xref: /openbmc/qemu/target/riscv/csr.c (revision 1a9540d1)
1 /*
2  * RISC-V Control and Status Registers.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "qemu/main-loop.h"
24 #include "exec/exec-all.h"
25 
26 /* CSR function table */
27 static riscv_csr_operations csr_ops[];
28 
29 /* CSR function table constants */
30 enum {
31     CSR_TABLE_SIZE = 0x1000
32 };
33 
34 /* CSR function table public API */
35 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops)
36 {
37     *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)];
38 }
39 
40 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops)
41 {
42     csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops;
43 }
44 
45 /* Predicates */
46 static int fs(CPURISCVState *env, int csrno)
47 {
48 #if !defined(CONFIG_USER_ONLY)
49     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
50         return -1;
51     }
52 #endif
53     return 0;
54 }
55 
56 static int ctr(CPURISCVState *env, int csrno)
57 {
58 #if !defined(CONFIG_USER_ONLY)
59     CPUState *cs = env_cpu(env);
60     RISCVCPU *cpu = RISCV_CPU(cs);
61 
62     if (!cpu->cfg.ext_counters) {
63         /* The Counters extensions is not enabled */
64         return -1;
65     }
66 #endif
67     return 0;
68 }
69 
70 #if !defined(CONFIG_USER_ONLY)
71 static int any(CPURISCVState *env, int csrno)
72 {
73     return 0;
74 }
75 
76 static int smode(CPURISCVState *env, int csrno)
77 {
78     return -!riscv_has_ext(env, RVS);
79 }
80 
81 static int hmode(CPURISCVState *env, int csrno)
82 {
83     if (riscv_has_ext(env, RVS) &&
84         riscv_has_ext(env, RVH)) {
85         /* Hypervisor extension is supported */
86         if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
87             env->priv == PRV_M) {
88             return 0;
89         }
90     }
91 
92     return -1;
93 }
94 
95 static int pmp(CPURISCVState *env, int csrno)
96 {
97     return -!riscv_feature(env, RISCV_FEATURE_PMP);
98 }
99 #endif
100 
101 /* User Floating-Point CSRs */
102 static int read_fflags(CPURISCVState *env, int csrno, target_ulong *val)
103 {
104 #if !defined(CONFIG_USER_ONLY)
105     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
106         return -1;
107     }
108 #endif
109     *val = riscv_cpu_get_fflags(env);
110     return 0;
111 }
112 
113 static int write_fflags(CPURISCVState *env, int csrno, target_ulong val)
114 {
115 #if !defined(CONFIG_USER_ONLY)
116     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
117         return -1;
118     }
119     env->mstatus |= MSTATUS_FS;
120 #endif
121     riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT));
122     return 0;
123 }
124 
125 static int read_frm(CPURISCVState *env, int csrno, target_ulong *val)
126 {
127 #if !defined(CONFIG_USER_ONLY)
128     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
129         return -1;
130     }
131 #endif
132     *val = env->frm;
133     return 0;
134 }
135 
136 static int write_frm(CPURISCVState *env, int csrno, target_ulong val)
137 {
138 #if !defined(CONFIG_USER_ONLY)
139     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
140         return -1;
141     }
142     env->mstatus |= MSTATUS_FS;
143 #endif
144     env->frm = val & (FSR_RD >> FSR_RD_SHIFT);
145     return 0;
146 }
147 
148 static int read_fcsr(CPURISCVState *env, int csrno, target_ulong *val)
149 {
150 #if !defined(CONFIG_USER_ONLY)
151     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
152         return -1;
153     }
154 #endif
155     *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT)
156         | (env->frm << FSR_RD_SHIFT);
157     return 0;
158 }
159 
160 static int write_fcsr(CPURISCVState *env, int csrno, target_ulong val)
161 {
162 #if !defined(CONFIG_USER_ONLY)
163     if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
164         return -1;
165     }
166     env->mstatus |= MSTATUS_FS;
167 #endif
168     env->frm = (val & FSR_RD) >> FSR_RD_SHIFT;
169     riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT);
170     return 0;
171 }
172 
173 /* User Timers and Counters */
174 static int read_instret(CPURISCVState *env, int csrno, target_ulong *val)
175 {
176 #if !defined(CONFIG_USER_ONLY)
177     if (use_icount) {
178         *val = cpu_get_icount();
179     } else {
180         *val = cpu_get_host_ticks();
181     }
182 #else
183     *val = cpu_get_host_ticks();
184 #endif
185     return 0;
186 }
187 
188 #if defined(TARGET_RISCV32)
189 static int read_instreth(CPURISCVState *env, int csrno, target_ulong *val)
190 {
191 #if !defined(CONFIG_USER_ONLY)
192     if (use_icount) {
193         *val = cpu_get_icount() >> 32;
194     } else {
195         *val = cpu_get_host_ticks() >> 32;
196     }
197 #else
198     *val = cpu_get_host_ticks() >> 32;
199 #endif
200     return 0;
201 }
202 #endif /* TARGET_RISCV32 */
203 
204 #if defined(CONFIG_USER_ONLY)
205 static int read_time(CPURISCVState *env, int csrno, target_ulong *val)
206 {
207     *val = cpu_get_host_ticks();
208     return 0;
209 }
210 
211 #if defined(TARGET_RISCV32)
212 static int read_timeh(CPURISCVState *env, int csrno, target_ulong *val)
213 {
214     *val = cpu_get_host_ticks() >> 32;
215     return 0;
216 }
217 #endif
218 
219 #else /* CONFIG_USER_ONLY */
220 
221 static int read_time(CPURISCVState *env, int csrno, target_ulong *val)
222 {
223     uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
224 
225     if (!env->rdtime_fn) {
226         return -1;
227     }
228 
229     *val = env->rdtime_fn() + delta;
230     return 0;
231 }
232 
233 #if defined(TARGET_RISCV32)
234 static int read_timeh(CPURISCVState *env, int csrno, target_ulong *val)
