xref: /openbmc/qemu/target/riscv/csr.c (revision 108c4f26)
1 /*
2  * RISC-V Control and Status Registers.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/timer.h"
23 #include "cpu.h"
24 #include "pmu.h"
25 #include "qemu/main-loop.h"
26 #include "exec/exec-all.h"
27 #include "sysemu/cpu-timers.h"
28 #include "qemu/guest-random.h"
29 #include "qapi/error.h"
30 
31 /* CSR function table public API */
32 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops)
33 {
34     *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)];
35 }
36 
37 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops)
38 {
39     csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops;
40 }
41 
42 /* Predicates */
43 static RISCVException fs(CPURISCVState *env, int csrno)
44 {
45 #if !defined(CONFIG_USER_ONLY)
46     if (!env->debugger && !riscv_cpu_fp_enabled(env) &&
47         !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) {
48         return RISCV_EXCP_ILLEGAL_INST;
49     }
50 #endif
51     return RISCV_EXCP_NONE;
52 }
53 
54 static RISCVException vs(CPURISCVState *env, int csrno)
55 {
56     CPUState *cs = env_cpu(env);
57     RISCVCPU *cpu = RISCV_CPU(cs);
58 
59     if (env->misa_ext & RVV ||
60         cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) {
61 #if !defined(CONFIG_USER_ONLY)
62         if (!env->debugger && !riscv_cpu_vector_enabled(env)) {
63             return RISCV_EXCP_ILLEGAL_INST;
64         }
65 #endif
66         return RISCV_EXCP_NONE;
67     }
68     return RISCV_EXCP_ILLEGAL_INST;
69 }
70 
71 static RISCVException ctr(CPURISCVState *env, int csrno)
72 {
73 #if !defined(CONFIG_USER_ONLY)
74     CPUState *cs = env_cpu(env);
75     RISCVCPU *cpu = RISCV_CPU(cs);
76     int ctr_index;
77     int base_csrno = CSR_HPMCOUNTER3;
78     bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false;
79 
80     if (rv32 && csrno >= CSR_CYCLEH) {
81         /* Offset for RV32 hpmcounternh counters */
82         base_csrno += 0x80;
83     }
84     ctr_index = csrno - base_csrno;
85 
86     if (!cpu->cfg.pmu_num || ctr_index >= (cpu->cfg.pmu_num)) {
87         /* No counter is enabled in PMU or the counter is out of range */
88         return RISCV_EXCP_ILLEGAL_INST;
89     }
90 
91     if (env->priv == PRV_S) {
92         switch (csrno) {
93         case CSR_CYCLE:
94             if (!get_field(env->mcounteren, COUNTEREN_CY)) {
95                 return RISCV_EXCP_ILLEGAL_INST;
96             }
97             break;
98         case CSR_TIME:
99             if (!get_field(env->mcounteren, COUNTEREN_TM)) {
100                 return RISCV_EXCP_ILLEGAL_INST;
101             }
102             break;
103         case CSR_INSTRET:
104             if (!get_field(env->mcounteren, COUNTEREN_IR)) {
105                 return RISCV_EXCP_ILLEGAL_INST;
106             }
107             break;
108         case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31:
109             ctr_index = csrno - CSR_CYCLE;
110             if (!get_field(env->mcounteren, 1 << ctr_index)) {
111                 return RISCV_EXCP_ILLEGAL_INST;
112             }
113             break;
114         }
115         if (rv32) {
116             switch (csrno) {
117             case CSR_CYCLEH:
118                 if (!get_field(env->mcounteren, COUNTEREN_CY)) {
119                     return RISCV_EXCP_ILLEGAL_INST;
120                 }
121                 break;
122             case CSR_TIMEH:
123                 if (!get_field(env->mcounteren, COUNTEREN_TM)) {
124                     return RISCV_EXCP_ILLEGAL_INST;
125                 }
126                 break;
127             case CSR_INSTRETH:
128                 if (!get_field(env->mcounteren, COUNTEREN_IR)) {
129                     return RISCV_EXCP_ILLEGAL_INST;
130                 }
131                 break;
132             case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H:
133                 ctr_index = csrno - CSR_CYCLEH;
134                 if (!get_field(env->mcounteren, 1 << ctr_index)) {
135                     return RISCV_EXCP_ILLEGAL_INST;
136                 }
137                 break;
138             }
139         }
140     }
141 
142     if (riscv_cpu_virt_enabled(env)) {
143         switch (csrno) {
144         case CSR_CYCLE:
145             if (!get_field(env->hcounteren, COUNTEREN_CY) &&
146                 get_field(env->mcounteren, COUNTEREN_CY)) {
147                 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
148             }
149             break;
150         case CSR_TIME:
151             if (!get_field(env->hcounteren, COUNTEREN_TM) &&
152                 get_field(env->mcounteren, COUNTEREN_TM)) {
153                 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
154             }
155             break;
156         case CSR_INSTRET:
157             if (!get_field(env->hcounteren, COUNTEREN_IR) &&
158                 get_field(env->mcounteren, COUNTEREN_IR)) {
159                 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
160             }
161             break;
162         case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31:
163             ctr_index = csrno - CSR_CYCLE;
164             if (!get_field(env->hcounteren, 1 << ctr_index) &&
165                  get_field(env->mcounteren, 1 << ctr_index)) {
166                 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
167             }
168             break;
169         }
170         if (rv32) {
171             switch (csrno) {
172             case CSR_CYCLEH:
173                 if (!get_field(env->hcounteren, COUNTEREN_CY) &&
174                     get_field(env->mcounteren, COUNTEREN_CY)) {
175                     return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
176                 }
177                 break;
178             case CSR_TIMEH:
179                 if (!get_field(env->hcounteren, COUNTEREN_TM) &&
180                     get_field(env->mcounteren, COUNTEREN_TM)) {
181                     return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
182                 }
183                 break;
184             case CSR_INSTRETH:
185                 if (!get_field(env->hcounteren, COUNTEREN_IR) &&
186                     get_field(env->mcounteren, COUNTEREN_IR)) {
187                     return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
188                 }
189                 break;
190             case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H:
191                 ctr_index = csrno - CSR_CYCLEH;
192                 if (!get_field(env->hcounteren, 1 << ctr_index) &&
193                      get_field(env->mcounteren, 1 << ctr_index)) {
194                     return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
195                 }
196                 break;
197             }
198         }
199     }
200 #endif
201     return RISCV_EXCP_NONE;
202 }
203 
204 static RISCVException ctr32(CPURISCVState *env, int csrno)
205 {
206     if (riscv_cpu_mxl(env) != MXL_RV32) {
207         return RISCV_EXCP_ILLEGAL_INST;
208     }
209 
210     return ctr(env, csrno);
211 }
212 
213 #if !defined(CONFIG_USER_ONLY)
214 static RISCVException mctr(CPURISCVState *env, int csrno)
215 {
216     CPUState *cs = env_cpu(env);
217     RISCVCPU *cpu = RISCV_CPU(cs);
218     int ctr_index;
219     int base_csrno = CSR_MHPMCOUNTER3;
220 
221     if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) {
222         /* Offset for RV32 mhpmcounternh counters */
223         base_csrno += 0x80;
224     }
225     ctr_index = csrno - base_csrno;
226     if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) {
227         /* The PMU is not enabled or counter is out of range*/
228         return RISCV_EXCP_ILLEGAL_INST;
229     }
230 
231     return RISCV_EXCP_NONE;
232 }
233 
234 static RISCVException mctr32(CPURISCVState *env, int csrno)
235 {
236     if (riscv_cpu_mxl(env) != MXL_RV32) {
237         return RISCV_EXCP_ILLEGAL_INST;
238     }
239 
240     return mctr(env, csrno);
241 }
242 
243 static RISCVException any(CPURISCVState *env, int csrno)
244 {
245     return RISCV_EXCP_NONE;
246 }
247 
248 static RISCVException any32(CPURISCVState *env, int csrno)
249 {
250     if (riscv_cpu_mxl(env) != MXL_RV32) {
251         return RISCV_EXCP_ILLEGAL_INST;
252     }
253 
254     return any(env, csrno);
255 
256 }
257 
258 static int aia_any(CPURISCVState *env, int csrno)
259 {
260     if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
261         return RISCV_EXCP_ILLEGAL_INST;
262     }
263 
264     return any(env, csrno);
265 }
266 
267 static int aia_any32(CPURISCVState *env, int csrno)
268 {
269     if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
270         return RISCV_EXCP_ILLEGAL_INST;
271     }
272 
273     return any32(env, csrno);
274 }
275 
276 static RISCVException smode(CPURISCVState *env, int csrno)
277 {
278     if (riscv_has_ext(env, RVS)) {
279         return RISCV_EXCP_NONE;
280     }
281 
282     return RISCV_EXCP_ILLEGAL_INST;
283 }
284 
285 static int smode32(CPURISCVState *env, int csrno)
286 {
287     if (riscv_cpu_mxl(env) != MXL_RV32) {
288         return RISCV_EXCP_ILLEGAL_INST;
289     }
290 
291     return smode(env, csrno);
292 }
293 
294 static int aia_smode(CPURISCVState *env, int csrno)
295 {
296     if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
297         return RISCV_EXCP_ILLEGAL_INST;
298     }
299 
300     return smode(env, csrno);
301 }
302 
303 static int aia_smode32(CPURISCVState *env, int csrno)
304 {
305     if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
306         return RISCV_EXCP_ILLEGAL_INST;
307     }
308 
309     return smode32(env, csrno);
310 }
311 
312 static RISCVException hmode(CPURISCVState *env, int csrno)
313 {
314     if (riscv_has_ext(env, RVS) &&
315         riscv_has_ext(env, RVH)) {
316         /* Hypervisor extension is supported */
317         if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
318             env->priv == PRV_M) {
319             return RISCV_EXCP_NONE;
320         } else {
321             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
322         }
323     }
324 
325     return RISCV_EXCP_ILLEGAL_INST;
326 }
327 
328 static RISCVException hmode32(CPURISCVState *env, int csrno)
329 {
330     if (riscv_cpu_mxl(env) != MXL_RV32) {
331         if (!riscv_cpu_virt_enabled(env)) {
332             return RISCV_EXCP_ILLEGAL_INST;
333         } else {
334             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
335         }
336     }
337 
338     return hmode(env, csrno);
339 
340 }
341 
342 /* Checks if PointerMasking registers could be accessed */
343 static RISCVException pointer_masking(CPURISCVState *env, int csrno)
344 {
345     /* Check if j-ext is present */
346     if (riscv_has_ext(env, RVJ)) {
347         return RISCV_EXCP_NONE;
348     }
349     return RISCV_EXCP_ILLEGAL_INST;
350 }
351 
352 static int aia_hmode(CPURISCVState *env, int csrno)
353 {
354     if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
355         return RISCV_EXCP_ILLEGAL_INST;
356      }
357 
358      return hmode(env, csrno);
359 }
360 
361 static int aia_hmode32(CPURISCVState *env, int csrno)
362 {
363     if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
364         return RISCV_EXCP_ILLEGAL_INST;
365     }
366 
367     return hmode32(env, csrno);
368 }
369 
370 static RISCVException pmp(CPURISCVState *env, int csrno)
371 {
372     if (riscv_feature(env, RISCV_FEATURE_PMP)) {
373         return RISCV_EXCP_NONE;
374     }
375 
376     return RISCV_EXCP_ILLEGAL_INST;
377 }
378 
379 static RISCVException epmp(CPURISCVState *env, int csrno)
380 {
381     if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) {
382         return RISCV_EXCP_NONE;
383     }
384 
385     return RISCV_EXCP_ILLEGAL_INST;
386 }
387 
388 static RISCVException debug(CPURISCVState *env, int csrno)
389 {
390     if (riscv_feature(env, RISCV_FEATURE_DEBUG)) {
391         return RISCV_EXCP_NONE;
392     }
393 
394     return RISCV_EXCP_ILLEGAL_INST;
395 }
396 #endif
397 
398 static RISCVException seed(CPURISCVState *env, int csrno)
399 {
400     RISCVCPU *cpu = env_archcpu(env);
401 
402     if (!cpu->cfg.ext_zkr) {
403         return RISCV_EXCP_ILLEGAL_INST;
404     }
405 
406 #if !defined(CONFIG_USER_ONLY)
407     /*
408      * With a CSR read-write instruction:
409      * 1) The seed CSR is always available in machine mode as normal.
410      * 2) Attempted access to seed from virtual modes VS and VU always raises
411      * an exception(virtual instruction exception only if mseccfg.sseed=1).
412      * 3) Without the corresponding access control bit set to 1, any attempted
413      * access to seed from U, S or HS modes will raise an illegal instruction
414      * exception.
415      */
416     if (env->priv == PRV_M) {
417         return RISCV_EXCP_NONE;
418     } else if (riscv_cpu_virt_enabled(env)) {
419         if (env->mseccfg & MSECCFG_SSEED) {
420             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
421         } else {
422             return RISCV_EXCP_ILLEGAL_INST;
423         }
424     } else {
425         if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) {
426             return RISCV_EXCP_NONE;
427         } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) {
428             return RISCV_EXCP_NONE;
429         } else {
430             return RISCV_EXCP_ILLEGAL_INST;
431         }
432     }
433 #else
434     return RISCV_EXCP_NONE;
435 #endif
436 }
437 
438 /* User Floating-Point CSRs */
439 static RISCVException read_fflags(CPURISCVState *env, int csrno,
440                                   target_ulong *val)
441 {
442     *val = riscv_cpu_get_fflags(env);
443     return RISCV_EXCP_NONE;
444 }
445 
446 static RISCVException write_fflags(CPURISCVState *env, int csrno,
447                                    target_ulong val)
448 {
449 #if !defined(CONFIG_USER_ONLY)
450     if (riscv_has_ext(env, RVF)) {
451         env->mstatus |= MSTATUS_FS;
452     }
453 #endif
454     riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT));
455     return RISCV_EXCP_NONE;
456 }
457 
458 static RISCVException read_frm(CPURISCVState *env, int csrno,
459                                target_ulong *val)
460 {
461     *val = env->frm;
462     return RISCV_EXCP_NONE;
463 }
464 
465 static RISCVException write_frm(CPURISCVState *env, int csrno,
466                                 target_ulong val)
467 {
468 #if !defined(CONFIG_USER_ONLY)
469     if (riscv_has_ext(env, RVF)) {
470         env->mstatus |= MSTATUS_FS;
471     }
472 #endif
473     env->frm = val & (FSR_RD >> FSR_RD_SHIFT);
474     return RISCV_EXCP_NONE;
475 }
476 
477 static RISCVException read_fcsr(CPURISCVState *env, int csrno,
478                                 target_ulong *val)
479 {
480     *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT)
481         | (env->frm << FSR_RD_SHIFT);
482     return RISCV_EXCP_NONE;
483 }
484 
485 static RISCVException write_fcsr(CPURISCVState *env, int csrno,
486                                  target_ulong val)
487 {
488 #if !defined(CONFIG_USER_ONLY)
489     if (riscv_has_ext(env, RVF)) {
490         env->mstatus |= MSTATUS_FS;
491     }
492 #endif
493     env->frm = (val & FSR_RD) >> FSR_RD_SHIFT;
494     riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT);
495     return RISCV_EXCP_NONE;
496 }
497 
498 static RISCVException read_vtype(CPURISCVState *env, int csrno,
499                                  target_ulong *val)
500 {
501     uint64_t vill;
502     switch (env->xl) {
503     case MXL_RV32:
504         vill = (uint32_t)env->vill << 31;
505         break;
506     case MXL_RV64:
507         vill = (uint64_t)env->vill << 63;
508         break;
509     default:
510         g_assert_not_reached();
511     }
512     *val = (target_ulong)vill | env->vtype;
513     return RISCV_EXCP_NONE;
514 }
515 
516 static RISCVException read_vl(CPURISCVState *env, int csrno,
517                               target_ulong *val)
518 {
519     *val = env->vl;
520     return RISCV_EXCP_NONE;
521 }
522 
523 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val)
524 {
525     *val = env_archcpu(env)->cfg.vlen >> 3;
526     return RISCV_EXCP_NONE;
527 }
528 
529 static RISCVException read_vxrm(CPURISCVState *env, int csrno,
530                                 target_ulong *val)
531 {
532     *val = env->vxrm;
533     return RISCV_EXCP_NONE;
534 }
535 
536 static RISCVException write_vxrm(CPURISCVState *env, int csrno,
537                                  target_ulong val)
538 {
539 #if !defined(CONFIG_USER_ONLY)
540     env->mstatus |= MSTATUS_VS;
541 #endif
542     env->vxrm = val;
543     return RISCV_EXCP_NONE;
544 }
545 
546 static RISCVException read_vxsat(CPURISCVState *env, int csrno,
547                                  target_ulong *val)
548 {
549     *val = env->vxsat;
550     return RISCV_EXCP_NONE;
551 }
552 
553 static RISCVException write_vxsat(CPURISCVState *env, int csrno,
554                                   target_ulong val)
555 {
556 #if !defined(CONFIG_USER_ONLY)
557     env->mstatus |= MSTATUS_VS;
558 #endif
559     env->vxsat = val;
560     return RISCV_EXCP_NONE;
561 }
562 
563 static RISCVException read_vstart(CPURISCVState *env, int csrno,
564                                   target_ulong *val)
565 {
566     *val = env->vstart;
567     return RISCV_EXCP_NONE;
568 }
569 
570 static RISCVException write_vstart(CPURISCVState *env, int csrno,
571                                    target_ulong val)
572 {
573 #if !defined(CONFIG_USER_ONLY)
574     env->mstatus |= MSTATUS_VS;
575 #endif
576     /*
577      * The vstart CSR is defined to have only enough writable bits
578      * to hold the largest element index, i.e. lg2(VLEN) bits.
