1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "exec/tb-flush.h" 29 #include "sysemu/cpu-timers.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 33 /* CSR function table public API */ 34 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 35 { 36 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 37 } 38 39 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 40 { 41 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 42 } 43 44 /* Predicates */ 45 #if !defined(CONFIG_USER_ONLY) 46 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) 47 { 48 bool virt = env->virt_enabled; 49 50 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 51 return RISCV_EXCP_NONE; 52 } 53 54 if (!(env->mstateen[index] & bit)) { 55 return RISCV_EXCP_ILLEGAL_INST; 56 } 57 58 if (virt) { 59 if (!(env->hstateen[index] & bit)) { 60 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 61 } 62 63 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 64 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 65 } 66 } 67 68 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 69 if (!(env->sstateen[index] & bit)) { 70 return RISCV_EXCP_ILLEGAL_INST; 71 } 72 } 73 74 return RISCV_EXCP_NONE; 75 } 76 #endif 77 78 static RISCVException fs(CPURISCVState *env, int csrno) 79 { 80 #if !defined(CONFIG_USER_ONLY) 81 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 82 !riscv_cpu_cfg(env)->ext_zfinx) { 83 return RISCV_EXCP_ILLEGAL_INST; 84 } 85 #endif 86 return RISCV_EXCP_NONE; 87 } 88 89 static RISCVException vs(CPURISCVState *env, int csrno) 90 { 91 if (riscv_cpu_cfg(env)->ext_zve32f) { 92 #if !defined(CONFIG_USER_ONLY) 93 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 94 return RISCV_EXCP_ILLEGAL_INST; 95 } 96 #endif 97 return RISCV_EXCP_NONE; 98 } 99 return RISCV_EXCP_ILLEGAL_INST; 100 } 101 102 static RISCVException ctr(CPURISCVState *env, int csrno) 103 { 104 #if !defined(CONFIG_USER_ONLY) 105 RISCVCPU *cpu = env_archcpu(env); 106 int ctr_index; 107 target_ulong ctr_mask; 108 int base_csrno = CSR_CYCLE; 109 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 110 111 if (rv32 && csrno >= CSR_CYCLEH) { 112 /* Offset for RV32 hpmcounternh counters */ 113 base_csrno += 0x80; 114 } 115 ctr_index = csrno - base_csrno; 116 ctr_mask = BIT(ctr_index); 117 118 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 119 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 120 goto skip_ext_pmu_check; 121 } 122 123 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 124 /* No counter is enabled in PMU or the counter is out of range */ 125 return RISCV_EXCP_ILLEGAL_INST; 126 } 127 128 skip_ext_pmu_check: 129 130 if (env->debugger) { 131 return RISCV_EXCP_NONE; 132 } 133 134 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 135 return RISCV_EXCP_ILLEGAL_INST; 136 } 137 138 if (env->virt_enabled) { 139 if (!get_field(env->hcounteren, ctr_mask) || 140 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 141 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 142 } 143 } 144 145 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 146 !get_field(env->scounteren, ctr_mask)) { 147 return RISCV_EXCP_ILLEGAL_INST; 148 } 149 150 #endif 151 return RISCV_EXCP_NONE; 152 } 153 154 static RISCVException ctr32(CPURISCVState *env, int csrno) 155 { 156 if (riscv_cpu_mxl(env) != MXL_RV32) { 157 return RISCV_EXCP_ILLEGAL_INST; 158 } 159 160 return ctr(env, csrno); 161 } 162 163 static RISCVException zcmt(CPURISCVState *env, int csrno) 164 { 165 if (!riscv_cpu_cfg(env)->ext_zcmt) { 166 return RISCV_EXCP_ILLEGAL_INST; 167 } 168 169 #if !defined(CONFIG_USER_ONLY) 170 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); 171 if (ret != RISCV_EXCP_NONE) { 172 return ret; 173 } 174 #endif 175 176 return RISCV_EXCP_NONE; 177 } 178 179 #if !defined(CONFIG_USER_ONLY) 180 static RISCVException mctr(CPURISCVState *env, int csrno) 181 { 182 int pmu_num = riscv_cpu_cfg(env)->pmu_num; 183 int ctr_index; 184 int base_csrno = CSR_MHPMCOUNTER3; 185 186 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 187 /* Offset for RV32 mhpmcounternh counters */ 188 base_csrno += 0x80; 189 } 190 ctr_index = csrno - base_csrno; 191 if (!pmu_num || ctr_index >= pmu_num) { 192 /* The PMU is not enabled or counter is out of range */ 193 return RISCV_EXCP_ILLEGAL_INST; 194 } 195 196 return RISCV_EXCP_NONE; 197 } 198 199 static RISCVException mctr32(CPURISCVState *env, int csrno) 200 { 201 if (riscv_cpu_mxl(env) != MXL_RV32) { 202 return RISCV_EXCP_ILLEGAL_INST; 203 } 204 205 return mctr(env, csrno); 206 } 207 208 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 209 { 210 if (!riscv_cpu_cfg(env)->ext_sscofpmf) { 211 return RISCV_EXCP_ILLEGAL_INST; 212 } 213 214 return RISCV_EXCP_NONE; 215 } 216 217 static RISCVException any(CPURISCVState *env, int csrno) 218 { 219 return RISCV_EXCP_NONE; 220 } 221 222 static RISCVException any32(CPURISCVState *env, int csrno) 223 { 224 if (riscv_cpu_mxl(env) != MXL_RV32) { 225 return RISCV_EXCP_ILLEGAL_INST; 226 } 227 228 return any(env, csrno); 229 230 } 231 232 static int aia_any(CPURISCVState *env, int csrno) 233 { 234 if (!riscv_cpu_cfg(env)->ext_smaia) { 235 return RISCV_EXCP_ILLEGAL_INST; 236 } 237 238 return any(env, csrno); 239 } 240 241 static int aia_any32(CPURISCVState *env, int csrno) 242 { 243 if (!riscv_cpu_cfg(env)->ext_smaia) { 244 return RISCV_EXCP_ILLEGAL_INST; 245 } 246 247 return any32(env, csrno); 248 } 249 250 static RISCVException smode(CPURISCVState *env, int csrno) 251 { 252 if (riscv_has_ext(env, RVS)) { 253 return RISCV_EXCP_NONE; 254 } 255 256 return RISCV_EXCP_ILLEGAL_INST; 257 } 258 259 static int smode32(CPURISCVState *env, int csrno) 260 { 261 if (riscv_cpu_mxl(env) != MXL_RV32) { 262 return RISCV_EXCP_ILLEGAL_INST; 263 } 264 265 return smode(env, csrno); 266 } 267 268 static int aia_smode(CPURISCVState *env, int csrno) 269 { 270 if (!riscv_cpu_cfg(env)->ext_ssaia) { 271 return RISCV_EXCP_ILLEGAL_INST; 272 } 273 274 return smode(env, csrno); 275 } 276 277 static int aia_smode32(CPURISCVState *env, int csrno) 278 { 279 if (!riscv_cpu_cfg(env)->ext_ssaia) { 280 return RISCV_EXCP_ILLEGAL_INST; 281 } 282 283 return smode32(env, csrno); 284 } 285 286 static RISCVException hmode(CPURISCVState *env, int csrno) 287 { 288 if (riscv_has_ext(env, RVH)) { 289 return RISCV_EXCP_NONE; 290 } 291 292 return RISCV_EXCP_ILLEGAL_INST; 293 } 294 295 static RISCVException hmode32(CPURISCVState *env, int csrno) 296 { 297 if (riscv_cpu_mxl(env) != MXL_RV32) { 298 return RISCV_EXCP_ILLEGAL_INST; 299 } 300 301 return hmode(env, csrno); 302 303 } 304 305 static RISCVException umode(CPURISCVState *env, int csrno) 306 { 307 if (riscv_has_ext(env, RVU)) { 308 return RISCV_EXCP_NONE; 309 } 310 311 return RISCV_EXCP_ILLEGAL_INST; 312 } 313 314 static RISCVException umode32(CPURISCVState *env, int csrno) 315 { 316 if (riscv_cpu_mxl(env) != MXL_RV32) { 317 return RISCV_EXCP_ILLEGAL_INST; 318 } 319 320 return umode(env, csrno); 321 } 322 323 static RISCVException mstateen(CPURISCVState *env, int csrno) 324 { 325 if (!riscv_cpu_cfg(env)->ext_smstateen) { 326 return RISCV_EXCP_ILLEGAL_INST; 327 } 328 329 return any(env, csrno); 330 } 331 332 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 333 { 334 if (!riscv_cpu_cfg(env)->ext_smstateen) { 335 return RISCV_EXCP_ILLEGAL_INST; 336 } 337 338 RISCVException ret = hmode(env, csrno); 339 if (ret != RISCV_EXCP_NONE) { 340 return ret; 341 } 342 343 if (env->debugger) { 344 return RISCV_EXCP_NONE; 345 } 346 347 if (env->priv < PRV_M) { 348 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 349 return RISCV_EXCP_ILLEGAL_INST; 350 } 351 } 352 353 return RISCV_EXCP_NONE; 354 } 355 356 static RISCVException hstateen(CPURISCVState *env, int csrno) 357 { 358 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 359 } 360 361 static RISCVException hstateenh(CPURISCVState *env, int csrno) 362 { 363 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 364 } 365 366 static RISCVException sstateen(CPURISCVState *env, int csrno) 367 { 368 bool virt = env->virt_enabled; 369 int index = csrno - CSR_SSTATEEN0; 370 371 if (!riscv_cpu_cfg(env)->ext_smstateen) { 372 return RISCV_EXCP_ILLEGAL_INST; 373 } 374 375 RISCVException ret = smode(env, csrno); 376 if (ret != RISCV_EXCP_NONE) { 377 return ret; 378 } 379 380 if (env->debugger) { 381 return RISCV_EXCP_NONE; 382 } 383 384 if (env->priv < PRV_M) { 385 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 386 return RISCV_EXCP_ILLEGAL_INST; 387 } 388 389 if (virt) { 390 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 391 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 392 } 393 } 394 } 395 396 return RISCV_EXCP_NONE; 397 } 398 399 static RISCVException sstc(CPURISCVState *env, int csrno) 400 { 401 bool hmode_check = false; 402 403 if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { 404 return RISCV_EXCP_ILLEGAL_INST; 405 } 406 407 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 408 hmode_check = true; 409 } 410 411 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 412 if (ret != RISCV_EXCP_NONE) { 413 return ret; 414 } 415 416 if (env->debugger) { 417 return RISCV_EXCP_NONE; 418 } 419 420 if (env->priv == PRV_M) { 421 return RISCV_EXCP_NONE; 422 } 423 424 /* 425 * No need of separate function for rv32 as menvcfg stores both menvcfg 426 * menvcfgh for RV32. 427 */ 428 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 429 get_field(env->menvcfg, MENVCFG_STCE))) { 430 return RISCV_EXCP_ILLEGAL_INST; 431 } 432 433 if (env->virt_enabled) { 434 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 435 get_field(env->henvcfg, HENVCFG_STCE))) { 436 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 437 } 438 } 439 440 return RISCV_EXCP_NONE; 441 } 442 443 static RISCVException sstc_32(CPURISCVState *env, int csrno) 444 { 445 if (riscv_cpu_mxl(env) != MXL_RV32) { 446 return RISCV_EXCP_ILLEGAL_INST; 447 } 448 449 return sstc(env, csrno); 450 } 451 452 static RISCVException satp(CPURISCVState *env, int csrno) 453 { 454 if (env->priv == PRV_S && !env->virt_enabled && 455 get_field(env->mstatus, MSTATUS_TVM)) { 456 return RISCV_EXCP_ILLEGAL_INST; 457 } 458 if (env->priv == PRV_S && env->virt_enabled && 459 get_field(env->hstatus, HSTATUS_VTVM)) { 460 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 461 } 462 463 return smode(env, csrno); 464 } 465 466 static RISCVException hgatp(CPURISCVState *env, int csrno) 467 { 468 if (env->priv == PRV_S && !env->virt_enabled && 469 get_field(env->mstatus, MSTATUS_TVM)) { 470 return RISCV_EXCP_ILLEGAL_INST; 471 } 472 473 return hmode(env, csrno); 474 } 475 476 /* Checks if PointerMasking registers could be accessed */ 477 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 478 { 479 /* Check if j-ext is present */ 480 if (riscv_has_ext(env, RVJ)) { 481 return RISCV_EXCP_NONE; 482 } 483 return RISCV_EXCP_ILLEGAL_INST; 484 } 485 486 static int aia_hmode(CPURISCVState *env, int csrno) 487 { 488 if (!riscv_cpu_cfg(env)->ext_ssaia) { 489 return RISCV_EXCP_ILLEGAL_INST; 490 } 491 492 return hmode(env, csrno); 493 } 494 495 static int aia_hmode32(CPURISCVState *env, int csrno) 496 { 497 if (!riscv_cpu_cfg(env)->ext_ssaia) { 498 return RISCV_EXCP_ILLEGAL_INST; 499 } 500 501 return hmode32(env, csrno); 502 } 503 504 static RISCVException pmp(CPURISCVState *env, int csrno) 505 { 506 if (riscv_cpu_cfg(env)->pmp) { 507 if (csrno <= CSR_PMPCFG3) { 508 uint32_t reg_index = csrno - CSR_PMPCFG0; 509 510 /* TODO: RV128 restriction check */ 511 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 512 return RISCV_EXCP_ILLEGAL_INST; 513 } 514 } 515 516 return RISCV_EXCP_NONE; 517 } 518 519 return RISCV_EXCP_ILLEGAL_INST; 520 } 521 522 static RISCVException epmp(CPURISCVState *env, int csrno) 523 { 524 if (riscv_cpu_cfg(env)->epmp) { 525 return RISCV_EXCP_NONE; 526 } 527 528 return RISCV_EXCP_ILLEGAL_INST; 529 } 530 531 static RISCVException debug(CPURISCVState *env, int csrno) 532 { 533 if (riscv_cpu_cfg(env)->debug) { 534 return RISCV_EXCP_NONE; 535 } 536 537 return RISCV_EXCP_ILLEGAL_INST; 538 } 539 #endif 540 541 static RISCVException seed(CPURISCVState *env, int csrno) 542 { 543 if (!riscv_cpu_cfg(env)->ext_zkr) { 544 return RISCV_EXCP_ILLEGAL_INST; 545 } 546 547 #if !defined(CONFIG_USER_ONLY) 548 if (env->debugger) { 549 return RISCV_EXCP_NONE; 550 } 551 552 /* 553 * With a CSR read-write instruction: 554 * 1) The seed CSR is always available in machine mode as normal. 555 * 2) Attempted access to seed from virtual modes VS and VU always raises 556 * an exception(virtual instruction exception only if mseccfg.sseed=1). 557 * 3) Without the corresponding access control bit set to 1, any attempted 558 * access to seed from U, S or HS modes will raise an illegal instruction 559 * exception. 560 */ 561 if (env->priv == PRV_M) { 562 return RISCV_EXCP_NONE; 563 } else if (env->virt_enabled) { 564 if (env->mseccfg & MSECCFG_SSEED) { 565 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 566 } else { 567 return RISCV_EXCP_ILLEGAL_INST; 568 } 569 } else { 570 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 571 return RISCV_EXCP_NONE; 572 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 573 return RISCV_EXCP_NONE; 574 } else { 575 return RISCV_EXCP_ILLEGAL_INST; 576 } 577 } 578 #else 579 return RISCV_EXCP_NONE; 580 #endif 581 } 582 583 /* User Floating-Point CSRs */ 584 static RISCVException read_fflags(CPURISCVState *env, int csrno, 585 target_ulong *val) 586 { 587 *val = riscv_cpu_get_fflags(env); 588 return RISCV_EXCP_NONE; 589 } 590 591 static RISCVException write_fflags(CPURISCVState *env, int csrno, 592 target_ulong val) 593 { 594 #if !defined(CONFIG_USER_ONLY) 595 if (riscv_has_ext(env, RVF)) { 596 env->mstatus |= MSTATUS_FS; 597 } 598 #endif 599 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 600 return RISCV_EXCP_NONE; 601 } 602 603 static RISCVException read_frm(CPURISCVState *env, int csrno, 604 target_ulong *val) 605 { 606 *val = env->frm; 607 return RISCV_EXCP_NONE; 608 } 609 610 static RISCVException write_frm(CPURISCVState *env, int csrno, 611 target_ulong val) 612 { 613 #if !defined(CONFIG_USER_ONLY) 614 if (riscv_has_ext(env, RVF)) { 615 env->mstatus |= MSTATUS_FS; 616 } 617 #endif 618 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 619 return RISCV_EXCP_NONE; 620 } 621 622 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 623 target_ulong *val) 624 { 625 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 626 | (env->frm << FSR_RD_SHIFT); 627 return RISCV_EXCP_NONE; 628 } 629 630 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 631 target_ulong val) 632 { 633 #if !defined(CONFIG_USER_ONLY) 634 if (riscv_has_ext(env, RVF)) { 635 env->mstatus |= MSTATUS_FS; 636 } 637 #endif 638 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 639 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 640 return RISCV_EXCP_NONE; 641 } 642 643 static RISCVException read_vtype(CPURISCVState *env, int csrno, 644 target_ulong *val) 645 { 646 uint64_t vill; 647 switch (env->xl) { 648 case MXL_RV32: 649 vill = (uint32_t)env->vill << 31; 650 break; 651 case MXL_RV64: 652 vill = (uint64_t)env->vill << 63; 653 break; 654 default: 655 g_assert_not_reached(); 656 } 657 *val = (target_ulong)vill | env->vtype; 658 return RISCV_EXCP_NONE; 659 } 660 661 static RISCVException read_vl(CPURISCVState *env, int csrno, 662 target_ulong *val) 663 { 664 *val = env->vl; 665 return RISCV_EXCP_NONE; 666 } 667 668 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 669 { 670 *val = riscv_cpu_cfg(env)->vlen >> 3; 671 return RISCV_EXCP_NONE; 672 } 673 674 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 675 target_ulong *val) 676 { 677 *val = env->vxrm; 678 return RISCV_EXCP_NONE; 679 } 680 681 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 682 target_ulong val) 683 { 684 #if !defined(CONFIG_USER_ONLY) 685 env->mstatus |= MSTATUS_VS; 686 #endif 687 env->vxrm = val; 688 return RISCV_EXCP_NONE; 689 } 690 691 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 692 target_ulong *val) 693 { 694 *val = env->vxsat; 695 return RISCV_EXCP_NONE; 696 } 697 698 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 699 target_ulong val) 700 { 701 #if !defined(CONFIG_USER_ONLY) 702 env->mstatus |= MSTATUS_VS; 703 #endif 704 env->vxsat = val; 705 return RISCV_EXCP_NONE; 706 } 707 708 static RISCVException read_vstart(CPURISCVState *env, int csrno, 709 target_ulong *val) 710 { 711 *val = env->vstart; 712 return RISCV_EXCP_NONE; 713 } 714 715 static RISCVException write_vstart(CPURISCVState *env, int csrno, 716 target_ulong val) 717 { 718 #if !defined(CONFIG_USER_ONLY) 719 env->mstatus |= MSTATUS_VS; 720 #endif 721 /* 722 * The vstart CSR is defined to have only enough writable bits 723 * to hold the largest element index, i.e. lg2(VLEN) bits. 724 */ 725 