1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "exec/tb-flush.h" 29 #include "sysemu/cpu-timers.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 33 /* CSR function table public API */ 34 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 35 { 36 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 37 } 38 39 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 40 { 41 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 42 } 43 44 /* Predicates */ 45 #if !defined(CONFIG_USER_ONLY) 46 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) 47 { 48 bool virt = env->virt_enabled; 49 50 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 51 return RISCV_EXCP_NONE; 52 } 53 54 if (!(env->mstateen[index] & bit)) { 55 return RISCV_EXCP_ILLEGAL_INST; 56 } 57 58 if (virt) { 59 if (!(env->hstateen[index] & bit)) { 60 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 61 } 62 63 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 64 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 65 } 66 } 67 68 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 69 if (!(env->sstateen[index] & bit)) { 70 return RISCV_EXCP_ILLEGAL_INST; 71 } 72 } 73 74 return RISCV_EXCP_NONE; 75 } 76 #endif 77 78 static RISCVException fs(CPURISCVState *env, int csrno) 79 { 80 #if !defined(CONFIG_USER_ONLY) 81 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 82 !riscv_cpu_cfg(env)->ext_zfinx) { 83 return RISCV_EXCP_ILLEGAL_INST; 84 } 85 #endif 86 return RISCV_EXCP_NONE; 87 } 88 89 static RISCVException vs(CPURISCVState *env, int csrno) 90 { 91 if (riscv_cpu_cfg(env)->ext_zve32f) { 92 #if !defined(CONFIG_USER_ONLY) 93 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 94 return RISCV_EXCP_ILLEGAL_INST; 95 } 96 #endif 97 return RISCV_EXCP_NONE; 98 } 99 return RISCV_EXCP_ILLEGAL_INST; 100 } 101 102 static RISCVException ctr(CPURISCVState *env, int csrno) 103 { 104 #if !defined(CONFIG_USER_ONLY) 105 RISCVCPU *cpu = env_archcpu(env); 106 int ctr_index; 107 target_ulong ctr_mask; 108 int base_csrno = CSR_CYCLE; 109 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 110 111 if (rv32 && csrno >= CSR_CYCLEH) { 112 /* Offset for RV32 hpmcounternh counters */ 113 base_csrno += 0x80; 114 } 115 ctr_index = csrno - base_csrno; 116 ctr_mask = BIT(ctr_index); 117 118 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 119 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 120 goto skip_ext_pmu_check; 121 } 122 123 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 124 /* No counter is enabled in PMU or the counter is out of range */ 125 return RISCV_EXCP_ILLEGAL_INST; 126 } 127 128 skip_ext_pmu_check: 129 130 if (env->debugger) { 131 return RISCV_EXCP_NONE; 132 } 133 134 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 135 return RISCV_EXCP_ILLEGAL_INST; 136 } 137 138 if (env->virt_enabled) { 139 if (!get_field(env->hcounteren, ctr_mask) || 140 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 141 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 142 } 143 } 144 145 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 146 !get_field(env->scounteren, ctr_mask)) { 147 return RISCV_EXCP_ILLEGAL_INST; 148 } 149 150 #endif 151 return RISCV_EXCP_NONE; 152 } 153 154 static RISCVException ctr32(CPURISCVState *env, int csrno) 155 { 156 if (riscv_cpu_mxl(env) != MXL_RV32) { 157 return RISCV_EXCP_ILLEGAL_INST; 158 } 159 160 return ctr(env, csrno); 161 } 162 163 static RISCVException zcmt(CPURISCVState *env, int csrno) 164 { 165 if (!riscv_cpu_cfg(env)->ext_zcmt) { 166 return RISCV_EXCP_ILLEGAL_INST; 167 } 168 169 #if !defined(CONFIG_USER_ONLY) 170 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); 171 if (ret != RISCV_EXCP_NONE) { 172 return ret; 173 } 174 #endif 175 176 return RISCV_EXCP_NONE; 177 } 178 179 #if !defined(CONFIG_USER_ONLY) 180 static RISCVException mctr(CPURISCVState *env, int csrno) 181 { 182 int pmu_num = riscv_cpu_cfg(env)->pmu_num; 183 int ctr_index; 184 int base_csrno = CSR_MHPMCOUNTER3; 185 186 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 187 /* Offset for RV32 mhpmcounternh counters */ 188 base_csrno += 0x80; 189 } 190 ctr_index = csrno - base_csrno; 191 if (!pmu_num || ctr_index >= pmu_num) { 192 /* The PMU is not enabled or counter is out of range */ 193 return RISCV_EXCP_ILLEGAL_INST; 194 } 195 196 return RISCV_EXCP_NONE; 197 } 198 199 static RISCVException mctr32(CPURISCVState *env, int csrno) 200 { 201 if (riscv_cpu_mxl(env) != MXL_RV32) { 202 return RISCV_EXCP_ILLEGAL_INST; 203 } 204 205 return mctr(env, csrno); 206 } 207 208 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 209 { 210 if (!riscv_cpu_cfg(env)->ext_sscofpmf) { 211 return RISCV_EXCP_ILLEGAL_INST; 212 } 213 214 return RISCV_EXCP_NONE; 215 } 216 217 static RISCVException any(CPURISCVState *env, int csrno) 218 { 219 return RISCV_EXCP_NONE; 220 } 221 222 static RISCVException any32(CPURISCVState *env, int csrno) 223 { 224 if (riscv_cpu_mxl(env) != MXL_RV32) { 225 return RISCV_EXCP_ILLEGAL_INST; 226 } 227 228 return any(env, csrno); 229 230 } 231 232 static int aia_any(CPURISCVState *env, int csrno) 233 { 234 if (!riscv_cpu_cfg(env)->ext_smaia) { 235 return RISCV_EXCP_ILLEGAL_INST; 236 } 237 238 return any(env, csrno); 239 } 240 241 static int aia_any32(CPURISCVState *env, int csrno) 242 { 243 if (!riscv_cpu_cfg(env)->ext_smaia) { 244 return RISCV_EXCP_ILLEGAL_INST; 245 } 246 247 return any32(env, csrno); 248 } 249 250 static RISCVException smode(CPURISCVState *env, int csrno) 251 { 252 if (riscv_has_ext(env, RVS)) { 253 return RISCV_EXCP_NONE; 254 } 255 256 return RISCV_EXCP_ILLEGAL_INST; 257 } 258 259 static int smode32(CPURISCVState *env, int csrno) 260 { 261 if (riscv_cpu_mxl(env) != MXL_RV32) { 262 return RISCV_EXCP_ILLEGAL_INST; 263 } 264 265 return smode(env, csrno); 266 } 267 268 static int aia_smode(CPURISCVState *env, int csrno) 269 { 270 if (!riscv_cpu_cfg(env)->ext_ssaia) { 271 return RISCV_EXCP_ILLEGAL_INST; 272 } 273 274 return smode(env, csrno); 275 } 276 277 static int aia_smode32(CPURISCVState *env, int csrno) 278 { 279 if (!riscv_cpu_cfg(env)->ext_ssaia) { 280 return RISCV_EXCP_ILLEGAL_INST; 281 } 282 283 return smode32(env, csrno); 284 } 285 286 static RISCVException hmode(CPURISCVState *env, int csrno) 287 { 288 if (riscv_has_ext(env, RVH)) { 289 return RISCV_EXCP_NONE; 290 } 291 292 return RISCV_EXCP_ILLEGAL_INST; 293 } 294 295 static RISCVException hmode32(CPURISCVState *env, int csrno) 296 { 297 if (riscv_cpu_mxl(env) != MXL_RV32) { 298 return RISCV_EXCP_ILLEGAL_INST; 299 } 300 301 return hmode(env, csrno); 302 303 } 304 305 static RISCVException umode(CPURISCVState *env, int csrno) 306 { 307 if (riscv_has_ext(env, RVU)) { 308 return RISCV_EXCP_NONE; 309 } 310 311 return RISCV_EXCP_ILLEGAL_INST; 312 } 313 314 static RISCVException umode32(CPURISCVState *env, int csrno) 315 { 316 if (riscv_cpu_mxl(env) != MXL_RV32) { 317 return RISCV_EXCP_ILLEGAL_INST; 318 } 319 320 return umode(env, csrno); 321 } 322 323 static RISCVException mstateen(CPURISCVState *env, int csrno) 324 { 325 if (!riscv_cpu_cfg(env)->ext_smstateen) { 326 return RISCV_EXCP_ILLEGAL_INST; 327 } 328 329 return any(env, csrno); 330 } 331 332 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 333 { 334 if (!riscv_cpu_cfg(env)->ext_smstateen) { 335 return RISCV_EXCP_ILLEGAL_INST; 336 } 337 338 RISCVException ret = hmode(env, csrno); 339 if (ret != RISCV_EXCP_NONE) { 340 return ret; 341 } 342 343 if (env->debugger) { 344 return RISCV_EXCP_NONE; 345 } 346 347 if (env->priv < PRV_M) { 348 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 349 return RISCV_EXCP_ILLEGAL_INST; 350 } 351 } 352 353 return RISCV_EXCP_NONE; 354 } 355 356 static RISCVException hstateen(CPURISCVState *env, int csrno) 357 { 358 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 359 } 360 361 static RISCVException hstateenh(CPURISCVState *env, int csrno) 362 { 363 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 364 } 365 366 static RISCVException sstateen(CPURISCVState *env, int csrno) 367 { 368 bool virt = env->virt_enabled; 369 int index = csrno - CSR_SSTATEEN0; 370 371 if (!riscv_cpu_cfg(env)->ext_smstateen) { 372 return RISCV_EXCP_ILLEGAL_INST; 373 } 374 375 RISCVException ret = smode(env, csrno); 376 if (ret != RISCV_EXCP_NONE) { 377 return ret; 378 } 379 380 if (env->debugger) { 381 return RISCV_EXCP_NONE; 382 } 383 384 if (env->priv < PRV_M) { 385 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 386 return RISCV_EXCP_ILLEGAL_INST; 387 } 388 389 if (virt) { 390 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 391 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 392 } 393 } 394 } 395 396 return RISCV_EXCP_NONE; 397 } 398 399 static RISCVException sstc(CPURISCVState *env, int csrno) 400 { 401 bool hmode_check = false; 402 403 if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { 404 return RISCV_EXCP_ILLEGAL_INST; 405 } 406 407 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 408 hmode_check = true; 409 } 410 411 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 412 if (ret != RISCV_EXCP_NONE) { 413 return ret; 414 } 415 416 if (env->debugger) { 417 return RISCV_EXCP_NONE; 418 } 419 420 if (env->priv == PRV_M) { 421 return RISCV_EXCP_NONE; 422 } 423 424 /* 425 * No need of separate function for rv32 as menvcfg stores both menvcfg 426 * menvcfgh for RV32. 427 */ 428 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 429 get_field(env->menvcfg, MENVCFG_STCE))) { 430 return RISCV_EXCP_ILLEGAL_INST; 431 } 432 433 if (env->virt_enabled) { 434 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 435 get_field(env->henvcfg, HENVCFG_STCE))) { 436 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 437 } 438 } 439 440 return RISCV_EXCP_NONE; 441 } 442 443 static RISCVException sstc_32(CPURISCVState *env, int csrno) 444 { 445 if (riscv_cpu_mxl(env) != MXL_RV32) { 446 return RISCV_EXCP_ILLEGAL_INST; 447 } 448 449 return sstc(env, csrno); 450 } 451 452 /* Checks if PointerMasking registers could be accessed */ 453 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 454 { 455 /* Check if j-ext is present */ 456 if (riscv_has_ext(env, RVJ)) { 457 return RISCV_EXCP_NONE; 458 } 459 return RISCV_EXCP_ILLEGAL_INST; 460 } 461 462 static int aia_hmode(CPURISCVState *env, int csrno) 463 { 464 if (!riscv_cpu_cfg(env)->ext_ssaia) { 465 return RISCV_EXCP_ILLEGAL_INST; 466 } 467 468 return hmode(env, csrno); 469 } 470 471 static int aia_hmode32(CPURISCVState *env, int csrno) 472 { 473 if (!riscv_cpu_cfg(env)->ext_ssaia) { 474 return RISCV_EXCP_ILLEGAL_INST; 475 } 476 477 return hmode32(env, csrno); 478 } 479 480 static RISCVException pmp(CPURISCVState *env, int csrno) 481 { 482 if (riscv_cpu_cfg(env)->pmp) { 483 if (csrno <= CSR_PMPCFG3) { 484 uint32_t reg_index = csrno - CSR_PMPCFG0; 485 486 /* TODO: RV128 restriction check */ 487 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 488 return RISCV_EXCP_ILLEGAL_INST; 489 } 490 } 491 492 return RISCV_EXCP_NONE; 493 } 494 495 return RISCV_EXCP_ILLEGAL_INST; 496 } 497 498 static RISCVException epmp(CPURISCVState *env, int csrno) 499 { 500 if (riscv_cpu_cfg(env)->epmp) { 501 return RISCV_EXCP_NONE; 502 } 503 504 return RISCV_EXCP_ILLEGAL_INST; 505 } 506 507 static RISCVException debug(CPURISCVState *env, int csrno) 508 { 509 if (riscv_cpu_cfg(env)->debug) { 510 return RISCV_EXCP_NONE; 511 } 512 513 return RISCV_EXCP_ILLEGAL_INST; 514 } 515 #endif 516 517 static RISCVException seed(CPURISCVState *env, int csrno) 518 { 519 if (!riscv_cpu_cfg(env)->ext_zkr) { 520 return RISCV_EXCP_ILLEGAL_INST; 521 } 522 523 #if !defined(CONFIG_USER_ONLY) 524 if (env->debugger) { 525 return RISCV_EXCP_NONE; 526 } 527 528 /* 529 * With a CSR read-write instruction: 530 * 1) The seed CSR is always available in machine mode as normal. 531 * 2) Attempted access to seed from virtual modes VS and VU always raises 532 * an exception(virtual instruction exception only if mseccfg.sseed=1). 