1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "tcg/tcg-cpu.h" 25 #include "pmu.h" 26 #include "time_helper.h" 27 #include "exec/exec-all.h" 28 #include "exec/tb-flush.h" 29 #include "sysemu/cpu-timers.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 33 /* CSR function table public API */ 34 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 35 { 36 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 37 } 38 39 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 40 { 41 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 42 } 43 44 /* Predicates */ 45 #if !defined(CONFIG_USER_ONLY) 46 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) 47 { 48 bool virt = env->virt_enabled; 49 50 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 51 return RISCV_EXCP_NONE; 52 } 53 54 if (!(env->mstateen[index] & bit)) { 55 return RISCV_EXCP_ILLEGAL_INST; 56 } 57 58 if (virt) { 59 if (!(env->hstateen[index] & bit)) { 60 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 61 } 62 63 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 64 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 65 } 66 } 67 68 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 69 if (!(env->sstateen[index] & bit)) { 70 return RISCV_EXCP_ILLEGAL_INST; 71 } 72 } 73 74 return RISCV_EXCP_NONE; 75 } 76 #endif 77 78 static RISCVException fs(CPURISCVState *env, int csrno) 79 { 80 #if !defined(CONFIG_USER_ONLY) 81 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 82 !riscv_cpu_cfg(env)->ext_zfinx) { 83 return RISCV_EXCP_ILLEGAL_INST; 84 } 85 86 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 87 return smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR); 88 } 89 #endif 90 return RISCV_EXCP_NONE; 91 } 92 93 static RISCVException vs(CPURISCVState *env, int csrno) 94 { 95 if (riscv_cpu_cfg(env)->ext_zve32x) { 96 #if !defined(CONFIG_USER_ONLY) 97 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 98 return RISCV_EXCP_ILLEGAL_INST; 99 } 100 #endif 101 return RISCV_EXCP_NONE; 102 } 103 return RISCV_EXCP_ILLEGAL_INST; 104 } 105 106 static RISCVException ctr(CPURISCVState *env, int csrno) 107 { 108 #if !defined(CONFIG_USER_ONLY) 109 RISCVCPU *cpu = env_archcpu(env); 110 int ctr_index; 111 target_ulong ctr_mask; 112 int base_csrno = CSR_CYCLE; 113 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 114 115 if (rv32 && csrno >= CSR_CYCLEH) { 116 /* Offset for RV32 hpmcounternh counters */ 117 base_csrno += 0x80; 118 } 119 ctr_index = csrno - base_csrno; 120 ctr_mask = BIT(ctr_index); 121 122 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 123 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 124 if (!riscv_cpu_cfg(env)->ext_zicntr) { 125 return RISCV_EXCP_ILLEGAL_INST; 126 } 127 128 goto skip_ext_pmu_check; 129 } 130 131 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 132 /* No counter is enabled in PMU or the counter is out of range */ 133 return RISCV_EXCP_ILLEGAL_INST; 134 } 135 136 skip_ext_pmu_check: 137 138 if (env->debugger) { 139 return RISCV_EXCP_NONE; 140 } 141 142 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 143 return RISCV_EXCP_ILLEGAL_INST; 144 } 145 146 if (env->virt_enabled) { 147 if (!get_field(env->hcounteren, ctr_mask) || 148 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 149 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 150 } 151 } 152 153 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 154 !get_field(env->scounteren, ctr_mask)) { 155 return RISCV_EXCP_ILLEGAL_INST; 156 } 157 158 #endif 159 return RISCV_EXCP_NONE; 160 } 161 162 static RISCVException ctr32(CPURISCVState *env, int csrno) 163 { 164 if (riscv_cpu_mxl(env) != MXL_RV32) { 165 return RISCV_EXCP_ILLEGAL_INST; 166 } 167 168 return ctr(env, csrno); 169 } 170 171 static RISCVException zcmt(CPURISCVState *env, int csrno) 172 { 173 if (!riscv_cpu_cfg(env)->ext_zcmt) { 174 return RISCV_EXCP_ILLEGAL_INST; 175 } 176 177 #if !defined(CONFIG_USER_ONLY) 178 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); 179 if (ret != RISCV_EXCP_NONE) { 180 return ret; 181 } 182 #endif 183 184 return RISCV_EXCP_NONE; 185 } 186 187 #if !defined(CONFIG_USER_ONLY) 188 static RISCVException mctr(CPURISCVState *env, int csrno) 189 { 190 RISCVCPU *cpu = env_archcpu(env); 191 uint32_t pmu_avail_ctrs = cpu->pmu_avail_ctrs; 192 int ctr_index; 193 int base_csrno = CSR_MHPMCOUNTER3; 194 195 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 196 /* Offset for RV32 mhpmcounternh counters */ 197 csrno -= 0x80; 198 } 199 200 g_assert(csrno >= CSR_MHPMCOUNTER3 && csrno <= CSR_MHPMCOUNTER31); 201 202 ctr_index = csrno - base_csrno; 203 if ((BIT(ctr_index) & pmu_avail_ctrs >> 3) == 0) { 204 /* The PMU is not enabled or counter is out of range */ 205 return RISCV_EXCP_ILLEGAL_INST; 206 } 207 208 return RISCV_EXCP_NONE; 209 } 210 211 static RISCVException mctr32(CPURISCVState *env, int csrno) 212 { 213 if (riscv_cpu_mxl(env) != MXL_RV32) { 214 return RISCV_EXCP_ILLEGAL_INST; 215 } 216 217 return mctr(env, csrno); 218 } 219 220 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 221 { 222 if (!riscv_cpu_cfg(env)->ext_sscofpmf) { 223 return RISCV_EXCP_ILLEGAL_INST; 224 } 225 226 return RISCV_EXCP_NONE; 227 } 228 229 static RISCVException sscofpmf_32(CPURISCVState *env, int csrno) 230 { 231 if (riscv_cpu_mxl(env) != MXL_RV32) { 232 return RISCV_EXCP_ILLEGAL_INST; 233 } 234 235 return sscofpmf(env, csrno); 236 } 237 238 static RISCVException smcntrpmf(CPURISCVState *env, int csrno) 239 { 240 if (!riscv_cpu_cfg(env)->ext_smcntrpmf) { 241 return RISCV_EXCP_ILLEGAL_INST; 242 } 243 244 return RISCV_EXCP_NONE; 245 } 246 247 static RISCVException smcntrpmf_32(CPURISCVState *env, int csrno) 248 { 249 if (riscv_cpu_mxl(env) != MXL_RV32) { 250 return RISCV_EXCP_ILLEGAL_INST; 251 } 252 253 return smcntrpmf(env, csrno); 254 } 255 256 static RISCVException any(CPURISCVState *env, int csrno) 257 { 258 return RISCV_EXCP_NONE; 259 } 260 261 static RISCVException any32(CPURISCVState *env, int csrno) 262 { 263 if (riscv_cpu_mxl(env) != MXL_RV32) { 264 return RISCV_EXCP_ILLEGAL_INST; 265 } 266 267 return any(env, csrno); 268 269 } 270 271 static RISCVException aia_any(CPURISCVState *env, int csrno) 272 { 273 if (!riscv_cpu_cfg(env)->ext_smaia) { 274 return RISCV_EXCP_ILLEGAL_INST; 275 } 276 277 return any(env, csrno); 278 } 279 280 static RISCVException aia_any32(CPURISCVState *env, int csrno) 281 { 282 if (!riscv_cpu_cfg(env)->ext_smaia) { 283 return RISCV_EXCP_ILLEGAL_INST; 284 } 285 286 return any32(env, csrno); 287 } 288 289 static RISCVException smode(CPURISCVState *env, int csrno) 290 { 291 if (riscv_has_ext(env, RVS)) { 292 return RISCV_EXCP_NONE; 293 } 294 295 return RISCV_EXCP_ILLEGAL_INST; 296 } 297 298 static RISCVException smode32(CPURISCVState *env, int csrno) 299 { 300 if (riscv_cpu_mxl(env) != MXL_RV32) { 301 return RISCV_EXCP_ILLEGAL_INST; 302 } 303 304 return smode(env, csrno); 305 } 306 307 static RISCVException aia_smode(CPURISCVState *env, int csrno) 308 { 309 if (!riscv_cpu_cfg(env)->ext_ssaia) { 310 return RISCV_EXCP_ILLEGAL_INST; 311 } 312 313 return smode(env, csrno); 314 } 315 316 static RISCVException aia_smode32(CPURISCVState *env, int csrno) 317 { 318 if (!riscv_cpu_cfg(env)->ext_ssaia) { 319 return RISCV_EXCP_ILLEGAL_INST; 320 } 321 322 return smode32(env, csrno); 323 } 324 325 static RISCVException hmode(CPURISCVState *env, int csrno) 326 { 327 if (riscv_has_ext(env, RVH)) { 328 return RISCV_EXCP_NONE; 329 } 330 331 return RISCV_EXCP_ILLEGAL_INST; 332 } 333 334 static RISCVException hmode32(CPURISCVState *env, int csrno) 335 { 336 if (riscv_cpu_mxl(env) != MXL_RV32) { 337 return RISCV_EXCP_ILLEGAL_INST; 338 } 339 340 return hmode(env, csrno); 341 342 } 343 344 static RISCVException umode(CPURISCVState *env, int csrno) 345 { 346 if (riscv_has_ext(env, RVU)) { 347 return RISCV_EXCP_NONE; 348 } 349 350 return RISCV_EXCP_ILLEGAL_INST; 351 } 352 353 static RISCVException umode32(CPURISCVState *env, int csrno) 354 { 355 if (riscv_cpu_mxl(env) != MXL_RV32) { 356 return RISCV_EXCP_ILLEGAL_INST; 357 } 358 359 return umode(env, csrno); 360 } 361 362 static RISCVException mstateen(CPURISCVState *env, int csrno) 363 { 364 if (!riscv_cpu_cfg(env)->ext_smstateen) { 365 return RISCV_EXCP_ILLEGAL_INST; 366 } 367 368 return any(env, csrno); 369 } 370 371 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 372 { 373 if (!riscv_cpu_cfg(env)->ext_smstateen) { 374 return RISCV_EXCP_ILLEGAL_INST; 375 } 376 377 RISCVException ret = hmode(env, csrno); 378 if (ret != RISCV_EXCP_NONE) { 379 return ret; 380 } 381 382 if (env->debugger) { 383 return RISCV_EXCP_NONE; 384 } 385 386 if (env->priv < PRV_M) { 387 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 388 return RISCV_EXCP_ILLEGAL_INST; 389 } 390 } 391 392 return RISCV_EXCP_NONE; 393 } 394 395 static RISCVException hstateen(CPURISCVState *env, int csrno) 396 { 397 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 398 } 399 400 static RISCVException hstateenh(CPURISCVState *env, int csrno) 401 { 402 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 403 } 404 405 static RISCVException sstateen(CPURISCVState *env, int csrno) 406 { 407 bool virt = env->virt_enabled; 408 int index = csrno - CSR_SSTATEEN0; 409 410 if (!riscv_cpu_cfg(env)->ext_smstateen) { 411 return RISCV_EXCP_ILLEGAL_INST; 412 } 413 414 RISCVException ret = smode(env, csrno); 415 if (ret != RISCV_EXCP_NONE) { 416 return ret; 417 } 418 419 if (env->debugger) { 420 return RISCV_EXCP_NONE; 421 } 422 423 if (env->priv < PRV_M) { 424 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 425 return RISCV_EXCP_ILLEGAL_INST; 426 } 427 428 if (virt) { 429 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 430 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 431 } 432 } 433 } 434 435 return RISCV_EXCP_NONE; 436 } 437 438 static RISCVException sstc(CPURISCVState *env, int csrno) 439 { 440 bool hmode_check = false; 441 442 if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { 443 return RISCV_EXCP_ILLEGAL_INST; 444 } 445 446 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 447 hmode_check = true; 448 } 449 450 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 451 if (ret != RISCV_EXCP_NONE) { 452 return ret; 453 } 454 455 if (env->debugger) { 456 return RISCV_EXCP_NONE; 457 } 458 459 if (env->priv == PRV_M) { 460 return RISCV_EXCP_NONE; 461 } 462 463 /* 464 * No need of separate function for rv32 as menvcfg stores both menvcfg 465 * menvcfgh for RV32. 466 */ 467 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 468 get_field(env->menvcfg, MENVCFG_STCE))) { 469 return RISCV_EXCP_ILLEGAL_INST; 470 } 471 472 if (env->virt_enabled) { 473 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 474 get_field(env->henvcfg, HENVCFG_STCE))) { 475 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 476 } 477 } 478 479 return RISCV_EXCP_NONE; 480 } 481 482 static RISCVException sstc_32(CPURISCVState *env, int csrno) 483 { 484 if (riscv_cpu_mxl(env) != MXL_RV32) { 485 return RISCV_EXCP_ILLEGAL_INST; 486 } 487 488 return sstc(env, csrno); 489 } 490 491 static RISCVException satp(CPURISCVState *env, int csrno) 492 { 493 if (env->priv == PRV_S && !env->virt_enabled && 494 get_field(env->mstatus, MSTATUS_TVM)) { 495 return RISCV_EXCP_ILLEGAL_INST; 496 } 497 if (env->priv == PRV_S && env->virt_enabled && 498 get_field(env->hstatus, HSTATUS_VTVM)) { 499 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 500 } 501 502 return smode(env, csrno); 503 } 504 505 static RISCVException hgatp(CPURISCVState *env, int csrno) 506 { 507 if (env->priv == PRV_S && !env->virt_enabled && 508 get_field(env->mstatus, MSTATUS_TVM)) { 509 return RISCV_EXCP_ILLEGAL_INST; 510 } 511 512 return hmode(env, csrno); 513 } 514 515 /* Checks if PointerMasking registers could be accessed */ 516 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 517 { 518 /* Check if j-ext is present */ 519 if (riscv_has_ext(env, RVJ)) { 520 return RISCV_EXCP_NONE; 521 } 522 return RISCV_EXCP_ILLEGAL_INST; 523 } 524 525 static RISCVException aia_hmode(CPURISCVState *env, int csrno) 526 { 527 if (!riscv_cpu_cfg(env)->ext_ssaia) { 528 return RISCV_EXCP_ILLEGAL_INST; 529 } 530 531 return hmode(env, csrno); 532 } 533 534 static RISCVException aia_hmode32(CPURISCVState *env, int csrno) 535 { 536 if (!riscv_cpu_cfg(env)->ext_ssaia) { 537 return RISCV_EXCP_ILLEGAL_INST; 538 } 539 540 return hmode32(env, csrno); 541 } 542 543 static RISCVException pmp(CPURISCVState *env, int csrno) 544 { 545 if (riscv_cpu_cfg(env)->pmp) { 546 if (csrno <= CSR_PMPCFG3) { 547 uint32_t reg_index = csrno - CSR_PMPCFG0; 548 549 /* TODO: RV128 restriction check */ 550 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 551 return RISCV_EXCP_ILLEGAL_INST; 552 } 553 } 554 555 return RISCV_EXCP_NONE; 556 } 557 558 return RISCV_EXCP_ILLEGAL_INST; 559 } 560 561 static RISCVException have_mseccfg(CPURISCVState *env, int csrno) 562 { 563 if (riscv_cpu_cfg(env)->ext_smepmp) { 564 return RISCV_EXCP_NONE; 565 } 566 if (riscv_cpu_cfg(env)->ext_zkr) { 567 return RISCV_EXCP_NONE; 568 } 569 570 return RISCV_EXCP_ILLEGAL_INST; 571 } 572 573 static RISCVException debug(CPURISCVState *env, int csrno) 574 { 575 if (riscv_cpu_cfg(env)->debug) { 576 return RISCV_EXCP_NONE; 577 } 578 579 return RISCV_EXCP_ILLEGAL_INST; 580 } 581 #endif 582 583 static RISCVException seed(CPURISCVState *env, int csrno) 584 { 585 if (!riscv_cpu_cfg(env)->ext_zkr) { 586 return RISCV_EXCP_ILLEGAL_INST; 587 } 588 589 #if !defined(CONFIG_USER_ONLY) 590 if (env->debugger) { 591 return RISCV_EXCP_NONE; 592 } 593 594 /* 595 * With a CSR read-write instruction: 596 * 1) The seed CSR is always available in machine mode as normal. 597 * 2) Attempted access to seed from virtual modes VS and VU always raises 598 * an exception(virtual instruction exception only if mseccfg.sseed=1). 599 * 3) Without the corresponding access control bit set to 1, any attempted 600 * access to seed from U, S or HS modes will raise an illegal instruction 601 * exception. 602 */ 603 if (env->priv == PRV_M) { 604 return RISCV_EXCP_NONE; 605 } else if (env->virt_enabled) { 606 if (env->mseccfg & MSECCFG_SSEED) { 607 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 608 } else { 609 return RISCV_EXCP_ILLEGAL_INST; 610 } 611 } else { 612 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 613 return RISCV_EXCP_NONE; 614 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 615 return RISCV_EXCP_NONE; 616 } else { 617 return RISCV_EXCP_ILLEGAL_INST; 618 } 619 } 620 #else 621 return RISCV_EXCP_NONE; 622 #endif 623 } 624 625 /* User Floating-Point CSRs */ 626 static RISCVException read_fflags(CPURISCVState *env, int csrno, 627 target_ulong *val) 628 { 629 *val = riscv_cpu_get_fflags(env); 630 return RISCV_EXCP_NONE; 631 } 632 633 static RISCVException write_fflags(CPURISCVState *env, int csrno, 634 target_ulong val) 635 { 636 #if !defined(CONFIG_USER_ONLY) 637 if (riscv_has_ext(env, RVF)) { 638 env->mstatus |= MSTATUS_FS; 639 } 640 #endif 641 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 642 return RISCV_EXCP_NONE; 643 } 644 645 static RISCVException read_frm(CPURISCVState *env, int csrno, 646 target_ulong *val) 647 { 648 *val = env->frm; 649 return RISCV_EXCP_NONE; 650 } 651 652 static RISCVException write_frm(CPURISCVState *env, int csrno, 653 target_ulong val) 654 { 655 #if !defined(CONFIG_USER_ONLY) 656 if (riscv_has_ext(env, RVF)) { 657 env->mstatus |= MSTATUS_FS; 658 } 659 #endif 660 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 661 return RISCV_EXCP_NONE; 662 } 663 664 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 665 target_ulong *val) 666 { 667 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 668 | (env->frm << FSR_RD_SHIFT); 669 return RISCV_EXCP_NONE; 670 } 671 672 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 673 target_ulong val) 674 { 675 #if !defined(CONFIG_USER_ONLY) 676 if (riscv_has_ext(env, RVF)) { 677 env->mstatus |= MSTATUS_FS; 678 } 679 #endif 680 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 681 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 682 return RISCV_EXCP_NONE; 683 } 684 685 static RISCVException read_vtype(CPURISCVState *env, int csrno, 686 target_ulong *val) 687 { 688 uint64_t vill; 689 switch (env->xl) { 690 case MXL_RV32: 691 vill = (uint32_t)env->vill << 31; 692 break; 693 case MXL_RV64: 694 vill = (uint64_t)env->vill << 63; 695 break; 696 default: 697 g_assert_not_reached(); 698 } 699 *val = (target_ulong)vill | env->vtype; 700 return RISCV_EXCP_NONE; 701 } 702 703 static RISCVException read_vl(CPURISCVState *env, int csrno, 704 target_ulong *val) 705 { 706 *val = env->vl; 707 return RISCV_EXCP_NONE; 708 } 709 710 static RISCVException read_vlenb(CPURISCVState *env, int csrno, 711 target_ulong *val) 712 { 713 *val = riscv_cpu_cfg(env)->vlenb; 714 return RISCV_EXCP_NONE; 715 } 716 717 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 718 target_ulong *val) 719 { 720 *val = env->vxrm; 721 return RISCV_EXCP_NONE; 722 } 723 724 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 725 target_ulong val) 726 { 727 #if !defined(CONFIG_USER_ONLY) 728 env->mstatus |= MSTATUS_VS; 729 #endif 730 env->vxrm = val; 731 return RISCV_EXCP_NONE; 732 } 733 734 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 735 target_ulong *val) 736 { 737 *val = env->vxsat; 738 return RISCV_EXCP_NONE; 739 } 740 741 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 742 target_ulong val) 743 { 744 #if !defined(CONFIG_USER_ONLY) 745 env->mstatus |= MSTATUS_VS; 746 #endif 747 env->vxsat = val; 748 return RISCV_EXCP_NONE; 749 } 750 751 static RISCVException read_vstart(CPURISCVState *env, int csrno, 752 target_ulong *val) 753 { 754 *val = env->vstart; 755 return RISCV_EXCP_NONE; 756 } 757 758 static RISCVException write_vstart(CPURISCVState *env, int csrno, 759 target_ulong val) 760 { 761 #if !defined(CONFIG_USER_ONLY) 762 env->mstatus |= MSTATUS_VS; 763 #endif 764 /* 765 * The vstart CSR is defined to have only enough writable bits 766 * to hold the largest element index, i.e. lg2(VLEN) bits. 767 */ 768 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlenb << 3)); 769 return RISCV_EXCP_NONE; 770 } 771 772 static RISCVException read_vcsr(CPURISCVState *env, int csrno, 773 target_ulong *val) 774 { 775 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 776 return RISCV_EXCP_NONE; 777 } 778 779 static RISCVException write_vcsr(CPURISCVState *env, int csrno, 780 target_ulong val) 781 { 782 #if !defined(CONFIG_USER_ONLY) 783 env->mstatus |= MSTATUS_VS; 784 #endif 785 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 786 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 787 return RISCV_EXCP_NONE; 788 } 789 790 #if defined(CONFIG_USER_ONLY) 791 /* User Timers and Counters */ 792 static target_ulong get_ticks(bool shift) 793 { 794 int64_t val = cpu_get_host_ticks(); 795 target_ulong result = shift ? val >> 32 : val; 796 797 return result; 798 } 799 800 static RISCVException read_time(CPURISCVState *env, int csrno, 801 target_ulong *val) 802 { 803 *val = cpu_get_host_ticks(); 804 return RISCV_EXCP_NONE; 805 } 806 807 static RISCVException read_timeh(CPURISCVState *env, int csrno, 808 target_ulong *val) 809 { 810 *val = cpu_get_host_ticks() >> 32; 811 return RISCV_EXCP_NONE; 812 } 813 814 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 815 target_ulong *val) 816 { 817 *val = get_ticks(false); 818 return RISCV_EXCP_NONE; 819 } 820 821 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 822 target_ulong *val) 823 { 824 *val = get_ticks(true); 825 return RISCV_EXCP_NONE; 826 } 827 828 #else /* CONFIG_USER_ONLY */ 829 830 static RISCVException read_mcyclecfg(CPURISCVState *env, int csrno, 831 target_ulong *val) 832 { 833 *val = env->mcyclecfg; 834 return RISCV_EXCP_NONE; 835 } 836 837 static RISCVException write_mcyclecfg(CPURISCVState *env, int csrno, 838 target_ulong val) 839 { 840 uint64_t inh_avail_mask; 841 842 if (riscv_cpu_mxl(env) == MXL_RV32) { 843 env->mcyclecfg = val; 844 } else { 845 /* Set xINH fields if priv mode supported */ 846 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MCYCLECFG_BIT_MINH; 847 inh_avail_mask |= riscv_has_ext(env, RVU) ? MCYCLECFG_BIT_UINH : 0; 848 inh_avail_mask |= riscv_has_ext(env, RVS) ? MCYCLECFG_BIT_SINH : 0; 849 inh_avail_mask |= (riscv_has_ext(env, RVH) && 850 riscv_has_ext(env, RVU)) ? MCYCLECFG_BIT_VUINH : 0; 851 inh_avail_mask |= (riscv_has_ext(env, RVH) && 