1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "sysemu/cpu-timers.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 32 /* CSR function table public API */ 33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 34 { 35 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 36 } 37 38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 41 } 42 43 /* Predicates */ 44 #if !defined(CONFIG_USER_ONLY) 45 static RISCVException smstateen_acc_ok(CPURISCVState *env, int index, 46 uint64_t bit) 47 { 48 bool virt = riscv_cpu_virt_enabled(env); 49 CPUState *cs = env_cpu(env); 50 RISCVCPU *cpu = RISCV_CPU(cs); 51 52 if (env->priv == PRV_M || !cpu->cfg.ext_smstateen) { 53 return RISCV_EXCP_NONE; 54 } 55 56 if (!(env->mstateen[index] & bit)) { 57 return RISCV_EXCP_ILLEGAL_INST; 58 } 59 60 if (virt) { 61 if (!(env->hstateen[index] & bit)) { 62 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 63 } 64 65 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 66 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 67 } 68 } 69 70 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 71 if (!(env->sstateen[index] & bit)) { 72 return RISCV_EXCP_ILLEGAL_INST; 73 } 74 } 75 76 return RISCV_EXCP_NONE; 77 } 78 #endif 79 80 static RISCVException fs(CPURISCVState *env, int csrno) 81 { 82 #if !defined(CONFIG_USER_ONLY) 83 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 84 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 85 return RISCV_EXCP_ILLEGAL_INST; 86 } 87 #endif 88 return RISCV_EXCP_NONE; 89 } 90 91 static RISCVException vs(CPURISCVState *env, int csrno) 92 { 93 CPUState *cs = env_cpu(env); 94 RISCVCPU *cpu = RISCV_CPU(cs); 95 96 if (env->misa_ext & RVV || 97 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 98 #if !defined(CONFIG_USER_ONLY) 99 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 100 return RISCV_EXCP_ILLEGAL_INST; 101 } 102 #endif 103 return RISCV_EXCP_NONE; 104 } 105 return RISCV_EXCP_ILLEGAL_INST; 106 } 107 108 static RISCVException ctr(CPURISCVState *env, int csrno) 109 { 110 #if !defined(CONFIG_USER_ONLY) 111 CPUState *cs = env_cpu(env); 112 RISCVCPU *cpu = RISCV_CPU(cs); 113 int ctr_index; 114 target_ulong ctr_mask; 115 int base_csrno = CSR_CYCLE; 116 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 117 118 if (rv32 && csrno >= CSR_CYCLEH) { 119 /* Offset for RV32 hpmcounternh counters */ 120 base_csrno += 0x80; 121 } 122 ctr_index = csrno - base_csrno; 123 ctr_mask = BIT(ctr_index); 124 125 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 126 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 127 goto skip_ext_pmu_check; 128 } 129 130 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 131 /* No counter is enabled in PMU or the counter is out of range */ 132 return RISCV_EXCP_ILLEGAL_INST; 133 } 134 135 skip_ext_pmu_check: 136 137 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 138 return RISCV_EXCP_ILLEGAL_INST; 139 } 140 141 if (riscv_cpu_virt_enabled(env)) { 142 if (!get_field(env->hcounteren, ctr_mask) || 143 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 144 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 145 } 146 } 147 148 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 149 !get_field(env->scounteren, ctr_mask)) { 150 return RISCV_EXCP_ILLEGAL_INST; 151 } 152 153 #endif 154 return RISCV_EXCP_NONE; 155 } 156 157 static RISCVException ctr32(CPURISCVState *env, int csrno) 158 { 159 if (riscv_cpu_mxl(env) != MXL_RV32) { 160 return RISCV_EXCP_ILLEGAL_INST; 161 } 162 163 return ctr(env, csrno); 164 } 165 166 #if !defined(CONFIG_USER_ONLY) 167 static RISCVException mctr(CPURISCVState *env, int csrno) 168 { 169 CPUState *cs = env_cpu(env); 170 RISCVCPU *cpu = RISCV_CPU(cs); 171 int ctr_index; 172 int base_csrno = CSR_MHPMCOUNTER3; 173 174 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 175 /* Offset for RV32 mhpmcounternh counters */ 176 base_csrno += 0x80; 177 } 178 ctr_index = csrno - base_csrno; 179 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 180 /* The PMU is not enabled or counter is out of range*/ 181 return RISCV_EXCP_ILLEGAL_INST; 182 } 183 184 return RISCV_EXCP_NONE; 185 } 186 187 static RISCVException mctr32(CPURISCVState *env, int csrno) 188 { 189 if (riscv_cpu_mxl(env) != MXL_RV32) { 190 return RISCV_EXCP_ILLEGAL_INST; 191 } 192 193 return mctr(env, csrno); 194 } 195 196 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 197 { 198 CPUState *cs = env_cpu(env); 199 RISCVCPU *cpu = RISCV_CPU(cs); 200 201 if (!cpu->cfg.ext_sscofpmf) { 202 return RISCV_EXCP_ILLEGAL_INST; 203 } 204 205 return RISCV_EXCP_NONE; 206 } 207 208 static RISCVException any(CPURISCVState *env, int csrno) 209 { 210 return RISCV_EXCP_NONE; 211 } 212 213 static RISCVException any32(CPURISCVState *env, int csrno) 214 { 215 if (riscv_cpu_mxl(env) != MXL_RV32) { 216 return RISCV_EXCP_ILLEGAL_INST; 217 } 218 219 return any(env, csrno); 220 221 } 222 223 static int aia_any(CPURISCVState *env, int csrno) 224 { 225 RISCVCPU *cpu = env_archcpu(env); 226 227 if (!cpu->cfg.ext_smaia) { 228 return RISCV_EXCP_ILLEGAL_INST; 229 } 230 231 return any(env, csrno); 232 } 233 234 static int aia_any32(CPURISCVState *env, int csrno) 235 { 236 RISCVCPU *cpu = env_archcpu(env); 237 238 if (!cpu->cfg.ext_smaia) { 239 return RISCV_EXCP_ILLEGAL_INST; 240 } 241 242 return any32(env, csrno); 243 } 244 245 static RISCVException smode(CPURISCVState *env, int csrno) 246 { 247 if (riscv_has_ext(env, RVS)) { 248 return RISCV_EXCP_NONE; 249 } 250 251 return RISCV_EXCP_ILLEGAL_INST; 252 } 253 254 static int smode32(CPURISCVState *env, int csrno) 255 { 256 if (riscv_cpu_mxl(env) != MXL_RV32) { 257 return RISCV_EXCP_ILLEGAL_INST; 258 } 259 260 return smode(env, csrno); 261 } 262 263 static int aia_smode(CPURISCVState *env, int csrno) 264 { 265 RISCVCPU *cpu = env_archcpu(env); 266 267 if (!cpu->cfg.ext_ssaia) { 268 return RISCV_EXCP_ILLEGAL_INST; 269 } 270 271 return smode(env, csrno); 272 } 273 274 static int aia_smode32(CPURISCVState *env, int csrno) 275 { 276 RISCVCPU *cpu = env_archcpu(env); 277 278 if (!cpu->cfg.ext_ssaia) { 279 return RISCV_EXCP_ILLEGAL_INST; 280 } 281 282 return smode32(env, csrno); 283 } 284 285 static RISCVException hmode(CPURISCVState *env, int csrno) 286 { 287 if (riscv_has_ext(env, RVH)) { 288 return RISCV_EXCP_NONE; 289 } 290 291 return RISCV_EXCP_ILLEGAL_INST; 292 } 293 294 static RISCVException hmode32(CPURISCVState *env, int csrno) 295 { 296 if (riscv_cpu_mxl(env) != MXL_RV32) { 297 return RISCV_EXCP_ILLEGAL_INST; 298 } 299 300 return hmode(env, csrno); 301 302 } 303 304 static RISCVException umode(CPURISCVState *env, int csrno) 305 { 306 if (riscv_has_ext(env, RVU)) { 307 return RISCV_EXCP_NONE; 308 } 309 310 return RISCV_EXCP_ILLEGAL_INST; 311 } 312 313 static RISCVException umode32(CPURISCVState *env, int csrno) 314 { 315 if (riscv_cpu_mxl(env) != MXL_RV32) { 316 return RISCV_EXCP_ILLEGAL_INST; 317 } 318 319 return umode(env, csrno); 320 } 321 322 static RISCVException mstateen(CPURISCVState *env, int csrno) 323 { 324 CPUState *cs = env_cpu(env); 325 RISCVCPU *cpu = RISCV_CPU(cs); 326 327 if (!cpu->cfg.ext_smstateen) { 328 return RISCV_EXCP_ILLEGAL_INST; 329 } 330 331 return any(env, csrno); 332 } 333 334 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 335 { 336 CPUState *cs = env_cpu(env); 337 RISCVCPU *cpu = RISCV_CPU(cs); 338 339 if (!cpu->cfg.ext_smstateen) { 340 return RISCV_EXCP_ILLEGAL_INST; 341 } 342 343 if (env->priv < PRV_M) { 344 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 345 return RISCV_EXCP_ILLEGAL_INST; 346 } 347 } 348 349 return hmode(env, csrno); 350 } 351 352 static RISCVException hstateen(CPURISCVState *env, int csrno) 353 { 354 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 355 } 356 357 static RISCVException hstateenh(CPURISCVState *env, int csrno) 358 { 359 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 360 } 361 362 static RISCVException sstateen(CPURISCVState *env, int csrno) 363 { 364 bool virt = riscv_cpu_virt_enabled(env); 365 int index = csrno - CSR_SSTATEEN0; 366 CPUState *cs = env_cpu(env); 367 RISCVCPU *cpu = RISCV_CPU(cs); 368 369 if (!cpu->cfg.ext_smstateen) { 370 return RISCV_EXCP_ILLEGAL_INST; 371 } 372 373 if (env->priv < PRV_M) { 374 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 375 return RISCV_EXCP_ILLEGAL_INST; 376 } 377 378 if (virt) { 379 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 380 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 381 } 382 } 383 } 384 385 return smode(env, csrno); 386 } 387 388 /* Checks if PointerMasking registers could be accessed */ 389 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 390 { 391 /* Check if j-ext is present */ 392 if (riscv_has_ext(env, RVJ)) { 393 return RISCV_EXCP_NONE; 394 } 395 return RISCV_EXCP_ILLEGAL_INST; 396 } 397 398 static int aia_hmode(CPURISCVState *env, int csrno) 399 { 400 RISCVCPU *cpu = env_archcpu(env); 401 402 if (!cpu->cfg.ext_ssaia) { 403 return RISCV_EXCP_ILLEGAL_INST; 404 } 405 406 return hmode(env, csrno); 407 } 408 409 static int aia_hmode32(CPURISCVState *env, int csrno) 410 { 411 RISCVCPU *cpu = env_archcpu(env); 412 413 if (!cpu->cfg.ext_ssaia) { 414 return RISCV_EXCP_ILLEGAL_INST; 415 } 416 417 return hmode32(env, csrno); 418 } 419 420 static RISCVException pmp(CPURISCVState *env, int csrno) 421 { 422 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 423 return RISCV_EXCP_NONE; 424 } 425 426 return RISCV_EXCP_ILLEGAL_INST; 427 } 428 429 static RISCVException epmp(CPURISCVState *env, int csrno) 430 { 431 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 432 return RISCV_EXCP_NONE; 433 } 434 435 return RISCV_EXCP_ILLEGAL_INST; 436 } 437 438 static RISCVException debug(CPURISCVState *env, int csrno) 439 { 440 if (riscv_feature(env, RISCV_FEATURE_DEBUG)) { 441 return RISCV_EXCP_NONE; 442 } 443 444 return RISCV_EXCP_ILLEGAL_INST; 445 } 446 #endif 447 448 static RISCVException seed(CPURISCVState *env, int csrno) 449 { 450 RISCVCPU *cpu = env_archcpu(env); 451 452 if (!cpu->cfg.ext_zkr) { 453 return RISCV_EXCP_ILLEGAL_INST; 454 } 455 456 #if !defined(CONFIG_USER_ONLY) 457 /* 458 * With a CSR read-write instruction: 459 * 1) The seed CSR is always available in machine mode as normal. 460 * 2) Attempted access to seed from virtual modes VS and VU always raises 461 * an exception(virtual instruction exception only if mseccfg.sseed=1). 462 * 3) Without the corresponding access control bit set to 1, any attempted 463 * access to seed from U, S or HS modes will raise an illegal instruction 464 * exception. 465 */ 466 if (env->priv == PRV_M) { 467 return RISCV_EXCP_NONE; 468 } else if (riscv_cpu_virt_enabled(env)) { 469 if (env->mseccfg & MSECCFG_SSEED) { 470 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 471 } else { 472 return RISCV_EXCP_ILLEGAL_INST; 473 } 474 } else { 475 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 476 return RISCV_EXCP_NONE; 477 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 478 return RISCV_EXCP_NONE; 479 } else { 480 return RISCV_EXCP_ILLEGAL_INST; 481 } 482 } 483 #else 484 return RISCV_EXCP_NONE; 485 #endif 486 } 487 488 /* User Floating-Point CSRs */ 489 static RISCVException read_fflags(CPURISCVState *env, int csrno, 490 target_ulong *val) 491 { 492 *val = riscv_cpu_get_fflags(env); 493 return RISCV_EXCP_NONE; 494 } 495 496 static RISCVException write_fflags(CPURISCVState *env, int csrno, 497 target_ulong val) 498 { 499 #if !defined(CONFIG_USER_ONLY) 500 if (riscv_has_ext(env, RVF)) { 501 env->mstatus |= MSTATUS_FS; 502 } 503 #endif 504 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 505 return RISCV_EXCP_NONE; 506 } 507 508 static RISCVException read_frm(CPURISCVState *env, int csrno, 509 target_ulong *val) 510 { 511 *val = env->frm; 512 return RISCV_EXCP_NONE; 513 } 514 515 static RISCVException write_frm(CPURISCVState *env, int csrno, 516 target_ulong val) 517 { 518 #if !defined(CONFIG_USER_ONLY) 519 if (riscv_has_ext(env, RVF)) { 520 env->mstatus |= MSTATUS_FS; 521 } 522 #endif 523 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 524 return RISCV_EXCP_NONE; 525 } 526 527 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 528 target_ulong *val) 529 { 530 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 531 | (env->frm << FSR_RD_SHIFT); 532 return RISCV_EXCP_NONE; 533 } 534 535 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 536 target_ulong val) 537 { 538 #if !defined(CONFIG_USER_ONLY) 539 if (riscv_has_ext(env, RVF)) { 540 env->mstatus |= MSTATUS_FS; 541 } 542 #endif 543 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 544 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 545 return RISCV_EXCP_NONE; 546 } 547 548 static RISCVException read_vtype(CPURISCVState *env, int csrno, 549 target_ulong *val) 550 { 551 uint64_t vill; 552 switch (env->xl) { 553 case MXL_RV32: 554 vill = (uint32_t)env->vill << 31; 555 break; 556 case MXL_RV64: 557 vill = (uint64_t)env->vill << 63; 558 break; 559 default: 560 g_assert_not_reached(); 561 } 562 *val = (target_ulong)vill | env->vtype; 563 return RISCV_EXCP_NONE; 564 } 565 566 static RISCVException read_vl(CPURISCVState *env, int csrno, 567 target_ulong *val) 568 { 569 *val = env->vl; 570 return RISCV_EXCP_NONE; 571 } 572 573 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 574 { 575 *val = env_archcpu(env)->cfg.vlen >> 3; 576 return RISCV_EXCP_NONE; 577 } 578 579 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 580 target_ulong *val) 581 { 582 *val = env->vxrm; 583 return RISCV_EXCP_NONE; 584 } 585 586 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 587 target_ulong val) 588 { 589 #if !defined(CONFIG_USER_ONLY) 590 env->mstatus |= MSTATUS_VS; 591 #endif 592 env->vxrm = val; 593 return RISCV_EXCP_NONE; 594 } 595 596 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 597 target_ulong *val) 598 { 599 *val = env->vxsat; 600 return RISCV_EXCP_NONE; 601 } 602 603 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 604 target_ulong val) 605 { 606 #if !defined(CONFIG_USER_ONLY) 607 env->mstatus |= MSTATUS_VS; 608 #endif 609 env->vxsat = val; 610 return RISCV_EXCP_NONE; 611 } 612 613 static RISCVException read_vstart(CPURISCVState *env, int csrno, 614 target_ulong *val) 615 { 616 *val = env->vstart; 617 return RISCV_EXCP_NONE; 618 } 619 620 static RISCVException write_vstart(CPURISCVState *env, int csrno, 621 target_ulong val) 622 { 623 #if !defined(CONFIG_USER_ONLY) 624 env->mstatus |= MSTATUS_VS; 625 #endif 626 /* 627 * The vstart CSR is defined to have only enough writable bits 628 * to hold the largest element index, i.e. lg2(VLEN) bits. 629 */ 630 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 631 return RISCV_EXCP_NONE; 632 } 633 634 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 635 { 636 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 637 return RISCV_EXCP_NONE; 638 } 639 640 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 641 { 642 #if !defined(CONFIG_USER_ONLY) 643 env->mstatus |= MSTATUS_VS; 644 #endif 645 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 646 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 647 return RISCV_EXCP_NONE; 648 } 649 650 /* User Timers and Counters */ 651 static target_ulong get_ticks(bool shift) 652 { 653 int64_t val; 654 target_ulong result; 655 656 #if !defined(CONFIG_USER_ONLY) 657 if (icount_enabled()) { 658 val = icount_get(); 659 } else { 660 val = cpu_get_host_ticks(); 661 } 662 #else 663 val = cpu_get_host_ticks(); 664 #endif 665 666 if (shift) { 667 result = val >> 32; 668 } else { 669 result = val; 670 } 671 672 return result; 673 } 674 675 #if defined(CONFIG_USER_ONLY) 676 static RISCVException read_time(CPURISCVState *env, int csrno, 677 target_ulong *val) 678 { 679 *val = cpu_get_host_ticks(); 680 return RISCV_EXCP_NONE; 681 } 682 683 static RISCVException read_timeh(CPURISCVState *env, int csrno, 684 target_ulong *val) 685 { 686 *val = cpu_get_host_ticks() >> 32; 687 return RISCV_EXCP_NONE; 688 } 689 690 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 691 { 692 *val = get_ticks(false); 693 return RISCV_EXCP_NONE; 694 } 695 696 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 697 { 698 *val = get_ticks(true); 699 return RISCV_EXCP_NONE; 700 } 701 702 #else /* CONFIG_USER_ONLY */ 703 704 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 705 { 706 int evt_index = csrno - CSR_MCOUNTINHIBIT; 707 708 *val = env->mhpmevent_val[evt_index]; 709 710 return RISCV_EXCP_NONE; 711 } 712 713 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 714 { 715 int evt_index = csrno - CSR_MCOUNTINHIBIT; 716 uint64_t mhpmevt_val = val; 717 718 