1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "exec/tb-flush.h" 29 #include "sysemu/cpu-timers.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 33 /* CSR function table public API */ 34 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 35 { 36 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 37 } 38 39 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 40 { 41 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 42 } 43 44 /* Predicates */ 45 #if !defined(CONFIG_USER_ONLY) 46 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) 47 { 48 bool virt = env->virt_enabled; 49 50 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 51 return RISCV_EXCP_NONE; 52 } 53 54 if (!(env->mstateen[index] & bit)) { 55 return RISCV_EXCP_ILLEGAL_INST; 56 } 57 58 if (virt) { 59 if (!(env->hstateen[index] & bit)) { 60 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 61 } 62 63 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 64 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 65 } 66 } 67 68 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 69 if (!(env->sstateen[index] & bit)) { 70 return RISCV_EXCP_ILLEGAL_INST; 71 } 72 } 73 74 return RISCV_EXCP_NONE; 75 } 76 #endif 77 78 static RISCVException fs(CPURISCVState *env, int csrno) 79 { 80 #if !defined(CONFIG_USER_ONLY) 81 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 82 !riscv_cpu_cfg(env)->ext_zfinx) { 83 return RISCV_EXCP_ILLEGAL_INST; 84 } 85 #endif 86 return RISCV_EXCP_NONE; 87 } 88 89 static RISCVException vs(CPURISCVState *env, int csrno) 90 { 91 if (riscv_cpu_cfg(env)->ext_zve32f) { 92 #if !defined(CONFIG_USER_ONLY) 93 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 94 return RISCV_EXCP_ILLEGAL_INST; 95 } 96 #endif 97 return RISCV_EXCP_NONE; 98 } 99 return RISCV_EXCP_ILLEGAL_INST; 100 } 101 102 static RISCVException ctr(CPURISCVState *env, int csrno) 103 { 104 #if !defined(CONFIG_USER_ONLY) 105 RISCVCPU *cpu = env_archcpu(env); 106 int ctr_index; 107 target_ulong ctr_mask; 108 int base_csrno = CSR_CYCLE; 109 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 110 111 if (rv32 && csrno >= CSR_CYCLEH) { 112 /* Offset for RV32 hpmcounternh counters */ 113 base_csrno += 0x80; 114 } 115 ctr_index = csrno - base_csrno; 116 ctr_mask = BIT(ctr_index); 117 118 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 119 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 120 goto skip_ext_pmu_check; 121 } 122 123 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 124 /* No counter is enabled in PMU or the counter is out of range */ 125 return RISCV_EXCP_ILLEGAL_INST; 126 } 127 128 skip_ext_pmu_check: 129 130 if (env->debugger) { 131 return RISCV_EXCP_NONE; 132 } 133 134 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 135 return RISCV_EXCP_ILLEGAL_INST; 136 } 137 138 if (env->virt_enabled) { 139 if (!get_field(env->hcounteren, ctr_mask) || 140 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 141 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 142 } 143 } 144 145 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 146 !get_field(env->scounteren, ctr_mask)) { 147 return RISCV_EXCP_ILLEGAL_INST; 148 } 149 150 #endif 151 return RISCV_EXCP_NONE; 152 } 153 154 static RISCVException ctr32(CPURISCVState *env, int csrno) 155 { 156 if (riscv_cpu_mxl(env) != MXL_RV32) { 157 return RISCV_EXCP_ILLEGAL_INST; 158 } 159 160 return ctr(env, csrno); 161 } 162 163 static RISCVException zcmt(CPURISCVState *env, int csrno) 164 { 165 if (!riscv_cpu_cfg(env)->ext_zcmt) { 166 return RISCV_EXCP_ILLEGAL_INST; 167 } 168 169 #if !defined(CONFIG_USER_ONLY) 170 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); 171 if (ret != RISCV_EXCP_NONE) { 172 return ret; 173 } 174 #endif 175 176 return RISCV_EXCP_NONE; 177 } 178 179 #if !defined(CONFIG_USER_ONLY) 180 static RISCVException mctr(CPURISCVState *env, int csrno) 181 { 182 int pmu_num = riscv_cpu_cfg(env)->pmu_num; 183 int ctr_index; 184 int base_csrno = CSR_MHPMCOUNTER3; 185 186 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 187 /* Offset for RV32 mhpmcounternh counters */ 188 base_csrno += 0x80; 189 } 190 ctr_index = csrno - base_csrno; 191 if (!pmu_num || ctr_index >= pmu_num) { 192 /* The PMU is not enabled or counter is out of range*/ 193 return RISCV_EXCP_ILLEGAL_INST; 194 } 195 196 return RISCV_EXCP_NONE; 197 } 198 199 static RISCVException mctr32(CPURISCVState *env, int csrno) 200 { 201 if (riscv_cpu_mxl(env) != MXL_RV32) { 202 return RISCV_EXCP_ILLEGAL_INST; 203 } 204 205 return mctr(env, csrno); 206 } 207 208 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 209 { 210 if (!riscv_cpu_cfg(env)->ext_sscofpmf) { 211 return RISCV_EXCP_ILLEGAL_INST; 212 } 213 214 return RISCV_EXCP_NONE; 215 } 216 217 static RISCVException any(CPURISCVState *env, int csrno) 218 { 219 return RISCV_EXCP_NONE; 220 } 221 222 static RISCVException any32(CPURISCVState *env, int csrno) 223 { 224 if (riscv_cpu_mxl(env) != MXL_RV32) { 225 return RISCV_EXCP_ILLEGAL_INST; 226 } 227 228 return any(env, csrno); 229 230 } 231 232 static int aia_any(CPURISCVState *env, int csrno) 233 { 234 if (!riscv_cpu_cfg(env)->ext_smaia) { 235 return RISCV_EXCP_ILLEGAL_INST; 236 } 237 238 return any(env, csrno); 239 } 240 241 static int aia_any32(CPURISCVState *env, int csrno) 242 { 243 if (!riscv_cpu_cfg(env)->ext_smaia) { 244 return RISCV_EXCP_ILLEGAL_INST; 245 } 246 247 return any32(env, csrno); 248 } 249 250 static RISCVException smode(CPURISCVState *env, int csrno) 251 { 252 if (riscv_has_ext(env, RVS)) { 253 return RISCV_EXCP_NONE; 254 } 255 256 return RISCV_EXCP_ILLEGAL_INST; 257 } 258 259 static int smode32(CPURISCVState *env, int csrno) 260 { 261 if (riscv_cpu_mxl(env) != MXL_RV32) { 262 return RISCV_EXCP_ILLEGAL_INST; 263 } 264 265 return smode(env, csrno); 266 } 267 268 static int aia_smode(CPURISCVState *env, int csrno) 269 { 270 if (!riscv_cpu_cfg(env)->ext_ssaia) { 271 return RISCV_EXCP_ILLEGAL_INST; 272 } 273 274 return smode(env, csrno); 275 } 276 277 static int aia_smode32(CPURISCVState *env, int csrno) 278 { 279 if (!riscv_cpu_cfg(env)->ext_ssaia) { 280 return RISCV_EXCP_ILLEGAL_INST; 281 } 282 283 return smode32(env, csrno); 284 } 285 286 static RISCVException hmode(CPURISCVState *env, int csrno) 287 { 288 if (riscv_has_ext(env, RVH)) { 289 return RISCV_EXCP_NONE; 290 } 291 292 return RISCV_EXCP_ILLEGAL_INST; 293 } 294 295 static RISCVException hmode32(CPURISCVState *env, int csrno) 296 { 297 if (riscv_cpu_mxl(env) != MXL_RV32) { 298 return RISCV_EXCP_ILLEGAL_INST; 299 } 300 301 return hmode(env, csrno); 302 303 } 304 305 static RISCVException umode(CPURISCVState *env, int csrno) 306 { 307 if (riscv_has_ext(env, RVU)) { 308 return RISCV_EXCP_NONE; 309 } 310 311 return RISCV_EXCP_ILLEGAL_INST; 312 } 313 314 static RISCVException umode32(CPURISCVState *env, int csrno) 315 { 316 if (riscv_cpu_mxl(env) != MXL_RV32) { 317 return RISCV_EXCP_ILLEGAL_INST; 318 } 319 320 return umode(env, csrno); 321 } 322 323 static RISCVException mstateen(CPURISCVState *env, int csrno) 324 { 325 if (!riscv_cpu_cfg(env)->ext_smstateen) { 326 return RISCV_EXCP_ILLEGAL_INST; 327 } 328 329 return any(env, csrno); 330 } 331 332 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 333 { 334 if (!riscv_cpu_cfg(env)->ext_smstateen) { 335 return RISCV_EXCP_ILLEGAL_INST; 336 } 337 338 RISCVException ret = hmode(env, csrno); 339 if (ret != RISCV_EXCP_NONE) { 340 return ret; 341 } 342 343 if (env->debugger) { 344 return RISCV_EXCP_NONE; 345 } 346 347 if (env->priv < PRV_M) { 348 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 349 return RISCV_EXCP_ILLEGAL_INST; 350 } 351 } 352 353 return RISCV_EXCP_NONE; 354 } 355 356 static RISCVException hstateen(CPURISCVState *env, int csrno) 357 { 358 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 359 } 360 361 static RISCVException hstateenh(CPURISCVState *env, int csrno) 362 { 363 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 364 } 365 366 static RISCVException sstateen(CPURISCVState *env, int csrno) 367 { 368 bool virt = env->virt_enabled; 369 int index = csrno - CSR_SSTATEEN0; 370 371 if (!riscv_cpu_cfg(env)->ext_smstateen) { 372 return RISCV_EXCP_ILLEGAL_INST; 373 } 374 375 RISCVException ret = smode(env, csrno); 376 if (ret != RISCV_EXCP_NONE) { 377 return ret; 378 } 379 380 if (env->debugger) { 381 return RISCV_EXCP_NONE; 382 } 383 384 if (env->priv < PRV_M) { 385 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 386 return RISCV_EXCP_ILLEGAL_INST; 387 } 388 389 if (virt) { 390 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 391 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 392 } 393 } 394 } 395 396 return RISCV_EXCP_NONE; 397 } 398 399 static RISCVException sstc(CPURISCVState *env, int csrno) 400 { 401 bool hmode_check = false; 402 403 if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { 404 return RISCV_EXCP_ILLEGAL_INST; 405 } 406 407 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 408 hmode_check = true; 409 } 410 411 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 412 if (ret != RISCV_EXCP_NONE) { 413 return ret; 414 } 415 416 if (env->debugger) { 417 return RISCV_EXCP_NONE; 418 } 419 420 if (env->priv == PRV_M) { 421 return RISCV_EXCP_NONE; 422 } 423 424 /* 425 * No need of separate function for rv32 as menvcfg stores both menvcfg 426 * menvcfgh for RV32. 427 */ 428 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 429 get_field(env->menvcfg, MENVCFG_STCE))) { 430 return RISCV_EXCP_ILLEGAL_INST; 431 } 432 433 if (env->virt_enabled) { 434 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 435 get_field(env->henvcfg, HENVCFG_STCE))) { 436 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 437 } 438 } 439 440 return RISCV_EXCP_NONE; 441 } 442 443 static RISCVException sstc_32(CPURISCVState *env, int csrno) 444 { 445 if (riscv_cpu_mxl(env) != MXL_RV32) { 446 return RISCV_EXCP_ILLEGAL_INST; 447 } 448 449 return sstc(env, csrno); 450 } 451 452 /* Checks if PointerMasking registers could be accessed */ 453 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 454 { 455 /* Check if j-ext is present */ 456 if (riscv_has_ext(env, RVJ)) { 457 return RISCV_EXCP_NONE; 458 } 459 return RISCV_EXCP_ILLEGAL_INST; 460 } 461 462 static int aia_hmode(CPURISCVState *env, int csrno) 463 { 464 if (!riscv_cpu_cfg(env)->ext_ssaia) { 465 return RISCV_EXCP_ILLEGAL_INST; 466 } 467 468 return hmode(env, csrno); 469 } 470 471 static int aia_hmode32(CPURISCVState *env, int csrno) 472 { 473 if (!riscv_cpu_cfg(env)->ext_ssaia) { 474 return RISCV_EXCP_ILLEGAL_INST; 475 } 476 477 return hmode32(env, csrno); 478 } 479 480 static RISCVException pmp(CPURISCVState *env, int csrno) 481 { 482 if (riscv_cpu_cfg(env)->pmp) { 483 if (csrno <= CSR_PMPCFG3) { 484 uint32_t reg_index = csrno - CSR_PMPCFG0; 485 486 /* TODO: RV128 restriction check */ 487 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 488 return RISCV_EXCP_ILLEGAL_INST; 489 } 490 } 491 492 return RISCV_EXCP_NONE; 493 } 494 495 return RISCV_EXCP_ILLEGAL_INST; 496 } 497 498 static RISCVException epmp(CPURISCVState *env, int csrno) 499 { 500 if (riscv_cpu_cfg(env)->epmp) { 501 return RISCV_EXCP_NONE; 502 } 503 504 return RISCV_EXCP_ILLEGAL_INST; 505 } 506 507 static RISCVException debug(CPURISCVState *env, int csrno) 508 { 509 if (riscv_cpu_cfg(env)->debug) { 510 return RISCV_EXCP_NONE; 511 } 512 513 return RISCV_EXCP_ILLEGAL_INST; 514 } 515 #endif 516 517 static RISCVException seed(CPURISCVState *env, int csrno) 518 { 519 if (!riscv_cpu_cfg(env)->ext_zkr) { 520 return RISCV_EXCP_ILLEGAL_INST; 521 } 522 523 #if !defined(CONFIG_USER_ONLY) 524 if (env->debugger) { 525 return RISCV_EXCP_NONE; 526 } 527 528 /* 529 * With a CSR read-write instruction: 530 * 1) The seed CSR is always available in machine mode as normal. 531 * 2) Attempted access to seed from virtual modes VS and VU always raises 532 * an exception(virtual instruction exception only if mseccfg.sseed=1). 533 * 3) Without the corresponding access control bit set to 1, any attempted 534 * access to seed from U, S or HS modes will raise an illegal instruction 535 * exception. 536 */ 537 if (env->priv == PRV_M) { 538 return RISCV_EXCP_NONE; 539 } else if (env->virt_enabled) { 540 if (env->mseccfg & MSECCFG_SSEED) { 541 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 542 } else { 543 return RISCV_EXCP_ILLEGAL_INST; 544 } 545 } else { 546 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 547 return RISCV_EXCP_NONE; 548 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 549 return RISCV_EXCP_NONE; 550 } else { 551 return RISCV_EXCP_ILLEGAL_INST; 552 } 553 } 554 #else 555 return RISCV_EXCP_NONE; 556 #endif 557 } 558 559 /* User Floating-Point CSRs */ 560 static RISCVException read_fflags(CPURISCVState *env, int csrno, 561 target_ulong *val) 562 { 563 *val = riscv_cpu_get_fflags(env); 564 return RISCV_EXCP_NONE; 565 } 566 567 static RISCVException write_fflags(CPURISCVState *env, int csrno, 568 target_ulong val) 569 { 570 #if !defined(CONFIG_USER_ONLY) 571 if (riscv_has_ext(env, RVF)) { 572 env->mstatus |= MSTATUS_FS; 573 } 574 #endif 575 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 576 return RISCV_EXCP_NONE; 577 } 578 579 static RISCVException read_frm(CPURISCVState *env, int csrno, 580 target_ulong *val) 581 { 582 *val = env->frm; 583 return RISCV_EXCP_NONE; 584 } 585 586 static RISCVException write_frm(CPURISCVState *env, int csrno, 587 target_ulong val) 588 { 589 #if !defined(CONFIG_USER_ONLY) 590 if (riscv_has_ext(env, RVF)) { 591 env->mstatus |= MSTATUS_FS; 592 } 593 #endif 594 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 595 return RISCV_EXCP_NONE; 596 } 597 598 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 599 target_ulong *val) 600 { 601 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 602 | (env->frm << FSR_RD_SHIFT); 603 return RISCV_EXCP_NONE; 604 } 605 606 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 607 target_ulong val) 608 { 609 #if !defined(CONFIG_USER_ONLY) 610 if (riscv_has_ext(env, RVF)) { 611 env->mstatus |= MSTATUS_FS; 612 } 613 #endif 614 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 615 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 616 return RISCV_EXCP_NONE; 617 } 618 619 static RISCVException read_vtype(CPURISCVState *env, int csrno, 620 target_ulong *val) 621 { 622 uint64_t vill; 623 switch (env->xl) { 624 case MXL_RV32: 625 vill = (uint32_t)env->vill << 31; 626 break; 627 case MXL_RV64: 628 vill = (uint64_t)env->vill << 63; 629 break; 630 default: 631 g_assert_not_reached(); 632 } 633 *val = (target_ulong)vill | env->vtype; 634 return RISCV_EXCP_NONE; 635 } 636 637 static RISCVException read_vl(CPURISCVState *env, int csrno, 638 target_ulong *val) 639 { 640 *val = env->vl; 641 return RISCV_EXCP_NONE; 642 } 643 644 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 645 { 646 *val = riscv_cpu_cfg(env)->vlen >> 3; 647 return RISCV_EXCP_NONE; 648 } 649 650 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 651 target_ulong *val) 652 { 653 *val = env->vxrm; 654 return RISCV_EXCP_NONE; 655 } 656 657 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 658 target_ulong val) 659 { 660 #if !defined(CONFIG_USER_ONLY) 661 env->mstatus |= MSTATUS_VS; 662 #endif 663 env->vxrm = val; 664 return RISCV_EXCP_NONE; 665 } 666 667 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 668 target_ulong *val) 669 { 670 *val = env->vxsat; 671 return RISCV_EXCP_NONE; 672 } 673 674 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 675 target_ulong val) 676 { 677 #if !defined(CONFIG_USER_ONLY) 678 env->mstatus |= MSTATUS_VS; 679 #endif 680 env->vxsat = val; 681 return RISCV_EXCP_NONE; 682 } 683 684 static RISCVException read_vstart(CPURISCVState *env, int csrno, 685 target_ulong *val) 686 { 687 *val = env->vstart; 688 return RISCV_EXCP_NONE; 689 } 690 691 static RISCVException write_vstart(CPURISCVState *env, int csrno, 692 target_ulong val) 693 { 694 #if !defined(CONFIG_USER_ONLY) 695 env->mstatus |= MSTATUS_VS; 696 #endif 697 /* 698 * The vstart CSR is defined to have only enough writable bits 699 * to hold the largest element index, i.e. lg2(VLEN) bits. 700 */ 701 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlen)); 702 return RISCV_EXCP_NONE; 703 } 704 705 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 706 { 707 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 708 return RISCV_EXCP_NONE; 709 } 710 711 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 712 { 713 #if !defined(CONFIG_USER_ONLY) 714 env->mstatus |= MSTATUS_VS; 715 #endif 716 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 