579      */
580     env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen));
581     return RISCV_EXCP_NONE;
582 }
583 
584 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val)
585 {
586     *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT);
587     return RISCV_EXCP_NONE;
588 }
589 
590 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val)
591 {
592 #if !defined(CONFIG_USER_ONLY)
593     env->mstatus |= MSTATUS_VS;
594 #endif
595     env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT;
596     env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT;
597     return RISCV_EXCP_NONE;
598 }
599 
600 /* User Timers and Counters */
601 static target_ulong get_ticks(bool shift)
602 {
603     int64_t val;
604     target_ulong result;
605 
606 #if !defined(CONFIG_USER_ONLY)
607     if (icount_enabled()) {
608         val = icount_get();
609     } else {
610         val = cpu_get_host_ticks();
611     }
612 #else
613     val = cpu_get_host_ticks();
614 #endif
615 
616     if (shift) {
617         result = val >> 32;
618     } else {
619         result = val;
620     }
621 
622     return result;
623 }
624 
625 #if defined(CONFIG_USER_ONLY)
626 static RISCVException read_time(CPURISCVState *env, int csrno,
627                                 target_ulong *val)
628 {
629     *val = cpu_get_host_ticks();
630     return RISCV_EXCP_NONE;
631 }
632 
633 static RISCVException read_timeh(CPURISCVState *env, int csrno,
634                                  target_ulong *val)
635 {
636     *val = cpu_get_host_ticks() >> 32;
637     return RISCV_EXCP_NONE;
638 }
639 
640 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val)
641 {
642     *val = get_ticks(false);
643     return RISCV_EXCP_NONE;
644 }
645 
646 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val)
647 {
648     *val = get_ticks(true);
649     return RISCV_EXCP_NONE;
650 }
651 
652 #else /* CONFIG_USER_ONLY */
653 
654 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val)
655 {
656     int evt_index = csrno - CSR_MCOUNTINHIBIT;
657 
658     *val = env->mhpmevent_val[evt_index];
659 
660     return RISCV_EXCP_NONE;
661 }
662 
663 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val)
664 {
665     int evt_index = csrno - CSR_MCOUNTINHIBIT;
666 
667     env->mhpmevent_val[evt_index] = val;
668 
669     return RISCV_EXCP_NONE;
670 }
671 
672 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val)
673 {
674     int ctr_idx = csrno - CSR_MCYCLE;
675     PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
676 
677     counter->mhpmcounter_val = val;
678     if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) ||
679         riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) {
680         counter->mhpmcounter_prev = get_ticks(false);
681     } else {
682         /* Other counters can keep incrementing from the given value */
683         counter->mhpmcounter_prev = val;
684     }
685 
686     return RISCV_EXCP_NONE;
687 }
688 
689 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val)
690 {
691     int ctr_idx = csrno - CSR_MCYCLEH;
692     PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
693 
694     counter->mhpmcounterh_val = val;
695     if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) ||
696         riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) {
697         counter->mhpmcounterh_prev = get_ticks(true);
698     } else {
699         counter->mhpmcounterh_prev = val;
700     }
701 
702     return RISCV_EXCP_NONE;
703 }
704 
705 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val,
706                                          bool upper_half, uint32_t ctr_idx)
707 {
708     PMUCTRState counter = env->pmu_ctrs[ctr_idx];
709     target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev :
710                                          counter.mhpmcounter_prev;
711     target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val :
712                                         counter.mhpmcounter_val;
713 
714     if (get_field(env->mcountinhibit, BIT(ctr_idx))) {
715         /**
716          * Counter should not increment if inhibit bit is set. We can't really
717          * stop the icount counting. Just return the counter value written by
718          * the supervisor to indicate that counter was not incremented.
719          */
720         if (!counter.started) {
721             *val = ctr_val;
722             return RISCV_EXCP_NONE;
723         } else {
724             /* Mark that the counter has been stopped */
725             counter.started = false;
726         }
727     }
728 
729     /**
730      * The kernel computes the perf delta by subtracting the current value from
731      * the value it initialized previously (ctr_val).
732      */
733     if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) ||
734         riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) {
735         *val = get_ticks(upper_half) - ctr_prev + ctr_val;
736     } else {
737         *val = ctr_val;
738     }
739 
740     return RISCV_EXCP_NONE;
741 }
742 
743 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val)
744 {
745     uint16_t ctr_index;
746 
747     if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) {
748         ctr_index = csrno - CSR_MCYCLE;
749     } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) {
750         ctr_index = csrno - CSR_CYCLE;
751     } else {
752         return RISCV_EXCP_ILLEGAL_INST;
753     }
754 
755     return riscv_pmu_read_ctr(env, val, false, ctr_index);
756 }
757 
758 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val)
759 {
760     uint16_t ctr_index;
761 
762     if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) {
763         ctr_index = csrno - CSR_MCYCLEH;
764     } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) {
765         ctr_index = csrno - CSR_CYCLEH;
766     } else {
767         return RISCV_EXCP_ILLEGAL_INST;
768     }
769 
770     return riscv_pmu_read_ctr(env, val, true, ctr_index);
771 }
772 
773 static RISCVException read_time(CPURISCVState *env, int csrno,
774                                 target_ulong *val)
775 {
776     uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
777 
778     if (!env->rdtime_fn) {
779         return RISCV_EXCP_ILLEGAL_INST;
780     }
781 
782     *val = env->rdtime_fn(env->rdtime_fn_arg) + delta;
783     return RISCV_EXCP_NONE;
784 }
785 
786 static RISCVException read_timeh(CPURISCVState *env, int csrno,
787                                  target_ulong *val)
788 {
789     uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
790 
791     if (!env->rdtime_fn) {
792         return RISCV_EXCP_ILLEGAL_INST;
793     }
794 
795     *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32;
796     return RISCV_EXCP_NONE;
797 }
798 
799 /* Machine constants */
800 
801 #define M_MODE_INTERRUPTS  ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP))
802 #define S_MODE_INTERRUPTS  ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP))
803 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP))
804 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS))
805 
806 #define VSTOPI_NUM_SRCS 5
807 
808 static const uint64_t delegable_ints = S_MODE_INTERRUPTS |
809                                            VS_MODE_INTERRUPTS;
810 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS;
811 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS |
812                                      HS_MODE_INTERRUPTS;
813 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \
814                          (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \
815                          (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \
816                          (1ULL << (RISCV_EXCP_BREAKPOINT)) | \
817                          (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \
818                          (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \
819                          (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \
820                          (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \
821                          (1ULL << (RISCV_EXCP_U_ECALL)) | \
822                          (1ULL << (RISCV_EXCP_S_ECALL)) | \
823                          (1ULL << (RISCV_EXCP_VS_ECALL)) | \
824                          (1ULL << (RISCV_EXCP_M_ECALL)) | \
825                          (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \
826                          (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \
827                          (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \
828                          (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \
829                          (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \
830                          (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \
831                          (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)))
832 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS &
833     ~((1ULL << (RISCV_EXCP_S_ECALL)) |
834       (1ULL << (RISCV_EXCP_VS_ECALL)) |
835       (1ULL << (RISCV_EXCP_M_ECALL)) |
836       (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) |
837       (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) |
838       (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) |
839       (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)));
840 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE |
841     SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS |
842     SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS;
843 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP;
844 static const target_ulong hip_writable_mask = MIP_VSSIP;
845 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP;
846 static const target_ulong vsip_writable_mask = MIP_VSSIP;
847 
848 static const char valid_vm_1_10_32[16] = {
849     [VM_1_10_MBARE] = 1,
850     [VM_1_10_SV32] = 1
851 };
852 
853 static const char valid_vm_1_10_64[16] = {
854     [VM_1_10_MBARE] = 1,
855     [VM_1_10_SV39] = 1,
856     [VM_1_10_SV48] = 1,
857     [VM_1_10_SV57] = 1
858 };
859 
860 /* Machine Information Registers */
861 static RISCVException read_zero(CPURISCVState *env, int csrno,
862                                 target_ulong *val)
863 {
864     *val = 0;
865     return RISCV_EXCP_NONE;
866 }
867 
868 static RISCVException write_ignore(CPURISCVState *env, int csrno,
869                                    target_ulong val)
870 {
871     return RISCV_EXCP_NONE;
872 }
873 
874 static RISCVException read_mvendorid(CPURISCVState *env, int csrno,
875                                      target_ulong *val)
876 {
877     CPUState *cs = env_cpu(env);
878     RISCVCPU *cpu = RISCV_CPU(cs);
879 
880     *val = cpu->cfg.mvendorid;
881     return RISCV_EXCP_NONE;
882 }
883 
884 static RISCVException read_marchid(CPURISCVState *env, int csrno,
885                                    target_ulong *val)
886 {
887     CPUState *cs = env_cpu(env);
888     RISCVCPU *cpu = RISCV_CPU(cs);
889 
890     *val = cpu->cfg.marchid;
891     return RISCV_EXCP_NONE;
892 }
893 
894 static RISCVException read_mimpid(CPURISCVState *env, int csrno,
895                                   target_ulong *val)
896 {
897     CPUState *cs = env_cpu(env);
898     RISCVCPU *cpu = RISCV_CPU(cs);
899 
900     *val = cpu->cfg.mimpid;
901     return RISCV_EXCP_NONE;
902 }
903 
904 static RISCVException read_mhartid(CPURISCVState *env, int csrno,
905                                    target_ulong *val)
906 {
907     *val = env->mhartid;
908     return RISCV_EXCP_NONE;
909 }
910 
911 /* Machine Trap Setup */
912 
913 /* We do not store SD explicitly, only compute it on demand. */
914 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status)
915 {
916     if ((status & MSTATUS_FS) == MSTATUS_FS ||
917         (status & MSTATUS_VS) == MSTATUS_VS ||
918         (status & MSTATUS_XS) == MSTATUS_XS) {
919         switch (xl) {
920         case MXL_RV32:
921             return status | MSTATUS32_SD;
922         case MXL_RV64:
923             return status | MSTATUS64_SD;
924         case MXL_RV128:
925             return MSTATUSH128_SD;
926         default:
927             g_assert_not_reached();
928         }
929     }
930     return status;
931 }
932 
933 static RISCVException read_mstatus(CPURISCVState *env, int csrno,
934                                    target_ulong *val)
935 {
936     *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus);
937     return RISCV_EXCP_NONE;
938 }
939 
940 static int validate_vm(CPURISCVState *env, target_ulong vm)
941 {
942     if (riscv_cpu_mxl(env) == MXL_RV32) {
943         return valid_vm_1_10_32[vm & 0xf];
944     } else {
945         return valid_vm_1_10_64[vm & 0xf];
946     }
947 }
948 
949 static RISCVException write_mstatus(CPURISCVState *env, int csrno,
950                                     target_ulong val)
951 {
952     uint64_t mstatus = env->mstatus;
953     uint64_t mask = 0;
954     RISCVMXL xl = riscv_cpu_mxl(env);
955 
956     /* flush tlb on mstatus fields that affect VM */
957     if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV |
958             MSTATUS_MPRV | MSTATUS_SUM)) {
959         tlb_flush(env_cpu(env));
960     }
961     mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE |
962         MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM |
963         MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR |
964         MSTATUS_TW | MSTATUS_VS;
965 
966     if (riscv_has_ext(env, RVF)) {
967         mask |= MSTATUS_FS;
968     }
969 
970     if (xl != MXL_RV32 || env->debugger) {
971         /*
972          * RV32: MPV and GVA are not in mstatus. The current plan is to
973          * add them to mstatush. For now, we just don't support it.
974          */
975         mask |= MSTATUS_MPV | MSTATUS_GVA;
976         if ((val & MSTATUS64_UXL) != 0) {
977             mask |= MSTATUS64_UXL;
978         }
979     }
980 
981     mstatus = (mstatus & ~mask) | (val & mask);
982 
983     if (xl > MXL_RV32) {
984         /* SXL field is for now read only */
985         mstatus = set_field(mstatus, MSTATUS64_SXL, xl);
986     }
987     env->mstatus = mstatus;
988     env->xl = cpu_recompute_xl(env);
989 
990     return RISCV_EXCP_NONE;
991 }
992 
993 static RISCVException read_mstatush(CPURISCVState *env, int csrno,
994                                     target_ulong *val)
995 {
996     *val = env->mstatus >> 32;
997     return RISCV_EXCP_NONE;
998 }
999 
1000 static RISCVException write_mstatush(CPURISCVState *env, int csrno,
1001                                      target_ulong val)
1002 {
1003     uint64_t valh = (uint64_t)val << 32;
1004     uint64_t mask = MSTATUS_MPV | MSTATUS_GVA;
1005 
1006     if ((valh ^ env->mstatus) & (MSTATUS_MPV)) {
1007         tlb_flush(env_cpu(env));
1008     }
1009 
1010     env->mstatus = (env->mstatus & ~mask) | (valh & mask);
1011 
1012     return RISCV_EXCP_NONE;
1013 }
1014 
1015 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno,
1016                                         Int128 *val)
1017 {
1018     *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus));
1019     return RISCV_EXCP_NONE;
1020 }
1021 
1022 static RISCVException read_misa_i128(CPURISCVState *env, int csrno,
1023                                      Int128 *val)
1024 {
1025     *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62);
1026     return RISCV_EXCP_NONE;
1027 }
1028 
1029 static RISCVException read_misa(CPURISCVState *env, int csrno,
1030                                 target_ulong *val)
1031 {
1032     target_ulong misa;
1033 
1034     switch (env->misa_mxl) {
1035     case MXL_RV32:
1036         misa = (target_ulong)MXL_RV32 << 30;
1037         break;
1038 #ifdef TARGET_RISCV64
1039     case MXL_RV64:
1040         misa = (target_ulong)MXL_RV64 << 62;
1041         break;
1042 #endif
1043     default:
1044         g_assert_not_reached();
1045     }
1046 
1047     *val = misa | env->misa_ext;
1048     return RISCV_EXCP_NONE;
1049 }
1050 
1051 static RISCVException write_misa(CPURISCVState *env, int csrno,
1052                                  target_ulong val)
1053 {
1054     if (!riscv_feature(env, RISCV_FEATURE_MISA)) {
1055         /* drop write to misa */
1056         return RISCV_EXCP_NONE;
1057     }
1058 
1059     /* 'I' or 'E' must be present */
1060     if (!(val & (RVI | RVE))) {
1061         /* It is not, drop write to misa */
1062         return RISCV_EXCP_NONE;
1063     }
1064 
1065     /* 'E' excludes all other extensions */
1066     if (val & RVE) {
1067         /* when we support 'E' we can do "val = RVE;" however
1068          * for now we just drop writes if 'E' is present.
1069          */
1070         return RISCV_EXCP_NONE;
1071     }
1072 
1073     /*
1074      * misa.MXL writes are not supported by QEMU.
1075      * Drop writes to those bits.
1076      */
1077 
1078     /* Mask extensions that are not supported by this hart */
1079     val &= env->misa_ext_mask;
1080 
1081     /* Mask extensions that are not supported by QEMU */
1082     val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV);
1083 
1084     /* 'D' depends on 'F', so clear 'D' if 'F' is not present */
1085     if ((val & RVD) && !(val & RVF)) {
1086         val &= ~RVD;
1087     }
1088 
1089     /* Suppress 'C' if next instruction is not aligned
1090      * TODO: this should check next_pc
1091      */
1092     if ((val & RVC) && (GETPC() & ~3) != 0) {
1093         val &= ~RVC;
1094     }
1095 
1096     /* If nothing changed, do nothing. */
1097     if (val == env->misa_ext) {
1098         return RISCV_EXCP_NONE;
1099     }
1100 
1101     if (!(val & RVF)) {
1102         env->mstatus &= ~MSTATUS_FS;
1103     }
1104 
1105     /* flush translation cache */
1106     tb_flush(env_cpu(env));
1107     env->misa_ext = val;
1108     env->xl = riscv_cpu_mxl(env);
1109     return RISCV_EXCP_NONE;
1110 }
1111 
1112 static RISCVException read_medeleg(CPURISCVState *env, int csrno,
1113                                    target_ulong *val)
1114 {
1115     *val = env->medeleg;
1116     return RISCV_EXCP_NONE;
1117 }
1118 
1119 static RISCVException write_medeleg(CPURISCVState *env, int csrno,
1120                                     target_ulong val)
1121 {
1122     env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS);
1123     return RISCV_EXCP_NONE;
1124 }
1125 
1126 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno,
1127                                     uint64_t *ret_val,
1128                                     uint64_t new_val, uint64_t wr_mask)
1129 {
1130     uint64_t mask = wr_mask & delegable_ints;
1131 
1132     if (ret_val) {
1133         *ret_val = env->mideleg;
1134     }
1135 
1136     env->mideleg = (env->mideleg & ~mask) | (new_val & mask);
1137 
1138     if (riscv_has_ext(env, RVH)) {
1139         env->mideleg |= HS_MODE_INTERRUPTS;
1140     }
1141 
1142     return RISCV_EXCP_NONE;
1143 }
1144 
1145 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno,
1146                                   target_ulong *ret_val,
1147                                   target_ulong new_val, target_ulong wr_mask)
1148 {
1149     uint64_t rval;
1150     RISCVException ret;
1151 
1152     ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask);
1153     if (ret_val) {
1154         *ret_val = rval;
1155     }
1156 
1157     return ret;
1158 }
1159 
1160 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno,
1161                                    target_ulong *ret_val,
1162                                    target_ulong new_val,
1163                                    target_ulong wr_mask)
1164 {
1165     uint64_t rval;
1166     RISCVException ret;
1167 
1168     ret = rmw_mideleg64(env, csrno, &rval,
1169         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1170     if (ret_val) {
1171         *ret_val = rval >> 32;
1172     }
1173 
1174     return ret;
1175 }
1176 
1177 static RISCVException rmw_mie64(CPURISCVState *env, int csrno,
1178                                 uint64_t *ret_val,
1179                                 uint64_t new_val, uint64_t wr_mask)
1180 {
1181     uint64_t mask = wr_mask & all_ints;
1182 
1183     if (ret_val) {
1184         *ret_val = env->mie;
1185     }
1186 
1187     env->mie = (env->mie & ~mask) | (new_val & mask);
1188 
1189     if (!riscv_has_ext(env, RVH)) {
1190         env->mie &= ~((uint64_t)MIP_SGEIP);
1191     }
1192 
1193     return RISCV_EXCP_NONE;
1194 }
1195 
1196 static RISCVException rmw_mie(CPURISCVState *env, int csrno,
1197                               target_ulong *ret_val,
1198                               target_ulong new_val, target_ulong wr_mask)
1199 {
1200     uint64_t rval;
1201     RISCVException ret;
1202 
1203     ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask);
1204     if (ret_val) {
1205         *ret_val = rval;
1206     }
1207 
1208     return ret;
1209 }
1210 
1211 static RISCVException rmw_mieh(CPURISCVState *env, int csrno,
1212                                target_ulong *ret_val,
1213                                target_ulong new_val, target_ulong wr_mask)
1214 {
1215     uint64_t rval;
1216     RISCVException ret;
1217 
1218     ret = rmw_mie64(env, csrno, &rval,
1219         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1220     if (ret_val) {
1221         *ret_val = rval >> 32;
1222     }
1223 
1224     return ret;
1225 }
1226 
1227 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val)
1228 {
1229     int irq;
1230     uint8_t iprio;
1231 
1232     irq = riscv_cpu_mirq_pending(env);
1233     if (irq <= 0 || irq > 63) {
1234         *val = 0;
1235     } else {
1236         iprio = env->miprio[irq];
1237         if (!iprio) {
1238             if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) {
1239                 iprio = IPRIO_MMAXIPRIO;
1240             }
1241         }
1242         *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT;
1243         *val |= iprio;
1244     }
1245 
1246     return RISCV_EXCP_NONE;
1247 }
1248 
1249 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno)
1250 {
1251     if (!riscv_cpu_virt_enabled(env)) {
1252         return csrno;
1253     }
1254 
1255     switch (csrno) {
1256     case CSR_SISELECT:
1257         return CSR_VSISELECT;
1258     case CSR_SIREG:
1259         return CSR_VSIREG;
1260     case CSR_STOPEI:
1261         return CSR_VSTOPEI;
1262     default:
1263         return csrno;
1264     };
1265 }
1266 
1267 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val,
1268                         target_ulong new_val, target_ulong wr_mask)
1269 {
1270     target_ulong *iselect;
1271 
1272     /* Translate CSR number for VS-mode */
1273     csrno = aia_xlate_vs_csrno(env, csrno);
1274 
1275     /* Find the iselect CSR based on CSR number */
1276     switch (csrno) {
1277     case CSR_MISELECT:
1278         iselect = &env->miselect;
1279         break;
1280     case CSR_SISELECT:
1281         iselect = &env->siselect;
1282         break;
1283     case CSR_VSISELECT:
1284         iselect = &env->vsiselect;
1285         break;
1286     default:
1287          return RISCV_EXCP_ILLEGAL_INST;
1288     };
1289 
1290     if (val) {
1291         *val = *iselect;
1292     }
1293 
1294     wr_mask &= ISELECT_MASK;
1295     if (wr_mask) {
1296         *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask);
1297     }
1298 
1299     return RISCV_EXCP_NONE;
1300 }
1301 
1302 static int rmw_iprio(target_ulong xlen,
1303                      target_ulong iselect, uint8_t *iprio,
1304                      target_ulong *val, target_ulong new_val,
1305                      target_ulong wr_mask, int ext_irq_no)
1306 {
1307     int i, firq, nirqs;
1308     target_ulong old_val;
1309 
1310     if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) {
1311         return -EINVAL;
1312     }
1313     if (xlen != 32 && iselect & 0x1) {
1314         return -EINVAL;
1315     }
1316 
1317     nirqs = 4 * (xlen / 32);
1318     firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs);
1319 
1320     old_val = 0;
1321     for (i = 0; i < nirqs; i++) {
1322         old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i);
1323     }
1324 
1325     if (val) {
1326         *val = old_val;
1327     }
1328 
1329     if (wr_mask) {
1330         new_val = (old_val & ~wr_mask) | (new_val & wr_mask);
1331         for (i = 0; i < nirqs; i++) {
1332             /*
1333              * M-level and S-level external IRQ priority always read-only
1334              * zero. This means default priority order is always preferred
1335              * for M-level and S-level external IRQs.