env->mhpmevent_val[evt_index] = val; 719 720 if (riscv_cpu_mxl(env) == MXL_RV32) { 721 mhpmevt_val = mhpmevt_val | 722 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 723 } 724 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 725 726 return RISCV_EXCP_NONE; 727 } 728 729 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 730 { 731 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 732 733 *val = env->mhpmeventh_val[evt_index]; 734 735 return RISCV_EXCP_NONE; 736 } 737 738 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 739 { 740 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 741 uint64_t mhpmevth_val = val; 742 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 743 744 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 745 env->mhpmeventh_val[evt_index] = val; 746 747 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 748 749 return RISCV_EXCP_NONE; 750 } 751 752 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 753 { 754 int ctr_idx = csrno - CSR_MCYCLE; 755 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 756 uint64_t mhpmctr_val = val; 757 758 counter->mhpmcounter_val = val; 759 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 760 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 761 counter->mhpmcounter_prev = get_ticks(false); 762 if (ctr_idx > 2) { 763 if (riscv_cpu_mxl(env) == MXL_RV32) { 764 mhpmctr_val = mhpmctr_val | 765 ((uint64_t)counter->mhpmcounterh_val << 32); 766 } 767 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 768 } 769 } else { 770 /* Other counters can keep incrementing from the given value */ 771 counter->mhpmcounter_prev = val; 772 } 773 774 return RISCV_EXCP_NONE; 775 } 776 777 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 778 { 779 int ctr_idx = csrno - CSR_MCYCLEH; 780 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 781 uint64_t mhpmctr_val = counter->mhpmcounter_val; 782 uint64_t mhpmctrh_val = val; 783 784 counter->mhpmcounterh_val = val; 785 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 786 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 787 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 788 counter->mhpmcounterh_prev = get_ticks(true); 789 if (ctr_idx > 2) { 790 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 791 } 792 } else { 793 counter->mhpmcounterh_prev = val; 794 } 795 796 return RISCV_EXCP_NONE; 797 } 798 799 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 800 bool upper_half, uint32_t ctr_idx) 801 { 802 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 803 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 804 counter.mhpmcounter_prev; 805 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 806 counter.mhpmcounter_val; 807 808 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 809 /** 810 * Counter should not increment if inhibit bit is set. We can't really 811 * stop the icount counting. Just return the counter value written by 812 * the supervisor to indicate that counter was not incremented. 813 */ 814 if (!counter.started) { 815 *val = ctr_val; 816 return RISCV_EXCP_NONE; 817 } else { 818 /* Mark that the counter has been stopped */ 819 counter.started = false; 820 } 821 } 822 823 /** 824 * The kernel computes the perf delta by subtracting the current value from 825 * the value it initialized previously (ctr_val). 826 */ 827 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 828 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 829 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 830 } else { 831 *val = ctr_val; 832 } 833 834 return RISCV_EXCP_NONE; 835 } 836 837 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 838 { 839 uint16_t ctr_index; 840 841 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 842 ctr_index = csrno - CSR_MCYCLE; 843 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 844 ctr_index = csrno - CSR_CYCLE; 845 } else { 846 return RISCV_EXCP_ILLEGAL_INST; 847 } 848 849 return riscv_pmu_read_ctr(env, val, false, ctr_index); 850 } 851 852 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 853 { 854 uint16_t ctr_index; 855 856 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 857 ctr_index = csrno - CSR_MCYCLEH; 858 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 859 ctr_index = csrno - CSR_CYCLEH; 860 } else { 861 return RISCV_EXCP_ILLEGAL_INST; 862 } 863 864 return riscv_pmu_read_ctr(env, val, true, ctr_index); 865 } 866 867 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 868 { 869 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 870 int i; 871 *val = 0; 872 target_ulong *mhpm_evt_val; 873 uint64_t of_bit_mask; 874 875 if (riscv_cpu_mxl(env) == MXL_RV32) { 876 mhpm_evt_val = env->mhpmeventh_val; 877 of_bit_mask = MHPMEVENTH_BIT_OF; 878 } else { 879 mhpm_evt_val = env->mhpmevent_val; 880 of_bit_mask = MHPMEVENT_BIT_OF; 881 } 882 883 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 884 if ((get_field(env->mcounteren, BIT(i))) && 885 (mhpm_evt_val[i] & of_bit_mask)) { 886 *val |= BIT(i); 887 } 888 } 889 890 return RISCV_EXCP_NONE; 891 } 892 893 static RISCVException read_time(CPURISCVState *env, int csrno, 894 target_ulong *val) 895 { 896 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 897 898 if (!env->rdtime_fn) { 899 return RISCV_EXCP_ILLEGAL_INST; 900 } 901 902 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 903 return RISCV_EXCP_NONE; 904 } 905 906 static RISCVException read_timeh(CPURISCVState *env, int csrno, 907 target_ulong *val) 908 { 909 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 910 911 if (!env->rdtime_fn) { 912 return RISCV_EXCP_ILLEGAL_INST; 913 } 914 915 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 916 return RISCV_EXCP_NONE; 917 } 918 919 static RISCVException sstc(CPURISCVState *env, int csrno) 920 { 921 CPUState *cs = env_cpu(env); 922 RISCVCPU *cpu = RISCV_CPU(cs); 923 bool hmode_check = false; 924 925 if (!cpu->cfg.ext_sstc || !env->rdtime_fn) { 926 return RISCV_EXCP_ILLEGAL_INST; 927 } 928 929 if (env->priv == PRV_M) { 930 return RISCV_EXCP_NONE; 931 } 932 933 /* 934 * No need of separate function for rv32 as menvcfg stores both menvcfg 935 * menvcfgh for RV32. 936 */ 937 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 938 get_field(env->menvcfg, MENVCFG_STCE))) { 939 return RISCV_EXCP_ILLEGAL_INST; 940 } 941 942 if (riscv_cpu_virt_enabled(env)) { 943 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 944 get_field(env->henvcfg, HENVCFG_STCE))) { 945 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 946 } 947 } 948 949 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 950 hmode_check = true; 951 } 952 953 return hmode_check ? hmode(env, csrno) : smode(env, csrno); 954 } 955 956 static RISCVException sstc_32(CPURISCVState *env, int csrno) 957 { 958 if (riscv_cpu_mxl(env) != MXL_RV32) { 959 return RISCV_EXCP_ILLEGAL_INST; 960 } 961 962 return sstc(env, csrno); 963 } 964 965 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 966 target_ulong *val) 967 { 968 *val = env->vstimecmp; 969 970 return RISCV_EXCP_NONE; 971 } 972 973 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 974 target_ulong *val) 975 { 976 *val = env->vstimecmp >> 32; 977 978 return RISCV_EXCP_NONE; 979 } 980 981 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 982 target_ulong val) 983 { 984 RISCVCPU *cpu = env_archcpu(env); 985 986 if (riscv_cpu_mxl(env) == MXL_RV32) { 987 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 988 } else { 989 env->vstimecmp = val; 990 } 991 992 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 993 env->htimedelta, MIP_VSTIP); 994 995 return RISCV_EXCP_NONE; 996 } 997 998 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 999 target_ulong val) 1000 { 1001 RISCVCPU *cpu = env_archcpu(env); 1002 1003 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1004 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1005 env->htimedelta, MIP_VSTIP); 1006 1007 return RISCV_EXCP_NONE; 1008 } 1009 1010 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1011 target_ulong *val) 1012 { 1013 if (riscv_cpu_virt_enabled(env)) { 1014 *val = env->vstimecmp; 1015 } else { 1016 *val = env->stimecmp; 1017 } 1018 1019 return RISCV_EXCP_NONE; 1020 } 1021 1022 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1023 target_ulong *val) 1024 { 1025 if (riscv_cpu_virt_enabled(env)) { 1026 *val = env->vstimecmp >> 32; 1027 } else { 1028 *val = env->stimecmp >> 32; 1029 } 1030 1031 return RISCV_EXCP_NONE; 1032 } 1033 1034 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1035 target_ulong val) 1036 { 1037 RISCVCPU *cpu = env_archcpu(env); 1038 1039 if (riscv_cpu_virt_enabled(env)) { 1040 if (env->hvictl & HVICTL_VTI) { 1041 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1042 } 1043 return write_vstimecmp(env, csrno, val); 1044 } 1045 1046 if (riscv_cpu_mxl(env) == MXL_RV32) { 1047 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1048 } else { 1049 env->stimecmp = val; 1050 } 1051 1052 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1053 1054 return RISCV_EXCP_NONE; 1055 } 1056 1057 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1058 target_ulong val) 1059 { 1060 RISCVCPU *cpu = env_archcpu(env); 1061 1062 if (riscv_cpu_virt_enabled(env)) { 1063 if (env->hvictl & HVICTL_VTI) { 1064 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1065 } 1066 return write_vstimecmph(env, csrno, val); 1067 } 1068 1069 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1070 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1071 1072 return RISCV_EXCP_NONE; 1073 } 1074 1075 /* Machine constants */ 1076 1077 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1078 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1079 MIP_LCOFIP)) 1080 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1081 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1082 1083 #define VSTOPI_NUM_SRCS 5 1084 1085 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1086 VS_MODE_INTERRUPTS; 1087 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1088 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1089 HS_MODE_INTERRUPTS; 1090 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1091 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1092 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1093 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1094 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1095 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1096 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1097 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1098 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1099 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1100 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1101 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1102 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1103 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1104 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1105 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1106 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1107 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1108 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1109 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1110 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1111 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1112 (1ULL << (RISCV_EXCP_M_ECALL)) | 1113 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1114 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1115 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1116 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1117 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1118 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1119 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1120 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1121 SIP_LCOFIP; 1122 static const target_ulong hip_writable_mask = MIP_VSSIP; 1123 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1124 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1125 1126 static const char valid_vm_1_10_32[16] = { 1127 [VM_1_10_MBARE] = 1, 1128 [VM_1_10_SV32] = 1 1129 }; 1130 1131 static const char valid_vm_1_10_64[16] = { 1132 [VM_1_10_MBARE] = 1, 1133 [VM_1_10_SV39] = 1, 1134 [VM_1_10_SV48] = 1, 1135 [VM_1_10_SV57] = 1 1136 }; 1137 1138 /* Machine Information Registers */ 1139 static RISCVException read_zero(CPURISCVState *env, int csrno, 1140 target_ulong *val) 1141 { 1142 *val = 0; 1143 return RISCV_EXCP_NONE; 1144 } 1145 1146 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1147 target_ulong val) 1148 { 1149 return RISCV_EXCP_NONE; 1150 } 1151 1152 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1153 target_ulong *val) 1154 { 1155 CPUState *cs = env_cpu(env); 1156 RISCVCPU *cpu = RISCV_CPU(cs); 1157 1158 *val = cpu->cfg.mvendorid; 1159 return RISCV_EXCP_NONE; 1160 } 1161 1162 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1163 target_ulong *val) 1164 { 1165 CPUState *cs = env_cpu(env); 1166 RISCVCPU *cpu = RISCV_CPU(cs); 1167 1168 *val = cpu->cfg.marchid; 1169 return RISCV_EXCP_NONE; 1170 } 1171 1172 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1173 target_ulong *val) 1174 { 1175 CPUState *cs = env_cpu(env); 1176 RISCVCPU *cpu = RISCV_CPU(cs); 1177 1178 *val = cpu->cfg.mimpid; 1179 return RISCV_EXCP_NONE; 1180 } 1181 1182 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1183 target_ulong *val) 1184 { 1185 *val = env->mhartid; 1186 return RISCV_EXCP_NONE; 1187 } 1188 1189 /* Machine Trap Setup */ 1190 1191 /* We do not store SD explicitly, only compute it on demand. */ 1192 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1193 { 1194 if ((status & MSTATUS_FS) == MSTATUS_FS || 1195 (status & MSTATUS_VS) == MSTATUS_VS || 1196 (status & MSTATUS_XS) == MSTATUS_XS) { 1197 switch (xl) { 1198 case MXL_RV32: 1199 return status | MSTATUS32_SD; 1200 case MXL_RV64: 1201 return status | MSTATUS64_SD; 1202 case MXL_RV128: 1203 return MSTATUSH128_SD; 1204 default: 1205 g_assert_not_reached(); 1206 } 1207 } 1208 return status; 1209 } 1210 1211 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1212 target_ulong *val) 1213 { 1214 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1215 return RISCV_EXCP_NONE; 1216 } 1217 1218 static int validate_vm(CPURISCVState *env, target_ulong vm) 1219 { 1220 if (riscv_cpu_mxl(env) == MXL_RV32) { 1221 return valid_vm_1_10_32[vm & 0xf]; 1222 } else { 1223 return valid_vm_1_10_64[vm & 0xf]; 1224 } 1225 } 1226 1227 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1228 target_ulong val) 1229 { 1230 uint64_t mstatus = env->mstatus; 1231 uint64_t mask = 0; 1232 RISCVMXL xl = riscv_cpu_mxl(env); 1233 1234 /* flush tlb on mstatus fields that affect VM */ 1235 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1236 MSTATUS_MPRV | MSTATUS_SUM)) { 1237 tlb_flush(env_cpu(env)); 1238 } 1239 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1240 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1241 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1242 MSTATUS_TW | MSTATUS_VS; 1243 1244 if (riscv_has_ext(env, RVF)) { 1245 mask |= MSTATUS_FS; 1246 } 1247 1248 if (xl != MXL_RV32 || env->debugger) { 1249 /* 1250 * RV32: MPV and GVA are not in mstatus. The current plan is to 1251 * add them to mstatush. For now, we just don't support it. 1252 */ 1253 mask |= MSTATUS_MPV | MSTATUS_GVA; 1254 if ((val & MSTATUS64_UXL) != 0) { 1255 mask |= MSTATUS64_UXL; 1256 } 1257 } 1258 1259 mstatus = (mstatus & ~mask) | (val & mask); 1260 1261 if (xl > MXL_RV32) { 1262 /* SXL field is for now read only */ 1263 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1264 } 1265 env->mstatus = mstatus; 1266 env->xl = cpu_recompute_xl(env); 1267 1268 return RISCV_EXCP_NONE; 1269 } 1270 1271 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1272 target_ulong *val) 1273 { 1274 *val = env->mstatus >> 32; 1275 return RISCV_EXCP_NONE; 1276 } 1277 1278 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1279 target_ulong val) 1280 { 1281 uint64_t valh = (uint64_t)val << 32; 1282 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1283 1284 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1285 tlb_flush(env_cpu(env)); 1286 } 1287 1288 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1289 1290 return RISCV_EXCP_NONE; 1291 } 1292 1293 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1294 Int128 *val) 1295 { 1296 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1297 return RISCV_EXCP_NONE; 1298 } 1299 1300 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1301 Int128 *val) 1302 { 1303 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1304 return RISCV_EXCP_NONE; 1305 } 1306 1307 static RISCVException read_misa(CPURISCVState *env, int csrno, 1308 target_ulong *val) 1309 { 1310 target_ulong misa; 1311 1312 switch (env->misa_mxl) { 1313 case MXL_RV32: 1314 misa = (target_ulong)MXL_RV32 << 30; 1315 break; 1316 #ifdef TARGET_RISCV64 1317 case MXL_RV64: 1318 misa = (target_ulong)MXL_RV64 << 62; 1319 break; 1320 #endif 1321 default: 1322 g_assert_not_reached(); 1323 } 1324 1325 *val = misa | env->misa_ext; 1326 return RISCV_EXCP_NONE; 1327 } 1328 1329 static RISCVException write_misa(CPURISCVState *env, int csrno, 1330 target_ulong val) 1331 { 1332 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 1333 /* drop write to misa */ 1334 return RISCV_EXCP_NONE; 1335 } 1336 1337 /* 'I' or 'E' must be present */ 1338 if (!