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlen)); 726 return RISCV_EXCP_NONE; 727 } 728 729 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 730 { 731 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 732 return RISCV_EXCP_NONE; 733 } 734 735 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 736 { 737 #if !defined(CONFIG_USER_ONLY) 738 env->mstatus |= MSTATUS_VS; 739 #endif 740 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 741 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 742 return RISCV_EXCP_NONE; 743 } 744 745 /* User Timers and Counters */ 746 static target_ulong get_ticks(bool shift) 747 { 748 int64_t val; 749 target_ulong result; 750 751 #if !defined(CONFIG_USER_ONLY) 752 if (icount_enabled()) { 753 val = icount_get(); 754 } else { 755 val = cpu_get_host_ticks(); 756 } 757 #else 758 val = cpu_get_host_ticks(); 759 #endif 760 761 if (shift) { 762 result = val >> 32; 763 } else { 764 result = val; 765 } 766 767 return result; 768 } 769 770 #if defined(CONFIG_USER_ONLY) 771 static RISCVException read_time(CPURISCVState *env, int csrno, 772 target_ulong *val) 773 { 774 *val = cpu_get_host_ticks(); 775 return RISCV_EXCP_NONE; 776 } 777 778 static RISCVException read_timeh(CPURISCVState *env, int csrno, 779 target_ulong *val) 780 { 781 *val = cpu_get_host_ticks() >> 32; 782 return RISCV_EXCP_NONE; 783 } 784 785 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 786 { 787 *val = get_ticks(false); 788 return RISCV_EXCP_NONE; 789 } 790 791 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 792 { 793 *val = get_ticks(true); 794 return RISCV_EXCP_NONE; 795 } 796 797 #else /* CONFIG_USER_ONLY */ 798 799 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 800 { 801 int evt_index = csrno - CSR_MCOUNTINHIBIT; 802 803 *val = env->mhpmevent_val[evt_index]; 804 805 return RISCV_EXCP_NONE; 806 } 807 808 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 809 { 810 int evt_index = csrno - CSR_MCOUNTINHIBIT; 811 uint64_t mhpmevt_val = val; 812 813 env->mhpmevent_val[evt_index] = val; 814 815 if (riscv_cpu_mxl(env) == MXL_RV32) { 816 mhpmevt_val = mhpmevt_val | 817 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 818 } 819 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 820 821 return RISCV_EXCP_NONE; 822 } 823 824 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 825 { 826 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 827 828 *val = env->mhpmeventh_val[evt_index]; 829 830 return RISCV_EXCP_NONE; 831 } 832 833 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 834 { 835 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 836 uint64_t mhpmevth_val = val; 837 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 838 839 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 840 env->mhpmeventh_val[evt_index] = val; 841 842 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 843 844 return RISCV_EXCP_NONE; 845 } 846 847 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 848 { 849 int ctr_idx = csrno - CSR_MCYCLE; 850 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 851 uint64_t mhpmctr_val = val; 852 853 counter->mhpmcounter_val = val; 854 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 855 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 856 counter->mhpmcounter_prev = get_ticks(false); 857 if (ctr_idx > 2) { 858 if (riscv_cpu_mxl(env) == MXL_RV32) { 859 mhpmctr_val = mhpmctr_val | 860 ((uint64_t)counter->mhpmcounterh_val << 32); 861 } 862 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 863 } 864 } else { 865 /* Other counters can keep incrementing from the given value */ 866 counter->mhpmcounter_prev = val; 867 } 868 869 return RISCV_EXCP_NONE; 870 } 871 872 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 873 { 874 int ctr_idx = csrno - CSR_MCYCLEH; 875 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 876 uint64_t mhpmctr_val = counter->mhpmcounter_val; 877 uint64_t mhpmctrh_val = val; 878 879 counter->mhpmcounterh_val = val; 880 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 881 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 882 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 883 counter->mhpmcounterh_prev = get_ticks(true); 884 if (ctr_idx > 2) { 885 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 886 } 887 } else { 888 counter->mhpmcounterh_prev = val; 889 } 890 891 return RISCV_EXCP_NONE; 892 } 893 894 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 895 bool upper_half, uint32_t ctr_idx) 896 { 897 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 898 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 899 counter.mhpmcounter_prev; 900 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 901 counter.mhpmcounter_val; 902 903 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 904 /* 905 * Counter should not increment if inhibit bit is set. We can't really 906 * stop the icount counting. Just return the counter value written by 907 * the supervisor to indicate that counter was not incremented. 908 */ 909 if (!counter.started) { 910 *val = ctr_val; 911 return RISCV_EXCP_NONE; 912 } else { 913 /* Mark that the counter has been stopped */ 914 counter.started = false; 915 } 916 } 917 918 /* 919 * The kernel computes the perf delta by subtracting the current value from 920 * the value it initialized previously (ctr_val). 921 */ 922 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 923 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 924 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 925 } else { 926 *val = ctr_val; 927 } 928 929 return RISCV_EXCP_NONE; 930 } 931 932 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 933 { 934 uint16_t ctr_index; 935 936 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 937 ctr_index = csrno - CSR_MCYCLE; 938 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 939 ctr_index = csrno - CSR_CYCLE; 940 } else { 941 return RISCV_EXCP_ILLEGAL_INST; 942 } 943 944 return riscv_pmu_read_ctr(env, val, false, ctr_index); 945 } 946 947 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 948 { 949 uint16_t ctr_index; 950 951 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 952 ctr_index = csrno - CSR_MCYCLEH; 953 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 954 ctr_index = csrno - CSR_CYCLEH; 955 } else { 956 return RISCV_EXCP_ILLEGAL_INST; 957 } 958 959 return riscv_pmu_read_ctr(env, val, true, ctr_index); 960 } 961 962 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 963 { 964 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 965 int i; 966 *val = 0; 967 target_ulong *mhpm_evt_val; 968 uint64_t of_bit_mask; 969 970 if (riscv_cpu_mxl(env) == MXL_RV32) { 971 mhpm_evt_val = env->mhpmeventh_val; 972 of_bit_mask = MHPMEVENTH_BIT_OF; 973 } else { 974 mhpm_evt_val = env->mhpmevent_val; 975 of_bit_mask = MHPMEVENT_BIT_OF; 976 } 977 978 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 979 if ((get_field(env->mcounteren, BIT(i))) && 980 (mhpm_evt_val[i] & of_bit_mask)) { 981 *val |= BIT(i); 982 } 983 } 984 985 return RISCV_EXCP_NONE; 986 } 987 988 static RISCVException read_time(CPURISCVState *env, int csrno, 989 target_ulong *val) 990 { 991 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 992 993 if (!env->rdtime_fn) { 994 return RISCV_EXCP_ILLEGAL_INST; 995 } 996 997 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 998 return RISCV_EXCP_NONE; 999 } 1000 1001 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1002 target_ulong *val) 1003 { 1004 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1005 1006 if (!env->rdtime_fn) { 1007 return RISCV_EXCP_ILLEGAL_INST; 1008 } 1009 1010 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 1011 return RISCV_EXCP_NONE; 1012 } 1013 1014 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 1015 target_ulong *val) 1016 { 1017 *val = env->vstimecmp; 1018 1019 return RISCV_EXCP_NONE; 1020 } 1021 1022 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 1023 target_ulong *val) 1024 { 1025 *val = env->vstimecmp >> 32; 1026 1027 return RISCV_EXCP_NONE; 1028 } 1029 1030 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1031 target_ulong val) 1032 { 1033 if (riscv_cpu_mxl(env) == MXL_RV32) { 1034 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1035 } else { 1036 env->vstimecmp = val; 1037 } 1038 1039 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1040 env->htimedelta, MIP_VSTIP); 1041 1042 return RISCV_EXCP_NONE; 1043 } 1044 1045 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1046 target_ulong val) 1047 { 1048 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1049 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1050 env->htimedelta, MIP_VSTIP); 1051 1052 return RISCV_EXCP_NONE; 1053 } 1054 1055 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1056 target_ulong *val) 1057 { 1058 if (env->virt_enabled) { 1059 *val = env->vstimecmp; 1060 } else { 1061 *val = env->stimecmp; 1062 } 1063 1064 return RISCV_EXCP_NONE; 1065 } 1066 1067 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1068 target_ulong *val) 1069 { 1070 if (env->virt_enabled) { 1071 *val = env->vstimecmp >> 32; 1072 } else { 1073 *val = env->stimecmp >> 32; 1074 } 1075 1076 return RISCV_EXCP_NONE; 1077 } 1078 1079 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1080 target_ulong val) 1081 { 1082 if (env->virt_enabled) { 1083 if (env->hvictl & HVICTL_VTI) { 1084 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1085 } 1086 return write_vstimecmp(env, csrno, val); 1087 } 1088 1089 if (riscv_cpu_mxl(env) == MXL_RV32) { 1090 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1091 } else { 1092 env->stimecmp = val; 1093 } 1094 1095 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1096 1097 return RISCV_EXCP_NONE; 1098 } 1099 1100 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1101 target_ulong val) 1102 { 1103 if (env->virt_enabled) { 1104 if (env->hvictl & HVICTL_VTI) { 1105 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1106 } 1107 return write_vstimecmph(env, csrno, val); 1108 } 1109 1110 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1111 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1112 1113 return RISCV_EXCP_NONE; 1114 } 1115 1116 /* Machine constants */ 1117 1118 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1119 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1120 MIP_LCOFIP)) 1121 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1122 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1123 1124 #define VSTOPI_NUM_SRCS 5 1125 1126 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1127 VS_MODE_INTERRUPTS; 1128 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1129 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1130 HS_MODE_INTERRUPTS; 1131 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1132 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1133 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1134 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1135 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1136 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1137 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1138 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1139 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1140 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1141 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1142 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1143 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1144 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1145 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1146 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1147 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1148 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1149 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1150 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1151 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1152 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1153 (1ULL << (RISCV_EXCP_M_ECALL)) | 1154 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1155 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1156 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1157 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1158 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1159 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1160 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1161 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1162 SIP_LCOFIP; 1163 static const target_ulong hip_writable_mask = MIP_VSSIP; 1164 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | 1165 MIP_VSEIP; 1166 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1167 1168 const bool valid_vm_1_10_32[16] = { 1169 [VM_1_10_MBARE] = true, 1170 [VM_1_10_SV32] = true 1171 }; 1172 1173 const bool valid_vm_1_10_64[16] = { 1174 [VM_1_10_MBARE] = true, 1175 [VM_1_10_SV39] = true, 1176 [VM_1_10_SV48] = true, 1177 [VM_1_10_SV57] = true 1178 }; 1179 1180 /* Machine Information Registers */ 1181 static RISCVException read_zero(CPURISCVState *env, int csrno, 1182 target_ulong *val) 1183 { 1184 *val = 0; 1185 return RISCV_EXCP_NONE; 1186 } 1187 1188 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1189 target_ulong val) 1190 { 1191 return RISCV_EXCP_NONE; 1192 } 1193 1194 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1195 target_ulong *val) 1196 { 1197 *val = riscv_cpu_cfg(env)->mvendorid; 1198 return RISCV_EXCP_NONE; 1199 } 1200 1201 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1202 target_ulong *val) 1203 { 1204 *val = riscv_cpu_cfg(env)->marchid; 1205 return RISCV_EXCP_NONE; 1206 } 1207 1208 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1209 target_ulong *val) 1210 { 1211 *val = riscv_cpu_cfg(env)->mimpid; 1212 return RISCV_EXCP_NONE; 1213 } 1214 1215 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1216 target_ulong *val) 1217 { 1218 *val = env->mhartid; 1219 return RISCV_EXCP_NONE; 1220 } 1221 1222 /* Machine Trap Setup */ 1223 1224 /* We do not store SD explicitly, only compute it on demand. */ 1225 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1226 { 1227 if ((status & MSTATUS_FS) == MSTATUS_FS || 1228 (status & MSTATUS_VS) == MSTATUS_VS || 1229 (status & MSTATUS_XS) == MSTATUS_XS) { 1230 switch (xl) { 1231 case MXL_RV32: 1232 return status | MSTATUS32_SD; 1233 case MXL_RV64: 1234 return status | MSTATUS64_SD; 1235 case MXL_RV128: 1236 return MSTATUSH128_SD; 1237 default: 1238 g_assert_not_reached(); 1239 } 1240 } 1241 return status; 1242 } 1243 1244 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1245 target_ulong *val) 1246 { 1247 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1248 return RISCV_EXCP_NONE; 1249 } 1250 1251 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1252 { 1253 return (vm & 0xf) <= 1254 satp_mode_max_from_map(riscv_cpu_cfg(env)->satp_mode.map); 1255 } 1256 1257 static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp, 1258 target_ulong val) 1259 { 1260 bool valid = false; 1261 target_ulong new_mpp = get_field(val, MSTATUS_MPP); 1262 1263 switch (new_mpp) { 1264 case PRV_M: 1265 valid = true; 1266 break; 1267 case PRV_S: 1268 valid = riscv_has_ext(env, RVS); 1269 break; 1270 case PRV_U: 1271 valid = riscv_has_ext(env, RVU); 1272 break; 1273 } 1274 1275 /* Remain field unchanged if new_mpp value is invalid */ 1276 if (!valid) { 1277 val = set_field(val, MSTATUS_MPP, old_mpp); 1278 } 1279 1280 return val; 1281 } 1282 1283 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1284 target_ulong val) 1285 { 1286 uint64_t mstatus = env->mstatus; 1287 uint64_t mask = 0; 1288 RISCVMXL xl = riscv_cpu_mxl(env); 1289 1290 /* 1291 * MPP field have been made WARL since priv version 1.11. However, 1292 * legalization for it will not break any software running on 1.10. 