852 riscv_has_ext(env, RVS)) ? MCYCLECFG_BIT_VSINH : 0; 853 env->mcyclecfg = val & inh_avail_mask; 854 } 855 856 return RISCV_EXCP_NONE; 857 } 858 859 static RISCVException read_mcyclecfgh(CPURISCVState *env, int csrno, 860 target_ulong *val) 861 { 862 *val = env->mcyclecfgh; 863 return RISCV_EXCP_NONE; 864 } 865 866 static RISCVException write_mcyclecfgh(CPURISCVState *env, int csrno, 867 target_ulong val) 868 { 869 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 870 MCYCLECFGH_BIT_MINH); 871 872 /* Set xINH fields if priv mode supported */ 873 inh_avail_mask |= riscv_has_ext(env, RVU) ? MCYCLECFGH_BIT_UINH : 0; 874 inh_avail_mask |= riscv_has_ext(env, RVS) ? MCYCLECFGH_BIT_SINH : 0; 875 inh_avail_mask |= (riscv_has_ext(env, RVH) && 876 riscv_has_ext(env, RVU)) ? MCYCLECFGH_BIT_VUINH : 0; 877 inh_avail_mask |= (riscv_has_ext(env, RVH) && 878 riscv_has_ext(env, RVS)) ? MCYCLECFGH_BIT_VSINH : 0; 879 880 env->mcyclecfgh = val & inh_avail_mask; 881 return RISCV_EXCP_NONE; 882 } 883 884 static RISCVException read_minstretcfg(CPURISCVState *env, int csrno, 885 target_ulong *val) 886 { 887 *val = env->minstretcfg; 888 return RISCV_EXCP_NONE; 889 } 890 891 static RISCVException write_minstretcfg(CPURISCVState *env, int csrno, 892 target_ulong val) 893 { 894 uint64_t inh_avail_mask; 895 896 if (riscv_cpu_mxl(env) == MXL_RV32) { 897 env->minstretcfg = val; 898 } else { 899 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MINSTRETCFG_BIT_MINH; 900 inh_avail_mask |= riscv_has_ext(env, RVU) ? MINSTRETCFG_BIT_UINH : 0; 901 inh_avail_mask |= riscv_has_ext(env, RVS) ? MINSTRETCFG_BIT_SINH : 0; 902 inh_avail_mask |= (riscv_has_ext(env, RVH) && 903 riscv_has_ext(env, RVU)) ? MINSTRETCFG_BIT_VUINH : 0; 904 inh_avail_mask |= (riscv_has_ext(env, RVH) && 905 riscv_has_ext(env, RVS)) ? MINSTRETCFG_BIT_VSINH : 0; 906 env->minstretcfg = val & inh_avail_mask; 907 } 908 return RISCV_EXCP_NONE; 909 } 910 911 static RISCVException read_minstretcfgh(CPURISCVState *env, int csrno, 912 target_ulong *val) 913 { 914 *val = env->minstretcfgh; 915 return RISCV_EXCP_NONE; 916 } 917 918 static RISCVException write_minstretcfgh(CPURISCVState *env, int csrno, 919 target_ulong val) 920 { 921 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 922 MINSTRETCFGH_BIT_MINH); 923 924 inh_avail_mask |= riscv_has_ext(env, RVU) ? MINSTRETCFGH_BIT_UINH : 0; 925 inh_avail_mask |= riscv_has_ext(env, RVS) ? MINSTRETCFGH_BIT_SINH : 0; 926 inh_avail_mask |= (riscv_has_ext(env, RVH) && 927 riscv_has_ext(env, RVU)) ? MINSTRETCFGH_BIT_VUINH : 0; 928 inh_avail_mask |= (riscv_has_ext(env, RVH) && 929 riscv_has_ext(env, RVS)) ? MINSTRETCFGH_BIT_VSINH : 0; 930 931 env->minstretcfgh = val & inh_avail_mask; 932 return RISCV_EXCP_NONE; 933 } 934 935 static RISCVException read_mhpmevent(CPURISCVState *env, int csrno, 936 target_ulong *val) 937 { 938 int evt_index = csrno - CSR_MCOUNTINHIBIT; 939 940 *val = env->mhpmevent_val[evt_index]; 941 942 return RISCV_EXCP_NONE; 943 } 944 945 static RISCVException write_mhpmevent(CPURISCVState *env, int csrno, 946 target_ulong val) 947 { 948 int evt_index = csrno - CSR_MCOUNTINHIBIT; 949 uint64_t mhpmevt_val = val; 950 uint64_t inh_avail_mask; 951 952 if (riscv_cpu_mxl(env) == MXL_RV32) { 953 env->mhpmevent_val[evt_index] = val; 954 mhpmevt_val = mhpmevt_val | 955 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 956 } else { 957 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MHPMEVENT_BIT_MINH; 958 inh_avail_mask |= riscv_has_ext(env, RVU) ? MHPMEVENT_BIT_UINH : 0; 959 inh_avail_mask |= riscv_has_ext(env, RVS) ? MHPMEVENT_BIT_SINH : 0; 960 inh_avail_mask |= (riscv_has_ext(env, RVH) && 961 riscv_has_ext(env, RVU)) ? MHPMEVENT_BIT_VUINH : 0; 962 inh_avail_mask |= (riscv_has_ext(env, RVH) && 963 riscv_has_ext(env, RVS)) ? MHPMEVENT_BIT_VSINH : 0; 964 mhpmevt_val = val & inh_avail_mask; 965 env->mhpmevent_val[evt_index] = mhpmevt_val; 966 } 967 968 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 969 970 return RISCV_EXCP_NONE; 971 } 972 973 static RISCVException read_mhpmeventh(CPURISCVState *env, int csrno, 974 target_ulong *val) 975 { 976 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 977 978 *val = env->mhpmeventh_val[evt_index]; 979 980 return RISCV_EXCP_NONE; 981 } 982 983 static RISCVException write_mhpmeventh(CPURISCVState *env, int csrno, 984 target_ulong val) 985 { 986 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 987 uint64_t mhpmevth_val; 988 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 989 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 990 MHPMEVENTH_BIT_MINH); 991 992 inh_avail_mask |= riscv_has_ext(env, RVU) ? MHPMEVENTH_BIT_UINH : 0; 993 inh_avail_mask |= riscv_has_ext(env, RVS) ? MHPMEVENTH_BIT_SINH : 0; 994 inh_avail_mask |= (riscv_has_ext(env, RVH) && 995 riscv_has_ext(env, RVU)) ? MHPMEVENTH_BIT_VUINH : 0; 996 inh_avail_mask |= (riscv_has_ext(env, RVH) && 997 riscv_has_ext(env, RVS)) ? MHPMEVENTH_BIT_VSINH : 0; 998 999 mhpmevth_val = val & inh_avail_mask; 1000 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 1001 env->mhpmeventh_val[evt_index] = mhpmevth_val; 1002 1003 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1004 1005 return RISCV_EXCP_NONE; 1006 } 1007 1008 static target_ulong riscv_pmu_ctr_get_fixed_counters_val(CPURISCVState *env, 1009 int counter_idx, 1010 bool upper_half) 1011 { 1012 int inst = riscv_pmu_ctr_monitor_instructions(env, counter_idx); 1013 uint64_t *counter_arr_virt = env->pmu_fixed_ctrs[inst].counter_virt; 1014 uint64_t *counter_arr = env->pmu_fixed_ctrs[inst].counter; 1015 target_ulong result = 0; 1016 uint64_t curr_val = 0; 1017 uint64_t cfg_val = 0; 1018 1019 if (counter_idx == 0) { 1020 cfg_val = upper_half ? ((uint64_t)env->mcyclecfgh << 32) : 1021 env->mcyclecfg; 1022 } else if (counter_idx == 2) { 1023 cfg_val = upper_half ? ((uint64_t)env->minstretcfgh << 32) : 1024 env->minstretcfg; 1025 } else { 1026 cfg_val = upper_half ? 1027 ((uint64_t)env->mhpmeventh_val[counter_idx] << 32) : 1028 env->mhpmevent_val[counter_idx]; 1029 cfg_val &= MHPMEVENT_FILTER_MASK; 1030 } 1031 1032 if (!cfg_val) { 1033 if (icount_enabled()) { 1034 curr_val = inst ? icount_get_raw() : icount_get(); 1035 } else { 1036 curr_val = cpu_get_host_ticks(); 1037 } 1038 1039 goto done; 1040 } 1041 1042 if (!(cfg_val & MCYCLECFG_BIT_MINH)) { 1043 curr_val += counter_arr[PRV_M]; 1044 } 1045 1046 if (!(cfg_val & MCYCLECFG_BIT_SINH)) { 1047 curr_val += counter_arr[PRV_S]; 1048 } 1049 1050 if (!(cfg_val & MCYCLECFG_BIT_UINH)) { 1051 curr_val += counter_arr[PRV_U]; 1052 } 1053 1054 if (!(cfg_val & MCYCLECFG_BIT_VSINH)) { 1055 curr_val += counter_arr_virt[PRV_S]; 1056 } 1057 1058 if (!(cfg_val & MCYCLECFG_BIT_VUINH)) { 1059 curr_val += counter_arr_virt[PRV_U]; 1060 } 1061 1062 done: 1063 if (riscv_cpu_mxl(env) == MXL_RV32) { 1064 result = upper_half ? curr_val >> 32 : curr_val; 1065 } else { 1066 result = curr_val; 1067 } 1068 1069 return result; 1070 } 1071 1072 static RISCVException write_mhpmcounter(CPURISCVState *env, int csrno, 1073 target_ulong val) 1074 { 1075 int ctr_idx = csrno - CSR_MCYCLE; 1076 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1077 uint64_t mhpmctr_val = val; 1078 1079 counter->mhpmcounter_val = val; 1080 if (!get_field(env->mcountinhibit, BIT(ctr_idx)) && 1081 (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1082 riscv_pmu_ctr_monitor_instructions(env, ctr_idx))) { 1083 counter->mhpmcounter_prev = riscv_pmu_ctr_get_fixed_counters_val(env, 1084 ctr_idx, false); 1085 if (ctr_idx > 2) { 1086 if (riscv_cpu_mxl(env) == MXL_RV32) { 1087 mhpmctr_val = mhpmctr_val | 1088 ((uint64_t)counter->mhpmcounterh_val << 32); 1089 } 1090 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 1091 } 1092 } else { 1093 /* Other counters can keep incrementing from the given value */ 1094 counter->mhpmcounter_prev = val; 1095 } 1096 1097 return RISCV_EXCP_NONE; 1098 } 1099 1100 static RISCVException write_mhpmcounterh(CPURISCVState *env, int csrno, 1101 target_ulong val) 1102 { 1103 int ctr_idx = csrno - CSR_MCYCLEH; 1104 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1105 uint64_t mhpmctr_val = counter->mhpmcounter_val; 1106 uint64_t mhpmctrh_val = val; 1107 1108 counter->mhpmcounterh_val = val; 1109 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 1110 if (!get_field(env->mcountinhibit, BIT(ctr_idx)) && 1111 (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1112 riscv_pmu_ctr_monitor_instructions(env, ctr_idx))) { 1113 counter->mhpmcounterh_prev = riscv_pmu_ctr_get_fixed_counters_val(env, 1114 ctr_idx, true); 1115 if (ctr_idx > 2) { 1116 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 1117 } 1118 } else { 1119 counter->mhpmcounterh_prev = val; 1120 } 1121 1122 return RISCV_EXCP_NONE; 1123 } 1124 1125 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 1126 bool upper_half, uint32_t ctr_idx) 1127 { 1128 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1129 target_ulong ctr_prev = upper_half ? counter->mhpmcounterh_prev : 1130 counter->mhpmcounter_prev; 1131 target_ulong ctr_val = upper_half ? counter->mhpmcounterh_val : 1132 counter->mhpmcounter_val; 1133 1134 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 1135 /* 1136 * Counter should not increment if inhibit bit is set. Just return the 1137 * current counter value. 1138 */ 1139 *val = ctr_val; 1140 return RISCV_EXCP_NONE; 1141 } 1142 1143 /* 1144 * The kernel computes the perf delta by subtracting the current value from 1145 * the value it initialized previously (ctr_val). 1146 */ 1147 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1148 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 1149 *val = riscv_pmu_ctr_get_fixed_counters_val(env, ctr_idx, upper_half) - 1150 ctr_prev + ctr_val; 1151 } else { 1152 *val = ctr_val; 1153 } 1154 1155 return RISCV_EXCP_NONE; 1156 } 1157 1158 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 1159 target_ulong *val) 1160 { 1161 uint16_t ctr_index; 1162 1163 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 1164 ctr_index = csrno - CSR_MCYCLE; 1165 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 1166 ctr_index = csrno - CSR_CYCLE; 1167 } else { 1168 return RISCV_EXCP_ILLEGAL_INST; 1169 } 1170 1171 return riscv_pmu_read_ctr(env, val, false, ctr_index); 1172 } 1173 1174 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 1175 target_ulong *val) 1176 { 1177 uint16_t ctr_index; 1178 1179 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 1180 ctr_index = csrno - CSR_MCYCLEH; 1181 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 1182 ctr_index = csrno - CSR_CYCLEH; 1183 } else { 1184 return RISCV_EXCP_ILLEGAL_INST; 1185 } 1186 1187 return riscv_pmu_read_ctr(env, val, true, ctr_index); 1188 } 1189 1190 static RISCVException read_scountovf(CPURISCVState *env, int csrno, 1191 target_ulong *val) 1192 { 1193 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 1194 int i; 1195 *val = 0; 1196 target_ulong *mhpm_evt_val; 1197 uint64_t of_bit_mask; 1198 1199 if (riscv_cpu_mxl(env) == MXL_RV32) { 1200 mhpm_evt_val = env->mhpmeventh_val; 1201 of_bit_mask = MHPMEVENTH_BIT_OF; 1202 } else { 1203 mhpm_evt_val = env->mhpmevent_val; 1204 of_bit_mask = MHPMEVENT_BIT_OF; 1205 } 1206 1207 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 1208 if ((get_field(env->mcounteren, BIT(i))) && 1209 (mhpm_evt_val[i] & of_bit_mask)) { 1210 *val |= BIT(i); 1211 } 1212 } 1213 1214 return RISCV_EXCP_NONE; 1215 } 1216 1217 static RISCVException read_time(CPURISCVState *env, int csrno, 1218 target_ulong *val) 1219 { 1220 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1221 1222 if (!env->rdtime_fn) { 1223 return RISCV_EXCP_ILLEGAL_INST; 1224 } 1225 1226 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 1227 return RISCV_EXCP_NONE; 1228 } 1229 1230 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1231 target_ulong *val) 1232 { 1233 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1234 1235 if (!env->rdtime_fn) { 1236 return RISCV_EXCP_ILLEGAL_INST; 1237 } 1238 1239 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 1240 return RISCV_EXCP_NONE; 1241 } 1242 1243 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 1244 target_ulong *val) 1245 { 1246 *val = env->vstimecmp; 1247 1248 return RISCV_EXCP_NONE; 1249 } 1250 1251 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 1252 target_ulong *val) 1253 { 1254 *val = env->vstimecmp >> 32; 1255 1256 return RISCV_EXCP_NONE; 1257 } 1258 1259 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1260 target_ulong val) 1261 { 1262 if (riscv_cpu_mxl(env) == MXL_RV32) { 1263 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1264 } else { 1265 env->vstimecmp = val; 1266 } 1267 1268 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1269 env->htimedelta, MIP_VSTIP); 1270 1271 return RISCV_EXCP_NONE; 1272 } 1273 1274 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1275 target_ulong val) 1276 { 1277 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1278 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1279 env->htimedelta, MIP_VSTIP); 1280 1281 return RISCV_EXCP_NONE; 1282 } 1283 1284 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1285 target_ulong *val) 1286 { 1287 if (env->virt_enabled) { 1288 *val = env->vstimecmp; 1289 } else { 1290 *val = env->stimecmp; 1291 } 1292 1293 return RISCV_EXCP_NONE; 1294 } 1295 1296 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1297 target_ulong *val) 1298 { 1299 if (env->virt_enabled) { 1300 *val = env->vstimecmp >> 32; 1301 } else { 1302 *val = env->stimecmp >> 32; 1303 } 1304 1305 return RISCV_EXCP_NONE; 1306 } 1307 1308 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1309 target_ulong val) 1310 { 1311 if (env->virt_enabled) { 1312 if (env->hvictl & HVICTL_VTI) { 1313 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1314 } 1315 return write_vstimecmp(env, csrno, val); 1316 } 1317 1318 if (riscv_cpu_mxl(env) == MXL_RV32) { 1319 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1320 } else { 1321 env->stimecmp = val; 1322 } 1323 1324 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1325 1326 return RISCV_EXCP_NONE; 1327 } 1328 1329 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1330 target_ulong val) 1331 { 1332 if (env->virt_enabled) { 1333 if (env->hvictl & HVICTL_VTI) { 1334 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1335 } 1336 return write_vstimecmph(env, csrno, val); 1337 } 1338 1339 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1340 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1341 1342 return RISCV_EXCP_NONE; 1343 } 1344 1345 #define VSTOPI_NUM_SRCS 5 1346 1347 /* 1348 * All core local interrupts except the fixed ones 0:12. This macro is for 1349 * virtual interrupts logic so please don't change this to avoid messing up 1350 * the whole support, For reference see AIA spec: `5.3 Interrupt filtering and 1351 * virtual interrupts for supervisor level` and `6.3.2 Virtual interrupts for 1352 * VS level`. 1353 */ 1354 #define LOCAL_INTERRUPTS (~0x1FFFULL) 1355 1356 static const uint64_t delegable_ints = 1357 S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS | MIP_LCOFIP; 1358 static const uint64_t vs_delegable_ints = 1359 (VS_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & ~MIP_LCOFIP; 1360 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1361 HS_MODE_INTERRUPTS | LOCAL_INTERRUPTS; 1362 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1363 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1364 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1365 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1366 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1367 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1368 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1369 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1370 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1371 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1372 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1373 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1374 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1375 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1376 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1377 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1378 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1379 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1380 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1381 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1382 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1383 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1384 (1ULL << (RISCV_EXCP_M_ECALL)) | 1385 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1386 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1387 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1388 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1389 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1390 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1391 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1392 1393 /* 1394 * Spec allows for bits 13:63 to be either read-only or writable. 1395 * So far we have interrupt LCOFIP in that region which is writable. 1396 * 1397 * Also, spec allows to inject virtual interrupts in this region even 1398 * without any hardware interrupts for that interrupt number. 1399 * 1400 * For now interrupt in 13:63 region are all kept writable. 13 being 1401 * LCOFIP and 14:63 being virtual only. Change this in future if we 1402 * introduce more interrupts that are not writable. 1403 */ 1404 1405 /* Bit STIP can be an alias of mip.STIP that's why it's writable in mvip. */ 1406 static const uint64_t mvip_writable_mask = MIP_SSIP | MIP_STIP | MIP_SEIP | 1407 LOCAL_INTERRUPTS; 1408 static const uint64_t mvien_writable_mask = MIP_SSIP | MIP_SEIP | 1409 LOCAL_INTERRUPTS; 1410 1411 static const uint64_t sip_writable_mask = SIP_SSIP | LOCAL_INTERRUPTS; 1412 static const uint64_t hip_writable_mask = MIP_VSSIP; 1413 static const uint64_t hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | 1414 MIP_VSEIP | LOCAL_INTERRUPTS; 1415 static const uint64_t hvien_writable_mask = LOCAL_INTERRUPTS; 1416 1417 static const uint64_t vsip_writable_mask = MIP_VSSIP | LOCAL_INTERRUPTS; 1418 1419 const bool valid_vm_1_10_32[16] = { 1420 [VM_1_10_MBARE] = true, 1421 [VM_1_10_SV32] = true 1422 }; 1423 1424 const bool valid_vm_1_10_64[16] = { 1425 [VM_1_10_MBARE] = true, 1426 [VM_1_10_SV39] = true, 1427 [VM_1_10_SV48] = true, 1428 [VM_1_10_SV57] = true 1429 }; 1430 1431 /* Machine Information Registers */ 1432 static RISCVException read_zero(CPURISCVState *env, int csrno, 1433 target_ulong *val) 1434 { 1435 *val = 0; 1436 return RISCV_EXCP_NONE; 1437 } 1438 1439 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1440 target_ulong val) 1441 { 1442 return RISCV_EXCP_NONE; 1443 } 1444 1445 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1446 target_ulong *val) 1447 { 1448 *val = riscv_cpu_cfg(env)->mvendorid; 1449 return RISCV_EXCP_NONE; 1450 } 1451 1452 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1453 target_ulong *val) 1454 { 1455 *val = riscv_cpu_cfg(env)->marchid; 1456 return RISCV_EXCP_NONE; 1457 } 1458 1459 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1460 target_ulong *val) 1461 { 1462 *val = riscv_cpu_cfg(env)->mimpid; 1463 return RISCV_EXCP_NONE; 1464 } 1465 1466 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1467 target_ulong *val) 1468 { 1469 *val = env->mhartid; 1470 return RISCV_EXCP_NONE; 1471 } 1472 1473 /* Machine Trap Setup */ 1474 1475 /* We do not store SD explicitly, only compute it on demand. */ 1476 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1477 { 1478 if ((status & MSTATUS_FS) == MSTATUS_FS || 1479 (status & MSTATUS_VS) == MSTATUS_VS || 1480 (status & MSTATUS_XS) == MSTATUS_XS) { 1481 switch (xl) { 1482 case MXL_RV32: 1483 return status | MSTATUS32_SD; 1484 case MXL_RV64: 1485 return status | MSTATUS64_SD; 1486 case MXL_RV128: 1487 return MSTATUSH128_SD; 1488 default: 1489 g_assert_not_reached(); 1490 } 1491 } 1492 return status; 1493 } 1494 1495 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1496 target_ulong *val) 1497 { 1498 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1499 return RISCV_EXCP_NONE; 1500 } 1501 1502 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1503 { 1504 uint64_t mode_supported = riscv_cpu_cfg(env)->satp_mode.map; 1505 return get_field(mode_supported, (1 << vm)); 1506 } 1507 1508 static target_ulong legalize_xatp(CPURISCVState *env, target_ulong old_xatp, 1509 target_ulong val) 1510 { 1511 target_ulong mask; 1512 bool vm; 1513 if (riscv_cpu_mxl(env) == MXL_RV32) { 1514 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1515 mask = (val ^ old_xatp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1516 } else { 1517 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1518 mask = (val ^ old_xatp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1519 } 1520 1521 if (vm && mask) { 1522 /* 1523 * The ISA defines SATP.MODE=Bare as "no translation", but we still 1524 * pass these through QEMU's TLB emulation as it improves 1525 * performance. Flushing the TLB on SATP writes with paging 1526 * enabled avoids leaking those invalid cached mappings. 