533 * 3) Without the corresponding access control bit set to 1, any attempted 534 * access to seed from U, S or HS modes will raise an illegal instruction 535 * exception. 536 */ 537 if (env->priv == PRV_M) { 538 return RISCV_EXCP_NONE; 539 } else if (env->virt_enabled) { 540 if (env->mseccfg & MSECCFG_SSEED) { 541 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 542 } else { 543 return RISCV_EXCP_ILLEGAL_INST; 544 } 545 } else { 546 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 547 return RISCV_EXCP_NONE; 548 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 549 return RISCV_EXCP_NONE; 550 } else { 551 return RISCV_EXCP_ILLEGAL_INST; 552 } 553 } 554 #else 555 return RISCV_EXCP_NONE; 556 #endif 557 } 558 559 /* User Floating-Point CSRs */ 560 static RISCVException read_fflags(CPURISCVState *env, int csrno, 561 target_ulong *val) 562 { 563 *val = riscv_cpu_get_fflags(env); 564 return RISCV_EXCP_NONE; 565 } 566 567 static RISCVException write_fflags(CPURISCVState *env, int csrno, 568 target_ulong val) 569 { 570 #if !defined(CONFIG_USER_ONLY) 571 if (riscv_has_ext(env, RVF)) { 572 env->mstatus |= MSTATUS_FS; 573 } 574 #endif 575 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 576 return RISCV_EXCP_NONE; 577 } 578 579 static RISCVException read_frm(CPURISCVState *env, int csrno, 580 target_ulong *val) 581 { 582 *val = env->frm; 583 return RISCV_EXCP_NONE; 584 } 585 586 static RISCVException write_frm(CPURISCVState *env, int csrno, 587 target_ulong val) 588 { 589 #if !defined(CONFIG_USER_ONLY) 590 if (riscv_has_ext(env, RVF)) { 591 env->mstatus |= MSTATUS_FS; 592 } 593 #endif 594 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 595 return RISCV_EXCP_NONE; 596 } 597 598 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 599 target_ulong *val) 600 { 601 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 602 | (env->frm << FSR_RD_SHIFT); 603 return RISCV_EXCP_NONE; 604 } 605 606 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 607 target_ulong val) 608 { 609 #if !defined(CONFIG_USER_ONLY) 610 if (riscv_has_ext(env, RVF)) { 611 env->mstatus |= MSTATUS_FS; 612 } 613 #endif 614 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 615 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 616 return RISCV_EXCP_NONE; 617 } 618 619 static RISCVException read_vtype(CPURISCVState *env, int csrno, 620 target_ulong *val) 621 { 622 uint64_t vill; 623 switch (env->xl) { 624 case MXL_RV32: 625 vill = (uint32_t)env->vill << 31; 626 break; 627 case MXL_RV64: 628 vill = (uint64_t)env->vill << 63; 629 break; 630 default: 631 g_assert_not_reached(); 632 } 633 *val = (target_ulong)vill | env->vtype; 634 return RISCV_EXCP_NONE; 635 } 636 637 static RISCVException read_vl(CPURISCVState *env, int csrno, 638 target_ulong *val) 639 { 640 *val = env->vl; 641 return RISCV_EXCP_NONE; 642 } 643 644 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 645 { 646 *val = riscv_cpu_cfg(env)->vlen >> 3; 647 return RISCV_EXCP_NONE; 648 } 649 650 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 651 target_ulong *val) 652 { 653 *val = env->vxrm; 654 return RISCV_EXCP_NONE; 655 } 656 657 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 658 target_ulong val) 659 { 660 #if !defined(CONFIG_USER_ONLY) 661 env->mstatus |= MSTATUS_VS; 662 #endif 663 env->vxrm = val; 664 return RISCV_EXCP_NONE; 665 } 666 667 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 668 target_ulong *val) 669 { 670 *val = env->vxsat; 671 return RISCV_EXCP_NONE; 672 } 673 674 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 675 target_ulong val) 676 { 677 #if !defined(CONFIG_USER_ONLY) 678 env->mstatus |= MSTATUS_VS; 679 #endif 680 env->vxsat = val; 681 return RISCV_EXCP_NONE; 682 } 683 684 static RISCVException read_vstart(CPURISCVState *env, int csrno, 685 target_ulong *val) 686 { 687 *val = env->vstart; 688 return RISCV_EXCP_NONE; 689 } 690 691 static RISCVException write_vstart(CPURISCVState *env, int csrno, 692 target_ulong val) 693 { 694 #if !defined(CONFIG_USER_ONLY) 695 env->mstatus |= MSTATUS_VS; 696 #endif 697 /* 698 * The vstart CSR is defined to have only enough writable bits 699 * to hold the largest element index, i.e. lg2(VLEN) bits. 700 */ 701 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlen)); 702 return RISCV_EXCP_NONE; 703 } 704 705 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 706 { 707 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 708 return RISCV_EXCP_NONE; 709 } 710 711 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 712 { 713 #if !defined(CONFIG_USER_ONLY) 714 env->mstatus |= MSTATUS_VS; 715 #endif 716 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 717 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 718 return RISCV_EXCP_NONE; 719 } 720 721 /* User Timers and Counters */ 722 static target_ulong get_ticks(bool shift) 723 { 724 int64_t val; 725 target_ulong result; 726 727 #if !defined(CONFIG_USER_ONLY) 728 if (icount_enabled()) { 729 val = icount_get(); 730 } else { 731 val = cpu_get_host_ticks(); 732 } 733 #else 734 val = cpu_get_host_ticks(); 735 #endif 736 737 if (shift) { 738 result = val >> 32; 739 } else { 740 result = val; 741 } 742 743 return result; 744 } 745 746 #if defined(CONFIG_USER_ONLY) 747 static RISCVException read_time(CPURISCVState *env, int csrno, 748 target_ulong *val) 749 { 750 *val = cpu_get_host_ticks(); 751 return RISCV_EXCP_NONE; 752 } 753 754 static RISCVException read_timeh(CPURISCVState *env, int csrno, 755 target_ulong *val) 756 { 757 *val = cpu_get_host_ticks() >> 32; 758 return RISCV_EXCP_NONE; 759 } 760 761 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 762 { 763 *val = get_ticks(false); 764 return RISCV_EXCP_NONE; 765 } 766 767 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 768 { 769 *val = get_ticks(true); 770 return RISCV_EXCP_NONE; 771 } 772 773 #else /* CONFIG_USER_ONLY */ 774 775 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 776 { 777 int evt_index = csrno - CSR_MCOUNTINHIBIT; 778 779 *val = env->mhpmevent_val[evt_index]; 780 781 return RISCV_EXCP_NONE; 782 } 783 784 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 785 { 786 int evt_index = csrno - CSR_MCOUNTINHIBIT; 787 uint64_t mhpmevt_val = val; 788 789 env->mhpmevent_val[evt_index] = val; 790 791 if (riscv_cpu_mxl(env) == MXL_RV32) { 792 mhpmevt_val = mhpmevt_val | 793 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 794 } 795 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 796 797 return RISCV_EXCP_NONE; 798 } 799 800 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 801 { 802 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 803 804 *val = env->mhpmeventh_val[evt_index]; 805 806 return RISCV_EXCP_NONE; 807 } 808 809 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 810 { 811 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 812 uint64_t mhpmevth_val = val; 813 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 814 815 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 816 env->mhpmeventh_val[evt_index] = val; 817 818 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 819 820 return RISCV_EXCP_NONE; 821 } 822 823 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 824 { 825 int ctr_idx = csrno - CSR_MCYCLE; 826 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 827 uint64_t mhpmctr_val = val; 828 829 counter->mhpmcounter_val = val; 830 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 831 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 832 counter->mhpmcounter_prev = get_ticks(false); 833 if (ctr_idx > 2) { 834 if (riscv_cpu_mxl(env) == MXL_RV32) { 835 mhpmctr_val = mhpmctr_val | 836 ((uint64_t)counter->mhpmcounterh_val << 32); 837 } 838 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 839 } 840 } else { 841 /* Other counters can keep incrementing from the given value */ 842 counter->mhpmcounter_prev = val; 843 } 844 845 return RISCV_EXCP_NONE; 846 } 847 848 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 849 { 850 int ctr_idx = csrno - CSR_MCYCLEH; 851 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 852 uint64_t mhpmctr_val = counter->mhpmcounter_val; 853 uint64_t mhpmctrh_val = val; 854 855 counter->mhpmcounterh_val = val; 856 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 857 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 858 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 859 counter->mhpmcounterh_prev = get_ticks(true); 860 if (ctr_idx > 2) { 861 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 862 } 863 } else { 864 counter->mhpmcounterh_prev = val; 865 } 866 867 return RISCV_EXCP_NONE; 868 } 869 870 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 871 bool upper_half, uint32_t ctr_idx) 872 { 873 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 874 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 875 counter.mhpmcounter_prev; 876 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 877 counter.mhpmcounter_val; 878 879 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 880 /* 881 * Counter should not increment if inhibit bit is set. We can't really 882 * stop the icount counting. Just return the counter value written by 883 * the supervisor to indicate that counter was not incremented. 884 */ 885 if (!counter.started) { 886 *val = ctr_val; 887 return RISCV_EXCP_NONE; 888 } else { 889 /* Mark that the counter has been stopped */ 890 counter.started = false; 891 } 892 } 893 894 /* 895 * The kernel computes the perf delta by subtracting the current value from 896 * the value it initialized previously (ctr_val). 897 */ 898 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 899 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 900 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 901 } else { 902 *val = ctr_val; 903 } 904 905 return RISCV_EXCP_NONE; 906 } 907 908 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 909 { 910 uint16_t ctr_index; 911 912 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 913 ctr_index = csrno - CSR_MCYCLE; 914 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 915 ctr_index = csrno - CSR_CYCLE; 916 } else { 917 return RISCV_EXCP_ILLEGAL_INST; 918 } 919 920 return riscv_pmu_read_ctr(env, val, false, ctr_index); 921 } 922 923 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 924 { 925 uint16_t ctr_index; 926 927 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 928 ctr_index = csrno - CSR_MCYCLEH; 929 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 930 ctr_index = csrno - CSR_CYCLEH; 931 } else { 932 return RISCV_EXCP_ILLEGAL_INST; 933 } 934 935 return riscv_pmu_read_ctr(env, val, true, ctr_index); 936 } 937 938 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 939 { 940 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 941 int i; 942 *val = 0; 943 target_ulong *mhpm_evt_val; 944 uint64_t of_bit_mask; 945 946 if (riscv_cpu_mxl(env) == MXL_RV32) { 947 mhpm_evt_val = env->mhpmeventh_val; 948 of_bit_mask = MHPMEVENTH_BIT_OF; 949 } else { 950 mhpm_evt_val = env->mhpmevent_val; 951 of_bit_mask = MHPMEVENT_BIT_OF; 952 } 953 954 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 955 if ((get_field(env->mcounteren, BIT(i))) && 956 (mhpm_evt_val[i] & of_bit_mask)) { 957 *val |= BIT(i); 958 } 959 } 960 961 return RISCV_EXCP_NONE; 962 } 963 964 static RISCVException read_time(CPURISCVState *env, int csrno, 965 target_ulong *val) 966 { 967 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 968 969 if (!env->rdtime_fn) { 970 return RISCV_EXCP_ILLEGAL_INST; 971 } 972 973 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 974 return RISCV_EXCP_NONE; 975 } 976 977 static RISCVException read_timeh(CPURISCVState *env, int csrno, 978 target_ulong *val) 979 { 980 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 981 982 if (!env->rdtime_fn) { 983 return RISCV_EXCP_ILLEGAL_INST; 984 } 985 986 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 987 return RISCV_EXCP_NONE; 988 } 