1293 */ 1294 val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val); 1295 1296 /* flush tlb on mstatus fields that affect VM */ 1297 if ((val ^ mstatus) & MSTATUS_MXR) { 1298 tlb_flush(env_cpu(env)); 1299 } 1300 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1301 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1302 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1303 MSTATUS_TW | MSTATUS_VS; 1304 1305 if (riscv_has_ext(env, RVF)) { 1306 mask |= MSTATUS_FS; 1307 } 1308 1309 if (xl != MXL_RV32 || env->debugger) { 1310 /* 1311 * RV32: MPV and GVA are not in mstatus. The current plan is to 1312 * add them to mstatush. For now, we just don't support it. 1313 */ 1314 mask |= MSTATUS_MPV | MSTATUS_GVA; 1315 if ((val & MSTATUS64_UXL) != 0) { 1316 mask |= MSTATUS64_UXL; 1317 } 1318 } 1319 1320 mstatus = (mstatus & ~mask) | (val & mask); 1321 1322 if (xl > MXL_RV32) { 1323 /* SXL field is for now read only */ 1324 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1325 } 1326 env->mstatus = mstatus; 1327 1328 /* 1329 * Except in debug mode, UXL/SXL can only be modified by higher 1330 * privilege mode. So xl will not be changed in normal mode. 1331 */ 1332 if (env->debugger) { 1333 env->xl = cpu_recompute_xl(env); 1334 riscv_cpu_update_mask(env); 1335 } 1336 return RISCV_EXCP_NONE; 1337 } 1338 1339 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1340 target_ulong *val) 1341 { 1342 *val = env->mstatus >> 32; 1343 return RISCV_EXCP_NONE; 1344 } 1345 1346 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1347 target_ulong val) 1348 { 1349 uint64_t valh = (uint64_t)val << 32; 1350 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1351 1352 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1353 1354 return RISCV_EXCP_NONE; 1355 } 1356 1357 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1358 Int128 *val) 1359 { 1360 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, 1361 env->mstatus)); 1362 return RISCV_EXCP_NONE; 1363 } 1364 1365 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1366 Int128 *val) 1367 { 1368 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1369 return RISCV_EXCP_NONE; 1370 } 1371 1372 static RISCVException read_misa(CPURISCVState *env, int csrno, 1373 target_ulong *val) 1374 { 1375 target_ulong misa; 1376 1377 switch (env->misa_mxl) { 1378 case MXL_RV32: 1379 misa = (target_ulong)MXL_RV32 << 30; 1380 break; 1381 #ifdef TARGET_RISCV64 1382 case MXL_RV64: 1383 misa = (target_ulong)MXL_RV64 << 62; 1384 break; 1385 #endif 1386 default: 1387 g_assert_not_reached(); 1388 } 1389 1390 *val = misa | env->misa_ext; 1391 return RISCV_EXCP_NONE; 1392 } 1393 1394 static RISCVException write_misa(CPURISCVState *env, int csrno, 1395 target_ulong val) 1396 { 1397 RISCVCPU *cpu = env_archcpu(env); 1398 uint32_t orig_misa_ext = env->misa_ext; 1399 Error *local_err = NULL; 1400 1401 if (!riscv_cpu_cfg(env)->misa_w) { 1402 /* drop write to misa */ 1403 return RISCV_EXCP_NONE; 1404 } 1405 1406 /* Mask extensions that are not supported by this hart */ 1407 val &= env->misa_ext_mask; 1408 1409 /* 1410 * Suppress 'C' if next instruction is not aligned 1411 * TODO: this should check next_pc 1412 */ 1413 if ((val & RVC) && (GETPC() & ~3) != 0) { 1414 val &= ~RVC; 1415 } 1416 1417 /* Disable RVG if any of its dependencies are disabled */ 1418 if (!(val & RVI && val & RVM && val & RVA && 1419 val & RVF && val & RVD)) { 1420 val &= ~RVG; 1421 } 1422 1423 /* If nothing changed, do nothing. */ 1424 if (val == env->misa_ext) { 1425 return RISCV_EXCP_NONE; 1426 } 1427 1428 env->misa_ext = val; 1429 riscv_cpu_validate_set_extensions(cpu, &local_err); 1430 if (local_err != NULL) { 1431 /* Rollback on validation error */ 1432 qemu_log_mask(LOG_GUEST_ERROR, "Unable to write MISA ext value " 1433 "0x%x, keeping existing MISA ext 0x%x\n", 1434 env->misa_ext, orig_misa_ext); 1435 1436 env->misa_ext = orig_misa_ext; 1437 1438 return RISCV_EXCP_NONE; 1439 } 1440 1441 if (!(env->misa_ext & RVF)) { 1442 env->mstatus &= ~MSTATUS_FS; 1443 } 1444 1445 /* flush translation cache */ 1446 tb_flush(env_cpu(env)); 1447 env->xl = riscv_cpu_mxl(env); 1448 return RISCV_EXCP_NONE; 1449 } 1450 1451 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1452 target_ulong *val) 1453 { 1454 *val = env->medeleg; 1455 return RISCV_EXCP_NONE; 1456 } 1457 1458 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1459 target_ulong val) 1460 { 1461 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1462 return RISCV_EXCP_NONE; 1463 } 1464 1465 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1466 uint64_t *ret_val, 1467 uint64_t new_val, uint64_t wr_mask) 1468 { 1469 uint64_t mask = wr_mask & delegable_ints; 1470 1471 if (ret_val) { 1472 *ret_val = env->mideleg; 1473 } 1474 1475 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1476 1477 if (riscv_has_ext(env, RVH)) { 1478 env->mideleg |= HS_MODE_INTERRUPTS; 1479 } 1480 1481 return RISCV_EXCP_NONE; 1482 } 1483 1484 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1485 target_ulong *ret_val, 1486 target_ulong new_val, target_ulong wr_mask) 1487 { 1488 uint64_t rval; 1489 RISCVException ret; 1490 1491 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1492 if (ret_val) { 1493 *ret_val = rval; 1494 } 1495 1496 return ret; 1497 } 1498 1499 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1500 target_ulong *ret_val, 1501 target_ulong new_val, 1502 target_ulong wr_mask) 1503 { 1504 uint64_t rval; 1505 RISCVException ret; 1506 1507 ret = rmw_mideleg64(env, csrno, &rval, 1508 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1509 if (ret_val) { 1510 *ret_val = rval >> 32; 1511 } 1512 1513 return ret; 1514 } 1515 1516 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1517 uint64_t *ret_val, 1518 uint64_t new_val, uint64_t wr_mask) 1519 { 1520 uint64_t mask = wr_mask & all_ints; 1521 1522 if (ret_val) { 1523 *ret_val = env->mie; 1524 } 1525 1526 env->mie = (env->mie & ~mask) | (new_val & mask); 1527 1528 if (!riscv_has_ext(env, RVH)) { 1529 env->mie &= ~((uint64_t)MIP_SGEIP); 1530 } 1531 1532 return RISCV_EXCP_NONE; 1533 } 1534 1535 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1536 target_ulong *ret_val, 1537 target_ulong new_val, target_ulong wr_mask) 1538 { 1539 uint64_t rval; 1540 RISCVException ret; 1541 1542 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1543 if (ret_val) { 1544 *ret_val = rval; 1545 } 1546 1547 return ret; 1548 } 1549 1550 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1551 target_ulong *ret_val, 1552 target_ulong new_val, target_ulong wr_mask) 1553 { 1554 uint64_t rval; 1555 RISCVException ret; 1556 1557 ret = rmw_mie64(env, csrno, &rval, 1558 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1559 if (ret_val) { 1560 *ret_val = rval >> 32; 1561 } 1562 1563 return ret; 1564 } 1565 1566 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1567 { 1568 int irq; 1569 uint8_t iprio; 1570 1571 irq = riscv_cpu_mirq_pending(env); 1572 if (irq <= 0 || irq > 63) { 1573 *val = 0; 1574 } else { 1575 iprio = env->miprio[irq]; 1576 if (!iprio) { 1577 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1578 iprio = IPRIO_MMAXIPRIO; 1579 } 1580 } 1581 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1582 *val |= iprio; 1583 } 1584 1585 return RISCV_EXCP_NONE; 1586 } 1587 1588 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1589 { 1590 if (!env->virt_enabled) { 1591 return csrno; 1592 } 1593 1594 switch (csrno) { 1595 case CSR_SISELECT: 1596 return CSR_VSISELECT; 1597 case CSR_SIREG: 1598 return CSR_VSIREG; 1599 case CSR_STOPEI: 1600 return CSR_VSTOPEI; 1601 default: 1602 return csrno; 1603 }; 1604 } 1605 1606 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1607 target_ulong new_val, target_ulong wr_mask) 1608 { 1609 target_ulong *iselect; 1610 1611 /* Translate CSR number for VS-mode */ 1612 csrno = aia_xlate_vs_csrno(env, csrno); 1613 1614 /* Find the iselect CSR based on CSR number */ 1615 switch (csrno) { 1616 case CSR_MISELECT: 1617 iselect = &env->miselect; 1618 break; 1619 case CSR_SISELECT: 1620 iselect = &env->siselect; 1621 break; 1622 case CSR_VSISELECT: 1623 iselect = &env->vsiselect; 1624 break; 1625 default: 1626 return RISCV_EXCP_ILLEGAL_INST; 1627 }; 1628 1629 if (val) { 1630 *val = *iselect; 1631 } 1632 1633 wr_mask &= ISELECT_MASK; 1634 if (wr_mask) { 1635 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1636 } 1637 1638 return RISCV_EXCP_NONE; 1639 } 1640 1641 static int rmw_iprio(target_ulong xlen, 1642 target_ulong iselect, uint8_t *iprio, 1643 target_ulong *val, target_ulong new_val, 1644 target_ulong wr_mask, int ext_irq_no) 1645 { 1646 int i, firq, nirqs; 1647 target_ulong old_val; 1648 1649 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1650 return -EINVAL; 1651 } 1652 if (xlen != 32 && iselect & 0x1) { 1653 return -EINVAL; 1654 } 1655 1656 nirqs = 4 * (xlen / 32); 1657 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1658 1659 old_val = 0; 1660 for (i = 0; i < nirqs; i++) { 1661 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1662 } 1663 1664 if (val) { 1665 *val = old_val; 1666 } 1667 1668 if (wr_mask) { 1669 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1670 for (i = 0; i < nirqs; i++) { 1671 /* 1672 * M-level and S-level external IRQ priority always read-only 1673 * zero. This means default priority order is always preferred 1674 * for M-level and S-level external IRQs. 1675 */ 1676 if ((firq + i) == ext_irq_no) { 1677 continue; 1678 } 1679 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1680 } 1681 } 1682 1683 return 0; 1684 } 1685 1686 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1687 target_ulong new_val, target_ulong wr_mask) 1688 { 1689 bool virt; 1690 uint8_t *iprio; 1691 int ret = -EINVAL; 1692 target_ulong priv, isel, vgein; 1693 1694 /* Translate CSR number for VS-mode */ 1695 csrno = aia_xlate_vs_csrno(env, csrno); 1696 1697 /* Decode register details from CSR number */ 1698 virt = false; 1699 switch (csrno) { 1700 case CSR_MIREG: 1701 iprio = env->miprio; 1702 isel = env->miselect; 1703 priv = PRV_M; 1704 break; 1705 case CSR_SIREG: 1706 iprio = env->siprio; 1707 isel = env->siselect; 1708 priv = PRV_S; 1709 break; 1710 case CSR_VSIREG: 1711 iprio = env->hviprio; 1712 isel = env->vsiselect; 1713 priv = PRV_S; 1714 virt = true; 1715 break; 1716 default: 1717 goto done; 1718 }; 1719 1720 /* Find the selected guest interrupt file */ 1721 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1722 1723 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1724 /* Local interrupt priority registers not available for VS-mode */ 1725 if (!virt) { 1726 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1727 isel, iprio, val, new_val, wr_mask, 1728 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1729 } 1730 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1731 /* IMSIC registers only available when machine implements it. */ 1732 if (env->aia_ireg_rmw_fn[priv]) { 1733 /* Selected guest interrupt file should not be zero */ 1734 if (virt && (!vgein || env->geilen < vgein)) { 1735 goto done; 1736 } 1737 /* Call machine specific IMSIC register emulation */ 1738 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1739 AIA_MAKE_IREG(isel, priv, virt, vgein, 1740 riscv_cpu_mxl_bits(env)), 1741 val, new_val, wr_mask); 1742 } 1743 } 1744 1745 done: 1746 if (ret) { 1747 return (env->virt_enabled && virt) ? 1748 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1749 } 1750 return RISCV_EXCP_NONE; 1751 } 1752 1753 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1754 target_ulong new_val, target_ulong wr_mask) 1755 { 1756 bool virt; 1757 int ret = -EINVAL; 1758 target_ulong priv, vgein; 1759 1760 /* Translate CSR number for VS-mode */ 1761 csrno = aia_xlate_vs_csrno(env, csrno); 1762 1763 /* Decode register details from CSR number */ 1764 virt = false; 1765 switch (csrno) { 1766 case CSR_MTOPEI: 1767 priv = PRV_M; 1768 break; 1769 case CSR_STOPEI: 1770 priv = PRV_S; 1771 break; 1772 case CSR_VSTOPEI: 1773 priv = PRV_S; 1774 virt = true; 1775 break; 1776 default: 1777 goto done; 1778 }; 1779 1780 /* IMSIC CSRs only available when machine implements IMSIC. */ 1781 if (!env->aia_ireg_rmw_fn[priv]) { 1782 goto done; 1783 } 1784 1785 /* Find the selected guest interrupt file */ 1786 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1787 1788 /* Selected guest interrupt file should be valid */ 1789 if (virt && (!vgein || env->geilen < vgein)) { 1790 goto done; 1791 } 1792 1793 /* Call machine specific IMSIC register emulation for TOPEI */ 1794 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1795 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1796 riscv_cpu_mxl_bits(env)), 1797 val, new_val, wr_mask); 1798 1799 done: 1800 if (ret) { 1801 return (env->virt_enabled && virt) ? 1802 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1803 } 1804 return RISCV_EXCP_NONE; 1805 } 1806 1807 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1808 target_ulong *val) 1809 { 1810 *val = env->mtvec; 1811 return RISCV_EXCP_NONE; 1812 } 1813 1814 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1815 target_ulong val) 1816 { 1817 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1818 if ((val & 3) < 2) { 1819 env->mtvec = val; 1820 } else { 1821 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1822 } 1823 return RISCV_EXCP_NONE; 1824 } 1825 1826 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1827 target_ulong *val) 1828 { 1829 *val = env->mcountinhibit; 1830 return RISCV_EXCP_NONE; 1831 } 1832 1833 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1834 target_ulong val) 1835 { 1836 int cidx; 1837 PMUCTRState *counter; 1838 1839 env->mcountinhibit = val; 1840 1841 /* Check if any other counter is also monitoring cycles/instructions */ 1842 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1843 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1844 counter = &env->pmu_ctrs[cidx]; 1845 counter->started = true; 1846 } 1847 } 1848 1849 return RISCV_EXCP_NONE; 1850 } 1851 1852 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1853 target_ulong *val) 1854 { 1855 *val = env->mcounteren; 1856 return RISCV_EXCP_NONE; 1857 } 1858 1859 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1860 target_ulong val) 1861 { 1862 env->mcounteren = val; 1863 return RISCV_EXCP_NONE; 1864 } 1865 1866 /* Machine Trap Handling */ 1867 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1868 Int128 *val) 1869 { 1870 *val = int128_make128(env->mscratch, env->mscratchh); 1871 return RISCV_EXCP_NONE; 1872 } 1873 1874 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1875 Int128 val) 1876 { 1877 env->mscratch = int128_getlo(val); 1878 env->mscratchh = int128_gethi(val); 1879 return RISCV_EXCP_NONE; 1880 } 1881 1882 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1883 target_ulong *val) 1884 { 1885 *val = env->mscratch; 1886 return RISCV_EXCP_NONE; 1887 } 1888 1889 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1890 target_ulong val) 1891 { 1892 env->mscratch = val; 1893 return RISCV_EXCP_NONE; 1894 } 1895 1896 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1897 target_ulong *val) 1898 { 1899 *val = env->mepc; 1900 return RISCV_EXCP_NONE; 1901 } 1902 1903 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1904 target_ulong val) 1905 { 1906 env->mepc = val; 1907 return RISCV_EXCP_NONE; 1908 } 1909 1910 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1911 target_ulong *val) 1912 { 1913 *val = env->mcause; 1914 return RISCV_EXCP_NONE; 1915 } 1916 1917 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1918 target_ulong val) 1919 { 1920 env->mcause = val; 1921 return RISCV_EXCP_NONE; 1922 } 1923 1924 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1925 target_ulong *val) 1926 { 1927 *val = env->mtval; 1928 return RISCV_EXCP_NONE; 1929 } 1930 1931 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1932 target_ulong val) 1933 { 1934 env->mtval = val; 1935 return RISCV_EXCP_NONE; 1936 } 1937 1938 /* Execution environment configuration setup */ 1939 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1940 target_ulong *val) 1941 { 1942 *val = env->menvcfg; 1943 return RISCV_EXCP_NONE; 1944 } 1945 1946 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1947 target_ulong val) 1948 { 1949 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 1950 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1951 1952 if (riscv_cpu_mxl(env) == MXL_RV64) { 1953 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1954 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 1955 (cfg->ext_svadu ? MENVCFG_HADE : 0); 1956 } 1957 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1958 1959 return RISCV_EXCP_NONE; 1960 } 1961 1962 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1963 target_ulong *val) 1964 { 1965 *val = env->menvcfg >> 32; 1966 return RISCV_EXCP_NONE; 1967 } 1968 1969 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1970 target_ulong val) 1971 { 1972 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 1973 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1974 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 1975 (cfg->ext_svadu ? MENVCFG_HADE : 0); 1976 uint64_t valh = (uint64_t)val << 32; 1977 1978 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1979 1980 return RISCV_EXCP_NONE; 1981 } 1982 1983 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1984 target_ulong *val) 1985 { 1986 RISCVException ret; 1987 1988 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1989 if (ret != RISCV_EXCP_NONE) { 1990 return ret; 1991 } 1992 1993 *val = env->senvcfg; 1994 return RISCV_EXCP_NONE; 1995 } 1996 1997 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1998 target_ulong val) 1999 { 2000 