235 {
236     uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
237 
238     if (!env->rdtime_fn) {
239         return -1;
240     }
241 
242     *val = (env->rdtime_fn() + delta) >> 32;
243     return 0;
244 }
245 #endif
246 
247 /* Machine constants */
248 
249 #define M_MODE_INTERRUPTS  (MIP_MSIP | MIP_MTIP | MIP_MEIP)
250 #define S_MODE_INTERRUPTS  (MIP_SSIP | MIP_STIP | MIP_SEIP)
251 #define VS_MODE_INTERRUPTS (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)
252 
253 static const target_ulong delegable_ints = S_MODE_INTERRUPTS |
254                                            VS_MODE_INTERRUPTS;
255 static const target_ulong all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS |
256                                      VS_MODE_INTERRUPTS;
257 static const target_ulong delegable_excps =
258     (1ULL << (RISCV_EXCP_INST_ADDR_MIS)) |
259     (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) |
260     (1ULL << (RISCV_EXCP_ILLEGAL_INST)) |
261     (1ULL << (RISCV_EXCP_BREAKPOINT)) |
262     (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) |
263     (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) |
264     (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) |
265     (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) |
266     (1ULL << (RISCV_EXCP_U_ECALL)) |
267     (1ULL << (RISCV_EXCP_S_ECALL)) |
268     (1ULL << (RISCV_EXCP_VS_ECALL)) |
269     (1ULL << (RISCV_EXCP_M_ECALL)) |
270     (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) |
271     (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) |
272     (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) |
273     (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) |
274     (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) |
275     (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT));
276 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE |
277     SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS |
278     SSTATUS_SUM | SSTATUS_MXR | SSTATUS_SD;
279 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP;
280 static const target_ulong hip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP;
281 static const target_ulong vsip_writable_mask = MIP_VSSIP;
282 
283 #if defined(TARGET_RISCV32)
284 static const char valid_vm_1_10[16] = {
285     [VM_1_10_MBARE] = 1,
286     [VM_1_10_SV32] = 1
287 };
288 #elif defined(TARGET_RISCV64)
289 static const char valid_vm_1_10[16] = {
290     [VM_1_10_MBARE] = 1,
291     [VM_1_10_SV39] = 1,
292     [VM_1_10_SV48] = 1,
293     [VM_1_10_SV57] = 1
294 };
295 #endif /* CONFIG_USER_ONLY */
296 
297 /* Machine Information Registers */
298 static int read_zero(CPURISCVState *env, int csrno, target_ulong *val)
299 {
300     return *val = 0;
301 }
302 
303 static int read_mhartid(CPURISCVState *env, int csrno, target_ulong *val)
304 {
305     *val = env->mhartid;
306     return 0;
307 }
308 
309 /* Machine Trap Setup */
310 static int read_mstatus(CPURISCVState *env, int csrno, target_ulong *val)
311 {
312     *val = env->mstatus;
313     return 0;
314 }
315 
316 static int validate_vm(CPURISCVState *env, target_ulong vm)
317 {
318     return valid_vm_1_10[vm & 0xf];
319 }
320 
321 static int write_mstatus(CPURISCVState *env, int csrno, target_ulong val)
322 {
323     target_ulong mstatus = env->mstatus;
324     target_ulong mask = 0;
325     int dirty;
326 
327     /* flush tlb on mstatus fields that affect VM */
328     if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV |
329             MSTATUS_MPRV | MSTATUS_SUM)) {
330         tlb_flush(env_cpu(env));
331     }
332     mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE |
333         MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM |
334         MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR |
335         MSTATUS_TW;
336 #if defined(TARGET_RISCV64)
337     /*
338      * RV32: MPV and MTL are not in mstatus. The current plan is to
339      * add them to mstatush. For now, we just don't support it.
340      */
341     mask |= MSTATUS_MTL | MSTATUS_MPV;
342 #endif
343 
344     mstatus = (mstatus & ~mask) | (val & mask);
345 
346     dirty = ((mstatus & MSTATUS_FS) == MSTATUS_FS) |
347             ((mstatus & MSTATUS_XS) == MSTATUS_XS);
348     mstatus = set_field(mstatus, MSTATUS_SD, dirty);
349     env->mstatus = mstatus;
350 
351     return 0;
352 }
353 
354 #ifdef TARGET_RISCV32
355 static int read_mstatush(CPURISCVState *env, int csrno, target_ulong *val)
356 {
357     *val = env->mstatush;
358     return 0;
359 }
360 
361 static int write_mstatush(CPURISCVState *env, int csrno, target_ulong val)
362 {
363     if ((val ^ env->mstatush) & (MSTATUS_MPV)) {
364         tlb_flush(env_cpu(env));
365     }
366 
367     val &= MSTATUS_MPV | MSTATUS_MTL;
368 
369     env->mstatush = val;
370 
371     return 0;
372 }
373 #endif
374 
375 static int read_misa(CPURISCVState *env, int csrno, target_ulong *val)
376 {
377     *val = env->misa;
378     return 0;
379 }
380 
381 static int write_misa(CPURISCVState *env, int csrno, target_ulong val)
382 {
383     if (!riscv_feature(env, RISCV_FEATURE_MISA)) {
384         /* drop write to misa */
385         return 0;
386     }
387 
388     /* 'I' or 'E' must be present */
389     if (!(val & (RVI | RVE))) {
390         /* It is not, drop write to misa */
391         return 0;
392     }
393 
394     /* 'E' excludes all other extensions */
395     if (val & RVE) {
396         /* when we support 'E' we can do "val = RVE;" however
397          * for now we just drop writes if 'E' is present.