717 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 718 return RISCV_EXCP_NONE; 719 } 720 721 /* User Timers and Counters */ 722 static target_ulong get_ticks(bool shift) 723 { 724 int64_t val; 725 target_ulong result; 726 727 #if !defined(CONFIG_USER_ONLY) 728 if (icount_enabled()) { 729 val = icount_get(); 730 } else { 731 val = cpu_get_host_ticks(); 732 } 733 #else 734 val = cpu_get_host_ticks(); 735 #endif 736 737 if (shift) { 738 result = val >> 32; 739 } else { 740 result = val; 741 } 742 743 return result; 744 } 745 746 #if defined(CONFIG_USER_ONLY) 747 static RISCVException read_time(CPURISCVState *env, int csrno, 748 target_ulong *val) 749 { 750 *val = cpu_get_host_ticks(); 751 return RISCV_EXCP_NONE; 752 } 753 754 static RISCVException read_timeh(CPURISCVState *env, int csrno, 755 target_ulong *val) 756 { 757 *val = cpu_get_host_ticks() >> 32; 758 return RISCV_EXCP_NONE; 759 } 760 761 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 762 { 763 *val = get_ticks(false); 764 return RISCV_EXCP_NONE; 765 } 766 767 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 768 { 769 *val = get_ticks(true); 770 return RISCV_EXCP_NONE; 771 } 772 773 #else /* CONFIG_USER_ONLY */ 774 775 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 776 { 777 int evt_index = csrno - CSR_MCOUNTINHIBIT; 778 779 *val = env->mhpmevent_val[evt_index]; 780 781 return RISCV_EXCP_NONE; 782 } 783 784 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 785 { 786 int evt_index = csrno - CSR_MCOUNTINHIBIT; 787 uint64_t mhpmevt_val = val; 788 789 env->mhpmevent_val[evt_index] = val; 790 791 if (riscv_cpu_mxl(env) == MXL_RV32) { 792 mhpmevt_val = mhpmevt_val | 793 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 794 } 795 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 796 797 return RISCV_EXCP_NONE; 798 } 799 800 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 801 { 802 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 803 804 *val = env->mhpmeventh_val[evt_index]; 805 806 return RISCV_EXCP_NONE; 807 } 808 809 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 810 { 811 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 812 uint64_t mhpmevth_val = val; 813 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 814 815 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 816 env->mhpmeventh_val[evt_index] = val; 817 818 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 819 820 return RISCV_EXCP_NONE; 821 } 822 823 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 824 { 825 int ctr_idx = csrno - CSR_MCYCLE; 826 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 827 uint64_t mhpmctr_val = val; 828 829 counter->mhpmcounter_val = val; 830 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 831 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 832 counter->mhpmcounter_prev = get_ticks(false); 833 if (ctr_idx > 2) { 834 if (riscv_cpu_mxl(env) == MXL_RV32) { 835 mhpmctr_val = mhpmctr_val | 836 ((uint64_t)counter->mhpmcounterh_val << 32); 837 } 838 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 839 } 840 } else { 841 /* Other counters can keep incrementing from the given value */ 842 counter->mhpmcounter_prev = val; 843 } 844 845 return RISCV_EXCP_NONE; 846 } 847 848 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 849 { 850 int ctr_idx = csrno - CSR_MCYCLEH; 851 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 852 uint64_t mhpmctr_val = counter->mhpmcounter_val; 853 uint64_t mhpmctrh_val = val; 854 855 counter->mhpmcounterh_val = val; 856 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 857 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 858 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 859 counter->mhpmcounterh_prev = get_ticks(true); 860 if (ctr_idx > 2) { 861 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 862 } 863 } else { 864 counter->mhpmcounterh_prev = val; 865 } 866 867 return RISCV_EXCP_NONE; 868 } 869 870 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 871 bool upper_half, uint32_t ctr_idx) 872 { 873 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 874 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 875 counter.mhpmcounter_prev; 876 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 877 counter.mhpmcounter_val; 878 879 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 880 /** 881 * Counter should not increment if inhibit bit is set. We can't really 882 * stop the icount counting. Just return the counter value written by 883 * the supervisor to indicate that counter was not incremented. 884 */ 885 if (!counter.started) { 886 *val = ctr_val; 887 return RISCV_EXCP_NONE; 888 } else { 889 /* Mark that the counter has been stopped */ 890 counter.started = false; 891 } 892 } 893 894 /** 895 * The kernel computes the perf delta by subtracting the current value from 896 * the value it initialized previously (ctr_val). 897 */ 898 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 899 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 900 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 901 } else { 902 *val = ctr_val; 903 } 904 905 return RISCV_EXCP_NONE; 906 } 907 908 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 909 { 910 uint16_t ctr_index; 911 912 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 913 ctr_index = csrno - CSR_MCYCLE; 914 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 915 ctr_index = csrno - CSR_CYCLE; 916 } else { 917 return RISCV_EXCP_ILLEGAL_INST; 918 } 919 920 return riscv_pmu_read_ctr(env, val, false, ctr_index); 921 } 922 923 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 924 { 925 uint16_t ctr_index; 926 927 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 928 ctr_index = csrno - CSR_MCYCLEH; 929 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 930 ctr_index = csrno - CSR_CYCLEH; 931 } else { 932 return RISCV_EXCP_ILLEGAL_INST; 933 } 934 935 return riscv_pmu_read_ctr(env, val, true, ctr_index); 936 } 937 938 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 939 { 940 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 941 int i; 942 *val = 0; 943 target_ulong *mhpm_evt_val; 944 uint64_t of_bit_mask; 945 946 if (riscv_cpu_mxl(env) == MXL_RV32) { 947 mhpm_evt_val = env->mhpmeventh_val; 948 of_bit_mask = MHPMEVENTH_BIT_OF; 949 } else { 950 mhpm_evt_val = env->mhpmevent_val; 951 of_bit_mask = MHPMEVENT_BIT_OF; 952 } 953 954 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 955 if ((get_field(env->mcounteren, BIT(i))) && 956 (mhpm_evt_val[i] & of_bit_mask)) { 957 *val |= BIT(i); 958 } 959 } 960 961 return RISCV_EXCP_NONE; 962 } 963 964 static RISCVException read_time(CPURISCVState *env, int csrno, 965 target_ulong *val) 966 { 967 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 968 969 if (!env->rdtime_fn) { 970 return RISCV_EXCP_ILLEGAL_INST; 971 } 972 973 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 974 return RISCV_EXCP_NONE; 975 } 976 977 static RISCVException read_timeh(CPURISCVState *env, int csrno, 978 target_ulong *val) 979 { 980 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 981 982 if (!env->rdtime_fn) { 983 return RISCV_EXCP_ILLEGAL_INST; 984 } 985 986 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 987 return RISCV_EXCP_NONE; 988 } 989 990 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 991 target_ulong *val) 992 { 993 *val = env->vstimecmp; 994 995 return RISCV_EXCP_NONE; 996 } 997 998 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 999 target_ulong *val) 1000 { 1001 *val = env->vstimecmp >> 32; 1002 1003 return RISCV_EXCP_NONE; 1004 } 1005 1006 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1007 target_ulong val) 1008 { 1009 if (riscv_cpu_mxl(env) == MXL_RV32) { 1010 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1011 } else { 1012 env->vstimecmp = val; 1013 } 1014 1015 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1016 env->htimedelta, MIP_VSTIP); 1017 1018 return RISCV_EXCP_NONE; 1019 } 1020 1021 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1022 target_ulong val) 1023 { 1024 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1025 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1026 env->htimedelta, MIP_VSTIP); 1027 1028 return RISCV_EXCP_NONE; 1029 } 1030 1031 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1032 target_ulong *val) 1033 { 1034 if (env->virt_enabled) { 1035 *val = env->vstimecmp; 1036 } else { 1037 *val = env->stimecmp; 1038 } 1039 1040 return RISCV_EXCP_NONE; 1041 } 1042 1043 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1044 target_ulong *val) 1045 { 1046 if (env->virt_enabled) { 1047 *val = env->vstimecmp >> 32; 1048 } else { 1049 *val = env->stimecmp >> 32; 1050 } 1051 1052 return RISCV_EXCP_NONE; 1053 } 1054 1055 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1056 target_ulong val) 1057 { 1058 if (env->virt_enabled) { 1059 if (env->hvictl & HVICTL_VTI) { 1060 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1061 } 1062 return write_vstimecmp(env, csrno, val); 1063 } 1064 1065 if (riscv_cpu_mxl(env) == MXL_RV32) { 1066 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1067 } else { 1068 env->stimecmp = val; 1069 } 1070 1071 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1072 1073 return RISCV_EXCP_NONE; 1074 } 1075 1076 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1077 target_ulong val) 1078 { 1079 if (env->virt_enabled) { 1080 if (env->hvictl & HVICTL_VTI) { 1081 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1082 } 1083 return write_vstimecmph(env, csrno, val); 1084 } 1085 1086 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1087 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1088 1089 return RISCV_EXCP_NONE; 1090 } 1091 1092 /* Machine constants */ 1093 1094 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1095 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1096 MIP_LCOFIP)) 1097 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1098 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1099 1100 #define VSTOPI_NUM_SRCS 5 1101 1102 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1103 VS_MODE_INTERRUPTS; 1104 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1105 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1106 HS_MODE_INTERRUPTS; 1107 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1108 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1109 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1110 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1111 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1112 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1113 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1114 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1115 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1116 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1117 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1118 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1119 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1120 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1121 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1122 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1123 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1124 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1125 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1126 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1127 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1128 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1129 (1ULL << (RISCV_EXCP_M_ECALL)) | 1130 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1131 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1132 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1133 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1134 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1135 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1136 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1137 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1138 SIP_LCOFIP; 1139 static const target_ulong hip_writable_mask = MIP_VSSIP; 1140 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1141 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1142 1143 const bool valid_vm_1_10_32[16] = { 1144 [VM_1_10_MBARE] = true, 1145 [VM_1_10_SV32] = true 1146 }; 1147 1148 const bool valid_vm_1_10_64[16] = { 1149 [VM_1_10_MBARE] = true, 1150 [VM_1_10_SV39] = true, 1151 [VM_1_10_SV48] = true, 1152 [VM_1_10_SV57] = true 1153 }; 1154 1155 /* Machine Information Registers */ 1156 static RISCVException read_zero(CPURISCVState *env, int csrno, 1157 target_ulong *val) 1158 { 1159 *val = 0; 1160 return RISCV_EXCP_NONE; 1161 } 1162 1163 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1164 target_ulong val) 1165 { 1166 return RISCV_EXCP_NONE; 1167 } 1168 1169 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1170 target_ulong *val) 1171 { 1172 *val = riscv_cpu_cfg(env)->mvendorid; 1173 return RISCV_EXCP_NONE; 1174 } 1175 1176 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1177 target_ulong *val) 1178 { 1179 *val = riscv_cpu_cfg(env)->marchid; 1180 return RISCV_EXCP_NONE; 1181 } 1182 1183 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1184 target_ulong *val) 1185 { 1186 *val = riscv_cpu_cfg(env)->mimpid; 1187 return RISCV_EXCP_NONE; 1188 } 1189 1190 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1191 target_ulong *val) 1192 { 1193 *val = env->mhartid; 1194 return RISCV_EXCP_NONE; 1195 } 1196 1197 /* Machine Trap Setup */ 1198 1199 /* We do not store SD explicitly, only compute it on demand. */ 1200 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1201 { 1202 if ((status & MSTATUS_FS) == MSTATUS_FS || 1203 (status & MSTATUS_VS) == MSTATUS_VS || 1204 (status & MSTATUS_XS) == MSTATUS_XS) { 1205 switch (xl) { 1206 case MXL_RV32: 1207 return status | MSTATUS32_SD; 1208 case MXL_RV64: 1209 return status | MSTATUS64_SD; 1210 case MXL_RV128: 1211 return MSTATUSH128_SD; 1212 default: 1213 g_assert_not_reached(); 1214 } 1215 } 1216 return status; 1217 } 1218 1219 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1220 target_ulong *val) 1221 { 1222 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1223 return RISCV_EXCP_NONE; 1224 } 1225 1226 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1227 { 1228 return (vm & 0xf) <= 1229 satp_mode_max_from_map(riscv_cpu_cfg(env)->satp_mode.map); 1230 } 1231 1232 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1233 target_ulong val) 1234 { 1235 uint64_t mstatus = env->mstatus; 1236 uint64_t mask = 0; 1237 RISCVMXL xl = riscv_cpu_mxl(env); 1238 1239 /* flush tlb on mstatus fields that affect VM */ 1240 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1241 MSTATUS_MPRV | MSTATUS_SUM)) { 1242 tlb_flush(env_cpu(env)); 1243 } 1244 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1245 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1246 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1247 MSTATUS_TW | MSTATUS_VS; 1248 1249 if (riscv_has_ext(env, RVF)) { 1250 mask |= MSTATUS_FS; 1251 } 1252 1253 if (xl != MXL_RV32 || env->debugger) { 1254 /* 1255 * RV32: MPV and GVA are not in mstatus. The current plan is to 1256 * add them to mstatush. For now, we just don't support it. 1257 */ 1258 mask |= MSTATUS_MPV | MSTATUS_GVA; 1259 if ((val & MSTATUS64_UXL) != 0) { 1260 mask |= MSTATUS64_UXL; 1261 } 1262 } 1263 1264 mstatus = (mstatus & ~mask) | (val & mask); 1265 1266 if (xl > MXL_RV32) { 1267 /* SXL field is for now read only */ 1268 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1269 } 1270 env->mstatus = mstatus; 1271 env->xl = cpu_recompute_xl(env); 1272 1273 return RISCV_EXCP_NONE; 1274 } 1275 1276 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1277 target_ulong *val) 1278 { 1279 *val = env->mstatus >> 32; 1280 return RISCV_EXCP_NONE; 1281 } 1282 1283 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1284 target_ulong val) 1285 { 1286 uint64_t valh = (uint64_t)val << 32; 1287 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1288 1289 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1290 tlb_flush(env_cpu(env)); 1291 } 1292 1293 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1294 1295 return RISCV_EXCP_NONE; 1296 } 1297 1298 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1299 Int128 *val) 1300 { 1301 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1302 return RISCV_EXCP_NONE; 1303 } 1304 1305 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1306 Int128 *val) 1307 { 1308 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1309 return RISCV_EXCP_NONE; 1310 } 1311 1312 static RISCVException read_misa(CPURISCVState *env, int csrno, 1313 target_ulong *val) 1314 { 1315 target_ulong misa; 1316 1317 switch (env->misa_mxl) { 1318 case MXL_RV32: 1319 misa = (target_ulong)MXL_RV32 << 30; 1320 break; 1321 #ifdef TARGET_RISCV64 1322 case MXL_RV64: 1323 misa = (target_ulong)MXL_RV64 << 62; 1324 break; 1325 #endif 1326 default: 1327 g_assert_not_reached(); 1328 } 1329 1330 *val = misa | env->misa_ext; 1331 return RISCV_EXCP_NONE; 1332 } 1333 1334 static RISCVException write_misa(CPURISCVState *env, int csrno, 1335 target_ulong val) 1336 { 1337 if (!riscv_cpu_cfg(env)->misa_w) { 1338 /* drop write to misa */ 1339 return RISCV_EXCP_NONE; 1340 } 1341 1342 /* 'I' or 'E' must be present */ 1343 if (!