1527 */ 1528 tlb_flush(env_cpu(env)); 1529 return val; 1530 } 1531 return old_xatp; 1532 } 1533 1534 static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp, 1535 target_ulong val) 1536 { 1537 bool valid = false; 1538 target_ulong new_mpp = get_field(val, MSTATUS_MPP); 1539 1540 switch (new_mpp) { 1541 case PRV_M: 1542 valid = true; 1543 break; 1544 case PRV_S: 1545 valid = riscv_has_ext(env, RVS); 1546 break; 1547 case PRV_U: 1548 valid = riscv_has_ext(env, RVU); 1549 break; 1550 } 1551 1552 /* Remain field unchanged if new_mpp value is invalid */ 1553 if (!valid) { 1554 val = set_field(val, MSTATUS_MPP, old_mpp); 1555 } 1556 1557 return val; 1558 } 1559 1560 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1561 target_ulong val) 1562 { 1563 uint64_t mstatus = env->mstatus; 1564 uint64_t mask = 0; 1565 RISCVMXL xl = riscv_cpu_mxl(env); 1566 1567 /* 1568 * MPP field have been made WARL since priv version 1.11. However, 1569 * legalization for it will not break any software running on 1.10. 1570 */ 1571 val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val); 1572 1573 /* flush tlb on mstatus fields that affect VM */ 1574 if ((val ^ mstatus) & MSTATUS_MXR) { 1575 tlb_flush(env_cpu(env)); 1576 } 1577 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1578 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1579 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1580 MSTATUS_TW; 1581 1582 if (riscv_has_ext(env, RVF)) { 1583 mask |= MSTATUS_FS; 1584 } 1585 if (riscv_has_ext(env, RVV)) { 1586 mask |= MSTATUS_VS; 1587 } 1588 1589 if (xl != MXL_RV32 || env->debugger) { 1590 if (riscv_has_ext(env, RVH)) { 1591 mask |= MSTATUS_MPV | MSTATUS_GVA; 1592 } 1593 if ((val & MSTATUS64_UXL) != 0) { 1594 mask |= MSTATUS64_UXL; 1595 } 1596 } 1597 1598 mstatus = (mstatus & ~mask) | (val & mask); 1599 1600 env->mstatus = mstatus; 1601 1602 /* 1603 * Except in debug mode, UXL/SXL can only be modified by higher 1604 * privilege mode. So xl will not be changed in normal mode. 1605 */ 1606 if (env->debugger) { 1607 env->xl = cpu_recompute_xl(env); 1608 } 1609 1610 riscv_cpu_update_mask(env); 1611 return RISCV_EXCP_NONE; 1612 } 1613 1614 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1615 target_ulong *val) 1616 { 1617 *val = env->mstatus >> 32; 1618 return RISCV_EXCP_NONE; 1619 } 1620 1621 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1622 target_ulong val) 1623 { 1624 uint64_t valh = (uint64_t)val << 32; 1625 uint64_t mask = riscv_has_ext(env, RVH) ? MSTATUS_MPV | MSTATUS_GVA : 0; 1626 1627 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1628 1629 return RISCV_EXCP_NONE; 1630 } 1631 1632 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1633 Int128 *val) 1634 { 1635 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, 1636 env->mstatus)); 1637 return RISCV_EXCP_NONE; 1638 } 1639 1640 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1641 Int128 *val) 1642 { 1643 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1644 return RISCV_EXCP_NONE; 1645 } 1646 1647 static RISCVException read_misa(CPURISCVState *env, int csrno, 1648 target_ulong *val) 1649 { 1650 target_ulong misa; 1651 1652 switch (env->misa_mxl) { 1653 case MXL_RV32: 1654 misa = (target_ulong)MXL_RV32 << 30; 1655 break; 1656 #ifdef TARGET_RISCV64 1657 case MXL_RV64: 1658 misa = (target_ulong)MXL_RV64 << 62; 1659 break; 1660 #endif 1661 default: 1662 g_assert_not_reached(); 1663 } 1664 1665 *val = misa | env->misa_ext; 1666 return RISCV_EXCP_NONE; 1667 } 1668 1669 static RISCVException write_misa(CPURISCVState *env, int csrno, 1670 target_ulong val) 1671 { 1672 RISCVCPU *cpu = env_archcpu(env); 1673 uint32_t orig_misa_ext = env->misa_ext; 1674 Error *local_err = NULL; 1675 1676 if (!riscv_cpu_cfg(env)->misa_w) { 1677 /* drop write to misa */ 1678 return RISCV_EXCP_NONE; 1679 } 1680 1681 /* Mask extensions that are not supported by this hart */ 1682 val &= env->misa_ext_mask; 1683 1684 /* 1685 * Suppress 'C' if next instruction is not aligned 1686 * TODO: this should check next_pc 1687 */ 1688 if ((val & RVC) && (GETPC() & ~3) != 0) { 1689 val &= ~RVC; 1690 } 1691 1692 /* Disable RVG if any of its dependencies are disabled */ 1693 if (!(val & RVI && val & RVM && val & RVA && 1694 val & RVF && val & RVD)) { 1695 val &= ~RVG; 1696 } 1697 1698 /* If nothing changed, do nothing. */ 1699 if (val == env->misa_ext) { 1700 return RISCV_EXCP_NONE; 1701 } 1702 1703 env->misa_ext = val; 1704 riscv_cpu_validate_set_extensions(cpu, &local_err); 1705 if (local_err != NULL) { 1706 /* Rollback on validation error */ 1707 qemu_log_mask(LOG_GUEST_ERROR, "Unable to write MISA ext value " 1708 "0x%x, keeping existing MISA ext 0x%x\n", 1709 env->misa_ext, orig_misa_ext); 1710 1711 env->misa_ext = orig_misa_ext; 1712 1713 return RISCV_EXCP_NONE; 1714 } 1715 1716 if (!(env->misa_ext & RVF)) { 1717 env->mstatus &= ~MSTATUS_FS; 1718 } 1719 1720 /* flush translation cache */ 1721 tb_flush(env_cpu(env)); 1722 env->xl = riscv_cpu_mxl(env); 1723 return RISCV_EXCP_NONE; 1724 } 1725 1726 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1727 target_ulong *val) 1728 { 1729 *val = env->medeleg; 1730 return RISCV_EXCP_NONE; 1731 } 1732 1733 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1734 target_ulong val) 1735 { 1736 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1737 return RISCV_EXCP_NONE; 1738 } 1739 1740 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1741 uint64_t *ret_val, 1742 uint64_t new_val, uint64_t wr_mask) 1743 { 1744 uint64_t mask = wr_mask & delegable_ints; 1745 1746 if (ret_val) { 1747 *ret_val = env->mideleg; 1748 } 1749 1750 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1751 1752 if (riscv_has_ext(env, RVH)) { 1753 env->mideleg |= HS_MODE_INTERRUPTS; 1754 } 1755 1756 return RISCV_EXCP_NONE; 1757 } 1758 1759 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1760 target_ulong *ret_val, 1761 target_ulong new_val, target_ulong wr_mask) 1762 { 1763 uint64_t rval; 1764 RISCVException ret; 1765 1766 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1767 if (ret_val) { 1768 *ret_val = rval; 1769 } 1770 1771 return ret; 1772 } 1773 1774 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1775 target_ulong *ret_val, 1776 target_ulong new_val, 1777 target_ulong wr_mask) 1778 { 1779 uint64_t rval; 1780 RISCVException ret; 1781 1782 ret = rmw_mideleg64(env, csrno, &rval, 1783 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1784 if (ret_val) { 1785 *ret_val = rval >> 32; 1786 } 1787 1788 return ret; 1789 } 1790 1791 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1792 uint64_t *ret_val, 1793 uint64_t new_val, uint64_t wr_mask) 1794 { 1795 uint64_t mask = wr_mask & all_ints; 1796 1797 if (ret_val) { 1798 *ret_val = env->mie; 1799 } 1800 1801 env->mie = (env->mie & ~mask) | (new_val & mask); 1802 1803 if (!riscv_has_ext(env, RVH)) { 1804 env->mie &= ~((uint64_t)HS_MODE_INTERRUPTS); 1805 } 1806 1807 return RISCV_EXCP_NONE; 1808 } 1809 1810 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1811 target_ulong *ret_val, 1812 target_ulong new_val, target_ulong wr_mask) 1813 { 1814 uint64_t rval; 1815 RISCVException ret; 1816 1817 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1818 if (ret_val) { 1819 *ret_val = rval; 1820 } 1821 1822 return ret; 1823 } 1824 1825 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1826 target_ulong *ret_val, 1827 target_ulong new_val, target_ulong wr_mask) 1828 { 1829 uint64_t rval; 1830 RISCVException ret; 1831 1832 ret = rmw_mie64(env, csrno, &rval, 1833 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1834 if (ret_val) { 1835 *ret_val = rval >> 32; 1836 } 1837 1838 return ret; 1839 } 1840 1841 static RISCVException rmw_mvien64(CPURISCVState *env, int csrno, 1842 uint64_t *ret_val, 1843 uint64_t new_val, uint64_t wr_mask) 1844 { 1845 uint64_t mask = wr_mask & mvien_writable_mask; 1846 1847 if (ret_val) { 1848 *ret_val = env->mvien; 1849 } 1850 1851 env->mvien = (env->mvien & ~mask) | (new_val & mask); 1852 1853 return RISCV_EXCP_NONE; 1854 } 1855 1856 static RISCVException rmw_mvien(CPURISCVState *env, int csrno, 1857 target_ulong *ret_val, 1858 target_ulong new_val, target_ulong wr_mask) 1859 { 1860 uint64_t rval; 1861 RISCVException ret; 1862 1863 ret = rmw_mvien64(env, csrno, &rval, new_val, wr_mask); 1864 if (ret_val) { 1865 *ret_val = rval; 1866 } 1867 1868 return ret; 1869 } 1870 1871 static RISCVException rmw_mvienh(CPURISCVState *env, int csrno, 1872 target_ulong *ret_val, 1873 target_ulong new_val, target_ulong wr_mask) 1874 { 1875 uint64_t rval; 1876 RISCVException ret; 1877 1878 ret = rmw_mvien64(env, csrno, &rval, 1879 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1880 if (ret_val) { 1881 *ret_val = rval >> 32; 1882 } 1883 1884 return ret; 1885 } 1886 1887 static RISCVException read_mtopi(CPURISCVState *env, int csrno, 1888 target_ulong *val) 1889 { 1890 int irq; 1891 uint8_t iprio; 1892 1893 irq = riscv_cpu_mirq_pending(env); 1894 if (irq <= 0 || irq > 63) { 1895 *val = 0; 1896 } else { 1897 iprio = env->miprio[irq]; 1898 if (!iprio) { 1899 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1900 iprio = IPRIO_MMAXIPRIO; 1901 } 1902 } 1903 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1904 *val |= iprio; 1905 } 1906 1907 return RISCV_EXCP_NONE; 1908 } 1909 1910 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1911 { 1912 if (!env->virt_enabled) { 1913 return csrno; 1914 } 1915 1916 switch (csrno) { 1917 case CSR_SISELECT: 1918 return CSR_VSISELECT; 1919 case CSR_SIREG: 1920 return CSR_VSIREG; 1921 case CSR_STOPEI: 1922 return CSR_VSTOPEI; 1923 default: 1924 return csrno; 1925 }; 1926 } 1927 1928 static RISCVException rmw_xiselect(CPURISCVState *env, int csrno, 1929 target_ulong *val, target_ulong new_val, 1930 target_ulong wr_mask) 1931 { 1932 target_ulong *iselect; 1933 1934 /* Translate CSR number for VS-mode */ 1935 csrno = aia_xlate_vs_csrno(env, csrno); 1936 1937 /* Find the iselect CSR based on CSR number */ 1938 switch (csrno) { 1939 case CSR_MISELECT: 1940 iselect = &env->miselect; 1941 break; 1942 case CSR_SISELECT: 1943 iselect = &env->siselect; 1944 break; 1945 case CSR_VSISELECT: 1946 iselect = &env->vsiselect; 1947 break; 1948 default: 1949 return RISCV_EXCP_ILLEGAL_INST; 1950 }; 1951 1952 if (val) { 1953 *val = *iselect; 1954 } 1955 1956 wr_mask &= ISELECT_MASK; 1957 if (wr_mask) { 1958 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1959 } 1960 1961 return RISCV_EXCP_NONE; 1962 } 1963 1964 static int rmw_iprio(target_ulong xlen, 1965 target_ulong iselect, uint8_t *iprio, 1966 target_ulong *val, target_ulong new_val, 1967 target_ulong wr_mask, int ext_irq_no) 1968 { 1969 int i, firq, nirqs; 1970 target_ulong old_val; 1971 1972 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1973 return -EINVAL; 1974 } 1975 if (xlen != 32 && iselect & 0x1) { 1976 return -EINVAL; 1977 } 1978 1979 nirqs = 4 * (xlen / 32); 1980 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1981 1982 old_val = 0; 1983 for (i = 0; i < nirqs; i++) { 1984 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1985 } 1986 1987 if (val) { 1988 *val = old_val; 1989 } 1990 1991 if (wr_mask) { 1992 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1993 for (i = 0; i < nirqs; i++) { 1994 /* 1995 * M-level and S-level external IRQ priority always read-only 1996 * zero. This means default priority order is always preferred 1997 * for M-level and S-level external IRQs. 1998 */ 1999 if ((firq + i) == ext_irq_no) { 2000 continue; 2001 } 2002 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 2003 } 2004 } 2005 2006 return 0; 2007 } 2008 2009 static RISCVException rmw_xireg(CPURISCVState *env, int csrno, 2010 target_ulong *val, target_ulong new_val, 2011 target_ulong wr_mask) 2012 { 2013 bool virt, isel_reserved; 2014 uint8_t *iprio; 2015 int ret = -EINVAL; 2016 target_ulong priv, isel, vgein; 2017 2018 /* Translate CSR number for VS-mode */ 2019 csrno = aia_xlate_vs_csrno(env, csrno); 2020 2021 /* Decode register details from CSR number */ 2022 virt = false; 2023 isel_reserved = false; 2024 switch (csrno) { 2025 case CSR_MIREG: 2026 iprio = env->miprio; 2027 isel = env->miselect; 2028 priv = PRV_M; 2029 break; 2030 case CSR_SIREG: 2031 if (env->priv == PRV_S && env->mvien & MIP_SEIP && 2032 env->siselect >= ISELECT_IMSIC_EIDELIVERY && 2033 env->siselect <= ISELECT_IMSIC_EIE63) { 2034 goto done; 2035 } 2036 iprio = env->siprio; 2037 isel = env->siselect; 2038 priv = PRV_S; 2039 break; 2040 case CSR_VSIREG: 2041 iprio = env->hviprio; 2042 isel = env->vsiselect; 2043 priv = PRV_S; 2044 virt = true; 2045 break; 2046 default: 2047 goto done; 2048 }; 2049 2050 /* Find the selected guest interrupt file */ 2051 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 2052 2053 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 2054 /* Local interrupt priority registers not available for VS-mode */ 2055 if (!virt) { 2056 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 2057 isel, iprio, val, new_val, wr_mask, 2058 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 2059 } 2060 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 2061 /* IMSIC registers only available when machine implements it. */ 2062 if (env->aia_ireg_rmw_fn[priv]) { 2063 /* Selected guest interrupt file should not be zero */ 2064 if (virt && (!vgein || env->geilen < vgein)) { 2065 goto done; 2066 } 2067 /* Call machine specific IMSIC register emulation */ 2068 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 2069 AIA_MAKE_IREG(isel, priv, virt, vgein, 2070 riscv_cpu_mxl_bits(env)), 2071 val, new_val, wr_mask); 2072 } 2073 } else { 2074 isel_reserved = true; 2075 } 2076 2077 done: 2078 if (ret) { 2079 return (env->virt_enabled && virt && !isel_reserved) ? 2080 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2081 } 2082 return RISCV_EXCP_NONE; 2083 } 2084 2085 static RISCVException rmw_xtopei(CPURISCVState *env, int csrno, 2086 target_ulong *val, target_ulong new_val, 2087 target_ulong wr_mask) 2088 { 2089 bool virt; 2090 int ret = -EINVAL; 2091 target_ulong priv, vgein; 2092 2093 /* Translate CSR number for VS-mode */ 2094 csrno = aia_xlate_vs_csrno(env, csrno); 2095 2096 /* Decode register details from CSR number */ 2097 virt = false; 2098 switch (csrno) { 2099 case CSR_MTOPEI: 2100 priv = PRV_M; 2101 break; 2102 case CSR_STOPEI: 2103 if (env->mvien & MIP_SEIP && env->priv == PRV_S) { 2104 goto done; 2105 } 2106 priv = PRV_S; 2107 break; 2108 case CSR_VSTOPEI: 2109 priv = PRV_S; 2110 virt = true; 2111 break; 2112 default: 2113 goto done; 2114 }; 2115 2116 /* IMSIC CSRs only available when machine implements IMSIC. */ 2117 if (!env->aia_ireg_rmw_fn[priv]) { 2118 goto done; 2119 } 2120 2121 /* Find the selected guest interrupt file */ 2122 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 2123 2124 /* Selected guest interrupt file should be valid */ 2125 if (virt && (!vgein || env->geilen < vgein)) { 2126 goto done; 2127 } 2128 2129 /* Call machine specific IMSIC register emulation for TOPEI */ 2130 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 2131 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 2132 riscv_cpu_mxl_bits(env)), 2133 val, new_val, wr_mask); 2134 2135 done: 2136 if (ret) { 2137 return (env->virt_enabled && virt) ? 2138 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2139 } 2140 return RISCV_EXCP_NONE; 2141 } 2142 2143 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 2144 target_ulong *val) 2145 { 2146 *val = env->mtvec; 2147 return RISCV_EXCP_NONE; 2148 } 2149 2150 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 2151 target_ulong val) 2152 { 2153 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2154 if ((val & 3) < 2) { 2155 env->mtvec = val; 2156 } else { 2157 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 2158 } 2159 return RISCV_EXCP_NONE; 2160 } 2161 2162 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 2163 target_ulong *val) 2164 { 2165 *val = env->mcountinhibit; 2166 return RISCV_EXCP_NONE; 2167 } 2168 2169 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 2170 target_ulong val) 2171 { 2172 int cidx; 2173 PMUCTRState *counter; 2174 RISCVCPU *cpu = env_archcpu(env); 2175 uint32_t present_ctrs = cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_IR; 2176 target_ulong updated_ctrs = (env->mcountinhibit ^ val) & present_ctrs; 2177 uint64_t mhpmctr_val, prev_count, curr_count; 2178 2179 /* WARL register - disable unavailable counters; TM bit is always 0 */ 2180 env->mcountinhibit = val & present_ctrs; 2181 2182 /* Check if any other counter is also monitoring cycles/instructions */ 2183 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 2184 if (!