989 990 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 991 target_ulong *val) 992 { 993 *val = env->vstimecmp; 994 995 return RISCV_EXCP_NONE; 996 } 997 998 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 999 target_ulong *val) 1000 { 1001 *val = env->vstimecmp >> 32; 1002 1003 return RISCV_EXCP_NONE; 1004 } 1005 1006 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1007 target_ulong val) 1008 { 1009 if (riscv_cpu_mxl(env) == MXL_RV32) { 1010 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1011 } else { 1012 env->vstimecmp = val; 1013 } 1014 1015 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1016 env->htimedelta, MIP_VSTIP); 1017 1018 return RISCV_EXCP_NONE; 1019 } 1020 1021 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1022 target_ulong val) 1023 { 1024 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1025 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1026 env->htimedelta, MIP_VSTIP); 1027 1028 return RISCV_EXCP_NONE; 1029 } 1030 1031 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1032 target_ulong *val) 1033 { 1034 if (env->virt_enabled) { 1035 *val = env->vstimecmp; 1036 } else { 1037 *val = env->stimecmp; 1038 } 1039 1040 return RISCV_EXCP_NONE; 1041 } 1042 1043 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1044 target_ulong *val) 1045 { 1046 if (env->virt_enabled) { 1047 *val = env->vstimecmp >> 32; 1048 } else { 1049 *val = env->stimecmp >> 32; 1050 } 1051 1052 return RISCV_EXCP_NONE; 1053 } 1054 1055 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1056 target_ulong val) 1057 { 1058 if (env->virt_enabled) { 1059 if (env->hvictl & HVICTL_VTI) { 1060 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1061 } 1062 return write_vstimecmp(env, csrno, val); 1063 } 1064 1065 if (riscv_cpu_mxl(env) == MXL_RV32) { 1066 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1067 } else { 1068 env->stimecmp = val; 1069 } 1070 1071 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1072 1073 return RISCV_EXCP_NONE; 1074 } 1075 1076 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1077 target_ulong val) 1078 { 1079 if (env->virt_enabled) { 1080 if (env->hvictl & HVICTL_VTI) { 1081 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1082 } 1083 return write_vstimecmph(env, csrno, val); 1084 } 1085 1086 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1087 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1088 1089 return RISCV_EXCP_NONE; 1090 } 1091 1092 /* Machine constants */ 1093 1094 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1095 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1096 MIP_LCOFIP)) 1097 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1098 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1099 1100 #define VSTOPI_NUM_SRCS 5 1101 1102 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1103 VS_MODE_INTERRUPTS; 1104 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1105 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1106 HS_MODE_INTERRUPTS; 1107 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1108 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1109 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1110 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1111 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1112 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1113 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1114 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1115 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1116 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1117 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1118 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1119 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1120 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1121 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1122 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1123 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1124 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1125 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1126 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1127 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1128 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1129 (1ULL << (RISCV_EXCP_M_ECALL)) | 1130 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1131 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1132 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1133 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1134 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1135 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1136 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1137 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1138 SIP_LCOFIP; 1139 static const target_ulong hip_writable_mask = MIP_VSSIP; 1140 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | 1141 MIP_VSEIP; 1142 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1143 1144 const bool valid_vm_1_10_32[16] = { 1145 [VM_1_10_MBARE] = true, 1146 [VM_1_10_SV32] = true 1147 }; 1148 1149 const bool valid_vm_1_10_64[16] = { 1150 [VM_1_10_MBARE] = true, 1151 [VM_1_10_SV39] = true, 1152 [VM_1_10_SV48] = true, 1153 [VM_1_10_SV57] = true 1154 }; 1155 1156 /* Machine Information Registers */ 1157 static RISCVException read_zero(CPURISCVState *env, int csrno, 1158 target_ulong *val) 1159 { 1160 *val = 0; 1161 return RISCV_EXCP_NONE; 1162 } 1163 1164 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1165 target_ulong val) 1166 { 1167 return RISCV_EXCP_NONE; 1168 } 1169 1170 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1171 target_ulong *val) 1172 { 1173 *val = riscv_cpu_cfg(env)->mvendorid; 1174 return RISCV_EXCP_NONE; 1175 } 1176 1177 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1178 target_ulong *val) 1179 { 1180 *val = riscv_cpu_cfg(env)->marchid; 1181 return RISCV_EXCP_NONE; 1182 } 1183 1184 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1185 target_ulong *val) 1186 { 1187 *val = riscv_cpu_cfg(env)->mimpid; 1188 return RISCV_EXCP_NONE; 1189 } 1190 1191 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1192 target_ulong *val) 1193 { 1194 *val = env->mhartid; 1195 return RISCV_EXCP_NONE; 1196 } 1197 1198 /* Machine Trap Setup */ 1199 1200 /* We do not store SD explicitly, only compute it on demand. */ 1201 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1202 { 1203 if ((status & MSTATUS_FS) == MSTATUS_FS || 1204 (status & MSTATUS_VS) == MSTATUS_VS || 1205 (status & MSTATUS_XS) == MSTATUS_XS) { 1206 switch (xl) { 1207 case MXL_RV32: 1208 return status | MSTATUS32_SD; 1209 case MXL_RV64: 1210 return status | MSTATUS64_SD; 1211 case MXL_RV128: 1212 return MSTATUSH128_SD; 1213 default: 1214 g_assert_not_reached(); 1215 } 1216 } 1217 return status; 1218 } 1219 1220 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1221 target_ulong *val) 1222 { 1223 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1224 return RISCV_EXCP_NONE; 1225 } 1226 1227 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1228 { 1229 return (vm & 0xf) <= 1230 satp_mode_max_from_map(riscv_cpu_cfg(env)->satp_mode.map); 1231 } 1232 1233 static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp, 1234 target_ulong val) 1235 { 1236 bool valid = false; 1237 target_ulong new_mpp = get_field(val, MSTATUS_MPP); 1238 1239 switch (new_mpp) { 1240 case PRV_M: 1241 valid = true; 1242 break; 1243 case PRV_S: 1244 valid = riscv_has_ext(env, RVS); 1245 break; 1246 case PRV_U: 1247 valid = riscv_has_ext(env, RVU); 1248 break; 1249 } 1250 1251 /* Remain field unchanged if new_mpp value is invalid */ 1252 if (!valid) { 1253 val = set_field(val, MSTATUS_MPP, old_mpp); 1254 } 1255 1256 return val; 1257 } 1258 1259 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1260 target_ulong val) 1261 { 1262 uint64_t mstatus = env->mstatus; 1263 uint64_t mask = 0; 1264 RISCVMXL xl = riscv_cpu_mxl(env); 1265 1266 /* 1267 * MPP field have been made WARL since priv version 1.11. However, 1268 * legalization for it will not break any software running on 1.10. 1269 */ 1270 val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val); 1271 1272 /* flush tlb on mstatus fields that affect VM */ 1273 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1274 MSTATUS_MPRV | MSTATUS_SUM)) { 1275 tlb_flush(env_cpu(env)); 1276 } 1277 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1278 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1279 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1280 MSTATUS_TW | MSTATUS_VS; 1281 1282 if (riscv_has_ext(env, RVF)) { 1283 mask |= MSTATUS_FS; 1284 } 1285 1286 if (xl != MXL_RV32 || env->debugger) { 1287 /* 1288 * RV32: MPV and GVA are not in mstatus. The current plan is to 1289 * add them to mstatush. For now, we just don't support it. 1290 */ 1291 mask |= MSTATUS_MPV | MSTATUS_GVA; 1292 if ((val & MSTATUS64_UXL) != 0) { 1293 mask |= MSTATUS64_UXL; 1294 } 1295 } 1296 1297 mstatus = (mstatus & ~mask) | (val & mask); 1298 1299 if (xl > MXL_RV32) { 1300 /* SXL field is for now read only */ 1301 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1302 } 1303 env->mstatus = mstatus; 1304 env->xl = cpu_recompute_xl(env); 1305 1306 return RISCV_EXCP_NONE; 1307 } 1308 1309 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1310 target_ulong *val) 1311 { 1312 *val = env->mstatus >> 32; 1313 return RISCV_EXCP_NONE; 1314 } 1315 1316 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1317 target_ulong val) 1318 { 1319 uint64_t valh = (uint64_t)val << 32; 1320 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1321 1322 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1323 tlb_flush(env_cpu(env)); 1324 } 1325 1326 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1327 1328 return RISCV_EXCP_NONE; 1329 } 1330 1331 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1332 Int128 *val) 1333 { 1334 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, 1335 env->mstatus)); 1336 return RISCV_EXCP_NONE; 1337 } 1338 1339 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1340 Int128 *val) 1341 { 1342 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1343 return RISCV_EXCP_NONE; 1344 } 1345 1346 static RISCVException read_misa(CPURISCVState *env, int csrno, 1347 target_ulong *val) 1348 { 1349 target_ulong misa; 1350 1351 switch (env->misa_mxl) { 1352 case MXL_RV32: 1353 misa = (target_ulong)MXL_RV32 << 30; 1354 break; 1355 #ifdef TARGET_RISCV64 1356 case MXL_RV64: 1357 misa = (target_ulong)MXL_RV64 << 62; 1358 break; 1359 #endif 1360 default: 1361 g_assert_not_reached(); 1362 } 1363 1364 *val = misa | env->misa_ext; 1365 return RISCV_EXCP_NONE; 1366 } 1367 1368 static RISCVException write_misa(CPURISCVState *env, int csrno, 1369 target_ulong val) 1370 { 1371 if (!riscv_cpu_cfg(env)->misa_w) { 1372 /* drop write to misa */ 1373 return RISCV_EXCP_NONE; 1374 } 1375 1376 /* 'I' or 'E' must be present */ 1377 if (!(val & (RVI | RVE))) { 1378 /* It is not, drop write to misa */ 1379 return RISCV_EXCP_NONE; 1380 } 1381 1382 /* 'E' excludes all other extensions */ 1383 if (val & RVE) { 1384 /* 1385 * when we support 'E' we can do "val = RVE;" however 1386 * for now we just drop writes if 'E' is present. 1387 */ 1388 return RISCV_EXCP_NONE; 1389 } 1390 1391 /* 1392 * misa.MXL writes are not supported by QEMU. 1393 * Drop writes to those bits. 1394 */ 1395 1396 /* Mask extensions that are not supported by this hart */ 1397 val &= env->misa_ext_mask; 1398 1399 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1400 if ((val & RVD) && !(val & RVF)) { 1401 val &= ~RVD; 1402 } 1403 1404 /* 1405 * Suppress 'C' if next instruction is not aligned 1406 * TODO: this should check next_pc 1407 */ 1408 if ((val & RVC) && (GETPC() & ~3) != 0) { 1409 val &= ~RVC; 1410 } 1411 1412 /* If nothing changed, do nothing. */ 1413 if (val == env->misa_ext) { 1414 return RISCV_EXCP_NONE; 1415 } 1416 1417 if (!