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 2001 RISCVException ret; 2002 2003 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2004 if (ret != RISCV_EXCP_NONE) { 2005 return ret; 2006 } 2007 2008 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 2009 return RISCV_EXCP_NONE; 2010 } 2011 2012 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 2013 target_ulong *val) 2014 { 2015 RISCVException ret; 2016 2017 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2018 if (ret != RISCV_EXCP_NONE) { 2019 return ret; 2020 } 2021 2022 /* 2023 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 2024 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 2025 * henvcfg.hade is read_only 0 when menvcfg.hade = 0 2026 */ 2027 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE) | 2028 env->menvcfg); 2029 return RISCV_EXCP_NONE; 2030 } 2031 2032 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 2033 target_ulong val) 2034 { 2035 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 2036 RISCVException ret; 2037 2038 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2039 if (ret != RISCV_EXCP_NONE) { 2040 return ret; 2041 } 2042 2043 if (riscv_cpu_mxl(env) == MXL_RV64) { 2044 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE); 2045 } 2046 2047 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 2048 2049 return RISCV_EXCP_NONE; 2050 } 2051 2052 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 2053 target_ulong *val) 2054 { 2055 RISCVException ret; 2056 2057 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2058 if (ret != RISCV_EXCP_NONE) { 2059 return ret; 2060 } 2061 2062 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE) | 2063 env->menvcfg)) >> 32; 2064 return RISCV_EXCP_NONE; 2065 } 2066 2067 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2068 target_ulong val) 2069 { 2070 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 2071 HENVCFG_HADE); 2072 uint64_t valh = (uint64_t)val << 32; 2073 RISCVException ret; 2074 2075 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2076 if (ret != RISCV_EXCP_NONE) { 2077 return ret; 2078 } 2079 2080 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2081 return RISCV_EXCP_NONE; 2082 } 2083 2084 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2085 target_ulong *val) 2086 { 2087 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2088 2089 return RISCV_EXCP_NONE; 2090 } 2091 2092 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2093 uint64_t wr_mask, target_ulong new_val) 2094 { 2095 uint64_t *reg; 2096 2097 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2098 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2099 2100 return RISCV_EXCP_NONE; 2101 } 2102 2103 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2104 target_ulong new_val) 2105 { 2106 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2107 2108 return write_mstateen(env, csrno, wr_mask, new_val); 2109 } 2110 2111 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2112 target_ulong new_val) 2113 { 2114 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2115 } 2116 2117 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2118 target_ulong *val) 2119 { 2120 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2121 2122 return RISCV_EXCP_NONE; 2123 } 2124 2125 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2126 uint64_t wr_mask, target_ulong new_val) 2127 { 2128 uint64_t *reg, val; 2129 2130 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2131 val = (uint64_t)new_val << 32; 2132 val |= *reg & 0xFFFFFFFF; 2133 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2134 2135 return RISCV_EXCP_NONE; 2136 } 2137 2138 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2139 target_ulong new_val) 2140 { 2141 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2142 2143 return write_mstateenh(env, csrno, wr_mask, new_val); 2144 } 2145 2146 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2147 target_ulong new_val) 2148 { 2149 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2150 } 2151 2152 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2153 target_ulong *val) 2154 { 2155 int index = csrno - CSR_HSTATEEN0; 2156 2157 *val = env->hstateen[index] & env->mstateen[index]; 2158 2159 return RISCV_EXCP_NONE; 2160 } 2161 2162 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2163 uint64_t mask, target_ulong new_val) 2164 { 2165 int index = csrno - CSR_HSTATEEN0; 2166 uint64_t *reg, wr_mask; 2167 2168 reg = &env->hstateen[index]; 2169 wr_mask = env->mstateen[index] & mask; 2170 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2171 2172 return RISCV_EXCP_NONE; 2173 } 2174 2175 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2176 target_ulong new_val) 2177 { 2178 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2179 2180 return write_hstateen(env, csrno, wr_mask, new_val); 2181 } 2182 2183 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2184 target_ulong new_val) 2185 { 2186 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2187 } 2188 2189 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2190 target_ulong *val) 2191 { 2192 int index = csrno - CSR_HSTATEEN0H; 2193 2194 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2195 2196 return RISCV_EXCP_NONE; 2197 } 2198 2199 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2200 uint64_t mask, target_ulong new_val) 2201 { 2202 int index = csrno - CSR_HSTATEEN0H; 2203 uint64_t *reg, wr_mask, val; 2204 2205 reg = &env->hstateen[index]; 2206 val = (uint64_t)new_val << 32; 2207 val |= *reg & 0xFFFFFFFF; 2208 wr_mask = env->mstateen[index] & mask; 2209 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2210 2211 return RISCV_EXCP_NONE; 2212 } 2213 2214 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2215 target_ulong new_val) 2216 { 2217 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2218 2219 return write_hstateenh(env, csrno, wr_mask, new_val); 2220 } 2221 2222 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2223 target_ulong new_val) 2224 { 2225 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2226 } 2227 2228 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2229 target_ulong *val) 2230 { 2231 bool virt = env->virt_enabled; 2232 int index = csrno - CSR_SSTATEEN0; 2233 2234 *val = env->sstateen[index] & env->mstateen[index]; 2235 if (virt) { 2236 *val &= env->hstateen[index]; 2237 } 2238 2239 return RISCV_EXCP_NONE; 2240 } 2241 2242 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2243 uint64_t mask, target_ulong new_val) 2244 { 2245 bool virt = env->virt_enabled; 2246 int index = csrno - CSR_SSTATEEN0; 2247 uint64_t wr_mask; 2248 uint64_t *reg; 2249 2250 wr_mask = env->mstateen[index] & mask; 2251 if (virt) { 2252 wr_mask &= env->hstateen[index]; 2253 } 2254 2255 reg = &env->sstateen[index]; 2256 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2257 2258 return RISCV_EXCP_NONE; 2259 } 2260 2261 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2262 target_ulong new_val) 2263 { 2264 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2265 2266 return write_sstateen(env, csrno, wr_mask, new_val); 2267 } 2268 2269 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2270 target_ulong new_val) 2271 { 2272 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2273 } 2274 2275 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2276 uint64_t *ret_val, 2277 uint64_t new_val, uint64_t wr_mask) 2278 { 2279 uint64_t old_mip, mask = wr_mask & delegable_ints; 2280 uint32_t gin; 2281 2282 if (mask & MIP_SEIP) { 2283 env->software_seip = new_val & MIP_SEIP; 2284 new_val |= env->external_seip * MIP_SEIP; 2285 } 2286 2287 if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && 2288 get_field(env->menvcfg, MENVCFG_STCE)) { 2289 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2290 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2291 } 2292 2293 if (mask) { 2294 old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); 2295 } else { 2296 old_mip = env->mip; 2297 } 2298 2299 if (csrno != CSR_HVIP) { 2300 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2301 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2302 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2303 } 2304 2305 if (ret_val) { 2306 *ret_val = old_mip; 2307 } 2308 2309 return RISCV_EXCP_NONE; 2310 } 2311 2312 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2313 target_ulong *ret_val, 2314 target_ulong new_val, target_ulong wr_mask) 2315 { 2316 uint64_t rval; 2317 RISCVException ret; 2318 2319 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2320 if (ret_val) { 2321 *ret_val = rval; 2322 } 2323 2324 return ret; 2325 } 2326 2327 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2328 target_ulong *ret_val, 2329 target_ulong new_val, target_ulong wr_mask) 2330 { 2331 uint64_t rval; 2332 RISCVException ret; 2333 2334 ret = rmw_mip64(env, csrno, &rval, 2335 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2336 if (ret_val) { 2337 *ret_val = rval >> 32; 2338 } 2339 2340 return ret; 2341 } 2342 2343 /* Supervisor Trap Setup */ 2344 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2345 Int128 *val) 2346 { 2347 uint64_t mask = sstatus_v1_10_mask; 2348 uint64_t sstatus = env->mstatus & mask; 2349 if (env->xl != MXL_RV32 || env->debugger) { 2350 mask |= SSTATUS64_UXL; 2351 } 2352 2353 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2354 return RISCV_EXCP_NONE; 2355 } 2356 2357 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2358 target_ulong *val) 2359 { 2360 target_ulong mask = (sstatus_v1_10_mask); 2361 if (env->xl != MXL_RV32 || env->debugger) { 2362 mask |= SSTATUS64_UXL; 2363 } 2364 /* TODO: Use SXL not MXL. */ 2365 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2366 return RISCV_EXCP_NONE; 2367 } 2368 2369 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2370 target_ulong val) 2371 { 2372 target_ulong mask = (sstatus_v1_10_mask); 2373 2374 if (env->xl != MXL_RV32 || env->debugger) { 2375 if ((val & SSTATUS64_UXL) != 0) { 2376 mask |= SSTATUS64_UXL; 2377 } 2378 } 2379 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2380 return write_mstatus(env, CSR_MSTATUS, newval); 2381 } 2382 2383 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2384 uint64_t *ret_val, 2385 uint64_t new_val, uint64_t wr_mask) 2386 { 2387 RISCVException ret; 2388 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2389 2390 /* Bring VS-level bits to correct position */ 2391 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2392 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2393 2394 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2395 if (ret_val) { 2396 *ret_val = (rval & mask) >> 1; 2397 } 2398 2399 return ret; 2400 } 2401 2402 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2403 target_ulong *ret_val, 2404 target_ulong new_val, target_ulong wr_mask) 2405 { 2406 uint64_t rval; 2407 RISCVException ret; 2408 2409 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2410 if (ret_val) { 2411 *ret_val = rval; 2412 } 2413 2414 return ret; 2415 } 2416 2417 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2418 target_ulong *ret_val, 2419 target_ulong new_val, target_ulong wr_mask) 2420 { 2421 uint64_t rval; 2422 RISCVException ret; 2423 2424 ret = rmw_vsie64(env, csrno, &rval, 2425 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2426 if (ret_val) { 2427 *ret_val = rval >> 32; 2428 } 2429 2430 return ret; 2431 } 2432 2433 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2434 uint64_t *ret_val, 2435 uint64_t new_val, uint64_t wr_mask) 2436 { 2437 RISCVException ret; 2438 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2439 2440 if (env->virt_enabled) { 2441 if (env->hvictl & HVICTL_VTI) { 2442 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2443 } 2444 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2445 } else { 2446 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2447 } 2448 2449 if (ret_val) { 2450 *ret_val &= mask; 2451 } 2452 2453 return ret; 2454 } 2455 2456 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2457 target_ulong *ret_val, 2458 target_ulong new_val, target_ulong wr_mask) 2459 { 2460 uint64_t rval; 2461 RISCVException ret; 2462 2463 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2464 if (ret == RISCV_EXCP_NONE && ret_val) { 2465 *ret_val = rval; 2466 } 2467 2468 return ret; 2469 } 2470 2471 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2472 target_ulong *ret_val, 2473 target_ulong new_val, target_ulong wr_mask) 2474 { 2475 uint64_t rval; 2476 RISCVException ret; 2477 2478 ret = rmw_sie64(env, csrno, &rval, 2479 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2480 if (ret_val) { 2481 *ret_val = rval >> 32; 2482 } 2483 2484 return ret; 2485 } 2486 2487 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2488 target_ulong *val) 2489 { 2490 *val = env->stvec; 2491 return RISCV_EXCP_NONE; 2492 } 2493 2494 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2495 target_ulong val) 2496 { 2497 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2498 if ((val & 3) < 2) { 2499 env->stvec = val; 2500 } else { 2501 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2502 } 2503 return RISCV_EXCP_NONE; 2504 } 2505 2506 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2507 target_ulong *val) 2508 { 2509 *val = env->scounteren; 2510 return RISCV_EXCP_NONE; 2511 } 2512 2513 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2514 target_ulong val) 2515 { 2516 env->scounteren = val; 2517 return RISCV_EXCP_NONE; 2518 } 2519 2520 /* Supervisor Trap Handling */ 2521 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2522 Int128 *val) 2523 { 2524 *val = int128_make128(env->sscratch, env->sscratchh); 2525 return RISCV_EXCP_NONE; 2526 } 2527 2528 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2529 Int128 val) 2530 { 2531 env->sscratch = int128_getlo(val); 2532 env->sscratchh = int128_gethi(val); 2533 return RISCV_EXCP_NONE; 2534 } 2535 2536 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2537 target_ulong *val) 2538 { 2539 *val = env->sscratch; 2540 return RISCV_EXCP_NONE; 2541 } 2542 2543 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2544 target_ulong val) 2545 { 2546 env->sscratch = val; 2547 return RISCV_EXCP_NONE; 2548 } 2549 2550 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2551 target_ulong *val) 2552 { 2553 *val = env->sepc; 2554 return RISCV_EXCP_NONE; 2555 } 2556 2557 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2558 target_ulong val) 2559 { 2560 env->sepc = val; 2561 return RISCV_EXCP_NONE; 2562 } 2563 2564 static RISCVException read_scause(CPURISCVState *env, int csrno, 2565 target_ulong *val) 2566 { 2567 *val = env->scause; 2568 return RISCV_EXCP_NONE; 2569 } 2570 2571 static RISCVException write_scause(CPURISCVState *env, int csrno, 2572 target_ulong val) 2573 { 2574 env->scause = val; 2575 return RISCV_EXCP_NONE; 2576 } 2577 2578 static RISCVException read_stval(CPURISCVState *env, int csrno, 2579 target_ulong *val) 2580 { 2581 *val = env->stval; 2582 return RISCV_EXCP_NONE; 2583 } 2584 2585 static RISCVException write_stval(CPURISCVState *env, int csrno, 2586 target_ulong val) 2587 { 2588 env->stval = val; 2589 return RISCV_EXCP_NONE; 2590 } 2591 2592 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2593 uint64_t *ret_val, 2594 uint64_t new_val, uint64_t wr_mask) 2595 { 2596 RISCVException ret; 2597 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2598 2599 /* Bring VS-level bits to correct position */ 2600 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2601 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2602 2603 ret = rmw_mip64(env, csrno, &rval, new_val, 2604 wr_mask & mask & vsip_writable_mask); 2605 if (ret_val) { 2606 *ret_val = (rval & mask) >> 1; 2607 } 2608 2609 return ret; 2610 } 2611 2612 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2613 target_ulong *ret_val, 2614 target_ulong new_val, target_ulong wr_mask) 2615 { 2616 uint64_t rval; 2617 RISCVException ret; 2618 2619 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2620 if (ret_val) { 2621 *ret_val = rval; 2622 } 2623 2624 return ret; 2625 } 2626 2627 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2628 target_ulong *ret_val, 2629 target_ulong new_val, target_ulong wr_mask) 2630 { 2631 uint64_t rval; 2632 RISCVException ret; 2633 2634 ret = rmw_vsip64(env, csrno, &rval, 2635 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2636 if (ret_val) { 2637 *ret_val = rval >> 32; 2638 } 2639 2640 return ret; 2641 } 2642 2643 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2644 uint64_t *ret_val, 2645 uint64_t new_val, uint64_t wr_mask) 2646 { 2647 RISCVException ret; 2648 uint64_t mask = env->mideleg & sip_writable_mask; 2649 2650 if (env->virt_enabled) { 2651 if (env->hvictl & HVICTL_VTI) { 2652 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2653 } 2654 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2655 } else { 2656 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2657 } 2658 2659 if (ret_val) { 2660 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2661 } 2662 2663 return ret; 2664 } 2665 2666 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2667 target_ulong *ret_val, 2668 target_ulong new_val, target_ulong wr_mask) 2669 { 2670 uint64_t rval; 2671 RISCVException ret; 2672 2673 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2674 if (ret_val) { 2675 *ret_val = rval; 2676 } 2677 2678 return ret; 2679 } 2680 2681 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2682 target_ulong *ret_val, 2683 target_ulong new_val, target_ulong wr_mask) 2684 { 2685 uint64_t rval; 2686 RISCVException ret; 2687 2688 ret = rmw_sip64(env, csrno, &rval, 2689 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2690 if (ret_val) { 2691 *ret_val = rval >> 32; 2692 } 2693 2694 return ret; 2695 } 2696 2697 /* Supervisor Protection and Translation */ 2698 static RISCVException read_satp(CPURISCVState *env, int csrno, 2699 target_ulong *val) 2700 { 2701 if (!riscv_cpu_cfg(env)->mmu) { 2702 *val = 0; 2703 return RISCV_EXCP_NONE; 2704 } 2705 *val = env->satp; 2706 return RISCV_EXCP_NONE; 2707 } 2708 2709 static RISCVException write_satp(CPURISCVState *env, int csrno, 2710 target_ulong val) 2711 { 2712 target_ulong mask; 2713 bool vm; 2714 2715 if (!riscv_cpu_cfg(env)->mmu) { 2716 return RISCV_EXCP_NONE; 2717 } 2718 2719 if (riscv_cpu_mxl(env) == MXL_RV32) { 2720 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2721 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2722 } else { 2723 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2724 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2725 } 2726 2727 if (vm && mask) { 2728 /* 2729 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2730 * pass these through QEMU's TLB emulation as it improves 2731 * performance. Flushing the TLB on SATP writes with paging 2732 * enabled avoids leaking those invalid cached mappings. 