsie(env, CSR_VSIE, val); 945 } else { 946 target_ulong newval = (env->mie & ~S_MODE_INTERRUPTS) | 947 (val & S_MODE_INTERRUPTS); 948 write_mie(env, CSR_MIE, newval); 949 } 950 951 return RISCV_EXCP_NONE; 952 } 953 954 static RISCVException read_stvec(CPURISCVState *env, int csrno, 955 target_ulong *val) 956 { 957 *val = env->stvec; 958 return RISCV_EXCP_NONE; 959 } 960 961 static RISCVException write_stvec(CPURISCVState *env, int csrno, 962 target_ulong val) 963 { 964 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 965 if ((val & 3) < 2) { 966 env->stvec = val; 967 } else { 968 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 969 } 970 return RISCV_EXCP_NONE; 971 } 972 973 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 974 target_ulong *val) 975 { 976 *val = env->scounteren; 977 return RISCV_EXCP_NONE; 978 } 979 980 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 981 target_ulong val) 982 { 983 env->scounteren = val; 984 return RISCV_EXCP_NONE; 985 } 986 987 /* Supervisor Trap Handling */ 988 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 989 Int128 *val) 990 { 991 *val = int128_make128(env->sscratch, env->sscratchh); 992 return RISCV_EXCP_NONE; 993 } 994 995 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 996 Int128 val) 997 { 998 env->sscratch = int128_getlo(val); 999 env->sscratchh = int128_gethi(val); 1000 return RISCV_EXCP_NONE; 1001 } 1002 1003 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 1004 target_ulong *val) 1005 { 1006 *val = env->sscratch; 1007 return RISCV_EXCP_NONE; 1008 } 1009 1010 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 1011 target_ulong val) 1012 { 1013 env->sscratch = val; 1014 return RISCV_EXCP_NONE; 1015 } 1016 1017 static RISCVException read_sepc(CPURISCVState *env, int csrno, 1018 target_ulong *val) 1019 { 1020 *val = env->sepc; 1021 return RISCV_EXCP_NONE; 1022 } 1023 1024 static RISCVException write_sepc(CPURISCVState *env, int csrno, 1025 target_ulong val) 1026 { 1027 env->sepc = val; 1028 return RISCV_EXCP_NONE; 1029 } 1030 1031 static RISCVException read_scause(CPURISCVState *env, int csrno, 1032 target_ulong *val) 1033 { 1034 *val = env->scause; 1035 return RISCV_EXCP_NONE; 1036 } 1037 1038 static RISCVException write_scause(CPURISCVState *env, int csrno, 1039 target_ulong val) 1040 { 1041 env->scause = val; 1042 return RISCV_EXCP_NONE; 1043 } 1044 1045 static RISCVException read_stval(CPURISCVState *env, int csrno, 1046 target_ulong *val) 1047 { 1048 *val = env->stval; 1049 return RISCV_EXCP_NONE; 1050 } 1051 1052 static RISCVException write_stval(CPURISCVState *env, int csrno, 1053 target_ulong val) 1054 { 1055 env->stval = val; 1056 return RISCV_EXCP_NONE; 1057 } 1058 1059 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 1060 target_ulong *ret_value, 1061 target_ulong new_value, target_ulong write_mask) 1062 { 1063 /* Shift the S bits to their VS bit location in mip */ 1064 int ret = rmw_mip(env, 0, ret_value, new_value << 1, 1065 (write_mask << 1) & vsip_writable_mask & env->hideleg); 1066 1067 if (ret_value) { 1068 *ret_value &= VS_MODE_INTERRUPTS; 1069 /* Shift the VS bits to their S bit location in vsip */ 1070 *ret_value >>= 1; 1071 } 1072 return ret; 1073 } 1074 1075 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 1076 target_ulong *ret_value, 1077 target_ulong new_value, target_ulong write_mask) 1078 { 1079 int ret; 1080 1081 if (riscv_cpu_virt_enabled(env)) { 1082 ret = rmw_vsip(env, CSR_VSIP, ret_value, new_value, write_mask); 1083 } else { 1084 ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value, 1085 write_mask & env->mideleg & sip_writable_mask); 1086 } 1087 1088 if (ret_value) { 1089 *ret_value &= env->mideleg; 1090 } 1091 return ret; 1092 } 1093 1094 /* Supervisor Protection and Translation */ 1095 static RISCVException read_satp(CPURISCVState *env, int csrno, 1096 target_ulong *val) 1097 { 1098 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 1099 *val = 0; 1100 return RISCV_EXCP_NONE; 1101 } 1102 1103 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 1104 return RISCV_EXCP_ILLEGAL_INST; 1105 } else { 1106 *val = env->satp; 1107 } 1108 1109 return RISCV_EXCP_NONE; 1110 } 1111 1112 static RISCVException write_satp(CPURISCVState *env, int csrno, 1113 target_ulong val) 1114 { 1115 target_ulong vm, mask, asid; 1116 1117 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 1118 return RISCV_EXCP_NONE; 1119 } 1120 1121 if (riscv_cpu_mxl(env) == MXL_RV32) { 1122 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1123 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1124 asid = (val ^ env->satp) & SATP32_ASID; 1125 } else { 1126 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1127 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1128 asid = (val ^ env->satp) & SATP64_ASID; 1129 } 1130 1131 if (vm && mask) { 1132 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 1133 return RISCV_EXCP_ILLEGAL_INST; 1134 } else { 1135 if (asid) { 1136 tlb_flush(env_cpu(env)); 1137 } 1138 env->satp = val; 1139 } 1140 } 1141 return RISCV_EXCP_NONE; 1142 } 1143 1144 /* Hypervisor Extensions */ 1145 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 1146 target_ulong *val) 1147 { 1148 *val = env->hstatus; 1149 if (riscv_cpu_mxl(env) != MXL_RV32) { 1150 /* We only support 64-bit VSXL */ 1151 *val = set_field(*val, HSTATUS_VSXL, 2); 1152 } 1153 /* We only support little endian */ 1154 *val = set_field(*val, HSTATUS_VSBE, 0); 1155 return RISCV_EXCP_NONE; 1156 } 1157 1158 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 1159 target_ulong val) 1160 { 1161 env->hstatus = val; 1162 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 1163 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 1164 } 1165 if (get_field(val, HSTATUS_VSBE) != 0) { 1166 