(val & RVF)) { 1418 env->mstatus &= ~MSTATUS_FS; 1419 } 1420 1421 /* flush translation cache */ 1422 tb_flush(env_cpu(env)); 1423 env->misa_ext = val; 1424 env->xl = riscv_cpu_mxl(env); 1425 return RISCV_EXCP_NONE; 1426 } 1427 1428 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1429 target_ulong *val) 1430 { 1431 *val = env->medeleg; 1432 return RISCV_EXCP_NONE; 1433 } 1434 1435 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1436 target_ulong val) 1437 { 1438 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1439 return RISCV_EXCP_NONE; 1440 } 1441 1442 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1443 uint64_t *ret_val, 1444 uint64_t new_val, uint64_t wr_mask) 1445 { 1446 uint64_t mask = wr_mask & delegable_ints; 1447 1448 if (ret_val) { 1449 *ret_val = env->mideleg; 1450 } 1451 1452 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1453 1454 if (riscv_has_ext(env, RVH)) { 1455 env->mideleg |= HS_MODE_INTERRUPTS; 1456 } 1457 1458 return RISCV_EXCP_NONE; 1459 } 1460 1461 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1462 target_ulong *ret_val, 1463 target_ulong new_val, target_ulong wr_mask) 1464 { 1465 uint64_t rval; 1466 RISCVException ret; 1467 1468 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1469 if (ret_val) { 1470 *ret_val = rval; 1471 } 1472 1473 return ret; 1474 } 1475 1476 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1477 target_ulong *ret_val, 1478 target_ulong new_val, 1479 target_ulong wr_mask) 1480 { 1481 uint64_t rval; 1482 RISCVException ret; 1483 1484 ret = rmw_mideleg64(env, csrno, &rval, 1485 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1486 if (ret_val) { 1487 *ret_val = rval >> 32; 1488 } 1489 1490 return ret; 1491 } 1492 1493 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1494 uint64_t *ret_val, 1495 uint64_t new_val, uint64_t wr_mask) 1496 { 1497 uint64_t mask = wr_mask & all_ints; 1498 1499 if (ret_val) { 1500 *ret_val = env->mie; 1501 } 1502 1503 env->mie = (env->mie & ~mask) | (new_val & mask); 1504 1505 if (!riscv_has_ext(env, RVH)) { 1506 env->mie &= ~((uint64_t)MIP_SGEIP); 1507 } 1508 1509 return RISCV_EXCP_NONE; 1510 } 1511 1512 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1513 target_ulong *ret_val, 1514 target_ulong new_val, target_ulong wr_mask) 1515 { 1516 uint64_t rval; 1517 RISCVException ret; 1518 1519 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1520 if (ret_val) { 1521 *ret_val = rval; 1522 } 1523 1524 return ret; 1525 } 1526 1527 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1528 target_ulong *ret_val, 1529 target_ulong new_val, target_ulong wr_mask) 1530 { 1531 uint64_t rval; 1532 RISCVException ret; 1533 1534 ret = rmw_mie64(env, csrno, &rval, 1535 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1536 if (ret_val) { 1537 *ret_val = rval >> 32; 1538 } 1539 1540 return ret; 1541 } 1542 1543 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1544 { 1545 int irq; 1546 uint8_t iprio; 1547 1548 irq = riscv_cpu_mirq_pending(env); 1549 if (irq <= 0 || irq > 63) { 1550 *val = 0; 1551 } else { 1552 iprio = env->miprio[irq]; 1553 if (!iprio) { 1554 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1555 iprio = IPRIO_MMAXIPRIO; 1556 } 1557 } 1558 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1559 *val |= iprio; 1560 } 1561 1562 return RISCV_EXCP_NONE; 1563 } 1564 1565 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1566 { 1567 if (!env->virt_enabled) { 1568 return csrno; 1569 } 1570 1571 switch (csrno) { 1572 case CSR_SISELECT: 1573 return CSR_VSISELECT; 1574 case CSR_SIREG: 1575 return CSR_VSIREG; 1576 case CSR_STOPEI: 1577 return CSR_VSTOPEI; 1578 default: 1579 return csrno; 1580 }; 1581 } 1582 1583 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1584 target_ulong new_val, target_ulong wr_mask) 1585 { 1586 target_ulong *iselect; 1587 1588 /* Translate CSR number for VS-mode */ 1589 csrno = aia_xlate_vs_csrno(env, csrno); 1590 1591 /* Find the iselect CSR based on CSR number */ 1592 switch (csrno) { 1593 case CSR_MISELECT: 1594 iselect = &env->miselect; 1595 break; 1596 case CSR_SISELECT: 1597 iselect = &env->siselect; 1598 break; 1599 case CSR_VSISELECT: 1600 iselect = &env->vsiselect; 1601 break; 1602 default: 1603 return RISCV_EXCP_ILLEGAL_INST; 1604 }; 1605 1606 if (val) { 1607 *val = *iselect; 1608 } 1609 1610 wr_mask &= ISELECT_MASK; 1611 if (wr_mask) { 1612 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1613 } 1614 1615 return RISCV_EXCP_NONE; 1616 } 1617 1618 static int rmw_iprio(target_ulong xlen, 1619 target_ulong iselect, uint8_t *iprio, 1620 target_ulong *val, target_ulong new_val, 1621 target_ulong wr_mask, int ext_irq_no) 1622 { 1623 int i, firq, nirqs; 1624 target_ulong old_val; 1625 1626 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1627 return -EINVAL; 1628 } 1629 if (xlen != 32 && iselect & 0x1) { 1630 return -EINVAL; 1631 } 1632 1633 nirqs = 4 * (xlen / 32); 1634 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1635 1636 old_val = 0; 1637 for (i = 0; i < nirqs; i++) { 1638 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1639 } 1640 1641 if (val) { 1642 *val = old_val; 1643 } 1644 1645 if (wr_mask) { 1646 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1647 for (i = 0; i < nirqs; i++) { 1648 /* 1649 * M-level and S-level external IRQ priority always read-only 1650 * zero. This means default priority order is always preferred 1651 * for M-level and S-level external IRQs. 1652 */ 1653 if ((firq + i) == ext_irq_no) { 1654 continue; 1655 } 1656 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1657 } 1658 } 1659 1660 return 0; 1661 } 1662 1663 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1664 target_ulong new_val, target_ulong wr_mask) 1665 { 1666 bool virt; 1667 uint8_t *iprio; 1668 int ret = -EINVAL; 1669 target_ulong priv, isel, vgein; 1670 1671 /* Translate CSR number for VS-mode */ 1672 csrno = aia_xlate_vs_csrno(env, csrno); 1673 1674 /* Decode register details from CSR number */ 1675 virt = false; 1676 switch (csrno) { 1677 case CSR_MIREG: 1678 iprio = env->miprio; 1679 isel = env->miselect; 1680 priv = PRV_M; 1681 break; 1682 case CSR_SIREG: 1683 iprio = env->siprio; 1684 isel = env->siselect; 1685 priv = PRV_S; 1686 break; 1687 case CSR_VSIREG: 1688 iprio = env->hviprio; 1689 isel = env->vsiselect; 1690 priv = PRV_S; 1691 virt = true; 1692 break; 1693 default: 1694 goto done; 1695 }; 1696 1697 /* Find the selected guest interrupt file */ 1698 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1699 1700 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1701 /* Local interrupt priority registers not available for VS-mode */ 1702 if (!virt) { 1703 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1704 isel, iprio, val, new_val, wr_mask, 1705 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1706 } 1707 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1708 /* IMSIC registers only available when machine implements it. */ 1709 if (env->aia_ireg_rmw_fn[priv]) { 1710 /* Selected guest interrupt file should not be zero */ 1711 if (virt && (!vgein || env->geilen < vgein)) { 1712 goto done; 1713 } 1714 /* Call machine specific IMSIC register emulation */ 1715 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1716 AIA_MAKE_IREG(isel, priv, virt, vgein, 1717 riscv_cpu_mxl_bits(env)), 1718 val, new_val, wr_mask); 1719 } 1720 } 1721 1722 done: 1723 if (ret) { 1724 return (env->virt_enabled && virt) ? 1725 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1726 } 1727 return RISCV_EXCP_NONE; 1728 } 1729 1730 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1731 target_ulong new_val, target_ulong wr_mask) 1732 { 1733 bool virt; 1734 int ret = -EINVAL; 1735 target_ulong priv, vgein; 1736 1737 /* Translate CSR number for VS-mode */ 1738 csrno = aia_xlate_vs_csrno(env, csrno); 1739 1740 /* Decode register details from CSR number */ 1741 virt = false; 1742 switch (csrno) { 1743 case CSR_MTOPEI: 1744 priv = PRV_M; 1745 break; 1746 case CSR_STOPEI: 1747 priv = PRV_S; 1748 break; 1749 case CSR_VSTOPEI: 1750 priv = PRV_S; 1751 virt = true; 1752 break; 1753 default: 1754 goto done; 1755 }; 1756 1757 /* IMSIC CSRs only available when machine implements IMSIC. */ 1758 if (!env->aia_ireg_rmw_fn[priv]) { 1759 goto done; 1760 } 1761 1762 /* Find the selected guest interrupt file */ 1763 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1764 1765 /* Selected guest interrupt file should be valid */ 1766 if (virt && (!vgein || env->geilen < vgein)) { 1767 goto done; 1768 } 1769 1770 /* Call machine specific IMSIC register emulation for TOPEI */ 1771 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1772 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1773 riscv_cpu_mxl_bits(env)), 1774 val, new_val, wr_mask); 1775 1776 done: 1777 if (ret) { 1778 return (env->virt_enabled && virt) ? 1779 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1780 } 1781 return RISCV_EXCP_NONE; 1782 } 1783 1784 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1785 target_ulong *val) 1786 { 1787 *val = env->mtvec; 1788 return RISCV_EXCP_NONE; 1789 } 1790 1791 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1792 target_ulong val) 1793 { 1794 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1795 if ((val & 3) < 2) { 1796 env->mtvec = val; 1797 } else { 1798 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1799 } 1800 return RISCV_EXCP_NONE; 1801 } 1802 1803 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1804 target_ulong *val) 1805 { 1806 *val = env->mcountinhibit; 1807 return RISCV_EXCP_NONE; 1808 } 1809 1810 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1811 target_ulong val) 1812 { 1813 int cidx; 1814 PMUCTRState *counter; 1815 1816 env->mcountinhibit = val; 1817 1818 /* Check if any other counter is also monitoring cycles/instructions */ 1819 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1820 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1821 counter = &env->pmu_ctrs[cidx]; 1822 counter->started = true; 1823 } 1824 } 1825 1826 return RISCV_EXCP_NONE; 1827 } 1828 1829 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1830 target_ulong *val) 1831 { 1832 *val = env->mcounteren; 1833 return RISCV_EXCP_NONE; 1834 } 1835 1836 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1837 target_ulong val) 1838 { 1839 env->mcounteren = val; 1840 return RISCV_EXCP_NONE; 1841 } 1842 1843 /* Machine Trap Handling */ 1844 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1845 Int128 *val) 1846 { 1847 *val = int128_make128(env->mscratch, env->mscratchh); 1848 return RISCV_EXCP_NONE; 1849 } 1850 1851 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1852 Int128 val) 1853 { 1854 env->mscratch = int128_getlo(val); 1855 env->mscratchh = int128_gethi(val); 1856 return RISCV_EXCP_NONE; 1857 } 1858 1859 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1860 target_ulong *val) 1861 { 1862 *val = env->mscratch; 1863 return RISCV_EXCP_NONE; 1864 } 1865 1866 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1867 target_ulong val) 1868 { 1869 env->mscratch = val; 1870 return RISCV_EXCP_NONE; 1871 } 1872 1873 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1874 target_ulong *val) 1875 { 1876 *val = env->mepc; 1877 return RISCV_EXCP_NONE; 1878 } 1879 1880 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1881 target_ulong val) 1882 { 1883 env->mepc = val; 1884 return RISCV_EXCP_NONE; 1885 } 1886 1887 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1888 target_ulong *val) 1889 { 1890 *val = env->mcause; 1891 return RISCV_EXCP_NONE; 1892 } 1893 1894 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1895 target_ulong val) 1896 { 1897 env->mcause = val; 1898 return RISCV_EXCP_NONE; 1899 } 1900 1901 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1902 target_ulong *val) 1903 { 1904 *val = env->mtval; 1905 return RISCV_EXCP_NONE; 1906 } 1907 1908 