(val & (RVI | RVE))) { 1339 /* It is not, drop write to misa */ 1340 return RISCV_EXCP_NONE; 1341 } 1342 1343 /* 'E' excludes all other extensions */ 1344 if (val & RVE) { 1345 /* when we support 'E' we can do "val = RVE;" however 1346 * for now we just drop writes if 'E' is present. 1347 */ 1348 return RISCV_EXCP_NONE; 1349 } 1350 1351 /* 1352 * misa.MXL writes are not supported by QEMU. 1353 * Drop writes to those bits. 1354 */ 1355 1356 /* Mask extensions that are not supported by this hart */ 1357 val &= env->misa_ext_mask; 1358 1359 /* Mask extensions that are not supported by QEMU */ 1360 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 1361 1362 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1363 if ((val & RVD) && !(val & RVF)) { 1364 val &= ~RVD; 1365 } 1366 1367 /* Suppress 'C' if next instruction is not aligned 1368 * TODO: this should check next_pc 1369 */ 1370 if ((val & RVC) && (GETPC() & ~3) != 0) { 1371 val &= ~RVC; 1372 } 1373 1374 /* If nothing changed, do nothing. */ 1375 if (val == env->misa_ext) { 1376 return RISCV_EXCP_NONE; 1377 } 1378 1379 if (!(val & RVF)) { 1380 env->mstatus &= ~MSTATUS_FS; 1381 } 1382 1383 /* flush translation cache */ 1384 tb_flush(env_cpu(env)); 1385 env->misa_ext = val; 1386 env->xl = riscv_cpu_mxl(env); 1387 return RISCV_EXCP_NONE; 1388 } 1389 1390 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1391 target_ulong *val) 1392 { 1393 *val = env->medeleg; 1394 return RISCV_EXCP_NONE; 1395 } 1396 1397 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1398 target_ulong val) 1399 { 1400 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1401 return RISCV_EXCP_NONE; 1402 } 1403 1404 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1405 uint64_t *ret_val, 1406 uint64_t new_val, uint64_t wr_mask) 1407 { 1408 uint64_t mask = wr_mask & delegable_ints; 1409 1410 if (ret_val) { 1411 *ret_val = env->mideleg; 1412 } 1413 1414 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1415 1416 if (riscv_has_ext(env, RVH)) { 1417 env->mideleg |= HS_MODE_INTERRUPTS; 1418 } 1419 1420 return RISCV_EXCP_NONE; 1421 } 1422 1423 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1424 target_ulong *ret_val, 1425 target_ulong new_val, target_ulong wr_mask) 1426 { 1427 uint64_t rval; 1428 RISCVException ret; 1429 1430 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1431 if (ret_val) { 1432 *ret_val = rval; 1433 } 1434 1435 return ret; 1436 } 1437 1438 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1439 target_ulong *ret_val, 1440 target_ulong new_val, 1441 target_ulong wr_mask) 1442 { 1443 uint64_t rval; 1444 RISCVException ret; 1445 1446 ret = rmw_mideleg64(env, csrno, &rval, 1447 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1448 if (ret_val) { 1449 *ret_val = rval >> 32; 1450 } 1451 1452 return ret; 1453 } 1454 1455 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1456 uint64_t *ret_val, 1457 uint64_t new_val, uint64_t wr_mask) 1458 { 1459 uint64_t mask = wr_mask & all_ints; 1460 1461 if (ret_val) { 1462 *ret_val = env->mie; 1463 } 1464 1465 env->mie = (env->mie & ~mask) | (new_val & mask); 1466 1467 if (!riscv_has_ext(env, RVH)) { 1468 env->mie &= ~((uint64_t)MIP_SGEIP); 1469 } 1470 1471 return RISCV_EXCP_NONE; 1472 } 1473 1474 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1475 target_ulong *ret_val, 1476 target_ulong new_val, target_ulong wr_mask) 1477 { 1478 uint64_t rval; 1479 RISCVException ret; 1480 1481 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1482 if (ret_val) { 1483 *ret_val = rval; 1484 } 1485 1486 return ret; 1487 } 1488 1489 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1490 target_ulong *ret_val, 1491 target_ulong new_val, target_ulong wr_mask) 1492 { 1493 uint64_t rval; 1494 RISCVException ret; 1495 1496 ret = rmw_mie64(env, csrno, &rval, 1497 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1498 if (ret_val) { 1499 *ret_val = rval >> 32; 1500 } 1501 1502 return ret; 1503 } 1504 1505 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1506 { 1507 int irq; 1508 uint8_t iprio; 1509 1510 irq = riscv_cpu_mirq_pending(env); 1511 if (irq <= 0 || irq > 63) { 1512 *val = 0; 1513 } else { 1514 iprio = env->miprio[irq]; 1515 if (!iprio) { 1516 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1517 iprio = IPRIO_MMAXIPRIO; 1518 } 1519 } 1520 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1521 *val |= iprio; 1522 } 1523 1524 return RISCV_EXCP_NONE; 1525 } 1526 1527 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1528 { 1529 if (!riscv_cpu_virt_enabled(env)) { 1530 return csrno; 1531 } 1532 1533 switch (csrno) { 1534 case CSR_SISELECT: 1535 return CSR_VSISELECT; 1536 case CSR_SIREG: 1537 return CSR_VSIREG; 1538 case CSR_STOPEI: 1539 return CSR_VSTOPEI; 1540 default: 1541 return csrno; 1542 }; 1543 } 1544 1545 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1546 target_ulong new_val, target_ulong wr_mask) 1547 { 1548 target_ulong *iselect; 1549 1550 /* Translate CSR number for VS-mode */ 1551 csrno = aia_xlate_vs_csrno(env, csrno); 1552 1553 /* Find the iselect CSR based on CSR number */ 1554 switch (csrno) { 1555 case CSR_MISELECT: 1556 iselect = &env->miselect; 1557 break; 1558 case CSR_SISELECT: 1559 iselect = &env->siselect; 1560 break; 1561 case CSR_VSISELECT: 1562 iselect = &env->vsiselect; 1563 break; 1564 default: 1565 return RISCV_EXCP_ILLEGAL_INST; 1566 }; 1567 1568 if (val) { 1569 *val = *iselect; 1570 } 1571 1572 wr_mask &= ISELECT_MASK; 1573 if (wr_mask) { 1574 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1575 } 1576 1577 return RISCV_EXCP_NONE; 1578 } 1579 1580 static int rmw_iprio(target_ulong xlen, 1581 target_ulong iselect, uint8_t *iprio, 1582 target_ulong *val, target_ulong new_val, 1583 target_ulong wr_mask, int ext_irq_no) 1584 { 1585 int i, firq, nirqs; 1586 target_ulong old_val; 1587 1588 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1589 return -EINVAL; 1590 } 1591 if (xlen != 32 && iselect & 0x1) { 1592 return -EINVAL; 1593 } 1594 1595 nirqs = 4 * (xlen / 32); 1596 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1597 1598 old_val = 0; 1599 for (i = 0; i < nirqs; i++) { 1600 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1601 } 1602 1603 if (val) { 1604 *val = old_val; 1605 } 1606 1607 if (wr_mask) { 1608 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1609 for (i = 0; i < nirqs; i++) { 1610 /* 1611 * M-level and S-level external IRQ priority always read-only 1612 * zero. This means default priority order is always preferred 1613 * for M-level and S-level external IRQs. 1614 */ 1615 if ((firq + i) == ext_irq_no) { 1616 continue; 1617 } 1618 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1619 } 1620 } 1621 1622 return 0; 1623 } 1624 1625 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1626 target_ulong new_val, target_ulong wr_mask) 1627 { 1628 bool virt; 1629 uint8_t *iprio; 1630 int ret = -EINVAL; 1631 target_ulong priv, isel, vgein; 1632 1633 /* Translate CSR number for VS-mode */ 1634 csrno = aia_xlate_vs_csrno(env, csrno); 1635 1636 /* Decode register details from CSR number */ 1637 virt = false; 1638 switch (csrno) { 1639 case CSR_MIREG: 1640 iprio = env->miprio; 1641 isel = env->miselect; 1642 priv = PRV_M; 1643 break; 1644 case CSR_SIREG: 1645 iprio = env->siprio; 1646 isel = env->siselect; 1647 priv = PRV_S; 1648 break; 1649 case CSR_VSIREG: 1650 iprio = env->hviprio; 1651 isel = env->vsiselect; 1652 priv = PRV_S; 1653 virt = true; 1654 break; 1655 default: 1656 goto done; 1657 }; 1658 1659 /* Find the selected guest interrupt file */ 1660 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1661 1662 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1663 /* Local interrupt priority registers not available for VS-mode */ 1664 if (!virt) { 1665 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1666 isel, iprio, val, new_val, wr_mask, 1667 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1668 } 1669 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1670 /* IMSIC registers only available when machine implements it. */ 1671 if (env->aia_ireg_rmw_fn[priv]) { 1672 /* Selected guest interrupt file should not be zero */ 1673 if (virt && (!vgein || env->geilen < vgein)) { 1674 goto done; 1675 } 1676 /* Call machine specific IMSIC register emulation */ 1677 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1678 AIA_MAKE_IREG(isel, priv, virt, vgein, 1679 riscv_cpu_mxl_bits(env)), 1680 val, new_val, wr_mask); 1681 } 1682 } 1683 1684 done: 1685 if (ret) { 1686 return (riscv_cpu_virt_enabled(env) && virt) ? 1687 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1688 } 1689 return RISCV_EXCP_NONE; 1690 } 1691 1692 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1693 target_ulong new_val, target_ulong wr_mask) 1694 { 1695 bool virt; 1696 int ret = -EINVAL; 1697 target_ulong priv, vgein; 1698 1699 /* Translate CSR number for VS-mode */ 1700 csrno = aia_xlate_vs_csrno(env, csrno); 1701 1702 /* Decode register details from CSR number */ 1703 virt = false; 1704 switch (csrno) { 1705 case CSR_MTOPEI: 1706 priv = PRV_M; 1707 break; 1708 case CSR_STOPEI: 1709 priv = PRV_S; 1710 break; 1711 case CSR_VSTOPEI: 1712 priv = PRV_S; 1713 virt = true; 1714 break; 1715 default: 1716 goto done; 1717 }; 1718 1719 /* IMSIC CSRs only available when machine implements IMSIC. */ 1720 if (!env->aia_ireg_rmw_fn[priv]) { 1721 goto done; 1722 } 1723 1724 /* Find the selected guest interrupt file */ 1725 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1726 1727 /* Selected guest interrupt file should be valid */ 1728 if (virt && (!vgein || env->geilen < vgein)) { 1729 goto done; 1730 } 1731 1732 /* Call machine specific IMSIC register emulation for TOPEI */ 1733 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1734 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1735 riscv_cpu_mxl_bits(env)), 1736 val, new_val, wr_mask); 1737 1738 done: 1739 if (ret) { 1740 return (riscv_cpu_virt_enabled(env) && virt) ? 1741 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1742 } 1743 return RISCV_EXCP_NONE; 1744 } 1745 1746 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1747 target_ulong *val) 1748 { 1749 *val = env->mtvec; 1750 return RISCV_EXCP_NONE; 1751 } 1752 1753 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1754 target_ulong val) 1755 { 1756 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1757 if ((val & 3) < 2) { 1758 env->mtvec = val; 1759 } else { 1760 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1761 } 1762 return RISCV_EXCP_NONE; 1763 } 1764 1765 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1766 target_ulong *val) 1767 { 1768 *val = env->mcountinhibit; 1769 return RISCV_EXCP_NONE; 1770 } 1771 1772 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1773 target_ulong val) 1774 { 1775 int cidx; 1776 PMUCTRState *counter; 1777 1778 env->mcountinhibit = val; 1779 1780 /* Check if any other counter is also monitoring cycles/instructions */ 1781 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1782 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1783 counter = &env->pmu_ctrs[cidx]; 1784 counter->started = true; 1785 } 1786 } 1787 1788 return RISCV_EXCP_NONE; 1789 } 1790 1791 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1792 target_ulong *val) 1793 { 1794 *val = env->mcounteren; 1795 return RISCV_EXCP_NONE; 1796 } 1797 1798 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1799 target_ulong val) 1800 { 1801 env->mcounteren = val; 1802 return RISCV_EXCP_NONE; 1803 } 1804 1805 /* Machine Trap Handling */ 1806 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1807 Int128 *val) 1808 { 1809 *val = int128_make128(env->mscratch, env->mscratchh); 1810 return RISCV_EXCP_NONE; 1811 } 1812 1813 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1814 Int128 val) 1815 { 1816 env->mscratch = int128_getlo(val); 1817 env->mscratchh = int128_gethi(val); 1818 return RISCV_EXCP_NONE; 1819 } 1820 1821 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1822 target_ulong *val) 1823 { 1824 *val = env->mscratch; 1825 return RISCV_EXCP_NONE; 1826 } 1827 1828 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1829 target_ulong val) 1830 { 1831 env->mscratch = val; 1832 return RISCV_EXCP_NONE; 1833 } 1834 1835 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1836 target_ulong *val) 1837 { 1838 *val = env->mepc; 1839 return RISCV_EXCP_NONE; 1840 } 1841 1842 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1843 target_ulong val) 1844 { 1845 env->mepc = val; 1846 return RISCV_EXCP_NONE; 1847 } 1848 1849 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1850 target_ulong *val) 1851 { 1852 *val = env->mcause; 1853 return RISCV_EXCP_NONE; 1854 } 1855 1856 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1857 target_ulong val) 1858 { 1859 env->mcause = val; 1860 return RISCV_EXCP_NONE; 1861 } 1862 1863 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1864 target_ulong *val) 1865 { 1866 *val = env->mtval; 1867 return RISCV_EXCP_NONE; 1868 } 1869 1870 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1871 target_ulong val) 1872 { 1873 env->mtval = val; 1874 return RISCV_EXCP_NONE; 1875 } 1876 1877 /* Execution environment configuration setup */ 1878 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1879 target_ulong *val) 1880 { 1881 *val = env->menvcfg; 1882 return RISCV_EXCP_NONE; 1883 } 1884 1885 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1886 target_ulong val) 1887 { 1888 RISCVCPUConfig *cfg = &env_archcpu(env)->cfg; 1889 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1890 1891 if (riscv_cpu_mxl(env) == MXL_RV64) { 1892 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1893 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 1894 (cfg->ext_svadu ? MENVCFG_HADE : 0); 1895 } 1896 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1897 1898 return RISCV_EXCP_NONE; 1899 } 1900 1901 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1902 target_ulong *val) 1903 { 1904 *val = env->menvcfg >> 32; 1905 return RISCV_EXCP_NONE; 1906 } 1907 1908 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1909 target_ulong val) 1910 { 1911 RISCVCPUConfig *cfg = &env_archcpu(env)->cfg; 1912 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1913 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 1914 (cfg->ext_svadu ? MENVCFG_HADE : 0); 1915 uint64_t valh = (uint64_t)val << 32; 1916 1917 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1918 1919 return RISCV_EXCP_NONE; 1920 } 1921 1922 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1923 target_ulong *val) 1924 { 1925 RISCVException ret; 1926 1927 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1928 if (ret != RISCV_EXCP_NONE) { 1929 return ret; 1930 } 1931 1932 *val = env->senvcfg; 1933 return RISCV_EXCP_NONE; 1934 } 1935 1936 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1937 target_ulong val) 1938 { 1939 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1940 RISCVException ret; 1941 1942 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1943 if (ret != RISCV_EXCP_NONE) { 1944 return ret; 1945 } 1946 1947 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1948 return RISCV_EXCP_NONE; 1949 } 1950 1951 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1952 target_ulong *val) 1953 { 1954 RISCVException ret; 1955 1956 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1957 if (ret != RISCV_EXCP_NONE) { 1958 return ret; 1959 } 1960 1961 /* 1962 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 1963 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 1964 * henvcfg.hade is read_only 0 when menvcfg.hade = 0 1965 */ 1966 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE) | 1967 env->menvcfg); 1968 return RISCV_EXCP_NONE; 