1336              */
1337             if ((firq + i) == ext_irq_no) {
1338                 continue;
1339             }
1340             iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff;
1341         }
1342     }
1343 
1344     return 0;
1345 }
1346 
1347 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val,
1348                      target_ulong new_val, target_ulong wr_mask)
1349 {
1350     bool virt;
1351     uint8_t *iprio;
1352     int ret = -EINVAL;
1353     target_ulong priv, isel, vgein;
1354 
1355     /* Translate CSR number for VS-mode */
1356     csrno = aia_xlate_vs_csrno(env, csrno);
1357 
1358     /* Decode register details from CSR number */
1359     virt = false;
1360     switch (csrno) {
1361     case CSR_MIREG:
1362         iprio = env->miprio;
1363         isel = env->miselect;
1364         priv = PRV_M;
1365         break;
1366     case CSR_SIREG:
1367         iprio = env->siprio;
1368         isel = env->siselect;
1369         priv = PRV_S;
1370         break;
1371     case CSR_VSIREG:
1372         iprio = env->hviprio;
1373         isel = env->vsiselect;
1374         priv = PRV_S;
1375         virt = true;
1376         break;
1377     default:
1378          goto done;
1379     };
1380 
1381     /* Find the selected guest interrupt file */
1382     vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0;
1383 
1384     if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) {
1385         /* Local interrupt priority registers not available for VS-mode */
1386         if (!virt) {
1387             ret = rmw_iprio(riscv_cpu_mxl_bits(env),
1388                             isel, iprio, val, new_val, wr_mask,
1389                             (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT);
1390         }
1391     } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) {
1392         /* IMSIC registers only available when machine implements it. */
1393         if (env->aia_ireg_rmw_fn[priv]) {
1394             /* Selected guest interrupt file should not be zero */
1395             if (virt && (!vgein || env->geilen < vgein)) {
1396                 goto done;
1397             }
1398             /* Call machine specific IMSIC register emulation */
1399             ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv],
1400                                     AIA_MAKE_IREG(isel, priv, virt, vgein,
1401                                                   riscv_cpu_mxl_bits(env)),
1402                                     val, new_val, wr_mask);
1403         }
1404     }
1405 
1406 done:
1407     if (ret) {
1408         return (riscv_cpu_virt_enabled(env) && virt) ?
1409                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
1410     }
1411     return RISCV_EXCP_NONE;
1412 }
1413 
1414 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val,
1415                       target_ulong new_val, target_ulong wr_mask)
1416 {
1417     bool virt;
1418     int ret = -EINVAL;
1419     target_ulong priv, vgein;
1420 
1421     /* Translate CSR number for VS-mode */
1422     csrno = aia_xlate_vs_csrno(env, csrno);
1423 
1424     /* Decode register details from CSR number */
1425     virt = false;
1426     switch (csrno) {
1427     case CSR_MTOPEI:
1428         priv = PRV_M;
1429         break;
1430     case CSR_STOPEI:
1431         priv = PRV_S;
1432         break;
1433     case CSR_VSTOPEI:
1434         priv = PRV_S;
1435         virt = true;
1436         break;
1437     default:
1438         goto done;
1439     };
1440 
1441     /* IMSIC CSRs only available when machine implements IMSIC. */
1442     if (!env->aia_ireg_rmw_fn[priv]) {
1443         goto done;
1444     }
1445 
1446     /* Find the selected guest interrupt file */
1447     vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0;
1448 
1449     /* Selected guest interrupt file should be valid */
1450     if (virt && (!vgein || env->geilen < vgein)) {
1451         goto done;
1452     }
1453 
1454     /* Call machine specific IMSIC register emulation for TOPEI */
1455     ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv],
1456                     AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein,
1457                                   riscv_cpu_mxl_bits(env)),
1458                     val, new_val, wr_mask);
1459 
1460 done:
1461     if (ret) {
1462         return (riscv_cpu_virt_enabled(env) && virt) ?
1463                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
1464     }
1465     return RISCV_EXCP_NONE;
1466 }
1467 
1468 static RISCVException read_mtvec(CPURISCVState *env, int csrno,
1469                                  target_ulong *val)
1470 {
1471     *val = env->mtvec;
1472     return RISCV_EXCP_NONE;
1473 }
1474 
1475 static RISCVException write_mtvec(CPURISCVState *env, int csrno,
1476                                   target_ulong val)
1477 {
1478     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
1479     if ((val & 3) < 2) {
1480         env->mtvec = val;
1481     } else {
1482         qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n");
1483     }
1484     return RISCV_EXCP_NONE;
1485 }
1486 
1487 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno,
1488                                          target_ulong *val)
1489 {
1490     if (env->priv_ver < PRIV_VERSION_1_11_0) {
1491         return RISCV_EXCP_ILLEGAL_INST;
1492     }
1493 
1494     *val = env->mcountinhibit;
1495     return RISCV_EXCP_NONE;
1496 }
1497 
1498 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno,
1499                                           target_ulong val)
1500 {
1501     int cidx;
1502     PMUCTRState *counter;
1503 
1504     if (env->priv_ver < PRIV_VERSION_1_11_0) {
1505         return RISCV_EXCP_ILLEGAL_INST;
1506     }
1507 
1508     env->mcountinhibit = val;
1509 
1510     /* Check if any other counter is also monitoring cycles/instructions */
1511     for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) {
1512         if (!get_field(env->mcountinhibit, BIT(cidx))) {
1513             counter = &env->pmu_ctrs[cidx];
1514             counter->started = true;
1515         }
1516     }
1517 
1518     return RISCV_EXCP_NONE;
1519 }
1520 
1521 static RISCVException read_mcounteren(CPURISCVState *env, int csrno,
1522                                       target_ulong *val)
1523 {
1524     *val = env->mcounteren;
1525     return RISCV_EXCP_NONE;
1526 }
1527 
1528 static RISCVException write_mcounteren(CPURISCVState *env, int csrno,
1529                                        target_ulong val)
1530 {
1531     env->mcounteren = val;
1532     return RISCV_EXCP_NONE;
1533 }
1534 
1535 /* Machine Trap Handling */
1536 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno,
1537                                          Int128 *val)
1538 {
1539     *val = int128_make128(env->mscratch, env->mscratchh);
1540     return RISCV_EXCP_NONE;
1541 }
1542 
1543 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno,
1544                                           Int128 val)
1545 {
1546     env->mscratch = int128_getlo(val);
1547     env->mscratchh = int128_gethi(val);
1548     return RISCV_EXCP_NONE;
1549 }
1550 
1551 static RISCVException read_mscratch(CPURISCVState *env, int csrno,
1552                                     target_ulong *val)
1553 {
1554     *val = env->mscratch;
1555     return RISCV_EXCP_NONE;
1556 }
1557 
1558 static RISCVException write_mscratch(CPURISCVState *env, int csrno,
1559                                      target_ulong val)
1560 {
1561     env->mscratch = val;
1562     return RISCV_EXCP_NONE;
1563 }
1564 
1565 static RISCVException read_mepc(CPURISCVState *env, int csrno,
1566                                      target_ulong *val)
1567 {
1568     *val = env->mepc;
1569     return RISCV_EXCP_NONE;
1570 }
1571 
1572 static RISCVException write_mepc(CPURISCVState *env, int csrno,
1573                                      target_ulong val)
1574 {
1575     env->mepc = val;
1576     return RISCV_EXCP_NONE;
1577 }
1578 
1579 static RISCVException read_mcause(CPURISCVState *env, int csrno,
1580                                      target_ulong *val)
1581 {
1582     *val = env->mcause;
1583     return RISCV_EXCP_NONE;
1584 }
1585 
1586 static RISCVException write_mcause(CPURISCVState *env, int csrno,
1587                                      target_ulong val)
1588 {
1589     env->mcause = val;
1590     return RISCV_EXCP_NONE;
1591 }
1592 
1593 static RISCVException read_mtval(CPURISCVState *env, int csrno,
1594                                  target_ulong *val)
1595 {
1596     *val = env->mtval;
1597     return RISCV_EXCP_NONE;
1598 }
1599 
1600 static RISCVException write_mtval(CPURISCVState *env, int csrno,
1601                                   target_ulong val)
1602 {
1603     env->mtval = val;
1604     return RISCV_EXCP_NONE;
1605 }
1606 
1607 /* Execution environment configuration setup */
1608 static RISCVException read_menvcfg(CPURISCVState *env, int csrno,
1609                                  target_ulong *val)
1610 {
1611     *val = env->menvcfg;
1612     return RISCV_EXCP_NONE;
1613 }
1614 
1615 static RISCVException write_menvcfg(CPURISCVState *env, int csrno,
1616                                   target_ulong val)
1617 {
1618     uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE;
1619 
1620     if (riscv_cpu_mxl(env) == MXL_RV64) {
1621         mask |= MENVCFG_PBMTE | MENVCFG_STCE;
1622     }
1623     env->menvcfg = (env->menvcfg & ~mask) | (val & mask);
1624 
1625     return RISCV_EXCP_NONE;
1626 }
1627 
1628 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno,
1629                                  target_ulong *val)
1630 {
1631     *val = env->menvcfg >> 32;
1632     return RISCV_EXCP_NONE;
1633 }
1634 
1635 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno,
1636                                   target_ulong val)
1637 {
1638     uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE;
1639     uint64_t valh = (uint64_t)val << 32;
1640 
1641     env->menvcfg = (env->menvcfg & ~mask) | (valh & mask);
1642 
1643     return RISCV_EXCP_NONE;
1644 }
1645 
1646 static RISCVException read_senvcfg(CPURISCVState *env, int csrno,
1647                                  target_ulong *val)
1648 {
1649     *val = env->senvcfg;
1650     return RISCV_EXCP_NONE;
1651 }
1652 
1653 static RISCVException write_senvcfg(CPURISCVState *env, int csrno,
1654                                   target_ulong val)
1655 {
1656     uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE;
1657 
1658     env->senvcfg = (env->senvcfg & ~mask) | (val & mask);
1659 
1660     return RISCV_EXCP_NONE;
1661 }
1662 
1663 static RISCVException read_henvcfg(CPURISCVState *env, int csrno,
1664                                  target_ulong *val)
1665 {
1666     *val = env->henvcfg;
1667     return RISCV_EXCP_NONE;
1668 }
1669 
1670 static RISCVException write_henvcfg(CPURISCVState *env, int csrno,
1671                                   target_ulong val)
1672 {
1673     uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE;
1674 
1675     if (riscv_cpu_mxl(env) == MXL_RV64) {
1676         mask |= HENVCFG_PBMTE | HENVCFG_STCE;
1677     }
1678 
1679     env->henvcfg = (env->henvcfg & ~mask) | (val & mask);
1680 
1681     return RISCV_EXCP_NONE;
1682 }
1683 
1684 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno,
1685                                  target_ulong *val)
1686 {
1687     *val = env->henvcfg >> 32;
1688     return RISCV_EXCP_NONE;
1689 }
1690 
1691 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno,
1692                                   target_ulong val)
1693 {
1694     uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE;
1695     uint64_t valh = (uint64_t)val << 32;
1696 
1697     env->henvcfg = (env->henvcfg & ~mask) | (valh & mask);
1698 
1699     return RISCV_EXCP_NONE;
1700 }
1701 
1702 static RISCVException rmw_mip64(CPURISCVState *env, int csrno,
1703                                 uint64_t *ret_val,
1704                                 uint64_t new_val, uint64_t wr_mask)
1705 {
1706     RISCVCPU *cpu = env_archcpu(env);
1707     uint64_t old_mip, mask = wr_mask & delegable_ints;
1708     uint32_t gin;
1709 
1710     if (mask & MIP_SEIP) {
1711         env->software_seip = new_val & MIP_SEIP;
1712         new_val |= env->external_seip * MIP_SEIP;
1713     }
1714 
1715     if (mask) {
1716         old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask));
1717     } else {
1718         old_mip = env->mip;
1719     }
1720 
1721     if (csrno != CSR_HVIP) {
1722         gin = get_field(env->hstatus, HSTATUS_VGEIN);
1723         old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0;
1724     }
1725 
1726     if (ret_val) {
1727         *ret_val = old_mip;
1728     }
1729 
1730     return RISCV_EXCP_NONE;
1731 }
1732 
1733 static RISCVException rmw_mip(CPURISCVState *env, int csrno,
1734                               target_ulong *ret_val,
1735                               target_ulong new_val, target_ulong wr_mask)
1736 {
1737     uint64_t rval;
1738     RISCVException ret;
1739 
1740     ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask);
1741     if (ret_val) {
1742         *ret_val = rval;
1743     }
1744 
1745     return ret;
1746 }
1747 
1748 static RISCVException rmw_miph(CPURISCVState *env, int csrno,
1749                                target_ulong *ret_val,
1750                                target_ulong new_val, target_ulong wr_mask)
1751 {
1752     uint64_t rval;
1753     RISCVException ret;
1754 
1755     ret = rmw_mip64(env, csrno, &rval,
1756         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1757     if (ret_val) {
1758         *ret_val = rval >> 32;
1759     }
1760 
1761     return ret;
1762 }
1763 
1764 /* Supervisor Trap Setup */
1765 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno,
1766                                         Int128 *val)
1767 {
1768     uint64_t mask = sstatus_v1_10_mask;
1769     uint64_t sstatus = env->mstatus & mask;
1770     if (env->xl != MXL_RV32 || env->debugger) {
1771         mask |= SSTATUS64_UXL;
1772     }
1773 
1774     *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus));
1775     return RISCV_EXCP_NONE;
1776 }
1777 
1778 static RISCVException read_sstatus(CPURISCVState *env, int csrno,
1779                                    target_ulong *val)
1780 {
1781     target_ulong mask = (sstatus_v1_10_mask);
1782     if (env->xl != MXL_RV32 || env->debugger) {
1783         mask |= SSTATUS64_UXL;
1784     }
1785     /* TODO: Use SXL not MXL. */
1786     *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask);
1787     return RISCV_EXCP_NONE;
1788 }
1789 
1790 static RISCVException write_sstatus(CPURISCVState *env, int csrno,
1791                                     target_ulong val)
1792 {
1793     target_ulong mask = (sstatus_v1_10_mask);
1794 
1795     if (env->xl != MXL_RV32 || env->debugger) {
1796         if ((val & SSTATUS64_UXL) != 0) {
1797             mask |= SSTATUS64_UXL;
1798         }
1799     }
1800     target_ulong newval = (env->mstatus & ~mask) | (val & mask);
1801     return write_mstatus(env, CSR_MSTATUS, newval);
1802 }
1803 
1804 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno,
1805                                  uint64_t *ret_val,
1806                                  uint64_t new_val, uint64_t wr_mask)
1807 {
1808     RISCVException ret;
1809     uint64_t rval, vsbits, mask = env->hideleg & VS_MODE_INTERRUPTS;
1810 
1811     /* Bring VS-level bits to correct position */
1812     vsbits = new_val & (VS_MODE_INTERRUPTS >> 1);
1813     new_val &= ~(VS_MODE_INTERRUPTS >> 1);
1814     new_val |= vsbits << 1;
1815     vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1);
1816     wr_mask &= ~(VS_MODE_INTERRUPTS >> 1);
1817     wr_mask |= vsbits << 1;
1818 
1819     ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask);
1820     if (ret_val) {
1821         rval &= mask;
1822         vsbits = rval & VS_MODE_INTERRUPTS;
1823         rval &= ~VS_MODE_INTERRUPTS;
1824         *ret_val = rval | (vsbits >> 1);
1825     }
1826 
1827     return ret;
1828 }
1829 
1830 static RISCVException rmw_vsie(CPURISCVState *env, int csrno,
1831                                target_ulong *ret_val,
1832                                target_ulong new_val, target_ulong wr_mask)
1833 {
1834     uint64_t rval;
1835     RISCVException ret;
1836 
1837     ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask);
1838     if (ret_val) {
1839         *ret_val = rval;
1840     }
1841 
1842     return ret;
1843 }
1844 
1845 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno,
1846                                 target_ulong *ret_val,
1847                                 target_ulong new_val, target_ulong wr_mask)
1848 {
1849     uint64_t rval;
1850     RISCVException ret;
1851 
1852     ret = rmw_vsie64(env, csrno, &rval,
1853         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1854     if (ret_val) {
1855         *ret_val = rval >> 32;
1856     }
1857 
1858     return ret;
1859 }
1860 
1861 static RISCVException rmw_sie64(CPURISCVState *env, int csrno,
1862                                 uint64_t *ret_val,
1863                                 uint64_t new_val, uint64_t wr_mask)
1864 {
1865     RISCVException ret;
1866     uint64_t mask = env->mideleg & S_MODE_INTERRUPTS;
1867 
1868     if (riscv_cpu_virt_enabled(env)) {
1869         if (env->hvictl & HVICTL_VTI) {
1870             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
1871         }
1872         ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask);
1873     } else {
1874         ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask);
1875     }
1876 
1877     if (ret_val) {
1878         *ret_val &= mask;
1879     }
1880 
1881     return ret;
1882 }
1883 