(updated_ctrs & BIT(cidx)) || 2185 (!riscv_pmu_ctr_monitor_cycles(env, cidx) && 2186 !riscv_pmu_ctr_monitor_instructions(env, cidx))) { 2187 continue; 2188 } 2189 2190 counter = &env->pmu_ctrs[cidx]; 2191 2192 if (!get_field(env->mcountinhibit, BIT(cidx))) { 2193 counter->mhpmcounter_prev = 2194 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, false); 2195 if (riscv_cpu_mxl(env) == MXL_RV32) { 2196 counter->mhpmcounterh_prev = 2197 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, true); 2198 } 2199 2200 if (cidx > 2) { 2201 mhpmctr_val = counter->mhpmcounter_val; 2202 if (riscv_cpu_mxl(env) == MXL_RV32) { 2203 mhpmctr_val = mhpmctr_val | 2204 ((uint64_t)counter->mhpmcounterh_val << 32); 2205 } 2206 riscv_pmu_setup_timer(env, mhpmctr_val, cidx); 2207 } 2208 } else { 2209 curr_count = riscv_pmu_ctr_get_fixed_counters_val(env, cidx, false); 2210 2211 mhpmctr_val = counter->mhpmcounter_val; 2212 prev_count = counter->mhpmcounter_prev; 2213 if (riscv_cpu_mxl(env) == MXL_RV32) { 2214 uint64_t tmp = 2215 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, true); 2216 2217 curr_count = curr_count | (tmp << 32); 2218 mhpmctr_val = mhpmctr_val | 2219 ((uint64_t)counter->mhpmcounterh_val << 32); 2220 prev_count = prev_count | 2221 ((uint64_t)counter->mhpmcounterh_prev << 32); 2222 } 2223 2224 /* Adjust the counter for later reads. */ 2225 mhpmctr_val = curr_count - prev_count + mhpmctr_val; 2226 counter->mhpmcounter_val = mhpmctr_val; 2227 if (riscv_cpu_mxl(env) == MXL_RV32) { 2228 counter->mhpmcounterh_val = mhpmctr_val >> 32; 2229 } 2230 } 2231 } 2232 2233 return RISCV_EXCP_NONE; 2234 } 2235 2236 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 2237 target_ulong *val) 2238 { 2239 *val = env->mcounteren; 2240 return RISCV_EXCP_NONE; 2241 } 2242 2243 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 2244 target_ulong val) 2245 { 2246 RISCVCPU *cpu = env_archcpu(env); 2247 2248 /* WARL register - disable unavailable counters */ 2249 env->mcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 2250 COUNTEREN_IR); 2251 return RISCV_EXCP_NONE; 2252 } 2253 2254 /* Machine Trap Handling */ 2255 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 2256 Int128 *val) 2257 { 2258 *val = int128_make128(env->mscratch, env->mscratchh); 2259 return RISCV_EXCP_NONE; 2260 } 2261 2262 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 2263 Int128 val) 2264 { 2265 env->mscratch = int128_getlo(val); 2266 env->mscratchh = int128_gethi(val); 2267 return RISCV_EXCP_NONE; 2268 } 2269 2270 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 2271 target_ulong *val) 2272 { 2273 *val = env->mscratch; 2274 return RISCV_EXCP_NONE; 2275 } 2276 2277 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 2278 target_ulong val) 2279 { 2280 env->mscratch = val; 2281 return RISCV_EXCP_NONE; 2282 } 2283 2284 static RISCVException read_mepc(CPURISCVState *env, int csrno, 2285 target_ulong *val) 2286 { 2287 *val = env->mepc; 2288 return RISCV_EXCP_NONE; 2289 } 2290 2291 static RISCVException write_mepc(CPURISCVState *env, int csrno, 2292 target_ulong val) 2293 { 2294 env->mepc = val; 2295 return RISCV_EXCP_NONE; 2296 } 2297 2298 static RISCVException read_mcause(CPURISCVState *env, int csrno, 2299 target_ulong *val) 2300 { 2301 *val = env->mcause; 2302 return RISCV_EXCP_NONE; 2303 } 2304 2305 static RISCVException write_mcause(CPURISCVState *env, int csrno, 2306 target_ulong val) 2307 { 2308 env->mcause = val; 2309 return RISCV_EXCP_NONE; 2310 } 2311 2312 static RISCVException read_mtval(CPURISCVState *env, int csrno, 2313 target_ulong *val) 2314 { 2315 *val = env->mtval; 2316 return RISCV_EXCP_NONE; 2317 } 2318 2319 static RISCVException write_mtval(CPURISCVState *env, int csrno, 2320 target_ulong val) 2321 { 2322 env->mtval = val; 2323 return RISCV_EXCP_NONE; 2324 } 2325 2326 /* Execution environment configuration setup */ 2327 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 2328 target_ulong *val) 2329 { 2330 *val = env->menvcfg; 2331 return RISCV_EXCP_NONE; 2332 } 2333 2334 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 2335 target_ulong val) 2336 { 2337 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 2338 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 2339 2340 if (riscv_cpu_mxl(env) == MXL_RV64) { 2341 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 2342 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 2343 (cfg->ext_svadu ? MENVCFG_ADUE : 0); 2344 } 2345 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 2346 2347 return RISCV_EXCP_NONE; 2348 } 2349 2350 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 2351 target_ulong *val) 2352 { 2353 *val = env->menvcfg >> 32; 2354 return RISCV_EXCP_NONE; 2355 } 2356 2357 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 2358 target_ulong val) 2359 { 2360 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 2361 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 2362 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 2363 (cfg->ext_svadu ? MENVCFG_ADUE : 0); 2364 uint64_t valh = (uint64_t)val << 32; 2365 2366 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 2367 2368 return RISCV_EXCP_NONE; 2369 } 2370 2371 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 2372 target_ulong *val) 2373 { 2374 RISCVException ret; 2375 2376 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2377 if (ret != RISCV_EXCP_NONE) { 2378 return ret; 2379 } 2380 2381 *val = env->senvcfg; 2382 return RISCV_EXCP_NONE; 2383 } 2384 2385 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 2386 target_ulong val) 2387 { 2388 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 2389 RISCVException ret; 2390 2391 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2392 if (ret != RISCV_EXCP_NONE) { 2393 return ret; 2394 } 2395 2396 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 2397 return RISCV_EXCP_NONE; 2398 } 2399 2400 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 2401 target_ulong *val) 2402 { 2403 RISCVException ret; 2404 2405 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2406 if (ret != RISCV_EXCP_NONE) { 2407 return ret; 2408 } 2409 2410 /* 2411 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 2412 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 2413 * henvcfg.adue is read_only 0 when menvcfg.adue = 0 2414 */ 2415 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | 2416 env->menvcfg); 2417 return RISCV_EXCP_NONE; 2418 } 2419 2420 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 2421 target_ulong val) 2422 { 2423 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 2424 RISCVException ret; 2425 2426 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2427 if (ret != RISCV_EXCP_NONE) { 2428 return ret; 2429 } 2430 2431 if (riscv_cpu_mxl(env) == MXL_RV64) { 2432 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE); 2433 } 2434 2435 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 2436 2437 return RISCV_EXCP_NONE; 2438 } 2439 2440 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 2441 target_ulong *val) 2442 { 2443 RISCVException ret; 2444 2445 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2446 if (ret != RISCV_EXCP_NONE) { 2447 return ret; 2448 } 2449 2450 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE) | 2451 env->menvcfg)) >> 32; 2452 return RISCV_EXCP_NONE; 2453 } 2454 2455 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2456 target_ulong val) 2457 { 2458 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 2459 HENVCFG_ADUE); 2460 uint64_t valh = (uint64_t)val << 32; 2461 RISCVException ret; 2462 2463 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2464 if (ret != RISCV_EXCP_NONE) { 2465 return ret; 2466 } 2467 2468 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2469 return RISCV_EXCP_NONE; 2470 } 2471 2472 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2473 target_ulong *val) 2474 { 2475 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2476 2477 return RISCV_EXCP_NONE; 2478 } 2479 2480 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2481 uint64_t wr_mask, target_ulong new_val) 2482 { 2483 uint64_t *reg; 2484 2485 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2486 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2487 2488 return RISCV_EXCP_NONE; 2489 } 2490 2491 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2492 target_ulong new_val) 2493 { 2494 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2495 if (!riscv_has_ext(env, RVF)) { 2496 wr_mask |= SMSTATEEN0_FCSR; 2497 } 2498 2499 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 2500 wr_mask |= SMSTATEEN0_P1P13; 2501 } 2502 2503 return write_mstateen(env, csrno, wr_mask, new_val); 2504 } 2505 2506 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2507 target_ulong new_val) 2508 { 2509 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2510 } 2511 2512 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2513 target_ulong *val) 2514 { 2515 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2516 2517 return RISCV_EXCP_NONE; 2518 } 2519 2520 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2521 uint64_t wr_mask, target_ulong new_val) 2522 { 2523 uint64_t *reg, val; 2524 2525 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2526 val = (uint64_t)new_val << 32; 2527 val |= *reg & 0xFFFFFFFF; 2528 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2529 2530 return RISCV_EXCP_NONE; 2531 } 2532 2533 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2534 target_ulong new_val) 2535 { 2536 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2537 2538 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 2539 wr_mask |= SMSTATEEN0_P1P13; 2540 } 2541 2542 return write_mstateenh(env, csrno, wr_mask, new_val); 2543 } 2544 2545 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2546 target_ulong new_val) 2547 { 2548 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2549 } 2550 2551 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2552 target_ulong *val) 2553 { 2554 int index = csrno - CSR_HSTATEEN0; 2555 2556 *val = env->hstateen[index] & env->mstateen[index]; 2557 2558 return RISCV_EXCP_NONE; 2559 } 2560 2561 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2562 uint64_t mask, target_ulong new_val) 2563 { 2564 int index = csrno - CSR_HSTATEEN0; 2565 uint64_t *reg, wr_mask; 2566 2567 reg = &env->hstateen[index]; 2568 wr_mask = env->mstateen[index] & mask; 2569 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2570 2571 return RISCV_EXCP_NONE; 2572 } 2573 2574 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2575 target_ulong new_val) 2576 { 2577 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2578 2579 if (!riscv_has_ext(env, RVF)) { 2580 wr_mask |= SMSTATEEN0_FCSR; 2581 } 2582 2583 return write_hstateen(env, csrno, wr_mask, new_val); 2584 } 2585 2586 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2587 target_ulong new_val) 2588 { 2589 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2590 } 2591 2592 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2593 target_ulong *val) 2594 { 2595 int index = csrno - CSR_HSTATEEN0H; 2596 2597 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2598 2599 return RISCV_EXCP_NONE; 2600 } 2601 2602 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2603 uint64_t mask, target_ulong new_val) 2604 { 2605 int index = csrno - CSR_HSTATEEN0H; 2606 uint64_t *reg, wr_mask, val; 2607 2608 reg = &env->hstateen[index]; 2609 val = (uint64_t)new_val << 32; 2610 val |= *reg & 0xFFFFFFFF; 2611 wr_mask = env->mstateen[index] & mask; 2612 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2613 2614 return RISCV_EXCP_NONE; 2615 } 2616 2617 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2618 target_ulong new_val) 2619 { 2620 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2621 2622 return write_hstateenh(env, csrno, wr_mask, new_val); 2623 } 2624 2625 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2626 target_ulong new_val) 2627 { 2628 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2629 } 2630 2631 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2632 target_ulong *val) 2633 { 2634 bool virt = env->virt_enabled; 2635 int index = csrno - CSR_SSTATEEN0; 2636 2637 *val = env->sstateen[index] & env->mstateen[index]; 2638 if (virt) { 2639 *val &= env->hstateen[index]; 2640 } 2641 2642 return RISCV_EXCP_NONE; 2643 } 2644 2645 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2646 uint64_t mask, target_ulong new_val) 2647 { 2648 bool virt = env->virt_enabled; 2649 int index = csrno - CSR_SSTATEEN0; 2650 uint64_t wr_mask; 2651 uint64_t *reg; 2652 2653 wr_mask = env->mstateen[index] & mask; 2654 if (virt) { 2655 wr_mask &= env->hstateen[index]; 2656 } 2657 2658 reg = &env->sstateen[index]; 2659 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2660 2661 return RISCV_EXCP_NONE; 2662 } 2663 2664 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2665 target_ulong new_val) 2666 { 2667 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2668 2669 if (!riscv_has_ext(env, RVF)) { 2670 wr_mask |= SMSTATEEN0_FCSR; 2671 } 2672 2673 return write_sstateen(env, csrno, wr_mask, new_val); 2674 } 2675 2676 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2677 target_ulong new_val) 2678 { 2679 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2680 } 2681 2682 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2683 uint64_t *ret_val, 2684 uint64_t new_val, uint64_t wr_mask) 2685 { 2686 uint64_t old_mip, mask = wr_mask & delegable_ints; 2687 uint32_t gin; 2688 2689 if (mask & MIP_SEIP) { 2690 env->software_seip = new_val & MIP_SEIP; 2691 new_val |= env->external_seip * MIP_SEIP; 2692 } 2693 2694 if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && 2695 get_field(env->menvcfg, MENVCFG_STCE)) { 2696 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2697 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2698 } 2699 2700 if (mask) { 2701 old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); 2702 } else { 2703 old_mip = env->mip; 2704 } 2705 2706 if (csrno != CSR_HVIP) { 2707 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2708 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2709 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2710 } 2711 2712 if (ret_val) { 2713 *ret_val = old_mip; 2714 } 2715 2716 return RISCV_EXCP_NONE; 2717 } 2718 2719 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2720 target_ulong *ret_val, 2721 target_ulong new_val, target_ulong wr_mask) 2722 { 2723 uint64_t rval; 2724 RISCVException ret; 2725 2726 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2727 if (ret_val) { 2728 *ret_val = rval; 2729 } 2730 2731 return ret; 2732 } 2733 2734 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2735 target_ulong *ret_val, 2736 target_ulong new_val, target_ulong wr_mask) 2737 { 2738 uint64_t rval; 2739 RISCVException ret; 2740 2741 ret = rmw_mip64(env, csrno, &rval, 2742 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2743 if (ret_val) { 2744 *ret_val = rval >> 32; 2745 } 2746 2747 return ret; 2748 } 2749 2750 /* 2751 * The function is written for two use-cases: 2752 * 1- To access mvip csr as is for m-mode access. 2753 * 2- To access sip as a combination of mip and mvip for s-mode. 2754 * 2755 * Both report bits 1, 5, 9 and 13:63 but with the exception of 2756 * STIP being read-only zero in case of mvip when sstc extension 2757 * is present. 2758 * Also, sip needs to be read-only zero when both mideleg[i] and 2759 * mvien[i] are zero but mvip needs to be an alias of mip. 2760 */ 2761 static RISCVException rmw_mvip64(CPURISCVState *env, int csrno, 2762 uint64_t *ret_val, 2763 uint64_t new_val, uint64_t wr_mask) 2764 { 2765 RISCVCPU *cpu = env_archcpu(env); 2766 target_ulong ret_mip = 0; 2767 RISCVException ret; 2768 uint64_t old_mvip; 2769 2770 /* 2771 * mideleg[i] mvien[i] 2772 * 0 0 No delegation. mvip[i] is alias of mip[i]. 2773 * 0 1 mvip[i] becomes source of interrupt, mip bypassed. 2774 * 1 X mip[i] is source of interrupt and mvip[i] aliases 2775 * mip[i]. 2776 * 2777 * So alias condition would be for bits: 2778 * ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (mideleg | ~mvien)) | 2779 * (!sstc & MIP_STIP) 2780 * 2781 * Non-alias condition will be for bits: 2782 * (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~mideleg & mvien) 2783 * 2784 * alias_mask denotes the bits that come from mip nalias_mask denotes bits 2785 * that come from hvip. 2786 */ 2787 uint64_t alias_mask = ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2788 (env->mideleg | ~env->mvien)) | MIP_STIP; 2789 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 2790 (~env->mideleg & env->mvien); 2791 uint64_t wr_mask_mvip; 2792 uint64_t wr_mask_mip; 2793 2794 /* 2795 * mideleg[i] mvien[i] 2796 * 0 0 sip[i] read-only zero. 2797 * 0 1 sip[i] alias of mvip[i]. 2798 * 1 X sip[i] alias of mip[i]. 2799 * 2800 * Both alias and non-alias mask remain same for sip except for bits 2801 * which are zero in both mideleg and mvien. 2802 */ 2803 if (csrno == CSR_SIP) { 2804 /* Remove bits that are zero in both mideleg and mvien. */ 2805 alias_mask &= (env->mideleg | env->mvien); 2806 nalias_mask &= (env->mideleg | env->mvien); 2807 } 2808 2809 /* 2810 * If sstc is present, mvip.STIP is not an alias of mip.STIP so clear 2811 * that our in mip returned value. 2812 */ 2813 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2814 get_field(env->menvcfg, MENVCFG_STCE)) { 2815 alias_mask &= ~MIP_STIP; 2816 } 2817 2818 wr_mask_mip = wr_mask & alias_mask & mvip_writable_mask; 2819 wr_mask_mvip = wr_mask & nalias_mask & mvip_writable_mask; 2820 2821 /* 2822 * For bits set in alias_mask, mvip needs to be alias of mip, so forward 2823 * this to rmw_mip. 2824 */ 2825 ret = rmw_mip(env, CSR_MIP, &ret_mip, new_val, wr_mask_mip); 2826 if (ret != RISCV_EXCP_NONE) { 2827 return ret; 2828 } 2829 2830 old_mvip = env->mvip; 2831 2832 /* 2833 * Write to mvip. Update only non-alias bits. Alias bits were updated 2834 * in mip in rmw_mip above. 2835 */ 2836 if (wr_mask_mvip) { 2837 env->mvip = (env->mvip & ~wr_mask_mvip) | (new_val & wr_mask_mvip); 2838 2839 /* 2840 * Given mvip is separate source from mip, we need to trigger interrupt 2841 * from here separately. Normally this happen from riscv_cpu_update_mip. 2842 */ 2843 riscv_cpu_interrupt(env); 2844 } 2845 2846 if (ret_val) { 2847 ret_mip &= alias_mask; 2848 old_mvip &= nalias_mask; 2849 2850 *ret_val = old_mvip | ret_mip; 2851 } 2852 2853 return RISCV_EXCP_NONE; 2854 } 2855 2856 static RISCVException rmw_mvip(CPURISCVState *env, int csrno, 2857 target_ulong *ret_val, 2858 target_ulong new_val, target_ulong wr_mask) 2859 { 2860 uint64_t rval; 2861 RISCVException ret; 2862 2863 ret = rmw_mvip64(env, csrno, &rval, new_val, wr_mask); 2864 if (ret_val) { 2865 *ret_val = rval; 2866 } 2867 2868 return ret; 2869 } 2870 2871 static RISCVException rmw_mviph(CPURISCVState *env, int csrno, 2872 target_ulong *ret_val, 2873 target_ulong new_val, target_ulong wr_mask) 2874 { 2875 uint64_t rval; 2876 RISCVException ret; 2877 2878 ret = rmw_mvip64(env, csrno, &rval, 2879 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2880 if (ret_val) { 2881 *ret_val = rval >> 32; 2882 } 2883 2884 return ret; 2885 } 2886 2887 /* Supervisor Trap Setup */ 2888 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2889 Int128 *val) 2890 { 2891 uint64_t mask = sstatus_v1_10_mask; 2892 uint64_t sstatus = env->mstatus & mask; 2893 if (env->xl != MXL_RV32 || env->debugger) { 2894 mask |= SSTATUS64_UXL; 2895 } 2896 2897 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2898 return RISCV_EXCP_NONE; 2899 } 2900 2901 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2902 target_ulong *val) 2903 { 2904 target_ulong mask = (sstatus_v1_10_mask); 2905 if (env->xl != MXL_RV32 || env->debugger) { 2906 mask |= SSTATUS64_UXL; 2907 } 2908 /* TODO: Use SXL not MXL. */ 2909 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2910 return RISCV_EXCP_NONE; 2911 } 2912 2913 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2914 target_ulong val) 2915 { 2916 target_ulong mask = (sstatus_v1_10_mask); 2917 2918 if (env->xl != MXL_RV32 || env->debugger) { 2919 if ((val & SSTATUS64_UXL) != 0) { 2920 mask |= SSTATUS64_UXL; 2921 } 2922 } 2923 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2924 return write_mstatus(env, CSR_MSTATUS, newval); 2925 } 2926 2927 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2928 uint64_t *ret_val, 2929 uint64_t new_val, uint64_t wr_mask) 2930 { 2931 uint64_t alias_mask = (LOCAL_INTERRUPTS | VS_MODE_INTERRUPTS) & 2932 env->hideleg; 2933 uint64_t nalias_mask = LOCAL_INTERRUPTS & (~env->hideleg & env->hvien); 2934 uint64_t rval, rval_vs, vsbits; 2935 uint64_t wr_mask_vsie; 2936 uint64_t wr_mask_mie; 2937 RISCVException ret; 2938 2939 /* Bring VS-level bits to correct position */ 2940 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 2941 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 2942 new_val |= vsbits << 1; 2943 2944 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 2945 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 2946 wr_mask |= vsbits << 1; 2947 2948 wr_mask_mie = wr_mask & alias_mask; 2949 wr_mask_vsie = wr_mask & nalias_mask; 2950 2951 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask_mie); 2952 2953 rval_vs = env->vsie & nalias_mask; 2954 env->vsie = (env->vsie & ~wr_mask_vsie) | (new_val & wr_mask_vsie); 2955 2956 if (ret_val) { 2957 rval &= alias_mask; 2958 vsbits = rval & VS_MODE_INTERRUPTS; 2959 rval &= ~VS_MODE_INTERRUPTS; 2960 *ret_val = rval | (vsbits >> 1) | rval_vs; 2961 } 2962 2963 return ret; 2964 } 2965 2966 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2967 target_ulong *ret_val, 2968 target_ulong new_val, target_ulong wr_mask) 2969 { 2970 uint64_t rval; 2971 RISCVException ret; 2972 2973 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2974 if (ret_val) { 2975 *ret_val = rval; 2976 } 2977 2978 return ret; 2979 } 2980 2981 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2982 target_ulong *ret_val, 2983 target_ulong new_val, target_ulong wr_mask) 2984 { 2985 uint64_t rval; 2986 RISCVException ret; 2987 2988 ret = rmw_vsie64(env, csrno, &rval, 2989 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2990 if (ret_val) { 2991 *ret_val = rval >> 32; 2992 } 2993 2994 return ret; 2995 } 2996 2997 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2998 uint64_t *ret_val, 2999 uint64_t new_val, uint64_t wr_mask) 3000 { 3001 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 3002 (~env->mideleg & env->mvien); 3003 uint64_t alias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & env->mideleg; 3004 uint64_t sie_mask = wr_mask & nalias_mask; 3005 RISCVException ret; 3006 3007 /* 3008 * mideleg[i] mvien[i] 3009 * 0 0 sie[i] read-only zero. 3010 * 0 1 sie[i] is a separate writable bit. 3011 * 1 X sie[i] alias of mie[i]. 3012 * 3013 * Both alias and non-alias mask remain same for sip except for bits 3014 * which are zero in both mideleg and mvien. 