2733 */ 2734 tlb_flush(env_cpu(env)); 2735 env->satp = val; 2736 } 2737 return RISCV_EXCP_NONE; 2738 } 2739 2740 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2741 { 2742 int irq, ret; 2743 target_ulong topei; 2744 uint64_t vseip, vsgein; 2745 uint32_t iid, iprio, hviid, hviprio, gein; 2746 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2747 2748 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2749 hviid = get_field(env->hvictl, HVICTL_IID); 2750 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2751 2752 if (gein) { 2753 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2754 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2755 if (gein <= env->geilen && vseip) { 2756 siid[scount] = IRQ_S_EXT; 2757 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2758 if (env->aia_ireg_rmw_fn[PRV_S]) { 2759 /* 2760 * Call machine specific IMSIC register emulation for 2761 * reading TOPEI. 2762 */ 2763 ret = env->aia_ireg_rmw_fn[PRV_S]( 2764 env->aia_ireg_rmw_fn_arg[PRV_S], 2765 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2766 riscv_cpu_mxl_bits(env)), 2767 &topei, 0, 0); 2768 if (!ret && topei) { 2769 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2770 } 2771 } 2772 scount++; 2773 } 2774 } else { 2775 if (hviid == IRQ_S_EXT && hviprio) { 2776 siid[scount] = IRQ_S_EXT; 2777 siprio[scount] = hviprio; 2778 scount++; 2779 } 2780 } 2781 2782 if (env->hvictl & HVICTL_VTI) { 2783 if (hviid != IRQ_S_EXT) { 2784 siid[scount] = hviid; 2785 siprio[scount] = hviprio; 2786 scount++; 2787 } 2788 } else { 2789 irq = riscv_cpu_vsirq_pending(env); 2790 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2791 siid[scount] = irq; 2792 siprio[scount] = env->hviprio[irq]; 2793 scount++; 2794 } 2795 } 2796 2797 iid = 0; 2798 iprio = UINT_MAX; 2799 for (s = 0; s < scount; s++) { 2800 if (siprio[s] < iprio) { 2801 iid = siid[s]; 2802 iprio = siprio[s]; 2803 } 2804 } 2805 2806 if (iid) { 2807 if (env->hvictl & HVICTL_IPRIOM) { 2808 if (iprio > IPRIO_MMAXIPRIO) { 2809 iprio = IPRIO_MMAXIPRIO; 2810 } 2811 if (!iprio) { 2812 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2813 iprio = IPRIO_MMAXIPRIO; 2814 } 2815 } 2816 } else { 2817 iprio = 1; 2818 } 2819 } else { 2820 iprio = 0; 2821 } 2822 2823 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2824 *val |= iprio; 2825 return RISCV_EXCP_NONE; 2826 } 2827 2828 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2829 { 2830 int irq; 2831 uint8_t iprio; 2832 2833 if (env->virt_enabled) { 2834 return read_vstopi(env, CSR_VSTOPI, val); 2835 } 2836 2837 irq = riscv_cpu_sirq_pending(env); 2838 if (irq <= 0 || irq > 63) { 2839 *val = 0; 2840 } else { 2841 iprio = env->siprio[irq]; 2842 if (!iprio) { 2843 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2844 iprio = IPRIO_MMAXIPRIO; 2845 } 2846 } 2847 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2848 *val |= iprio; 2849 } 2850 2851 return RISCV_EXCP_NONE; 2852 } 2853 2854 /* Hypervisor Extensions */ 2855 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2856 target_ulong *val) 2857 { 2858 *val = env->hstatus; 2859 if (riscv_cpu_mxl(env) != MXL_RV32) { 2860 /* We only support 64-bit VSXL */ 2861 *val = set_field(*val, HSTATUS_VSXL, 2); 2862 } 2863 /* We only support little endian */ 2864 *val = set_field(*val, HSTATUS_VSBE, 0); 2865 return RISCV_EXCP_NONE; 2866 } 2867 2868 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2869 target_ulong val) 2870 { 2871 env->hstatus = val; 2872 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2873 qemu_log_mask(LOG_UNIMP, 2874 "QEMU does not support mixed HSXLEN options."); 2875 } 2876 if (get_field(val, HSTATUS_VSBE) != 0) { 2877 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2878 } 2879 return RISCV_EXCP_NONE; 2880 } 2881 2882 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2883 target_ulong *val) 2884 { 2885 *val = env->hedeleg; 2886 return RISCV_EXCP_NONE; 2887 } 2888 2889 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2890 target_ulong val) 2891 { 2892 env->hedeleg = val & vs_delegable_excps; 2893 return RISCV_EXCP_NONE; 2894 } 2895 2896 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2897 uint64_t *ret_val, 2898 uint64_t new_val, uint64_t wr_mask) 2899 { 2900 uint64_t mask = wr_mask & vs_delegable_ints; 2901 2902 if (ret_val) { 2903 *ret_val = env->hideleg & vs_delegable_ints; 2904 } 2905 2906 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2907 return RISCV_EXCP_NONE; 2908 } 2909 2910 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2911 target_ulong *ret_val, 2912 target_ulong new_val, target_ulong wr_mask) 2913 { 2914 uint64_t rval; 2915 RISCVException ret; 2916 2917 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2918 if (ret_val) { 2919 *ret_val = rval; 2920 } 2921 2922 return ret; 2923 } 2924 2925 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2926 target_ulong *ret_val, 2927 target_ulong new_val, target_ulong wr_mask) 2928 { 2929 uint64_t rval; 2930 RISCVException ret; 2931 2932 ret = rmw_hideleg64(env, csrno, &rval, 2933 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2934 if (ret_val) { 2935 *ret_val = rval >> 32; 2936 } 2937 2938 return ret; 2939 } 2940 2941 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2942 uint64_t *ret_val, 2943 uint64_t new_val, uint64_t wr_mask) 2944 { 2945 RISCVException ret; 2946 2947 ret = rmw_mip64(env, csrno, ret_val, new_val, 2948 wr_mask & hvip_writable_mask); 2949 if (ret_val) { 2950 *ret_val &= VS_MODE_INTERRUPTS; 2951 } 2952 2953 return ret; 2954 } 2955 2956 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2957 target_ulong *ret_val, 2958 target_ulong new_val, target_ulong wr_mask) 2959 { 2960 uint64_t rval; 2961 RISCVException ret; 2962 2963 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2964 if (ret_val) { 2965 *ret_val = rval; 2966 } 2967 2968 return ret; 2969 } 2970 2971 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2972 target_ulong *ret_val, 2973 target_ulong new_val, target_ulong wr_mask) 2974 { 2975 uint64_t rval; 2976 RISCVException ret; 2977 2978 ret = rmw_hvip64(env, csrno, &rval, 2979 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2980 if (ret_val) { 2981 *ret_val = rval >> 32; 2982 } 2983 2984 return ret; 2985 } 2986 2987 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2988 target_ulong *ret_value, 2989 target_ulong new_value, target_ulong write_mask) 2990 { 2991 int ret = rmw_mip(env, csrno, ret_value, new_value, 2992 write_mask & hip_writable_mask); 2993 2994 if (ret_value) { 2995 *ret_value &= HS_MODE_INTERRUPTS; 2996 } 2997 return ret; 2998 } 2999 3000 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 3001 target_ulong *ret_val, 3002 target_ulong new_val, target_ulong wr_mask) 3003 { 3004 uint64_t rval; 3005 RISCVException ret; 3006 3007 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 3008 if (ret_val) { 3009 *ret_val = rval & HS_MODE_INTERRUPTS; 3010 } 3011 3012 return ret; 3013 } 3014 3015 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 3016 target_ulong *val) 3017 { 3018 *val = env->hcounteren; 3019 return RISCV_EXCP_NONE; 3020 } 3021 3022 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 3023 target_ulong val) 3024 { 3025 env->hcounteren = val; 3026 return RISCV_EXCP_NONE; 3027 } 3028 3029 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 3030 target_ulong *val) 3031 { 3032 if (val) { 3033 *val = env->hgeie; 3034 } 3035 return RISCV_EXCP_NONE; 3036 } 3037 3038 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 3039 target_ulong val) 3040 { 3041 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 3042 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 3043 env->hgeie = val; 3044 /* Update mip.SGEIP bit */ 3045 riscv_cpu_update_mip(env, MIP_SGEIP, 3046 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 3047 return RISCV_EXCP_NONE; 3048 } 3049 3050 static RISCVException read_htval(CPURISCVState *env, int csrno, 3051 target_ulong *val) 3052 { 3053 *val = env->htval; 3054 return RISCV_EXCP_NONE; 3055 } 3056 3057 static RISCVException write_htval(CPURISCVState *env, int csrno, 3058 target_ulong val) 3059 { 3060 env->htval = val; 3061 return RISCV_EXCP_NONE; 3062 } 3063 3064 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3065 target_ulong *val) 3066 { 3067 *val = env->htinst; 3068 return RISCV_EXCP_NONE; 3069 } 3070 3071 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3072 target_ulong val) 3073 { 3074 return RISCV_EXCP_NONE; 3075 } 3076 3077 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3078 target_ulong *val) 3079 { 3080 if (val) { 3081 *val = env->hgeip; 3082 } 3083 return RISCV_EXCP_NONE; 3084 } 3085 3086 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3087 target_ulong *val) 3088 { 3089 *val = env->hgatp; 3090 return RISCV_EXCP_NONE; 3091 } 3092 3093 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3094 target_ulong val) 3095 { 3096 env->hgatp = val; 3097 return RISCV_EXCP_NONE; 3098 } 3099 3100 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3101 target_ulong *val) 3102 { 3103 if (!env->rdtime_fn) { 3104 return RISCV_EXCP_ILLEGAL_INST; 3105 } 3106 3107 *val = env->htimedelta; 3108 return RISCV_EXCP_NONE; 3109 } 3110 3111 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3112 target_ulong val) 3113 { 3114 if (!env->rdtime_fn) { 3115 return RISCV_EXCP_ILLEGAL_INST; 3116 } 3117 3118 if (riscv_cpu_mxl(env) == MXL_RV32) { 3119 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3120 } else { 3121 env->htimedelta = val; 3122 } 3123 3124 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3125 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3126 env->htimedelta, MIP_VSTIP); 3127 } 3128 3129 return RISCV_EXCP_NONE; 3130 } 3131 3132 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3133 target_ulong *val) 3134 { 3135 if (!env->rdtime_fn) { 3136 return RISCV_EXCP_ILLEGAL_INST; 3137 } 3138 3139 *val = env->htimedelta >> 32; 3140 return RISCV_EXCP_NONE; 3141 } 3142 3143 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3144 target_ulong val) 3145 { 3146 if (!env->rdtime_fn) { 3147 return RISCV_EXCP_ILLEGAL_INST; 3148 } 3149 3150 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3151 3152 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3153 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3154 env->htimedelta, MIP_VSTIP); 3155 } 3156 3157 return RISCV_EXCP_NONE; 3158 } 3159 3160 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3161 { 3162 *val = env->hvictl; 3163 return RISCV_EXCP_NONE; 3164 } 3165 3166 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3167 { 3168 env->hvictl = val & HVICTL_VALID_MASK; 3169 return RISCV_EXCP_NONE; 3170 } 3171 3172 static int read_hvipriox(CPURISCVState *env, int first_index, 3173 uint8_t *iprio, target_ulong *val) 3174 { 3175 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3176 3177 /* First index has to be a multiple of number of irqs per register */ 3178 if (first_index % num_irqs) { 3179 return (env->virt_enabled) ? 3180 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3181 } 3182 3183 /* Fill-up return value */ 3184 *val = 0; 3185 for (i = 0; i < num_irqs; i++) { 3186 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3187 continue; 3188 } 3189 if (rdzero) { 3190 continue; 3191 } 3192 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3193 } 3194 3195 return RISCV_EXCP_NONE; 3196 } 3197 3198 static int write_hvipriox(CPURISCVState *env, int first_index, 3199 uint8_t *iprio, target_ulong val) 3200 { 3201 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3202 3203 /* First index has to be a multiple of number of irqs per register */ 3204 if (first_index % num_irqs) { 3205 return (env->virt_enabled) ? 3206 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3207 } 3208 3209 /* Fill-up priority arrary */ 3210 for (i = 0; i < num_irqs; i++) { 3211 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3212 continue; 3213 } 3214 if (rdzero) { 3215 iprio[irq] = 0; 3216 } else { 3217 iprio[irq] = (val >> (i * 8)) & 0xff; 3218 } 3219 } 3220 3221 return RISCV_EXCP_NONE; 3222 } 3223 3224 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3225 { 3226 return read_hvipriox(env, 0, env->hviprio, val); 3227 } 3228 3229 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3230 { 3231 return write_hvipriox(env, 0, env->hviprio, val); 3232 } 3233 3234 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3235 { 3236 return read_hvipriox(env, 4, env->hviprio, val); 3237 } 3238 3239 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3240 { 3241 return write_hvipriox(env, 4, env->hviprio, val); 3242 } 3243 3244 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3245 { 3246 return read_hvipriox(env, 8, env->hviprio, val); 3247 } 3248 3249 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3250 { 3251 return write_hvipriox(env, 8, env->hviprio, val); 3252 } 3253 3254 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3255 { 3256 return read_hvipriox(env, 12, env->hviprio, val); 3257 } 3258 3259 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3260 { 3261 return write_hvipriox(env, 12, env->hviprio, val); 3262 } 3263 3264 /* Virtual CSR Registers */ 3265 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3266 target_ulong *val) 3267 { 3268 *val = env->vsstatus; 3269 return RISCV_EXCP_NONE; 3270 } 3271 3272 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3273 target_ulong val) 3274 { 3275 uint64_t mask = (target_ulong)-1; 3276 if ((val & VSSTATUS64_UXL) == 0) { 3277 mask &= ~VSSTATUS64_UXL; 3278 } 3279 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3280 return RISCV_EXCP_NONE; 3281 } 3282 3283 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3284 { 3285 *val = env->vstvec; 3286 return RISCV_EXCP_NONE; 3287 } 3288 3289 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3290 target_ulong val) 3291 { 3292 env->vstvec = val; 3293 return RISCV_EXCP_NONE; 3294 } 3295 3296 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3297 target_ulong *val) 3298 { 3299 *val = env->vsscratch; 3300 return RISCV_EXCP_NONE; 3301 } 3302 3303 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3304 target_ulong val) 3305 { 3306 env->vsscratch = val; 3307 return RISCV_EXCP_NONE; 3308 } 3309 3310 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3311 target_ulong *val) 3312 { 3313 *val = env->vsepc; 3314 return RISCV_EXCP_NONE; 3315 } 3316 3317 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3318 target_ulong val) 3319 { 3320 env->vsepc = val; 3321 return RISCV_EXCP_NONE; 3322 } 3323 3324 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3325 target_ulong *val) 3326 { 3327 *val = env->vscause; 3328 return RISCV_EXCP_NONE; 3329 } 3330 3331 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3332 