398          */
399         return 0;
400     }
401 
402     /* Mask extensions that are not supported by this hart */
403     val &= env->misa_mask;
404 
405     /* Mask extensions that are not supported by QEMU */
406     val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU);
407 
408     /* 'D' depends on 'F', so clear 'D' if 'F' is not present */
409     if ((val & RVD) && !(val & RVF)) {
410         val &= ~RVD;
411     }
412 
413     /* Suppress 'C' if next instruction is not aligned
414      * TODO: this should check next_pc
415      */
416     if ((val & RVC) && (GETPC() & ~3) != 0) {
417         val &= ~RVC;
418     }
419 
420     /* misa.MXL writes are not supported by QEMU */
421     val = (env->misa & MISA_MXL) | (val & ~MISA_MXL);
422 
423     /* flush translation cache */
424     if (val != env->misa) {
425         tb_flush(env_cpu(env));
426     }
427 
428     env->misa = val;
429 
430     return 0;
431 }
432 
433 static int read_medeleg(CPURISCVState *env, int csrno, target_ulong *val)
434 {
435     *val = env->medeleg;
436     return 0;
437 }
438 
439 static int write_medeleg(CPURISCVState *env, int csrno, target_ulong val)
440 {
441     env->medeleg = (env->medeleg & ~delegable_excps) | (val & delegable_excps);
442     return 0;
443 }
444 
445 static int read_mideleg(CPURISCVState *env, int csrno, target_ulong *val)
446 {
447     *val = env->mideleg;
448     return 0;
449 }
450 
451 static int write_mideleg(CPURISCVState *env, int csrno, target_ulong val)
452 {
453     env->mideleg = (env->mideleg & ~delegable_ints) | (val & delegable_ints);
454     if (riscv_has_ext(env, RVH)) {
455         env->mideleg |= VS_MODE_INTERRUPTS;
456     }
457     return 0;
458 }
459 
460 static int read_mie(CPURISCVState *env, int csrno, target_ulong *val)
461 {
462     *val = env->mie;
463     return 0;
464 }
465 
466 static int write_mie(CPURISCVState *env, int csrno, target_ulong val)
467 {
468     env->mie = (env->mie & ~all_ints) | (val & all_ints);
469     return 0;
470 }
471 
472 static int read_mtvec(CPURISCVState *env, int csrno, target_ulong *val)
473 {
474     *val = env->mtvec;
475     return 0;
476 }
477 
478 static int write_mtvec(CPURISCVState *env, int csrno, target_ulong val)
479 {
480     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
481     if ((val & 3) < 2) {
482         env->mtvec = val;
483     } else {
484         qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n");
485     }
486     return 0;
487 }
488 
489 static int read_mcounteren(CPURISCVState *env, int csrno, target_ulong *val)
490 {
491     *val = env->mcounteren;
492     return 0;
493 }
494 
495 static int write_mcounteren(CPURISCVState *env, int csrno, target_ulong val)
496 {
497     env->mcounteren = val;
498     return 0;
499 }
500 
501 /* This regiser is replaced with CSR_MCOUNTINHIBIT in 1.11.0 */
502 static int read_mscounteren(CPURISCVState *env, int csrno, target_ulong *val)
503 {
504     if (env->priv_ver < PRIV_VERSION_1_11_0) {
505         return -1;
506     }
507     *val = env->mcounteren;
508     return 0;
509 }
510 
511 /* This regiser is replaced with CSR_MCOUNTINHIBIT in 1.11.0 */
512 static int write_mscounteren(CPURISCVState *env, int csrno, target_ulong val)
513 {
514     if (env->priv_ver < PRIV_VERSION_1_11_0) {
515         return -1;
516     }
517     env->mcounteren = val;
518     return 0;
519 }
520 
521 /* Machine Trap Handling */
522 static int read_mscratch(CPURISCVState *env, int csrno, target_ulong *val)
523 {
524     *val = env->mscratch;
525     return 0;
526 }
527 
528 static int write_mscratch(CPURISCVState *env, int csrno, target_ulong val)
529 {
530     env->mscratch = val;
531     return 0;
532 }
533 
534 static int read_mepc(CPURISCVState *env, int csrno, target_ulong *val)
535 {
536     *val = env->mepc;
537     return 0;
538 }
539 
540 static int write_mepc(CPURISCVState *env, int csrno, target_ulong val)
541 {
542     env->mepc = val;
543     return 0;
544 }
545 
546 static int read_mcause(CPURISCVState *env, int csrno, target_ulong *val)
547 {
548     *val = env->mcause;
549     return 0;
550 }
551 
552 static int write_mcause(CPURISCVState *env, int csrno, target_ulong val)
553 {
554     env->mcause = val;
555     return 0;
556 }
557 
558 static int read_mbadaddr(CPURISCVState *env, int csrno, target_ulong *val)
559 {
560     *val = env->mbadaddr;
561     return 0;
562 }
563 
564 static int write_mbadaddr(CPURISCVState *env, int csrno, target_ulong val)
565 {
566     env->mbadaddr = val;
567     return 0;
568 }
569 
570 static int rmw_mip(CPURISCVState *env, int csrno, target_ulong *ret_value,
571                    target_ulong new_value, target_ulong write_mask)
572 {
573     RISCVCPU *cpu = env_archcpu(env);
574     /* Allow software control of delegable interrupts not claimed by hardware */