3015 */ 3016 if (env->virt_enabled) { 3017 if (env->hvictl & HVICTL_VTI) { 3018 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3019 } 3020 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 3021 if (ret_val) { 3022 *ret_val &= alias_mask; 3023 } 3024 } else { 3025 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & alias_mask); 3026 if (ret_val) { 3027 *ret_val &= alias_mask; 3028 *ret_val |= env->sie & nalias_mask; 3029 } 3030 3031 env->sie = (env->sie & ~sie_mask) | (new_val & sie_mask); 3032 } 3033 3034 return ret; 3035 } 3036 3037 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 3038 target_ulong *ret_val, 3039 target_ulong new_val, target_ulong wr_mask) 3040 { 3041 uint64_t rval; 3042 RISCVException ret; 3043 3044 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 3045 if (ret == RISCV_EXCP_NONE && ret_val) { 3046 *ret_val = rval; 3047 } 3048 3049 return ret; 3050 } 3051 3052 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 3053 target_ulong *ret_val, 3054 target_ulong new_val, target_ulong wr_mask) 3055 { 3056 uint64_t rval; 3057 RISCVException ret; 3058 3059 ret = rmw_sie64(env, csrno, &rval, 3060 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3061 if (ret_val) { 3062 *ret_val = rval >> 32; 3063 } 3064 3065 return ret; 3066 } 3067 3068 static RISCVException read_stvec(CPURISCVState *env, int csrno, 3069 target_ulong *val) 3070 { 3071 *val = env->stvec; 3072 return RISCV_EXCP_NONE; 3073 } 3074 3075 static RISCVException write_stvec(CPURISCVState *env, int csrno, 3076 target_ulong val) 3077 { 3078 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 3079 if ((val & 3) < 2) { 3080 env->stvec = val; 3081 } else { 3082 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 3083 } 3084 return RISCV_EXCP_NONE; 3085 } 3086 3087 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 3088 target_ulong *val) 3089 { 3090 *val = env->scounteren; 3091 return RISCV_EXCP_NONE; 3092 } 3093 3094 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 3095 target_ulong val) 3096 { 3097 RISCVCPU *cpu = env_archcpu(env); 3098 3099 /* WARL register - disable unavailable counters */ 3100 env->scounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 3101 COUNTEREN_IR); 3102 return RISCV_EXCP_NONE; 3103 } 3104 3105 /* Supervisor Trap Handling */ 3106 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 3107 Int128 *val) 3108 { 3109 *val = int128_make128(env->sscratch, env->sscratchh); 3110 return RISCV_EXCP_NONE; 3111 } 3112 3113 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 3114 Int128 val) 3115 { 3116 env->sscratch = int128_getlo(val); 3117 env->sscratchh = int128_gethi(val); 3118 return RISCV_EXCP_NONE; 3119 } 3120 3121 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 3122 target_ulong *val) 3123 { 3124 *val = env->sscratch; 3125 return RISCV_EXCP_NONE; 3126 } 3127 3128 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 3129 target_ulong val) 3130 { 3131 env->sscratch = val; 3132 return RISCV_EXCP_NONE; 3133 } 3134 3135 static RISCVException read_sepc(CPURISCVState *env, int csrno, 3136 target_ulong *val) 3137 { 3138 *val = env->sepc; 3139 return RISCV_EXCP_NONE; 3140 } 3141 3142 static RISCVException write_sepc(CPURISCVState *env, int csrno, 3143 target_ulong val) 3144 { 3145 env->sepc = val; 3146 return RISCV_EXCP_NONE; 3147 } 3148 3149 static RISCVException read_scause(CPURISCVState *env, int csrno, 3150 target_ulong *val) 3151 { 3152 *val = env->scause; 3153 return RISCV_EXCP_NONE; 3154 } 3155 3156 static RISCVException write_scause(CPURISCVState *env, int csrno, 3157 target_ulong val) 3158 { 3159 env->scause = val; 3160 return RISCV_EXCP_NONE; 3161 } 3162 3163 static RISCVException read_stval(CPURISCVState *env, int csrno, 3164 target_ulong *val) 3165 { 3166 *val = env->stval; 3167 return RISCV_EXCP_NONE; 3168 } 3169 3170 static RISCVException write_stval(CPURISCVState *env, int csrno, 3171 target_ulong val) 3172 { 3173 env->stval = val; 3174 return RISCV_EXCP_NONE; 3175 } 3176 3177 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 3178 uint64_t *ret_val, 3179 uint64_t new_val, uint64_t wr_mask); 3180 3181 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 3182 uint64_t *ret_val, 3183 uint64_t new_val, uint64_t wr_mask) 3184 { 3185 RISCVException ret; 3186 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 3187 uint64_t vsbits; 3188 3189 /* Add virtualized bits into vsip mask. */ 3190 mask |= env->hvien & ~env->hideleg; 3191 3192 /* Bring VS-level bits to correct position */ 3193 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 3194 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 3195 new_val |= vsbits << 1; 3196 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 3197 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 3198 wr_mask |= vsbits << 1; 3199 3200 ret = rmw_hvip64(env, csrno, &rval, new_val, 3201 wr_mask & mask & vsip_writable_mask); 3202 if (ret_val) { 3203 rval &= mask; 3204 vsbits = rval & VS_MODE_INTERRUPTS; 3205 rval &= ~VS_MODE_INTERRUPTS; 3206 *ret_val = rval | (vsbits >> 1); 3207 } 3208 3209 return ret; 3210 } 3211 3212 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 3213 target_ulong *ret_val, 3214 target_ulong new_val, target_ulong wr_mask) 3215 { 3216 uint64_t rval; 3217 RISCVException ret; 3218 3219 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 3220 if (ret_val) { 3221 *ret_val = rval; 3222 } 3223 3224 return ret; 3225 } 3226 3227 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 3228 target_ulong *ret_val, 3229 target_ulong new_val, target_ulong wr_mask) 3230 { 3231 uint64_t rval; 3232 RISCVException ret; 3233 3234 ret = rmw_vsip64(env, csrno, &rval, 3235 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3236 if (ret_val) { 3237 *ret_val = rval >> 32; 3238 } 3239 3240 return ret; 3241 } 3242 3243 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 3244 uint64_t *ret_val, 3245 uint64_t new_val, uint64_t wr_mask) 3246 { 3247 RISCVException ret; 3248 uint64_t mask = (env->mideleg | env->mvien) & sip_writable_mask; 3249 3250 if (env->virt_enabled) { 3251 if (env->hvictl & HVICTL_VTI) { 3252 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3253 } 3254 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 3255 } else { 3256 ret = rmw_mvip64(env, csrno, ret_val, new_val, wr_mask & mask); 3257 } 3258 3259 if (ret_val) { 3260 *ret_val &= (env->mideleg | env->mvien) & 3261 (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS); 3262 } 3263 3264 return ret; 3265 } 3266 3267 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 3268 target_ulong *ret_val, 3269 target_ulong new_val, target_ulong wr_mask) 3270 { 3271 uint64_t rval; 3272 RISCVException ret; 3273 3274 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 3275 if (ret_val) { 3276 *ret_val = rval; 3277 } 3278 3279 return ret; 3280 } 3281 3282 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 3283 target_ulong *ret_val, 3284 target_ulong new_val, target_ulong wr_mask) 3285 { 3286 uint64_t rval; 3287 RISCVException ret; 3288 3289 ret = rmw_sip64(env, csrno, &rval, 3290 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3291 if (ret_val) { 3292 *ret_val = rval >> 32; 3293 } 3294 3295 return ret; 3296 } 3297 3298 /* Supervisor Protection and Translation */ 3299 static RISCVException read_satp(CPURISCVState *env, int csrno, 3300 target_ulong *val) 3301 { 3302 if (!riscv_cpu_cfg(env)->mmu) { 3303 *val = 0; 3304 return RISCV_EXCP_NONE; 3305 } 3306 *val = env->satp; 3307 return RISCV_EXCP_NONE; 3308 } 3309 3310 static RISCVException write_satp(CPURISCVState *env, int csrno, 3311 target_ulong val) 3312 { 3313 if (!riscv_cpu_cfg(env)->mmu) { 3314 return RISCV_EXCP_NONE; 3315 } 3316 3317 env->satp = legalize_xatp(env, env->satp, val); 3318 return RISCV_EXCP_NONE; 3319 } 3320 3321 static RISCVException read_vstopi(CPURISCVState *env, int csrno, 3322 target_ulong *val) 3323 { 3324 int irq, ret; 3325 target_ulong topei; 3326 uint64_t vseip, vsgein; 3327 uint32_t iid, iprio, hviid, hviprio, gein; 3328 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 3329 3330 gein = get_field(env->hstatus, HSTATUS_VGEIN); 3331 hviid = get_field(env->hvictl, HVICTL_IID); 3332 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 3333 3334 if (gein) { 3335 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 3336 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 3337 if (gein <= env->geilen && vseip) { 3338 siid[scount] = IRQ_S_EXT; 3339 siprio[scount] = IPRIO_MMAXIPRIO + 1; 3340 if (env->aia_ireg_rmw_fn[PRV_S]) { 3341 /* 3342 * Call machine specific IMSIC register emulation for 3343 * reading TOPEI. 3344 */ 3345 ret = env->aia_ireg_rmw_fn[PRV_S]( 3346 env->aia_ireg_rmw_fn_arg[PRV_S], 3347 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 3348 riscv_cpu_mxl_bits(env)), 3349 &topei, 0, 0); 3350 if (!ret && topei) { 3351 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 3352 } 3353 } 3354 scount++; 3355 } 3356 } else { 3357 if (hviid == IRQ_S_EXT && hviprio) { 3358 siid[scount] = IRQ_S_EXT; 3359 siprio[scount] = hviprio; 3360 scount++; 3361 } 3362 } 3363 3364 if (env->hvictl & HVICTL_VTI) { 3365 if (hviid != IRQ_S_EXT) { 3366 siid[scount] = hviid; 3367 siprio[scount] = hviprio; 3368 scount++; 3369 } 3370 } else { 3371 irq = riscv_cpu_vsirq_pending(env); 3372 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 3373 siid[scount] = irq; 3374 siprio[scount] = env->hviprio[irq]; 3375 scount++; 3376 } 3377 } 3378 3379 iid = 0; 3380 iprio = UINT_MAX; 3381 for (s = 0; s < scount; s++) { 3382 if (siprio[s] < iprio) { 3383 iid = siid[s]; 3384 iprio = siprio[s]; 3385 } 3386 } 3387 3388 if (iid) { 3389 if (env->hvictl & HVICTL_IPRIOM) { 3390 if (iprio > IPRIO_MMAXIPRIO) { 3391 iprio = IPRIO_MMAXIPRIO; 3392 } 3393 if (!iprio) { 3394 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 3395 iprio = IPRIO_MMAXIPRIO; 3396 } 3397 } 3398 } else { 3399 iprio = 1; 3400 } 3401 } else { 3402 iprio = 0; 3403 } 3404 3405 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 3406 *val |= iprio; 3407 3408 return RISCV_EXCP_NONE; 3409 } 3410 3411 static RISCVException read_stopi(CPURISCVState *env, int csrno, 3412 target_ulong *val) 3413 { 3414 int irq; 3415 uint8_t iprio; 3416 3417 if (env->virt_enabled) { 3418 return read_vstopi(env, CSR_VSTOPI, val); 3419 } 3420 3421 irq = riscv_cpu_sirq_pending(env); 3422 if (irq <= 0 || irq > 63) { 3423 *val = 0; 3424 } else { 3425 iprio = env->siprio[irq]; 3426 if (!iprio) { 3427 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 3428 iprio = IPRIO_MMAXIPRIO; 3429 } 3430 } 3431 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 3432 *val |= iprio; 3433 } 3434 3435 return RISCV_EXCP_NONE; 3436 } 3437 3438 /* Hypervisor Extensions */ 3439 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 3440 target_ulong *val) 3441 { 3442 *val = env->hstatus; 3443 if (riscv_cpu_mxl(env) != MXL_RV32) { 3444 /* We only support 64-bit VSXL */ 3445 *val = set_field(*val, HSTATUS_VSXL, 2); 3446 } 3447 /* We only support little endian */ 3448 *val = set_field(*val, HSTATUS_VSBE, 0); 3449 return RISCV_EXCP_NONE; 3450 } 3451 3452 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 3453 target_ulong val) 3454 { 3455 env->hstatus = val; 3456 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 3457 qemu_log_mask(LOG_UNIMP, 3458 "QEMU does not support mixed HSXLEN options."); 3459 } 3460 if (get_field(val, HSTATUS_VSBE) != 0) { 3461 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 3462 } 3463 return RISCV_EXCP_NONE; 3464 } 3465 3466 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 3467 target_ulong *val) 3468 { 3469 *val = env->hedeleg; 3470 return RISCV_EXCP_NONE; 3471 } 3472 3473 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 3474 target_ulong val) 3475 { 3476 env->hedeleg = val & vs_delegable_excps; 3477 return RISCV_EXCP_NONE; 3478 } 3479 3480 static RISCVException read_hedelegh(CPURISCVState *env, int csrno, 3481 target_ulong *val) 3482 { 3483 RISCVException ret; 3484 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 3485 if (ret != RISCV_EXCP_NONE) { 3486 return ret; 3487 } 3488 3489 /* Reserved, now read zero */ 3490 *val = 0; 3491 return RISCV_EXCP_NONE; 3492 } 3493 3494 static RISCVException write_hedelegh(CPURISCVState *env, int csrno, 3495 target_ulong val) 3496 { 3497 RISCVException ret; 3498 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 3499 if (ret != RISCV_EXCP_NONE) { 3500 return ret; 3501 } 3502 3503 /* Reserved, now write ignore */ 3504 return RISCV_EXCP_NONE; 3505 } 3506 3507 static RISCVException rmw_hvien64(CPURISCVState *env, int csrno, 3508 uint64_t *ret_val, 3509 uint64_t new_val, uint64_t wr_mask) 3510 { 3511 uint64_t mask = wr_mask & hvien_writable_mask; 3512 3513 if (ret_val) { 3514 *ret_val = env->hvien; 3515 } 3516 3517 env->hvien = (env->hvien & ~mask) | (new_val & mask); 3518 3519 return RISCV_EXCP_NONE; 3520 } 3521 3522 static RISCVException rmw_hvien(CPURISCVState *env, int csrno, 3523 target_ulong *ret_val, 3524 target_ulong new_val, target_ulong wr_mask) 3525 { 3526 uint64_t rval; 3527 RISCVException ret; 3528 3529 ret = rmw_hvien64(env, csrno, &rval, new_val, wr_mask); 3530 if (ret_val) { 3531 *ret_val = rval; 3532 } 3533 3534 return ret; 3535 } 3536 3537 static RISCVException rmw_hvienh(CPURISCVState *env, int csrno, 3538 target_ulong *ret_val, 3539 target_ulong new_val, target_ulong wr_mask) 3540 { 3541 uint64_t rval; 3542 RISCVException ret; 3543 3544 ret = rmw_hvien64(env, csrno, &rval, 3545 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3546 if (ret_val) { 3547 *ret_val = rval >> 32; 3548 } 3549 3550 return ret; 3551 } 3552 3553 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 3554 uint64_t *ret_val, 3555 uint64_t new_val, uint64_t wr_mask) 3556 { 3557 uint64_t mask = wr_mask & vs_delegable_ints; 3558 3559 if (ret_val) { 3560 *ret_val = env->hideleg & vs_delegable_ints; 3561 } 3562 3563 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 3564 return RISCV_EXCP_NONE; 3565 } 3566 3567 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 3568 target_ulong *ret_val, 3569 target_ulong new_val, target_ulong wr_mask) 3570 { 3571 uint64_t rval; 3572 RISCVException ret; 3573 3574 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 3575 if (ret_val) { 3576 *ret_val = rval; 3577 } 3578 3579 return ret; 3580 } 3581 3582 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 3583 target_ulong *ret_val, 3584 target_ulong new_val, target_ulong wr_mask) 3585 { 3586 uint64_t rval; 3587 RISCVException ret; 3588 3589 ret = rmw_hideleg64(env, csrno, &rval, 3590 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3591 if (ret_val) { 3592 *ret_val = rval >> 32; 3593 } 3594 3595 return ret; 3596 } 3597 3598 /* 3599 * The function is written for two use-cases: 3600 * 1- To access hvip csr as is for HS-mode access. 3601 * 2- To access vsip as a combination of hvip, and mip for vs-mode. 3602 * 3603 * Both report bits 2, 6, 10 and 13:63. 3604 * vsip needs to be read-only zero when both hideleg[i] and 3605 * hvien[i] are zero. 3606 */ 3607 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 3608 uint64_t *ret_val, 3609 uint64_t new_val, uint64_t wr_mask) 3610 { 3611 RISCVException ret; 3612 uint64_t old_hvip; 3613 uint64_t ret_mip; 3614 3615 /* 3616 * For bits 10, 6 and 2, vsip[i] is an alias of hip[i]. These bits are 3617 * present in hip, hvip and mip. Where mip[i] is alias of hip[i] and hvip[i] 3618 * is OR'ed in hip[i] to inject virtual interrupts from hypervisor. These 3619 * bits are actually being maintained in mip so we read them from there. 3620 * This way we have a single source of truth and allows for easier 3621 * implementation. 3622 * 3623 * For bits 13:63 we have: 3624 * 3625 * hideleg[i] hvien[i] 3626 * 0 0 No delegation. vsip[i] readonly zero. 3627 * 0 1 vsip[i] is alias of hvip[i], sip bypassed. 3628 * 1 X vsip[i] is alias of sip[i], hvip bypassed. 3629 * 3630 * alias_mask denotes the bits that come from sip (mip here given we 3631 * maintain all bits there). nalias_mask denotes bits that come from 3632 * hvip. 3633 */ 3634 uint64_t alias_mask = (env->hideleg | ~env->hvien) | VS_MODE_INTERRUPTS; 3635 uint64_t nalias_mask = (~env->hideleg & env->hvien); 3636 uint64_t wr_mask_hvip; 3637 uint64_t wr_mask_mip; 3638 3639 /* 3640 * Both alias and non-alias mask remain same for vsip except: 3641 * 1- For VS* bits if they are zero in hideleg. 3642 * 2- For 13:63 bits if they are zero in both hideleg and hvien. 3643 */ 3644 if (csrno == CSR_VSIP) { 3645 /* zero-out VS* bits that are not delegated to VS mode. */ 3646 alias_mask &= (env->hideleg | ~VS_MODE_INTERRUPTS); 3647 3648 /* 3649 * zero-out 13:63 bits that are zero in both hideleg and hvien. 3650 * nalias_mask mask can not contain any VS* bits so only second 3651 * condition applies on it. 3652 */ 3653 nalias_mask &= (env->hideleg | env->hvien); 3654 alias_mask &= (env->hideleg | env->hvien); 3655 } 3656 3657 wr_mask_hvip = wr_mask & nalias_mask & hvip_writable_mask; 3658 wr_mask_mip = wr_mask & alias_mask & hvip_writable_mask; 3659 3660 /* Aliased bits, bits 10, 6, 2 need to come from mip. */ 3661 ret = rmw_mip64(env, csrno, &ret_mip, new_val, wr_mask_mip); 3662 if (ret != RISCV_EXCP_NONE) { 3663 return ret; 3664 } 3665 3666 old_hvip = env->hvip; 3667 3668 if (wr_mask_hvip) { 3669 env->hvip = (env->hvip & ~wr_mask_hvip) | (new_val & wr_mask_hvip); 3670 3671 /* 3672 * Given hvip is separate source from mip, we need to trigger interrupt 3673 * from here separately. Normally this happen from riscv_cpu_update_mip. 3674 */ 3675 riscv_cpu_interrupt(env); 3676 } 3677 3678 if (ret_val) { 3679 /* Only take VS* bits from mip. */ 3680 ret_mip &= alias_mask; 3681 3682 /* Take in non-delegated 13:63 bits from hvip. */ 3683 old_hvip &= nalias_mask; 3684 3685 *ret_val = ret_mip | old_hvip; 3686 } 3687 3688 return ret; 3689 } 3690 3691 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 3692 target_ulong *ret_val, 3693 target_ulong new_val, target_ulong wr_mask) 3694 { 3695 uint64_t rval; 3696 RISCVException ret; 3697 3698 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 3699 if (ret_val) { 3700 *ret_val = rval; 3701 } 3702 3703 return ret; 3704 } 3705 3706 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 3707 target_ulong *ret_val, 3708 target_ulong new_val, target_ulong wr_mask) 3709 { 3710 uint64_t rval; 3711 RISCVException ret; 3712 3713 ret = rmw_hvip64(env, csrno, &rval, 3714 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3715 if (ret_val) { 3716 *ret_val = rval >> 32; 3717 } 3718 3719 return ret; 3720 } 3721 3722 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 3723 target_ulong *ret_value, 3724 target_ulong new_value, target_ulong write_mask) 3725 { 3726 int ret = rmw_mip(env, csrno, ret_value, new_value, 3727 write_mask & hip_writable_mask); 3728 3729 if (ret_value) { 3730 *ret_value &= HS_MODE_INTERRUPTS; 3731 } 3732 return ret; 3733 } 3734 3735 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 3736 target_ulong *ret_val, 3737 target_ulong new_val, target_ulong wr_mask) 3738 { 3739 uint64_t rval; 3740 RISCVException ret; 3741 3742 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 3743 if (ret_val) { 3744 *ret_val = rval & HS_MODE_INTERRUPTS; 3745 } 3746 3747 return ret; 3748 } 3749 3750 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 3751 target_ulong *val) 3752 { 3753 *val = env->hcounteren; 3754 return RISCV_EXCP_NONE; 3755 } 3756 3757 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 3758 target_ulong val) 3759 { 3760 RISCVCPU *cpu = env_archcpu(env); 3761 3762 /* WARL register - disable unavailable counters */ 3763 env->hcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 3764 COUNTEREN_IR); 3765 return RISCV_EXCP_NONE; 3766 } 3767 3768 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 3769 target_ulong *val) 3770 { 3771 if (val) { 3772 *val = env->hgeie; 3773 } 3774 return RISCV_EXCP_NONE; 3775 } 3776 3777 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 3778 target_ulong val) 3779 { 3780 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 3781 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 3782 env->hgeie = val; 3783 /* Update mip.SGEIP bit */ 3784 riscv_cpu_update_mip(env, MIP_SGEIP, 3785 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 3786 return RISCV_EXCP_NONE; 3787 } 3788 3789 static RISCVException read_htval(CPURISCVState *env, int csrno, 3790 target_ulong *val) 3791 { 3792 *val = env->htval; 3793 return RISCV_EXCP_NONE; 3794 } 3795 3796 static RISCVException write_htval(CPURISCVState *env, int csrno, 3797 target_ulong val) 3798 { 3799 env->htval = val; 3800 return RISCV_EXCP_NONE; 3801 } 3802 3803 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3804 target_ulong *val) 3805 { 3806 *val = env->htinst; 3807 return RISCV_EXCP_NONE; 3808 } 3809 3810 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3811 target_ulong val) 3812 { 3813 return RISCV_EXCP_NONE; 3814 } 3815 3816 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3817 target_ulong *val) 3818 { 3819 if (val) { 3820 *val = env->hgeip; 3821 } 3822 return RISCV_EXCP_NONE; 3823 } 3824 3825 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3826 target_ulong *val) 3827 { 3828 *val = env->hgatp; 3829 return RISCV_EXCP_NONE; 3830 } 3831 3832 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3833 target_ulong val) 3834 { 3835 env->hgatp = legalize_xatp(env, env->hgatp, val); 3836 return RISCV_EXCP_NONE; 3837 } 3838 3839 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3840 target_ulong *val) 3841 { 3842 if (!env->rdtime_fn) { 3843 return RISCV_EXCP_ILLEGAL_INST; 3844 } 3845 3846 *val = env->htimedelta; 3847 return RISCV_EXCP_NONE; 3848 } 3849 3850 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3851 target_ulong val) 3852 { 3853 if (!env->rdtime_fn) { 3854 return RISCV_EXCP_ILLEGAL_INST; 3855 } 3856 3857 if (riscv_cpu_mxl(env) == MXL_RV32) { 3858 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3859 } else { 3860 env->htimedelta = val; 3861 } 3862 3863 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3864 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3865 env->htimedelta, MIP_VSTIP); 3866 } 3867 3868 return RISCV_EXCP_NONE; 3869 } 3870 3871 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3872 target_ulong *val) 3873 { 3874 if (!env->rdtime_fn) { 3875 return RISCV_EXCP_ILLEGAL_INST; 3876 } 3877 3878 *val = env->htimedelta >> 32; 3879 return RISCV_EXCP_NONE; 3880 } 3881 3882 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3883 target_ulong val) 3884 { 3885 if (!env->rdtime_fn) { 3886 return RISCV_EXCP_ILLEGAL_INST; 3887 } 3888 3889 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3890 3891 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3892 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3893 env->htimedelta, MIP_VSTIP); 3894 } 3895 3896 return RISCV_EXCP_NONE; 3897 } 3898 3899 static RISCVException read_hvictl(CPURISCVState *env, int csrno, 3900 target_ulong *val) 3901 { 3902 *val = env->hvictl; 3903 return RISCV_EXCP_NONE; 3904 } 3905 3906 static RISCVException write_hvictl(CPURISCVState *env, int csrno, 3907 target_ulong val) 3908 { 3909 env->hvictl = val & HVICTL_VALID_MASK; 3910 return RISCV_EXCP_NONE; 3911 } 3912 3913 static RISCVException read_hvipriox(CPURISCVState *env, int first_index, 3914 uint8_t *iprio, target_ulong *val) 3915 { 3916 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3917 3918 /* First index has to be a multiple of number of irqs per register */ 3919 if (first_index % num_irqs) { 3920 return (env->virt_enabled) ? 