target_ulong val) 3333 { 3334 env->vscause = val; 3335 return RISCV_EXCP_NONE; 3336 } 3337 3338 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3339 target_ulong *val) 3340 { 3341 *val = env->vstval; 3342 return RISCV_EXCP_NONE; 3343 } 3344 3345 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3346 target_ulong val) 3347 { 3348 env->vstval = val; 3349 return RISCV_EXCP_NONE; 3350 } 3351 3352 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3353 target_ulong *val) 3354 { 3355 *val = env->vsatp; 3356 return RISCV_EXCP_NONE; 3357 } 3358 3359 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3360 target_ulong val) 3361 { 3362 env->vsatp = val; 3363 return RISCV_EXCP_NONE; 3364 } 3365 3366 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3367 target_ulong *val) 3368 { 3369 *val = env->mtval2; 3370 return RISCV_EXCP_NONE; 3371 } 3372 3373 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3374 target_ulong val) 3375 { 3376 env->mtval2 = val; 3377 return RISCV_EXCP_NONE; 3378 } 3379 3380 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3381 target_ulong *val) 3382 { 3383 *val = env->mtinst; 3384 return RISCV_EXCP_NONE; 3385 } 3386 3387 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3388 target_ulong val) 3389 { 3390 env->mtinst = val; 3391 return RISCV_EXCP_NONE; 3392 } 3393 3394 /* Physical Memory Protection */ 3395 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3396 target_ulong *val) 3397 { 3398 *val = mseccfg_csr_read(env); 3399 return RISCV_EXCP_NONE; 3400 } 3401 3402 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3403 target_ulong val) 3404 { 3405 mseccfg_csr_write(env, val); 3406 return RISCV_EXCP_NONE; 3407 } 3408 3409 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3410 target_ulong *val) 3411 { 3412 uint32_t reg_index = csrno - CSR_PMPCFG0; 3413 3414 *val = pmpcfg_csr_read(env, reg_index); 3415 return RISCV_EXCP_NONE; 3416 } 3417 3418 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3419 target_ulong val) 3420 { 3421 uint32_t reg_index = csrno - CSR_PMPCFG0; 3422 3423 pmpcfg_csr_write(env, reg_index, val); 3424 return RISCV_EXCP_NONE; 3425 } 3426 3427 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3428 target_ulong *val) 3429 { 3430 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3431 return RISCV_EXCP_NONE; 3432 } 3433 3434 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3435 target_ulong val) 3436 { 3437 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3438 return RISCV_EXCP_NONE; 3439 } 3440 3441 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3442 target_ulong *val) 3443 { 3444 *val = tselect_csr_read(env); 3445 return RISCV_EXCP_NONE; 3446 } 3447 3448 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3449 target_ulong val) 3450 { 3451 tselect_csr_write(env, val); 3452 return RISCV_EXCP_NONE; 3453 } 3454 3455 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3456 target_ulong *val) 3457 { 3458 /* return 0 in tdata1 to end the trigger enumeration */ 3459 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3460 *val = 0; 3461 return RISCV_EXCP_NONE; 3462 } 3463 3464 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3465 return RISCV_EXCP_ILLEGAL_INST; 3466 } 3467 3468 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3469 return RISCV_EXCP_NONE; 3470 } 3471 3472 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3473 target_ulong val) 3474 { 3475 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3476 return RISCV_EXCP_ILLEGAL_INST; 3477 } 3478 3479 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3480 return RISCV_EXCP_NONE; 3481 } 3482 3483 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3484 target_ulong *val) 3485 { 3486 *val = tinfo_csr_read(env); 3487 return RISCV_EXCP_NONE; 3488 } 3489 3490 /* 3491 * Functions to access Pointer Masking feature registers 3492 * We have to check if current priv lvl could modify 3493 * csr in given mode 3494 */ 3495 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3496 { 3497 int csr_priv = get_field(csrno, 0x300); 3498 int pm_current; 3499 3500 if (env->debugger) { 3501 return false; 3502 } 3503 /* 3504 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3505 * so allow the access 3506 */ 3507 if (env->priv != csr_priv) { 3508 return false; 3509 } 3510 switch (env->priv) { 3511 case PRV_M: 3512 pm_current = get_field(env->mmte, M_PM_CURRENT); 3513 break; 3514 case PRV_S: 3515 pm_current = get_field(env->mmte, S_PM_CURRENT); 3516 break; 3517 case PRV_U: 3518 pm_current = get_field(env->mmte, U_PM_CURRENT); 3519 break; 3520 default: 3521 g_assert_not_reached(); 3522 } 3523 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3524 return !pm_current; 3525 } 3526 3527 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3528 target_ulong *val) 3529 { 3530 *val = env->mmte & MMTE_MASK; 3531 return RISCV_EXCP_NONE; 3532 } 3533 3534 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3535 target_ulong val) 3536 { 3537 uint64_t mstatus; 3538 target_ulong wpri_val = val & MMTE_MASK; 3539 3540 if (val != wpri_val) { 3541 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 3542 TARGET_FMT_lx "\n", "MMTE: WPRI violation written 0x", 3543 val, "vs expected 0x", wpri_val); 3544 } 3545 /* for machine mode pm.current is hardwired to 1 */ 3546 wpri_val |= MMTE_M_PM_CURRENT; 3547 3548 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3549 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3550 env->mmte = wpri_val | EXT_STATUS_DIRTY; 3551 riscv_cpu_update_mask(env); 3552 3553 /* Set XS and SD bits, since PM CSRs are dirty */ 3554 mstatus = env->mstatus | MSTATUS_XS; 3555 write_mstatus(env, csrno, mstatus); 3556 return RISCV_EXCP_NONE; 3557 } 3558 3559 static RISCVException read_smte(CPURISCVState *env, int csrno, 3560 target_ulong *val) 3561 { 3562 *val = env->mmte & SMTE_MASK; 3563 return RISCV_EXCP_NONE; 3564 } 3565 3566 static RISCVException write_smte(CPURISCVState *env, int csrno, 3567 target_ulong val) 3568 { 3569 target_ulong wpri_val = val & SMTE_MASK; 3570 3571 if (val != wpri_val) { 3572 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 3573 TARGET_FMT_lx "\n", "SMTE: WPRI violation written 0x", 3574 val, "vs expected 0x", wpri_val); 3575 } 3576 3577 /* if pm.current==0 we can't modify current PM CSRs */ 3578 if (check_pm_current_disabled(env, csrno)) { 3579 return RISCV_EXCP_NONE; 3580 } 3581 3582 wpri_val |= (env->mmte & ~SMTE_MASK); 3583 write_mmte(env, csrno, wpri_val); 3584 return RISCV_EXCP_NONE; 3585 } 3586 3587 static RISCVException read_umte(CPURISCVState *env, int csrno, 3588 target_ulong *val) 3589 { 3590 *val = env->mmte & UMTE_MASK; 3591 return RISCV_EXCP_NONE; 3592 } 3593 3594 static RISCVException write_umte(CPURISCVState *env, int csrno, 3595 target_ulong val) 3596 { 3597 target_ulong wpri_val = val & UMTE_MASK; 3598 3599 if (val != wpri_val) { 3600 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 3601 TARGET_FMT_lx "\n", "UMTE: WPRI violation written 0x", 3602 val, "vs expected 0x", wpri_val); 3603 } 3604 3605 if (check_pm_current_disabled(env, csrno)) { 3606 return RISCV_EXCP_NONE; 3607 } 3608 3609 wpri_val |= (env->mmte & ~UMTE_MASK); 3610 write_mmte(env, csrno, wpri_val); 3611 return RISCV_EXCP_NONE; 3612 } 3613 3614 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3615 target_ulong *val) 3616 { 3617 *val = env->mpmmask; 3618 return RISCV_EXCP_NONE; 3619 } 3620 3621 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3622 target_ulong val) 3623 { 3624 uint64_t mstatus; 3625 3626 env->mpmmask = val; 3627 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3628 env->cur_pmmask = val; 3629 } 3630 env->mmte |= EXT_STATUS_DIRTY; 3631 3632 /* Set XS and SD bits, since PM CSRs are dirty */ 3633 mstatus = env->mstatus | MSTATUS_XS; 3634 write_mstatus(env, csrno, mstatus); 3635 return RISCV_EXCP_NONE; 3636 } 3637 3638 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3639 target_ulong *val) 3640 { 3641 *val = env->spmmask; 3642 return RISCV_EXCP_NONE; 3643 } 3644 3645 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3646 target_ulong val) 3647 { 3648 uint64_t mstatus; 3649 3650 /* if pm.current==0 we can't modify current PM CSRs */ 3651 if (check_pm_current_disabled(env, csrno)) { 3652 return RISCV_EXCP_NONE; 3653 } 3654 env->spmmask = val; 3655 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3656 env->cur_pmmask = val; 3657 } 3658 env->mmte |= EXT_STATUS_DIRTY; 3659 3660 /* Set XS and SD bits, since PM CSRs are dirty */ 3661 mstatus = env->mstatus | MSTATUS_XS; 3662 write_mstatus(env, csrno, mstatus); 3663 return RISCV_EXCP_NONE; 3664 } 3665 3666 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3667 target_ulong *val) 3668 { 3669 *val = env->upmmask; 3670 return RISCV_EXCP_NONE; 3671 } 3672 3673 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3674 target_ulong val) 3675 { 3676 uint64_t mstatus; 3677 3678 /* if pm.current==0 we can't modify current PM CSRs */ 3679 if (check_pm_current_disabled(env, csrno)) { 3680 return RISCV_EXCP_NONE; 3681 } 3682 env->upmmask = val; 3683 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3684 env->cur_pmmask = val; 3685 } 3686 env->mmte |= EXT_STATUS_DIRTY; 3687 3688 /* Set XS and SD bits, since PM CSRs are dirty */ 3689 mstatus = env->mstatus | MSTATUS_XS; 3690 write_mstatus(env, csrno, mstatus); 3691 return RISCV_EXCP_NONE; 3692 } 3693 3694 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3695 target_ulong *val) 3696 { 3697 *val = env->mpmbase; 3698 return RISCV_EXCP_NONE; 3699 } 3700 3701 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3702 target_ulong val) 3703 { 3704 uint64_t mstatus; 3705 3706 env->mpmbase = val; 3707 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3708 env->cur_pmbase = val; 3709 } 3710 env->mmte |= EXT_STATUS_DIRTY; 3711 3712 /* Set XS and SD bits, since PM CSRs are dirty */ 3713 mstatus = env->mstatus | MSTATUS_XS; 3714 write_mstatus(env, csrno, mstatus); 3715 return RISCV_EXCP_NONE; 3716 } 3717 3718 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3719 target_ulong *val) 3720 { 3721 *val = env->spmbase; 3722 return RISCV_EXCP_NONE; 3723 } 3724 3725 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3726 target_ulong val) 3727 { 3728 uint64_t mstatus; 3729 3730 /* if pm.current==0 we can't modify current PM CSRs */ 3731 if (check_pm_current_disabled(env, csrno)) { 3732 return RISCV_EXCP_NONE; 3733 } 3734 env->spmbase = val; 3735 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3736 env->cur_pmbase = val; 3737 } 3738 env->mmte |= EXT_STATUS_DIRTY; 3739 3740 /* Set XS and SD bits, since PM CSRs are dirty */ 3741 mstatus = env->mstatus | MSTATUS_XS; 3742 write_mstatus(env, csrno, mstatus); 3743 return RISCV_EXCP_NONE; 3744 } 3745 3746 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3747 target_ulong *val) 3748 { 3749 *val = env->upmbase; 3750 return RISCV_EXCP_NONE; 3751 } 3752 3753 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3754 target_ulong val) 3755 { 3756 uint64_t mstatus; 3757 3758 /* if pm.current==0 we can't modify current PM CSRs */ 3759 if (check_pm_current_disabled(env, csrno)) { 3760 return RISCV_EXCP_NONE; 3761 } 3762 env->upmbase = val; 3763 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3764 env->cur_pmbase = val; 3765 } 3766 env->mmte |= EXT_STATUS_DIRTY; 3767 3768 /* Set XS and SD bits, since PM CSRs are dirty */ 3769 mstatus = env->mstatus | MSTATUS_XS; 3770 write_mstatus(env, csrno, mstatus); 3771 return RISCV_EXCP_NONE; 3772 } 3773 3774 #endif 3775 3776 /* Crypto Extension */ 3777 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3778 target_ulong *ret_value, 3779 target_ulong new_value, 3780 target_ulong write_mask) 3781 { 3782 uint16_t random_v; 3783 Error *random_e = NULL; 3784 int random_r; 3785 target_ulong rval; 3786 3787 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3788 if (unlikely(random_r < 0)) { 3789 /* 3790 * Failed, for unknown reasons in the crypto subsystem. 3791 * The best we can do is log the reason and return a 3792 * failure indication to the guest. There is no reason 3793 * we know to expect the failure to be transitory, so 3794 * indicate DEAD to avoid having the guest spin on WAIT. 3795 */ 3796 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3797 __func__, error_get_pretty(random_e)); 3798 error_free(random_e); 3799 rval = SEED_OPST_DEAD; 3800 } else { 3801 rval = random_v | SEED_OPST_ES16; 3802 } 3803 3804 if (ret_value) { 3805 *ret_value = rval; 3806 } 3807 3808 return RISCV_EXCP_NONE; 3809 } 3810 3811 /* 3812 * riscv_csrrw - read and/or update control and status register 3813 * 3814 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3815 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3816 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3817 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3818 */ 3819 3820 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3821 int csrno, 3822 bool write_mask) 3823 { 3824 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3825 bool read_only = get_field(csrno, 0xC00) == 3; 3826 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3827 3828 /* ensure the CSR extension is enabled */ 3829 if (!riscv_cpu_cfg(env)->ext_icsr) { 3830 return RISCV_EXCP_ILLEGAL_INST; 3831 } 3832 3833 /* ensure CSR is implemented by checking predicate */ 3834 if (!csr_ops[csrno].predicate) { 3835 return RISCV_EXCP_ILLEGAL_INST; 3836 } 3837 3838 /* privileged spec version check */ 3839 if (env->priv_ver < csr_min_priv) { 3840 return RISCV_EXCP_ILLEGAL_INST; 3841 } 3842 3843 /* read / write check */ 3844 if (write_mask && read_only) { 3845 return RISCV_EXCP_ILLEGAL_INST; 3846 } 3847 3848 /* 3849 * The predicate() not only does existence check but also does some 3850 * access control check which triggers for example virtual instruction 3851 * exception in some cases. When writing read-only CSRs in those cases 3852 * illegal instruction exception should be triggered instead of virtual 3853 * instruction exception. Hence this comes after the read / write check. 3854 */ 3855 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3856 if (ret != RISCV_EXCP_NONE) { 3857 return ret; 3858 } 3859 3860 #if !defined(CONFIG_USER_ONLY) 3861 int csr_priv, effective_priv = env->priv; 3862 3863 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3864 !env->virt_enabled) { 3865 /* 3866 * We are in HS mode. Add 1 to the effective privledge level to 3867 * allow us to access the Hypervisor CSRs. 3868 */ 3869 effective_priv++; 3870 } 3871 3872 csr_priv = get_field(csrno, 0x300); 3873 if (!env->debugger && (effective_priv < csr_priv)) { 3874 if (csr_priv == (PRV_S + 1) && env->virt_enabled) { 3875 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3876 } 3877 return RISCV_EXCP_ILLEGAL_INST; 3878 } 3879 #endif 3880 return RISCV_EXCP_NONE; 3881 } 3882 3883 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3884 target_ulong *ret_value, 3885 target_ulong new_value, 3886 target_ulong write_mask) 3887 { 3888 RISCVException ret; 3889 target_ulong old_value; 3890 3891 /* execute combined read/write operation if it exists */ 3892 if (csr_ops[csrno].op) { 3893 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3894 } 3895 3896 /* if no accessor exists then return failure */ 3897 if (!csr_ops[csrno].read) { 3898 return RISCV_EXCP_ILLEGAL_INST; 3899 } 3900 /* read old value */ 3901 ret = csr_ops[csrno].read(env, csrno, &old_value); 3902 if (ret != RISCV_EXCP_NONE) { 3903 return ret; 3904 } 3905 3906 /* write value if writable and write mask set, otherwise drop writes */ 3907 if (write_mask) { 3908 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3909 if (csr_ops[csrno].write) { 3910 ret = csr_ops[csrno].write(env, csrno, new_value); 3911 if (ret != RISCV_EXCP_NONE) { 3912 return ret; 3913 } 3914 } 3915 } 3916 3917 /* return old value */ 3918 if (ret_value) { 3919 *ret_value = old_value; 3920 } 3921 3922 return RISCV_EXCP_NONE; 3923 } 3924 3925 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3926 target_ulong *ret_value, 3927 target_ulong new_value, target_ulong write_mask) 3928 { 3929 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask); 3930 if (ret != RISCV_EXCP_NONE) { 3931 return ret; 3932 } 3933 3934 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3935 } 3936 3937 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3938 Int128 *ret_value, 3939 Int128 new_value, 3940 Int128 write_mask) 3941 { 3942 RISCVException ret; 3943 Int128 old_value; 3944 3945 /* read old value */ 3946 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3947 if (ret != RISCV_EXCP_NONE) { 3948 return ret; 3949 } 3950 3951 /* write value if writable and write mask set, otherwise drop writes */ 3952 if (int128_nz(write_mask)) { 3953 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3954 int128_and(new_value, write_mask)); 3955 if (csr_ops[csrno].write128) { 3956 ret = csr_ops[csrno].write128(env, csrno, new_value); 3957 if (ret != RISCV_EXCP_NONE) { 3958 return ret; 3959 } 3960 } else if (csr_ops[csrno].write) { 3961 /* avoids having to write wrappers for all registers */ 3962 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3963 if (ret != RISCV_EXCP_NONE) { 3964 return ret; 3965 } 3966 } 3967 } 3968 3969 /* return old value */ 3970 if (ret_value) { 3971 *ret_value = old_value; 3972 } 3973 3974 return RISCV_EXCP_NONE; 3975 } 3976 3977 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3978 Int128 *ret_value, 3979 Int128 new_value, Int128 write_mask) 3980 { 3981 RISCVException ret; 3982 3983 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask)); 3984 if (ret != RISCV_EXCP_NONE) { 3985 return ret; 3986 } 3987 3988 if (csr_ops[csrno].read128) { 3989 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3990 } 3991 3992 /* 3993 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3994 * at all defined. 