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1909 target_ulong val) 1910 { 1911 env->mtval = val; 1912 return RISCV_EXCP_NONE; 1913 } 1914 1915 /* Execution environment configuration setup */ 1916 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1917 target_ulong *val) 1918 { 1919 *val = env->menvcfg; 1920 return RISCV_EXCP_NONE; 1921 } 1922 1923 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1924 target_ulong val) 1925 { 1926 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 1927 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1928 1929 if (riscv_cpu_mxl(env) == MXL_RV64) { 1930 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1931 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 1932 (cfg->ext_svadu ? MENVCFG_HADE : 0); 1933 } 1934 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1935 1936 return RISCV_EXCP_NONE; 1937 } 1938 1939 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1940 target_ulong *val) 1941 { 1942 *val = env->menvcfg >> 32; 1943 return RISCV_EXCP_NONE; 1944 } 1945 1946 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1947 target_ulong val) 1948 { 1949 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 1950 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 1951 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 1952 (cfg->ext_svadu ? MENVCFG_HADE : 0); 1953 uint64_t valh = (uint64_t)val << 32; 1954 1955 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1956 1957 return RISCV_EXCP_NONE; 1958 } 1959 1960 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1961 target_ulong *val) 1962 { 1963 RISCVException ret; 1964 1965 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1966 if (ret != RISCV_EXCP_NONE) { 1967 return ret; 1968 } 1969 1970 *val = env->senvcfg; 1971 return RISCV_EXCP_NONE; 1972 } 1973 1974 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1975 target_ulong val) 1976 { 1977 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1978 RISCVException ret; 1979 1980 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1981 if (ret != RISCV_EXCP_NONE) { 1982 return ret; 1983 } 1984 1985 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1986 return RISCV_EXCP_NONE; 1987 } 1988 1989 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1990 target_ulong *val) 1991 { 1992 RISCVException ret; 1993 1994 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1995 if (ret != RISCV_EXCP_NONE) { 1996 return ret; 1997 } 1998 1999 /* 2000 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 2001 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 2002 * henvcfg.hade is read_only 0 when menvcfg.hade = 0 2003 */ 2004 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE) | 2005 env->menvcfg); 2006 return RISCV_EXCP_NONE; 2007 } 2008 2009 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 2010 target_ulong val) 2011 { 2012 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 2013 RISCVException ret; 2014 2015 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2016 if (ret != RISCV_EXCP_NONE) { 2017 return ret; 2018 } 2019 2020 if (riscv_cpu_mxl(env) == MXL_RV64) { 2021 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE); 2022 } 2023 2024 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 2025 2026 return RISCV_EXCP_NONE; 2027 } 2028 2029 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 2030 target_ulong *val) 2031 { 2032 RISCVException ret; 2033 2034 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2035 if (ret != RISCV_EXCP_NONE) { 2036 return ret; 2037 } 2038 2039 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_HADE) | 2040 env->menvcfg)) >> 32; 2041 return RISCV_EXCP_NONE; 2042 } 2043 2044 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2045 target_ulong val) 2046 { 2047 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 2048 HENVCFG_HADE); 2049 uint64_t valh = (uint64_t)val << 32; 2050 RISCVException ret; 2051 2052 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2053 if (ret != RISCV_EXCP_NONE) { 2054 return ret; 2055 } 2056 2057 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2058 return RISCV_EXCP_NONE; 2059 } 2060 2061 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2062 target_ulong *val) 2063 { 2064 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2065 2066 return RISCV_EXCP_NONE; 2067 } 2068 2069 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2070 uint64_t wr_mask, target_ulong new_val) 2071 { 2072 uint64_t *reg; 2073 2074 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2075 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2076 2077 return RISCV_EXCP_NONE; 2078 } 2079 2080 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2081 target_ulong new_val) 2082 { 2083 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2084 2085 return write_mstateen(env, csrno, wr_mask, new_val); 2086 } 2087 2088 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2089 target_ulong new_val) 2090 { 2091 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2092 } 2093 2094 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2095 target_ulong *val) 2096 { 2097 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2098 2099 return RISCV_EXCP_NONE; 2100 } 2101 2102 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2103 uint64_t wr_mask, target_ulong new_val) 2104 { 2105 uint64_t *reg, val; 2106 2107 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2108 val = (uint64_t)new_val << 32; 2109 val |= *reg & 0xFFFFFFFF; 2110 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2111 2112 return RISCV_EXCP_NONE; 2113 } 2114 2115 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2116 target_ulong new_val) 2117 { 2118 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2119 2120 return write_mstateenh(env, csrno, wr_mask, new_val); 2121 } 2122 2123 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2124 target_ulong new_val) 2125 { 2126 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2127 } 2128 2129 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2130 target_ulong *val) 2131 { 2132 int index = csrno - CSR_HSTATEEN0; 2133 2134 *val = env->hstateen[index] & env->mstateen[index]; 2135 2136 return RISCV_EXCP_NONE; 2137 } 2138 2139 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2140 uint64_t mask, target_ulong new_val) 2141 { 2142 int index = csrno - CSR_HSTATEEN0; 2143 uint64_t *reg, wr_mask; 2144 2145 reg = &env->hstateen[index]; 2146 wr_mask = env->mstateen[index] & mask; 2147 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2148 2149 return RISCV_EXCP_NONE; 2150 } 2151 2152 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2153 target_ulong new_val) 2154 { 2155 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2156 2157 return write_hstateen(env, csrno, wr_mask, new_val); 2158 } 2159 2160 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2161 target_ulong new_val) 2162 { 2163 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2164 } 2165 2166 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2167 target_ulong *val) 2168 { 2169 int index = csrno - CSR_HSTATEEN0H; 2170 2171 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2172 2173 return RISCV_EXCP_NONE; 2174 } 2175 2176 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2177 uint64_t mask, target_ulong new_val) 2178 { 2179 int index = csrno - CSR_HSTATEEN0H; 2180 uint64_t *reg, wr_mask, val; 2181 2182 reg = &env->hstateen[index]; 2183 val = (uint64_t)new_val << 32; 2184 val |= *reg & 0xFFFFFFFF; 2185 wr_mask = env->mstateen[index] & mask; 2186 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2187 2188 return RISCV_EXCP_NONE; 2189 } 2190 2191 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2192 target_ulong new_val) 2193 { 2194 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2195 2196 return write_hstateenh(env, csrno, wr_mask, new_val); 2197 } 2198 2199 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2200 target_ulong new_val) 2201 { 2202 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2203 } 2204 2205 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2206 target_ulong *val) 2207 { 2208 bool virt = env->virt_enabled; 2209 int index = csrno - CSR_SSTATEEN0; 2210 2211 *val = env->sstateen[index] & env->mstateen[index]; 2212 if (virt) { 2213 *val &= env->hstateen[index]; 2214 } 2215 2216 return RISCV_EXCP_NONE; 2217 } 2218 2219 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2220 uint64_t mask, target_ulong new_val) 2221 { 2222 bool virt = env->virt_enabled; 2223 int index = csrno - CSR_SSTATEEN0; 2224 uint64_t wr_mask; 2225 uint64_t *reg; 2226 2227 wr_mask = env->mstateen[index] & mask; 2228 if (virt) { 2229 wr_mask &= env->hstateen[index]; 2230 } 2231 2232 reg = &env->sstateen[index]; 2233 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2234 2235 return RISCV_EXCP_NONE; 2236 } 2237 2238 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2239 target_ulong new_val) 2240 { 2241 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2242 2243 return write_sstateen(env, csrno, wr_mask, new_val); 2244 } 2245 2246 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2247 target_ulong new_val) 2248 { 2249 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2250 } 2251 2252 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2253 uint64_t *ret_val, 2254 uint64_t new_val, uint64_t wr_mask) 2255 { 2256 uint64_t old_mip, mask = wr_mask & delegable_ints; 2257 uint32_t gin; 2258 2259 if (mask & MIP_SEIP) { 2260 env->software_seip = new_val & MIP_SEIP; 2261 new_val |= env->external_seip * MIP_SEIP; 2262 } 2263 2264 if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && 2265 get_field(env->menvcfg, MENVCFG_STCE)) { 2266 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2267 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2268 } 2269 2270 if (mask) { 2271 old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); 2272 } else { 2273 old_mip = env->mip; 2274 } 2275 2276 if (csrno != CSR_HVIP) { 2277 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2278 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2279 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2280 } 2281 2282 if (ret_val) { 2283 *ret_val = old_mip; 2284 } 2285 2286 return RISCV_EXCP_NONE; 2287 } 2288 2289 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2290 target_ulong *ret_val, 2291 target_ulong new_val, target_ulong wr_mask) 2292 { 2293 uint64_t rval; 2294 RISCVException ret; 2295 2296 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2297 if (ret_val) { 2298 *ret_val = rval; 2299 } 2300 2301 return ret; 2302 } 2303 2304 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2305 target_ulong *ret_val, 2306 target_ulong new_val, target_ulong wr_mask) 2307 { 2308 uint64_t rval; 2309 RISCVException ret; 2310 2311 ret = rmw_mip64(env, csrno, &rval, 2312 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2313 if (ret_val) { 2314 *ret_val = rval >> 32; 2315 } 2316 2317 return ret; 2318 } 2319 2320 /* Supervisor Trap Setup */ 2321 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2322 Int128 *val) 2323 { 2324 uint64_t mask = sstatus_v1_10_mask; 2325 uint64_t sstatus = env->mstatus & mask; 2326 if (env->xl != MXL_RV32 || env->debugger) { 2327 mask |= SSTATUS64_UXL; 2328 } 2329 2330 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2331 return RISCV_EXCP_NONE; 2332 } 2333 2334 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2335 target_ulong *val) 2336 { 2337 target_ulong mask = (sstatus_v1_10_mask); 2338 if (env->xl != MXL_RV32 || env->debugger) { 2339 mask |= SSTATUS64_UXL; 2340 } 2341 /* TODO: Use SXL not MXL. */ 2342 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2343 return RISCV_EXCP_NONE; 2344 } 2345 2346 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2347 target_ulong val) 2348 { 2349 target_ulong mask = (sstatus_v1_10_mask); 2350 2351 if (env->xl != MXL_RV32 || env->debugger) { 2352 if ((val & SSTATUS64_UXL) != 0) { 2353 mask |= SSTATUS64_UXL; 2354 } 2355 } 2356 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2357 return write_mstatus(env, CSR_MSTATUS, newval); 2358 } 2359 2360 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2361 uint64_t *ret_val, 2362 uint64_t new_val, uint64_t wr_mask) 2363 { 2364 RISCVException ret; 2365 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2366 2367 /* Bring VS-level bits to correct position */ 2368 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2369 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2370 2371 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2372 if (ret_val) { 2373 *ret_val = (rval & mask) >> 1; 2374 } 2375 2376 return ret; 2377 } 2378 2379 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2380 target_ulong *ret_val, 2381 target_ulong new_val, target_ulong wr_mask) 2382 { 2383 uint64_t rval; 2384 RISCVException ret; 2385 2386 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2387 if (ret_val) { 2388 *ret_val = rval; 2389 } 2390 2391 return ret; 2392 } 2393 2394 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2395 target_ulong *ret_val, 2396 target_ulong new_val, target_ulong wr_mask) 2397 { 2398 uint64_t rval; 2399 RISCVException ret; 2400 2401 ret = rmw_vsie64(env, csrno, &rval, 2402 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2403 if (ret_val) { 2404 *ret_val = rval >> 32; 2405 } 2406 2407 return ret; 2408 } 2409 2410 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2411 uint64_t *ret_val, 2412 uint64_t new_val, uint64_t wr_mask) 2413 { 2414 RISCVException ret; 2415 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2416 2417 if (env->virt_enabled) { 2418 if (env->hvictl & HVICTL_VTI) { 2419 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2420 } 2421 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2422 } else { 2423 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2424 } 2425 2426 if (ret_val) { 2427 *ret_val &= mask; 2428 } 2429 2430 return ret; 2431 } 2432 2433 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2434 target_ulong *ret_val, 2435 target_ulong new_val, target_ulong wr_mask) 2436 { 2437 uint64_t rval; 2438 RISCVException ret; 2439 2440 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2441 if (ret == RISCV_EXCP_NONE && ret_val) { 2442 *ret_val = rval; 2443 } 2444 2445 return ret; 2446 } 2447 2448 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2449 target_ulong *ret_val, 2450 target_ulong new_val, target_ulong wr_mask) 2451 { 2452 uint64_t rval; 2453 RISCVException ret; 2454 2455 ret = rmw_sie64(env, csrno, &rval, 2456 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2457 if (ret_val) { 2458 *ret_val = rval >> 32; 2459 } 2460 2461 return ret; 2462 } 2463 2464 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2465 target_ulong *val) 2466 { 2467 *val = env->stvec; 2468 return RISCV_EXCP_NONE; 2469 } 2470 2471 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2472 target_ulong val) 2473 { 2474 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2475 if ((val & 3) < 2) { 2476 env->stvec = val; 2477 } else { 2478 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2479 } 2480 return RISCV_EXCP_NONE; 2481 } 2482 2483 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2484 target_ulong *val) 2485 { 2486 *val = env->scounteren; 2487 return RISCV_EXCP_NONE; 2488 } 2489 2490 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2491 target_ulong val) 2492 { 2493 env->scounteren = val; 2494 return RISCV_EXCP_NONE; 2495 } 2496 2497 /* Supervisor Trap Handling */ 2498 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2499 Int128 *val) 2500 { 2501 *val = int128_make128(env->sscratch, env->sscratchh); 2502 return RISCV_EXCP_NONE; 2503 } 2504 2505 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2506 Int128 val) 2507 { 2508 env->sscratch = int128_getlo(val); 2509 env->sscratchh = int128_gethi(val); 2510 return RISCV_EXCP_NONE; 2511 } 2512 2513 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2514 target_ulong *val) 2515 { 2516 *val = env->sscratch; 2517 return RISCV_EXCP_NONE; 2518 } 2519 2520 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2521 target_ulong val) 2522 { 2523 env->sscratch = val; 2524 return RISCV_EXCP_NONE; 2525 } 2526 2527 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2528 target_ulong *val) 2529 { 2530 *val = env->sepc; 2531 return RISCV_EXCP_NONE; 2532 } 2533 2534 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2535 target_ulong val) 2536 { 2537 env->sepc = val; 2538 return RISCV_EXCP_NONE; 2539 } 2540 2541 static RISCVException read_scause(CPURISCVState *env, int csrno, 2542 target_ulong *val) 2543 { 2544 *val = env->scause; 2545 return RISCV_EXCP_NONE; 2546 } 2547 2548 static RISCVException write_scause(CPURISCVState *env, int csrno, 2549 target_ulong val) 2550 { 2551 env->scause = val; 2552 return RISCV_EXCP_NONE; 2553 } 2554 2555 static RISCVException read_stval(CPURISCVState *env, int csrno, 2556 target_ulong *val) 2557 { 2558 *val = env->stval; 2559 return RISCV_EXCP_NONE; 2560 } 2561 2562 static RISCVException write_stval(CPURISCVState *env, int csrno, 2563 target_ulong val) 2564 { 2565 env->stval = val; 2566 return RISCV_EXCP_NONE; 2567 } 2568 2569 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2570 uint64_t *ret_val, 2571 uint64_t new_val, uint64_t wr_mask) 2572 { 2573 RISCVException ret; 2574 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2575 2576 /* Bring VS-level bits to correct position */ 2577 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2578 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2579 2580 ret = rmw_mip64(env, csrno, &rval, new_val, 2581 wr_mask & mask & vsip_writable_mask); 2582 if (ret_val) { 2583 *ret_val = (rval & mask) >> 1; 2584 } 2585 2586 return ret; 2587 } 2588 2589 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2590 target_ulong *ret_val, 2591 target_ulong new_val, target_ulong wr_mask) 2592 { 2593 uint64_t rval; 2594 RISCVException ret; 2595 2596 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2597 if (ret_val) { 2598 *ret_val = rval; 2599 } 2600 2601 return ret; 2602 } 2603 2604 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2605 target_ulong *ret_val, 2606 target_ulong new_val, target_ulong wr_mask) 2607 { 2608 uint64_t rval; 2609 RISCVException ret; 2610 2611 ret = rmw_vsip64(env, csrno, &rval, 2612 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2613 if (ret_val) { 2614 *ret_val = rval >> 32; 2615 } 2616 2617 return ret; 2618 } 2619 2620 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2621 uint64_t *ret_val, 2622 uint64_t new_val, uint64_t wr_mask) 2623 { 2624 RISCVException ret; 2625 uint64_t mask = env->mideleg & sip_writable_mask; 2626 2627 if (env->virt_enabled) { 2628 if (env->hvictl & HVICTL_VTI) { 2629 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2630 } 2631 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2632 } else { 2633 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2634 } 2635 2636 if (ret_val) { 2637 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2638 } 2639 2640 return ret; 2641 } 2642 2643 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2644 target_ulong *ret_val, 2645 target_ulong new_val, target_ulong wr_mask) 2646 { 2647 uint64_t rval; 2648 RISCVException ret; 2649 2650 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2651 if (ret_val) { 2652 *ret_val = rval; 2653 } 2654 2655 return ret; 2656 } 2657 2658 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2659 target_ulong *ret_val, 2660 target_ulong new_val, target_ulong wr_mask) 2661 { 2662 uint64_t rval; 2663 RISCVException ret; 2664 2665 ret = rmw_sip64(env, csrno, &rval, 2666 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2667 if (ret_val) { 2668 *ret_val = rval >> 32; 2669 } 2670 2671 return ret; 2672 } 2673 2674 /* Supervisor Protection and Translation */ 2675 static RISCVException read_satp(CPURISCVState *env, int csrno, 2676 target_ulong *val) 2677 { 2678 if (!riscv_cpu_cfg(env)->mmu) { 2679 *val = 0; 2680 return RISCV_EXCP_NONE; 2681 } 2682 2683 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2684 return RISCV_EXCP_ILLEGAL_INST; 2685 } else { 2686 *val = env->satp; 2687 } 2688 2689 return RISCV_EXCP_NONE; 2690 } 2691 2692 static RISCVException write_satp(CPURISCVState *env, int csrno, 2693 target_ulong val) 2694 { 2695 target_ulong mask; 2696 bool vm; 2697 2698 if (!riscv_cpu_cfg(env)->mmu) { 2699 return RISCV_EXCP_NONE; 2700 } 2701 2702 if (riscv_cpu_mxl(env) == MXL_RV32) { 2703 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2704 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2705 } else { 2706 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2707 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2708 } 2709 2710 if (vm && mask) { 2711 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2712 return RISCV_EXCP_ILLEGAL_INST; 2713 } else { 2714 /* 2715 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2716 * pass these through QEMU's TLB emulation as it improves 2717 * performance. Flushing the TLB on SATP writes with paging 2718 * enabled avoids leaking those invalid cached mappings. 2719 */ 2720 tlb_flush(env_cpu(env)); 2721 env->satp = val; 2722 } 2723 } 2724 return RISCV_EXCP_NONE; 2725 } 2726 2727 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2728 { 2729 int irq, ret; 2730 target_ulong topei; 2731 uint64_t vseip, vsgein; 2732 uint32_t iid, iprio, hviid, hviprio, gein; 2733 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2734 2735 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2736 hviid = get_field(env->hvictl, HVICTL_IID); 2737 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2738 2739 if (gein) { 2740 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2741 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2742 if (gein <= env->geilen && vseip) { 2743 siid[scount] = IRQ_S_EXT; 2744 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2745 if (env->aia_ireg_rmw_fn[PRV_S]) { 2746 /* 2747 * Call machine specific IMSIC register emulation for 2748 * reading TOPEI. 2749 */ 2750 ret = env->aia_ireg_rmw_fn[PRV_S]( 2751 env->aia_ireg_rmw_fn_arg[PRV_S], 2752 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2753 riscv_cpu_mxl_bits(env)), 2754 &topei, 0, 0); 2755 if (!ret && topei) { 2756 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2757 } 2758 } 2759 scount++; 2760 } 2761 } else { 2762 if (hviid == IRQ_S_EXT && hviprio) { 2763 siid[scount] = IRQ_S_EXT; 2764 siprio[scount] = hviprio; 2765 scount++; 2766 } 2767 } 2768 2769 if (env->hvictl & HVICTL_VTI) { 2770 if (hviid != IRQ_S_EXT) { 2771 siid[scount] = hviid; 2772 siprio[scount] = hviprio; 2773 scount++; 2774 } 2775 } else { 2776 irq = riscv_cpu_vsirq_pending(env); 2777 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2778 siid[scount] = irq; 2779 siprio[scount] = env->hviprio[irq]; 2780 scount++; 2781 } 2782 } 2783 2784 iid = 0; 2785 iprio = UINT_MAX; 2786 for (s = 0; s < scount; s++) { 2787 if (siprio[s] < iprio) { 2788 iid = siid[s]; 2789 iprio = siprio[s]; 2790 } 2791 } 2792 2793 if (iid) { 2794 if (env->hvictl & HVICTL_IPRIOM) { 2795 if (iprio > IPRIO_MMAXIPRIO) { 2796 iprio = IPRIO_MMAXIPRIO; 2797 } 2798 if (!iprio) { 2799 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2800 iprio = IPRIO_MMAXIPRIO; 2801 } 2802 } 2803 } else { 2804 iprio = 1; 2805 } 2806 } else { 2807 iprio = 0; 2808 } 2809 2810 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2811 *val |= iprio; 2812 return RISCV_EXCP_NONE; 2813 } 2814 2815 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2816 { 2817 int irq; 2818 uint8_t iprio; 2819 2820 if (env->virt_enabled) { 2821 return read_vstopi(env, CSR_VSTOPI, val); 2822 } 2823 2824 irq = riscv_cpu_sirq_pending(env); 2825 if (irq <= 0 || irq > 63) { 2826 *val = 0; 2827 } else { 2828 iprio = env->siprio[irq]; 2829 if (!iprio) { 2830 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2831 iprio = IPRIO_MMAXIPRIO; 