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 1167 } 1168 return RISCV_EXCP_NONE; 1169 } 1170 1171 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 1172 target_ulong *val) 1173 { 1174 *val = env->hedeleg; 1175 return RISCV_EXCP_NONE; 1176 } 1177 1178 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 1179 target_ulong val) 1180 { 1181 env->hedeleg = val & vs_delegable_excps; 1182 return RISCV_EXCP_NONE; 1183 } 1184 1185 static RISCVException read_hideleg(CPURISCVState *env, int csrno, 1186 target_ulong *val) 1187 { 1188 *val = env->hideleg; 1189 return RISCV_EXCP_NONE; 1190 } 1191 1192 static RISCVException write_hideleg(CPURISCVState *env, int csrno, 1193 target_ulong val) 1194 { 1195 env->hideleg = val & vs_delegable_ints; 1196 return RISCV_EXCP_NONE; 1197 } 1198 1199 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 1200 target_ulong *ret_value, 1201 target_ulong new_value, target_ulong write_mask) 1202 { 1203 int ret = rmw_mip(env, 0, ret_value, new_value, 1204 write_mask & hvip_writable_mask); 1205 1206 if (ret_value) { 1207 *ret_value &= hvip_writable_mask; 1208 } 1209 return ret; 1210 } 1211 1212 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 1213 target_ulong *ret_value, 1214 target_ulong new_value, target_ulong write_mask) 1215 { 1216 int ret = rmw_mip(env, 0, ret_value, new_value, 1217 write_mask & hip_writable_mask); 1218 1219 if (ret_value) { 1220 *ret_value &= hip_writable_mask; 1221 } 1222 return ret; 1223 } 1224 1225 static RISCVException read_hie(CPURISCVState *env, int csrno, 1226 target_ulong *val) 1227 { 1228 *val = env->mie & VS_MODE_INTERRUPTS; 1229 return RISCV_EXCP_NONE; 1230 } 1231 1232 static RISCVException write_hie(CPURISCVState *env, int csrno, 1233 target_ulong val) 1234 { 1235 target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | (val & VS_MODE_INTERRUPTS); 1236 return write_mie(env, CSR_MIE, newval); 1237 } 1238 1239 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 1240 target_ulong *val) 1241 { 1242 *val = env->hcounteren; 1243 return RISCV_EXCP_NONE; 1244 } 1245 1246 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 1247 target_ulong val) 1248 { 1249 env->hcounteren = val; 1250 return RISCV_EXCP_NONE; 1251 } 1252 1253 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 1254 target_ulong val) 1255 { 1256 if (val) { 1257 qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN."); 1258 } 1259 return RISCV_EXCP_NONE; 1260 } 1261 1262 static RISCVException read_htval(CPURISCVState *env, int csrno, 1263 target_ulong *val) 1264 { 1265 *val = env->htval; 1266 return RISCV_EXCP_NONE; 1267 } 1268 1269 static RISCVException write_htval(CPURISCVState *env, int csrno, 1270 target_ulong val) 1271 { 1272 env->htval = val; 1273 return RISCV_EXCP_NONE; 1274 } 1275 1276 static RISCVException read_htinst(CPURISCVState *env, int csrno, 1277 target_ulong *val) 1278 { 1279 *val = env->htinst; 1280 return RISCV_EXCP_NONE; 1281 } 1282 1283 static RISCVException write_htinst(CPURISCVState *env, int csrno, 1284 target_ulong val) 1285 { 1286 return RISCV_EXCP_NONE; 1287 } 1288 1289 static RISCVException write_hgeip(CPURISCVState *env, int csrno, 1290 target_ulong val) 1291 { 1292 if (val) { 1293 qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN."); 1294 } 1295 return RISCV_EXCP_NONE; 1296 } 1297 1298 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 1299 target_ulong *val) 1300 { 1301 *val = env->hgatp; 1302 return RISCV_EXCP_NONE; 1303 } 1304 1305 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 1306 target_ulong val) 1307 { 1308 env->hgatp = val; 1309 return RISCV_EXCP_NONE; 1310 } 1311 1312 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 1313 target_ulong *val) 1314 { 1315 if (!env->rdtime_fn) { 1316 return RISCV_EXCP_ILLEGAL_INST; 1317 } 1318 1319 *val = env->htimedelta; 1320 return RISCV_EXCP_NONE; 1321 } 1322 1323 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 1324 target_ulong val) 1325 { 1326 if (!env->rdtime_fn) { 1327 return RISCV_EXCP_ILLEGAL_INST; 1328 } 1329 1330 if (riscv_cpu_mxl(env) == MXL_RV32) { 1331 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 1332 } else { 1333 env->htimedelta = val; 1334 } 1335 return RISCV_EXCP_NONE; 1336 } 1337 1338 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 1339 target_ulong *val) 1340 { 1341 if (!env->rdtime_fn) { 1342 return RISCV_EXCP_ILLEGAL_INST; 1343 } 1344 1345 *val = env->htimedelta >> 32; 1346 return RISCV_EXCP_NONE; 1347 } 1348 1349 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 1350 target_ulong val) 1351 { 1352 if (!env->rdtime_fn) { 1353 return RISCV_EXCP_ILLEGAL_INST; 1354 } 1355 1356 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 1357 return RISCV_EXCP_NONE; 1358 } 1359 1360 /* Virtual CSR Registers */ 1361 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 1362 target_ulong *val) 1363 { 1364 *val = env->vsstatus; 1365 return RISCV_EXCP_NONE; 1366 } 1367 1368 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 1369 target_ulong val) 1370 { 1371 uint64_t mask = (target_ulong)-1; 1372 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 1373 return RISCV_EXCP_NONE; 1374 } 1375 1376 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 1377 { 1378 *val = env->vstvec; 1379 return RISCV_EXCP_NONE; 1380 } 1381 1382 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 1383 target_ulong val) 1384 { 1385 env->vstvec = val; 1386 return RISCV_EXCP_NONE; 1387 } 1388 1389 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 1390 target_ulong *val) 1391 { 1392 *val = env->vsscratch; 1393 return RISCV_EXCP_NONE; 1394 } 1395 1396 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 1397 target_ulong val) 1398 { 1399 env->vsscratch = val; 1400 return RISCV_EXCP_NONE; 1401 } 1402 1403 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 