1884 static RISCVException rmw_sie(CPURISCVState *env, int csrno,
1885                               target_ulong *ret_val,
1886                               target_ulong new_val, target_ulong wr_mask)
1887 {
1888     uint64_t rval;
1889     RISCVException ret;
1890 
1891     ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask);
1892     if (ret == RISCV_EXCP_NONE && ret_val) {
1893         *ret_val = rval;
1894     }
1895 
1896     return ret;
1897 }
1898 
1899 static RISCVException rmw_sieh(CPURISCVState *env, int csrno,
1900                                target_ulong *ret_val,
1901                                target_ulong new_val, target_ulong wr_mask)
1902 {
1903     uint64_t rval;
1904     RISCVException ret;
1905 
1906     ret = rmw_sie64(env, csrno, &rval,
1907         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
1908     if (ret_val) {
1909         *ret_val = rval >> 32;
1910     }
1911 
1912     return ret;
1913 }
1914 
1915 static RISCVException read_stvec(CPURISCVState *env, int csrno,
1916                                  target_ulong *val)
1917 {
1918     *val = env->stvec;
1919     return RISCV_EXCP_NONE;
1920 }
1921 
1922 static RISCVException write_stvec(CPURISCVState *env, int csrno,
1923                                   target_ulong val)
1924 {
1925     /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
1926     if ((val & 3) < 2) {
1927         env->stvec = val;
1928     } else {
1929         qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n");
1930     }
1931     return RISCV_EXCP_NONE;
1932 }
1933 
1934 static RISCVException read_scounteren(CPURISCVState *env, int csrno,
1935                                       target_ulong *val)
1936 {
1937     *val = env->scounteren;
1938     return RISCV_EXCP_NONE;
1939 }
1940 
1941 static RISCVException write_scounteren(CPURISCVState *env, int csrno,
1942                                        target_ulong val)
1943 {
1944     env->scounteren = val;
1945     return RISCV_EXCP_NONE;
1946 }
1947 
1948 /* Supervisor Trap Handling */
1949 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno,
1950                                          Int128 *val)
1951 {
1952     *val = int128_make128(env->sscratch, env->sscratchh);
1953     return RISCV_EXCP_NONE;
1954 }
1955 
1956 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno,
1957                                           Int128 val)
1958 {
1959     env->sscratch = int128_getlo(val);
1960     env->sscratchh = int128_gethi(val);
1961     return RISCV_EXCP_NONE;
1962 }
1963 
1964 static RISCVException read_sscratch(CPURISCVState *env, int csrno,
1965                                     target_ulong *val)
1966 {
1967     *val = env->sscratch;
1968     return RISCV_EXCP_NONE;
1969 }
1970 
1971 static RISCVException write_sscratch(CPURISCVState *env, int csrno,
1972                                      target_ulong val)
1973 {
1974     env->sscratch = val;
1975     return RISCV_EXCP_NONE;
1976 }
1977 
1978 static RISCVException read_sepc(CPURISCVState *env, int csrno,
1979                                 target_ulong *val)
1980 {
1981     *val = env->sepc;
1982     return RISCV_EXCP_NONE;
1983 }
1984 
1985 static RISCVException write_sepc(CPURISCVState *env, int csrno,
1986                                  target_ulong val)
1987 {
1988     env->sepc = val;
1989     return RISCV_EXCP_NONE;
1990 }
1991 
1992 static RISCVException read_scause(CPURISCVState *env, int csrno,
1993                                   target_ulong *val)
1994 {
1995     *val = env->scause;
1996     return RISCV_EXCP_NONE;
1997 }
1998 
1999 static RISCVException write_scause(CPURISCVState *env, int csrno,
2000                                    target_ulong val)
2001 {
2002     env->scause = val;
2003     return RISCV_EXCP_NONE;
2004 }
2005 
2006 static RISCVException read_stval(CPURISCVState *env, int csrno,
2007                                  target_ulong *val)
2008 {
2009     *val = env->stval;
2010     return RISCV_EXCP_NONE;
2011 }
2012 
2013 static RISCVException write_stval(CPURISCVState *env, int csrno,
2014                                   target_ulong val)
2015 {
2016     env->stval = val;
2017     return RISCV_EXCP_NONE;
2018 }
2019 
2020 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno,
2021                                  uint64_t *ret_val,
2022                                  uint64_t new_val, uint64_t wr_mask)
2023 {
2024     RISCVException ret;
2025     uint64_t rval, vsbits, mask = env->hideleg & vsip_writable_mask;
2026 
2027     /* Bring VS-level bits to correct position */
2028     vsbits = new_val & (VS_MODE_INTERRUPTS >> 1);
2029     new_val &= ~(VS_MODE_INTERRUPTS >> 1);
2030     new_val |= vsbits << 1;
2031     vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1);
2032     wr_mask &= ~(VS_MODE_INTERRUPTS >> 1);
2033     wr_mask |= vsbits << 1;
2034 
2035     ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask & mask);
2036     if (ret_val) {
2037         rval &= mask;
2038         vsbits = rval & VS_MODE_INTERRUPTS;
2039         rval &= ~VS_MODE_INTERRUPTS;
2040         *ret_val = rval | (vsbits >> 1);
2041     }
2042 
2043     return ret;
2044 }
2045 
2046 static RISCVException rmw_vsip(CPURISCVState *env, int csrno,
2047                                target_ulong *ret_val,
2048                                target_ulong new_val, target_ulong wr_mask)
2049 {
2050     uint64_t rval;
2051     RISCVException ret;
2052 
2053     ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask);
2054     if (ret_val) {
2055         *ret_val = rval;
2056     }
2057 
2058     return ret;
2059 }
2060 
2061 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno,
2062                                 target_ulong *ret_val,
2063                                 target_ulong new_val, target_ulong wr_mask)
2064 {
2065     uint64_t rval;
2066     RISCVException ret;
2067 
2068     ret = rmw_vsip64(env, csrno, &rval,
2069         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2070     if (ret_val) {
2071         *ret_val = rval >> 32;
2072     }
2073 
2074     return ret;
2075 }
2076 
2077 static RISCVException rmw_sip64(CPURISCVState *env, int csrno,
2078                                 uint64_t *ret_val,
2079                                 uint64_t new_val, uint64_t wr_mask)
2080 {
2081     RISCVException ret;
2082     uint64_t mask = env->mideleg & sip_writable_mask;
2083 
2084     if (riscv_cpu_virt_enabled(env)) {
2085         if (env->hvictl & HVICTL_VTI) {
2086             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
2087         }
2088         ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask);
2089     } else {
2090         ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask);
2091     }
2092 
2093     if (ret_val) {
2094         *ret_val &= env->mideleg & S_MODE_INTERRUPTS;
2095     }
2096 
2097     return ret;
2098 }
2099 
2100 static RISCVException rmw_sip(CPURISCVState *env, int csrno,
2101                               target_ulong *ret_val,
2102                               target_ulong new_val, target_ulong wr_mask)
2103 {
2104     uint64_t rval;
2105     RISCVException ret;
2106 
2107     ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask);
2108     if (ret_val) {
2109         *ret_val = rval;
2110     }
2111 
2112     return ret;
2113 }
2114 
2115 static RISCVException rmw_siph(CPURISCVState *env, int csrno,
2116                                target_ulong *ret_val,
2117                                target_ulong new_val, target_ulong wr_mask)
2118 {
2119     uint64_t rval;
2120     RISCVException ret;
2121 
2122     ret = rmw_sip64(env, csrno, &rval,
2123         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2124     if (ret_val) {
2125         *ret_val = rval >> 32;
2126     }
2127 
2128     return ret;
2129 }
2130 
2131 /* Supervisor Protection and Translation */
2132 static RISCVException read_satp(CPURISCVState *env, int csrno,
2133                                 target_ulong *val)
2134 {
2135     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
2136         *val = 0;
2137         return RISCV_EXCP_NONE;
2138     }
2139 
2140     if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
2141         return RISCV_EXCP_ILLEGAL_INST;
2142     } else {
2143         *val = env->satp;
2144     }
2145 
2146     return RISCV_EXCP_NONE;
2147 }
2148 
2149 static RISCVException write_satp(CPURISCVState *env, int csrno,
2150                                  target_ulong val)
2151 {
2152     target_ulong vm, mask;
2153 
2154     if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
2155         return RISCV_EXCP_NONE;
2156     }
2157 
2158     if (riscv_cpu_mxl(env) == MXL_RV32) {
2159         vm = validate_vm(env, get_field(val, SATP32_MODE));
2160         mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN);
2161     } else {
2162         vm = validate_vm(env, get_field(val, SATP64_MODE));
2163         mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN);
2164     }
2165 
2166     if (vm && mask) {
2167         if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
2168             return RISCV_EXCP_ILLEGAL_INST;
2169         } else {
2170             /*
2171              * The ISA defines SATP.MODE=Bare as "no translation", but we still
2172              * pass these through QEMU's TLB emulation as it improves
2173              * performance.  Flushing the TLB on SATP writes with paging
2174              * enabled avoids leaking those invalid cached mappings.
2175              */
2176             tlb_flush(env_cpu(env));
2177             env->satp = val;
2178         }
2179     }
2180     return RISCV_EXCP_NONE;
2181 }
2182 
2183 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val)
2184 {
2185     int irq, ret;
2186     target_ulong topei;
2187     uint64_t vseip, vsgein;
2188     uint32_t iid, iprio, hviid, hviprio, gein;
2189     uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS];
2190 
2191     gein = get_field(env->hstatus, HSTATUS_VGEIN);
2192     hviid = get_field(env->hvictl, HVICTL_IID);
2193     hviprio = get_field(env->hvictl, HVICTL_IPRIO);
2194 
2195     if (gein) {
2196         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
2197         vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP;
2198         if (gein <= env->geilen && vseip) {
2199             siid[scount] = IRQ_S_EXT;
2200             siprio[scount] = IPRIO_MMAXIPRIO + 1;
2201             if (env->aia_ireg_rmw_fn[PRV_S]) {
2202                 /*
2203                  * Call machine specific IMSIC register emulation for
2204                  * reading TOPEI.
2205                  */
2206                 ret = env->aia_ireg_rmw_fn[PRV_S](
2207                         env->aia_ireg_rmw_fn_arg[PRV_S],
2208                         AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein,
2209                                       riscv_cpu_mxl_bits(env)),
2210                         &topei, 0, 0);
2211                 if (!ret && topei) {
2212                     siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK;
2213                 }
2214             }
2215             scount++;
2216         }
2217     } else {
2218         if (hviid == IRQ_S_EXT && hviprio) {
2219             siid[scount] = IRQ_S_EXT;
2220             siprio[scount] = hviprio;
2221             scount++;
2222         }
2223     }
2224 
2225     if (env->hvictl & HVICTL_VTI) {
2226         if (hviid != IRQ_S_EXT) {
2227             siid[scount] = hviid;
2228             siprio[scount] = hviprio;
2229             scount++;
2230         }
2231     } else {
2232         irq = riscv_cpu_vsirq_pending(env);
2233         if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) {
2234             siid[scount] = irq;
2235             siprio[scount] = env->hviprio[irq];
2236             scount++;
2237         }
2238     }
2239 
2240     iid = 0;
2241     iprio = UINT_MAX;
2242     for (s = 0; s < scount; s++) {
2243         if (siprio[s] < iprio) {
2244             iid = siid[s];
2245             iprio = siprio[s];
2246         }
2247     }
2248 
2249     if (iid) {
2250         if (env->hvictl & HVICTL_IPRIOM) {
2251             if (iprio > IPRIO_MMAXIPRIO) {
2252                 iprio = IPRIO_MMAXIPRIO;
2253             }
2254             if (!iprio) {
2255                 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) {
2256                     iprio = IPRIO_MMAXIPRIO;
2257                 }
2258             }
2259         } else {
2260             iprio = 1;
2261         }
2262     } else {
2263         iprio = 0;
2264     }
2265 
2266     *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT;
2267     *val |= iprio;
2268     return RISCV_EXCP_NONE;
2269 }
2270 
2271 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val)
2272 {
2273     int irq;
2274     uint8_t iprio;
2275 
2276     if (riscv_cpu_virt_enabled(env)) {
2277         return read_vstopi(env, CSR_VSTOPI, val);
2278     }
2279 
2280     irq = riscv_cpu_sirq_pending(env);
2281     if (irq <= 0 || irq > 63) {
2282         *val = 0;
2283     } else {
2284         iprio = env->siprio[irq];
2285         if (!iprio) {
2286             if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) {
2287                 iprio = IPRIO_MMAXIPRIO;
2288            }
2289         }
2290         *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT;
2291         *val |= iprio;
2292     }
2293 
2294     return RISCV_EXCP_NONE;
2295 }
2296 
2297 /* Hypervisor Extensions */
2298 static RISCVException read_hstatus(CPURISCVState *env, int csrno,
2299                                    target_ulong *val)
2300 {
2301     *val = env->hstatus;
2302     if (riscv_cpu_mxl(env) != MXL_RV32) {
2303         /* We only support 64-bit VSXL */
2304         *val = set_field(*val, HSTATUS_VSXL, 2);
2305     }
2306     /* We only support little endian */
2307     *val = set_field(*val, HSTATUS_VSBE, 0);
2308     return RISCV_EXCP_NONE;
2309 }
2310 
2311 static RISCVException write_hstatus(CPURISCVState *env, int csrno,
2312                                     target_ulong val)
2313 {
2314     env->hstatus = val;
2315     if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) {
2316         qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options.");
2317     }
2318     if (get_field(val, HSTATUS_VSBE) != 0) {
2319         qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests.");
2320     }
2321     return RISCV_EXCP_NONE;
2322 }
2323 
2324 static RISCVException read_hedeleg(CPURISCVState *env, int csrno,
2325                                    target_ulong *val)
2326 {
2327     *val = env->hedeleg;
2328     return RISCV_EXCP_NONE;
2329 }
2330 
2331 static RISCVException write_hedeleg(CPURISCVState *env, int csrno,
2332                                     target_ulong val)
2333 {
2334     env->hedeleg = val & vs_delegable_excps;
2335     return RISCV_EXCP_NONE;
2336 }
2337 
2338 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno,
2339                                     uint64_t *ret_val,
2340                                     uint64_t new_val, uint64_t wr_mask)
2341 {
2342     uint64_t mask = wr_mask & vs_delegable_ints;
2343 
2344     if (ret_val) {
2345         *ret_val = env->hideleg & vs_delegable_ints;
2346     }
2347 
2348     env->hideleg = (env->hideleg & ~mask) | (new_val & mask);
2349     return RISCV_EXCP_NONE;
2350 }
2351 
2352 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno,
2353                                   target_ulong *ret_val,
2354                                   target_ulong new_val, target_ulong wr_mask)
2355 {
2356     uint64_t rval;
2357     RISCVException ret;
2358 
2359     ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask);
2360     if (ret_val) {
2361         *ret_val = rval;
2362     }
2363 
2364     return ret;
2365 }
2366 
2367 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno,
2368                                    target_ulong *ret_val,
2369                                    target_ulong new_val, target_ulong wr_mask)
2370 {
2371     uint64_t rval;
2372     RISCVException ret;
2373 
2374     ret = rmw_hideleg64(env, csrno, &rval,
2375         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2376     if (ret_val) {
2377         *ret_val = rval >> 32;
2378     }
2379 
2380     return ret;
2381 }
2382 
2383 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno,
2384                                  uint64_t *ret_val,
2385                                  uint64_t new_val, uint64_t wr_mask)
2386 {
2387     RISCVException ret;
2388 
2389     ret = rmw_mip64(env, csrno, ret_val, new_val,
2390                     wr_mask & hvip_writable_mask);
2391     if (ret_val) {
2392         *ret_val &= VS_MODE_INTERRUPTS;
2393     }
2394 
2395     return ret;
2396 }
2397 
2398 static RISCVException rmw_hvip(CPURISCVState *env, int csrno,
2399                                target_ulong *ret_val,
2400                                target_ulong new_val, target_ulong wr_mask)
2401 {
2402     uint64_t rval;
2403     RISCVException ret;
2404 
2405     ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask);
2406     if (ret_val) {
2407         *ret_val = rval;
2408     }
2409 
2410     return ret;
2411 }
2412 
2413 static RISCVException rmw_hviph(CPURISCVState *env, int csrno,
2414                                 target_ulong *ret_val,
2415                                 target_ulong new_val, target_ulong wr_mask)
2416 {
2417     uint64_t rval;
2418     RISCVException ret;
2419 
2420     ret = rmw_hvip64(env, csrno, &rval,
2421         ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32);
2422     if (ret_val) {
2423         *ret_val = rval >> 32;
2424     }
2425 
2426     return ret;
2427 }
2428 
2429 static RISCVException rmw_hip(CPURISCVState *env, int csrno,
2430                               target_ulong *ret_value,