575     target_ulong mask = write_mask & delegable_ints & ~env->miclaim;
576     uint32_t old_mip;
577 
578     if (mask) {
579         old_mip = riscv_cpu_update_mip(cpu, mask, (new_value & mask));
580     } else {
581         old_mip = env->mip;
582     }
583 
584     if (ret_value) {
585         *ret_value = old_mip;
586     }
587 
588     return 0;
589 }
590 
591 /* Supervisor Trap Setup */
592 static int read_sstatus(CPURISCVState *env, int csrno, target_ulong *val)
593 {
594     target_ulong mask = (sstatus_v1_10_mask);
595     *val = env->mstatus & mask;
596     return 0;
597 }
598 
599 static int write_sstatus(CPURISCVState *env, int csrno, target_ulong val)
600 {
601     target_ulong mask = (sstatus_v1_10_mask);
602     target_ulong newval = (env->mstatus & ~mask) | (val & mask);
603     return write_mstatus(env, CSR_MSTATUS, newval);
604 }
605 
606 static int read_sie(CPURISCVState *env, int csrno, target_ulong *val)
607 {
608     if (riscv_cpu_virt_enabled(env)) {
609         /* Tell the guest the VS bits, shifted to the S bit locations */
610         *val = (env->mie & env->mideleg & VS_MODE_INTERRUPTS) >> 1;
611     } else {
612         *val = env->mie & env->mideleg;
613     }
614     return 0;
615 }
616 
617 static int write_sie(CPURISCVState *env, int csrno, target_ulong val)
618 {
619     target_ulong newval;
620 
621     if (riscv_cpu_virt_enabled(env)) {
622         /* Shift the guests S bits to VS */
623         newval = (env->mie & ~VS_MODE_INTERRUPTS) |
624                  ((val << 1) & VS_MODE_INTERRUPTS);
625     } else {
626         newval = (env->mie & ~S_MODE_INTERRUPTS) | (val & S_MODE_INTERRUPTS);
627     }
628 
629     return write_mie(env, CSR_MIE, newval);
630 }
631 
632 static int read_stvec(CPURISCVState *env, int csrno, target_ulong *val)
633 {
634     *val = env->stvec;
635     return 0;
636 }
637 
638 static int write_stvec(CPURISCVState *env, int csrno, target_ulong val)
639 {
640     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
641     if ((val & 3) < 2) {
642         env->stvec = val;
643     } else {
644         qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n");
645     }
646     return 0;
647 }
648 
649 static int read_scounteren(CPURISCVState *env, int csrno, target_ulong *val)
650 {
651     *val = env->scounteren;
652     return 0;
653 }
654 
655 static int write_scounteren(CPURISCVState *env, int csrno, target_ulong val)
656 {
657     env->scounteren = val;
658     return 0;
659 }
660 
661 /* Supervisor Trap Handling */
662 static int read_sscratch(CPURISCVState *env, int csrno, target_ulong *val)
663 {
664     *val = env->sscratch;
665     return 0;
666 }
667 
668 static int write_sscratch(CPURISCVState *env, int csrno, target_ulong val)
669 {
670     env->sscratch = val;
671     return 0;
672 }
673 
674 static int read_sepc(CPURISCVState *env, int csrno, target_ulong *val)
675 {
676     *val = env->sepc;
677     return 0;
678 }
679 
680 static int write_sepc(CPURISCVState *env, int csrno, target_ulong val)
681 {
682     env->sepc = val;
683     return 0;
684 }
685 
686 static int read_scause(CPURISCVState *env, int csrno, target_ulong *val)
687 {
688     *val = env->scause;
689     return 0;
690 }
691 
692 static int write_scause(CPURISCVState *env, int csrno, target_ulong val)
693 {
694     env->scause = val;
695     return 0;
696 }
697 
698 static int read_sbadaddr(CPURISCVState *env, int csrno, target_ulong *val)
699 {
700     *val = env->sbadaddr;
701     return 0;
702 }
703 
704 static int write_sbadaddr(CPURISCVState *env, int csrno, target_ulong val)
705 {
706     env->sbadaddr = val;
707     return 0;
708 }
709 
710 static int rmw_sip(CPURISCVState *env, int csrno, target_ulong *ret_value,
711                    target_ulong new_value, target_ulong write_mask)
712 {
713     int ret;
714 
715     if (riscv_cpu_virt_enabled(env)) {
716         /* Shift the new values to line up with the VS bits */
717         ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value << 1,
718                       (write_mask & sip_writable_mask) << 1 & env->mideleg);
719         ret &= vsip_writable_mask;
720         ret >>= 1;
721     } else {
722         ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value,
723                       write_mask & env->mideleg & sip_writable_mask);
724     }
725 
726     *ret_value &= env->mideleg;
727     return ret;
728 }
729 
730 /* Supervisor Protection and Translation */
731 static int read_satp(CPURISCVState *env, int csrno, target_ulong *val)
732 {
733     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
734         *val = 0;
735         return 0;
736     }
737 
738     if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
739         return -1;
740     } else {
741         *val = env->satp;
742     }
743 
744     return 0;
745 }
746 