(val & (RVI | RVE))) { 1344 /* It is not, drop write to misa */ 1345 return RISCV_EXCP_NONE; 1346 } 1347 1348 /* 'E' excludes all other extensions */ 1349 if (val & RVE) { 1350 /* 1351 * when we support 'E' we can do "val = RVE;" however 1352 * for now we just drop writes if 'E' is present. 1353 */ 1354 return RISCV_EXCP_NONE; 1355 } 1356 1357 /* 1358 * misa.MXL writes are not supported by QEMU. 1359 * Drop writes to those bits. 1360 */ 1361 1362 /* Mask extensions that are not supported by this hart */ 1363 val &= env->misa_ext_mask; 1364 1365 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1366 if ((val & RVD) && !(val & RVF)) { 1367 val &= ~RVD; 1368 } 1369 1370 /* 1371 * Suppress 'C' if next instruction is not aligned 1372 * TODO: this should check next_pc 1373 */ 1374 if ((val & RVC) && (GETPC() & ~3) != 0) { 1375 val &= ~RVC; 1376 } 1377 1378 /* If nothing changed, do nothing. */ 1379 if (val == env->misa_ext) { 1380 return RISCV_EXCP_NONE; 1381 } 1382 1383 if (!(val & RVF)) { 1384 env->mstatus &= ~MSTATUS_FS; 1385 } 1386 1387 /* flush translation cache */ 1388 tb_flush(env_cpu(env)); 1389 env->misa_ext = val; 1390 env->xl = riscv_cpu_mxl(env); 1391 return RISCV_EXCP_NONE; 1392 } 1393 1394 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1395 target_ulong *val) 1396 { 1397 *val = env->medeleg; 1398 return RISCV_EXCP_NONE; 1399 } 1400 1401 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1402 target_ulong val) 1403 { 1404 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1405 return RISCV_EXCP_NONE; 1406 } 1407 1408 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1409 uint64_t *ret_val, 1410 uint64_t new_val, uint64_t wr_mask) 1411 { 1412 uint64_t mask = wr_mask & delegable_ints; 1413 1414 if (ret_val) { 1415 *ret_val = env->mideleg; 1416 } 1417 1418 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1419 1420 if (riscv_has_ext(env, RVH)) { 1421 env->mideleg |= HS_MODE_INTERRUPTS; 1422 } 1423 1424 return RISCV_EXCP_NONE; 1425 } 1426 1427 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1428 target_ulong *ret_val, 1429 target_ulong new_val, target_ulong wr_mask) 1430 { 1431 uint64_t rval; 1432 RISCVException ret; 1433 1434 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1435 if (ret_val) { 1436 *ret_val = rval; 1437 } 1438 1439 return ret; 1440 } 1441 1442 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1443 target_ulong *ret_val, 1444 target_ulong new_val, 1445 target_ulong wr_mask) 1446 { 1447 uint64_t rval; 1448 RISCVException ret; 1449 1450 ret = rmw_mideleg64(env, csrno, &rval, 1451 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1452 if (ret_val) { 1453 *ret_val = rval >> 32; 1454 } 1455 1456 return ret; 1457 } 1458 1459 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1460 uint64_t *ret_val, 1461 uint64_t new_val, uint64_t wr_mask) 1462 { 1463 uint64_t mask = wr_mask & all_ints; 1464 1465 if (ret_val) { 1466 *ret_val = env->mie; 1467 } 1468 1469 env->mie = (env->mie & ~mask) | (new_val & mask); 1470 1471 if (!riscv_has_ext(env, RVH)) { 1472 env->mie &= ~((uint64_t)MIP_SGEIP); 1473 } 1474 1475 return RISCV_EXCP_NONE; 1476 } 1477 1478 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1479 target_ulong *ret_val, 1480 target_ulong new_val, target_ulong wr_mask) 1481 { 1482 uint64_t rval; 1483 RISCVException ret; 1484 1485 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1486 if (ret_val) { 1487 *ret_val = rval; 1488 } 1489 1490 return ret; 1491 } 1492 1493 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1494 target_ulong *ret_val, 1495 target_ulong new_val, target_ulong wr_mask) 1496 { 1497 uint64_t rval; 1498 RISCVException ret; 1499 1500 ret = rmw_mie64(env, csrno, &rval, 1501 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1502 if (ret_val) { 1503 *ret_val = rval >> 32; 1504 } 1505 1506 return ret; 1507 } 1508 1509 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1510 { 1511 int irq; 1512 uint8_t iprio; 1513 1514 irq = riscv_cpu_mirq_pending(env); 1515 if (irq <= 0 || irq > 63) { 1516 *val = 0; 1517 } else { 1518 iprio = env->miprio[irq]; 1519 if (!iprio) { 1520 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1521 iprio = IPRIO_MMAXIPRIO; 1522 } 1523 } 1524 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1525 *val |= iprio; 1526 } 1527 1528 return RISCV_EXCP_NONE; 1529 } 1530 1531 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1532 { 1533 if (!env->virt_enabled) { 1534 return csrno; 1535 } 1536 1537 switch (csrno) { 1538 case CSR_SISELECT: 1539 return CSR_VSISELECT; 1540 case CSR_SIREG: 1541 return CSR_VSIREG; 1542 case CSR_STOPEI: 1543 return CSR_VSTOPEI; 1544 default: 1545 return csrno; 1546 }; 1547 } 1548 1549 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1550 target_ulong new_val, target_ulong wr_mask) 1551 { 1552 target_ulong *iselect; 1553 1554 /* Translate CSR number for VS-mode */ 1555 csrno = aia_xlate_vs_csrno(env, csrno); 1556 1557 /* Find the iselect CSR based on CSR number */ 1558 switch (csrno) { 1559 case CSR_MISELECT: 1560 iselect = &env->miselect; 1561 break; 1562 case CSR_SISELECT: 1563 iselect = &env->siselect; 1564 break; 1565 case CSR_VSISELECT: 1566 iselect = &env->vsiselect; 1567 break; 1568 default: 1569 return RISCV_EXCP_ILLEGAL_INST; 1570 }; 1571 1572 if (val) { 1573 *val = *iselect; 1574 } 1575 1576 wr_mask &= ISELECT_MASK; 1577 if (wr_mask) { 1578 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1579 } 1580 1581 return RISCV_EXCP_NONE; 1582 } 1583 1584 static int rmw_iprio(target_ulong xlen, 1585 target_ulong iselect, uint8_t *iprio, 1586 target_ulong *val, target_ulong new_val, 1587 target_ulong wr_mask, int ext_irq_no) 1588 { 1589 int i, firq, nirqs; 1590 target_ulong old_val; 1591 1592 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1593 return -EINVAL; 1594 } 1595 if (xlen != 32 && iselect & 0x1) { 1596 return -EINVAL; 1597 } 1598 1599 nirqs = 4 * (xlen / 32); 1600 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1601 1602 old_val = 0; 1603 for (i = 0; i < nirqs; i++) { 1604 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1605 } 1606 1607 if (val) { 1608 *val = old_val; 1609 } 1610 1611 if (wr_mask) { 1612 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1613 for (i = 0; i < nirqs; i++) { 1614 /* 1615 * M-level and S-level external IRQ priority always read-only 1616 * zero. This means default priority order is always preferred 1617 * for M-level and S-level external IRQs. 1618 */ 1619 if ((firq + i) == ext_irq_no) { 1620 continue; 1621 } 1622 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1623 } 1624 } 1625 1626 return 0; 1627 } 1628 1629 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1630 target_ulong new_val, target_ulong wr_mask) 1631 { 1632 bool virt; 1633 uint8_t *iprio; 1634 int ret = -EINVAL; 1635 target_ulong priv, isel, vgein; 1636 1637 /* Translate CSR number for VS-mode */ 1638 csrno = aia_xlate_vs_csrno(env, csrno); 1639 1640 /* Decode register details from CSR number */ 1641 virt = false; 1642 switch (csrno) { 1643 case CSR_MIREG: 1644 iprio = env->miprio; 1645 isel = env->miselect; 1646 priv = PRV_M; 1647 break; 1648 case CSR_SIREG: 1649 iprio = env->siprio; 1650 isel = env->siselect; 1651 priv = PRV_S; 1652 break; 1653 case CSR_VSIREG: 1654 iprio = env->hviprio; 1655 isel = env->vsiselect; 1656 priv = PRV_S; 1657 virt = true; 1658 break; 1659 default: 1660 goto done; 1661 }; 1662 1663 /* Find the selected guest interrupt file */ 1664 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1665 1666 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1667 /* Local interrupt priority registers not available for VS-mode */ 1668 if (!virt) { 1669 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1670 isel, iprio, val, new_val, wr_mask, 1671 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1672 } 1673 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1674 /* IMSIC registers only available when machine implements it. */ 1675 if (env->aia_ireg_rmw_fn[priv]) { 1676 /* Selected guest interrupt file should not be zero */ 1677 if (virt && (!vgein || env->geilen < vgein)) { 1678 goto done; 1679 } 1680 /* Call machine specific IMSIC register emulation */ 1681 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1682 AIA_MAKE_IREG(isel, priv, virt, vgein, 1683 riscv_cpu_mxl_bits(env)), 1684 val, new_val, wr_mask); 1685 } 1686 } 1687 1688 done: 1689 if (ret) { 1690 return (env->virt_enabled && virt) ? 1691 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1692 } 1693 return RISCV_EXCP_NONE; 1694 } 1695 1696 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1697 target_ulong new_val, target_ulong wr_mask) 1698 { 1699 bool virt; 1700 int ret = -EINVAL; 1701 target_ulong priv, vgein; 1702 1703 /* Translate CSR number for VS-mode */ 1704 csrno = aia_xlate_vs_csrno(env, csrno); 1705 1706 /* Decode register details from CSR number */ 1707 virt = false; 1708 switch (csrno) { 1709 case CSR_MTOPEI: 1710 priv = PRV_M; 1711 break; 1712 case CSR_STOPEI: 1713 priv = PRV_S; 1714 break; 1715 case CSR_VSTOPEI: 1716 priv = PRV_S; 1717 virt = true; 1718 break; 1719 default: 1720 goto done; 1721 }; 1722 1723 /* IMSIC CSRs only available when machine implements IMSIC. */ 1724 if (!env->aia_ireg_rmw_fn[priv]) { 1725 goto done; 1726 } 1727 1728 /* Find the selected guest interrupt file */ 1729 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1730 1731 /* Selected guest interrupt file should be valid */ 1732 if (virt && (!vgein || env->geilen < vgein)) { 1733 goto done; 1734 } 1735 1736 /* Call machine specific IMSIC register emulation for TOPEI */ 1737 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1738 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1739 riscv_cpu_mxl_bits(env)), 1740 val, new_val, wr_mask); 1741 1742 done: 1743 if (ret) { 1744 return (env->virt_enabled && virt) ? 1745 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1746 } 1747 return RISCV_EXCP_NONE; 1748 } 1749 1750 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1751 target_ulong *val) 1752 { 1753 *val = env->mtvec; 1754 return RISCV_EXCP_NONE; 1755 } 1756 1757 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1758 target_ulong val) 1759 { 1760 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1761 if ((val & 3) < 2) { 1762 env->mtvec = val; 1763 } else { 1764 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1765 } 1766 return RISCV_EXCP_NONE; 1767 } 1768 1769 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1770 target_ulong *val) 1771 { 1772 *val = env->mcountinhibit; 1773 return RISCV_EXCP_NONE; 1774 } 1775 1776 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1777 target_ulong val) 1778 { 1779 int cidx; 1780 PMUCTRState *counter; 1781 1782 env->mcountinhibit = val; 1783 1784 /* Check if any other counter is also monitoring cycles/instructions */ 1785 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1786 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1787 counter = &env->pmu_ctrs[cidx]; 1788 counter->started = true; 1789 } 1790 } 1791 1792 return RISCV_EXCP_NONE; 1793 } 1794 1795 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1796 target_ulong *val) 1797 { 1798 *val = env->mcounteren; 1799 return RISCV_EXCP_NONE; 1800 } 1801 1802 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1803 target_ulong val) 1804 { 1805 env->mcounteren = val; 1806 return RISCV_EXCP_NONE; 1807 } 1808 1809 /* Machine Trap Handling */ 1810 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1811 Int128 *val) 1812 { 1813 *val = int128_make128(env->mscratch, env->mscratchh); 1814 return RISCV_EXCP_NONE; 1815 } 1816 1817 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1818 Int128 val) 1819 { 1820 env->mscratch = int128_getlo(val); 1821 env->mscratchh = int128_gethi(val); 1822 return RISCV_EXCP_NONE; 1823 } 1824 1825 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1826 target_ulong *val) 1827 { 1828 *val = env->mscratch; 1829 return RISCV_EXCP_NONE; 1830 } 1831 1832 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1833 target_ulong val) 1834 { 1835 env->mscratch = val; 1836 return RISCV_EXCP_NONE; 1837 } 1838 1839 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1840 target_ulong *val) 1841 { 1842 *val = env->mepc; 1843 return RISCV_EXCP_NONE; 1844 } 1845 1846 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1847 target_ulong val) 1848 { 1849 env->mepc = val; 1850 return RISCV_EXCP_NONE; 1851 } 1852 1853 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1854 target_ulong *val) 1855 { 1856 *val = env->mcause; 1857 return RISCV_EXCP_NONE; 1858 } 1859 1860 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1861 target_ulong val) 1862 { 1863 env->mcause = val; 1864 return RISCV_EXCP_NONE; 1865 } 1866 1867 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1868 target_ulong *val) 1869 { 1870 *val = env->mtval; 1871 return RISCV_EXCP_NONE; 1872 } 1873 1874 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1875 target_ulong val) 1876 { 1877 env->mtval = val; 1878 return RISCV_EXCP_NONE; 1879 } 1880 1881 /* Execution environment configuration setup */ 1882 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1883 target_ulong *val) 1884 { 1885 *val = env->menvcfg; 1886 return RISCV_EXCP_NONE; 1887 } 1888 1889 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1890 target_ulong val) 1891 { 1892 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 1893 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1894 1895 if (riscv_cpu_mxl(env) == MXL_RV64) { 1896 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1897 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 1898 (cfg->ext_svadu ? MENVCFG_HADE : 0); 1899 } 1900 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1901 1902 return RISCV_EXCP_NONE; 1903 } 1904 1905 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1906 target_ulong *val) 1907 { 1908 *val = env->menvcfg >> 32; 1909 return RISCV_EXCP_NONE; 1910 } 1911 1912 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1913 target_ulong val) 1914 { 1915 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 1916 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1917 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 1918 (cfg->ext_svadu ? MENVCFG_HADE : 0); 1919 uint64_t valh = (uint64_t)val << 32; 1920 1921 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1922 1923 return RISCV_EXCP_NONE; 1924 } 1925 1926 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1927 target_ulong *val) 1928 { 1929 RISCVException ret; 1930 1931 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1932 if (ret != RISCV_EXCP_NONE) { 1933 return ret; 1934 } 1935 1936 *val = env->senvcfg; 1937 return RISCV_EXCP_NONE; 1938 } 1939 1940 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1941 target_ulong val) 1942 { 1943 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1944 RISCVException ret; 1945 1946 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1947 if (ret != RISCV_EXCP_NONE) { 1948 return ret; 1949 } 1950 1951 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1952 return RISCV_EXCP_NONE; 1953 } 1954 1955 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1956 target_ulong *val) 1957 { 1958 RISCVException ret; 1959 1960 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1961 if (ret != RISCV_EXCP_NONE) { 1962 return ret; 1963 } 1964 1965 /* 1966 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 1967 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 1968 * henvcfg.hade is read_only 0 when menvcfg.hade = 0 1969 */ 1970 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE) | 1971 env->menvcfg); 1972 return RISCV_EXCP_NONE; 1973 } 1974 1975 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1976 target_ulong val) 1977 { 1978 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1979 