2431                               target_ulong new_value, target_ulong write_mask)
2432 {
2433     int ret = rmw_mip(env, csrno, ret_value, new_value,
2434                       write_mask & hip_writable_mask);
2435 
2436     if (ret_value) {
2437         *ret_value &= HS_MODE_INTERRUPTS;
2438     }
2439     return ret;
2440 }
2441 
2442 static RISCVException rmw_hie(CPURISCVState *env, int csrno,
2443                               target_ulong *ret_val,
2444                               target_ulong new_val, target_ulong wr_mask)
2445 {
2446     uint64_t rval;
2447     RISCVException ret;
2448 
2449     ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS);
2450     if (ret_val) {
2451         *ret_val = rval & HS_MODE_INTERRUPTS;
2452     }
2453 
2454     return ret;
2455 }
2456 
2457 static RISCVException read_hcounteren(CPURISCVState *env, int csrno,
2458                                       target_ulong *val)
2459 {
2460     *val = env->hcounteren;
2461     return RISCV_EXCP_NONE;
2462 }
2463 
2464 static RISCVException write_hcounteren(CPURISCVState *env, int csrno,
2465                                        target_ulong val)
2466 {
2467     env->hcounteren = val;
2468     return RISCV_EXCP_NONE;
2469 }
2470 
2471 static RISCVException read_hgeie(CPURISCVState *env, int csrno,
2472                                  target_ulong *val)
2473 {
2474     if (val) {
2475         *val = env->hgeie;
2476     }
2477     return RISCV_EXCP_NONE;
2478 }
2479 
2480 static RISCVException write_hgeie(CPURISCVState *env, int csrno,
2481                                   target_ulong val)
2482 {
2483     /* Only GEILEN:1 bits implemented and BIT0 is never implemented */
2484     val &= ((((target_ulong)1) << env->geilen) - 1) << 1;
2485     env->hgeie = val;
2486     /* Update mip.SGEIP bit */
2487     riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP,
2488                          BOOL_TO_MASK(!!(env->hgeie & env->hgeip)));
2489     return RISCV_EXCP_NONE;
2490 }
2491 
2492 static RISCVException read_htval(CPURISCVState *env, int csrno,
2493                                  target_ulong *val)
2494 {
2495     *val = env->htval;
2496     return RISCV_EXCP_NONE;
2497 }
2498 
2499 static RISCVException write_htval(CPURISCVState *env, int csrno,
2500                                   target_ulong val)
2501 {
2502     env->htval = val;
2503     return RISCV_EXCP_NONE;
2504 }
2505 
2506 static RISCVException read_htinst(CPURISCVState *env, int csrno,
2507                                   target_ulong *val)
2508 {
2509     *val = env->htinst;
2510     return RISCV_EXCP_NONE;
2511 }
2512 
2513 static RISCVException write_htinst(CPURISCVState *env, int csrno,
2514                                    target_ulong val)
2515 {
2516     return RISCV_EXCP_NONE;
2517 }
2518 
2519 static RISCVException read_hgeip(CPURISCVState *env, int csrno,
2520                                  target_ulong *val)
2521 {
2522     if (val) {
2523         *val = env->hgeip;
2524     }
2525     return RISCV_EXCP_NONE;
2526 }
2527 
2528 static RISCVException read_hgatp(CPURISCVState *env, int csrno,
2529                                  target_ulong *val)
2530 {
2531     *val = env->hgatp;
2532     return RISCV_EXCP_NONE;
2533 }
2534 
2535 static RISCVException write_hgatp(CPURISCVState *env, int csrno,
2536                                   target_ulong val)
2537 {
2538     env->hgatp = val;
2539     return RISCV_EXCP_NONE;
2540 }
2541 
2542 static RISCVException read_htimedelta(CPURISCVState *env, int csrno,
2543                                       target_ulong *val)
2544 {
2545     if (!env->rdtime_fn) {
2546         return RISCV_EXCP_ILLEGAL_INST;
2547     }
2548 
2549     *val = env->htimedelta;
2550     return RISCV_EXCP_NONE;
2551 }
2552 
2553 static RISCVException write_htimedelta(CPURISCVState *env, int csrno,
2554                                        target_ulong val)
2555 {
2556     if (!env->rdtime_fn) {
2557         return RISCV_EXCP_ILLEGAL_INST;
2558     }
2559 
2560     if (riscv_cpu_mxl(env) == MXL_RV32) {
2561         env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val);
2562     } else {
2563         env->htimedelta = val;
2564     }
2565     return RISCV_EXCP_NONE;
2566 }
2567 
2568 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno,
2569                                        target_ulong *val)
2570 {
2571     if (!env->rdtime_fn) {
2572         return RISCV_EXCP_ILLEGAL_INST;
2573     }
2574 
2575     *val = env->htimedelta >> 32;
2576     return RISCV_EXCP_NONE;
2577 }
2578 
2579 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno,
2580                                         target_ulong val)
2581 {
2582     if (!env->rdtime_fn) {
2583         return RISCV_EXCP_ILLEGAL_INST;
2584     }
2585 
2586     env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val);
2587     return RISCV_EXCP_NONE;
2588 }
2589 
2590 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val)
2591 {
2592     *val = env->hvictl;
2593     return RISCV_EXCP_NONE;
2594 }
2595 
2596 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val)
2597 {
2598     env->hvictl = val & HVICTL_VALID_MASK;
2599     return RISCV_EXCP_NONE;
2600 }
2601 
2602 static int read_hvipriox(CPURISCVState *env, int first_index,
2603                          uint8_t *iprio, target_ulong *val)
2604 {
2605     int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32);
2606 
2607     /* First index has to be a multiple of number of irqs per register */
2608     if (first_index % num_irqs) {
2609         return (riscv_cpu_virt_enabled(env)) ?
2610                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
2611     }
2612 
2613     /* Fill-up return value */
2614     *val = 0;
2615     for (i = 0; i < num_irqs; i++) {
2616         if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) {
2617             continue;
2618         }
2619         if (rdzero) {
2620             continue;
2621         }
2622         *val |= ((target_ulong)iprio[irq]) << (i * 8);
2623     }
2624 
2625     return RISCV_EXCP_NONE;
2626 }
2627 
2628 static int write_hvipriox(CPURISCVState *env, int first_index,
2629                           uint8_t *iprio, target_ulong val)
2630 {
2631     int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32);
2632 
2633     /* First index has to be a multiple of number of irqs per register */
2634     if (first_index % num_irqs) {
2635         return (riscv_cpu_virt_enabled(env)) ?
2636                RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST;
2637     }
2638 
2639     /* Fill-up priority arrary */
2640     for (i = 0; i < num_irqs; i++) {
2641         if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) {
2642             continue;
2643         }
2644         if (rdzero) {
2645             iprio[irq] = 0;
2646         } else {
2647             iprio[irq] = (val >> (i * 8)) & 0xff;
2648         }
2649     }
2650 
2651     return RISCV_EXCP_NONE;
2652 }
2653 
2654 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val)
2655 {
2656     return read_hvipriox(env, 0, env->hviprio, val);
2657 }
2658 
2659 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val)
2660 {
2661     return write_hvipriox(env, 0, env->hviprio, val);
2662 }
2663 
2664 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val)
2665 {
2666     return read_hvipriox(env, 4, env->hviprio, val);
2667 }
2668 
2669 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val)
2670 {
2671     return write_hvipriox(env, 4, env->hviprio, val);
2672 }
2673 
2674 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val)
2675 {
2676     return read_hvipriox(env, 8, env->hviprio, val);
2677 }
2678 
2679 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val)
2680 {
2681     return write_hvipriox(env, 8, env->hviprio, val);
2682 }
2683 
2684 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val)
2685 {
2686     return read_hvipriox(env, 12, env->hviprio, val);
2687 }
2688 
2689 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val)
2690 {
2691     return write_hvipriox(env, 12, env->hviprio, val);
2692 }
2693 
2694 /* Virtual CSR Registers */
2695 static RISCVException read_vsstatus(CPURISCVState *env, int csrno,
2696                                     target_ulong *val)
2697 {
2698     *val = env->vsstatus;
2699     return RISCV_EXCP_NONE;
2700 }
2701 
2702 static RISCVException write_vsstatus(CPURISCVState *env, int csrno,
2703                                      target_ulong val)
2704 {
2705     uint64_t mask = (target_ulong)-1;
2706     if ((val & VSSTATUS64_UXL) == 0) {
2707         mask &= ~VSSTATUS64_UXL;
2708     }
2709     env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val;
2710     return RISCV_EXCP_NONE;
2711 }
2712 
2713 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val)
2714 {
2715     *val = env->vstvec;
2716     return RISCV_EXCP_NONE;
2717 }
2718 
2719 static RISCVException write_vstvec(CPURISCVState *env, int csrno,
2720                                    target_ulong val)
2721 {
2722     env->vstvec = val;
2723     return RISCV_EXCP_NONE;
2724 }
2725 
2726 static RISCVException read_vsscratch(CPURISCVState *env, int csrno,
2727                                      target_ulong *val)
2728 {
2729     *val = env->vsscratch;
2730     return RISCV_EXCP_NONE;
2731 }
2732 
2733 static RISCVException write_vsscratch(CPURISCVState *env, int csrno,
2734                                       target_ulong val)
2735 {
2736     env->vsscratch = val;
2737     return RISCV_EXCP_NONE;
2738 }
2739 
2740 static RISCVException read_vsepc(CPURISCVState *env, int csrno,
2741                                  target_ulong *val)
2742 {
2743     *val = env->vsepc;
2744     return RISCV_EXCP_NONE;
2745 }
2746 
2747 static RISCVException write_vsepc(CPURISCVState *env, int csrno,
2748                                   target_ulong val)
2749 {
2750     env->vsepc = val;
2751     return RISCV_EXCP_NONE;
2752 }
2753 
2754 static RISCVException read_vscause(CPURISCVState *env, int csrno,
2755                                    target_ulong *val)
2756 {
2757     *val = env->vscause;
2758     return RISCV_EXCP_NONE;
2759 }
2760 
2761 static RISCVException write_vscause(CPURISCVState *env, int csrno,
2762                                     target_ulong val)
2763 {
2764     env->vscause = val;
2765     return RISCV_EXCP_NONE;
2766 }
2767 
2768 static RISCVException read_vstval(CPURISCVState *env, int csrno,
2769                                   target_ulong *val)
2770 {
2771     *val = env->vstval;
2772     return RISCV_EXCP_NONE;
2773 }
2774 
2775 static RISCVException write_vstval(CPURISCVState *env, int csrno,
2776                                    target_ulong val)
2777 {
2778     env->vstval = val;
2779     return RISCV_EXCP_NONE;
2780 }
2781 
2782 static RISCVException read_vsatp(CPURISCVState *env, int csrno,
2783                                  target_ulong *val)
2784 {
2785     *val = env->vsatp;
2786     return RISCV_EXCP_NONE;
2787 }
2788 
2789 static RISCVException write_vsatp(CPURISCVState *env, int csrno,
2790                                   target_ulong val)
2791 {
2792     env->vsatp = val;
2793     return RISCV_EXCP_NONE;
2794 }
2795 
2796 static RISCVException read_mtval2(CPURISCVState *env, int csrno,
2797                                   target_ulong *val)
2798 {
2799     *val = env->mtval2;
2800     return RISCV_EXCP_NONE;
2801 }
2802 
2803 static RISCVException write_mtval2(CPURISCVState *env, int csrno,
2804                                    target_ulong val)
2805 {
2806     env->mtval2 = val;
2807     return RISCV_EXCP_NONE;
2808 }
2809 
2810 static RISCVException read_mtinst(CPURISCVState *env, int csrno,
2811                                   target_ulong *val)
2812 {
2813     *val = env->mtinst;
2814     return RISCV_EXCP_NONE;
2815 }
2816 
2817 static RISCVException write_mtinst(CPURISCVState *env, int csrno,
2818                                    target_ulong val)
2819 {
2820     env->mtinst = val;
2821     return RISCV_EXCP_NONE;
2822 }
2823 
2824 /* Physical Memory Protection */
2825 static RISCVException read_mseccfg(CPURISCVState *env, int csrno,
2826                                    target_ulong *val)
2827 {
2828     *val = mseccfg_csr_read(env);
2829     return RISCV_EXCP_NONE;
2830 }
2831 
2832 static RISCVException write_mseccfg(CPURISCVState *env, int csrno,
2833                          target_ulong val)
2834 {
2835     mseccfg_csr_write(env, val);
2836     return RISCV_EXCP_NONE;
2837 }
2838 
2839 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index)
2840 {
2841     /* TODO: RV128 restriction check */
2842     if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) {
2843         return false;
2844     }
2845     return true;
2846 }
2847 
2848 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno,
2849                                   target_ulong *val)
2850 {
2851     uint32_t reg_index = csrno - CSR_PMPCFG0;
2852 
2853     if (!check_pmp_reg_index(env, reg_index)) {
2854         return RISCV_EXCP_ILLEGAL_INST;
2855     }
2856     *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0);
2857     return RISCV_EXCP_NONE;
2858 }
2859 
2860 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno,
2861                                    target_ulong val)
2862 {
2863     uint32_t reg_index = csrno - CSR_PMPCFG0;
2864 
2865     if (!check_pmp_reg_index(env, reg_index)) {
2866         return RISCV_EXCP_ILLEGAL_INST;
2867     }
2868     pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val);
2869     return RISCV_EXCP_NONE;
2870 }
2871 
2872 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno,
2873                                    target_ulong *val)
2874 {
2875     *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0);
2876     return RISCV_EXCP_NONE;
2877 }
2878 
2879 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno,
2880                                     target_ulong val)
2881 {
2882     pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val);
2883     return RISCV_EXCP_NONE;
2884 }
2885 
2886 static RISCVException read_tselect(CPURISCVState *env, int csrno,
2887                                    target_ulong *val)
2888 {
2889     *val = tselect_csr_read(env);
2890     return RISCV_EXCP_NONE;
2891 }
2892 
2893 static RISCVException write_tselect(CPURISCVState *env, int csrno,
2894                                     target_ulong val)
2895 {
2896     tselect_csr_write(env, val);
2897     return RISCV_EXCP_NONE;
2898 }
2899 
2900 static RISCVException read_tdata(CPURISCVState *env, int csrno,
2901                                  target_ulong *val)
2902 {
2903     /* return 0 in tdata1 to end the trigger enumeration */
2904     if (env->trigger_cur >= TRIGGER_NUM && csrno == CSR_TDATA1) {
2905         *val = 0;
2906         return RISCV_EXCP_NONE;
2907     }
2908 
2909     if (!tdata_available(env, csrno - CSR_TDATA1)) {
2910         return RISCV_EXCP_ILLEGAL_INST;
2911     }
2912 
2913     *val = tdata_csr_read(env, csrno - CSR_TDATA1);
2914     return RISCV_EXCP_NONE;
2915 }
2916 
2917 static RISCVException write_tdata(CPURISCVState *env, int csrno,
2918                                   target_ulong val)
2919 {
2920     if (!tdata_available(env, csrno - CSR_TDATA1)) {
2921         return RISCV_EXCP_ILLEGAL_INST;
2922     }
2923 
2924     tdata_csr_write(env, csrno - CSR_TDATA1, val);
2925     return RISCV_EXCP_NONE;
2926 }
2927 
2928 /*
2929  * Functions to access Pointer Masking feature registers
2930  * We have to check if current priv lvl could modify
2931  * csr in given mode
2932  */
2933 static bool check_pm_current_disabled(CPURISCVState *env, int csrno)
2934 {
2935     int csr_priv = get_field(csrno, 0x300);
2936     int pm_current;
2937 
2938     if (env->debugger) {
2939         return false;
2940     }
2941     /*
2942      * If priv lvls differ that means we're accessing csr from higher priv lvl,
2943      * so allow the access
2944      */
2945     if (env->priv != csr_priv) {
2946         return false;
2947     }
2948     switch (env->priv) {
2949     case PRV_M:
2950         pm_current = get_field(env->mmte, M_PM_CURRENT);
2951         break;
2952     case PRV_S:
2953         pm_current = get_field(env->mmte, S_PM_CURRENT);
2954         break;
2955     case PRV_U:
2956         pm_current = get_field(env->mmte, U_PM_CURRENT);
2957         break;
2958     default:
2959         g_assert_not_reached();
2960     }
2961     /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */
2962     return !pm_current;
2963 }
2964 
2965 static RISCVException read_mmte(CPURISCVState *env, int csrno,
2966                                 target_ulong *val)
2967 {
2968     *val = env->mmte & MMTE_MASK;
2969     return RISCV_EXCP_NONE;
2970 }
2971 
2972 static RISCVException write_mmte(CPURISCVState *env, int csrno,
2973                                  target_ulong val)
2974 {
2975     uint64_t mstatus;
2976     target_ulong wpri_val = val & MMTE_MASK;
2977 
2978     if (val != wpri_val) {
2979         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
2980                       "MMTE: WPRI violation written 0x", val,
2981                       "vs expected 0x", wpri_val);
2982     }
2983     /* for machine mode pm.current is hardwired to 1 */
2984     wpri_val |= MMTE_M_PM_CURRENT;
2985 
2986     /* hardwiring pm.instruction bit to 0, since it's not supported yet */
2987     wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN);
2988     env->mmte = wpri_val | PM_EXT_DIRTY;
2989     riscv_cpu_update_mask(env);
2990 
2991     /* Set XS and SD bits, since PM CSRs are dirty */
2992     mstatus = env->mstatus | MSTATUS_XS;
2993     write_mstatus(env, csrno, mstatus);
2994     return RISCV_EXCP_NONE;
2995 }
2996 
2997 static RISCVException read_smte(CPURISCVState *env, int csrno,