1969 } 1970 1971 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1972 target_ulong val) 1973 { 1974 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1975 RISCVException ret; 1976 1977 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1978 if (ret != RISCV_EXCP_NONE) { 1979 return ret; 1980 } 1981 1982 if (riscv_cpu_mxl(env) == MXL_RV64) { 1983 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE); 1984 } 1985 1986 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1987 1988 return RISCV_EXCP_NONE; 1989 } 1990 1991 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1992 target_ulong *val) 1993 { 1994 RISCVException ret; 1995 1996 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1997 if (ret != RISCV_EXCP_NONE) { 1998 return ret; 1999 } 2000 2001 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE) | 2002 env->menvcfg)) >> 32; 2003 return RISCV_EXCP_NONE; 2004 } 2005 2006 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2007 target_ulong val) 2008 { 2009 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 2010 HENVCFG_HADE); 2011 uint64_t valh = (uint64_t)val << 32; 2012 RISCVException ret; 2013 2014 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2015 if (ret != RISCV_EXCP_NONE) { 2016 return ret; 2017 } 2018 2019 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2020 return RISCV_EXCP_NONE; 2021 } 2022 2023 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2024 target_ulong *val) 2025 { 2026 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2027 2028 return RISCV_EXCP_NONE; 2029 } 2030 2031 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2032 uint64_t wr_mask, target_ulong new_val) 2033 { 2034 uint64_t *reg; 2035 2036 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2037 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2038 2039 return RISCV_EXCP_NONE; 2040 } 2041 2042 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2043 target_ulong new_val) 2044 { 2045 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2046 2047 return write_mstateen(env, csrno, wr_mask, new_val); 2048 } 2049 2050 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2051 target_ulong new_val) 2052 { 2053 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2054 } 2055 2056 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2057 target_ulong *val) 2058 { 2059 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2060 2061 return RISCV_EXCP_NONE; 2062 } 2063 2064 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2065 uint64_t wr_mask, target_ulong new_val) 2066 { 2067 uint64_t *reg, val; 2068 2069 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2070 val = (uint64_t)new_val << 32; 2071 val |= *reg & 0xFFFFFFFF; 2072 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2073 2074 return RISCV_EXCP_NONE; 2075 } 2076 2077 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2078 target_ulong new_val) 2079 { 2080 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2081 2082 return write_mstateenh(env, csrno, wr_mask, new_val); 2083 } 2084 2085 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2086 target_ulong new_val) 2087 { 2088 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2089 } 2090 2091 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2092 target_ulong *val) 2093 { 2094 int index = csrno - CSR_HSTATEEN0; 2095 2096 *val = env->hstateen[index] & env->mstateen[index]; 2097 2098 return RISCV_EXCP_NONE; 2099 } 2100 2101 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2102 uint64_t mask, target_ulong new_val) 2103 { 2104 int index = csrno - CSR_HSTATEEN0; 2105 uint64_t *reg, wr_mask; 2106 2107 reg = &env->hstateen[index]; 2108 wr_mask = env->mstateen[index] & mask; 2109 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2110 2111 return RISCV_EXCP_NONE; 2112 } 2113 2114 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2115 target_ulong new_val) 2116 { 2117 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2118 2119 return write_hstateen(env, csrno, wr_mask, new_val); 2120 } 2121 2122 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2123 target_ulong new_val) 2124 { 2125 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2126 } 2127 2128 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2129 target_ulong *val) 2130 { 2131 int index = csrno - CSR_HSTATEEN0H; 2132 2133 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2134 2135 return RISCV_EXCP_NONE; 2136 } 2137 2138 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2139 uint64_t mask, target_ulong new_val) 2140 { 2141 int index = csrno - CSR_HSTATEEN0H; 2142 uint64_t *reg, wr_mask, val; 2143 2144 reg = &env->hstateen[index]; 2145 val = (uint64_t)new_val << 32; 2146 val |= *reg & 0xFFFFFFFF; 2147 wr_mask = env->mstateen[index] & mask; 2148 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2149 2150 return RISCV_EXCP_NONE; 2151 } 2152 2153 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2154 target_ulong new_val) 2155 { 2156 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2157 2158 return write_hstateenh(env, csrno, wr_mask, new_val); 2159 } 2160 2161 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2162 target_ulong new_val) 2163 { 2164 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2165 } 2166 2167 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2168 target_ulong *val) 2169 { 2170 bool virt = riscv_cpu_virt_enabled(env); 2171 int index = csrno - CSR_SSTATEEN0; 2172 2173 *val = env->sstateen[index] & env->mstateen[index]; 2174 if (virt) { 2175 *val &= env->hstateen[index]; 2176 } 2177 2178 return RISCV_EXCP_NONE; 2179 } 2180 2181 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2182 uint64_t mask, target_ulong new_val) 2183 { 2184 bool virt = riscv_cpu_virt_enabled(env); 2185 int index = csrno - CSR_SSTATEEN0; 2186 uint64_t wr_mask; 2187 uint64_t *reg; 2188 2189 wr_mask = env->mstateen[index] & mask; 2190 if (virt) { 2191 wr_mask &= env->hstateen[index]; 2192 } 2193 2194 reg = &env->sstateen[index]; 2195 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2196 2197 return RISCV_EXCP_NONE; 2198 } 2199 2200 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2201 target_ulong new_val) 2202 { 2203 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2204 2205 return write_sstateen(env, csrno, wr_mask, new_val); 2206 } 2207 2208 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2209 target_ulong new_val) 2210 { 2211 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2212 } 2213 2214 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2215 uint64_t *ret_val, 2216 uint64_t new_val, uint64_t wr_mask) 2217 { 2218 RISCVCPU *cpu = env_archcpu(env); 2219 uint64_t old_mip, mask = wr_mask & delegable_ints; 2220 uint32_t gin; 2221 2222 if (mask & MIP_SEIP) { 2223 env->software_seip = new_val & MIP_SEIP; 2224 new_val |= env->external_seip * MIP_SEIP; 2225 } 2226 2227 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2228 get_field(env->menvcfg, MENVCFG_STCE)) { 2229 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2230 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2231 } 2232 2233 if (mask) { 2234 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 2235 } else { 2236 old_mip = env->mip; 2237 } 2238 2239 if (csrno != CSR_HVIP) { 2240 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2241 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2242 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2243 } 2244 2245 if (ret_val) { 2246 *ret_val = old_mip; 2247 } 2248 2249 return RISCV_EXCP_NONE; 2250 } 2251 2252 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2253 target_ulong *ret_val, 2254 target_ulong new_val, target_ulong wr_mask) 2255 { 2256 uint64_t rval; 2257 RISCVException ret; 2258 2259 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2260 if (ret_val) { 2261 *ret_val = rval; 2262 } 2263 2264 return ret; 2265 } 2266 2267 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2268 target_ulong *ret_val, 2269 target_ulong new_val, target_ulong wr_mask) 2270 { 2271 uint64_t rval; 2272 RISCVException ret; 2273 2274 ret = rmw_mip64(env, csrno, &rval, 2275 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2276 if (ret_val) { 2277 *ret_val = rval >> 32; 2278 } 2279 2280 return ret; 2281 } 2282 2283 /* Supervisor Trap Setup */ 2284 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2285 Int128 *val) 2286 { 2287 uint64_t mask = sstatus_v1_10_mask; 2288 uint64_t sstatus = env->mstatus & mask; 2289 if (env->xl != MXL_RV32 || env->debugger) { 2290 mask |= SSTATUS64_UXL; 2291 } 2292 2293 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2294 return RISCV_EXCP_NONE; 2295 } 2296 2297 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2298 target_ulong *val) 2299 { 2300 target_ulong mask = (sstatus_v1_10_mask); 2301 if (env->xl != MXL_RV32 || env->debugger) { 2302 mask |= SSTATUS64_UXL; 2303 } 2304 /* TODO: Use SXL not MXL. */ 2305 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2306 return RISCV_EXCP_NONE; 2307 } 2308 2309 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2310 target_ulong val) 2311 { 2312 target_ulong mask = (sstatus_v1_10_mask); 2313 2314 if (env->xl != MXL_RV32 || env->debugger) { 2315 if ((val & SSTATUS64_UXL) != 0) { 2316 mask |= SSTATUS64_UXL; 2317 } 2318 } 2319 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2320 return write_mstatus(env, CSR_MSTATUS, newval); 2321 } 2322 2323 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2324 uint64_t *ret_val, 2325 uint64_t new_val, uint64_t wr_mask) 2326 { 2327 RISCVException ret; 2328 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2329 2330 /* Bring VS-level bits to correct position */ 2331 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2332 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2333 2334 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2335 if (ret_val) { 2336 *ret_val = (rval & mask) >> 1; 2337 } 2338 2339 return ret; 2340 } 2341 2342 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2343 target_ulong *ret_val, 2344 target_ulong new_val, target_ulong wr_mask) 2345 { 2346 uint64_t rval; 2347 RISCVException ret; 2348 2349 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2350 if (ret_val) { 2351 *ret_val = rval; 2352 } 2353 2354 return ret; 2355 } 2356 2357 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2358 target_ulong *ret_val, 2359 target_ulong new_val, target_ulong wr_mask) 2360 { 2361 uint64_t rval; 2362 RISCVException ret; 2363 2364 ret = rmw_vsie64(env, csrno, &rval, 2365 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2366 if (ret_val) { 2367 *ret_val = rval >> 32; 2368 } 2369 2370 return ret; 2371 } 2372 2373 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2374 uint64_t *ret_val, 2375 uint64_t new_val, uint64_t wr_mask) 2376 { 2377 RISCVException ret; 2378 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2379 2380 if (riscv_cpu_virt_enabled(env)) { 2381 if (env->hvictl & HVICTL_VTI) { 2382 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2383 } 2384 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2385 } else { 2386 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2387 } 2388 2389 if (ret_val) { 2390 *ret_val &= mask; 2391 } 2392 2393 return ret; 2394 } 2395 2396 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2397 target_ulong *ret_val, 2398 target_ulong new_val, target_ulong wr_mask) 2399 { 2400 uint64_t rval; 2401 RISCVException ret; 2402 2403 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2404 if (ret == RISCV_EXCP_NONE && ret_val) { 2405 *ret_val = rval; 2406 } 2407 2408 return ret; 2409 } 2410 2411 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2412 target_ulong *ret_val, 2413 target_ulong new_val, target_ulong wr_mask) 2414 { 2415 uint64_t rval; 2416 RISCVException ret; 2417 2418 ret = rmw_sie64(env, csrno, &rval, 2419 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2420 if (ret_val) { 2421 *ret_val = rval >> 32; 2422 } 2423 2424 return ret; 2425 } 2426 2427 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2428 target_ulong *val) 2429 { 2430 *val = env->stvec; 2431 return RISCV_EXCP_NONE; 2432 } 2433 2434 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2435 target_ulong val) 2436 { 2437 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2438 if ((val & 3) < 2) { 2439 env->stvec = val; 2440 } else { 2441 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2442 } 2443 return RISCV_EXCP_NONE; 2444 } 2445 2446 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2447 target_ulong *val) 2448 { 2449 *val = env->scounteren; 2450 return RISCV_EXCP_NONE; 2451 } 2452 2453 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2454 target_ulong val) 2455 { 2456 env->scounteren = val; 2457 return RISCV_EXCP_NONE; 2458 } 2459 2460 /* Supervisor Trap Handling */ 2461 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2462 Int128 *val) 2463 { 2464 *val = int128_make128(env->sscratch, env->sscratchh); 2465 return RISCV_EXCP_NONE; 2466 } 2467 2468 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2469 Int128 val) 2470 { 2471 env->sscratch = int128_getlo(val); 2472 env->sscratchh = int128_gethi(val); 2473 return RISCV_EXCP_NONE; 2474 } 2475 2476 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2477 target_ulong *val) 2478 { 2479 *val = env->sscratch; 2480 return RISCV_EXCP_NONE; 2481 } 2482 2483 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2484 target_ulong val) 2485 { 2486 env->sscratch = val; 2487 return RISCV_EXCP_NONE; 2488 } 2489 2490 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2491 target_ulong *val) 2492 { 2493 *val = env->sepc; 2494 return RISCV_EXCP_NONE; 2495 } 2496 2497 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2498 target_ulong val) 2499 { 2500 env->sepc = val; 2501 return RISCV_EXCP_NONE; 2502 } 2503 2504 static RISCVException read_scause(CPURISCVState *env, int csrno, 2505 target_ulong *val) 2506 { 2507 *val = env->scause; 2508 return RISCV_EXCP_NONE; 2509 } 2510 2511 static RISCVException write_scause(CPURISCVState *env, int csrno, 2512 target_ulong val) 2513 { 2514 env->scause = val; 2515 return RISCV_EXCP_NONE; 2516 } 2517 2518 static RISCVException read_stval(CPURISCVState *env, int csrno, 2519 target_ulong *val) 2520 { 2521 *val = env->stval; 2522 return RISCV_EXCP_NONE; 2523 } 2524 2525 static RISCVException write_stval(CPURISCVState *env, int csrno, 2526 target_ulong val) 2527 { 2528 env->stval = val; 2529 return RISCV_EXCP_NONE; 2530 } 2531 2532 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2533 uint64_t *ret_val, 2534 uint64_t new_val, uint64_t wr_mask) 2535 { 2536 RISCVException ret; 2537 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2538 2539 /* Bring VS-level bits to correct position */ 2540 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2541 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2542 2543 ret = rmw_mip64(env, csrno, &rval, new_val, 2544 wr_mask & mask & vsip_writable_mask); 2545 if (ret_val) { 2546 *ret_val = (rval & mask) >> 1; 2547 } 2548 2549 return ret; 2550 } 2551 2552 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2553 target_ulong *ret_val, 2554 target_ulong new_val, target_ulong wr_mask) 2555 { 2556 uint64_t rval; 2557 RISCVException ret; 2558 2559 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2560 if (ret_val) { 2561 *ret_val = rval; 2562 } 2563 2564 return ret; 2565 } 2566 2567 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2568 target_ulong *ret_val, 2569 target_ulong new_val, target_ulong wr_mask) 2570 { 2571 uint64_t rval; 2572 RISCVException ret; 2573 2574 ret = rmw_vsip64(env, csrno, &rval, 2575 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2576 if (ret_val) { 2577 *ret_val = rval >> 32; 2578 } 2579 2580 return ret; 2581 } 2582 2583 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2584 uint64_t *ret_val, 2585 uint64_t new_val, uint64_t wr_mask) 2586 { 2587 RISCVException ret; 2588 uint64_t mask = env->mideleg & sip_writable_mask; 2589 2590 if (riscv_cpu_virt_enabled(env)) { 2591 if (env->hvictl & HVICTL_VTI) { 2592 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2593 } 2594 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2595 } else { 2596 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2597 } 2598 2599 if (ret_val) { 2600 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2601 } 2602 2603 return ret; 2604 } 2605 2606 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2607 target_ulong *ret_val, 2608 target_ulong new_val, target_ulong wr_mask) 2609 { 2610 uint64_t rval; 2611 RISCVException ret; 2612 2613 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2614 if (ret_val) { 2615 *ret_val = rval; 2616 } 2617 2618 return ret; 2619 } 2620 2621 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2622 target_ulong *ret_val, 2623 target_ulong new_val, target_ulong wr_mask) 2624 { 2625 uint64_t rval; 2626 RISCVException ret; 2627 2628 ret = rmw_sip64(env, csrno, &rval, 2629 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2630 if (ret_val) { 2631 *ret_val = rval >> 32; 2632 } 2633 2634 return ret; 2635 } 2636 2637 /* Supervisor Protection and Translation */ 2638 static RISCVException read_satp(CPURISCVState *env, int csrno, 2639 target_ulong *val) 2640 { 2641 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2642 *val = 0; 2643 return RISCV_EXCP_NONE; 2644 } 2645 2646 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2647 return RISCV_EXCP_ILLEGAL_INST; 2648 } else { 2649 *val = env->satp; 2650 } 2651 2652 return RISCV_EXCP_NONE; 2653 } 2654 2655 static RISCVException write_satp(CPURISCVState *env, int csrno, 2656 target_ulong val) 2657 { 2658 target_ulong vm, mask; 2659 2660 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2661 return RISCV_EXCP_NONE; 2662 } 2663 2664 if (riscv_cpu_mxl(env) == MXL_RV32) { 2665 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2666 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2667 } else { 2668 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2669 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2670 } 2671 2672 if (vm && mask) { 2673 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2674 return RISCV_EXCP_ILLEGAL_INST; 2675 } else { 2676 /* 2677 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2678 * pass these through QEMU's TLB emulation as it improves 2679 * performance. Flushing the TLB on SATP writes with paging 2680 * enabled avoids leaking those invalid cached mappings. 