2832 } 2833 } 2834 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2835 *val |= iprio; 2836 } 2837 2838 return RISCV_EXCP_NONE; 2839 } 2840 2841 /* Hypervisor Extensions */ 2842 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2843 target_ulong *val) 2844 { 2845 *val = env->hstatus; 2846 if (riscv_cpu_mxl(env) != MXL_RV32) { 2847 /* We only support 64-bit VSXL */ 2848 *val = set_field(*val, HSTATUS_VSXL, 2); 2849 } 2850 /* We only support little endian */ 2851 *val = set_field(*val, HSTATUS_VSBE, 0); 2852 return RISCV_EXCP_NONE; 2853 } 2854 2855 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2856 target_ulong val) 2857 { 2858 env->hstatus = val; 2859 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2860 qemu_log_mask(LOG_UNIMP, 2861 "QEMU does not support mixed HSXLEN options."); 2862 } 2863 if (get_field(val, HSTATUS_VSBE) != 0) { 2864 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2865 } 2866 return RISCV_EXCP_NONE; 2867 } 2868 2869 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2870 target_ulong *val) 2871 { 2872 *val = env->hedeleg; 2873 return RISCV_EXCP_NONE; 2874 } 2875 2876 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2877 target_ulong val) 2878 { 2879 env->hedeleg = val & vs_delegable_excps; 2880 return RISCV_EXCP_NONE; 2881 } 2882 2883 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2884 uint64_t *ret_val, 2885 uint64_t new_val, uint64_t wr_mask) 2886 { 2887 uint64_t mask = wr_mask & vs_delegable_ints; 2888 2889 if (ret_val) { 2890 *ret_val = env->hideleg & vs_delegable_ints; 2891 } 2892 2893 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2894 return RISCV_EXCP_NONE; 2895 } 2896 2897 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2898 target_ulong *ret_val, 2899 target_ulong new_val, target_ulong wr_mask) 2900 { 2901 uint64_t rval; 2902 RISCVException ret; 2903 2904 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2905 if (ret_val) { 2906 *ret_val = rval; 2907 } 2908 2909 return ret; 2910 } 2911 2912 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2913 target_ulong *ret_val, 2914 target_ulong new_val, target_ulong wr_mask) 2915 { 2916 uint64_t rval; 2917 RISCVException ret; 2918 2919 ret = rmw_hideleg64(env, csrno, &rval, 2920 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2921 if (ret_val) { 2922 *ret_val = rval >> 32; 2923 } 2924 2925 return ret; 2926 } 2927 2928 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2929 uint64_t *ret_val, 2930 uint64_t new_val, uint64_t wr_mask) 2931 { 2932 RISCVException ret; 2933 2934 ret = rmw_mip64(env, csrno, ret_val, new_val, 2935 wr_mask & hvip_writable_mask); 2936 if (ret_val) { 2937 *ret_val &= VS_MODE_INTERRUPTS; 2938 } 2939 2940 return ret; 2941 } 2942 2943 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2944 target_ulong *ret_val, 2945 target_ulong new_val, target_ulong wr_mask) 2946 { 2947 uint64_t rval; 2948 RISCVException ret; 2949 2950 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2951 if (ret_val) { 2952 *ret_val = rval; 2953 } 2954 2955 return ret; 2956 } 2957 2958 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2959 target_ulong *ret_val, 2960 target_ulong new_val, target_ulong wr_mask) 2961 { 2962 uint64_t rval; 2963 RISCVException ret; 2964 2965 ret = rmw_hvip64(env, csrno, &rval, 2966 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2967 if (ret_val) { 2968 *ret_val = rval >> 32; 2969 } 2970 2971 return ret; 2972 } 2973 2974 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2975 target_ulong *ret_value, 2976 target_ulong new_value, target_ulong write_mask) 2977 { 2978 int ret = rmw_mip(env, csrno, ret_value, new_value, 2979 write_mask & hip_writable_mask); 2980 2981 if (ret_value) { 2982 *ret_value &= HS_MODE_INTERRUPTS; 2983 } 2984 return ret; 2985 } 2986 2987 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2988 target_ulong *ret_val, 2989 target_ulong new_val, target_ulong wr_mask) 2990 { 2991 uint64_t rval; 2992 RISCVException ret; 2993 2994 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2995 if (ret_val) { 2996 *ret_val = rval & HS_MODE_INTERRUPTS; 2997 } 2998 2999 return ret; 3000 } 3001 3002 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 3003 target_ulong *val) 3004 { 3005 *val = env->hcounteren; 3006 return RISCV_EXCP_NONE; 3007 } 3008 3009 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 3010 target_ulong val) 3011 { 3012 env->hcounteren = val; 3013 return RISCV_EXCP_NONE; 3014 } 3015 3016 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 3017 target_ulong *val) 3018 { 3019 if (val) { 3020 *val = env->hgeie; 3021 } 3022 return RISCV_EXCP_NONE; 3023 } 3024 3025 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 3026 target_ulong val) 3027 { 3028 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 3029 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 3030 env->hgeie = val; 3031 /* Update mip.SGEIP bit */ 3032 riscv_cpu_update_mip(env, MIP_SGEIP, 3033 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 3034 return RISCV_EXCP_NONE; 3035 } 3036 3037 static RISCVException read_htval(CPURISCVState *env, int csrno, 3038 target_ulong *val) 3039 { 3040 *val = env->htval; 3041 return RISCV_EXCP_NONE; 3042 } 3043 3044 static RISCVException write_htval(CPURISCVState *env, int csrno, 3045 target_ulong val) 3046 { 3047 env->htval = val; 3048 return RISCV_EXCP_NONE; 3049 } 3050 3051 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3052 target_ulong *val) 3053 { 3054 *val = env->htinst; 3055 return RISCV_EXCP_NONE; 3056 } 3057 3058 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3059 target_ulong val) 3060 { 3061 return RISCV_EXCP_NONE; 3062 } 3063 3064 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3065 target_ulong *val) 3066 { 3067 if (val) { 3068 *val = env->hgeip; 3069 } 3070 return RISCV_EXCP_NONE; 3071 } 3072 3073 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3074 target_ulong *val) 3075 { 3076 *val = env->hgatp; 3077 return RISCV_EXCP_NONE; 3078 } 3079 3080 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3081 target_ulong val) 3082 { 3083 env->hgatp = val; 3084 return RISCV_EXCP_NONE; 3085 } 3086 3087 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3088 target_ulong *val) 3089 { 3090 if (!env->rdtime_fn) { 3091 return RISCV_EXCP_ILLEGAL_INST; 3092 } 3093 3094 *val = env->htimedelta; 3095 return RISCV_EXCP_NONE; 3096 } 3097 3098 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3099 target_ulong val) 3100 { 3101 if (!env->rdtime_fn) { 3102 return RISCV_EXCP_ILLEGAL_INST; 3103 } 3104 3105 if (riscv_cpu_mxl(env) == MXL_RV32) { 3106 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3107 } else { 3108 env->htimedelta = val; 3109 } 3110 3111 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3112 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3113 env->htimedelta, MIP_VSTIP); 3114 } 3115 3116 return RISCV_EXCP_NONE; 3117 } 3118 3119 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3120 target_ulong *val) 3121 { 3122 if (!env->rdtime_fn) { 3123 return RISCV_EXCP_ILLEGAL_INST; 3124 } 3125 3126 *val = env->htimedelta >> 32; 3127 return RISCV_EXCP_NONE; 3128 } 3129 3130 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3131 target_ulong val) 3132 { 3133 if (!env->rdtime_fn) { 3134 return RISCV_EXCP_ILLEGAL_INST; 3135 } 3136 3137 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3138 3139 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 3140 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 3141 env->htimedelta, MIP_VSTIP); 3142 } 3143 3144 return RISCV_EXCP_NONE; 3145 } 3146 3147 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3148 { 3149 *val = env->hvictl; 3150 return RISCV_EXCP_NONE; 3151 } 3152 3153 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3154 { 3155 env->hvictl = val & HVICTL_VALID_MASK; 3156 return RISCV_EXCP_NONE; 3157 } 3158 3159 static int read_hvipriox(CPURISCVState *env, int first_index, 3160 uint8_t *iprio, target_ulong *val) 3161 { 3162 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3163 3164 /* First index has to be a multiple of number of irqs per register */ 3165 if (first_index % num_irqs) { 3166 return (env->virt_enabled) ? 3167 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3168 } 3169 3170 /* Fill-up return value */ 3171 *val = 0; 3172 for (i = 0; i < num_irqs; i++) { 3173 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3174 continue; 3175 } 3176 if (rdzero) { 3177 continue; 3178 } 3179 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3180 } 3181 3182 return RISCV_EXCP_NONE; 3183 } 3184 3185 static int write_hvipriox(CPURISCVState *env, int first_index, 3186 uint8_t *iprio, target_ulong val) 3187 { 3188 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3189 3190 /* First index has to be a multiple of number of irqs per register */ 3191 if (first_index % num_irqs) { 3192 return (env->virt_enabled) ? 3193 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3194 } 3195 3196 /* Fill-up priority arrary */ 3197 for (i = 0; i < num_irqs; i++) { 3198 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3199 continue; 3200 } 3201 if (rdzero) { 3202 iprio[irq] = 0; 3203 } else { 3204 iprio[irq] = (val >> (i * 8)) & 0xff; 3205 } 3206 } 3207 3208 return RISCV_EXCP_NONE; 3209 } 3210 3211 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3212 { 3213 return read_hvipriox(env, 0, env->hviprio, val); 3214 } 3215 3216 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3217 { 3218 return write_hvipriox(env, 0, env->hviprio, val); 3219 } 3220 3221 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3222 { 3223 return read_hvipriox(env, 4, env->hviprio, val); 3224 } 3225 3226 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3227 { 3228 return write_hvipriox(env, 4, env->hviprio, val); 3229 } 3230 3231 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3232 { 3233 return read_hvipriox(env, 8, env->hviprio, val); 3234 } 3235 3236 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3237 { 3238 return write_hvipriox(env, 8, env->hviprio, val); 3239 } 3240 3241 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3242 { 3243 return read_hvipriox(env, 12, env->hviprio, val); 3244 } 3245 3246 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3247 { 3248 return write_hvipriox(env, 12, env->hviprio, val); 3249 } 3250 3251 /* Virtual CSR Registers */ 3252 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3253 target_ulong *val) 3254 { 3255 *val = env->vsstatus; 3256 return RISCV_EXCP_NONE; 3257 } 3258 3259 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3260 target_ulong val) 3261 { 3262 uint64_t mask = (target_ulong)-1; 3263 if ((val & VSSTATUS64_UXL) == 0) { 3264 mask &= ~VSSTATUS64_UXL; 3265 } 3266 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3267 return RISCV_EXCP_NONE; 3268 } 3269 3270 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3271 { 3272 *val = env->vstvec; 3273 return RISCV_EXCP_NONE; 3274 } 3275 3276 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3277 target_ulong val) 3278 { 3279 env->vstvec = val; 3280 return RISCV_EXCP_NONE; 3281 } 3282 3283 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3284 target_ulong *val) 3285 { 3286 *val = env->vsscratch; 3287 return RISCV_EXCP_NONE; 3288 } 3289 3290 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3291 target_ulong val) 3292 { 3293 env->vsscratch = val; 3294 return RISCV_EXCP_NONE; 3295 } 3296 3297 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3298 target_ulong *val) 3299 { 3300 *val = env->vsepc; 3301 return RISCV_EXCP_NONE; 3302 } 3303 3304 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3305 target_ulong val) 3306 { 3307 env->vsepc = val; 3308 return RISCV_EXCP_NONE; 3309 } 3310 3311 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3312 target_ulong *val) 3313 { 3314 *val = env->vscause; 3315 return RISCV_EXCP_NONE; 3316 } 3317 3318 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3319 