3921 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3922 } 3923 3924 /* Fill-up return value */ 3925 *val = 0; 3926 for (i = 0; i < num_irqs; i++) { 3927 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3928 continue; 3929 } 3930 if (rdzero) { 3931 continue; 3932 } 3933 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3934 } 3935 3936 return RISCV_EXCP_NONE; 3937 } 3938 3939 static RISCVException write_hvipriox(CPURISCVState *env, int first_index, 3940 uint8_t *iprio, target_ulong val) 3941 { 3942 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3943 3944 /* First index has to be a multiple of number of irqs per register */ 3945 if (first_index % num_irqs) { 3946 return (env->virt_enabled) ? 3947 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3948 } 3949 3950 /* Fill-up priority array */ 3951 for (i = 0; i < num_irqs; i++) { 3952 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3953 continue; 3954 } 3955 if (rdzero) { 3956 iprio[irq] = 0; 3957 } else { 3958 iprio[irq] = (val >> (i * 8)) & 0xff; 3959 } 3960 } 3961 3962 return RISCV_EXCP_NONE; 3963 } 3964 3965 static RISCVException read_hviprio1(CPURISCVState *env, int csrno, 3966 target_ulong *val) 3967 { 3968 return read_hvipriox(env, 0, env->hviprio, val); 3969 } 3970 3971 static RISCVException write_hviprio1(CPURISCVState *env, int csrno, 3972 target_ulong val) 3973 { 3974 return write_hvipriox(env, 0, env->hviprio, val); 3975 } 3976 3977 static RISCVException read_hviprio1h(CPURISCVState *env, int csrno, 3978 target_ulong *val) 3979 { 3980 return read_hvipriox(env, 4, env->hviprio, val); 3981 } 3982 3983 static RISCVException write_hviprio1h(CPURISCVState *env, int csrno, 3984 target_ulong val) 3985 { 3986 return write_hvipriox(env, 4, env->hviprio, val); 3987 } 3988 3989 static RISCVException read_hviprio2(CPURISCVState *env, int csrno, 3990 target_ulong *val) 3991 { 3992 return read_hvipriox(env, 8, env->hviprio, val); 3993 } 3994 3995 static RISCVException write_hviprio2(CPURISCVState *env, int csrno, 3996 target_ulong val) 3997 { 3998 return write_hvipriox(env, 8, env->hviprio, val); 3999 } 4000 4001 static RISCVException read_hviprio2h(CPURISCVState *env, int csrno, 4002 target_ulong *val) 4003 { 4004 return read_hvipriox(env, 12, env->hviprio, val); 4005 } 4006 4007 static RISCVException write_hviprio2h(CPURISCVState *env, int csrno, 4008 target_ulong val) 4009 { 4010 return write_hvipriox(env, 12, env->hviprio, val); 4011 } 4012 4013 /* Virtual CSR Registers */ 4014 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 4015 target_ulong *val) 4016 { 4017 *val = env->vsstatus; 4018 return RISCV_EXCP_NONE; 4019 } 4020 4021 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 4022 target_ulong val) 4023 { 4024 uint64_t mask = (target_ulong)-1; 4025 if ((val & VSSTATUS64_UXL) == 0) { 4026 mask &= ~VSSTATUS64_UXL; 4027 } 4028 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 4029 return RISCV_EXCP_NONE; 4030 } 4031 4032 static RISCVException read_vstvec(CPURISCVState *env, int csrno, 4033 target_ulong *val) 4034 { 4035 *val = env->vstvec; 4036 return RISCV_EXCP_NONE; 4037 } 4038 4039 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 4040 target_ulong val) 4041 { 4042 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 4043 if ((val & 3) < 2) { 4044 env->vstvec = val; 4045 } else { 4046 qemu_log_mask(LOG_UNIMP, "CSR_VSTVEC: reserved mode not supported\n"); 4047 } 4048 return RISCV_EXCP_NONE; 4049 } 4050 4051 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 4052 target_ulong *val) 4053 { 4054 *val = env->vsscratch; 4055 return RISCV_EXCP_NONE; 4056 } 4057 4058 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 4059 target_ulong val) 4060 { 4061 env->vsscratch = val; 4062 return RISCV_EXCP_NONE; 4063 } 4064 4065 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 4066 target_ulong *val) 4067 { 4068 *val = env->vsepc; 4069 return RISCV_EXCP_NONE; 4070 } 4071 4072 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 4073 target_ulong val) 4074 { 4075 env->vsepc = val; 4076 return RISCV_EXCP_NONE; 4077 } 4078 4079 static RISCVException read_vscause(CPURISCVState *env, int csrno, 4080 target_ulong *val) 4081 { 4082 *val = env->vscause; 4083 return RISCV_EXCP_NONE; 4084 } 4085 4086 static RISCVException write_vscause(CPURISCVState *env, int csrno, 4087 target_ulong val) 4088 { 4089 env->vscause = val; 4090 return RISCV_EXCP_NONE; 4091 } 4092 4093 static RISCVException read_vstval(CPURISCVState *env, int csrno, 4094 target_ulong *val) 4095 { 4096 *val = env->vstval; 4097 return RISCV_EXCP_NONE; 4098 } 4099 4100 static RISCVException write_vstval(CPURISCVState *env, int csrno, 4101 target_ulong val) 4102 { 4103 env->vstval = val; 4104 return RISCV_EXCP_NONE; 4105 } 4106 4107 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 4108 target_ulong *val) 4109 { 4110 *val = env->vsatp; 4111 return RISCV_EXCP_NONE; 4112 } 4113 4114 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 4115 target_ulong val) 4116 { 4117 env->vsatp = legalize_xatp(env, env->vsatp, val); 4118 return RISCV_EXCP_NONE; 4119 } 4120 4121 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 4122 target_ulong *val) 4123 { 4124 *val = env->mtval2; 4125 return RISCV_EXCP_NONE; 4126 } 4127 4128 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 4129 target_ulong val) 4130 { 4131 env->mtval2 = val; 4132 return RISCV_EXCP_NONE; 4133 } 4134 4135 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 4136 target_ulong *val) 4137 { 4138 *val = env->mtinst; 4139 return RISCV_EXCP_NONE; 4140 } 4141 4142 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 4143 target_ulong val) 4144 { 4145 env->mtinst = val; 4146 return RISCV_EXCP_NONE; 4147 } 4148 4149 /* Physical Memory Protection */ 4150 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 4151 target_ulong *val) 4152 { 4153 *val = mseccfg_csr_read(env); 4154 return RISCV_EXCP_NONE; 4155 } 4156 4157 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 4158 target_ulong val) 4159 { 4160 mseccfg_csr_write(env, val); 4161 return RISCV_EXCP_NONE; 4162 } 4163 4164 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 4165 target_ulong *val) 4166 { 4167 uint32_t reg_index = csrno - CSR_PMPCFG0; 4168 4169 *val = pmpcfg_csr_read(env, reg_index); 4170 return RISCV_EXCP_NONE; 4171 } 4172 4173 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 4174 target_ulong val) 4175 { 4176 uint32_t reg_index = csrno - CSR_PMPCFG0; 4177 4178 pmpcfg_csr_write(env, reg_index, val); 4179 return RISCV_EXCP_NONE; 4180 } 4181 4182 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 4183 target_ulong *val) 4184 { 4185 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 4186 return RISCV_EXCP_NONE; 4187 } 4188 4189 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 4190 target_ulong val) 4191 { 4192 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 4193 return RISCV_EXCP_NONE; 4194 } 4195 4196 static RISCVException read_tselect(CPURISCVState *env, int csrno, 4197 target_ulong *val) 4198 { 4199 *val = tselect_csr_read(env); 4200 return RISCV_EXCP_NONE; 4201 } 4202 4203 static RISCVException write_tselect(CPURISCVState *env, int csrno, 4204 target_ulong val) 4205 { 4206 tselect_csr_write(env, val); 4207 return RISCV_EXCP_NONE; 4208 } 4209 4210 static RISCVException read_tdata(CPURISCVState *env, int csrno, 4211 target_ulong *val) 4212 { 4213 /* return 0 in tdata1 to end the trigger enumeration */ 4214 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 4215 *val = 0; 4216 return RISCV_EXCP_NONE; 4217 } 4218 4219 if (!tdata_available(env, csrno - CSR_TDATA1)) { 4220 return RISCV_EXCP_ILLEGAL_INST; 4221 } 4222 4223 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 4224 return RISCV_EXCP_NONE; 4225 } 4226 4227 static RISCVException write_tdata(CPURISCVState *env, int csrno, 4228 target_ulong val) 4229 { 4230 if (!tdata_available(env, csrno - CSR_TDATA1)) { 4231 return RISCV_EXCP_ILLEGAL_INST; 4232 } 4233 4234 tdata_csr_write(env, csrno - CSR_TDATA1, val); 4235 return RISCV_EXCP_NONE; 4236 } 4237 4238 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 4239 target_ulong *val) 4240 { 4241 *val = tinfo_csr_read(env); 4242 return RISCV_EXCP_NONE; 4243 } 4244 4245 static RISCVException read_mcontext(CPURISCVState *env, int csrno, 4246 target_ulong *val) 4247 { 4248 *val = env->mcontext; 4249 return RISCV_EXCP_NONE; 4250 } 4251 4252 static RISCVException write_mcontext(CPURISCVState *env, int csrno, 4253 target_ulong val) 4254 { 4255 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 4256 int32_t mask; 4257 4258 if (riscv_has_ext(env, RVH)) { 4259 /* Spec suggest 7-bit for RV32 and 14-bit for RV64 w/ H extension */ 4260 mask = rv32 ? MCONTEXT32_HCONTEXT : MCONTEXT64_HCONTEXT; 4261 } else { 4262 /* Spec suggest 6-bit for RV32 and 13-bit for RV64 w/o H extension */ 4263 mask = rv32 ? MCONTEXT32 : MCONTEXT64; 4264 } 4265 4266 env->mcontext = val & mask; 4267 return RISCV_EXCP_NONE; 4268 } 4269 4270 /* 4271 * Functions to access Pointer Masking feature registers 4272 * We have to check if current priv lvl could modify 4273 * csr in given mode 4274 */ 4275 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 4276 { 4277 int csr_priv = get_field(csrno, 0x300); 4278 int pm_current; 4279 4280 if (env->debugger) { 4281 return false; 4282 } 4283 /* 4284 * If priv lvls differ that means we're accessing csr from higher priv lvl, 4285 * so allow the access 4286 */ 4287 if (env->priv != csr_priv) { 4288 return false; 4289 } 4290 switch (env->priv) { 4291 case PRV_M: 4292 pm_current = get_field(env->mmte, M_PM_CURRENT); 4293 break; 4294 case PRV_S: 4295 pm_current = get_field(env->mmte, S_PM_CURRENT); 4296 break; 4297 case PRV_U: 4298 pm_current = get_field(env->mmte, U_PM_CURRENT); 4299 break; 4300 default: 4301 g_assert_not_reached(); 4302 } 4303 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 4304 return !pm_current; 4305 } 4306 4307 static RISCVException read_mmte(CPURISCVState *env, int csrno, 4308 target_ulong *val) 4309 { 4310 *val = env->mmte & MMTE_MASK; 4311 return RISCV_EXCP_NONE; 4312 } 4313 4314 static RISCVException write_mmte(CPURISCVState *env, int csrno, 4315 target_ulong val) 4316 { 4317 uint64_t mstatus; 4318 target_ulong wpri_val = val & MMTE_MASK; 4319 4320 if (val != wpri_val) { 4321 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4322 TARGET_FMT_lx "\n", "MMTE: WPRI violation written 0x", 4323 val, "vs expected 0x", wpri_val); 4324 } 4325 /* for machine mode pm.current is hardwired to 1 */ 4326 wpri_val |= MMTE_M_PM_CURRENT; 4327 4328 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 4329 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 4330 env->mmte = wpri_val | EXT_STATUS_DIRTY; 4331 riscv_cpu_update_mask(env); 4332 4333 /* Set XS and SD bits, since PM CSRs are dirty */ 4334 mstatus = env->mstatus | MSTATUS_XS; 4335 write_mstatus(env, csrno, mstatus); 4336 return RISCV_EXCP_NONE; 4337 } 4338 4339 static RISCVException read_smte(CPURISCVState *env, int csrno, 4340 target_ulong *val) 4341 { 4342 *val = env->mmte & SMTE_MASK; 4343 return RISCV_EXCP_NONE; 4344 } 4345 4346 static RISCVException write_smte(CPURISCVState *env, int csrno, 4347 target_ulong val) 4348 { 4349 target_ulong wpri_val = val & SMTE_MASK; 4350 4351 if (val != wpri_val) { 4352 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4353 TARGET_FMT_lx "\n", "SMTE: WPRI violation written 0x", 4354 val, "vs expected 0x", wpri_val); 4355 } 4356 4357 /* if pm.current==0 we can't modify current PM CSRs */ 4358 if (check_pm_current_disabled(env, csrno)) { 4359 return RISCV_EXCP_NONE; 4360 } 4361 4362 wpri_val |= (env->mmte & ~SMTE_MASK); 4363 write_mmte(env, csrno, wpri_val); 4364 return RISCV_EXCP_NONE; 4365 } 4366 4367 static RISCVException read_umte(CPURISCVState *env, int csrno, 4368 target_ulong *val) 4369 { 4370 *val = env->mmte & UMTE_MASK; 4371 return RISCV_EXCP_NONE; 4372 } 4373 4374 static RISCVException write_umte(CPURISCVState *env, int csrno, 4375 target_ulong val) 4376 { 4377 target_ulong wpri_val = val & UMTE_MASK; 4378 4379 if (val != wpri_val) { 4380 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 4381 TARGET_FMT_lx "\n", "UMTE: WPRI violation written 0x", 4382 val, "vs expected 0x", wpri_val); 4383 } 4384 4385 if (check_pm_current_disabled(env, csrno)) { 4386 return RISCV_EXCP_NONE; 4387 } 4388 4389 wpri_val |= (env->mmte & ~UMTE_MASK); 4390 write_mmte(env, csrno, wpri_val); 4391 return RISCV_EXCP_NONE; 4392 } 4393 4394 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 4395 target_ulong *val) 4396 { 4397 *val = env->mpmmask; 4398 return RISCV_EXCP_NONE; 4399 } 4400 4401 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 4402 target_ulong val) 4403 { 4404 uint64_t mstatus; 4405 4406 env->mpmmask = val; 4407 if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { 4408 env->cur_pmmask = val; 4409 } 4410 env->mmte |= EXT_STATUS_DIRTY; 4411 4412 /* Set XS and SD bits, since PM CSRs are dirty */ 4413 mstatus = env->mstatus | MSTATUS_XS; 4414 write_mstatus(env, csrno, mstatus); 4415 return RISCV_EXCP_NONE; 4416 } 4417 4418 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 4419 target_ulong *val) 4420 { 4421 *val = env->spmmask; 4422 return RISCV_EXCP_NONE; 4423 } 4424 4425 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 4426 target_ulong val) 4427 { 4428 uint64_t mstatus; 4429 4430 /* if pm.current==0 we can't modify current PM CSRs */ 4431 if (check_pm_current_disabled(env, csrno)) { 4432 return RISCV_EXCP_NONE; 4433 } 4434 env->spmmask = val; 4435 if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { 4436 env->cur_pmmask = val; 4437 if (cpu_get_xl(env, PRV_S) == MXL_RV32) { 4438 env->cur_pmmask &= UINT32_MAX; 4439 } 4440 } 4441 env->mmte |= EXT_STATUS_DIRTY; 4442 4443 /* Set XS and SD bits, since PM CSRs are dirty */ 4444 mstatus = env->mstatus | MSTATUS_XS; 4445 write_mstatus(env, csrno, mstatus); 4446 return RISCV_EXCP_NONE; 4447 } 4448 4449 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 4450 target_ulong *val) 4451 { 4452 *val = env->upmmask; 4453 return RISCV_EXCP_NONE; 4454 } 4455 4456 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 4457 target_ulong val) 4458 { 4459 uint64_t mstatus; 4460 4461 /* if pm.current==0 we can't modify current PM CSRs */ 4462 if (check_pm_current_disabled(env, csrno)) { 4463 return RISCV_EXCP_NONE; 4464 } 4465 env->upmmask = val; 4466 if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { 4467 env->cur_pmmask = val; 4468 if (cpu_get_xl(env, PRV_U) == MXL_RV32) { 4469 env->cur_pmmask &= UINT32_MAX; 4470 } 4471 } 4472 env->mmte |= EXT_STATUS_DIRTY; 4473 4474 /* Set XS and SD bits, since PM CSRs are dirty */ 4475 mstatus = env->mstatus | MSTATUS_XS; 4476 write_mstatus(env, csrno, mstatus); 4477 return RISCV_EXCP_NONE; 4478 } 4479 4480 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 4481 target_ulong *val) 4482 { 4483 *val = env->mpmbase; 4484 return RISCV_EXCP_NONE; 4485 } 4486 4487 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 4488 target_ulong val) 4489 { 4490 uint64_t mstatus; 4491 4492 env->mpmbase = val; 4493 if ((cpu_address_mode(env) == PRV_M) && (env->mmte & M_PM_ENABLE)) { 4494 env->cur_pmbase = val; 4495 } 4496 env->mmte |= EXT_STATUS_DIRTY; 4497 4498 /* Set XS and SD bits, since PM CSRs are dirty */ 4499 mstatus = env->mstatus | MSTATUS_XS; 4500 write_mstatus(env, csrno, mstatus); 4501 return RISCV_EXCP_NONE; 4502 } 4503 4504 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 4505 target_ulong *val) 4506 { 4507 *val = env->spmbase; 4508 return RISCV_EXCP_NONE; 4509 } 4510 4511 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 4512 target_ulong val) 4513 { 4514 uint64_t mstatus; 4515 4516 /* if pm.current==0 we can't modify current PM CSRs */ 4517 if (check_pm_current_disabled(env, csrno)) { 4518 return RISCV_EXCP_NONE; 4519 } 4520 env->spmbase = val; 4521 if ((cpu_address_mode(env) == PRV_S) && (env->mmte & S_PM_ENABLE)) { 4522 env->cur_pmbase = val; 4523 if (cpu_get_xl(env, PRV_S) == MXL_RV32) { 4524 env->cur_pmbase &= UINT32_MAX; 4525 } 4526 } 4527 env->mmte |= EXT_STATUS_DIRTY; 4528 4529 /* Set XS and SD bits, since PM CSRs are dirty */ 4530 mstatus = env->mstatus | MSTATUS_XS; 4531 write_mstatus(env, csrno, mstatus); 4532 return RISCV_EXCP_NONE; 4533 } 4534 4535 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 4536 target_ulong *val) 4537 { 4538 *val = env->upmbase; 4539 return RISCV_EXCP_NONE; 4540 } 4541 4542 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 4543 target_ulong val) 4544 { 4545 uint64_t mstatus; 4546 4547 /* if pm.current==0 we can't modify current PM CSRs */ 4548 if (check_pm_current_disabled(env, csrno)) { 4549 return RISCV_EXCP_NONE; 4550 } 4551 env->upmbase = val; 4552 if ((cpu_address_mode(env) == PRV_U) && (env->mmte & U_PM_ENABLE)) { 4553 env->cur_pmbase = val; 4554 if (cpu_get_xl(env, PRV_U) == MXL_RV32) { 4555 env->cur_pmbase &= UINT32_MAX; 4556 } 4557 } 4558 env->mmte |= EXT_STATUS_DIRTY; 4559 4560 /* Set XS and SD bits, since PM CSRs are dirty */ 4561 mstatus = env->mstatus | MSTATUS_XS; 4562 write_mstatus(env, csrno, mstatus); 4563 return RISCV_EXCP_NONE; 4564 } 4565 4566 #endif 4567 4568 /* Crypto Extension */ 4569 target_ulong riscv_new_csr_seed(target_ulong new_value, 4570 target_ulong write_mask) 4571 { 4572 uint16_t random_v; 4573 Error *random_e = NULL; 4574 int random_r; 4575 target_ulong rval; 4576 4577 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 4578 if (unlikely(random_r < 0)) { 4579 /* 4580 * Failed, for unknown reasons in the crypto subsystem. 