2681 */ 2682 tlb_flush(env_cpu(env)); 2683 env->satp = val; 2684 } 2685 } 2686 return RISCV_EXCP_NONE; 2687 } 2688 2689 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2690 { 2691 int irq, ret; 2692 target_ulong topei; 2693 uint64_t vseip, vsgein; 2694 uint32_t iid, iprio, hviid, hviprio, gein; 2695 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2696 2697 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2698 hviid = get_field(env->hvictl, HVICTL_IID); 2699 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2700 2701 if (gein) { 2702 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2703 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2704 if (gein <= env->geilen && vseip) { 2705 siid[scount] = IRQ_S_EXT; 2706 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2707 if (env->aia_ireg_rmw_fn[PRV_S]) { 2708 /* 2709 * Call machine specific IMSIC register emulation for 2710 * reading TOPEI. 2711 */ 2712 ret = env->aia_ireg_rmw_fn[PRV_S]( 2713 env->aia_ireg_rmw_fn_arg[PRV_S], 2714 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2715 riscv_cpu_mxl_bits(env)), 2716 &topei, 0, 0); 2717 if (!ret && topei) { 2718 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2719 } 2720 } 2721 scount++; 2722 } 2723 } else { 2724 if (hviid == IRQ_S_EXT && hviprio) { 2725 siid[scount] = IRQ_S_EXT; 2726 siprio[scount] = hviprio; 2727 scount++; 2728 } 2729 } 2730 2731 if (env->hvictl & HVICTL_VTI) { 2732 if (hviid != IRQ_S_EXT) { 2733 siid[scount] = hviid; 2734 siprio[scount] = hviprio; 2735 scount++; 2736 } 2737 } else { 2738 irq = riscv_cpu_vsirq_pending(env); 2739 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2740 siid[scount] = irq; 2741 siprio[scount] = env->hviprio[irq]; 2742 scount++; 2743 } 2744 } 2745 2746 iid = 0; 2747 iprio = UINT_MAX; 2748 for (s = 0; s < scount; s++) { 2749 if (siprio[s] < iprio) { 2750 iid = siid[s]; 2751 iprio = siprio[s]; 2752 } 2753 } 2754 2755 if (iid) { 2756 if (env->hvictl & HVICTL_IPRIOM) { 2757 if (iprio > IPRIO_MMAXIPRIO) { 2758 iprio = IPRIO_MMAXIPRIO; 2759 } 2760 if (!iprio) { 2761 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2762 iprio = IPRIO_MMAXIPRIO; 2763 } 2764 } 2765 } else { 2766 iprio = 1; 2767 } 2768 } else { 2769 iprio = 0; 2770 } 2771 2772 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2773 *val |= iprio; 2774 return RISCV_EXCP_NONE; 2775 } 2776 2777 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2778 { 2779 int irq; 2780 uint8_t iprio; 2781 2782 if (riscv_cpu_virt_enabled(env)) { 2783 return read_vstopi(env, CSR_VSTOPI, val); 2784 } 2785 2786 irq = riscv_cpu_sirq_pending(env); 2787 if (irq <= 0 || irq > 63) { 2788 *val = 0; 2789 } else { 2790 iprio = env->siprio[irq]; 2791 if (!iprio) { 2792 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2793 iprio = IPRIO_MMAXIPRIO; 2794 } 2795 } 2796 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2797 *val |= iprio; 2798 } 2799 2800 return RISCV_EXCP_NONE; 2801 } 2802 2803 /* Hypervisor Extensions */ 2804 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2805 target_ulong *val) 2806 { 2807 *val = env->hstatus; 2808 if (riscv_cpu_mxl(env) != MXL_RV32) { 2809 /* We only support 64-bit VSXL */ 2810 *val = set_field(*val, HSTATUS_VSXL, 2); 2811 } 2812 /* We only support little endian */ 2813 *val = set_field(*val, HSTATUS_VSBE, 0); 2814 return RISCV_EXCP_NONE; 2815 } 2816 2817 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2818 target_ulong val) 2819 { 2820 env->hstatus = val; 2821 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2822 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2823 } 2824 if (get_field(val, HSTATUS_VSBE) != 0) { 2825 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2826 } 2827 return RISCV_EXCP_NONE; 2828 } 2829 2830 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2831 target_ulong *val) 2832 { 2833 *val = env->hedeleg; 2834 return RISCV_EXCP_NONE; 2835 } 2836 2837 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2838 target_ulong val) 2839 { 2840 env->hedeleg = val & vs_delegable_excps; 2841 return RISCV_EXCP_NONE; 2842 } 2843 2844 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2845 uint64_t *ret_val, 2846 uint64_t new_val, uint64_t wr_mask) 2847 { 2848 uint64_t mask = wr_mask & vs_delegable_ints; 2849 2850 if (ret_val) { 2851 *ret_val = env->hideleg & vs_delegable_ints; 2852 } 2853 2854 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2855 return RISCV_EXCP_NONE; 2856 } 2857 2858 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2859 target_ulong *ret_val, 2860 target_ulong new_val, target_ulong wr_mask) 2861 { 2862 uint64_t rval; 2863 RISCVException ret; 2864 2865 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2866 if (ret_val) { 2867 *ret_val = rval; 2868 } 2869 2870 return ret; 2871 } 2872 2873 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2874 target_ulong *ret_val, 2875 target_ulong new_val, target_ulong wr_mask) 2876 { 2877 uint64_t rval; 2878 RISCVException ret; 2879 2880 ret = rmw_hideleg64(env, csrno, &rval, 2881 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2882 if (ret_val) { 2883 *ret_val = rval >> 32; 2884 } 2885 2886 return ret; 2887 } 2888 2889 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2890 uint64_t *ret_val, 2891 uint64_t new_val, uint64_t wr_mask) 2892 { 2893 RISCVException ret; 2894 2895 ret = rmw_mip64(env, csrno, ret_val, new_val, 2896 wr_mask & hvip_writable_mask); 2897 if (ret_val) { 2898 *ret_val &= VS_MODE_INTERRUPTS; 2899 } 2900 2901 return ret; 2902 } 2903 2904 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2905 target_ulong *ret_val, 2906 target_ulong new_val, target_ulong wr_mask) 2907 { 2908 uint64_t rval; 2909 RISCVException ret; 2910 2911 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2912 if (ret_val) { 2913 *ret_val = rval; 2914 } 2915 2916 return ret; 2917 } 2918 2919 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2920 target_ulong *ret_val, 2921 target_ulong new_val, target_ulong wr_mask) 2922 { 2923 uint64_t rval; 2924 RISCVException ret; 2925 2926 ret = rmw_hvip64(env, csrno, &rval, 2927 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2928 if (ret_val) { 2929 *ret_val = rval >> 32; 2930 } 2931 2932 return ret; 2933 } 2934 2935 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2936 target_ulong *ret_value, 2937 target_ulong new_value, target_ulong write_mask) 2938 { 2939 int ret = rmw_mip(env, csrno, ret_value, new_value, 2940 write_mask & hip_writable_mask); 2941 2942 if (ret_value) { 2943 *ret_value &= HS_MODE_INTERRUPTS; 2944 } 2945 return ret; 2946 } 2947 2948 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2949 target_ulong *ret_val, 2950 target_ulong new_val, target_ulong wr_mask) 2951 { 2952 uint64_t rval; 2953 RISCVException ret; 2954 2955 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2956 if (ret_val) { 2957 *ret_val = rval & HS_MODE_INTERRUPTS; 2958 } 2959 2960 return ret; 2961 } 2962 2963 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2964 target_ulong *val) 2965 { 2966 *val = env->hcounteren; 2967 return RISCV_EXCP_NONE; 2968 } 2969 2970 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2971 target_ulong val) 2972 { 2973 env->hcounteren = val; 2974 return RISCV_EXCP_NONE; 2975 } 2976 2977 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2978 target_ulong *val) 2979 { 2980 if (val) { 2981 *val = env->hgeie; 2982 } 2983 return RISCV_EXCP_NONE; 2984 } 2985 2986 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2987 target_ulong val) 2988 { 2989 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2990 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2991 env->hgeie = val; 2992 /* Update mip.SGEIP bit */ 2993 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2994 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2995 return RISCV_EXCP_NONE; 2996 } 2997 2998 static RISCVException read_htval(CPURISCVState *env, int csrno, 2999 target_ulong *val) 3000 { 3001 *val = env->htval; 3002 return RISCV_EXCP_NONE; 3003 } 3004 3005 static RISCVException write_htval(CPURISCVState *env, int csrno, 3006 target_ulong val) 3007 { 3008 env->htval = val; 3009 return RISCV_EXCP_NONE; 3010 } 3011 3012 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3013 target_ulong *val) 3014 { 3015 *val = env->htinst; 3016 return RISCV_EXCP_NONE; 3017 } 3018 3019 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3020 target_ulong val) 3021 { 3022 return RISCV_EXCP_NONE; 3023 } 3024 3025 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3026 target_ulong *val) 3027 { 3028 if (val) { 3029 *val = env->hgeip; 3030 } 3031 return RISCV_EXCP_NONE; 3032 } 3033 3034 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3035 target_ulong *val) 3036 { 3037 *val = env->hgatp; 3038 return RISCV_EXCP_NONE; 3039 } 3040 3041 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3042 target_ulong val) 3043 { 3044 env->hgatp = val; 3045 return RISCV_EXCP_NONE; 3046 } 3047 3048 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3049 target_ulong *val) 3050 { 3051 if (!env->rdtime_fn) { 3052 return RISCV_EXCP_ILLEGAL_INST; 3053 } 3054 3055 *val = env->htimedelta; 3056 return RISCV_EXCP_NONE; 3057 } 3058 3059 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3060 target_ulong val) 3061 { 3062 RISCVCPU *cpu = env_archcpu(env); 3063 3064 if (!env->rdtime_fn) { 3065 return RISCV_EXCP_ILLEGAL_INST; 3066 } 3067 3068 if (riscv_cpu_mxl(env) == MXL_RV32) { 3069 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3070 } else { 3071 env->htimedelta = val; 3072 } 3073 3074 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3075 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3076 env->htimedelta, MIP_VSTIP); 3077 } 3078 3079 return RISCV_EXCP_NONE; 3080 } 3081 3082 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3083 target_ulong *val) 3084 { 3085 if (!env->rdtime_fn) { 3086 return RISCV_EXCP_ILLEGAL_INST; 3087 } 3088 3089 *val = env->htimedelta >> 32; 3090 return RISCV_EXCP_NONE; 3091 } 3092 3093 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3094 target_ulong val) 3095 { 3096 RISCVCPU *cpu = env_archcpu(env); 3097 3098 if (!env->rdtime_fn) { 3099 return RISCV_EXCP_ILLEGAL_INST; 3100 } 3101 3102 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3103 3104 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3105 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3106 env->htimedelta, MIP_VSTIP); 3107 } 3108 3109 return RISCV_EXCP_NONE; 3110 } 3111 3112 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3113 { 3114 *val = env->hvictl; 3115 return RISCV_EXCP_NONE; 3116 } 3117 3118 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3119 { 3120 env->hvictl = val & HVICTL_VALID_MASK; 3121 return RISCV_EXCP_NONE; 3122 } 3123 3124 static int read_hvipriox(CPURISCVState *env, int first_index, 3125 uint8_t *iprio, target_ulong *val) 3126 { 3127 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3128 3129 /* First index has to be a multiple of number of irqs per register */ 3130 if (first_index % num_irqs) { 3131 return (riscv_cpu_virt_enabled(env)) ? 3132 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3133 } 3134 3135 /* Fill-up return value */ 3136 *val = 0; 3137 for (i = 0; i < num_irqs; i++) { 3138 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3139 continue; 3140 } 3141 if (rdzero) { 3142 continue; 3143 } 3144 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3145 } 3146 3147 return RISCV_EXCP_NONE; 3148 } 3149 3150 static int write_hvipriox(CPURISCVState *env, int first_index, 3151 uint8_t *iprio, target_ulong val) 3152 { 3153 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3154 3155 /* First index has to be a multiple of number of irqs per register */ 3156 if (first_index % num_irqs) { 3157 return (riscv_cpu_virt_enabled(env)) ? 3158 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3159 } 3160 3161 /* Fill-up priority arrary */ 3162 for (i = 0; i < num_irqs; i++) { 3163 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3164 continue; 3165 } 3166 if (rdzero) { 3167 iprio[irq] = 0; 3168 } else { 3169 iprio[irq] = (val >> (i * 8)) & 0xff; 3170 } 3171 } 3172 3173 return RISCV_EXCP_NONE; 3174 } 3175 3176 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3177 { 3178 return read_hvipriox(env, 0, env->hviprio, val); 3179 } 3180 3181 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3182 { 3183 return write_hvipriox(env, 0, env->hviprio, val); 3184 } 3185 3186 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3187 { 3188 return read_hvipriox(env, 4, env->hviprio, val); 3189 } 3190 3191 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3192 { 3193 return write_hvipriox(env, 4, env->hviprio, val); 3194 } 3195 3196 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3197 { 3198 return read_hvipriox(env, 8, env->hviprio, val); 3199 } 3200 3201 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3202 { 3203 return write_hvipriox(env, 8, env->hviprio, val); 3204 } 3205 3206 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3207 { 3208 return read_hvipriox(env, 12, env->hviprio, val); 3209 } 3210 3211 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3212 { 3213 return write_hvipriox(env, 12, env->hviprio, val); 3214 } 3215 3216 /* Virtual CSR Registers */ 3217 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3218 target_ulong *val) 3219 { 3220 *val = env->vsstatus; 3221 return RISCV_EXCP_NONE; 3222 } 3223 3224 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3225 target_ulong val) 3226 { 3227 uint64_t mask = (target_ulong)-1; 3228 if ((val & VSSTATUS64_UXL) == 0) { 3229 mask &= ~VSSTATUS64_UXL; 3230 } 3231 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3232 return RISCV_EXCP_NONE; 3233 } 3234 3235 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3236 { 3237 *val = env->vstvec; 3238 return RISCV_EXCP_NONE; 3239 } 3240 3241 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3242 target_ulong val) 3243 { 3244 env->vstvec = val; 3245 return RISCV_EXCP_NONE; 3246 } 3247 3248 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3249 target_ulong *val) 3250 { 3251 *val = env->vsscratch; 3252 return RISCV_EXCP_NONE; 3253 } 3254 3255 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3256 target_ulong val) 3257 { 3258 env->vsscratch = val; 3259 return RISCV_EXCP_NONE; 3260 } 3261 3262 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3263 target_ulong *val) 3264 { 3265 *val = env->vsepc; 3266 return RISCV_EXCP_NONE; 3267 } 3268 3269 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3270 target_ulong val) 3271 { 3272 env->vsepc = val; 3273 return RISCV_EXCP_NONE; 3274 } 3275 3276 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3277 target_ulong *val) 3278 { 3279 *val = env->vscause; 3280 return RISCV_EXCP_NONE; 3281 } 3282 3283 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3284 