2998                                 target_ulong *val)
2999 {
3000     *val = env->mmte & SMTE_MASK;
3001     return RISCV_EXCP_NONE;
3002 }
3003 
3004 static RISCVException write_smte(CPURISCVState *env, int csrno,
3005                                  target_ulong val)
3006 {
3007     target_ulong wpri_val = val & SMTE_MASK;
3008 
3009     if (val != wpri_val) {
3010         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
3011                       "SMTE: WPRI violation written 0x", val,
3012                       "vs expected 0x", wpri_val);
3013     }
3014 
3015     /* if pm.current==0 we can't modify current PM CSRs */
3016     if (check_pm_current_disabled(env, csrno)) {
3017         return RISCV_EXCP_NONE;
3018     }
3019 
3020     wpri_val |= (env->mmte & ~SMTE_MASK);
3021     write_mmte(env, csrno, wpri_val);
3022     return RISCV_EXCP_NONE;
3023 }
3024 
3025 static RISCVException read_umte(CPURISCVState *env, int csrno,
3026                                 target_ulong *val)
3027 {
3028     *val = env->mmte & UMTE_MASK;
3029     return RISCV_EXCP_NONE;
3030 }
3031 
3032 static RISCVException write_umte(CPURISCVState *env, int csrno,
3033                                  target_ulong val)
3034 {
3035     target_ulong wpri_val = val & UMTE_MASK;
3036 
3037     if (val != wpri_val) {
3038         qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
3039                       "UMTE: WPRI violation written 0x", val,
3040                       "vs expected 0x", wpri_val);
3041     }
3042 
3043     if (check_pm_current_disabled(env, csrno)) {
3044         return RISCV_EXCP_NONE;
3045     }
3046 
3047     wpri_val |= (env->mmte & ~UMTE_MASK);
3048     write_mmte(env, csrno, wpri_val);
3049     return RISCV_EXCP_NONE;
3050 }
3051 
3052 static RISCVException read_mpmmask(CPURISCVState *env, int csrno,
3053                                    target_ulong *val)
3054 {
3055     *val = env->mpmmask;
3056     return RISCV_EXCP_NONE;
3057 }
3058 
3059 static RISCVException write_mpmmask(CPURISCVState *env, int csrno,
3060                                     target_ulong val)
3061 {
3062     uint64_t mstatus;
3063 
3064     env->mpmmask = val;
3065     if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) {
3066         env->cur_pmmask = val;
3067     }
3068     env->mmte |= PM_EXT_DIRTY;
3069 
3070     /* Set XS and SD bits, since PM CSRs are dirty */
3071     mstatus = env->mstatus | MSTATUS_XS;
3072     write_mstatus(env, csrno, mstatus);
3073     return RISCV_EXCP_NONE;
3074 }
3075 
3076 static RISCVException read_spmmask(CPURISCVState *env, int csrno,
3077                                    target_ulong *val)
3078 {
3079     *val = env->spmmask;
3080     return RISCV_EXCP_NONE;
3081 }
3082 
3083 static RISCVException write_spmmask(CPURISCVState *env, int csrno,
3084                                     target_ulong val)
3085 {
3086     uint64_t mstatus;
3087 
3088     /* if pm.current==0 we can't modify current PM CSRs */
3089     if (check_pm_current_disabled(env, csrno)) {
3090         return RISCV_EXCP_NONE;
3091     }
3092     env->spmmask = val;
3093     if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) {
3094         env->cur_pmmask = val;
3095     }
3096     env->mmte |= PM_EXT_DIRTY;
3097 
3098     /* Set XS and SD bits, since PM CSRs are dirty */
3099     mstatus = env->mstatus | MSTATUS_XS;
3100     write_mstatus(env, csrno, mstatus);
3101     return RISCV_EXCP_NONE;
3102 }
3103 
3104 static RISCVException read_upmmask(CPURISCVState *env, int csrno,
3105                                    target_ulong *val)
3106 {
3107     *val = env->upmmask;
3108     return RISCV_EXCP_NONE;
3109 }
3110 
3111 static RISCVException write_upmmask(CPURISCVState *env, int csrno,
3112                                     target_ulong val)
3113 {
3114     uint64_t mstatus;
3115 
3116     /* if pm.current==0 we can't modify current PM CSRs */
3117     if (check_pm_current_disabled(env, csrno)) {
3118         return RISCV_EXCP_NONE;
3119     }
3120     env->upmmask = val;
3121     if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) {
3122         env->cur_pmmask = val;
3123     }
3124     env->mmte |= PM_EXT_DIRTY;
3125 
3126     /* Set XS and SD bits, since PM CSRs are dirty */
3127     mstatus = env->mstatus | MSTATUS_XS;
3128     write_mstatus(env, csrno, mstatus);
3129     return RISCV_EXCP_NONE;
3130 }
3131 
3132 static RISCVException read_mpmbase(CPURISCVState *env, int csrno,
3133                                    target_ulong *val)
3134 {
3135     *val = env->mpmbase;
3136     return RISCV_EXCP_NONE;
3137 }
3138 
3139 static RISCVException write_mpmbase(CPURISCVState *env, int csrno,
3140                                     target_ulong val)
3141 {
3142     uint64_t mstatus;
3143 
3144     env->mpmbase = val;
3145     if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) {
3146         env->cur_pmbase = val;
3147     }
3148     env->mmte |= PM_EXT_DIRTY;
3149 
3150     /* Set XS and SD bits, since PM CSRs are dirty */
3151     mstatus = env->mstatus | MSTATUS_XS;
3152     write_mstatus(env, csrno, mstatus);
3153     return RISCV_EXCP_NONE;
3154 }
3155 
3156 static RISCVException read_spmbase(CPURISCVState *env, int csrno,
3157                                    target_ulong *val)
3158 {
3159     *val = env->spmbase;
3160     return RISCV_EXCP_NONE;
3161 }
3162 
3163 static RISCVException write_spmbase(CPURISCVState *env, int csrno,
3164                                     target_ulong val)
3165 {
3166     uint64_t mstatus;
3167 
3168     /* if pm.current==0 we can't modify current PM CSRs */
3169     if (check_pm_current_disabled(env, csrno)) {
3170         return RISCV_EXCP_NONE;
3171     }
3172     env->spmbase = val;
3173     if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) {
3174         env->cur_pmbase = val;
3175     }
3176     env->mmte |= PM_EXT_DIRTY;
3177 
3178     /* Set XS and SD bits, since PM CSRs are dirty */
3179     mstatus = env->mstatus | MSTATUS_XS;
3180     write_mstatus(env, csrno, mstatus);
3181     return RISCV_EXCP_NONE;
3182 }
3183 
3184 static RISCVException read_upmbase(CPURISCVState *env, int csrno,
3185                                    target_ulong *val)
3186 {
3187     *val = env->upmbase;
3188     return RISCV_EXCP_NONE;
3189 }
3190 
3191 static RISCVException write_upmbase(CPURISCVState *env, int csrno,
3192                                     target_ulong val)
3193 {
3194     uint64_t mstatus;
3195 
3196     /* if pm.current==0 we can't modify current PM CSRs */
3197     if (check_pm_current_disabled(env, csrno)) {
3198         return RISCV_EXCP_NONE;
3199     }
3200     env->upmbase = val;
3201     if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) {
3202         env->cur_pmbase = val;
3203     }
3204     env->mmte |= PM_EXT_DIRTY;
3205 
3206     /* Set XS and SD bits, since PM CSRs are dirty */
3207     mstatus = env->mstatus | MSTATUS_XS;
3208     write_mstatus(env, csrno, mstatus);
3209     return RISCV_EXCP_NONE;
3210 }
3211 
3212 #endif
3213 
3214 /* Crypto Extension */
3215 static RISCVException rmw_seed(CPURISCVState *env, int csrno,
3216                                target_ulong *ret_value,
3217                                target_ulong new_value,
3218                                target_ulong write_mask)
3219 {
3220     uint16_t random_v;
3221     Error *random_e = NULL;
3222     int random_r;
3223     target_ulong rval;
3224 
3225     random_r = qemu_guest_getrandom(&random_v, 2, &random_e);
3226     if (unlikely(random_r < 0)) {
3227         /*
3228          * Failed, for unknown reasons in the crypto subsystem.
3229          * The best we can do is log the reason and return a
3230          * failure indication to the guest.  There is no reason
3231          * we know to expect the failure to be transitory, so
3232          * indicate DEAD to avoid having the guest spin on WAIT.
3233          */
3234         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
3235                       __func__, error_get_pretty(random_e));
3236         error_free(random_e);
3237         rval = SEED_OPST_DEAD;
3238     } else {
3239         rval = random_v | SEED_OPST_ES16;
3240     }
3241 
3242     if (ret_value) {
3243         *ret_value = rval;
3244     }
3245 
3246     return RISCV_EXCP_NONE;
3247 }
3248 
3249 /*
3250  * riscv_csrrw - read and/or update control and status register
3251  *
3252  * csrr   <->  riscv_csrrw(env, csrno, ret_value, 0, 0);
3253  * csrrw  <->  riscv_csrrw(env, csrno, ret_value, value, -1);
3254  * csrrs  <->  riscv_csrrw(env, csrno, ret_value, -1, value);
3255  * csrrc  <->  riscv_csrrw(env, csrno, ret_value, 0, value);
3256  */
3257 
3258 static inline RISCVException riscv_csrrw_check(CPURISCVState *env,
3259                                                int csrno,
3260                                                bool write_mask,
3261                                                RISCVCPU *cpu)
3262 {
3263     /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */
3264     int read_only = get_field(csrno, 0xC00) == 3;
3265     int csr_min_priv = csr_ops[csrno].min_priv_ver;
3266 #if !defined(CONFIG_USER_ONLY)
3267     int csr_priv, effective_priv = env->priv;
3268 
3269     if (riscv_has_ext(env, RVH) && env->priv == PRV_S) {
3270         /*
3271          * We are in either HS or VS mode.
3272          * Add 1 to the effective privledge level to allow us to access the
3273          * Hypervisor CSRs. The `hmode` predicate will determine if access
3274          * should be allowed(HS) or if a virtual instruction exception should be
3275          * raised(VS).
3276          */
3277         effective_priv++;
3278     }
3279 
3280     csr_priv = get_field(csrno, 0x300);
3281     if (!env->debugger && (effective_priv < csr_priv)) {
3282         if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) {
3283             return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
3284         }
3285         return RISCV_EXCP_ILLEGAL_INST;
3286     }
3287 #endif
3288     if (write_mask && read_only) {
3289         return RISCV_EXCP_ILLEGAL_INST;
3290     }
3291 
3292     /* ensure the CSR extension is enabled. */
3293     if (!cpu->cfg.ext_icsr) {
3294         return RISCV_EXCP_ILLEGAL_INST;
3295     }
3296 
3297     /* check predicate */
3298     if (!csr_ops[csrno].predicate) {
3299         return RISCV_EXCP_ILLEGAL_INST;
3300     }
3301 
3302     if (env->priv_ver < csr_min_priv) {
3303         return RISCV_EXCP_ILLEGAL_INST;
3304     }
3305 
3306     return csr_ops[csrno].predicate(env, csrno);
3307 }
3308 
3309 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno,
3310                                        target_ulong *ret_value,
3311                                        target_ulong new_value,
3312                                        target_ulong write_mask)
3313 {
3314     RISCVException ret;
3315     target_ulong old_value;
3316 
3317     /* execute combined read/write operation if it exists */
3318     if (csr_ops[csrno].op) {
3319         return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask);
3320     }
3321 
3322     /* if no accessor exists then return failure */
3323     if (!csr_ops[csrno].read) {
3324         return RISCV_EXCP_ILLEGAL_INST;
3325     }
3326     /* read old value */
3327     ret = csr_ops[csrno].read(env, csrno, &old_value);
3328     if (ret != RISCV_EXCP_NONE) {
3329         return ret;
3330     }
3331 
3332     /* write value if writable and write mask set, otherwise drop writes */
3333     if (write_mask) {
3334         new_value = (old_value & ~write_mask) | (new_value & write_mask);
3335         if (csr_ops[csrno].write) {
3336             ret = csr_ops[csrno].write(env, csrno, new_value);
3337             if (ret != RISCV_EXCP_NONE) {
3338                 return ret;
3339             }
3340         }
3341     }
3342 
3343     /* return old value */
3344     if (ret_value) {
3345         *ret_value = old_value;
3346     }
3347 
3348     return RISCV_EXCP_NONE;
3349 }
3350 
3351 RISCVException riscv_csrrw(CPURISCVState *env, int csrno,
3352                            target_ulong *ret_value,
3353                            target_ulong new_value, target_ulong write_mask)
3354 {
3355     RISCVCPU *cpu = env_archcpu(env);
3356 
3357     RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu);
3358     if (ret != RISCV_EXCP_NONE) {
3359         return ret;
3360     }
3361 
3362     return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask);
3363 }
3364 
3365 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno,
3366                                         Int128 *ret_value,
3367                                         Int128 new_value,
3368                                         Int128 write_mask)
3369 {
3370     RISCVException ret;
3371     Int128 old_value;
3372 
3373     /* read old value */
3374     ret = csr_ops[csrno].read128(env, csrno, &old_value);
3375     if (ret != RISCV_EXCP_NONE) {
3376         return ret;
3377     }
3378 
3379     /* write value if writable and write mask set, otherwise drop writes */
3380     if (int128_nz(write_mask)) {
3381         new_value = int128_or(int128_and(old_value, int128_not(write_mask)),
3382                               int128_and(new_value, write_mask));
3383         if (csr_ops[csrno].write128) {
3384             ret = csr_ops[csrno].write128(env, csrno, new_value);
3385             if (ret != RISCV_EXCP_NONE) {
3386                 return ret;
3387             }
3388         } else if (csr_ops[csrno].write) {
3389             /* avoids having to write wrappers for all registers */
3390             ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value));
3391             if (ret != RISCV_EXCP_NONE) {
3392                 return ret;
3393             }
3394         }
3395     }
3396 
3397     /* return old value */
3398     if (ret_value) {
3399         *ret_value = old_value;
3400     }
3401 
3402     return RISCV_EXCP_NONE;
3403 }
3404 
3405 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno,
3406                                 Int128 *ret_value,
3407                                 Int128 new_value, Int128 write_mask)
3408 {
3409     RISCVException ret;
3410     RISCVCPU *cpu = env_archcpu(env);
3411 
3412     ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu);
3413     if (ret != RISCV_EXCP_NONE) {
3414         return ret;
3415     }
3416 
3417     if (csr_ops[csrno].read128) {
3418         return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask);
3419     }
3420 
3421     /*
3422      * Fall back to 64-bit version for now, if the 128-bit alternative isn't
3423      * at all defined.
3424      * Note, some CSRs don't need to extend to MXLEN (64 upper bits non
3425      * significant), for those, this fallback is correctly handling the accesses
3426      */
3427     target_ulong old_value;
3428     ret = riscv_csrrw_do64(env, csrno, &old_value,
3429                            int128_getlo(new_value),
3430                            int128_getlo(write_mask));
3431     if (ret == RISCV_EXCP_NONE && ret_value) {
3432         *ret_value = int128_make64(old_value);
3433     }
3434     return ret;
3435 }
3436 
3437 /*
3438  * Debugger support.  If not in user mode, set env->debugger before the
3439  * riscv_csrrw call and clear it after the call.
3440  */
3441 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno,
3442                                  target_ulong *ret_value,
3443                                  target_ulong new_value,
3444                                  target_ulong write_mask)
3445 {
3446     RISCVException ret;
3447 #if !defined(CONFIG_USER_ONLY)
3448     env->debugger = true;
3449 #endif
3450     ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask);
3451 #if !defined(CONFIG_USER_ONLY)
3452     env->debugger = false;
3453 #endif
3454     return ret;
3455 }
3456 
3457 /* Control and Status Register function table */
3458 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = {
3459     /* User Floating-Point CSRs */
3460     [CSR_FFLAGS]   = { "fflags",   fs,     read_fflags,  write_fflags },
3461     [CSR_FRM]      = { "frm",      fs,     read_frm,     write_frm    },
3462     [CSR_FCSR]     = { "fcsr",     fs,     read_fcsr,    write_fcsr   },
3463     /* Vector CSRs */
3464     [CSR_VSTART]   = { "vstart",   vs,     read_vstart,  write_vstart,
3465                        .min_priv_ver = PRIV_VERSION_1_12_0            },
3466     [CSR_VXSAT]    = { "vxsat",    vs,     read_vxsat,   write_vxsat,
3467                        .min_priv_ver = PRIV_VERSION_1_12_0            },
3468     [CSR_VXRM]     = { "vxrm",     vs,     read_vxrm,    write_vxrm,
3469                        .min_priv_ver = PRIV_VERSION_1_12_0            },
3470     [CSR_VCSR]     = { "vcsr",     vs,     read_vcsr,    write_vcsr,
3471                        .min_priv_ver = PRIV_VERSION_1_12_0            },
3472     [CSR_VL]       = { "vl",       vs,     read_vl,
3473                        .min_priv_ver = PRIV_VERSION_1_12_0            },
3474     [CSR_VTYPE]    = { "vtype",    vs,     read_vtype,
3475                        .min_priv_ver = PRIV_VERSION_1_12_0            },
3476     [CSR_VLENB]    = { "vlenb",    vs,     read_vlenb,
3477                        .min_priv_ver = PRIV_VERSION_1_12_0            },
3478     /* User Timers and Counters */
3479     [CSR_CYCLE]    = { "cycle",    ctr,    read_hpmcounter  },
3480     [CSR_INSTRET]  = { "instret",  ctr,    read_hpmcounter  },
3481     [CSR_CYCLEH]   = { "cycleh",   ctr32,  read_hpmcounterh },
3482     [CSR_INSTRETH] = { "instreth", ctr32,  read_hpmcounterh },
3483 
3484     /*
3485      * In privileged mode, the monitor will have to emulate TIME CSRs only if
3486      * rdtime callback is not provided by machine/platform emulation.