747 static int write_satp(CPURISCVState *env, int csrno, target_ulong val)
748 {
749     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
750         return 0;
751     }
752     if (validate_vm(env, get_field(val, SATP_MODE)) &&
753         ((val ^ env->satp) & (SATP_MODE | SATP_ASID | SATP_PPN)))
754     {
755         if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
756             return -1;
757         } else {
758             if((val ^ env->satp) & SATP_ASID) {
759                 tlb_flush(env_cpu(env));
760             }
761             env->satp = val;
762         }
763     }
764     return 0;
765 }
766 
767 /* Hypervisor Extensions */
768 static int read_hstatus(CPURISCVState *env, int csrno, target_ulong *val)
769 {
770     *val = env->hstatus;
771     return 0;
772 }
773 
774 static int write_hstatus(CPURISCVState *env, int csrno, target_ulong val)
775 {
776     env->hstatus = val;
777     return 0;
778 }
779 
780 static int read_hedeleg(CPURISCVState *env, int csrno, target_ulong *val)
781 {
782     *val = env->hedeleg;
783     return 0;
784 }
785 
786 static int write_hedeleg(CPURISCVState *env, int csrno, target_ulong val)
787 {
788     env->hedeleg = val;
789     return 0;
790 }
791 
792 static int read_hideleg(CPURISCVState *env, int csrno, target_ulong *val)
793 {
794     *val = env->hideleg;
795     return 0;
796 }
797 
798 static int write_hideleg(CPURISCVState *env, int csrno, target_ulong val)
799 {
800     env->hideleg = val;
801     return 0;
802 }
803 
804 static int rmw_hip(CPURISCVState *env, int csrno, target_ulong *ret_value,
805                    target_ulong new_value, target_ulong write_mask)
806 {
807     int ret = rmw_mip(env, 0, ret_value, new_value,
808                       write_mask & hip_writable_mask);
809 
810     return ret;
811 }
812 
813 static int read_hie(CPURISCVState *env, int csrno, target_ulong *val)
814 {
815     *val = env->mie & VS_MODE_INTERRUPTS;
816     return 0;
817 }
818 
819 static int write_hie(CPURISCVState *env, int csrno, target_ulong val)
820 {
821     target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | (val & VS_MODE_INTERRUPTS);
822     return write_mie(env, CSR_MIE, newval);
823 }
824 
825 static int read_hcounteren(CPURISCVState *env, int csrno, target_ulong *val)
826 {
827     *val = env->hcounteren;
828     return 0;
829 }
830 
831 static int write_hcounteren(CPURISCVState *env, int csrno, target_ulong val)
832 {
833     env->hcounteren = val;
834     return 0;
835 }
836 
837 static int read_htval(CPURISCVState *env, int csrno, target_ulong *val)
838 {
839     *val = env->htval;
840     return 0;
841 }
842 
843 static int write_htval(CPURISCVState *env, int csrno, target_ulong val)
844 {
845     env->htval = val;
846     return 0;
847 }
848 
849 static int read_htinst(CPURISCVState *env, int csrno, target_ulong *val)
850 {
851     *val = env->htinst;
852     return 0;
853 }
854 
855 static int write_htinst(CPURISCVState *env, int csrno, target_ulong val)
856 {
857     env->htinst = val;
858     return 0;
859 }
860 
861 static int read_hgatp(CPURISCVState *env, int csrno, target_ulong *val)
862 {
863     *val = env->hgatp;
864     return 0;
865 }
866 
867 static int write_hgatp(CPURISCVState *env, int csrno, target_ulong val)
868 {
869     env->hgatp = val;
870     return 0;
871 }
872 
873 static int read_htimedelta(CPURISCVState *env, int csrno, target_ulong *val)
874 {
875     if (!env->rdtime_fn) {
876         return -1;
877     }
878 
879 #if defined(TARGET_RISCV32)
880     *val = env->htimedelta & 0xffffffff;
881 #else
882     *val = env->htimedelta;
883 #endif
884     return 0;
885 }
886 
887 static int write_htimedelta(CPURISCVState *env, int csrno, target_ulong val)
888 {
889     if (!env->rdtime_fn) {
890         return -1;
891     }
892 
893 #if defined(TARGET_RISCV32)
894     env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val);
895 #else
896     env->htimedelta = val;
897 #endif
898     return 0;
899 }
900 
901 #if defined(TARGET_RISCV32)
902 static int read_htimedeltah(CPURISCVState *env, int csrno, target_ulong *val)
903 {
904     if (!env->rdtime_fn) {
905         return -1;
906     }
907 
908     *val = env->htimedelta >> 32;
909     return 0;
910 }
911 
912 static int write_htimedeltah(CPURISCVState *env, int csrno, target_ulong val)
913 {
914     if (!env->rdtime_fn) {
915         return -1;
916     }
917 
918     env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val);
919     return 0;
920 }
921 #endif
922 
923 /* Virtual CSR Registers */
924 static int read_vsstatus(CPURISCVState *env, int csrno, target_ulong *val)
925 {
926     *val = env->vsstatus;
927     return 0;
928 }
929 
930 static int write_vsstatus(CPURISCVState *env, int csrno, target_ulong val)
931 {
932     env->vsstatus = val;
933     return 0;
934 }
935 