target_ulong val) 3285 { 3286 env->vscause = val; 3287 return RISCV_EXCP_NONE; 3288 } 3289 3290 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3291 target_ulong *val) 3292 { 3293 *val = env->vstval; 3294 return RISCV_EXCP_NONE; 3295 } 3296 3297 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3298 target_ulong val) 3299 { 3300 env->vstval = val; 3301 return RISCV_EXCP_NONE; 3302 } 3303 3304 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3305 target_ulong *val) 3306 { 3307 *val = env->vsatp; 3308 return RISCV_EXCP_NONE; 3309 } 3310 3311 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3312 target_ulong val) 3313 { 3314 env->vsatp = val; 3315 return RISCV_EXCP_NONE; 3316 } 3317 3318 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3319 target_ulong *val) 3320 { 3321 *val = env->mtval2; 3322 return RISCV_EXCP_NONE; 3323 } 3324 3325 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3326 target_ulong val) 3327 { 3328 env->mtval2 = val; 3329 return RISCV_EXCP_NONE; 3330 } 3331 3332 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3333 target_ulong *val) 3334 { 3335 *val = env->mtinst; 3336 return RISCV_EXCP_NONE; 3337 } 3338 3339 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3340 target_ulong val) 3341 { 3342 env->mtinst = val; 3343 return RISCV_EXCP_NONE; 3344 } 3345 3346 /* Physical Memory Protection */ 3347 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3348 target_ulong *val) 3349 { 3350 *val = mseccfg_csr_read(env); 3351 return RISCV_EXCP_NONE; 3352 } 3353 3354 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3355 target_ulong val) 3356 { 3357 mseccfg_csr_write(env, val); 3358 return RISCV_EXCP_NONE; 3359 } 3360 3361 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 3362 { 3363 /* TODO: RV128 restriction check */ 3364 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 3365 return false; 3366 } 3367 return true; 3368 } 3369 3370 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3371 target_ulong *val) 3372 { 3373 uint32_t reg_index = csrno - CSR_PMPCFG0; 3374 3375 if (!check_pmp_reg_index(env, reg_index)) { 3376 return RISCV_EXCP_ILLEGAL_INST; 3377 } 3378 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 3379 return RISCV_EXCP_NONE; 3380 } 3381 3382 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3383 target_ulong val) 3384 { 3385 uint32_t reg_index = csrno - CSR_PMPCFG0; 3386 3387 if (!check_pmp_reg_index(env, reg_index)) { 3388 return RISCV_EXCP_ILLEGAL_INST; 3389 } 3390 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 3391 return RISCV_EXCP_NONE; 3392 } 3393 3394 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3395 target_ulong *val) 3396 { 3397 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3398 return RISCV_EXCP_NONE; 3399 } 3400 3401 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3402 target_ulong val) 3403 { 3404 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3405 return RISCV_EXCP_NONE; 3406 } 3407 3408 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3409 target_ulong *val) 3410 { 3411 *val = tselect_csr_read(env); 3412 return RISCV_EXCP_NONE; 3413 } 3414 3415 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3416 target_ulong val) 3417 { 3418 tselect_csr_write(env, val); 3419 return RISCV_EXCP_NONE; 3420 } 3421 3422 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3423 target_ulong *val) 3424 { 3425 /* return 0 in tdata1 to end the trigger enumeration */ 3426 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3427 *val = 0; 3428 return RISCV_EXCP_NONE; 3429 } 3430 3431 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3432 return RISCV_EXCP_ILLEGAL_INST; 3433 } 3434 3435 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3436 return RISCV_EXCP_NONE; 3437 } 3438 3439 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3440 target_ulong val) 3441 { 3442 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3443 return RISCV_EXCP_ILLEGAL_INST; 3444 } 3445 3446 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3447 return RISCV_EXCP_NONE; 3448 } 3449 3450 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3451 target_ulong *val) 3452 { 3453 *val = tinfo_csr_read(env); 3454 return RISCV_EXCP_NONE; 3455 } 3456 3457 /* 3458 * Functions to access Pointer Masking feature registers 3459 * We have to check if current priv lvl could modify 3460 * csr in given mode 3461 */ 3462 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3463 { 3464 int csr_priv = get_field(csrno, 0x300); 3465 int pm_current; 3466 3467 if (env->debugger) { 3468 return false; 3469 } 3470 /* 3471 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3472 * so allow the access 3473 */ 3474 if (env->priv != csr_priv) { 3475 return false; 3476 } 3477 switch (env->priv) { 3478 case PRV_M: 3479 pm_current = get_field(env->mmte, M_PM_CURRENT); 3480 break; 3481 case PRV_S: 3482 pm_current = get_field(env->mmte, S_PM_CURRENT); 3483 break; 3484 case PRV_U: 3485 pm_current = get_field(env->mmte, U_PM_CURRENT); 3486 break; 3487 default: 3488 g_assert_not_reached(); 3489 } 3490 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3491 return !pm_current; 3492 } 3493 3494 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3495 target_ulong *val) 3496 { 3497 *val = env->mmte & MMTE_MASK; 3498 return RISCV_EXCP_NONE; 3499 } 3500 3501 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3502 target_ulong val) 3503 { 3504 uint64_t mstatus; 3505 target_ulong wpri_val = val & MMTE_MASK; 3506 3507 if (val != wpri_val) { 3508 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3509 "MMTE: WPRI violation written 0x", val, 3510 "vs expected 0x", wpri_val); 3511 } 3512 /* for machine mode pm.current is hardwired to 1 */ 3513 wpri_val |= MMTE_M_PM_CURRENT; 3514 3515 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3516 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3517 env->mmte = wpri_val | PM_EXT_DIRTY; 3518 riscv_cpu_update_mask(env); 3519 3520 /* Set XS and SD bits, since PM CSRs are dirty */ 3521 mstatus = env->mstatus | MSTATUS_XS; 3522 write_mstatus(env, csrno, mstatus); 3523 return RISCV_EXCP_NONE; 3524 } 3525 3526 static RISCVException read_smte(CPURISCVState *env, int csrno, 3527 target_ulong *val) 3528 { 3529 *val = env->mmte & SMTE_MASK; 3530 return RISCV_EXCP_NONE; 3531 } 3532 3533 static RISCVException write_smte(CPURISCVState *env, int csrno, 3534 target_ulong val) 3535 { 3536 target_ulong wpri_val = val & SMTE_MASK; 3537 3538 if (val != wpri_val) { 3539 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3540 "SMTE: WPRI violation written 0x", val, 3541 "vs expected 0x", wpri_val); 3542 } 3543 3544 /* if pm.current==0 we can't modify current PM CSRs */ 3545 if (check_pm_current_disabled(env, csrno)) { 3546 return RISCV_EXCP_NONE; 3547 } 3548 3549 wpri_val |= (env->mmte & ~SMTE_MASK); 3550 write_mmte(env, csrno, wpri_val); 3551 return RISCV_EXCP_NONE; 3552 } 3553 3554 static RISCVException read_umte(CPURISCVState *env, int csrno, 3555 target_ulong *val) 3556 { 3557 *val = env->mmte & UMTE_MASK; 3558 return RISCV_EXCP_NONE; 3559 } 3560 3561 static RISCVException write_umte(CPURISCVState *env, int csrno, 3562 target_ulong val) 3563 { 3564 target_ulong wpri_val = val & UMTE_MASK; 3565 3566 if (val != wpri_val) { 3567 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3568 "UMTE: WPRI violation written 0x", val, 3569 "vs expected 0x", wpri_val); 3570 } 3571 3572 if (check_pm_current_disabled(env, csrno)) { 3573 return RISCV_EXCP_NONE; 3574 } 3575 3576 wpri_val |= (env->mmte & ~UMTE_MASK); 3577 write_mmte(env, csrno, wpri_val); 3578 return RISCV_EXCP_NONE; 3579 } 3580 3581 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3582 target_ulong *val) 3583 { 3584 *val = env->mpmmask; 3585 return RISCV_EXCP_NONE; 3586 } 3587 3588 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3589 target_ulong val) 3590 { 3591 uint64_t mstatus; 3592 3593 env->mpmmask = val; 3594 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3595 env->cur_pmmask = val; 3596 } 3597 env->mmte |= PM_EXT_DIRTY; 3598 3599 /* Set XS and SD bits, since PM CSRs are dirty */ 3600 mstatus = env->mstatus | MSTATUS_XS; 3601 write_mstatus(env, csrno, mstatus); 3602 return RISCV_EXCP_NONE; 3603 } 3604 3605 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3606 target_ulong *val) 3607 { 3608 *val = env->spmmask; 3609 return RISCV_EXCP_NONE; 3610 } 3611 3612 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3613 target_ulong val) 3614 { 3615 uint64_t mstatus; 3616 3617 /* if pm.current==0 we can't modify current PM CSRs */ 3618 if (check_pm_current_disabled(env, csrno)) { 3619 return RISCV_EXCP_NONE; 3620 } 3621 env->spmmask = val; 3622 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3623 env->cur_pmmask = val; 3624 } 3625 env->mmte |= PM_EXT_DIRTY; 3626 3627 /* Set XS and SD bits, since PM CSRs are dirty */ 3628 mstatus = env->mstatus | MSTATUS_XS; 3629 write_mstatus(env, csrno, mstatus); 3630 return RISCV_EXCP_NONE; 3631 } 3632 3633 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3634 target_ulong *val) 3635 { 3636 *val = env->upmmask; 3637 return RISCV_EXCP_NONE; 3638 } 3639 3640 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3641 target_ulong val) 3642 { 3643 uint64_t mstatus; 3644 3645 /* if pm.current==0 we can't modify current PM CSRs */ 3646 if (check_pm_current_disabled(env, csrno)) { 3647 return RISCV_EXCP_NONE; 3648 } 3649 env->upmmask = val; 3650 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3651 env->cur_pmmask = val; 3652 } 3653 env->mmte |= PM_EXT_DIRTY; 3654 3655 /* Set XS and SD bits, since PM CSRs are dirty */ 3656 mstatus = env->mstatus | MSTATUS_XS; 3657 write_mstatus(env, csrno, mstatus); 3658 return RISCV_EXCP_NONE; 3659 } 3660 3661 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3662 target_ulong *val) 3663 { 3664 *val = env->mpmbase; 3665 return RISCV_EXCP_NONE; 3666 } 3667 3668 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3669 target_ulong val) 3670 { 3671 uint64_t mstatus; 3672 3673 env->mpmbase = val; 3674 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3675 env->cur_pmbase = val; 3676 } 3677 env->mmte |= PM_EXT_DIRTY; 3678 3679 /* Set XS and SD bits, since PM CSRs are dirty */ 3680 mstatus = env->mstatus | MSTATUS_XS; 3681 write_mstatus(env, csrno, mstatus); 3682 return RISCV_EXCP_NONE; 3683 } 3684 3685 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3686 target_ulong *val) 3687 { 3688 *val = env->spmbase; 3689 return RISCV_EXCP_NONE; 3690 } 3691 3692 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3693 target_ulong val) 3694 { 3695 uint64_t mstatus; 3696 3697 /* if pm.current==0 we can't modify current PM CSRs */ 3698 if (check_pm_current_disabled(env, csrno)) { 3699 return RISCV_EXCP_NONE; 3700 } 3701 env->spmbase = val; 3702 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3703 env->cur_pmbase = val; 3704 } 3705 env->mmte |= PM_EXT_DIRTY; 3706 3707 /* Set XS and SD bits, since PM CSRs are dirty */ 3708 mstatus = env->mstatus | MSTATUS_XS; 3709 write_mstatus(env, csrno, mstatus); 3710 return RISCV_EXCP_NONE; 3711 } 3712 3713 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3714 target_ulong *val) 3715 { 3716 *val = env->upmbase; 3717 return RISCV_EXCP_NONE; 3718 } 3719 3720 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3721 target_ulong val) 3722 { 3723 uint64_t mstatus; 3724 3725 /* if pm.current==0 we can't modify current PM CSRs */ 3726 if (check_pm_current_disabled(env, csrno)) { 3727 return RISCV_EXCP_NONE; 3728 } 3729 env->upmbase = val; 3730 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3731 env->cur_pmbase = val; 3732 } 3733 env->mmte |= PM_EXT_DIRTY; 3734 3735 /* Set XS and SD bits, since PM CSRs are dirty */ 3736 mstatus = env->mstatus | MSTATUS_XS; 3737 write_mstatus(env, csrno, mstatus); 3738 return RISCV_EXCP_NONE; 3739 } 3740 3741 #endif 3742 3743 /* Crypto Extension */ 3744 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3745 target_ulong *ret_value, 3746 target_ulong new_value, 3747 target_ulong write_mask) 3748 { 3749 uint16_t random_v; 3750 Error *random_e = NULL; 3751 int random_r; 3752 target_ulong rval; 3753 3754 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3755 if (unlikely(random_r < 0)) { 3756 /* 3757 * Failed, for unknown reasons in the crypto subsystem. 3758 * The best we can do is log the reason and return a 3759 * failure indication to the guest. There is no reason 3760 * we know to expect the failure to be transitory, so 3761 * indicate DEAD to avoid having the guest spin on WAIT. 3762 */ 3763 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3764 __func__, error_get_pretty(random_e)); 3765 error_free(random_e); 3766 rval = SEED_OPST_DEAD; 3767 } else { 3768 rval = random_v | SEED_OPST_ES16; 3769 } 3770 3771 if (ret_value) { 3772 *ret_value = rval; 3773 } 3774 3775 return RISCV_EXCP_NONE; 3776 } 3777 3778 /* 3779 * riscv_csrrw - read and/or update control and status register 3780 * 3781 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3782 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3783 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3784 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3785 */ 3786 3787 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3788 int csrno, 3789 bool write_mask, 3790 RISCVCPU *cpu) 3791 { 3792 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3793 int read_only = get_field(csrno, 0xC00) == 3; 3794 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3795 3796 /* ensure the CSR extension is enabled. */ 3797 if (!cpu->cfg.ext_icsr) { 3798 return RISCV_EXCP_ILLEGAL_INST; 3799 } 3800 3801 if (env->priv_ver < csr_min_priv) { 3802 return RISCV_EXCP_ILLEGAL_INST; 3803 } 3804 3805 /* check predicate */ 3806 if (!csr_ops[csrno].predicate) { 3807 return RISCV_EXCP_ILLEGAL_INST; 3808 } 3809 3810 if (write_mask && read_only) { 3811 return RISCV_EXCP_ILLEGAL_INST; 3812 } 3813 3814 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3815 if (ret != RISCV_EXCP_NONE) { 3816 return ret; 3817 } 3818 3819 #if !defined(CONFIG_USER_ONLY) 3820 int csr_priv, effective_priv = env->priv; 3821 3822 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3823 !riscv_cpu_virt_enabled(env)) { 3824 /* 3825 * We are in HS mode. Add 1 to the effective privledge level to 3826 * allow us to access the Hypervisor CSRs. 3827 */ 3828 effective_priv++; 3829 } 3830 3831 csr_priv = get_field(csrno, 0x300); 3832 if (!env->debugger && (effective_priv < csr_priv)) { 3833 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3834 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3835 } 3836 return RISCV_EXCP_ILLEGAL_INST; 3837 } 3838 #endif 3839 return RISCV_EXCP_NONE; 3840 } 3841 3842 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3843 target_ulong *ret_value, 3844 target_ulong new_value, 3845 target_ulong write_mask) 3846 { 3847 RISCVException ret; 3848 target_ulong old_value; 3849 3850 /* execute combined read/write operation if it exists */ 3851 if (csr_ops[csrno].op) { 3852 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3853 } 3854 3855 /* if no accessor exists then return failure */ 3856 if (!csr_ops[csrno].read) { 3857 return RISCV_EXCP_ILLEGAL_INST; 3858 } 3859 /* read old value */ 3860 ret = csr_ops[csrno].read(env, csrno, &old_value); 3861 if (ret != RISCV_EXCP_NONE) { 3862 return ret; 3863 } 3864 3865 /* write value if writable and write mask set, otherwise drop writes */ 3866 if (write_mask) { 3867 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3868 if (csr_ops[csrno].write) { 3869 ret = csr_ops[csrno].write(env, csrno, new_value); 3870 if (ret != RISCV_EXCP_NONE) { 3871 return ret; 3872 } 3873 } 3874 } 3875 3876 /* return old value */ 3877 if (ret_value) { 3878 *ret_value = old_value; 3879 } 3880 3881 return RISCV_EXCP_NONE; 3882 } 3883 3884 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3885 target_ulong *ret_value, 3886 target_ulong new_value, target_ulong write_mask) 3887 { 3888 RISCVCPU *cpu = env_archcpu(env); 3889 3890 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3891 if (ret != RISCV_EXCP_NONE) { 3892 return ret; 3893 } 3894 3895 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3896 } 3897 3898 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3899 Int128 *ret_value, 3900 Int128 new_value, 3901 Int128 write_mask) 3902 { 3903 RISCVException ret; 3904 Int128 old_value; 3905 3906 /* read old value */ 3907 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3908 if (ret != RISCV_EXCP_NONE) { 3909 return ret; 3910 } 3911 3912 /* write value if writable and write mask set, otherwise drop writes */ 3913 if (int128_nz(write_mask)) { 3914 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3915 int128_and(new_value, write_mask)); 3916 if (csr_ops[csrno].write128) { 3917 ret = csr_ops[csrno].write128(env, csrno, new_value); 3918 if (ret != RISCV_EXCP_NONE) { 3919 return ret; 3920 } 3921 } else if (csr_ops[csrno].write) { 3922 /* avoids having to write wrappers for all registers */ 3923 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3924 if (ret != RISCV_EXCP_NONE) { 3925 return ret; 3926 } 3927 } 3928 } 3929 3930 /* return old value */ 3931 if (ret_value) { 3932 *ret_value = old_value; 3933 } 3934 3935 return RISCV_EXCP_NONE; 3936 } 3937 3938 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3939 Int128 *ret_value, 3940 Int128 new_value, Int128 write_mask) 3941 { 3942 RISCVException ret; 3943 RISCVCPU *cpu = env_archcpu(env); 3944 3945 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3946 if (ret != RISCV_EXCP_NONE) { 3947 return ret; 3948 } 3949 3950 if (csr_ops[csrno].read128) { 3951 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3952 } 3953 3954 /* 3955 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3956 * at all defined. 