3487      */
3488     [CSR_TIME]  = { "time",  ctr,   read_time  },
3489     [CSR_TIMEH] = { "timeh", ctr32, read_timeh },
3490 
3491     /* Crypto Extension */
3492     [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed },
3493 
3494 #if !defined(CONFIG_USER_ONLY)
3495     /* Machine Timers and Counters */
3496     [CSR_MCYCLE]    = { "mcycle",    any,   read_hpmcounter,
3497                         write_mhpmcounter                    },
3498     [CSR_MINSTRET]  = { "minstret",  any,   read_hpmcounter,
3499                         write_mhpmcounter                    },
3500     [CSR_MCYCLEH]   = { "mcycleh",   any32, read_hpmcounterh,
3501                         write_mhpmcounterh                   },
3502     [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh,
3503                         write_mhpmcounterh                   },
3504 
3505     /* Machine Information Registers */
3506     [CSR_MVENDORID] = { "mvendorid", any,   read_mvendorid },
3507     [CSR_MARCHID]   = { "marchid",   any,   read_marchid   },
3508     [CSR_MIMPID]    = { "mimpid",    any,   read_mimpid    },
3509     [CSR_MHARTID]   = { "mhartid",   any,   read_mhartid   },
3510 
3511     [CSR_MCONFIGPTR]  = { "mconfigptr", any,   read_zero,
3512                           .min_priv_ver = PRIV_VERSION_1_12_0 },
3513     /* Machine Trap Setup */
3514     [CSR_MSTATUS]     = { "mstatus",    any,   read_mstatus, write_mstatus,
3515                           NULL,                read_mstatus_i128           },
3516     [CSR_MISA]        = { "misa",       any,   read_misa,    write_misa,
3517                           NULL,                read_misa_i128              },
3518     [CSR_MIDELEG]     = { "mideleg",    any,   NULL, NULL,   rmw_mideleg   },
3519     [CSR_MEDELEG]     = { "medeleg",    any,   read_medeleg, write_medeleg },
3520     [CSR_MIE]         = { "mie",        any,   NULL, NULL,   rmw_mie       },
3521     [CSR_MTVEC]       = { "mtvec",      any,   read_mtvec,   write_mtvec   },
3522     [CSR_MCOUNTEREN]  = { "mcounteren", any,   read_mcounteren,
3523                           write_mcounteren                                 },
3524 
3525     [CSR_MSTATUSH]    = { "mstatush",   any32, read_mstatush,
3526                           write_mstatush                                   },
3527 
3528     /* Machine Trap Handling */
3529     [CSR_MSCRATCH] = { "mscratch", any,  read_mscratch, write_mscratch,
3530                        NULL, read_mscratch_i128, write_mscratch_i128   },
3531     [CSR_MEPC]     = { "mepc",     any,  read_mepc,     write_mepc     },
3532     [CSR_MCAUSE]   = { "mcause",   any,  read_mcause,   write_mcause   },
3533     [CSR_MTVAL]    = { "mtval",    any,  read_mtval,    write_mtval    },
3534     [CSR_MIP]      = { "mip",      any,  NULL,    NULL, rmw_mip        },
3535 
3536     /* Machine-Level Window to Indirectly Accessed Registers (AIA) */
3537     [CSR_MISELECT] = { "miselect", aia_any,   NULL, NULL,    rmw_xiselect },
3538     [CSR_MIREG]    = { "mireg",    aia_any,   NULL, NULL,    rmw_xireg },
3539 
3540     /* Machine-Level Interrupts (AIA) */
3541     [CSR_MTOPEI]   = { "mtopei",   aia_any, NULL, NULL, rmw_xtopei },
3542     [CSR_MTOPI]    = { "mtopi",    aia_any, read_mtopi },
3543 
3544     /* Virtual Interrupts for Supervisor Level (AIA) */
3545     [CSR_MVIEN]    = { "mvien",    aia_any, read_zero, write_ignore },
3546     [CSR_MVIP]     = { "mvip",     aia_any, read_zero, write_ignore },
3547 
3548     /* Machine-Level High-Half CSRs (AIA) */
3549     [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh },
3550     [CSR_MIEH]     = { "mieh",     aia_any32, NULL, NULL, rmw_mieh     },
3551     [CSR_MVIENH]   = { "mvienh",   aia_any32, read_zero,  write_ignore },
3552     [CSR_MVIPH]    = { "mviph",    aia_any32, read_zero,  write_ignore },
3553     [CSR_MIPH]     = { "miph",     aia_any32, NULL, NULL, rmw_miph     },
3554 
3555     /* Execution environment configuration */
3556     [CSR_MENVCFG]  = { "menvcfg",  any,   read_menvcfg,  write_menvcfg,
3557                        .min_priv_ver = PRIV_VERSION_1_12_0              },
3558     [CSR_MENVCFGH] = { "menvcfgh", any32, read_menvcfgh, write_menvcfgh,
3559                        .min_priv_ver = PRIV_VERSION_1_12_0              },
3560     [CSR_SENVCFG]  = { "senvcfg",  smode, read_senvcfg,  write_senvcfg,
3561                        .min_priv_ver = PRIV_VERSION_1_12_0              },
3562     [CSR_HENVCFG]  = { "henvcfg",  hmode, read_henvcfg, write_henvcfg,
3563                        .min_priv_ver = PRIV_VERSION_1_12_0              },
3564     [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh,
3565                        .min_priv_ver = PRIV_VERSION_1_12_0              },
3566 
3567     /* Supervisor Trap Setup */
3568     [CSR_SSTATUS]    = { "sstatus",    smode, read_sstatus,    write_sstatus,
3569                          NULL,                read_sstatus_i128               },
3570     [CSR_SIE]        = { "sie",        smode, NULL,   NULL,    rmw_sie        },
3571     [CSR_STVEC]      = { "stvec",      smode, read_stvec,      write_stvec    },
3572     [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren,
3573                          write_scounteren                                     },
3574 
3575     /* Supervisor Trap Handling */
3576     [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch,
3577                        NULL, read_sscratch_i128, write_sscratch_i128    },
3578     [CSR_SEPC]     = { "sepc",     smode, read_sepc,     write_sepc     },
3579     [CSR_SCAUSE]   = { "scause",   smode, read_scause,   write_scause   },
3580     [CSR_STVAL]    = { "stval",    smode, read_stval,    write_stval    },
3581     [CSR_SIP]      = { "sip",      smode, NULL,    NULL, rmw_sip        },
3582 
3583     /* Supervisor Protection and Translation */
3584     [CSR_SATP]     = { "satp",     smode, read_satp,     write_satp     },
3585 
3586     /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */
3587     [CSR_SISELECT]   = { "siselect",   aia_smode, NULL, NULL, rmw_xiselect },
3588     [CSR_SIREG]      = { "sireg",      aia_smode, NULL, NULL, rmw_xireg },
3589 
3590     /* Supervisor-Level Interrupts (AIA) */
3591     [CSR_STOPEI]     = { "stopei",     aia_smode, NULL, NULL, rmw_xtopei },
3592     [CSR_STOPI]      = { "stopi",      aia_smode, read_stopi },
3593 
3594     /* Supervisor-Level High-Half CSRs (AIA) */
3595     [CSR_SIEH]       = { "sieh",   aia_smode32, NULL, NULL, rmw_sieh },
3596     [CSR_SIPH]       = { "siph",   aia_smode32, NULL, NULL, rmw_siph },
3597 
3598     [CSR_HSTATUS]     = { "hstatus",     hmode,   read_hstatus, write_hstatus,
3599                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3600     [CSR_HEDELEG]     = { "hedeleg",     hmode,   read_hedeleg, write_hedeleg,
3601                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3602     [CSR_HIDELEG]     = { "hideleg",     hmode,   NULL,   NULL, rmw_hideleg,
3603                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3604     [CSR_HVIP]        = { "hvip",        hmode,   NULL,   NULL, rmw_hvip,
3605                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3606     [CSR_HIP]         = { "hip",         hmode,   NULL,   NULL, rmw_hip,
3607                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3608     [CSR_HIE]         = { "hie",         hmode,   NULL,   NULL, rmw_hie,
3609                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3610     [CSR_HCOUNTEREN]  = { "hcounteren",  hmode,   read_hcounteren,
3611                           write_hcounteren,
3612                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3613     [CSR_HGEIE]       = { "hgeie",       hmode,   read_hgeie,   write_hgeie,
3614                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3615     [CSR_HTVAL]       = { "htval",       hmode,   read_htval,   write_htval,
3616                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3617     [CSR_HTINST]      = { "htinst",      hmode,   read_htinst,  write_htinst,
3618                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3619     [CSR_HGEIP]       = { "hgeip",       hmode,   read_hgeip,
3620                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3621     [CSR_HGATP]       = { "hgatp",       hmode,   read_hgatp,   write_hgatp,
3622                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3623     [CSR_HTIMEDELTA]  = { "htimedelta",  hmode,   read_htimedelta,
3624                           write_htimedelta,
3625                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3626     [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah,
3627                           write_htimedeltah,
3628                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3629 
3630     [CSR_VSSTATUS]    = { "vsstatus",    hmode,   read_vsstatus,
3631                           write_vsstatus,
3632                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3633     [CSR_VSIP]        = { "vsip",        hmode,   NULL,    NULL, rmw_vsip,
3634                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3635     [CSR_VSIE]        = { "vsie",        hmode,   NULL,    NULL, rmw_vsie ,
3636                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3637     [CSR_VSTVEC]      = { "vstvec",      hmode,   read_vstvec,   write_vstvec,
3638                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3639     [CSR_VSSCRATCH]   = { "vsscratch",   hmode,   read_vsscratch,
3640                           write_vsscratch,
3641                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3642     [CSR_VSEPC]       = { "vsepc",       hmode,   read_vsepc,    write_vsepc,
3643                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3644     [CSR_VSCAUSE]     = { "vscause",     hmode,   read_vscause,  write_vscause,
3645                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3646     [CSR_VSTVAL]      = { "vstval",      hmode,   read_vstval,   write_vstval,
3647                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3648     [CSR_VSATP]       = { "vsatp",       hmode,   read_vsatp,    write_vsatp,
3649                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3650 
3651     [CSR_MTVAL2]      = { "mtval2",      hmode,   read_mtval2,   write_mtval2,
3652                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3653     [CSR_MTINST]      = { "mtinst",      hmode,   read_mtinst,   write_mtinst,
3654                           .min_priv_ver = PRIV_VERSION_1_12_0                },
3655 
3656     /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */
3657     [CSR_HVIEN]       = { "hvien",       aia_hmode, read_zero, write_ignore },
3658     [CSR_HVICTL]      = { "hvictl",      aia_hmode, read_hvictl,
3659                           write_hvictl                                      },
3660     [CSR_HVIPRIO1]    = { "hviprio1",    aia_hmode, read_hviprio1,
3661                           write_hviprio1                                    },
3662     [CSR_HVIPRIO2]    = { "hviprio2",    aia_hmode, read_hviprio2,
3663                           write_hviprio2                                    },
3664 
3665     /*
3666      * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA)
3667      */
3668     [CSR_VSISELECT]   = { "vsiselect",   aia_hmode, NULL, NULL,
3669                           rmw_xiselect                                     },
3670     [CSR_VSIREG]      = { "vsireg",      aia_hmode, NULL, NULL, rmw_xireg  },
3671 
3672     /* VS-Level Interrupts (H-extension with AIA) */
3673     [CSR_VSTOPEI]     = { "vstopei",     aia_hmode, NULL, NULL, rmw_xtopei },
3674     [CSR_VSTOPI]      = { "vstopi",      aia_hmode, read_vstopi },
3675 
3676     /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */
3677     [CSR_HIDELEGH]    = { "hidelegh",    aia_hmode32, NULL, NULL,
3678                           rmw_hidelegh                                      },
3679     [CSR_HVIENH]      = { "hvienh",      aia_hmode32, read_zero,
3680                           write_ignore                                      },
3681     [CSR_HVIPH]       = { "hviph",       aia_hmode32, NULL, NULL, rmw_hviph },
3682     [CSR_HVIPRIO1H]   = { "hviprio1h",   aia_hmode32, read_hviprio1h,
3683                           write_hviprio1h                                   },
3684     [CSR_HVIPRIO2H]   = { "hviprio2h",   aia_hmode32, read_hviprio2h,
3685                           write_hviprio2h                                   },
3686     [CSR_VSIEH]       = { "vsieh",       aia_hmode32, NULL, NULL, rmw_vsieh },
3687     [CSR_VSIPH]       = { "vsiph",       aia_hmode32, NULL, NULL, rmw_vsiph },
3688 
3689     /* Physical Memory Protection */
3690     [CSR_MSECCFG]    = { "mseccfg",  epmp, read_mseccfg, write_mseccfg,
3691                          .min_priv_ver = PRIV_VERSION_1_11_0           },
3692     [CSR_PMPCFG0]    = { "pmpcfg0",   pmp, read_pmpcfg,  write_pmpcfg  },
3693     [CSR_PMPCFG1]    = { "pmpcfg1",   pmp, read_pmpcfg,  write_pmpcfg  },
3694     [CSR_PMPCFG2]    = { "pmpcfg2",   pmp, read_pmpcfg,  write_pmpcfg  },
3695     [CSR_PMPCFG3]    = { "pmpcfg3",   pmp, read_pmpcfg,  write_pmpcfg  },
3696     [CSR_PMPADDR0]   = { "pmpaddr0",  pmp, read_pmpaddr, write_pmpaddr },
3697     [CSR_PMPADDR1]   = { "pmpaddr1",  pmp, read_pmpaddr, write_pmpaddr },
3698     [CSR_PMPADDR2]   = { "pmpaddr2",  pmp, read_pmpaddr, write_pmpaddr },
3699     [CSR_PMPADDR3]   = { "pmpaddr3",  pmp, read_pmpaddr, write_pmpaddr },
3700     [CSR_PMPADDR4]   = { "pmpaddr4",  pmp, read_pmpaddr, write_pmpaddr },
3701     [CSR_PMPADDR5]   = { "pmpaddr5",  pmp, read_pmpaddr, write_pmpaddr },
3702     [CSR_PMPADDR6]   = { "pmpaddr6",  pmp, read_pmpaddr, write_pmpaddr },
3703     [CSR_PMPADDR7]   = { "pmpaddr7",  pmp, read_pmpaddr, write_pmpaddr },
3704     [CSR_PMPADDR8]   = { "pmpaddr8",  pmp, read_pmpaddr, write_pmpaddr },
3705     [CSR_PMPADDR9]   = { "pmpaddr9",  pmp, read_pmpaddr, write_pmpaddr },
3706     [CSR_PMPADDR10]  = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr },
3707     [CSR_PMPADDR11]  = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr },
3708     [CSR_PMPADDR12]  = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr },
3709     [CSR_PMPADDR13]  = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr },
3710     [CSR_PMPADDR14] =  { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr },
3711     [CSR_PMPADDR15] =  { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr },
3712 
3713     /* Debug CSRs */
3714     [CSR_TSELECT]   =  { "tselect", debug, read_tselect, write_tselect },
3715     [CSR_TDATA1]    =  { "tdata1",  debug, read_tdata,   write_tdata   },
3716     [CSR_TDATA2]    =  { "tdata2",  debug, read_tdata,   write_tdata   },
3717     [CSR_TDATA3]    =  { "tdata3",  debug, read_tdata,   write_tdata   },
3718 
3719     /* User Pointer Masking */
3720     [CSR_UMTE]    =    { "umte",    pointer_masking, read_umte,  write_umte },
3721     [CSR_UPMMASK] =    { "upmmask", pointer_masking, read_upmmask,
3722                          write_upmmask                                      },
3723     [CSR_UPMBASE] =    { "upmbase", pointer_masking, read_upmbase,
3724                          write_upmbase                                      },
3725     /* Machine Pointer Masking */
3726     [CSR_MMTE]    =    { "mmte",    pointer_masking, read_mmte,  write_mmte },
3727     [CSR_MPMMASK] =    { "mpmmask", pointer_masking, read_mpmmask,
3728                          write_mpmmask                                      },
3729     [CSR_MPMBASE] =    { "mpmbase", pointer_masking, read_mpmbase,
3730                          write_mpmbase                                      },
3731     /* Supervisor Pointer Masking */
3732     [CSR_SMTE]    =    { "smte",    pointer_masking, read_smte,  write_smte },
3733     [CSR_SPMMASK] =    { "spmmask", pointer_masking, read_spmmask,
3734                          write_spmmask                                      },
3735     [CSR_SPMBASE] =    { "spmbase", pointer_masking, read_spmbase,
3736                          write_spmbase                                      },
3737 
3738     /* Performance Counters */
3739     [CSR_HPMCOUNTER3]    = { "hpmcounter3",    ctr,    read_hpmcounter },
3740     [CSR_HPMCOUNTER4]    = { "hpmcounter4",    ctr,    read_hpmcounter },
3741     [CSR_HPMCOUNTER5]    = { "hpmcounter5",    ctr,    read_hpmcounter },
3742     [CSR_HPMCOUNTER6]    = { "hpmcounter6",    ctr,    read_hpmcounter },
3743     [CSR_HPMCOUNTER7]    = { "hpmcounter7",    ctr,    read_hpmcounter },
3744     [CSR_HPMCOUNTER8]    = { "hpmcounter8",    ctr,    read_hpmcounter },
3745     [CSR_HPMCOUNTER9]    = { "hpmcounter9",    ctr,    read_hpmcounter },
3746     [CSR_HPMCOUNTER10]   = { "hpmcounter10",   ctr,    read_hpmcounter },
3747     [CSR_HPMCOUNTER11]   = { "hpmcounter11",   ctr,    read_hpmcounter },
3748     [CSR_HPMCOUNTER12]   = { "hpmcounter12",   ctr,    read_hpmcounter },
3749     [CSR_HPMCOUNTER13]   = { "hpmcounter13",   ctr,    read_hpmcounter },
3750     [CSR_HPMCOUNTER14]   = { "hpmcounter14",   ctr,    read_hpmcounter },
3751     [CSR_HPMCOUNTER15]   = { "hpmcounter15",   ctr,    read_hpmcounter },
3752     [CSR_HPMCOUNTER16]   = { "hpmcounter16",   ctr,    read_hpmcounter },
3753     [CSR_HPMCOUNTER17]   = { "hpmcounter17",   ctr,    read_hpmcounter },