3995 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3996 * significant), for those, this fallback is correctly handling the 3997 * accesses 3998 */ 3999 target_ulong old_value; 4000 ret = riscv_csrrw_do64(env, csrno, &old_value, 4001 int128_getlo(new_value), 4002 int128_getlo(write_mask)); 4003 if (ret == RISCV_EXCP_NONE && ret_value) { 4004 *ret_value = int128_make64(old_value); 4005 } 4006 return ret; 4007 } 4008 4009 /* 4010 * Debugger support. If not in user mode, set env->debugger before the 4011 * riscv_csrrw call and clear it after the call. 4012 */ 4013 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 4014 target_ulong *ret_value, 4015 target_ulong new_value, 4016 target_ulong write_mask) 4017 { 4018 RISCVException ret; 4019 #if !defined(CONFIG_USER_ONLY) 4020 env->debugger = true; 4021 #endif 4022 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 4023 #if !defined(CONFIG_USER_ONLY) 4024 env->debugger = false; 4025 #endif 4026 return ret; 4027 } 4028 4029 static RISCVException read_jvt(CPURISCVState *env, int csrno, 4030 target_ulong *val) 4031 { 4032 *val = env->jvt; 4033 return RISCV_EXCP_NONE; 4034 } 4035 4036 static RISCVException write_jvt(CPURISCVState *env, int csrno, 4037 target_ulong val) 4038 { 4039 env->jvt = val; 4040 return RISCV_EXCP_NONE; 4041 } 4042 4043 /* 4044 * Control and Status Register function table 4045 * riscv_csr_operations::predicate() must be provided for an implemented CSR 4046 */ 4047 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 4048 /* User Floating-Point CSRs */ 4049 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 4050 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 4051 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 4052 /* Vector CSRs */ 4053 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 4054 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 4055 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4056 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4057 [CSR_VL] = { "vl", vs, read_vl }, 4058 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4059 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4060 /* User Timers and Counters */ 4061 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4062 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4063 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4064 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4065 4066 /* 4067 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4068 * rdtime callback is not provided by machine/platform emulation. 4069 */ 4070 [CSR_TIME] = { "time", ctr, read_time }, 4071 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4072 4073 /* Crypto Extension */ 4074 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4075 4076 /* Zcmt Extension */ 4077 [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, 4078 4079 #if !defined(CONFIG_USER_ONLY) 4080 /* Machine Timers and Counters */ 4081 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4082 write_mhpmcounter }, 4083 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4084 write_mhpmcounter }, 4085 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4086 write_mhpmcounterh }, 4087 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4088 write_mhpmcounterh }, 4089 4090 /* Machine Information Registers */ 4091 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4092 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4093 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4094 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4095 4096 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4097 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4098 /* Machine Trap Setup */ 4099 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4100 NULL, read_mstatus_i128 }, 4101 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4102 NULL, read_misa_i128 }, 4103 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4104 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4105 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4106 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4107 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4108 write_mcounteren }, 4109 4110 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4111 write_mstatush }, 4112 4113 /* Machine Trap Handling */ 4114 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4115 NULL, read_mscratch_i128, write_mscratch_i128 }, 4116 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4117 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4118 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4119 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4120 4121 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4122 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4123 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4124 4125 /* Machine-Level Interrupts (AIA) */ 4126 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4127 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4128 4129 /* Virtual Interrupts for Supervisor Level (AIA) */ 4130 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4131 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4132 4133 /* Machine-Level High-Half CSRs (AIA) */ 4134 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4135 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4136 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4137 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4138 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4139 4140 /* Execution environment configuration */ 4141 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4142 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4143 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4144 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4145 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4146 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4147 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4148 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4149 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4150 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4151 4152 /* Smstateen extension CSRs */ 4153 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4154 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4155 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4156 write_mstateen0h, 4157 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4158 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4159 write_mstateen_1_3, 4160 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4161 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4162 write_mstateenh_1_3, 4163 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4164 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4165 write_mstateen_1_3, 4166 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4167 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4168 write_mstateenh_1_3, 4169 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4170 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4171 write_mstateen_1_3, 4172 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4173 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4174 write_mstateenh_1_3, 4175 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4176 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4177 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4178 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4179 write_hstateen0h, 4180 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4181 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4182 write_hstateen_1_3, 4183 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4184 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4185 write_hstateenh_1_3, 4186 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4187 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4188 write_hstateen_1_3, 4189 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4190 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4191 write_hstateenh_1_3, 4192 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4193 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4194 write_hstateen_1_3, 4195 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4196 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4197 write_hstateenh_1_3, 4198 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4199 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4200 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4201 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4202 write_sstateen_1_3, 4203 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4204 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4205 write_sstateen_1_3, 4206 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4207 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4208 write_sstateen_1_3, 4209 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4210 4211 /* Supervisor Trap Setup */ 4212 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4213 NULL, read_sstatus_i128 }, 4214 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4215 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4216 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4217 write_scounteren }, 4218 4219 /* Supervisor Trap Handling */ 4220 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4221 NULL, read_sscratch_i128, write_sscratch_i128 }, 4222 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4223 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4224 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4225 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4226 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4227 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4228 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4229 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4230 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4231 write_vstimecmp, 4232 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4233 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4234 write_vstimecmph, 4235 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4236 4237 /* Supervisor Protection and Translation */ 4238 [CSR_SATP] = { "satp", satp, read_satp, write_satp }, 4239 4240 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4241 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4242 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4243 4244 /* Supervisor-Level Interrupts (AIA) */ 4245 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4246 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4247 4248 /* Supervisor-Level High-Half CSRs (AIA) */ 4249 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4250 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4251 4252 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4253 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4254 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4255 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4256 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4257 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4258 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4259 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4260 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4261 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4262 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4263 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4264 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4265 write_hcounteren, 4266 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4267 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4268 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4269 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4270 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4271 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4272 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4273 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4274 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4275 [CSR_HGATP] = { "hgatp", hgatp, read_hgatp, write_hgatp, 4276 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4277 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4278 write_htimedelta, 4279 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4280 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4281 write_htimedeltah, 4282 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4283 4284 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4285 write_vsstatus, 4286 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4287 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4288 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4289 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4290 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4291 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4292 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4293 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4294 write_vsscratch, 4295 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4296 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4297 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4298 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4299 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4300 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4301 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4302 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4303 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4304 4305 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4306 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4307 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4308 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4309 4310 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4311 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4312 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4313 write_hvictl }, 4314 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4315 write_hviprio1 }, 4316 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4317 write_hviprio2 }, 4318 4319 /* 4320 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4321 */ 4322 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4323 rmw_xiselect }, 4324 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4325 4326 /* VS-Level Interrupts (H-extension with AIA) */ 4327 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4328 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4329 4330 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4331 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4332 rmw_hidelegh }, 4333 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4334 write_ignore }, 4335 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4336 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4337 write_hviprio1h }, 4338 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4339 write_hviprio2h }, 4340 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4341 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4342 4343 /* Physical Memory Protection */ 4344 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4345 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4346 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4347 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4348 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4349 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4350 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4351 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4352 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4353 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4354 