4581 * The best we can do is log the reason and return a 4582 * failure indication to the guest. There is no reason 4583 * we know to expect the failure to be transitory, so 4584 * indicate DEAD to avoid having the guest spin on WAIT. 4585 */ 4586 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 4587 __func__, error_get_pretty(random_e)); 4588 error_free(random_e); 4589 rval = SEED_OPST_DEAD; 4590 } else { 4591 rval = random_v | SEED_OPST_ES16; 4592 } 4593 4594 return rval; 4595 } 4596 4597 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 4598 target_ulong *ret_value, 4599 target_ulong new_value, 4600 target_ulong write_mask) 4601 { 4602 target_ulong rval; 4603 4604 rval = riscv_new_csr_seed(new_value, write_mask); 4605 4606 if (ret_value) { 4607 *ret_value = rval; 4608 } 4609 4610 return RISCV_EXCP_NONE; 4611 } 4612 4613 /* 4614 * riscv_csrrw - read and/or update control and status register 4615 * 4616 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 4617 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 4618 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 4619 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 4620 */ 4621 4622 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 4623 int csrno, 4624 bool write_mask) 4625 { 4626 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 4627 bool read_only = get_field(csrno, 0xC00) == 3; 4628 int csr_min_priv = csr_ops[csrno].min_priv_ver; 4629 4630 /* ensure the CSR extension is enabled */ 4631 if (!riscv_cpu_cfg(env)->ext_zicsr) { 4632 return RISCV_EXCP_ILLEGAL_INST; 4633 } 4634 4635 /* ensure CSR is implemented by checking predicate */ 4636 if (!csr_ops[csrno].predicate) { 4637 return RISCV_EXCP_ILLEGAL_INST; 4638 } 4639 4640 /* privileged spec version check */ 4641 if (env->priv_ver < csr_min_priv) { 4642 return RISCV_EXCP_ILLEGAL_INST; 4643 } 4644 4645 /* read / write check */ 4646 if (write_mask && read_only) { 4647 return RISCV_EXCP_ILLEGAL_INST; 4648 } 4649 4650 /* 4651 * The predicate() not only does existence check but also does some 4652 * access control check which triggers for example virtual instruction 4653 * exception in some cases. When writing read-only CSRs in those cases 4654 * illegal instruction exception should be triggered instead of virtual 4655 * instruction exception. Hence this comes after the read / write check. 4656 */ 4657 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 4658 if (ret != RISCV_EXCP_NONE) { 4659 return ret; 4660 } 4661 4662 #if !defined(CONFIG_USER_ONLY) 4663 int csr_priv, effective_priv = env->priv; 4664 4665 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 4666 !env->virt_enabled) { 4667 /* 4668 * We are in HS mode. Add 1 to the effective privilege level to 4669 * allow us to access the Hypervisor CSRs. 4670 */ 4671 effective_priv++; 4672 } 4673 4674 csr_priv = get_field(csrno, 0x300); 4675 if (!env->debugger && (effective_priv < csr_priv)) { 4676 if (csr_priv == (PRV_S + 1) && env->virt_enabled) { 4677 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 4678 } 4679 return RISCV_EXCP_ILLEGAL_INST; 4680 } 4681 #endif 4682 return RISCV_EXCP_NONE; 4683 } 4684 4685 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 4686 target_ulong *ret_value, 4687 target_ulong new_value, 4688 target_ulong write_mask) 4689 { 4690 RISCVException ret; 4691 target_ulong old_value = 0; 4692 4693 /* execute combined read/write operation if it exists */ 4694 if (csr_ops[csrno].op) { 4695 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 4696 } 4697 4698 /* 4699 * ret_value == NULL means that rd=x0 and we're coming from helper_csrw() 4700 * and we can't throw side effects caused by CSR reads. 4701 */ 4702 if (ret_value) { 4703 /* if no accessor exists then return failure */ 4704 if (!csr_ops[csrno].read) { 4705 return RISCV_EXCP_ILLEGAL_INST; 4706 } 4707 /* read old value */ 4708 ret = csr_ops[csrno].read(env, csrno, &old_value); 4709 if (ret != RISCV_EXCP_NONE) { 4710 return ret; 4711 } 4712 } 4713 4714 /* write value if writable and write mask set, otherwise drop writes */ 4715 if (write_mask) { 4716 new_value = (old_value & ~write_mask) | (new_value & write_mask); 4717 if (csr_ops[csrno].write) { 4718 ret = csr_ops[csrno].write(env, csrno, new_value); 4719 if (ret != RISCV_EXCP_NONE) { 4720 return ret; 4721 } 4722 } 4723 } 4724 4725 /* return old value */ 4726 if (ret_value) { 4727 *ret_value = old_value; 4728 } 4729 4730 return RISCV_EXCP_NONE; 4731 } 4732 4733 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 4734 target_ulong *ret_value, 4735 target_ulong new_value, target_ulong write_mask) 4736 { 4737 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask); 4738 if (ret != RISCV_EXCP_NONE) { 4739 return ret; 4740 } 4741 4742 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 4743 } 4744 4745 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 4746 Int128 *ret_value, 4747 Int128 new_value, 4748 Int128 write_mask) 4749 { 4750 RISCVException ret; 4751 Int128 old_value; 4752 4753 /* read old value */ 4754 ret = csr_ops[csrno].read128(env, csrno, &old_value); 4755 if (ret != RISCV_EXCP_NONE) { 4756 return ret; 4757 } 4758 4759 /* write value if writable and write mask set, otherwise drop writes */ 4760 if (int128_nz(write_mask)) { 4761 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 4762 int128_and(new_value, write_mask)); 4763 if (csr_ops[csrno].write128) { 4764 ret = csr_ops[csrno].write128(env, csrno, new_value); 4765 if (ret != RISCV_EXCP_NONE) { 4766 return ret; 4767 } 4768 } else if (csr_ops[csrno].write) { 4769 /* avoids having to write wrappers for all registers */ 4770 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 4771 if (ret != RISCV_EXCP_NONE) { 4772 return ret; 4773 } 4774 } 4775 } 4776 4777 /* return old value */ 4778 if (ret_value) { 4779 *ret_value = old_value; 4780 } 4781 4782 return RISCV_EXCP_NONE; 4783 } 4784 4785 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 4786 Int128 *ret_value, 4787 Int128 new_value, Int128 write_mask) 4788 { 4789 RISCVException ret; 4790 4791 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask)); 4792 if (ret != RISCV_EXCP_NONE) { 4793 return ret; 4794 } 4795 4796 if (csr_ops[csrno].read128) { 4797 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 4798 } 4799 4800 /* 4801 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 4802 * at all defined. 4803 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 4804 * significant), for those, this fallback is correctly handling the 4805 * accesses 4806 */ 4807 target_ulong old_value; 4808 ret = riscv_csrrw_do64(env, csrno, &old_value, 4809 int128_getlo(new_value), 4810 int128_getlo(write_mask)); 4811 if (ret == RISCV_EXCP_NONE && ret_value) { 4812 *ret_value = int128_make64(old_value); 4813 } 4814 return ret; 4815 } 4816 4817 /* 4818 * Debugger support. If not in user mode, set env->debugger before the 4819 * riscv_csrrw call and clear it after the call. 4820 */ 4821 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 4822 target_ulong *ret_value, 4823 target_ulong new_value, 4824 target_ulong write_mask) 4825 { 4826 RISCVException ret; 4827 #if !defined(CONFIG_USER_ONLY) 4828 env->debugger = true; 4829 #endif 4830 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 4831 #if !defined(CONFIG_USER_ONLY) 4832 env->debugger = false; 4833 #endif 4834 return ret; 4835 } 4836 4837 static RISCVException read_jvt(CPURISCVState *env, int csrno, 4838 target_ulong *val) 4839 { 4840 *val = env->jvt; 4841 return RISCV_EXCP_NONE; 4842 } 4843 4844 static RISCVException write_jvt(CPURISCVState *env, int csrno, 4845 target_ulong val) 4846 { 4847 env->jvt = val; 4848 return RISCV_EXCP_NONE; 4849 } 4850 4851 /* 4852 * Control and Status Register function table 4853 * riscv_csr_operations::predicate() must be provided for an implemented CSR 4854 */ 4855 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 4856 /* User Floating-Point CSRs */ 4857 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 4858 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 4859 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 4860 /* Vector CSRs */ 4861 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 4862 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 4863 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4864 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4865 [CSR_VL] = { "vl", vs, read_vl }, 4866 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4867 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4868 /* User Timers and Counters */ 4869 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4870 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4871 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4872 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4873 4874 /* 4875 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4876 * rdtime callback is not provided by machine/platform emulation. 4877 */ 4878 [CSR_TIME] = { "time", ctr, read_time }, 4879 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4880 4881 /* Crypto Extension */ 4882 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4883 4884 /* Zcmt Extension */ 4885 [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, 4886 4887 #if !defined(CONFIG_USER_ONLY) 4888 /* Machine Timers and Counters */ 4889 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4890 write_mhpmcounter }, 4891 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4892 write_mhpmcounter }, 4893 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4894 write_mhpmcounterh }, 4895 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4896 write_mhpmcounterh }, 4897 4898 /* Machine Information Registers */ 4899 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4900 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4901 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4902 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4903 4904 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4905 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4906 /* Machine Trap Setup */ 4907 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4908 NULL, read_mstatus_i128 }, 4909 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4910 NULL, read_misa_i128 }, 4911 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4912 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4913 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4914 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4915 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4916 write_mcounteren }, 4917 4918 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4919 write_mstatush }, 4920 [CSR_MEDELEGH] = { "medelegh", any32, read_zero, write_ignore, 4921 .min_priv_ver = PRIV_VERSION_1_13_0 }, 4922 [CSR_HEDELEGH] = { "hedelegh", hmode32, read_hedelegh, write_hedelegh, 4923 .min_priv_ver = PRIV_VERSION_1_13_0 }, 4924 4925 /* Machine Trap Handling */ 4926 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4927 NULL, read_mscratch_i128, write_mscratch_i128 }, 4928 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4929 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4930 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4931 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4932 4933 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4934 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4935 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4936 4937 /* Machine-Level Interrupts (AIA) */ 4938 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4939 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4940 4941 /* Virtual Interrupts for Supervisor Level (AIA) */ 4942 [CSR_MVIEN] = { "mvien", aia_any, NULL, NULL, rmw_mvien }, 4943 [CSR_MVIP] = { "mvip", aia_any, NULL, NULL, rmw_mvip }, 4944 4945 /* Machine-Level High-Half CSRs (AIA) */ 4946 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4947 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4948 [CSR_MVIENH] = { "mvienh", aia_any32, NULL, NULL, rmw_mvienh }, 4949 [CSR_MVIPH] = { "mviph", aia_any32, NULL, NULL, rmw_mviph }, 4950 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4951 4952 /* Execution environment configuration */ 4953 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4954 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4955 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4956 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4957 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4958 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4959 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4960 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4961 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4962 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4963 4964 /* Smstateen extension CSRs */ 4965 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4966 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4967 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4968 write_mstateen0h, 4969 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4970 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4971 write_mstateen_1_3, 4972 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4973 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4974 write_mstateenh_1_3, 4975 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4976 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4977 write_mstateen_1_3, 4978 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4979 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4980 write_mstateenh_1_3, 4981 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4982 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4983 write_mstateen_1_3, 4984 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4985 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4986 write_mstateenh_1_3, 4987 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4988 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4989 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4990 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4991 write_hstateen0h, 4992 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4993 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4994 write_hstateen_1_3, 4995 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4996 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4997 write_hstateenh_1_3, 4998 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4999 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 5000 write_hstateen_1_3, 5001 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5002 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 5003 write_hstateenh_1_3, 5004 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5005 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 5006 write_hstateen_1_3, 5007 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5008 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 5009 write_hstateenh_1_3, 5010 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5011 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 5012 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5013 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 5014 write_sstateen_1_3, 5015 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5016 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 5017 write_sstateen_1_3, 5018 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5019 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 5020 write_sstateen_1_3, 5021 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5022 5023 /* Supervisor Trap Setup */ 5024 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 5025 NULL, read_sstatus_i128 }, 5026 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 5027 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 5028 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 5029 write_scounteren }, 5030 5031 /* Supervisor Trap Handling */ 5032 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 5033 NULL, read_sscratch_i128, write_sscratch_i128 }, 5034 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 5035 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 5036 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 5037 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 5038 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 5039 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5040 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 5041 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5042 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 5043 write_vstimecmp, 5044 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5045 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 5046 write_vstimecmph, 5047 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5048 5049 /* Supervisor Protection and Translation */ 5050 [CSR_SATP] = { "satp", satp, read_satp, write_satp }, 5051 5052 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 5053 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 5054 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 5055 5056 /* Supervisor-Level Interrupts (AIA) */ 5057 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 5058 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 5059 5060 /* Supervisor-Level High-Half CSRs (AIA) */ 5061 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 5062 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 5063 5064 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 5065 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5066 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 5067 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5068 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 5069 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5070 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 5071 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5072 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 5073 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5074 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 5075 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5076 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 5077 write_hcounteren, 5078 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5079 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 5080 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5081 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 5082 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5083 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 5084 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5085 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 5086 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5087 [CSR_HGATP] = { "hgatp", hgatp, read_hgatp, write_hgatp, 5088 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5089 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 5090 write_htimedelta, 5091 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5092 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 5093 write_htimedeltah, 5094 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5095 5096 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 5097 write_vsstatus, 5098 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5099 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 5100 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5101 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 5102 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5103 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 5104 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5105 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 5106 write_vsscratch, 5107 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5108 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 5109 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5110 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 5111 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5112 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 5113 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5114 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 5115 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5116 5117 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 5118 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5119 