936 static int rmw_vsip(CPURISCVState *env, int csrno, target_ulong *ret_value,
937                     target_ulong new_value, target_ulong write_mask)
938 {
939     int ret = rmw_mip(env, 0, ret_value, new_value,
940                       write_mask & env->mideleg & vsip_writable_mask);
941     return ret;
942 }
943 
944 static int read_vsie(CPURISCVState *env, int csrno, target_ulong *val)
945 {
946     *val = env->mie & env->mideleg & VS_MODE_INTERRUPTS;
947     return 0;
948 }
949 
950 static int write_vsie(CPURISCVState *env, int csrno, target_ulong val)
951 {
952     target_ulong newval = (env->mie & ~env->mideleg) | (val & env->mideleg & MIP_VSSIP);
953     return write_mie(env, CSR_MIE, newval);
954 }
955 
956 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val)
957 {
958     *val = env->vstvec;
959     return 0;
960 }
961 
962 static int write_vstvec(CPURISCVState *env, int csrno, target_ulong val)
963 {
964     env->vstvec = val;
965     return 0;
966 }
967 
968 static int read_vsscratch(CPURISCVState *env, int csrno, target_ulong *val)
969 {
970     *val = env->vsscratch;
971     return 0;
972 }
973 
974 static int write_vsscratch(CPURISCVState *env, int csrno, target_ulong val)
975 {
976     env->vsscratch = val;
977     return 0;
978 }
979 
980 static int read_vsepc(CPURISCVState *env, int csrno, target_ulong *val)
981 {
982     *val = env->vsepc;
983     return 0;
984 }
985 
986 static int write_vsepc(CPURISCVState *env, int csrno, target_ulong val)
987 {
988     env->vsepc = val;
989     return 0;
990 }
991 
992 static int read_vscause(CPURISCVState *env, int csrno, target_ulong *val)
993 {
994     *val = env->vscause;
995     return 0;
996 }
997 
998 static int write_vscause(CPURISCVState *env, int csrno, target_ulong val)
999 {
1000     env->vscause = val;
1001     return 0;
1002 }
1003 
1004 static int read_vstval(CPURISCVState *env, int csrno, target_ulong *val)
1005 {
1006     *val = env->vstval;
1007     return 0;
1008 }
1009 
1010 static int write_vstval(CPURISCVState *env, int csrno, target_ulong val)
1011 {
1012     env->vstval = val;
1013     return 0;
1014 }
1015 
1016 static int read_vsatp(CPURISCVState *env, int csrno, target_ulong *val)
1017 {
1018     *val = env->vsatp;
1019     return 0;
1020 }
1021 
1022 static int write_vsatp(CPURISCVState *env, int csrno, target_ulong val)
1023 {
1024     env->vsatp = val;
1025     return 0;
1026 }
1027 
1028 static int read_mtval2(CPURISCVState *env, int csrno, target_ulong *val)
1029 {
1030     *val = env->mtval2;
1031     return 0;
1032 }
1033 
1034 static int write_mtval2(CPURISCVState *env, int csrno, target_ulong val)
1035 {
1036     env->mtval2 = val;
1037     return 0;
1038 }
1039 
1040 static int read_mtinst(CPURISCVState *env, int csrno, target_ulong *val)
1041 {
1042     *val = env->mtinst;
1043     return 0;
1044 }
1045 
1046 static int write_mtinst(CPURISCVState *env, int csrno, target_ulong val)
1047 {
1048     env->mtinst = val;
1049     return 0;
1050 }
1051 
1052 /* Physical Memory Protection */
1053 static int read_pmpcfg(CPURISCVState *env, int csrno, target_ulong *val)
1054 {
1055     *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0);
1056     return 0;
1057 }
1058 
1059 static int write_pmpcfg(CPURISCVState *env, int csrno, target_ulong val)
1060 {
1061     pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val);
1062     return 0;
1063 }
1064 
1065 static int read_pmpaddr(CPURISCVState *env, int csrno, target_ulong *val)
1066 {
1067     *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0);
1068     return 0;
1069 }
1070 
1071 static int write_pmpaddr(CPURISCVState *env, int csrno, target_ulong val)
1072 {
1073     pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val);
1074     return 0;
1075 }
1076 
1077 #endif
1078 
1079 /*
1080  * riscv_csrrw - read and/or update control and status register
1081  *
1082  * csrr   <->  riscv_csrrw(env, csrno, ret_value, 0, 0);
1083  * csrrw  <->  riscv_csrrw(env, csrno, ret_value, value, -1);
1084  * csrrs  <->  riscv_csrrw(env, csrno, ret_value, -1, value);
1085  * csrrc  <->  riscv_csrrw(env, csrno, ret_value, 0, value);
1086  */
1087 
1088 int riscv_csrrw(CPURISCVState *env, int csrno, target_ulong *ret_value,
1089                 target_ulong new_value, target_ulong write_mask)
1090 {
1091     int ret;
1092     target_ulong old_value;
1093     RISCVCPU *cpu = env_archcpu(env);
1094 
1095     /* check privileges and return -1 if check fails */
1096 #if !defined(CONFIG_USER_ONLY)
1097     int effective_priv = env->priv;
1098     int read_only = get_field(csrno, 0xC00) == 3;
1099 
1100     if (riscv_has_ext(env, RVH) &&
1101         env->priv == PRV_S &&
1102         !riscv_cpu_virt_enabled(env)) {
1103         /*
1104          * We are in S mode without virtualisation, therefore we are in HS Mode.