RISCVException ret; 1980 1981 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1982 if (ret != RISCV_EXCP_NONE) { 1983 return ret; 1984 } 1985 1986 if (riscv_cpu_mxl(env) == MXL_RV64) { 1987 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE); 1988 } 1989 1990 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1991 1992 return RISCV_EXCP_NONE; 1993 } 1994 1995 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1996 target_ulong *val) 1997 { 1998 RISCVException ret; 1999 2000 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2001 if (ret != RISCV_EXCP_NONE) { 2002 return ret; 2003 } 2004 2005 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE) | 2006 env->menvcfg)) >> 32; 2007 return RISCV_EXCP_NONE; 2008 } 2009 2010 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2011 target_ulong val) 2012 { 2013 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 2014 HENVCFG_HADE); 2015 uint64_t valh = (uint64_t)val << 32; 2016 RISCVException ret; 2017 2018 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2019 if (ret != RISCV_EXCP_NONE) { 2020 return ret; 2021 } 2022 2023 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2024 return RISCV_EXCP_NONE; 2025 } 2026 2027 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2028 target_ulong *val) 2029 { 2030 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2031 2032 return RISCV_EXCP_NONE; 2033 } 2034 2035 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2036 uint64_t wr_mask, target_ulong new_val) 2037 { 2038 uint64_t *reg; 2039 2040 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2041 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2042 2043 return RISCV_EXCP_NONE; 2044 } 2045 2046 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2047 target_ulong new_val) 2048 { 2049 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2050 2051 return write_mstateen(env, csrno, wr_mask, new_val); 2052 } 2053 2054 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2055 target_ulong new_val) 2056 { 2057 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2058 } 2059 2060 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2061 target_ulong *val) 2062 { 2063 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2064 2065 return RISCV_EXCP_NONE; 2066 } 2067 2068 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2069 uint64_t wr_mask, target_ulong new_val) 2070 { 2071 uint64_t *reg, val; 2072 2073 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2074 val = (uint64_t)new_val << 32; 2075 val |= *reg & 0xFFFFFFFF; 2076 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2077 2078 return RISCV_EXCP_NONE; 2079 } 2080 2081 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2082 target_ulong new_val) 2083 { 2084 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2085 2086 return write_mstateenh(env, csrno, wr_mask, new_val); 2087 } 2088 2089 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2090 target_ulong new_val) 2091 { 2092 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2093 } 2094 2095 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2096 target_ulong *val) 2097 { 2098 int index = csrno - CSR_HSTATEEN0; 2099 2100 *val = env->hstateen[index] & env->mstateen[index]; 2101 2102 return RISCV_EXCP_NONE; 2103 } 2104 2105 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2106 uint64_t mask, target_ulong new_val) 2107 { 2108 int index = csrno - CSR_HSTATEEN0; 2109 uint64_t *reg, wr_mask; 2110 2111 reg = &env->hstateen[index]; 2112 wr_mask = env->mstateen[index] & mask; 2113 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2114 2115 return RISCV_EXCP_NONE; 2116 } 2117 2118 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2119 target_ulong new_val) 2120 { 2121 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2122 2123 return write_hstateen(env, csrno, wr_mask, new_val); 2124 } 2125 2126 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2127 target_ulong new_val) 2128 { 2129 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2130 } 2131 2132 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2133 target_ulong *val) 2134 { 2135 int index = csrno - CSR_HSTATEEN0H; 2136 2137 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2138 2139 return RISCV_EXCP_NONE; 2140 } 2141 2142 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2143 uint64_t mask, target_ulong new_val) 2144 { 2145 int index = csrno - CSR_HSTATEEN0H; 2146 uint64_t *reg, wr_mask, val; 2147 2148 reg = &env->hstateen[index]; 2149 val = (uint64_t)new_val << 32; 2150 val |= *reg & 0xFFFFFFFF; 2151 wr_mask = env->mstateen[index] & mask; 2152 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2153 2154 return RISCV_EXCP_NONE; 2155 } 2156 2157 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2158 target_ulong new_val) 2159 { 2160 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2161 2162 return write_hstateenh(env, csrno, wr_mask, new_val); 2163 } 2164 2165 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2166 target_ulong new_val) 2167 { 2168 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2169 } 2170 2171 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2172 target_ulong *val) 2173 { 2174 bool virt = env->virt_enabled; 2175 int index = csrno - CSR_SSTATEEN0; 2176 2177 *val = env->sstateen[index] & env->mstateen[index]; 2178 if (virt) { 2179 *val &= env->hstateen[index]; 2180 } 2181 2182 return RISCV_EXCP_NONE; 2183 } 2184 2185 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2186 uint64_t mask, target_ulong new_val) 2187 { 2188 bool virt = env->virt_enabled; 2189 int index = csrno - CSR_SSTATEEN0; 2190 uint64_t wr_mask; 2191 uint64_t *reg; 2192 2193 wr_mask = env->mstateen[index] & mask; 2194 if (virt) { 2195 wr_mask &= env->hstateen[index]; 2196 } 2197 2198 reg = &env->sstateen[index]; 2199 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2200 2201 return RISCV_EXCP_NONE; 2202 } 2203 2204 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2205 target_ulong new_val) 2206 { 2207 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2208 2209 return write_sstateen(env, csrno, wr_mask, new_val); 2210 } 2211 2212 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2213 target_ulong new_val) 2214 { 2215 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2216 } 2217 2218 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2219 uint64_t *ret_val, 2220 uint64_t new_val, uint64_t wr_mask) 2221 { 2222 uint64_t old_mip, mask = wr_mask & delegable_ints; 2223 uint32_t gin; 2224 2225 if (mask & MIP_SEIP) { 2226 env->software_seip = new_val & MIP_SEIP; 2227 new_val |= env->external_seip * MIP_SEIP; 2228 } 2229 2230 if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && 2231 get_field(env->menvcfg, MENVCFG_STCE)) { 2232 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2233 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2234 } 2235 2236 if (mask) { 2237 old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); 2238 } else { 2239 old_mip = env->mip; 2240 } 2241 2242 if (csrno != CSR_HVIP) { 2243 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2244 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2245 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2246 } 2247 2248 if (ret_val) { 2249 *ret_val = old_mip; 2250 } 2251 2252 return RISCV_EXCP_NONE; 2253 } 2254 2255 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2256 target_ulong *ret_val, 2257 target_ulong new_val, target_ulong wr_mask) 2258 { 2259 uint64_t rval; 2260 RISCVException ret; 2261 2262 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2263 if (ret_val) { 2264 *ret_val = rval; 2265 } 2266 2267 return ret; 2268 } 2269 2270 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2271 target_ulong *ret_val, 2272 target_ulong new_val, target_ulong wr_mask) 2273 { 2274 uint64_t rval; 2275 RISCVException ret; 2276 2277 ret = rmw_mip64(env, csrno, &rval, 2278 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2279 if (ret_val) { 2280 *ret_val = rval >> 32; 2281 } 2282 2283 return ret; 2284 } 2285 2286 /* Supervisor Trap Setup */ 2287 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2288 Int128 *val) 2289 { 2290 uint64_t mask = sstatus_v1_10_mask; 2291 uint64_t sstatus = env->mstatus & mask; 2292 if (env->xl != MXL_RV32 || env->debugger) { 2293 mask |= SSTATUS64_UXL; 2294 } 2295 2296 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2297 return RISCV_EXCP_NONE; 2298 } 2299 2300 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2301 target_ulong *val) 2302 { 2303 target_ulong mask = (sstatus_v1_10_mask); 2304 if (env->xl != MXL_RV32 || env->debugger) { 2305 mask |= SSTATUS64_UXL; 2306 } 2307 /* TODO: Use SXL not MXL. */ 2308 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2309 return RISCV_EXCP_NONE; 2310 } 2311 2312 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2313 target_ulong val) 2314 { 2315 target_ulong mask = (sstatus_v1_10_mask); 2316 2317 if (env->xl != MXL_RV32 || env->debugger) { 2318 if ((val & SSTATUS64_UXL) != 0) { 2319 mask |= SSTATUS64_UXL; 2320 } 2321 } 2322 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2323 return write_mstatus(env, CSR_MSTATUS, newval); 2324 } 2325 2326 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2327 uint64_t *ret_val, 2328 uint64_t new_val, uint64_t wr_mask) 2329 { 2330 RISCVException ret; 2331 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2332 2333 /* Bring VS-level bits to correct position */ 2334 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2335 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2336 2337 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2338 if (ret_val) { 2339 *ret_val = (rval & mask) >> 1; 2340 } 2341 2342 return ret; 2343 } 2344 2345 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2346 target_ulong *ret_val, 2347 target_ulong new_val, target_ulong wr_mask) 2348 { 2349 uint64_t rval; 2350 RISCVException ret; 2351 2352 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2353 if (ret_val) { 2354 *ret_val = rval; 2355 } 2356 2357 return ret; 2358 } 2359 2360 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2361 target_ulong *ret_val, 2362 target_ulong new_val, target_ulong wr_mask) 2363 { 2364 uint64_t rval; 2365 RISCVException ret; 2366 2367 ret = rmw_vsie64(env, csrno, &rval, 2368 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2369 if (ret_val) { 2370 *ret_val = rval >> 32; 2371 } 2372 2373 return ret; 2374 } 2375 2376 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2377 uint64_t *ret_val, 2378 uint64_t new_val, uint64_t wr_mask) 2379 { 2380 RISCVException ret; 2381 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2382 2383 if (env->virt_enabled) { 2384 if (env->hvictl & HVICTL_VTI) { 2385 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2386 } 2387 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2388 } else { 2389 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2390 } 2391 2392 if (ret_val) { 2393 *ret_val &= mask; 2394 } 2395 2396 return ret; 2397 } 2398 2399 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2400 target_ulong *ret_val, 2401 target_ulong new_val, target_ulong wr_mask) 2402 { 2403 uint64_t rval; 2404 RISCVException ret; 2405 2406 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2407 if (ret == RISCV_EXCP_NONE && ret_val) { 2408 *ret_val = rval; 2409 } 2410 2411 return ret; 2412 } 2413 2414 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2415 target_ulong *ret_val, 2416 target_ulong new_val, target_ulong wr_mask) 2417 { 2418 uint64_t rval; 2419 RISCVException ret; 2420 2421 ret = rmw_sie64(env, csrno, &rval, 2422 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2423 if (ret_val) { 2424 *ret_val = rval >> 32; 2425 } 2426 2427 return ret; 2428 } 2429 2430 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2431 target_ulong *val) 2432 { 2433 *val = env->stvec; 2434 return RISCV_EXCP_NONE; 2435 } 2436 2437 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2438 target_ulong val) 2439 { 2440 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2441 if ((val & 3) < 2) { 2442 env->stvec = val; 2443 } else { 2444 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2445 } 2446 return RISCV_EXCP_NONE; 2447 } 2448 2449 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2450 target_ulong *val) 2451 { 2452 *val = env->scounteren; 2453 return RISCV_EXCP_NONE; 2454 } 2455 2456 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2457 target_ulong val) 2458 { 2459 env->scounteren = val; 2460 return RISCV_EXCP_NONE; 2461 } 2462 2463 /* Supervisor Trap Handling */ 2464 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2465 Int128 *val) 2466 { 2467 *val = int128_make128(env->sscratch, env->sscratchh); 2468 return RISCV_EXCP_NONE; 2469 } 2470 2471 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2472 Int128 val) 2473 { 2474 env->sscratch = int128_getlo(val); 2475 env->sscratchh = int128_gethi(val); 2476 return RISCV_EXCP_NONE; 2477 } 2478 2479 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2480 target_ulong *val) 2481 { 2482 *val = env->sscratch; 2483 return RISCV_EXCP_NONE; 2484 } 2485 2486 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2487 target_ulong val) 2488 { 2489 env->sscratch = val; 2490 return RISCV_EXCP_NONE; 2491 } 2492 2493 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2494 target_ulong *val) 2495 { 2496 *val = env->sepc; 2497 return RISCV_EXCP_NONE; 2498 } 2499 2500 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2501 target_ulong val) 2502 { 2503 env->sepc = val; 2504 return RISCV_EXCP_NONE; 2505 } 2506 2507 static RISCVException read_scause(CPURISCVState *env, int csrno, 2508 target_ulong *val) 2509 { 2510 *val = env->scause; 2511 return RISCV_EXCP_NONE; 2512 } 2513 2514 static RISCVException write_scause(CPURISCVState *env, int csrno, 2515 target_ulong val) 2516 { 2517 env->scause = val; 2518 return RISCV_EXCP_NONE; 2519 } 2520 2521 static RISCVException read_stval(CPURISCVState *env, int csrno, 2522 target_ulong *val) 2523 { 2524 *val = env->stval; 2525 return RISCV_EXCP_NONE; 2526 } 2527 2528 static RISCVException write_stval(CPURISCVState *env, int csrno, 2529 target_ulong val) 2530 { 2531 env->stval = val; 2532 return RISCV_EXCP_NONE; 2533 } 2534 2535 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2536 uint64_t *ret_val, 2537 uint64_t new_val, uint64_t wr_mask) 2538 { 2539 RISCVException ret; 2540 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2541 2542 /* Bring VS-level bits to correct position */ 2543 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2544 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2545 2546 ret = rmw_mip64(env, csrno, &rval, new_val, 2547 wr_mask & mask & vsip_writable_mask); 2548 if (ret_val) { 2549 *ret_val = (rval & mask) >> 1; 2550 } 2551 2552 return ret; 2553 } 2554 2555 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2556 target_ulong *ret_val, 2557 target_ulong new_val, target_ulong wr_mask) 2558 { 2559 uint64_t rval; 2560 RISCVException ret; 2561 2562 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2563 if (ret_val) { 2564 *ret_val = rval; 2565 } 2566 2567 return ret; 2568 } 2569 2570 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2571 target_ulong *ret_val, 2572 target_ulong new_val, target_ulong wr_mask) 2573 { 2574 uint64_t rval; 2575 RISCVException ret; 2576 2577 ret = rmw_vsip64(env, csrno, &rval, 2578 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2579 if (ret_val) { 2580 *ret_val = rval >> 32; 2581 } 2582 2583 return ret; 2584 } 2585 2586 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2587 uint64_t *ret_val, 2588 uint64_t new_val, uint64_t wr_mask) 2589 { 2590 RISCVException ret; 2591 uint64_t mask = env->mideleg & sip_writable_mask; 2592 2593 if (env->virt_enabled) { 2594 if (env->hvictl & HVICTL_VTI) { 2595 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2596 } 2597 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2598 } else { 2599 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2600 } 2601 2602 if (ret_val) { 2603 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2604 } 2605 2606 return ret; 2607 } 2608 2609 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2610 target_ulong *ret_val, 2611 target_ulong new_val, target_ulong wr_mask) 2612 { 2613 uint64_t rval; 2614 RISCVException ret; 2615 2616 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2617 if (ret_val) { 2618 *ret_val = rval; 2619 } 2620 2621 return ret; 2622 } 2623 2624 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2625 target_ulong *ret_val, 2626 target_ulong new_val, target_ulong wr_mask) 2627 { 2628 uint64_t rval; 2629 RISCVException ret; 2630 2631 ret = rmw_sip64(env, csrno, &rval, 2632 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2633 if (ret_val) { 2634 *ret_val = rval >> 32; 2635 } 2636 2637 return ret; 2638 } 2639 2640 /* Supervisor Protection and Translation */ 2641 static RISCVException read_satp(CPURISCVState *env, int csrno, 2642 target_ulong *val) 2643 { 2644 if (!riscv_cpu_cfg(env)->mmu) { 2645 *val = 0; 2646 return RISCV_EXCP_NONE; 2647 } 2648 2649 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2650 return RISCV_EXCP_ILLEGAL_INST; 2651 } else { 2652 *val = env->satp; 2653 } 2654 2655 return RISCV_EXCP_NONE; 2656 } 2657 2658 static RISCVException write_satp(CPURISCVState *env, int csrno, 2659 target_ulong val) 2660 { 2661 target_ulong mask; 2662 bool vm; 2663 2664 if (!riscv_cpu_cfg(env)->mmu) { 2665 return RISCV_EXCP_NONE; 2666 } 2667 2668 if (riscv_cpu_mxl(env) == MXL_RV32) { 2669 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2670 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2671 } else { 2672 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2673 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2674 } 2675 2676 if (vm && mask) { 2677 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2678 return RISCV_EXCP_ILLEGAL_INST; 2679 } else { 2680 /* 2681 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2682 * pass these through QEMU's TLB emulation as it improves 2683 * performance. Flushing the TLB on SATP writes with paging 2684 * enabled avoids leaking those invalid cached mappings. 