3754     [CSR_HPMCOUNTER18]   = { "hpmcounter18",   ctr,    read_hpmcounter },
3755     [CSR_HPMCOUNTER19]   = { "hpmcounter19",   ctr,    read_hpmcounter },
3756     [CSR_HPMCOUNTER20]   = { "hpmcounter20",   ctr,    read_hpmcounter },
3757     [CSR_HPMCOUNTER21]   = { "hpmcounter21",   ctr,    read_hpmcounter },
3758     [CSR_HPMCOUNTER22]   = { "hpmcounter22",   ctr,    read_hpmcounter },
3759     [CSR_HPMCOUNTER23]   = { "hpmcounter23",   ctr,    read_hpmcounter },
3760     [CSR_HPMCOUNTER24]   = { "hpmcounter24",   ctr,    read_hpmcounter },
3761     [CSR_HPMCOUNTER25]   = { "hpmcounter25",   ctr,    read_hpmcounter },
3762     [CSR_HPMCOUNTER26]   = { "hpmcounter26",   ctr,    read_hpmcounter },
3763     [CSR_HPMCOUNTER27]   = { "hpmcounter27",   ctr,    read_hpmcounter },
3764     [CSR_HPMCOUNTER28]   = { "hpmcounter28",   ctr,    read_hpmcounter },
3765     [CSR_HPMCOUNTER29]   = { "hpmcounter29",   ctr,    read_hpmcounter },
3766     [CSR_HPMCOUNTER30]   = { "hpmcounter30",   ctr,    read_hpmcounter },
3767     [CSR_HPMCOUNTER31]   = { "hpmcounter31",   ctr,    read_hpmcounter },
3768 
3769     [CSR_MHPMCOUNTER3]   = { "mhpmcounter3",   mctr,    read_hpmcounter,
3770                              write_mhpmcounter                         },
3771     [CSR_MHPMCOUNTER4]   = { "mhpmcounter4",   mctr,    read_hpmcounter,
3772                              write_mhpmcounter                         },
3773     [CSR_MHPMCOUNTER5]   = { "mhpmcounter5",   mctr,    read_hpmcounter,
3774                              write_mhpmcounter                         },
3775     [CSR_MHPMCOUNTER6]   = { "mhpmcounter6",   mctr,    read_hpmcounter,
3776                              write_mhpmcounter                         },
3777     [CSR_MHPMCOUNTER7]   = { "mhpmcounter7",   mctr,    read_hpmcounter,
3778                              write_mhpmcounter                         },
3779     [CSR_MHPMCOUNTER8]   = { "mhpmcounter8",   mctr,    read_hpmcounter,
3780                              write_mhpmcounter                         },
3781     [CSR_MHPMCOUNTER9]   = { "mhpmcounter9",   mctr,    read_hpmcounter,
3782                              write_mhpmcounter                         },
3783     [CSR_MHPMCOUNTER10]  = { "mhpmcounter10",  mctr,    read_hpmcounter,
3784                              write_mhpmcounter                         },
3785     [CSR_MHPMCOUNTER11]  = { "mhpmcounter11",  mctr,    read_hpmcounter,
3786                              write_mhpmcounter                         },
3787     [CSR_MHPMCOUNTER12]  = { "mhpmcounter12",  mctr,    read_hpmcounter,
3788                              write_mhpmcounter                         },
3789     [CSR_MHPMCOUNTER13]  = { "mhpmcounter13",  mctr,    read_hpmcounter,
3790                              write_mhpmcounter                         },
3791     [CSR_MHPMCOUNTER14]  = { "mhpmcounter14",  mctr,    read_hpmcounter,
3792                              write_mhpmcounter                         },
3793     [CSR_MHPMCOUNTER15]  = { "mhpmcounter15",  mctr,    read_hpmcounter,
3794                              write_mhpmcounter                         },
3795     [CSR_MHPMCOUNTER16]  = { "mhpmcounter16",  mctr,    read_hpmcounter,
3796                              write_mhpmcounter                         },
3797     [CSR_MHPMCOUNTER17]  = { "mhpmcounter17",  mctr,    read_hpmcounter,
3798                              write_mhpmcounter                         },
3799     [CSR_MHPMCOUNTER18]  = { "mhpmcounter18",  mctr,    read_hpmcounter,
3800                              write_mhpmcounter                         },
3801     [CSR_MHPMCOUNTER19]  = { "mhpmcounter19",  mctr,    read_hpmcounter,
3802                              write_mhpmcounter                         },
3803     [CSR_MHPMCOUNTER20]  = { "mhpmcounter20",  mctr,    read_hpmcounter,
3804                              write_mhpmcounter                         },
3805     [CSR_MHPMCOUNTER21]  = { "mhpmcounter21",  mctr,    read_hpmcounter,
3806                              write_mhpmcounter                         },
3807     [CSR_MHPMCOUNTER22]  = { "mhpmcounter22",  mctr,    read_hpmcounter,
3808                              write_mhpmcounter                         },
3809     [CSR_MHPMCOUNTER23]  = { "mhpmcounter23",  mctr,    read_hpmcounter,
3810                              write_mhpmcounter                         },
3811     [CSR_MHPMCOUNTER24]  = { "mhpmcounter24",  mctr,    read_hpmcounter,
3812                              write_mhpmcounter                         },
3813     [CSR_MHPMCOUNTER25]  = { "mhpmcounter25",  mctr,    read_hpmcounter,
3814                              write_mhpmcounter                         },
3815     [CSR_MHPMCOUNTER26]  = { "mhpmcounter26",  mctr,    read_hpmcounter,
3816                              write_mhpmcounter                         },
3817     [CSR_MHPMCOUNTER27]  = { "mhpmcounter27",  mctr,    read_hpmcounter,
3818                              write_mhpmcounter                         },
3819     [CSR_MHPMCOUNTER28]  = { "mhpmcounter28",  mctr,    read_hpmcounter,
3820                              write_mhpmcounter                         },
3821     [CSR_MHPMCOUNTER29]  = { "mhpmcounter29",  mctr,    read_hpmcounter,
3822                              write_mhpmcounter                         },
3823     [CSR_MHPMCOUNTER30]  = { "mhpmcounter30",  mctr,    read_hpmcounter,
3824                              write_mhpmcounter                         },
3825     [CSR_MHPMCOUNTER31]  = { "mhpmcounter31",  mctr,    read_hpmcounter,
3826                              write_mhpmcounter                         },
3827 
3828     [CSR_MCOUNTINHIBIT]  = { "mcountinhibit",  any, read_mcountinhibit,
3829                              write_mcountinhibit,
3830                              .min_priv_ver = PRIV_VERSION_1_11_0       },
3831 
3832     [CSR_MHPMEVENT3]     = { "mhpmevent3",     any,    read_mhpmevent,
3833                              write_mhpmevent                           },
3834     [CSR_MHPMEVENT4]     = { "mhpmevent4",     any,    read_mhpmevent,
3835                              write_mhpmevent                           },
3836     [CSR_MHPMEVENT5]     = { "mhpmevent5",     any,    read_mhpmevent,
3837                              write_mhpmevent                           },
3838     [CSR_MHPMEVENT6]     = { "mhpmevent6",     any,    read_mhpmevent,
3839                              write_mhpmevent                           },
3840     [CSR_MHPMEVENT7]     = { "mhpmevent7",     any,    read_mhpmevent,
3841                              write_mhpmevent                           },
3842     [CSR_MHPMEVENT8]     = { "mhpmevent8",     any,    read_mhpmevent,
3843                              write_mhpmevent                           },
3844     [CSR_MHPMEVENT9]     = { "mhpmevent9",     any,    read_mhpmevent,
3845                              write_mhpmevent                           },
3846     [CSR_MHPMEVENT10]    = { "mhpmevent10",    any,    read_mhpmevent,
3847                              write_mhpmevent                           },
3848     [CSR_MHPMEVENT11]    = { "mhpmevent11",    any,    read_mhpmevent,
3849                              write_mhpmevent                           },
3850     [CSR_MHPMEVENT12]    = { "mhpmevent12",    any,    read_mhpmevent,
3851                              write_mhpmevent                           },
3852     [CSR_MHPMEVENT13]    = { "mhpmevent13",    any,    read_mhpmevent,
3853                              write_mhpmevent                           },
3854     [CSR_MHPMEVENT14]    = { "mhpmevent14",    any,    read_mhpmevent,
3855                              write_mhpmevent                           },
3856     [CSR_MHPMEVENT15]    = { "mhpmevent15",    any,    read_mhpmevent,
3857                              write_mhpmevent                           },
3858     [CSR_MHPMEVENT16]    = { "mhpmevent16",    any,    read_mhpmevent,
3859                              write_mhpmevent                           },
3860     [CSR_MHPMEVENT17]    = { "mhpmevent17",    any,    read_mhpmevent,
3861                              write_mhpmevent                           },
3862     [CSR_MHPMEVENT18]    = { "mhpmevent18",    any,    read_mhpmevent,
3863                              write_mhpmevent                           },
3864     [CSR_MHPMEVENT19]    = { "mhpmevent19",    any,    read_mhpmevent,
3865                              write_mhpmevent                           },
3866     [CSR_MHPMEVENT20]    = { "mhpmevent20",    any,    read_mhpmevent,
3867                              write_mhpmevent                           },
3868     [CSR_MHPMEVENT21]    = { "mhpmevent21",    any,    read_mhpmevent,
3869                              write_mhpmevent                           },
3870     [CSR_MHPMEVENT22]    = { "mhpmevent22",    any,    read_mhpmevent,
3871                              write_mhpmevent                           },
3872     [CSR_MHPMEVENT23]    = { "mhpmevent23",    any,    read_mhpmevent,
3873                              write_mhpmevent                           },
3874     [CSR_MHPMEVENT24]    = { "mhpmevent24",    any,    read_mhpmevent,
3875                              write_mhpmevent                           },
3876     [CSR_MHPMEVENT25]    = { "mhpmevent25",    any,    read_mhpmevent,
3877                              write_mhpmevent                           },
3878     [CSR_MHPMEVENT26]    = { "mhpmevent26",    any,    read_mhpmevent,
3879                              write_mhpmevent                           },
3880     [CSR_MHPMEVENT27]    = { "mhpmevent27",    any,    read_mhpmevent,
3881                              write_mhpmevent                           },
3882     [CSR_MHPMEVENT28]    = { "mhpmevent28",    any,    read_mhpmevent,
3883                              write_mhpmevent                           },
3884     [CSR_MHPMEVENT29]    = { "mhpmevent29",    any,    read_mhpmevent,
3885                              write_mhpmevent                           },
3886     [CSR_MHPMEVENT30]    = { "mhpmevent30",    any,    read_mhpmevent,
3887                              write_mhpmevent                           },
3888     [CSR_MHPMEVENT31]    = { "mhpmevent31",    any,    read_mhpmevent,
3889                              write_mhpmevent                           },
3890 
3891     [CSR_HPMCOUNTER3H]   = { "hpmcounter3h",   ctr32,  read_hpmcounterh },
3892     [CSR_HPMCOUNTER4H]   = { "hpmcounter4h",   ctr32,  read_hpmcounterh },
3893     [CSR_HPMCOUNTER5H]   = { "hpmcounter5h",   ctr32,  read_hpmcounterh },
3894     [CSR_HPMCOUNTER6H]   = { "hpmcounter6h",   ctr32,  read_hpmcounterh },
3895     [CSR_HPMCOUNTER7H]   = { "hpmcounter7h",   ctr32,  read_hpmcounterh },
3896     [CSR_HPMCOUNTER8H]   = { "hpmcounter8h",   ctr32,  read_hpmcounterh },
3897     [CSR_HPMCOUNTER9H]   = { "hpmcounter9h",   ctr32,  read_hpmcounterh },
3898     [CSR_HPMCOUNTER10H]  = { "hpmcounter10h",  ctr32,  read_hpmcounterh },
3899     [CSR_HPMCOUNTER11H]  = { "hpmcounter11h",  ctr32,  read_hpmcounterh },
3900     [CSR_HPMCOUNTER12H]  = { "hpmcounter12h",  ctr32,  read_hpmcounterh },
3901     [CSR_HPMCOUNTER13H]  = { "hpmcounter13h",  ctr32,  read_hpmcounterh },
3902     [CSR_HPMCOUNTER14H]  = { "hpmcounter14h",  ctr32,  read_hpmcounterh },
3903     [CSR_HPMCOUNTER15H]  = { "hpmcounter15h",  ctr32,  read_hpmcounterh },
3904     [CSR_HPMCOUNTER16H]  = { "hpmcounter16h",  ctr32,  read_hpmcounterh },
3905     [CSR_HPMCOUNTER17H]  = { "hpmcounter17h",  ctr32,  read_hpmcounterh },
3906     [CSR_HPMCOUNTER18H]  = { "hpmcounter18h",  ctr32,  read_hpmcounterh },
3907     [CSR_HPMCOUNTER19H]  = { "hpmcounter19h",  ctr32,  read_hpmcounterh },
3908     [CSR_HPMCOUNTER20H]  = { "hpmcounter20h",  ctr32,  read_hpmcounterh },
3909     [CSR_HPMCOUNTER21H]  = { "hpmcounter21h",  ctr32,  read_hpmcounterh },
3910     [CSR_HPMCOUNTER22H]  = { "hpmcounter22h",  ctr32,  read_hpmcounterh },
3911     [CSR_HPMCOUNTER23H]  = { "hpmcounter23h",  ctr32,  read_hpmcounterh },
3912     [CSR_HPMCOUNTER24H]  = { "hpmcounter24h",  ctr32,  read_hpmcounterh },
3913     [CSR_HPMCOUNTER25H]  = { "hpmcounter25h",  ctr32,  read_hpmcounterh },
3914     [CSR_HPMCOUNTER26H]  = { "hpmcounter26h",  ctr32,  read_hpmcounterh },
3915     [CSR_HPMCOUNTER27H]  = { "hpmcounter27h",  ctr32,  read_hpmcounterh },
3916     [CSR_HPMCOUNTER28H]  = { "hpmcounter28h",  ctr32,  read_hpmcounterh },
3917     [CSR_HPMCOUNTER29H]  = { "hpmcounter29h",  ctr32,  read_hpmcounterh },
3918     [CSR_HPMCOUNTER30H]  = { "hpmcounter30h",  ctr32,  read_hpmcounterh },
3919     [CSR_HPMCOUNTER31H]  = { "hpmcounter31h",  ctr32,  read_hpmcounterh },
3920 
3921     [CSR_MHPMCOUNTER3H]  = { "mhpmcounter3h",  mctr32,  read_hpmcounterh,
3922                              write_mhpmcounterh                         },
3923     [CSR_MHPMCOUNTER4H]  = { "mhpmcounter4h",  mctr32,  read_hpmcounterh,
3924                              write_mhpmcounterh                         },
3925     [CSR_MHPMCOUNTER5H]  = { "mhpmcounter5h",  mctr32,  read_hpmcounterh,
3926                              write_mhpmcounterh                         },
3927     [CSR_MHPMCOUNTER6H]  = { "mhpmcounter6h",  mctr32,  read_hpmcounterh,
3928                              write_mhpmcounterh                         },
3929     [CSR_MHPMCOUNTER7H]  = { "mhpmcounter7h",  mctr32,  read_hpmcounterh,
3930                              write_mhpmcounterh                         },
3931     [CSR_MHPMCOUNTER8H]  = { "mhpmcounter8h",  mctr32,  read_hpmcounterh,
3932                              write_mhpmcounterh                         },
3933     [CSR_MHPMCOUNTER9H]  = { "mhpmcounter9h",  mctr32,  read_hpmcounterh,
3934                              write_mhpmcounterh                         },
3935     [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32,  read_hpmcounterh,
3936                              write_mhpmcounterh                         },
3937     [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32,  read_hpmcounterh,
3938                              write_mhpmcounterh                         },
3939     [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32,  read_hpmcounterh,
3940                              write_mhpmcounterh                         },
3941     [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32,  read_hpmcounterh,
3942                              write_mhpmcounterh                         },
3943     [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32,  read_hpmcounterh,
3944                              write_mhpmcounterh                         },
3945     [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32,  read_hpmcounterh,
3946                              write_mhpmcounterh                         },
3947     [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32,  read_hpmcounterh,
3948                              write_mhpmcounterh                         },
3949     [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32,  read_hpmcounterh,
3950                              write_mhpmcounterh                         },
3951     [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32,  read_hpmcounterh,
3952                              write_mhpmcounterh                         },
3953     [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32,  read_hpmcounterh,
3954                              write_mhpmcounterh                         },
3955     [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32,  read_hpmcounterh,
3956                              write_mhpmcounterh                         },
3957     [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32,  read_hpmcounterh,
3958                              write_mhpmcounterh                         },
3959     [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32,  read_hpmcounterh,
3960                              write_mhpmcounterh                         },
3961     [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32,  read_hpmcounterh,
3962                              write_mhpmcounterh                         },
3963     [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32,  read_hpmcounterh,
3964                              write_mhpmcounterh                         },
3965     [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32,  read_hpmcounterh,
3966                              write_mhpmcounterh                         },
3967     [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32,  read_hpmcounterh,
3968                              write_mhpmcounterh                         },
3969     [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32,  read_hpmcounterh,
3970                              write_mhpmcounterh                         },
3971     [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32,  read_hpmcounterh,
3972                              write_mhpmcounterh                         },
3973     [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32,  read_hpmcounterh,
3974                              write_mhpmcounterh                         },
3975     [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32,  read_hpmcounterh,
3976                              write_mhpmcounterh                         },
3977     [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32,  read_hpmcounterh,
3978                              write_mhpmcounterh                         },
3979 #endif /* !CONFIG_USER_ONLY */
3980 };
3981