1404 target_ulong *val) 1405 { 1406 *val = env->vsepc; 1407 return RISCV_EXCP_NONE; 1408 } 1409 1410 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 1411 target_ulong val) 1412 { 1413 env->vsepc = val; 1414 return RISCV_EXCP_NONE; 1415 } 1416 1417 static RISCVException read_vscause(CPURISCVState *env, int csrno, 1418 target_ulong *val) 1419 { 1420 *val = env->vscause; 1421 return RISCV_EXCP_NONE; 1422 } 1423 1424 static RISCVException write_vscause(CPURISCVState *env, int csrno, 1425 target_ulong val) 1426 { 1427 env->vscause = val; 1428 return RISCV_EXCP_NONE; 1429 } 1430 1431 static RISCVException read_vstval(CPURISCVState *env, int csrno, 1432 target_ulong *val) 1433 { 1434 *val = env->vstval; 1435 return RISCV_EXCP_NONE; 1436 } 1437 1438 static RISCVException write_vstval(CPURISCVState *env, int csrno, 1439 target_ulong val) 1440 { 1441 env->vstval = val; 1442 return RISCV_EXCP_NONE; 1443 } 1444 1445 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 1446 target_ulong *val) 1447 { 1448 *val = env->vsatp; 1449 return RISCV_EXCP_NONE; 1450 } 1451 1452 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 1453 target_ulong val) 1454 { 1455 env->vsatp = val; 1456 return RISCV_EXCP_NONE; 1457 } 1458 1459 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 1460 target_ulong *val) 1461 { 1462 *val = env->mtval2; 1463 return RISCV_EXCP_NONE; 1464 } 1465 1466 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 1467 target_ulong val) 1468 { 1469 env->mtval2 = val; 1470 return RISCV_EXCP_NONE; 1471 } 1472 1473 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 1474 target_ulong *val) 1475 { 1476 *val = env->mtinst; 1477 return RISCV_EXCP_NONE; 1478 } 1479 1480 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 1481 target_ulong val) 1482 { 1483 env->mtinst = val; 1484 return RISCV_EXCP_NONE; 1485 } 1486 1487 /* Physical Memory Protection */ 1488 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 1489 target_ulong *val) 1490 { 1491 *val = mseccfg_csr_read(env); 1492 return RISCV_EXCP_NONE; 1493 } 1494 1495 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 1496 target_ulong val) 1497 { 1498 mseccfg_csr_write(env, val); 1499 return RISCV_EXCP_NONE; 1500 } 1501 1502 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 1503 { 1504 /* TODO: RV128 restriction check */ 1505 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 1506 return false; 1507 } 1508 return true; 1509 } 1510 1511 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 1512 target_ulong *val) 1513 { 1514 uint32_t reg_index = csrno - CSR_PMPCFG0; 1515 1516 if (!check_pmp_reg_index(env, reg_index)) { 1517 return RISCV_EXCP_ILLEGAL_INST; 1518 } 1519 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 1520 return RISCV_EXCP_NONE; 1521 } 1522 1523 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 1524 target_ulong val) 1525 { 1526 uint32_t reg_index = csrno - CSR_PMPCFG0; 1527 1528 if (!check_pmp_reg_index(env, reg_index)) { 1529 return RISCV_EXCP_ILLEGAL_INST; 1530 } 1531 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 1532 return RISCV_EXCP_NONE; 1533 } 1534 1535 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 1536 target_ulong *val) 1537 { 1538 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 1539 return RISCV_EXCP_NONE; 1540 } 1541 1542 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 1543 target_ulong val) 1544 { 1545 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 1546 return RISCV_EXCP_NONE; 1547 } 1548 1549 /* 1550 * Functions to access Pointer Masking feature registers 1551 * We have to check if current priv lvl could modify 1552 * csr in given mode 1553 */ 1554 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 1555 { 1556 int csr_priv = get_field(csrno, 0x300); 1557 int pm_current; 1558 1559 if (env->debugger) { 1560 return false; 1561 } 1562 /* 1563 * If priv lvls differ that means we're accessing csr from higher priv lvl, 1564 * so allow the access 1565 */ 1566 if (env->priv != csr_priv) { 1567 return false; 1568 } 1569 switch (env->priv) { 1570 case PRV_M: 1571 pm_current = get_field(env->mmte, M_PM_CURRENT); 1572 break; 1573 case PRV_S: 1574 pm_current = get_field(env->mmte, S_PM_CURRENT); 1575 break; 1576 case PRV_U: 1577 pm_current = get_field(env->mmte, U_PM_CURRENT); 1578 break; 1579 default: 1580 g_assert_not_reached(); 1581 } 1582 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 1583 return !pm_current; 1584 } 1585 1586 static RISCVException read_mmte(CPURISCVState *env, int csrno, 1587 target_ulong *val) 1588 { 1589 *val = env->mmte & MMTE_MASK; 1590 return RISCV_EXCP_NONE; 1591 } 1592 1593 static RISCVException write_mmte(CPURISCVState *env, int csrno, 1594 target_ulong val) 1595 { 1596 uint64_t mstatus; 1597 target_ulong wpri_val = val & MMTE_MASK; 1598 1599 if (val != wpri_val) { 1600 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1601 "MMTE: WPRI violation written 0x", val, 1602 "vs expected 0x", wpri_val); 1603 } 1604 /* for machine mode pm.current is hardwired to 1 */ 1605 wpri_val |= MMTE_M_PM_CURRENT; 1606 1607 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 1608 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 1609 env->mmte = wpri_val | PM_EXT_DIRTY; 1610 riscv_cpu_update_mask(env); 1611 1612 /* Set XS and SD bits, since PM CSRs are dirty */ 1613 mstatus = env->mstatus | MSTATUS_XS; 1614 write_mstatus(env, csrno, mstatus); 1615 return RISCV_EXCP_NONE; 1616 } 1617 1618 static RISCVException read_smte(CPURISCVState *env, int csrno, 1619 target_ulong *val) 1620 { 1621 *val = env->mmte & SMTE_MASK; 1622 return RISCV_EXCP_NONE; 1623 } 1624 1625 static RISCVException write_smte(CPURISCVState *env, int csrno, 1626 target_ulong val) 1627 { 1628 target_ulong wpri_val = val & SMTE_MASK; 1629 1630 if (val != wpri_val) { 