2685 */ 2686 tlb_flush(env_cpu(env)); 2687 env->satp = val; 2688 } 2689 } 2690 return RISCV_EXCP_NONE; 2691 } 2692 2693 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2694 { 2695 int irq, ret; 2696 target_ulong topei; 2697 uint64_t vseip, vsgein; 2698 uint32_t iid, iprio, hviid, hviprio, gein; 2699 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2700 2701 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2702 hviid = get_field(env->hvictl, HVICTL_IID); 2703 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2704 2705 if (gein) { 2706 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2707 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2708 if (gein <= env->geilen && vseip) { 2709 siid[scount] = IRQ_S_EXT; 2710 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2711 if (env->aia_ireg_rmw_fn[PRV_S]) { 2712 /* 2713 * Call machine specific IMSIC register emulation for 2714 * reading TOPEI. 2715 */ 2716 ret = env->aia_ireg_rmw_fn[PRV_S]( 2717 env->aia_ireg_rmw_fn_arg[PRV_S], 2718 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2719 riscv_cpu_mxl_bits(env)), 2720 &topei, 0, 0); 2721 if (!ret && topei) { 2722 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2723 } 2724 } 2725 scount++; 2726 } 2727 } else { 2728 if (hviid == IRQ_S_EXT && hviprio) { 2729 siid[scount] = IRQ_S_EXT; 2730 siprio[scount] = hviprio; 2731 scount++; 2732 } 2733 } 2734 2735 if (env->hvictl & HVICTL_VTI) { 2736 if (hviid != IRQ_S_EXT) { 2737 siid[scount] = hviid; 2738 siprio[scount] = hviprio; 2739 scount++; 2740 } 2741 } else { 2742 irq = riscv_cpu_vsirq_pending(env); 2743 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2744 siid[scount] = irq; 2745 siprio[scount] = env->hviprio[irq]; 2746 scount++; 2747 } 2748 } 2749 2750 iid = 0; 2751 iprio = UINT_MAX; 2752 for (s = 0; s < scount; s++) { 2753 if (siprio[s] < iprio) { 2754 iid = siid[s]; 2755 iprio = siprio[s]; 2756 } 2757 } 2758 2759 if (iid) { 2760 if (env->hvictl & HVICTL_IPRIOM) { 2761 if (iprio > IPRIO_MMAXIPRIO) { 2762 iprio = IPRIO_MMAXIPRIO; 2763 } 2764 if (!iprio) { 2765 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2766 iprio = IPRIO_MMAXIPRIO; 2767 } 2768 } 2769 } else { 2770 iprio = 1; 2771 } 2772 } else { 2773 iprio = 0; 2774 } 2775 2776 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2777 *val |= iprio; 2778 return RISCV_EXCP_NONE; 2779 } 2780 2781 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2782 { 2783 int irq; 2784 uint8_t iprio; 2785 2786 if (env->virt_enabled) { 2787 return read_vstopi(env, CSR_VSTOPI, val); 2788 } 2789 2790 irq = riscv_cpu_sirq_pending(env); 2791 if (irq <= 0 || irq > 63) { 2792 *val = 0; 2793 } else { 2794 iprio = env->siprio[irq]; 2795 if (!iprio) { 2796 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2797 iprio = IPRIO_MMAXIPRIO; 2798 } 2799 } 2800 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2801 *val |= iprio; 2802 } 2803 2804 return RISCV_EXCP_NONE; 2805 } 2806 2807 /* Hypervisor Extensions */ 2808 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2809 target_ulong *val) 2810 { 2811 *val = env->hstatus; 2812 if (riscv_cpu_mxl(env) != MXL_RV32) { 2813 /* We only support 64-bit VSXL */ 2814 *val = set_field(*val, HSTATUS_VSXL, 2); 2815 } 2816 /* We only support little endian */ 2817 *val = set_field(*val, HSTATUS_VSBE, 0); 2818 return RISCV_EXCP_NONE; 2819 } 2820 2821 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2822 target_ulong val) 2823 { 2824 env->hstatus = val; 2825 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2826 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2827 } 2828 if (get_field(val, HSTATUS_VSBE) != 0) { 2829 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2830 } 2831 return RISCV_EXCP_NONE; 2832 } 2833 2834 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2835 target_ulong *val) 2836 { 2837 *val = env->hedeleg; 2838 return RISCV_EXCP_NONE; 2839 } 2840 2841 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2842 target_ulong val) 2843 { 2844 env->hedeleg = val & vs_delegable_excps; 2845 return RISCV_EXCP_NONE; 2846 } 2847 2848 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2849 uint64_t *ret_val, 2850 uint64_t new_val, uint64_t wr_mask) 2851 { 2852 uint64_t mask = wr_mask & vs_delegable_ints; 2853 2854 if (ret_val) { 2855 *ret_val = env->hideleg & vs_delegable_ints; 2856 } 2857 2858 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2859 return RISCV_EXCP_NONE; 2860 } 2861 2862 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2863 target_ulong *ret_val, 2864 target_ulong new_val, target_ulong wr_mask) 2865 { 2866 uint64_t rval; 2867 RISCVException ret; 2868 2869 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2870 if (ret_val) { 2871 *ret_val = rval; 2872 } 2873 2874 return ret; 2875 } 2876 2877 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2878 target_ulong *ret_val, 2879 target_ulong new_val, target_ulong wr_mask) 2880 { 2881 uint64_t rval; 2882 RISCVException ret; 2883 2884 ret = rmw_hideleg64(env, csrno, &rval, 2885 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2886 if (ret_val) { 2887 *ret_val = rval >> 32; 2888 } 2889 2890 return ret; 2891 } 2892 2893 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2894 uint64_t *ret_val, 2895 uint64_t new_val, uint64_t wr_mask) 2896 { 2897 RISCVException ret; 2898 2899 ret = rmw_mip64(env, csrno, ret_val, new_val, 2900 wr_mask & hvip_writable_mask); 2901 if (ret_val) { 2902 *ret_val &= VS_MODE_INTERRUPTS; 2903 } 2904 2905 return ret; 2906 } 2907 2908 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2909 target_ulong *ret_val, 2910 target_ulong new_val, target_ulong wr_mask) 2911 { 2912 uint64_t rval; 2913 RISCVException ret; 2914 2915 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2916 if (ret_val) { 2917 *ret_val = rval; 2918 } 2919 2920 return ret; 2921 } 2922 2923 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2924 target_ulong *ret_val, 2925 target_ulong new_val, target_ulong wr_mask) 2926 { 2927 uint64_t rval; 2928 RISCVException ret; 2929 2930 ret = rmw_hvip64(env, csrno, &rval, 2931 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2932 if (ret_val) { 2933 *ret_val = rval >> 32; 2934 } 2935 2936 return ret; 2937 } 2938 2939 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2940 target_ulong *ret_value, 2941 target_ulong new_value, target_ulong write_mask) 2942 { 2943 int ret = rmw_mip(env, csrno, ret_value, new_value, 2944 write_mask & hip_writable_mask); 2945 2946 if (ret_value) { 2947 *ret_value &= HS_MODE_INTERRUPTS; 2948 } 2949 return ret; 2950 } 2951 2952 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2953 target_ulong *ret_val, 2954 target_ulong new_val, target_ulong wr_mask) 2955 { 2956 uint64_t rval; 2957 RISCVException ret; 2958 2959 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2960 if (ret_val) { 2961 *ret_val = rval & HS_MODE_INTERRUPTS; 2962 } 2963 2964 return ret; 2965 } 2966 2967 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2968 target_ulong *val) 2969 { 2970 *val = env->hcounteren; 2971 return RISCV_EXCP_NONE; 2972 } 2973 2974 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2975 target_ulong val) 2976 { 2977 env->hcounteren = val; 2978 return RISCV_EXCP_NONE; 2979 } 2980 2981 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2982 target_ulong *val) 2983 { 2984 if (val) { 2985 *val = env->hgeie; 2986 } 2987 return RISCV_EXCP_NONE; 2988 } 2989 2990 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2991 target_ulong val) 2992 { 2993 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2994 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2995 env->hgeie = val; 2996 /* Update mip.SGEIP bit */ 2997 riscv_cpu_update_mip(env, MIP_SGEIP, 2998 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2999 return RISCV_EXCP_NONE; 3000 } 3001 3002 static RISCVException read_htval(CPURISCVState *env, int csrno, 3003 target_ulong *val) 3004 { 3005 *val = env->htval; 3006 return RISCV_EXCP_NONE; 3007 } 3008 3009 static RISCVException write_htval(CPURISCVState *env, int csrno, 3010 target_ulong val) 3011 { 3012 env->htval = val; 3013 return RISCV_EXCP_NONE; 3014 } 3015 3016 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3017 target_ulong *val) 3018 { 3019 *val = env->htinst; 3020 return RISCV_EXCP_NONE; 3021 } 3022 3023 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3024 target_ulong val) 3025 { 3026 return RISCV_EXCP_NONE; 3027 } 3028 3029 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3030 target_ulong *val) 3031 { 3032 if (val) { 3033 *val = env->hgeip; 3034 } 3035 return RISCV_EXCP_NONE; 3036 } 3037 3038 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3039 target_ulong *val) 3040 { 3041 *val = env->hgatp; 3042 return RISCV_EXCP_NONE; 3043 } 3044 3045 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3046 target_ulong val) 3047 { 3048 env->hgatp = val; 3049 return RISCV_EXCP_NONE; 3050 } 3051 3052 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3053 target_ulong *val) 3054 { 3055 if (!env->rdtime_fn) { 3056 return RISCV_EXCP_ILLEGAL_INST; 3057 } 3058 3059 *val = env->htimedelta; 3060 return RISCV_EXCP_NONE; 3061 } 3062 3063 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3064 target_ulong val) 3065 { 3066 if (!env->rdtime_fn) { 3067 return RISCV_EXCP_ILLEGAL_INST; 3068 } 3069 3070 if (riscv_cpu_mxl(env) == MXL_RV32) { 3071 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3072 } else { 3073 env->htimedelta = val; 3074 } 3075 3076 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3077 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3078 env->htimedelta, MIP_VSTIP); 3079 } 3080 3081 return RISCV_EXCP_NONE; 3082 } 3083 3084 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3085 target_ulong *val) 3086 { 3087 if (!env->rdtime_fn) { 3088 return RISCV_EXCP_ILLEGAL_INST; 3089 } 3090 3091 *val = env->htimedelta >> 32; 3092 return RISCV_EXCP_NONE; 3093 } 3094 3095 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3096 target_ulong val) 3097 { 3098 if (!env->rdtime_fn) { 3099 return RISCV_EXCP_ILLEGAL_INST; 3100 } 3101 3102 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3103 3104 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3105 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3106 env->htimedelta, MIP_VSTIP); 3107 } 3108 3109 return RISCV_EXCP_NONE; 3110 } 3111 3112 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3113 { 3114 *val = env->hvictl; 3115 return RISCV_EXCP_NONE; 3116 } 3117 3118 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3119 { 3120 env->hvictl = val & HVICTL_VALID_MASK; 3121 return RISCV_EXCP_NONE; 3122 } 3123 3124 static int read_hvipriox(CPURISCVState *env, int first_index, 3125 uint8_t *iprio, target_ulong *val) 3126 { 3127 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3128 3129 /* First index has to be a multiple of number of irqs per register */ 3130 if (first_index % num_irqs) { 3131 return (env->virt_enabled) ? 3132 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3133 } 3134 3135 /* Fill-up return value */ 3136 *val = 0; 3137 for (i = 0; i < num_irqs; i++) { 3138 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3139 continue; 3140 } 3141 if (rdzero) { 3142 continue; 3143 } 3144 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3145 } 3146 3147 return RISCV_EXCP_NONE; 3148 } 3149 3150 static int write_hvipriox(CPURISCVState *env, int first_index, 3151 uint8_t *iprio, target_ulong val) 3152 { 3153 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3154 3155 /* First index has to be a multiple of number of irqs per register */ 3156 if (first_index % num_irqs) { 3157 return (env->virt_enabled) ? 3158 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3159 } 3160 3161 /* Fill-up priority arrary */ 3162 for (i = 0; i < num_irqs; i++) { 3163 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3164 continue; 3165 } 3166 if (rdzero) { 3167 iprio[irq] = 0; 3168 } else { 3169 iprio[irq] = (val >> (i * 8)) & 0xff; 3170 } 3171 } 3172 3173 return RISCV_EXCP_NONE; 3174 } 3175 3176 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3177 { 3178 return read_hvipriox(env, 0, env->hviprio, val); 3179 } 3180 3181 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3182 { 3183 return write_hvipriox(env, 0, env->hviprio, val); 3184 } 3185 3186 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3187 { 3188 return read_hvipriox(env, 4, env->hviprio, val); 3189 } 3190 3191 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3192 { 3193 return write_hvipriox(env, 4, env->hviprio, val); 3194 } 3195 3196 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3197 { 3198 return read_hvipriox(env, 8, env->hviprio, val); 3199 } 3200 3201 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3202 { 3203 return write_hvipriox(env, 8, env->hviprio, val); 3204 } 3205 3206 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3207 { 3208 return read_hvipriox(env, 12, env->hviprio, val); 3209 } 3210 3211 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3212 { 3213 return write_hvipriox(env, 12, env->hviprio, val); 3214 } 3215 3216 /* Virtual CSR Registers */ 3217 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3218 target_ulong *val) 3219 { 3220 *val = env->vsstatus; 3221 return RISCV_EXCP_NONE; 3222 } 3223 3224 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3225 target_ulong val) 3226 { 3227 uint64_t mask = (target_ulong)-1; 3228 if ((val & VSSTATUS64_UXL) == 0) { 3229 mask &= ~VSSTATUS64_UXL; 3230 } 3231 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3232 return RISCV_EXCP_NONE; 3233 } 3234 3235 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3236 { 3237 *val = env->vstvec; 3238 return RISCV_EXCP_NONE; 3239 } 3240 3241 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3242 target_ulong val) 3243 { 3244 env->vstvec = val; 3245 return RISCV_EXCP_NONE; 3246 } 3247 3248 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3249 target_ulong *val) 3250 { 3251 *val = env->vsscratch; 3252 return RISCV_EXCP_NONE; 3253 } 3254 3255 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3256 target_ulong val) 3257 { 3258 env->vsscratch = val; 3259 return RISCV_EXCP_NONE; 3260 } 3261 3262 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3263 target_ulong *val) 3264 { 3265 *val = env->vsepc; 3266 return RISCV_EXCP_NONE; 3267 } 3268 3269 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3270 target_ulong val) 3271 { 3272 env->vsepc = val; 3273 return RISCV_EXCP_NONE; 3274 } 3275 3276 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3277 target_ulong *val) 3278 { 3279 *val = env->vscause; 3280 return RISCV_EXCP_NONE; 3281 } 3282 3283 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3284 target_ulong val) 3285 { 3286 env->vscause = val; 3287 return RISCV_EXCP_NONE; 3288 } 3289 3290 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3291 target_ulong *val) 3292 { 3293 *val = env->vstval; 3294 return RISCV_EXCP_NONE; 3295 } 3296 3297 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3298 target_ulong