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4355 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4356 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4357 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4358 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4359 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4360 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4361 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4362 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4363 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4364 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4365 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4366 4367 /* Debug CSRs */ 4368 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4369 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4370 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4371 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4372 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4373 4374 /* User Pointer Masking */ 4375 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4376 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4377 write_upmmask }, 4378 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4379 write_upmbase }, 4380 /* Machine Pointer Masking */ 4381 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4382 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4383 write_mpmmask }, 4384 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4385 write_mpmbase }, 4386 /* Supervisor Pointer Masking */ 4387 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4388 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4389 write_spmmask }, 4390 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4391 write_spmbase }, 4392 4393 /* Performance Counters */ 4394 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4395 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4396 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4397 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4398 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4399 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4400 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4401 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4402 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4403 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4404 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4405 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4406 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4407 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4408 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4409 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4410 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4411 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4412 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4413 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4414 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4415 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4416 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4417 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4418 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4419 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4420 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4421 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4422 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4423 4424 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4425 write_mhpmcounter }, 4426 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4427 write_mhpmcounter }, 4428 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4429 write_mhpmcounter }, 4430 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4431 write_mhpmcounter }, 4432 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4433 write_mhpmcounter }, 4434 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4435 write_mhpmcounter }, 4436 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4437 write_mhpmcounter }, 4438 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4439 write_mhpmcounter }, 4440 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4441 write_mhpmcounter }, 4442 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4443 write_mhpmcounter }, 4444 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4445 write_mhpmcounter }, 4446 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4447 write_mhpmcounter }, 4448 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4449 write_mhpmcounter }, 4450 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4451 write_mhpmcounter }, 4452 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4453 write_mhpmcounter }, 4454 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4455 write_mhpmcounter }, 4456 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4457 write_mhpmcounter }, 4458 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4459 write_mhpmcounter }, 4460 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4461 write_mhpmcounter }, 4462 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4463 write_mhpmcounter }, 4464 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4465 write_mhpmcounter }, 4466 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4467 write_mhpmcounter }, 4468 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4469 write_mhpmcounter }, 4470 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4471 write_mhpmcounter }, 4472 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4473 write_mhpmcounter }, 4474 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4475 write_mhpmcounter }, 4476 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4477 write_mhpmcounter }, 4478 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4479 write_mhpmcounter }, 4480 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4481 write_mhpmcounter }, 4482 4483 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4484 write_mcountinhibit, 4485 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4486 4487 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4488 write_mhpmevent }, 4489 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4490 write_mhpmevent }, 4491 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4492 write_mhpmevent }, 4493 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4494 write_mhpmevent }, 4495 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4496 write_mhpmevent }, 4497 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4498 write_mhpmevent }, 4499 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4500 write_mhpmevent }, 4501 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4502 write_mhpmevent }, 4503 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4504 write_mhpmevent }, 4505 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4506 write_mhpmevent }, 4507 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4508 write_mhpmevent }, 4509 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4510 write_mhpmevent }, 4511 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4512 write_mhpmevent }, 4513 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4514 write_mhpmevent }, 4515 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4516 write_mhpmevent }, 4517 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4518 write_mhpmevent }, 4519 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4520 write_mhpmevent }, 4521 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4522 write_mhpmevent }, 4523 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4524 write_mhpmevent }, 4525 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4526 write_mhpmevent }, 4527 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4528 write_mhpmevent }, 4529 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4530 write_mhpmevent }, 4531 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4532 write_mhpmevent }, 4533 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4534 write_mhpmevent }, 4535 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4536 write_mhpmevent }, 4537 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4538 write_mhpmevent }, 4539 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4540 write_mhpmevent }, 4541 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4542 write_mhpmevent }, 4543 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4544 write_mhpmevent }, 4545 4546 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4547 write_mhpmeventh, 4548 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4549 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4550 write_mhpmeventh, 4551 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4552 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4553 write_mhpmeventh, 4554 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4555 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4556 write_mhpmeventh, 4557 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4558 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4559 write_mhpmeventh, 4560 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4561 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4562 write_mhpmeventh, 4563 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4564 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4565 write_mhpmeventh, 4566 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4567 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4568 write_mhpmeventh, 4569 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4570 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4571 write_mhpmeventh, 4572 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4573 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4574 write_mhpmeventh, 4575 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4576 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4577 write_mhpmeventh, 4578 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4579 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4580 write_mhpmeventh, 4581 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4582 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4583 write_mhpmeventh, 4584 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4585 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4586 write_mhpmeventh, 4587 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4588 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4589 write_mhpmeventh, 4590 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4591 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4592 write_mhpmeventh, 4593 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4594 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4595 write_mhpmeventh, 4596 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4597 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4598 write_mhpmeventh, 4599 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4600 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4601 write_mhpmeventh, 4602 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4603 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4604 write_mhpmeventh, 4605 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4606 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4607 write_mhpmeventh, 4608 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4609 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4610 write_mhpmeventh, 4611 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4612 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4613 write_mhpmeventh, 4614 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4615 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4616 write_mhpmeventh, 4617 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4618 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4619 write_mhpmeventh, 4620 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4621 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4622 write_mhpmeventh, 4623 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4624 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4625 write_mhpmeventh, 4626 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4627 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4628 write_mhpmeventh, 4629 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4630 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4631 write_mhpmeventh, 4632 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4633 4634 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4635 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4636 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4637 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4638 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4639 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4640 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4641 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4642 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4643 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4644 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4645 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4646 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4647 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4648 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4649 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4650 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4651 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4652 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4653 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4654 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4655 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4656 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4657 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4658 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4659 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4660 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4661 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4662 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4663 4664 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4665 write_mhpmcounterh }, 4666 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4667 write_mhpmcounterh }, 4668 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4669 write_mhpmcounterh }, 4670 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4671 write_mhpmcounterh }, 4672 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4673 write_mhpmcounterh }, 4674 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4675 write_mhpmcounterh }, 4676 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4677 write_mhpmcounterh }, 4678 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4679 write_mhpmcounterh }, 4680 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4681 write_mhpmcounterh }, 4682 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4683 write_mhpmcounterh }, 4684 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4685 write_mhpmcounterh }, 4686 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4687 write_mhpmcounterh }, 4688 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4689 write_mhpmcounterh }, 4690 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4691 write_mhpmcounterh }, 4692 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4693 write_mhpmcounterh }, 4694 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4695 write_mhpmcounterh }, 4696 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4697 write_mhpmcounterh }, 4698 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4699 write_mhpmcounterh }, 4700 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4701 write_mhpmcounterh }, 4702 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4703 write_mhpmcounterh }, 4704 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4705 write_mhpmcounterh }, 4706 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4707 write_mhpmcounterh }, 4708 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4709 write_mhpmcounterh }, 4710 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4711 write_mhpmcounterh }, 4712 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4713 write_mhpmcounterh }, 4714 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4715 write_mhpmcounterh }, 4716 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4717 write_mhpmcounterh }, 4718 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4719 write_mhpmcounterh }, 4720 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4721 write_mhpmcounterh }, 4722 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4723 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4724 4725 #endif /* !CONFIG_USER_ONLY */ 4726 }; 4727