1631 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1632 "SMTE: WPRI violation written 0x", val, 1633 "vs expected 0x", wpri_val); 1634 } 1635 1636 /* if pm.current==0 we can't modify current PM CSRs */ 1637 if (check_pm_current_disabled(env, csrno)) { 1638 return RISCV_EXCP_NONE; 1639 } 1640 1641 wpri_val |= (env->mmte & ~SMTE_MASK); 1642 write_mmte(env, csrno, wpri_val); 1643 return RISCV_EXCP_NONE; 1644 } 1645 1646 static RISCVException read_umte(CPURISCVState *env, int csrno, 1647 target_ulong *val) 1648 { 1649 *val = env->mmte & UMTE_MASK; 1650 return RISCV_EXCP_NONE; 1651 } 1652 1653 static RISCVException write_umte(CPURISCVState *env, int csrno, 1654 target_ulong val) 1655 { 1656 target_ulong wpri_val = val & UMTE_MASK; 1657 1658 if (val != wpri_val) { 1659 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 1660 "UMTE: WPRI violation written 0x", val, 1661 "vs expected 0x", wpri_val); 1662 } 1663 1664 if (check_pm_current_disabled(env, csrno)) { 1665 return RISCV_EXCP_NONE; 1666 } 1667 1668 wpri_val |= (env->mmte & ~UMTE_MASK); 1669 write_mmte(env, csrno, wpri_val); 1670 return RISCV_EXCP_NONE; 1671 } 1672 1673 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 1674 target_ulong *val) 1675 { 1676 *val = env->mpmmask; 1677 return RISCV_EXCP_NONE; 1678 } 1679 1680 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 1681 target_ulong val) 1682 { 1683 uint64_t mstatus; 1684 1685 env->mpmmask = val; 1686 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 1687 env->cur_pmmask = val; 1688 } 1689 env->mmte |= PM_EXT_DIRTY; 1690 1691 /* Set XS and SD bits, since PM CSRs are dirty */ 1692 mstatus = env->mstatus | MSTATUS_XS; 1693 write_mstatus(env, csrno, mstatus); 1694 return RISCV_EXCP_NONE; 1695 } 1696 1697 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 1698 target_ulong *val) 1699 { 1700 *val = env->spmmask; 1701 return RISCV_EXCP_NONE; 1702 } 1703 1704 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 1705 target_ulong val) 1706 { 1707 uint64_t mstatus; 1708 1709 /* if pm.current==0 we can't modify current PM CSRs */ 1710 if (check_pm_current_disabled(env, csrno)) { 1711 return RISCV_EXCP_NONE; 1712 } 1713 env->spmmask = val; 1714 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 1715 env->cur_pmmask = val; 1716 } 1717 env->mmte |= PM_EXT_DIRTY; 1718 1719 /* Set XS and SD bits, since PM CSRs are dirty */ 1720 mstatus = env->mstatus | MSTATUS_XS; 1721 write_mstatus(env, csrno, mstatus); 1722 return RISCV_EXCP_NONE; 1723 } 1724 1725 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 1726 target_ulong *val) 1727 { 1728 *val = env->upmmask; 1729 return RISCV_EXCP_NONE; 1730 } 1731 1732 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 1733 target_ulong val) 1734 { 1735 uint64_t mstatus; 1736 1737 /* if pm.current==0 we can't modify current PM CSRs */ 1738 if (check_pm_current_disabled(env, csrno)) { 1739 return RISCV_EXCP_NONE; 1740 } 1741 env->upmmask = val; 1742 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 1743 env->cur_pmmask = val; 1744 } 1745 env->mmte |= PM_EXT_DIRTY; 1746 1747 /* Set XS and SD bits, since PM CSRs are dirty */ 1748 mstatus = env->mstatus | MSTATUS_XS; 1749 write_mstatus(env, csrno, mstatus); 1750 return RISCV_EXCP_NONE; 1751 } 1752 1753 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 1754 target_ulong *val) 1755 { 1756 *val = env->mpmbase; 1757 return RISCV_EXCP_NONE; 1758 } 1759 1760 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 1761 target_ulong val) 1762 { 1763 uint64_t mstatus; 1764 1765 env->mpmbase = val; 1766 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 1767 env->cur_pmbase = val; 1768 } 1769 env->mmte |= PM_EXT_DIRTY; 1770 1771 /* Set XS and SD bits, since PM CSRs are dirty */ 1772 mstatus = env->mstatus | MSTATUS_XS; 1773 write_mstatus(env, csrno, mstatus); 1774 return RISCV_EXCP_NONE; 1775 } 1776 1777 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 1778 target_ulong *val) 1779 { 1780 *val = env->spmbase; 1781 return RISCV_EXCP_NONE; 1782 } 1783 1784 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 1785 target_ulong val) 1786 { 1787 uint64_t mstatus; 1788 1789 /* if pm.current==0 we can't modify current PM CSRs */ 1790 if (check_pm_current_disabled(env, csrno)) { 1791 return RISCV_EXCP_NONE; 1792 } 1793 env->spmbase = val; 1794 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 1795 env->cur_pmbase = val; 1796 } 1797 env->mmte |= PM_EXT_DIRTY; 1798 1799 /* Set XS and SD bits, since PM CSRs are dirty */ 1800 mstatus = env->mstatus | MSTATUS_XS; 1801 write_mstatus(env, csrno, mstatus); 1802 return RISCV_EXCP_NONE; 1803 } 1804 1805 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 1806 target_ulong *val) 1807 { 1808 *val = env->upmbase; 1809 return RISCV_EXCP_NONE; 1810 } 1811 1812 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 1813 target_ulong val) 1814 { 1815 uint64_t mstatus; 1816 1817 /* if pm.current==0 we can't modify current PM CSRs */ 1818 if (check_pm_current_disabled(env, csrno)) { 1819 return RISCV_EXCP_NONE; 1820 } 1821 env->upmbase = val; 1822 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 1823 env->cur_pmbase = val; 1824 } 1825 env->mmte |= PM_EXT_DIRTY; 1826 1827 /* Set XS and SD bits, since PM CSRs are dirty */ 1828 mstatus = env->mstatus | MSTATUS_XS; 1829 write_mstatus(env, csrno, mstatus); 1830 return RISCV_EXCP_NONE; 1831 } 1832 1833 #endif 1834 1835 /* 1836 * riscv_csrrw - read and/or update control and status register 1837 * 1838 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 1839 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 1840 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 1841 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 1842 */ 1843 1844 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 1845 