val) 3299 { 3300 env->vstval = val; 3301 return RISCV_EXCP_NONE; 3302 } 3303 3304 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3305 target_ulong *val) 3306 { 3307 *val = env->vsatp; 3308 return RISCV_EXCP_NONE; 3309 } 3310 3311 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3312 target_ulong val) 3313 { 3314 env->vsatp = val; 3315 return RISCV_EXCP_NONE; 3316 } 3317 3318 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3319 target_ulong *val) 3320 { 3321 *val = env->mtval2; 3322 return RISCV_EXCP_NONE; 3323 } 3324 3325 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3326 target_ulong val) 3327 { 3328 env->mtval2 = val; 3329 return RISCV_EXCP_NONE; 3330 } 3331 3332 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3333 target_ulong *val) 3334 { 3335 *val = env->mtinst; 3336 return RISCV_EXCP_NONE; 3337 } 3338 3339 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3340 target_ulong val) 3341 { 3342 env->mtinst = val; 3343 return RISCV_EXCP_NONE; 3344 } 3345 3346 /* Physical Memory Protection */ 3347 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3348 target_ulong *val) 3349 { 3350 *val = mseccfg_csr_read(env); 3351 return RISCV_EXCP_NONE; 3352 } 3353 3354 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3355 target_ulong val) 3356 { 3357 mseccfg_csr_write(env, val); 3358 return RISCV_EXCP_NONE; 3359 } 3360 3361 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3362 target_ulong *val) 3363 { 3364 uint32_t reg_index = csrno - CSR_PMPCFG0; 3365 3366 *val = pmpcfg_csr_read(env, reg_index); 3367 return RISCV_EXCP_NONE; 3368 } 3369 3370 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3371 target_ulong val) 3372 { 3373 uint32_t reg_index = csrno - CSR_PMPCFG0; 3374 3375 pmpcfg_csr_write(env, reg_index, val); 3376 return RISCV_EXCP_NONE; 3377 } 3378 3379 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3380 target_ulong *val) 3381 { 3382 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3383 return RISCV_EXCP_NONE; 3384 } 3385 3386 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3387 target_ulong val) 3388 { 3389 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3390 return RISCV_EXCP_NONE; 3391 } 3392 3393 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3394 target_ulong *val) 3395 { 3396 *val = tselect_csr_read(env); 3397 return RISCV_EXCP_NONE; 3398 } 3399 3400 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3401 target_ulong val) 3402 { 3403 tselect_csr_write(env, val); 3404 return RISCV_EXCP_NONE; 3405 } 3406 3407 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3408 target_ulong *val) 3409 { 3410 /* return 0 in tdata1 to end the trigger enumeration */ 3411 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3412 *val = 0; 3413 return RISCV_EXCP_NONE; 3414 } 3415 3416 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3417 return RISCV_EXCP_ILLEGAL_INST; 3418 } 3419 3420 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3421 return RISCV_EXCP_NONE; 3422 } 3423 3424 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3425 target_ulong val) 3426 { 3427 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3428 return RISCV_EXCP_ILLEGAL_INST; 3429 } 3430 3431 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3432 return RISCV_EXCP_NONE; 3433 } 3434 3435 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3436 target_ulong *val) 3437 { 3438 *val = tinfo_csr_read(env); 3439 return RISCV_EXCP_NONE; 3440 } 3441 3442 /* 3443 * Functions to access Pointer Masking feature registers 3444 * We have to check if current priv lvl could modify 3445 * csr in given mode 3446 */ 3447 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3448 { 3449 int csr_priv = get_field(csrno, 0x300); 3450 int pm_current; 3451 3452 if (env->debugger) { 3453 return false; 3454 } 3455 /* 3456 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3457 * so allow the access 3458 */ 3459 if (env->priv != csr_priv) { 3460 return false; 3461 } 3462 switch (env->priv) { 3463 case PRV_M: 3464 pm_current = get_field(env->mmte, M_PM_CURRENT); 3465 break; 3466 case PRV_S: 3467 pm_current = get_field(env->mmte, S_PM_CURRENT); 3468 break; 3469 case PRV_U: 3470 pm_current = get_field(env->mmte, U_PM_CURRENT); 3471 break; 3472 default: 3473 g_assert_not_reached(); 3474 } 3475 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3476 return !pm_current; 3477 } 3478 3479 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3480 target_ulong *val) 3481 { 3482 *val = env->mmte & MMTE_MASK; 3483 return RISCV_EXCP_NONE; 3484 } 3485 3486 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3487 target_ulong val) 3488 { 3489 uint64_t mstatus; 3490 target_ulong wpri_val = val & MMTE_MASK; 3491 3492 if (val != wpri_val) { 3493 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3494 "MMTE: WPRI violation written 0x", val, 3495 "vs expected 0x", wpri_val); 3496 } 3497 /* for machine mode pm.current is hardwired to 1 */ 3498 wpri_val |= MMTE_M_PM_CURRENT; 3499 3500 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3501 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3502 env->mmte = wpri_val | PM_EXT_DIRTY; 3503 riscv_cpu_update_mask(env); 3504 3505 /* Set XS and SD bits, since PM CSRs are dirty */ 3506 mstatus = env->mstatus | MSTATUS_XS; 3507 write_mstatus(env, csrno, mstatus); 3508 return RISCV_EXCP_NONE; 3509 } 3510 3511 static RISCVException read_smte(CPURISCVState *env, int csrno, 3512 target_ulong *val) 3513 { 3514 *val = env->mmte & SMTE_MASK; 3515 return RISCV_EXCP_NONE; 3516 } 3517 3518 static RISCVException write_smte(CPURISCVState *env, int csrno, 3519 target_ulong val) 3520 { 3521 target_ulong wpri_val = val & SMTE_MASK; 3522 3523 if (val != wpri_val) { 3524 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3525 "SMTE: WPRI violation written 0x", val, 3526 "vs expected 0x", wpri_val); 3527 } 3528 3529 /* if pm.current==0 we can't modify current PM CSRs */ 3530 if (check_pm_current_disabled(env, csrno)) { 3531 return RISCV_EXCP_NONE; 3532 } 3533 3534 wpri_val |= (env->mmte & ~SMTE_MASK); 3535 write_mmte(env, csrno, wpri_val); 3536 return RISCV_EXCP_NONE; 3537 } 3538 3539 static RISCVException read_umte(CPURISCVState *env, int csrno, 3540 target_ulong *val) 3541 { 3542 *val = env->mmte & UMTE_MASK; 3543 return RISCV_EXCP_NONE; 3544 } 3545 3546 static RISCVException write_umte(CPURISCVState *env, int csrno, 3547 target_ulong val) 3548 { 3549 target_ulong wpri_val = val & UMTE_MASK; 3550 3551 if (val != wpri_val) { 3552 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3553 "UMTE: WPRI violation written 0x", val, 3554 "vs expected 0x", wpri_val); 3555 } 3556 3557 if (check_pm_current_disabled(env, csrno)) { 3558 return RISCV_EXCP_NONE; 3559 } 3560 3561 wpri_val |= (env->mmte & ~UMTE_MASK); 3562 write_mmte(env, csrno, wpri_val); 3563 return RISCV_EXCP_NONE; 3564 } 3565 3566 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3567 target_ulong *val) 3568 { 3569 *val = env->mpmmask; 3570 return RISCV_EXCP_NONE; 3571 } 3572 3573 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3574 target_ulong val) 3575 { 3576 uint64_t mstatus; 3577 3578 env->mpmmask = val; 3579 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3580 env->cur_pmmask = val; 3581 } 3582 env->mmte |= PM_EXT_DIRTY; 3583 3584 /* Set XS and SD bits, since PM CSRs are dirty */ 3585 mstatus = env->mstatus | MSTATUS_XS; 3586 write_mstatus(env, csrno, mstatus); 3587 return RISCV_EXCP_NONE; 3588 } 3589 3590 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3591 target_ulong *val) 3592 { 3593 *val = env->spmmask; 3594 return RISCV_EXCP_NONE; 3595 } 3596 3597 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3598 target_ulong val) 3599 { 3600 uint64_t mstatus; 3601 3602 /* if pm.current==0 we can't modify current PM CSRs */ 3603 if (check_pm_current_disabled(env, csrno)) { 3604 return RISCV_EXCP_NONE; 3605 } 3606 env->spmmask = val; 3607 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3608 env->cur_pmmask = val; 3609 } 3610 env->mmte |= PM_EXT_DIRTY; 3611 3612 /* Set XS and SD bits, since PM CSRs are dirty */ 3613 mstatus = env->mstatus | MSTATUS_XS; 3614 write_mstatus(env, csrno, mstatus); 3615 return RISCV_EXCP_NONE; 3616 } 3617 3618 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3619 target_ulong *val) 3620 { 3621 *val = env->upmmask; 3622 return RISCV_EXCP_NONE; 3623 } 3624 3625 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3626 target_ulong val) 3627 { 3628 uint64_t mstatus; 3629 3630 /* if pm.current==0 we can't modify current PM CSRs */ 3631 if (check_pm_current_disabled(env, csrno)) { 3632 return RISCV_EXCP_NONE; 3633 } 3634 env->upmmask = val; 3635 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3636 env->cur_pmmask = val; 3637 } 3638 env->mmte |= PM_EXT_DIRTY; 3639 3640 /* Set XS and SD bits, since PM CSRs are dirty */ 3641 mstatus = env->mstatus | MSTATUS_XS; 3642 write_mstatus(env, csrno, mstatus); 3643 return RISCV_EXCP_NONE; 3644 } 3645 3646 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3647 target_ulong *val) 3648 { 3649 *val = env->mpmbase; 3650 return RISCV_EXCP_NONE; 3651 } 3652 3653 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3654 target_ulong val) 3655 { 3656 uint64_t mstatus; 3657 3658 env->mpmbase = val; 3659 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3660 env->cur_pmbase = val; 3661 } 3662 env->mmte |= PM_EXT_DIRTY; 3663 3664 /* Set XS and SD bits, since PM CSRs are dirty */ 3665 mstatus = env->mstatus | MSTATUS_XS; 3666 write_mstatus(env, csrno, mstatus); 3667 return RISCV_EXCP_NONE; 3668 } 3669 3670 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3671 target_ulong *val) 3672 { 3673 *val = env->spmbase; 3674 return RISCV_EXCP_NONE; 3675 } 3676 3677 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3678 target_ulong val) 3679 { 3680 uint64_t mstatus; 3681 3682 /* if pm.current==0 we can't modify current PM CSRs */ 3683 if (check_pm_current_disabled(env, csrno)) { 3684 return RISCV_EXCP_NONE; 3685 } 3686 env->spmbase = val; 3687 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3688 env->cur_pmbase = val; 3689 } 3690 env->mmte |= PM_EXT_DIRTY; 3691 3692 /* Set XS and SD bits, since PM CSRs are dirty */ 3693 mstatus = env->mstatus | MSTATUS_XS; 3694 write_mstatus(env, csrno, mstatus); 3695 return RISCV_EXCP_NONE; 3696 } 3697 3698 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3699 target_ulong *val) 3700 { 3701 *val = env->upmbase; 3702 return RISCV_EXCP_NONE; 3703 } 3704 3705 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3706 target_ulong val) 3707 { 3708 uint64_t mstatus; 3709 3710 /* if pm.current==0 we can't modify current PM CSRs */ 3711 if (check_pm_current_disabled(env, csrno)) { 3712 return RISCV_EXCP_NONE; 3713 } 3714 env->upmbase = val; 3715 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3716 env->cur_pmbase = val; 3717 } 3718 env->mmte |= PM_EXT_DIRTY; 3719 3720 /* Set XS and SD bits, since PM CSRs are dirty */ 3721 mstatus = env->mstatus | MSTATUS_XS; 3722 write_mstatus(env, csrno, mstatus); 3723 return RISCV_EXCP_NONE; 3724 } 3725 3726 #endif 3727 3728 /* Crypto Extension */ 3729 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3730 target_ulong *ret_value, 3731 target_ulong new_value, 3732 target_ulong write_mask) 3733 { 3734 uint16_t random_v; 3735 Error *random_e = NULL; 3736 int random_r; 3737 target_ulong rval; 3738 3739 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3740 if (unlikely(random_r < 0)) { 3741 /* 3742 * Failed, for unknown reasons in the crypto subsystem. 3743 * The best we can do is log the reason and return a 3744 * failure indication to the guest. There is no reason 3745 * we know to expect the failure to be transitory, so 3746 * indicate DEAD to avoid having the guest spin on WAIT. 3747 */ 3748 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3749 __func__, error_get_pretty(random_e)); 3750 error_free(random_e); 3751 rval = SEED_OPST_DEAD; 3752 } else { 3753 rval = random_v | SEED_OPST_ES16; 3754 } 3755 3756 if (ret_value) { 3757 *ret_value = rval; 3758 } 3759 3760 return RISCV_EXCP_NONE; 3761 } 3762 3763 /* 3764 * riscv_csrrw - read and/or update control and status register 3765 * 3766 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3767 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3768 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3769 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3770 */ 3771 3772 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3773 int csrno, 3774 bool write_mask) 3775 { 3776 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3777 bool read_only = get_field(csrno, 0xC00) == 3; 3778 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3779 3780 /* ensure the CSR extension is enabled */ 3781 if (!riscv_cpu_cfg(env)->ext_icsr) { 3782 return RISCV_EXCP_ILLEGAL_INST; 3783 } 3784 3785 /* privileged spec version check */ 3786 if (env->priv_ver < csr_min_priv) { 3787 return RISCV_EXCP_ILLEGAL_INST; 3788 } 3789 3790 /* read / write check */ 3791 if (write_mask && read_only) { 3792 return RISCV_EXCP_ILLEGAL_INST; 3793 } 3794 3795 /* 3796 * The predicate() not only does existence check but also does some 3797 * access control check which triggers for example virtual instruction 3798 * exception in some cases. When writing read-only CSRs in those cases 3799 * illegal instruction exception should be triggered instead of virtual 3800 * instruction exception. Hence this comes after the read / write check. 3801 */ 3802 g_assert(csr_ops[csrno].predicate != NULL); 3803 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3804 if (ret != RISCV_EXCP_NONE) { 3805 return ret; 3806 } 3807 3808 #if !defined(CONFIG_USER_ONLY) 3809 int csr_priv, effective_priv = env->priv; 3810 3811 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3812 !env->virt_enabled) { 3813 /* 3814 * We are in HS mode. Add 1 to the effective privledge level to 3815 * allow us to access the Hypervisor CSRs. 3816 */ 3817 effective_priv++; 3818 } 3819 3820 csr_priv = get_field(csrno, 0x300); 3821 if (!env->debugger && (effective_priv < csr_priv)) { 3822 if (csr_priv == (PRV_S + 1) && env->virt_enabled) { 3823 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3824 } 3825 return RISCV_EXCP_ILLEGAL_INST; 3826 } 3827 #endif 3828 return RISCV_EXCP_NONE; 3829 } 3830 3831 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3832 target_ulong *ret_value, 3833 target_ulong new_value, 3834 target_ulong write_mask) 3835 { 3836 RISCVException ret; 3837 target_ulong old_value; 3838 3839 /* execute combined read/write operation if it exists */ 3840 if (csr_ops[csrno].op) { 3841 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3842 } 3843 3844 /* if no accessor exists then return failure */ 3845 if (!csr_ops[csrno].read) { 3846 return RISCV_EXCP_ILLEGAL_INST; 3847 } 3848 /* read old value */ 3849 ret = csr_ops[csrno].read(env, csrno, &old_value); 3850 if (ret != RISCV_EXCP_NONE) { 3851 return ret; 3852 } 3853 3854 /* write value if writable and write mask set, otherwise drop writes */ 3855 if (write_mask) { 3856 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3857 if (csr_ops[csrno].write) { 3858 ret = csr_ops[csrno].write(env, csrno, new_value); 3859 if (ret != RISCV_EXCP_NONE) { 3860 return ret; 3861 } 3862 } 3863 } 3864 3865 /* return old value */ 3866 if (ret_value) { 3867 *ret_value = old_value; 3868 } 3869 3870 return RISCV_EXCP_NONE; 3871 } 3872 3873 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3874 target_ulong *ret_value, 3875 target_ulong new_value, target_ulong write_mask) 3876 { 3877 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask); 3878 if (ret != RISCV_EXCP_NONE) { 3879 return ret; 3880 } 3881 3882 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3883 } 3884 3885 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3886 Int128 *ret_value, 3887 Int128 new_value, 3888 Int128 write_mask) 3889 { 3890 RISCVException ret; 3891 Int128 old_value; 3892 3893 /* read old value */ 3894 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3895 if (ret != RISCV_EXCP_NONE) { 3896 return ret; 3897 } 3898 3899 /* write value if writable and write mask set, otherwise drop writes */ 3900 if (int128_nz(write_mask)) { 3901 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3902 int128_and(new_value, write_mask)); 3903 if (csr_ops[csrno].write128) { 3904 ret = csr_ops[csrno].write128(env, csrno, new_value); 3905 if (ret != RISCV_EXCP_NONE) { 3906 return ret; 3907 } 3908 } else if (csr_ops[csrno].write) { 3909 /* avoids having to write wrappers for all registers */ 3910 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3911 if (ret != RISCV_EXCP_NONE) { 3912 return ret; 3913 } 3914 } 3915 } 3916 3917 /* return old value */ 3918 if (ret_value) { 3919 *ret_value = old_value; 3920 } 3921 3922 return RISCV_EXCP_NONE; 3923 } 3924 3925 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3926 Int128 *ret_value, 3927 Int128 new_value, Int128 write_mask) 3928 { 3929 RISCVException ret; 3930 3931 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask)); 3932 if (ret != RISCV_EXCP_NONE) { 3933 return ret; 3934 } 3935 3936 if (csr_ops[csrno].read128) { 3937 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3938 } 3939 3940 /* 3941 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3942 * at all defined. 