3957 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3958 * significant), for those, this fallback is correctly handling the accesses 3959 */ 3960 target_ulong old_value; 3961 ret = riscv_csrrw_do64(env, csrno, &old_value, 3962 int128_getlo(new_value), 3963 int128_getlo(write_mask)); 3964 if (ret == RISCV_EXCP_NONE && ret_value) { 3965 *ret_value = int128_make64(old_value); 3966 } 3967 return ret; 3968 } 3969 3970 /* 3971 * Debugger support. If not in user mode, set env->debugger before the 3972 * riscv_csrrw call and clear it after the call. 3973 */ 3974 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3975 target_ulong *ret_value, 3976 target_ulong new_value, 3977 target_ulong write_mask) 3978 { 3979 RISCVException ret; 3980 #if !defined(CONFIG_USER_ONLY) 3981 env->debugger = true; 3982 #endif 3983 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3984 #if !defined(CONFIG_USER_ONLY) 3985 env->debugger = false; 3986 #endif 3987 return ret; 3988 } 3989 3990 /* Control and Status Register function table */ 3991 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3992 /* User Floating-Point CSRs */ 3993 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3994 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3995 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3996 /* Vector CSRs */ 3997 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 3998 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 3999 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4000 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4001 [CSR_VL] = { "vl", vs, read_vl }, 4002 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4003 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4004 /* User Timers and Counters */ 4005 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4006 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4007 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4008 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4009 4010 /* 4011 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4012 * rdtime callback is not provided by machine/platform emulation. 4013 */ 4014 [CSR_TIME] = { "time", ctr, read_time }, 4015 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4016 4017 /* Crypto Extension */ 4018 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4019 4020 #if !defined(CONFIG_USER_ONLY) 4021 /* Machine Timers and Counters */ 4022 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4023 write_mhpmcounter }, 4024 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4025 write_mhpmcounter }, 4026 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4027 write_mhpmcounterh }, 4028 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4029 write_mhpmcounterh }, 4030 4031 /* Machine Information Registers */ 4032 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4033 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4034 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4035 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4036 4037 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4038 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4039 /* Machine Trap Setup */ 4040 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4041 NULL, read_mstatus_i128 }, 4042 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4043 NULL, read_misa_i128 }, 4044 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4045 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4046 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4047 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4048 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4049 write_mcounteren }, 4050 4051 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4052 write_mstatush }, 4053 4054 /* Machine Trap Handling */ 4055 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4056 NULL, read_mscratch_i128, write_mscratch_i128 }, 4057 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4058 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4059 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4060 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4061 4062 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4063 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4064 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4065 4066 /* Machine-Level Interrupts (AIA) */ 4067 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4068 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4069 4070 /* Virtual Interrupts for Supervisor Level (AIA) */ 4071 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4072 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4073 4074 /* Machine-Level High-Half CSRs (AIA) */ 4075 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4076 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4077 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4078 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4079 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4080 4081 /* Execution environment configuration */ 4082 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4083 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4084 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4085 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4086 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4087 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4088 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4089 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4090 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4091 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4092 4093 /* Smstateen extension CSRs */ 4094 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4095 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4096 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4097 write_mstateen0h, 4098 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4099 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4100 write_mstateen_1_3, 4101 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4102 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4103 write_mstateenh_1_3, 4104 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4105 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4106 write_mstateen_1_3, 4107 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4108 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4109 write_mstateenh_1_3, 4110 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4111 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4112 write_mstateen_1_3, 4113 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4114 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4115 write_mstateenh_1_3, 4116 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4117 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4118 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4119 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4120 write_hstateen0h, 4121 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4122 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4123 write_hstateen_1_3, 4124 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4125 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4126 write_hstateenh_1_3, 4127 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4128 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4129 write_hstateen_1_3, 4130 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4131 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4132 write_hstateenh_1_3, 4133 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4134 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4135 write_hstateen_1_3, 4136 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4137 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4138 write_hstateenh_1_3, 4139 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4140 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4141 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4142 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4143 write_sstateen_1_3, 4144 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4145 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4146 write_sstateen_1_3, 4147 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4148 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4149 write_sstateen_1_3, 4150 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4151 4152 /* Supervisor Trap Setup */ 4153 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4154 NULL, read_sstatus_i128 }, 4155 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4156 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4157 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4158 write_scounteren }, 4159 4160 /* Supervisor Trap Handling */ 4161 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4162 NULL, read_sscratch_i128, write_sscratch_i128 }, 4163 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4164 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4165 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4166 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4167 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4168 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4169 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4170 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4171 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4172 write_vstimecmp, 4173 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4174 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4175 write_vstimecmph, 4176 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4177 4178 /* Supervisor Protection and Translation */ 4179 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 4180 4181 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4182 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4183 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4184 4185 /* Supervisor-Level Interrupts (AIA) */ 4186 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4187 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4188 4189 /* Supervisor-Level High-Half CSRs (AIA) */ 4190 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4191 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4192 4193 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4194 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4195 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4196 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4197 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4198 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4199 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4200 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4201 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4202 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4203 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4204 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4205 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4206 write_hcounteren, 4207 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4208 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4209 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4210 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4211 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4212 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4213 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4214 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4215 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4216 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 4217 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4218 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4219 write_htimedelta, 4220 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4221 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4222 write_htimedeltah, 4223 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4224 4225 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4226 write_vsstatus, 4227 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4228 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4229 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4230 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4231 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4232 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4233 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4234 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4235 write_vsscratch, 4236 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4237 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4238 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4239 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4240 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4241 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4242 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4243 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4244 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4245 4246 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4247 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4248 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4249 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4250 4251 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4252 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4253 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4254 write_hvictl }, 4255 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4256 write_hviprio1 }, 4257 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4258 write_hviprio2 }, 4259 4260 /* 4261 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4262 */ 4263 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4264 rmw_xiselect }, 4265 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4266 4267 /* VS-Level Interrupts (H-extension with AIA) */ 4268 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4269 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4270 4271 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4272 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4273 rmw_hidelegh }, 4274 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4275 write_ignore }, 4276 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4277 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4278 write_hviprio1h }, 4279 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4280 write_hviprio2h }, 4281 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4282 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4283 4284 /* Physical Memory Protection */ 4285 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4286 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4287 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4288 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4289 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4290 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4291 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4292 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4293 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4294 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4295 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4296 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4297 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4298 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4299 