int csrno, 1846 bool write_mask, 1847 RISCVCPU *cpu) 1848 { 1849 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 1850 int read_only = get_field(csrno, 0xC00) == 3; 1851 #if !defined(CONFIG_USER_ONLY) 1852 int effective_priv = env->priv; 1853 1854 if (riscv_has_ext(env, RVH) && 1855 env->priv == PRV_S && 1856 !riscv_cpu_virt_enabled(env)) { 1857 /* 1858 * We are in S mode without virtualisation, therefore we are in HS Mode. 1859 * Add 1 to the effective privledge level to allow us to access the 1860 * Hypervisor CSRs. 1861 */ 1862 effective_priv++; 1863 } 1864 1865 if (!env->debugger && (effective_priv < get_field(csrno, 0x300))) { 1866 return RISCV_EXCP_ILLEGAL_INST; 1867 } 1868 #endif 1869 if (write_mask && read_only) { 1870 return RISCV_EXCP_ILLEGAL_INST; 1871 } 1872 1873 /* ensure the CSR extension is enabled. */ 1874 if (!cpu->cfg.ext_icsr) { 1875 return RISCV_EXCP_ILLEGAL_INST; 1876 } 1877 1878 /* check predicate */ 1879 if (!csr_ops[csrno].predicate) { 1880 return RISCV_EXCP_ILLEGAL_INST; 1881 } 1882 1883 return csr_ops[csrno].predicate(env, csrno); 1884 } 1885 1886 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 1887 target_ulong *ret_value, 1888 target_ulong new_value, 1889 target_ulong write_mask) 1890 { 1891 RISCVException ret; 1892 target_ulong old_value; 1893 1894 /* execute combined read/write operation if it exists */ 1895 if (csr_ops[csrno].op) { 1896 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 1897 } 1898 1899 /* if no accessor exists then return failure */ 1900 if (!csr_ops[csrno].read) { 1901 return RISCV_EXCP_ILLEGAL_INST; 1902 } 1903 /* read old value */ 1904 ret = csr_ops[csrno].read(env, csrno, &old_value); 1905 if (ret != RISCV_EXCP_NONE) { 1906 return ret; 1907 } 1908 1909 /* write value if writable and write mask set, otherwise drop writes */ 1910 if (write_mask) { 1911 new_value = (old_value & ~write_mask) | (new_value & write_mask); 1912 if (csr_ops[csrno].write) { 1913 ret = csr_ops[csrno].write(env, csrno, new_value); 1914 if (ret != RISCV_EXCP_NONE) { 1915 return ret; 1916 } 1917 } 1918 } 1919 1920 /* return old value */ 1921 if (ret_value) { 1922 *ret_value = old_value; 1923 } 1924 1925 return RISCV_EXCP_NONE; 1926 } 1927 1928 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 1929 target_ulong *ret_value, 1930 target_ulong new_value, target_ulong write_mask) 1931 { 1932 RISCVCPU *cpu = env_archcpu(env); 1933 1934 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 1935 if (ret != RISCV_EXCP_NONE) { 1936 return ret; 1937 } 1938 1939 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 1940 } 1941 1942 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 1943 Int128 *ret_value, 1944 Int128 new_value, 1945 Int128 write_mask) 1946 { 1947 RISCVException ret; 1948 Int128 old_value; 1949 1950 /* read old value */ 1951 ret = csr_ops[csrno].read128(env, csrno, &old_value); 1952 if (ret != RISCV_EXCP_NONE) { 1953 return ret; 1954 } 1955 1956 /* write value if writable and write mask set, otherwise drop writes */ 1957 if (int128_nz(write_mask)) { 1958 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 1959 int128_and(new_value, write_mask)); 1960 if (csr_ops[csrno].write128) { 1961 ret = csr_ops[csrno].write128(env, csrno, new_value); 1962 if (ret != RISCV_EXCP_NONE) { 1963 return ret; 1964 } 1965 } else if (csr_ops[csrno].write) { 1966 /* avoids having to write wrappers for all registers */ 1967 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 1968 if (ret != RISCV_EXCP_NONE) { 1969 return ret; 1970 } 1971 } 1972 } 1973 1974 /* return old value */ 1975 if (ret_value) { 1976 *ret_value = old_value; 1977 } 1978 1979 return RISCV_EXCP_NONE; 1980 } 1981 1982 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 1983 Int128 *ret_value, 1984 Int128 new_value, Int128 write_mask) 1985 { 1986 RISCVException ret; 1987 RISCVCPU *cpu = env_archcpu(env); 1988 1989 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 1990 if (ret != RISCV_EXCP_NONE) { 1991 return ret; 1992 } 1993 1994 if (csr_ops[csrno].read128) { 1995 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 1996 } 1997 1998 /* 1999 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 2000 * at all defined. 2001 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 2002 * significant), for those, this fallback is correctly handling the accesses 2003 */ 2004 target_ulong old_value; 2005 ret = riscv_csrrw_do64(env, csrno, &old_value, 2006 int128_getlo(new_value), 2007 int128_getlo(write_mask)); 2008 if (ret == RISCV_EXCP_NONE && ret_value) { 2009 *ret_value = int128_make64(old_value); 2010 } 2011 return ret; 2012 } 2013 2014 /* 2015 * Debugger support. If not in user mode, set env->debugger before the 2016 * riscv_csrrw call and clear it after the call. 2017 */ 2018 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 2019 target_ulong *ret_value, 2020 target_ulong new_value, 2021 target_ulong write_mask) 2022 { 2023 RISCVException ret; 2024 #if !defined(CONFIG_USER_ONLY) 2025 env->debugger = true; 2026 #endif 2027 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 2028 #if !defined(CONFIG_USER_ONLY) 2029 env->debugger = false; 2030 #endif 2031 return ret; 2032 } 2033 2034 /* Control and Status Register function table */ 2035 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 2036 /* User Floating-Point CSRs */ 2037 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 2038 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 2039 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 2040 /* Vector CSRs */ 2041 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 2042 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 2043 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 2044 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 2045 [CSR_VL] = { "vl", vs, read_vl }, 2046 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 2047 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 2048 /* User Timers and Counters */ 2049 [CSR_CYCLE] = { "cycle", ctr, read_instret }, 2050 [CSR_INSTRET] = { "instret", ctr, read_instret }, 2051 [CSR_CYCLEH] = { "cycleh", ctr32, read_instreth }, 2052 [CSR_INSTRETH] = { "instreth", ctr32, read_instreth }, 2053 2054 /* 2055 * In privileged mode, the monitor will have to emulate TIME CSRs only if 2056 * rdtime callback is not provided by machine/platform emulation. 