3943 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3944 * significant), for those, this fallback is correctly handling the accesses 3945 */ 3946 target_ulong old_value; 3947 ret = riscv_csrrw_do64(env, csrno, &old_value, 3948 int128_getlo(new_value), 3949 int128_getlo(write_mask)); 3950 if (ret == RISCV_EXCP_NONE && ret_value) { 3951 *ret_value = int128_make64(old_value); 3952 } 3953 return ret; 3954 } 3955 3956 /* 3957 * Debugger support. If not in user mode, set env->debugger before the 3958 * riscv_csrrw call and clear it after the call. 3959 */ 3960 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3961 target_ulong *ret_value, 3962 target_ulong new_value, 3963 target_ulong write_mask) 3964 { 3965 RISCVException ret; 3966 #if !defined(CONFIG_USER_ONLY) 3967 env->debugger = true; 3968 #endif 3969 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3970 #if !defined(CONFIG_USER_ONLY) 3971 env->debugger = false; 3972 #endif 3973 return ret; 3974 } 3975 3976 static RISCVException read_jvt(CPURISCVState *env, int csrno, 3977 target_ulong *val) 3978 { 3979 *val = env->jvt; 3980 return RISCV_EXCP_NONE; 3981 } 3982 3983 static RISCVException write_jvt(CPURISCVState *env, int csrno, 3984 target_ulong val) 3985 { 3986 env->jvt = val; 3987 return RISCV_EXCP_NONE; 3988 } 3989 3990 /* Control and Status Register function table */ 3991 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3992 /* User Floating-Point CSRs */ 3993 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3994 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3995 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3996 /* Vector CSRs */ 3997 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 3998 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 3999 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4000 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4001 [CSR_VL] = { "vl", vs, read_vl }, 4002 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4003 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4004 /* User Timers and Counters */ 4005 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4006 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4007 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4008 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4009 4010 /* 4011 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4012 * rdtime callback is not provided by machine/platform emulation. 4013 */ 4014 [CSR_TIME] = { "time", ctr, read_time }, 4015 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4016 4017 /* Crypto Extension */ 4018 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4019 4020 /* Zcmt Extension */ 4021 [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, 4022 4023 #if !defined(CONFIG_USER_ONLY) 4024 /* Machine Timers and Counters */ 4025 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4026 write_mhpmcounter }, 4027 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4028 write_mhpmcounter }, 4029 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4030 write_mhpmcounterh }, 4031 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4032 write_mhpmcounterh }, 4033 4034 /* Machine Information Registers */ 4035 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4036 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4037 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4038 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4039 4040 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4041 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4042 /* Machine Trap Setup */ 4043 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4044 NULL, read_mstatus_i128 }, 4045 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4046 NULL, read_misa_i128 }, 4047 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4048 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4049 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4050 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4051 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4052 write_mcounteren }, 4053 4054 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4055 write_mstatush }, 4056 4057 /* Machine Trap Handling */ 4058 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4059 NULL, read_mscratch_i128, write_mscratch_i128 }, 4060 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4061 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4062 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4063 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4064 4065 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4066 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4067 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4068 4069 /* Machine-Level Interrupts (AIA) */ 4070 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4071 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4072 4073 /* Virtual Interrupts for Supervisor Level (AIA) */ 4074 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4075 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4076 4077 /* Machine-Level High-Half CSRs (AIA) */ 4078 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4079 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4080 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4081 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4082 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4083 4084 /* Execution environment configuration */ 4085 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4086 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4087 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4088 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4089 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4090 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4091 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4092 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4093 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4094 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4095 4096 /* Smstateen extension CSRs */ 4097 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4098 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4099 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4100 write_mstateen0h, 4101 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4102 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4103 write_mstateen_1_3, 4104 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4105 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4106 write_mstateenh_1_3, 4107 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4108 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4109 write_mstateen_1_3, 4110 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4111 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4112 write_mstateenh_1_3, 4113 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4114 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4115 write_mstateen_1_3, 4116 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4117 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4118 write_mstateenh_1_3, 4119 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4120 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4121 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4122 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4123 write_hstateen0h, 4124 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4125 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4126 write_hstateen_1_3, 4127 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4128 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4129 write_hstateenh_1_3, 4130 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4131 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4132 write_hstateen_1_3, 4133 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4134 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4135 write_hstateenh_1_3, 4136 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4137 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4138 write_hstateen_1_3, 4139 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4140 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4141 write_hstateenh_1_3, 4142 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4143 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4144 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4145 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4146 write_sstateen_1_3, 4147 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4148 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4149 write_sstateen_1_3, 4150 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4151 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4152 write_sstateen_1_3, 4153 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4154 4155 /* Supervisor Trap Setup */ 4156 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4157 NULL, read_sstatus_i128 }, 4158 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4159 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4160 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4161 write_scounteren }, 4162 4163 /* Supervisor Trap Handling */ 4164 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4165 NULL, read_sscratch_i128, write_sscratch_i128 }, 4166 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4167 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4168 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4169 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4170 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4171 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4172 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4173 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4174 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4175 write_vstimecmp, 4176 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4177 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4178 write_vstimecmph, 4179 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4180 4181 /* Supervisor Protection and Translation */ 4182 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 4183 4184 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4185 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4186 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4187 4188 /* Supervisor-Level Interrupts (AIA) */ 4189 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4190 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4191 4192 /* Supervisor-Level High-Half CSRs (AIA) */ 4193 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4194 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4195 4196 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4197 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4198 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4199 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4200 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4201 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4202 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4203 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4204 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4205 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4206 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4207 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4208 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4209 write_hcounteren, 4210 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4211 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4212 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4213 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4214 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4215 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4216 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4217 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4218 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4219 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 4220 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4221 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4222 write_htimedelta, 4223 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4224 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4225 write_htimedeltah, 4226 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4227 4228 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4229 write_vsstatus, 4230 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4231 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4232 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4233 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4234 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4235 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4236 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4237 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4238 write_vsscratch, 4239 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4240 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4241 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4242 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4243 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4244 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4245 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4246 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4247 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4248 4249 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4250 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4251 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4252 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4253 4254 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4255 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4256 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4257 write_hvictl }, 4258 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4259 write_hviprio1 }, 4260 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4261 write_hviprio2 }, 4262 4263 /* 4264 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4265 */ 4266 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4267 rmw_xiselect }, 4268 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4269 4270 /* VS-Level Interrupts (H-extension with AIA) */ 4271 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4272 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4273 4274 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4275 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4276 rmw_hidelegh }, 4277 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4278 write_ignore }, 4279 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4280 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4281 write_hviprio1h }, 4282 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4283 write_hviprio2h }, 4284 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4285 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4286 4287 /* Physical Memory Protection */ 4288 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4289 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4290 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4291 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4292 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4293 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4294 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4295 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4296 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4297 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4298 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4299 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4300 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4301 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4302 