1105          * Add 1 to the effective privledge level to allow us to access the
1106          * Hypervisor CSRs.
1107          */
1108         effective_priv++;
1109     }
1110 
1111     if ((write_mask && read_only) ||
1112         (!env->debugger && (effective_priv < get_field(csrno, 0x300)))) {
1113         return -1;
1114     }
1115 #endif
1116 
1117     /* ensure the CSR extension is enabled. */
1118     if (!cpu->cfg.ext_icsr) {
1119         return -1;
1120     }
1121 
1122     /* check predicate */
1123     if (!csr_ops[csrno].predicate || csr_ops[csrno].predicate(env, csrno) < 0) {
1124         return -1;
1125     }
1126 
1127     /* execute combined read/write operation if it exists */
1128     if (csr_ops[csrno].op) {
1129         return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask);
1130     }
1131 
1132     /* if no accessor exists then return failure */
1133     if (!csr_ops[csrno].read) {
1134         return -1;
1135     }
1136 
1137     /* read old value */
1138     ret = csr_ops[csrno].read(env, csrno, &old_value);
1139     if (ret < 0) {
1140         return ret;
1141     }
1142 
1143     /* write value if writable and write mask set, otherwise drop writes */
1144     if (write_mask) {
1145         new_value = (old_value & ~write_mask) | (new_value & write_mask);
1146         if (csr_ops[csrno].write) {
1147             ret = csr_ops[csrno].write(env, csrno, new_value);
1148             if (ret < 0) {
1149                 return ret;
1150             }
1151         }
1152     }
1153 
1154     /* return old value */
1155     if (ret_value) {
1156         *ret_value = old_value;
1157     }
1158 
1159     return 0;
1160 }
1161 
1162 /*
1163  * Debugger support.  If not in user mode, set env->debugger before the
1164  * riscv_csrrw call and clear it after the call.
1165  */
1166 int riscv_csrrw_debug(CPURISCVState *env, int csrno, target_ulong *ret_value,
1167                 target_ulong new_value, target_ulong write_mask)
1168 {
1169     int ret;
1170 #if !defined(CONFIG_USER_ONLY)
1171     env->debugger = true;
1172 #endif
1173     ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask);
1174 #if !defined(CONFIG_USER_ONLY)
1175     env->debugger = false;
1176 #endif
1177     return ret;
1178 }
1179 
1180 /* Control and Status Register function table */
1181 static riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = {
1182     /* User Floating-Point CSRs */
1183     [CSR_FFLAGS] =              { fs,   read_fflags,      write_fflags      },
1184     [CSR_FRM] =                 { fs,   read_frm,         write_frm         },
1185     [CSR_FCSR] =                { fs,   read_fcsr,        write_fcsr        },
1186 
1187     /* User Timers and Counters */
1188     [CSR_CYCLE] =               { ctr,  read_instret                        },
1189     [CSR_INSTRET] =             { ctr,  read_instret                        },
1190 #if defined(TARGET_RISCV32)
1191     [CSR_CYCLEH] =              { ctr,  read_instreth                       },
1192     [CSR_INSTRETH] =            { ctr,  read_instreth                       },
1193 #endif
1194 
1195     /* In privileged mode, the monitor will have to emulate TIME CSRs only if
1196      * rdtime callback is not provided by machine/platform emulation */
1197     [CSR_TIME] =                { ctr,  read_time                           },
1198 #if defined(TARGET_RISCV32)
1199     [CSR_TIMEH] =               { ctr,  read_timeh                          },
1200 #endif
1201 
1202 #if !defined(CONFIG_USER_ONLY)
1203     /* Machine Timers and Counters */
1204     [CSR_MCYCLE] =              { any,  read_instret                        },
1205     [CSR_MINSTRET] =            { any,  read_instret                        },
1206 #if defined(TARGET_RISCV32)
1207     [CSR_MCYCLEH] =             { any,  read_instreth                       },
1208     [CSR_MINSTRETH] =           { any,  read_instreth                       },
1209 #endif
1210 
1211     /* Machine Information Registers */
1212     [CSR_MVENDORID] =           { any,  read_zero                           },
1213     [CSR_MARCHID] =             { any,  read_zero                           },
1214     [CSR_MIMPID] =              { any,  read_zero                           },
1215     [CSR_MHARTID] =             { any,  read_mhartid                        },
1216 
1217     /* Machine Trap Setup */
1218     [CSR_MSTATUS] =             { any,  read_mstatus,     write_mstatus     },
1219     [CSR_MISA] =                { any,  read_misa,        write_misa        },
1220     [CSR_MIDELEG] =             { any,  read_mideleg,     write_mideleg     },
1221     [CSR_MEDELEG] =             { any,  read_medeleg,     write_medeleg     },