2057 */ 2058 [CSR_TIME] = { "time", ctr, read_time }, 2059 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 2060 2061 #if !defined(CONFIG_USER_ONLY) 2062 /* Machine Timers and Counters */ 2063 [CSR_MCYCLE] = { "mcycle", any, read_instret }, 2064 [CSR_MINSTRET] = { "minstret", any, read_instret }, 2065 [CSR_MCYCLEH] = { "mcycleh", any32, read_instreth }, 2066 [CSR_MINSTRETH] = { "minstreth", any32, read_instreth }, 2067 2068 /* Machine Information Registers */ 2069 [CSR_MVENDORID] = { "mvendorid", any, read_zero }, 2070 [CSR_MARCHID] = { "marchid", any, read_zero }, 2071 [CSR_MIMPID] = { "mimpid", any, read_zero }, 2072 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 2073 2074 /* Machine Trap Setup */ 2075 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, NULL, 2076 read_mstatus_i128 }, 2077 [CSR_MISA] = { "misa", any, read_misa, write_misa, NULL, 2078 read_misa_i128 }, 2079 [CSR_MIDELEG] = { "mideleg", any, read_mideleg, write_mideleg }, 2080 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 2081 [CSR_MIE] = { "mie", any, read_mie, write_mie }, 2082 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 2083 [CSR_MCOUNTEREN] = { "mcounteren", any, read_mcounteren, write_mcounteren }, 2084 2085 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, write_mstatush }, 2086 2087 /* Machine Trap Handling */ 2088 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, NULL, 2089 read_mscratch_i128, write_mscratch_i128 }, 2090 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 2091 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 2092 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 2093 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 2094 2095 /* Supervisor Trap Setup */ 2096 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, NULL, 2097 read_sstatus_i128 }, 2098 [CSR_SIE] = { "sie", smode, read_sie, write_sie }, 2099 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 2100 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, write_scounteren }, 2101 2102 /* Supervisor Trap Handling */ 2103 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, NULL, 2104 read_sscratch_i128, write_sscratch_i128 }, 2105 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 2106 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 2107 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 2108 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 2109 2110 /* Supervisor Protection and Translation */ 2111 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 2112 2113 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus }, 2114 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg }, 2115 [CSR_HIDELEG] = { "hideleg", hmode, read_hideleg, write_hideleg }, 2116 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip }, 2117 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip }, 2118 [CSR_HIE] = { "hie", hmode, read_hie, write_hie }, 2119 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, write_hcounteren }, 2120 [CSR_HGEIE] = { "hgeie", hmode, read_zero, write_hgeie }, 2121 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval }, 2122 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst }, 2123 [CSR_HGEIP] = { "hgeip", hmode, read_zero, write_hgeip }, 2124 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp }, 2125 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, write_htimedelta }, 2126 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, write_htimedeltah }, 2127 2128 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, write_vsstatus }, 2129 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip }, 2130 [CSR_VSIE] = { "vsie", hmode, read_vsie, write_vsie }, 2131 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec }, 2132 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, write_vsscratch }, 2133 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc }, 2134 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause }, 2135 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval }, 2136 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp }, 2137 2138 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2 }, 2139 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst }, 2140 2141 /* Physical Memory Protection */ 2142 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg }, 2143 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 2144 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 2145 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 2146 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 2147 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 2148 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 2149 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 2150 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 2151 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 2152 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 2153 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 2154 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 2155 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 2156 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 2157 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 2158 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 