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4303 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4304 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4305 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4306 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4307 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4308 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4309 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4310 4311 /* Debug CSRs */ 4312 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4313 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4314 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4315 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4316 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4317 4318 /* User Pointer Masking */ 4319 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4320 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4321 write_upmmask }, 4322 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4323 write_upmbase }, 4324 /* Machine Pointer Masking */ 4325 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4326 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4327 write_mpmmask }, 4328 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4329 write_mpmbase }, 4330 /* Supervisor Pointer Masking */ 4331 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4332 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4333 write_spmmask }, 4334 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4335 write_spmbase }, 4336 4337 /* Performance Counters */ 4338 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4339 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4340 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4341 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4342 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4343 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4344 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4345 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4346 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4347 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4348 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4349 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4350 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4351 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4352 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4353 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4354 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4355 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4356 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4357 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4358 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4359 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4360 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4361 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4362 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4363 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4364 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4365 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4366 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4367 4368 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4369 write_mhpmcounter }, 4370 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4371 write_mhpmcounter }, 4372 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4373 write_mhpmcounter }, 4374 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4375 write_mhpmcounter }, 4376 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4377 write_mhpmcounter }, 4378 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4379 write_mhpmcounter }, 4380 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4381 write_mhpmcounter }, 4382 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4383 write_mhpmcounter }, 4384 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4385 write_mhpmcounter }, 4386 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4387 write_mhpmcounter }, 4388 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4389 write_mhpmcounter }, 4390 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4391 write_mhpmcounter }, 4392 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4393 write_mhpmcounter }, 4394 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4395 write_mhpmcounter }, 4396 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4397 write_mhpmcounter }, 4398 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4399 write_mhpmcounter }, 4400 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4401 write_mhpmcounter }, 4402 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4403 write_mhpmcounter }, 4404 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4405 write_mhpmcounter }, 4406 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4407 write_mhpmcounter }, 4408 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4409 write_mhpmcounter }, 4410 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4411 write_mhpmcounter }, 4412 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4413 write_mhpmcounter }, 4414 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4415 write_mhpmcounter }, 4416 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4417 write_mhpmcounter }, 4418 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4419 write_mhpmcounter }, 4420 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4421 write_mhpmcounter }, 4422 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4423 write_mhpmcounter }, 4424 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4425 write_mhpmcounter }, 4426 4427 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4428 write_mcountinhibit, 4429 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4430 4431 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4432 write_mhpmevent }, 4433 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4434 write_mhpmevent }, 4435 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4436 write_mhpmevent }, 4437 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4438 write_mhpmevent }, 4439 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4440 write_mhpmevent }, 4441 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4442 write_mhpmevent }, 4443 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4444 write_mhpmevent }, 4445 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4446 write_mhpmevent }, 4447 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4448 write_mhpmevent }, 4449 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4450 write_mhpmevent }, 4451 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4452 write_mhpmevent }, 4453 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4454 write_mhpmevent }, 4455 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4456 write_mhpmevent }, 4457 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4458 write_mhpmevent }, 4459 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4460 write_mhpmevent }, 4461 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4462 write_mhpmevent }, 4463 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4464 write_mhpmevent }, 4465 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4466 write_mhpmevent }, 4467 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4468 write_mhpmevent }, 4469 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4470 write_mhpmevent }, 4471 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4472 write_mhpmevent }, 4473 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4474 write_mhpmevent }, 4475 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4476 write_mhpmevent }, 4477 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4478 write_mhpmevent }, 4479 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4480 write_mhpmevent }, 4481 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4482 write_mhpmevent }, 4483 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4484 write_mhpmevent }, 4485 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4486 write_mhpmevent }, 4487 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4488 write_mhpmevent }, 4489 4490 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4491 write_mhpmeventh, 4492 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4493 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4494 write_mhpmeventh, 4495 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4496 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4497 write_mhpmeventh, 4498 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4499 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4500 write_mhpmeventh, 4501 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4502 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4503 write_mhpmeventh, 4504 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4505 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4506 write_mhpmeventh, 4507 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4508 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4509 write_mhpmeventh, 4510 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4511 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4512 write_mhpmeventh, 4513 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4514 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4515 write_mhpmeventh, 4516 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4517 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4518 write_mhpmeventh, 4519 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4520 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4521 write_mhpmeventh, 4522 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4523 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4524 write_mhpmeventh, 4525 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4526 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4527 write_mhpmeventh, 4528 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4529 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4530 write_mhpmeventh, 4531 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4532 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4533 write_mhpmeventh, 4534 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4535 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4536 write_mhpmeventh, 4537 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4538 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4539 write_mhpmeventh, 4540 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4541 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4542 write_mhpmeventh, 4543 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4544 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4545 write_mhpmeventh, 4546 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4547 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4548 write_mhpmeventh, 4549 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4550 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4551 write_mhpmeventh, 4552 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4553 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4554 write_mhpmeventh, 4555 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4556 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4557 write_mhpmeventh, 4558 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4559 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4560 write_mhpmeventh, 4561 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4562 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4563 write_mhpmeventh, 4564 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4565 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4566 write_mhpmeventh, 4567 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4568 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4569 write_mhpmeventh, 4570 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4571 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4572 write_mhpmeventh, 4573 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4574 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4575 write_mhpmeventh, 4576 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4577 4578 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4579 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4580 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4581 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4582 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4583 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4584 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4585 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4586 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4587 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4588 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4589 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4590 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4591 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4592 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4593 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4594 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4595 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4596 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4597 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4598 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4599 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4600 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4601 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4602 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4603 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4604 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4605 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4606 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4607 4608 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4609 write_mhpmcounterh }, 4610 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4611 write_mhpmcounterh }, 4612 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4613 write_mhpmcounterh }, 4614 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4615 write_mhpmcounterh }, 4616 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4617 write_mhpmcounterh }, 4618 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4619 write_mhpmcounterh }, 4620 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4621 write_mhpmcounterh }, 4622 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4623 write_mhpmcounterh }, 4624 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4625 write_mhpmcounterh }, 4626 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4627 write_mhpmcounterh }, 4628 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4629 write_mhpmcounterh }, 4630 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4631 write_mhpmcounterh }, 4632 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4633 write_mhpmcounterh }, 4634 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4635 write_mhpmcounterh }, 4636 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4637 write_mhpmcounterh }, 4638 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4639 write_mhpmcounterh }, 4640 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4641 write_mhpmcounterh }, 4642 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4643 write_mhpmcounterh }, 4644 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4645 write_mhpmcounterh }, 4646 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4647 write_mhpmcounterh }, 4648 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4649 write_mhpmcounterh }, 4650 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4651 write_mhpmcounterh }, 4652 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4653 write_mhpmcounterh }, 4654 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4655 write_mhpmcounterh }, 4656 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4657 write_mhpmcounterh }, 4658 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4659 write_mhpmcounterh }, 4660 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4661 write_mhpmcounterh }, 4662 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4663 write_mhpmcounterh }, 4664 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4665 write_mhpmcounterh }, 4666 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4667 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4668 4669 #endif /* !CONFIG_USER_ONLY */ 4670 }; 4671