1222     [CSR_MIE] =                 { any,  read_mie,         write_mie         },
1223     [CSR_MTVEC] =               { any,  read_mtvec,       write_mtvec       },
1224     [CSR_MCOUNTEREN] =          { any,  read_mcounteren,  write_mcounteren  },
1225 
1226 #if defined(TARGET_RISCV32)
1227     [CSR_MSTATUSH] =            { any,  read_mstatush,    write_mstatush    },
1228 #endif
1229 
1230     [CSR_MSCOUNTEREN] =         { any,  read_mscounteren, write_mscounteren },
1231 
1232     /* Machine Trap Handling */
1233     [CSR_MSCRATCH] =            { any,  read_mscratch,    write_mscratch    },
1234     [CSR_MEPC] =                { any,  read_mepc,        write_mepc        },
1235     [CSR_MCAUSE] =              { any,  read_mcause,      write_mcause      },
1236     [CSR_MBADADDR] =            { any,  read_mbadaddr,    write_mbadaddr    },
1237     [CSR_MIP] =                 { any,  NULL,     NULL,     rmw_mip         },
1238 
1239     /* Supervisor Trap Setup */
1240     [CSR_SSTATUS] =             { smode, read_sstatus,     write_sstatus     },
1241     [CSR_SIE] =                 { smode, read_sie,         write_sie         },
1242     [CSR_STVEC] =               { smode, read_stvec,       write_stvec       },
1243     [CSR_SCOUNTEREN] =          { smode, read_scounteren,  write_scounteren  },
1244 
1245     /* Supervisor Trap Handling */
1246     [CSR_SSCRATCH] =            { smode, read_sscratch,    write_sscratch    },
1247     [CSR_SEPC] =                { smode, read_sepc,        write_sepc        },
1248     [CSR_SCAUSE] =              { smode, read_scause,      write_scause      },
1249     [CSR_SBADADDR] =            { smode, read_sbadaddr,    write_sbadaddr    },
1250     [CSR_SIP] =                 { smode, NULL,     NULL,     rmw_sip         },
1251 
1252     /* Supervisor Protection and Translation */
1253     [CSR_SATP] =                { smode, read_satp,        write_satp        },
1254 
1255     [CSR_HSTATUS] =             { hmode,   read_hstatus,     write_hstatus    },
1256     [CSR_HEDELEG] =             { hmode,   read_hedeleg,     write_hedeleg    },
1257     [CSR_HIDELEG] =             { hmode,   read_hideleg,     write_hideleg    },
1258     [CSR_HIP] =                 { hmode,   NULL,     NULL,     rmw_hip        },
1259     [CSR_HIE] =                 { hmode,   read_hie,         write_hie        },
1260     [CSR_HCOUNTEREN] =          { hmode,   read_hcounteren,  write_hcounteren },
1261     [CSR_HTVAL] =               { hmode,   read_htval,       write_htval      },
1262     [CSR_HTINST] =              { hmode,   read_htinst,      write_htinst     },
1263     [CSR_HGATP] =               { hmode,   read_hgatp,       write_hgatp      },
1264     [CSR_HTIMEDELTA] =          { hmode,   read_htimedelta,  write_htimedelta },
1265 #if defined(TARGET_RISCV32)
1266     [CSR_HTIMEDELTAH] =         { hmode,   read_htimedeltah, write_htimedeltah},
1267 #endif
1268 
1269     [CSR_VSSTATUS] =            { hmode,   read_vsstatus,    write_vsstatus   },
1270     [CSR_VSIP] =                { hmode,   NULL,     NULL,     rmw_vsip       },
1271     [CSR_VSIE] =                { hmode,   read_vsie,        write_vsie       },
1272     [CSR_VSTVEC] =              { hmode,   read_vstvec,      write_vstvec     },
1273     [CSR_VSSCRATCH] =           { hmode,   read_vsscratch,   write_vsscratch  },
1274     [CSR_VSEPC] =               { hmode,   read_vsepc,       write_vsepc      },
1275     [CSR_VSCAUSE] =             { hmode,   read_vscause,     write_vscause    },
1276     [CSR_VSTVAL] =              { hmode,   read_vstval,      write_vstval     },
1277     [CSR_VSATP] =               { hmode,   read_vsatp,       write_vsatp      },
1278 
1279     [CSR_MTVAL2] =              { hmode,   read_mtval2,      write_mtval2     },
1280     [CSR_MTINST] =              { hmode,   read_mtinst,      write_mtinst     },
1281 
1282     /* Physical Memory Protection */
1283     [CSR_PMPCFG0  ... CSR_PMPADDR9] =  { pmp,   read_pmpcfg,  write_pmpcfg   },
1284     [CSR_PMPADDR0 ... CSR_PMPADDR15] = { pmp,   read_pmpaddr, write_pmpaddr  },
1285 
1286     /* Performance Counters */
1287     [CSR_HPMCOUNTER3   ... CSR_HPMCOUNTER31] =    { ctr,  read_zero          },
1288     [CSR_MHPMCOUNTER3  ... CSR_MHPMCOUNTER31] =   { any,  read_zero          },
1289     [CSR_MHPMEVENT3    ... CSR_MHPMEVENT31] =     { any,  read_zero          },
1290 #if defined(TARGET_RISCV32)
1291     [CSR_HPMCOUNTER3H  ... CSR_HPMCOUNTER31H] =   { ctr,  read_zero          },
1292     [CSR_MHPMCOUNTER3H ... CSR_MHPMCOUNTER31H] =  { any,  read_zero          },
1293 #endif
1294 #endif /* !CONFIG_USER_ONLY */
1295 };
1296