2159 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 2160 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 2161 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 2162 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 2163 2164 /* User Pointer Masking */ 2165 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 2166 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, write_upmmask }, 2167 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, write_upmbase }, 2168 /* Machine Pointer Masking */ 2169 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 2170 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, write_mpmmask }, 2171 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, write_mpmbase }, 2172 /* Supervisor Pointer Masking */ 2173 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 2174 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, write_spmmask }, 2175 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, write_spmbase }, 2176 2177 /* Performance Counters */ 2178 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_zero }, 2179 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_zero }, 2180 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_zero }, 2181 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_zero }, 2182 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_zero }, 2183 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_zero }, 2184 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_zero }, 2185 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_zero }, 2186 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_zero }, 2187 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_zero }, 2188 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_zero }, 2189 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_zero }, 2190 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_zero }, 2191 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_zero }, 2192 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_zero }, 2193 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_zero }, 2194 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_zero }, 2195 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_zero }, 2196 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_zero }, 2197 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_zero }, 2198 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_zero }, 2199 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_zero }, 2200 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_zero }, 2201 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_zero }, 2202 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_zero }, 2203 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_zero }, 2204 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_zero }, 2205 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_zero }, 2206 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_zero }, 2207 2208 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", any, read_zero }, 2209 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", any, read_zero }, 2210 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", any, read_zero }, 2211 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", any, read_zero }, 2212 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", any, read_zero }, 2213 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", any, read_zero }, 2214 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", any, read_zero }, 2215 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", any, read_zero }, 2216 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", any, read_zero }, 2217 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", any, read_zero }, 2218 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", any, read_zero }, 2219 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", any, read_zero }, 2220 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", any, read_zero }, 2221 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", any, read_zero }, 2222 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", any, read_zero }, 2223 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", any, read_zero }, 2224 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", any, read_zero }, 2225 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", any, read_zero }, 2226 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", any, read_zero }, 2227 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", any, read_zero }, 2228 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", any, read_zero }, 2229 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", any, read_zero }, 2230 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", any, read_zero }, 2231 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", any, read_zero }, 2232 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", any, read_zero }, 2233 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", any, read_zero }, 2234 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", any, read_zero }, 2235 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", any, read_zero }, 2236 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", any, read_zero }, 2237 2238 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_zero }, 2239 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_zero }, 2240 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_zero }, 2241 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_zero }, 2242 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_zero }, 2243 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_zero }, 2244 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_zero }, 2245 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_zero }, 2246 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_zero }, 2247 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_zero }, 2248 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_zero }, 2249 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_zero }, 2250 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_zero }, 2251 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_zero }, 2252 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_zero }, 2253 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_zero }, 2254 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_zero }, 2255 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_zero }, 2256 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_zero }, 2257 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_zero }, 2258 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_zero }, 2259 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_zero }, 2260 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_zero }, 2261 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_zero }, 2262 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_zero }, 2263 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_zero }, 2264 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_zero }, 2265 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_zero }, 2266 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_zero }, 2267 2268 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_zero }, 2269 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_zero }, 2270 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_zero }, 2271 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_zero }, 2272 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_zero }, 2273 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_zero }, 2274 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_zero }, 2275 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_zero }, 2276 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_zero }, 2277 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_zero }, 2278 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_zero }, 2279 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_zero }, 2280 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_zero }, 2281 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_zero }, 2282 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_zero }, 2283 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_zero }, 2284 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_zero }, 2285 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_zero }, 2286 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_zero }, 2287 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_zero }, 2288 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_zero }, 2289 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_zero }, 2290 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_zero }, 2291 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_zero }, 2292 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_zero }, 2293 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_zero }, 2294 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_zero }, 2295 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_zero }, 2296 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_zero }, 2297 2298 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", any32, read_zero }, 2299 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", any32, read_zero }, 2300 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", any32, read_zero }, 2301 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", any32, read_zero }, 2302 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", any32, read_zero }, 2303 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", any32, read_zero }, 2304 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", any32, read_zero }, 2305 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", any32, read_zero }, 2306 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", any32, read_zero }, 2307 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", any32, read_zero }, 2308 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", any32, read_zero }, 2309 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", any32, read_zero }, 2310 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", any32, read_zero }, 2311 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", any32, read_zero }, 2312 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", any32, read_zero }, 2313 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", any32, read_zero }, 2314 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", any32, read_zero }, 2315 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", any32, read_zero }, 2316 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", any32, read_zero }, 2317 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", any32, read_zero }, 2318 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", any32, read_zero }, 2319 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", any32, read_zero }, 2320 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", any32, read_zero }, 2321 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", any32, read_zero }, 2322 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", any32, read_zero }, 2323 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", any32, read_zero }, 2324 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", any32, read_zero }, 2325 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", any32, read_zero }, 2326 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", any32, read_zero }, 2327 #endif /* !CONFIG_USER_ONLY */ 2328 }; 2329