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 5120 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5121 5122 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 5123 [CSR_HVIEN] = { "hvien", aia_hmode, NULL, NULL, rmw_hvien }, 5124 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 5125 write_hvictl }, 5126 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 5127 write_hviprio1 }, 5128 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 5129 write_hviprio2 }, 5130 /* 5131 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 5132 */ 5133 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 5134 rmw_xiselect }, 5135 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 5136 5137 /* VS-Level Interrupts (H-extension with AIA) */ 5138 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 5139 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 5140 5141 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 5142 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 5143 rmw_hidelegh }, 5144 [CSR_HVIENH] = { "hvienh", aia_hmode32, NULL, NULL, rmw_hvienh }, 5145 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 5146 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 5147 write_hviprio1h }, 5148 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 5149 write_hviprio2h }, 5150 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 5151 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 5152 5153 /* Physical Memory Protection */ 5154 [CSR_MSECCFG] = { "mseccfg", have_mseccfg, read_mseccfg, write_mseccfg, 5155 .min_priv_ver = PRIV_VERSION_1_11_0 }, 5156 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 5157 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 5158 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 5159 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 5160 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 5161 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 5162 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 5163 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 5164 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 5165 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 5166 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 5167 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 5168 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 5169 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 5170 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 5171 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 5172 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 5173 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 5174 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 5175 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 5176 5177 /* Debug CSRs */ 5178 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 5179 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 5180 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 5181 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 5182 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 5183 [CSR_MCONTEXT] = { "mcontext", debug, read_mcontext, write_mcontext }, 5184 5185 /* User Pointer Masking */ 5186 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 5187 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 5188 write_upmmask }, 5189 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 5190 write_upmbase }, 5191 /* Machine Pointer Masking */ 5192 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 5193 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 5194 write_mpmmask }, 5195 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 5196 write_mpmbase }, 5197 /* Supervisor Pointer Masking */ 5198 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 5199 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 5200 write_spmmask }, 5201 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 5202 write_spmbase }, 5203 5204 /* Performance Counters */ 5205 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 5206 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 5207 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 5208 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 5209 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 5210 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 5211 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 5212 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 5213 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 5214 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 5215 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 5216 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 5217 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 5218 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 5219 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 5220 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 5221 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 5222 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 5223 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 5224 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 5225 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 5226 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 5227 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 5228 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 5229 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 5230 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 5231 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 5232 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 5233 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 5234 5235 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 5236 write_mhpmcounter }, 5237 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 5238 write_mhpmcounter }, 5239 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 5240 write_mhpmcounter }, 5241 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 5242 write_mhpmcounter }, 5243 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 5244 write_mhpmcounter }, 5245 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 5246 write_mhpmcounter }, 5247 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 5248 write_mhpmcounter }, 5249 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 5250 write_mhpmcounter }, 5251 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 5252 write_mhpmcounter }, 5253 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 5254 write_mhpmcounter }, 5255 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 5256 write_mhpmcounter }, 5257 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 5258 write_mhpmcounter }, 5259 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 5260 write_mhpmcounter }, 5261 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 5262 write_mhpmcounter }, 5263 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 5264 write_mhpmcounter }, 5265 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 5266 write_mhpmcounter }, 5267 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 5268 write_mhpmcounter }, 5269 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 5270 write_mhpmcounter }, 5271 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 5272 write_mhpmcounter }, 5273 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 5274 write_mhpmcounter }, 5275 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 5276 write_mhpmcounter }, 5277 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 5278 write_mhpmcounter }, 5279 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 5280 write_mhpmcounter }, 5281 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 5282 write_mhpmcounter }, 5283 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 5284 write_mhpmcounter }, 5285 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 5286 write_mhpmcounter }, 5287 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 5288 write_mhpmcounter }, 5289 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 5290 write_mhpmcounter }, 5291 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 5292 write_mhpmcounter }, 5293 5294 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 5295 write_mcountinhibit, 5296 .min_priv_ver = PRIV_VERSION_1_11_0 }, 5297 5298 [CSR_MCYCLECFG] = { "mcyclecfg", smcntrpmf, read_mcyclecfg, 5299 write_mcyclecfg, 5300 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5301 [CSR_MINSTRETCFG] = { "minstretcfg", smcntrpmf, read_minstretcfg, 5302 write_minstretcfg, 5303 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5304 5305 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 5306 write_mhpmevent }, 5307 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 5308 write_mhpmevent }, 5309 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 5310 write_mhpmevent }, 5311 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 5312 write_mhpmevent }, 5313 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 5314 write_mhpmevent }, 5315 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 5316 write_mhpmevent }, 5317 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 5318 write_mhpmevent }, 5319 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 5320 write_mhpmevent }, 5321 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 5322 write_mhpmevent }, 5323 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 5324 write_mhpmevent }, 5325 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 5326 write_mhpmevent }, 5327 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 5328 write_mhpmevent }, 5329 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 5330 write_mhpmevent }, 5331 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 5332 write_mhpmevent }, 5333 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 5334 write_mhpmevent }, 5335 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 5336 write_mhpmevent }, 5337 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 5338 write_mhpmevent }, 5339 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 5340 write_mhpmevent }, 5341 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 5342 write_mhpmevent }, 5343 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 5344 write_mhpmevent }, 5345 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 5346 write_mhpmevent }, 5347 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 5348 write_mhpmevent }, 5349 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 5350 write_mhpmevent }, 5351 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 5352 write_mhpmevent }, 5353 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 5354 write_mhpmevent }, 5355 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 5356 write_mhpmevent }, 5357 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 5358 write_mhpmevent }, 5359 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 5360 write_mhpmevent }, 5361 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 5362 write_mhpmevent }, 5363 5364 [CSR_MCYCLECFGH] = { "mcyclecfgh", smcntrpmf_32, read_mcyclecfgh, 5365 write_mcyclecfgh, 5366 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5367 [CSR_MINSTRETCFGH] = { "minstretcfgh", smcntrpmf_32, read_minstretcfgh, 5368 write_minstretcfgh, 5369 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5370 5371 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf_32, read_mhpmeventh, 5372 write_mhpmeventh, 5373 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5374 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf_32, read_mhpmeventh, 5375 write_mhpmeventh, 5376 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5377 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf_32, read_mhpmeventh, 5378 write_mhpmeventh, 5379 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5380 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf_32, read_mhpmeventh, 5381 write_mhpmeventh, 5382 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5383 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf_32, read_mhpmeventh, 5384 write_mhpmeventh, 5385 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5386 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf_32, read_mhpmeventh, 5387 write_mhpmeventh, 5388 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5389 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf_32, read_mhpmeventh, 5390 write_mhpmeventh, 5391 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5392 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf_32, read_mhpmeventh, 5393 write_mhpmeventh, 5394 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5395 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf_32, read_mhpmeventh, 5396 write_mhpmeventh, 5397 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5398 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf_32, read_mhpmeventh, 5399 write_mhpmeventh, 5400 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5401 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf_32, read_mhpmeventh, 5402 write_mhpmeventh, 5403 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5404 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf_32, read_mhpmeventh, 5405 write_mhpmeventh, 5406 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5407 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf_32, read_mhpmeventh, 5408 write_mhpmeventh, 5409 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5410 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf_32, read_mhpmeventh, 5411 write_mhpmeventh, 5412 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5413 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf_32, read_mhpmeventh, 5414 write_mhpmeventh, 5415 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5416 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf_32, read_mhpmeventh, 5417 write_mhpmeventh, 5418 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5419 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf_32, read_mhpmeventh, 5420 write_mhpmeventh, 5421 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5422 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf_32, read_mhpmeventh, 5423 write_mhpmeventh, 5424 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5425 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf_32, read_mhpmeventh, 5426 write_mhpmeventh, 5427 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5428 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf_32, read_mhpmeventh, 5429 write_mhpmeventh, 5430 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5431 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf_32, read_mhpmeventh, 5432 write_mhpmeventh, 5433 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5434 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf_32, read_mhpmeventh, 5435 write_mhpmeventh, 5436 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5437 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf_32, read_mhpmeventh, 5438 write_mhpmeventh, 5439 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5440 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf_32, read_mhpmeventh, 5441 write_mhpmeventh, 5442 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5443 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf_32, read_mhpmeventh, 5444 write_mhpmeventh, 5445 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5446 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf_32, read_mhpmeventh, 5447 write_mhpmeventh, 5448 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5449 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf_32, read_mhpmeventh, 5450 write_mhpmeventh, 5451 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5452 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf_32, read_mhpmeventh, 5453 write_mhpmeventh, 5454 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5455 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf_32, read_mhpmeventh, 5456 write_mhpmeventh, 5457 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5458 5459 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 5460 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 5461 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 5462 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 5463 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 5464 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 5465 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 5466 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 5467 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 5468 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 5469 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 5470 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 5471 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 5472 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 5473 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 5474 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 5475 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 5476 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 5477 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 5478 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 5479 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 5480 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 5481 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 5482 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 5483 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 5484 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 5485 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 5486 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 5487 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 5488 5489 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 5490 write_mhpmcounterh }, 5491 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 5492 write_mhpmcounterh }, 5493 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 5494 write_mhpmcounterh }, 5495 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 5496 write_mhpmcounterh }, 5497 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 5498 write_mhpmcounterh }, 5499 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 5500 write_mhpmcounterh }, 5501 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 5502 write_mhpmcounterh }, 5503 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 5504 write_mhpmcounterh }, 5505 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 5506 write_mhpmcounterh }, 5507 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 5508 write_mhpmcounterh }, 5509 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 5510 write_mhpmcounterh }, 5511 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 5512 write_mhpmcounterh }, 5513 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 5514 write_mhpmcounterh }, 5515 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 5516 write_mhpmcounterh }, 5517 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 5518 write_mhpmcounterh }, 5519 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 5520 write_mhpmcounterh }, 5521 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 5522 write_mhpmcounterh }, 5523 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 5524 write_mhpmcounterh }, 5525 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 5526 write_mhpmcounterh }, 5527 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 5528 write_mhpmcounterh }, 5529 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 5530 write_mhpmcounterh }, 5531 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 5532 write_mhpmcounterh }, 5533 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 5534 write_mhpmcounterh }, 5535 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 5536 write_mhpmcounterh }, 5537 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 5538 write_mhpmcounterh }, 5539 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 5540 write_mhpmcounterh }, 5541 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 5542 write_mhpmcounterh }, 5543 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 5544 write_mhpmcounterh }, 5545 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 5546 write_mhpmcounterh }, 5547 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 5548 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5549 5550 #endif /* !CONFIG_USER_ONLY */ 5551 }; 5552