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4300 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4301 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4302 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4303 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4304 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4305 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4306 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4307 4308 /* Debug CSRs */ 4309 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4310 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4311 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4312 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4313 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4314 4315 /* User Pointer Masking */ 4316 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4317 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4318 write_upmmask }, 4319 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4320 write_upmbase }, 4321 /* Machine Pointer Masking */ 4322 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4323 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4324 write_mpmmask }, 4325 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4326 write_mpmbase }, 4327 /* Supervisor Pointer Masking */ 4328 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4329 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4330 write_spmmask }, 4331 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4332 write_spmbase }, 4333 4334 /* Performance Counters */ 4335 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4336 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4337 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4338 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4339 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4340 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4341 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4342 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4343 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4344 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4345 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4346 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4347 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4348 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4349 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4350 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4351 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4352 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4353 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4354 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4355 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4356 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4357 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4358 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4359 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4360 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4361 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4362 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4363 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4364 4365 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4366 write_mhpmcounter }, 4367 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4368 write_mhpmcounter }, 4369 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4370 write_mhpmcounter }, 4371 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4372 write_mhpmcounter }, 4373 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4374 write_mhpmcounter }, 4375 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4376 write_mhpmcounter }, 4377 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4378 write_mhpmcounter }, 4379 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4380 write_mhpmcounter }, 4381 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4382 write_mhpmcounter }, 4383 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4384 write_mhpmcounter }, 4385 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4386 write_mhpmcounter }, 4387 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4388 write_mhpmcounter }, 4389 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4390 write_mhpmcounter }, 4391 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4392 write_mhpmcounter }, 4393 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4394 write_mhpmcounter }, 4395 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4396 write_mhpmcounter }, 4397 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4398 write_mhpmcounter }, 4399 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4400 write_mhpmcounter }, 4401 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4402 write_mhpmcounter }, 4403 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4404 write_mhpmcounter }, 4405 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4406 write_mhpmcounter }, 4407 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4408 write_mhpmcounter }, 4409 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4410 write_mhpmcounter }, 4411 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4412 write_mhpmcounter }, 4413 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4414 write_mhpmcounter }, 4415 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4416 write_mhpmcounter }, 4417 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4418 write_mhpmcounter }, 4419 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4420 write_mhpmcounter }, 4421 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4422 write_mhpmcounter }, 4423 4424 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4425 write_mcountinhibit, 4426 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4427 4428 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4429 write_mhpmevent }, 4430 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4431 write_mhpmevent }, 4432 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4433 write_mhpmevent }, 4434 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4435 write_mhpmevent }, 4436 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4437 write_mhpmevent }, 4438 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4439 write_mhpmevent }, 4440 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4441 write_mhpmevent }, 4442 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4443 write_mhpmevent }, 4444 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4445 write_mhpmevent }, 4446 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4447 write_mhpmevent }, 4448 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4449 write_mhpmevent }, 4450 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4451 write_mhpmevent }, 4452 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4453 write_mhpmevent }, 4454 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4455 write_mhpmevent }, 4456 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4457 write_mhpmevent }, 4458 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4459 write_mhpmevent }, 4460 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4461 write_mhpmevent }, 4462 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4463 write_mhpmevent }, 4464 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4465 write_mhpmevent }, 4466 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4467 write_mhpmevent }, 4468 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4469 write_mhpmevent }, 4470 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4471 write_mhpmevent }, 4472 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4473 write_mhpmevent }, 4474 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4475 write_mhpmevent }, 4476 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4477 write_mhpmevent }, 4478 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4479 write_mhpmevent }, 4480 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4481 write_mhpmevent }, 4482 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4483 write_mhpmevent }, 4484 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4485 write_mhpmevent }, 4486 4487 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4488 write_mhpmeventh, 4489 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4490 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4491 write_mhpmeventh, 4492 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4493 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4494 write_mhpmeventh, 4495 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4496 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4497 write_mhpmeventh, 4498 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4499 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4500 write_mhpmeventh, 4501 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4502 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4503 write_mhpmeventh, 4504 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4505 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4506 write_mhpmeventh, 4507 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4508 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4509 write_mhpmeventh, 4510 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4511 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4512 write_mhpmeventh, 4513 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4514 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4515 write_mhpmeventh, 4516 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4517 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4518 write_mhpmeventh, 4519 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4520 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4521 write_mhpmeventh, 4522 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4523 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4524 write_mhpmeventh, 4525 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4526 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4527 write_mhpmeventh, 4528 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4529 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4530 write_mhpmeventh, 4531 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4532 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4533 write_mhpmeventh, 4534 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4535 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4536 write_mhpmeventh, 4537 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4538 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4539 write_mhpmeventh, 4540 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4541 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4542 write_mhpmeventh, 4543 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4544 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4545 write_mhpmeventh, 4546 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4547 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4548 write_mhpmeventh, 4549 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4550 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4551 write_mhpmeventh, 4552 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4553 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4554 write_mhpmeventh, 4555 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4556 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4557 write_mhpmeventh, 4558 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4559 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4560 write_mhpmeventh, 4561 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4562 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4563 write_mhpmeventh, 4564 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4565 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4566 write_mhpmeventh, 4567 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4568 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4569 write_mhpmeventh, 4570 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4571 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4572 write_mhpmeventh, 4573 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4574 4575 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4576 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4577 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4578 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4579 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4580 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4581 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4582 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4583 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4584 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4585 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4586 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4587 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4588 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4589 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4590 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4591 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4592 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4593 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4594 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4595 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4596 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4597 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4598 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4599 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4600 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4601 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4602 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4603 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4604 4605 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4606 write_mhpmcounterh }, 4607 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4608 write_mhpmcounterh }, 4609 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4610 write_mhpmcounterh }, 4611 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4612 write_mhpmcounterh }, 4613 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4614 write_mhpmcounterh }, 4615 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4616 write_mhpmcounterh }, 4617 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4618 write_mhpmcounterh }, 4619 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4620 write_mhpmcounterh }, 4621 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4622 write_mhpmcounterh }, 4623 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4624 write_mhpmcounterh }, 4625 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4626 write_mhpmcounterh }, 4627 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4628 write_mhpmcounterh }, 4629 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4630 write_mhpmcounterh }, 4631 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4632 write_mhpmcounterh }, 4633 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4634 write_mhpmcounterh }, 4635 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4636 write_mhpmcounterh }, 4637 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4638 write_mhpmcounterh }, 4639 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4640 write_mhpmcounterh }, 4641 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4642 write_mhpmcounterh }, 4643 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4644 write_mhpmcounterh }, 4645 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4646 write_mhpmcounterh }, 4647 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4648 write_mhpmcounterh }, 4649 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4650 write_mhpmcounterh }, 4651 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4652 write_mhpmcounterh }, 4653 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4654 write_mhpmcounterh }, 4655 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4656 write_mhpmcounterh }, 4657 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4658 write_mhpmcounterh }, 4659 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4660 write_mhpmcounterh }, 4661 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4662 write_mhpmcounterh }, 4663 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4664 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4665 4666 #endif /* !CONFIG_USER_ONLY */ 4667 }; 4668