target_ulong val) 3320 { 3321 env->vscause = val; 3322 return RISCV_EXCP_NONE; 3323 } 3324 3325 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3326 target_ulong *val) 3327 { 3328 *val = env->vstval; 3329 return RISCV_EXCP_NONE; 3330 } 3331 3332 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3333 target_ulong val) 3334 { 3335 env->vstval = val; 3336 return RISCV_EXCP_NONE; 3337 } 3338 3339 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3340 target_ulong *val) 3341 { 3342 *val = env->vsatp; 3343 return RISCV_EXCP_NONE; 3344 } 3345 3346 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3347 target_ulong val) 3348 { 3349 env->vsatp = val; 3350 return RISCV_EXCP_NONE; 3351 } 3352 3353 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3354 target_ulong *val) 3355 { 3356 *val = env->mtval2; 3357 return RISCV_EXCP_NONE; 3358 } 3359 3360 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3361 target_ulong val) 3362 { 3363 env->mtval2 = val; 3364 return RISCV_EXCP_NONE; 3365 } 3366 3367 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3368 target_ulong *val) 3369 { 3370 *val = env->mtinst; 3371 return RISCV_EXCP_NONE; 3372 } 3373 3374 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3375 target_ulong val) 3376 { 3377 env->mtinst = val; 3378 return RISCV_EXCP_NONE; 3379 } 3380 3381 /* Physical Memory Protection */ 3382 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3383 target_ulong *val) 3384 { 3385 *val = mseccfg_csr_read(env); 3386 return RISCV_EXCP_NONE; 3387 } 3388 3389 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3390 target_ulong val) 3391 { 3392 mseccfg_csr_write(env, val); 3393 return RISCV_EXCP_NONE; 3394 } 3395 3396 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3397 target_ulong *val) 3398 { 3399 uint32_t reg_index = csrno - CSR_PMPCFG0; 3400 3401 *val = pmpcfg_csr_read(env, reg_index); 3402 return RISCV_EXCP_NONE; 3403 } 3404 3405 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3406 target_ulong val) 3407 { 3408 uint32_t reg_index = csrno - CSR_PMPCFG0; 3409 3410 pmpcfg_csr_write(env, reg_index, val); 3411 return RISCV_EXCP_NONE; 3412 } 3413 3414 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3415 target_ulong *val) 3416 { 3417 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3418 return RISCV_EXCP_NONE; 3419 } 3420 3421 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3422 target_ulong val) 3423 { 3424 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3425 return RISCV_EXCP_NONE; 3426 } 3427 3428 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3429 target_ulong *val) 3430 { 3431 *val = tselect_csr_read(env); 3432 return RISCV_EXCP_NONE; 3433 } 3434 3435 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3436 target_ulong val) 3437 { 3438 tselect_csr_write(env, val); 3439 return RISCV_EXCP_NONE; 3440 } 3441 3442 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3443 target_ulong *val) 3444 { 3445 /* return 0 in tdata1 to end the trigger enumeration */ 3446 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3447 *val = 0; 3448 return RISCV_EXCP_NONE; 3449 } 3450 3451 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3452 return RISCV_EXCP_ILLEGAL_INST; 3453 } 3454 3455 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3456 return RISCV_EXCP_NONE; 3457 } 3458 3459 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3460 target_ulong val) 3461 { 3462 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3463 return RISCV_EXCP_ILLEGAL_INST; 3464 } 3465 3466 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3467 return RISCV_EXCP_NONE; 3468 } 3469 3470 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3471 target_ulong *val) 3472 { 3473 *val = tinfo_csr_read(env); 3474 return RISCV_EXCP_NONE; 3475 } 3476 3477 /* 3478 * Functions to access Pointer Masking feature registers 3479 * We have to check if current priv lvl could modify 3480 * csr in given mode 3481 */ 3482 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3483 { 3484 int csr_priv = get_field(csrno, 0x300); 3485 int pm_current; 3486 3487 if (env->debugger) { 3488 return false; 3489 } 3490 /* 3491 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3492 * so allow the access 3493 */ 3494 if (env->priv != csr_priv) { 3495 return false; 3496 } 3497 switch (env->priv) { 3498 case PRV_M: 3499 pm_current = get_field(env->mmte, M_PM_CURRENT); 3500 break; 3501 case PRV_S: 3502 pm_current = get_field(env->mmte, S_PM_CURRENT); 3503 break; 3504 case PRV_U: 3505 pm_current = get_field(env->mmte, U_PM_CURRENT); 3506 break; 3507 default: 3508 g_assert_not_reached(); 3509 } 3510 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3511 return !pm_current; 3512 } 3513 3514 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3515 target_ulong *val) 3516 { 3517 *val = env->mmte & MMTE_MASK; 3518 return RISCV_EXCP_NONE; 3519 } 3520 3521 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3522 target_ulong val) 3523 { 3524 uint64_t mstatus; 3525 target_ulong wpri_val = val & MMTE_MASK; 3526 3527 if (val != wpri_val) { 3528 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 3529 TARGET_FMT_lx "\n", "MMTE: WPRI violation written 0x", 3530 val, "vs expected 0x", wpri_val); 3531 } 3532 /* for machine mode pm.current is hardwired to 1 */ 3533 wpri_val |= MMTE_M_PM_CURRENT; 3534 3535 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3536 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3537 env->mmte = wpri_val | PM_EXT_DIRTY; 3538 riscv_cpu_update_mask(env); 3539 3540 /* Set XS and SD bits, since PM CSRs are dirty */ 3541 mstatus = env->mstatus | MSTATUS_XS; 3542 write_mstatus(env, csrno, mstatus); 3543 return RISCV_EXCP_NONE; 3544 } 3545 3546 static RISCVException read_smte(CPURISCVState *env, int csrno, 3547 target_ulong *val) 3548 { 3549 *val = env->mmte & SMTE_MASK; 3550 return RISCV_EXCP_NONE; 3551 } 3552 3553 static RISCVException write_smte(CPURISCVState *env, int csrno, 3554 target_ulong val) 3555 { 3556 target_ulong wpri_val = val & SMTE_MASK; 3557 3558 if (val != wpri_val) { 3559 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 3560 TARGET_FMT_lx "\n", "SMTE: WPRI violation written 0x", 3561 val, "vs expected 0x", wpri_val); 3562 } 3563 3564 /* if pm.current==0 we can't modify current PM CSRs */ 3565 if (check_pm_current_disabled(env, csrno)) { 3566 return RISCV_EXCP_NONE; 3567 } 3568 3569 wpri_val |= (env->mmte & ~SMTE_MASK); 3570 write_mmte(env, csrno, wpri_val); 3571 return RISCV_EXCP_NONE; 3572 } 3573 3574 static RISCVException read_umte(CPURISCVState *env, int csrno, 3575 target_ulong *val) 3576 { 3577 *val = env->mmte & UMTE_MASK; 3578 return RISCV_EXCP_NONE; 3579 } 3580 3581 static RISCVException write_umte(CPURISCVState *env, int csrno, 3582 target_ulong val) 3583 { 3584 target_ulong wpri_val = val & UMTE_MASK; 3585 3586 if (val != wpri_val) { 3587 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" 3588 TARGET_FMT_lx "\n", "UMTE: WPRI violation written 0x", 3589 val, "vs expected 0x", wpri_val); 3590 } 3591 3592 if (check_pm_current_disabled(env, csrno)) { 3593 return RISCV_EXCP_NONE; 3594 } 3595 3596 wpri_val |= (env->mmte & ~UMTE_MASK); 3597 write_mmte(env, csrno, wpri_val); 3598 return RISCV_EXCP_NONE; 3599 } 3600 3601 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3602 target_ulong *val) 3603 { 3604 *val = env->mpmmask; 3605 return RISCV_EXCP_NONE; 3606 } 3607 3608 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3609 target_ulong val) 3610 { 3611 uint64_t mstatus; 3612 3613 env->mpmmask = val; 3614 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3615 env->cur_pmmask = val; 3616 } 3617 env->mmte |= PM_EXT_DIRTY; 3618 3619 /* Set XS and SD bits, since PM CSRs are dirty */ 3620 mstatus = env->mstatus | MSTATUS_XS; 3621 write_mstatus(env, csrno, mstatus); 3622 return RISCV_EXCP_NONE; 3623 } 3624 3625 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3626 target_ulong *val) 3627 { 3628 *val = env->spmmask; 3629 return RISCV_EXCP_NONE; 3630 } 3631 3632 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3633 target_ulong val) 3634 { 3635 uint64_t mstatus; 3636 3637 /* if pm.current==0 we can't modify current PM CSRs */ 3638 if (check_pm_current_disabled(env, csrno)) { 3639 return RISCV_EXCP_NONE; 3640 } 3641 env->spmmask = val; 3642 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3643 env->cur_pmmask = val; 3644 } 3645 env->mmte |= PM_EXT_DIRTY; 3646 3647 /* Set XS and SD bits, since PM CSRs are dirty */ 3648 mstatus = env->mstatus | MSTATUS_XS; 3649 write_mstatus(env, csrno, mstatus); 3650 return RISCV_EXCP_NONE; 3651 } 3652 3653 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3654 target_ulong *val) 3655 { 3656 *val = env->upmmask; 3657 return RISCV_EXCP_NONE; 3658 } 3659 3660 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3661 target_ulong val) 3662 { 3663 uint64_t mstatus; 3664 3665 /* if pm.current==0 we can't modify current PM CSRs */ 3666 if (check_pm_current_disabled(env, csrno)) { 3667 return RISCV_EXCP_NONE; 3668 } 3669 env->upmmask = val; 3670 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3671 env->cur_pmmask = val; 3672 } 3673 env->mmte |= PM_EXT_DIRTY; 3674 3675 /* Set XS and SD bits, since PM CSRs are dirty */ 3676 mstatus = env->mstatus | MSTATUS_XS; 3677 write_mstatus(env, csrno, mstatus); 3678 return RISCV_EXCP_NONE; 3679 } 3680 3681 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3682 target_ulong *val) 3683 { 3684 *val = env->mpmbase; 3685 return RISCV_EXCP_NONE; 3686 } 3687 3688 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3689 target_ulong val) 3690 { 3691 uint64_t mstatus; 3692 3693 env->mpmbase = val; 3694 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3695 env->cur_pmbase = val; 3696 } 3697 env->mmte |= PM_EXT_DIRTY; 3698 3699 /* Set XS and SD bits, since PM CSRs are dirty */ 3700 mstatus = env->mstatus | MSTATUS_XS; 3701 write_mstatus(env, csrno, mstatus); 3702 return RISCV_EXCP_NONE; 3703 } 3704 3705 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3706 target_ulong *val) 3707 { 3708 *val = env->spmbase; 3709 return RISCV_EXCP_NONE; 3710 } 3711 3712 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3713 target_ulong val) 3714 { 3715 uint64_t mstatus; 3716 3717 /* if pm.current==0 we can't modify current PM CSRs */ 3718 if (check_pm_current_disabled(env, csrno)) { 3719 return RISCV_EXCP_NONE; 3720 } 3721 env->spmbase = val; 3722 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3723 env->cur_pmbase = val; 3724 } 3725 env->mmte |= PM_EXT_DIRTY; 3726 3727 /* Set XS and SD bits, since PM CSRs are dirty */ 3728 mstatus = env->mstatus | MSTATUS_XS; 3729 write_mstatus(env, csrno, mstatus); 3730 return RISCV_EXCP_NONE; 3731 } 3732 3733 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3734 target_ulong *val) 3735 { 3736 *val = env->upmbase; 3737 return RISCV_EXCP_NONE; 3738 } 3739 3740 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3741 target_ulong val) 3742 { 3743 uint64_t mstatus; 3744 3745 /* if pm.current==0 we can't modify current PM CSRs */ 3746 if (check_pm_current_disabled(env, csrno)) { 3747 return RISCV_EXCP_NONE; 3748 } 3749 env->upmbase = val; 3750 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3751 env->cur_pmbase = val; 3752 } 3753 env->mmte |= PM_EXT_DIRTY; 3754 3755 /* Set XS and SD bits, since PM CSRs are dirty */ 3756 mstatus = env->mstatus | MSTATUS_XS; 3757 write_mstatus(env, csrno, mstatus); 3758 return RISCV_EXCP_NONE; 3759 } 3760 3761 #endif 3762 3763 /* Crypto Extension */ 3764 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3765 target_ulong *ret_value, 3766 target_ulong new_value, 3767 target_ulong write_mask) 3768 { 3769 uint16_t random_v; 3770 Error *random_e = NULL; 3771 int random_r; 3772 target_ulong rval; 3773 3774 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3775 if (unlikely(random_r < 0)) { 3776 /* 3777 * Failed, for unknown reasons in the crypto subsystem. 3778 * The best we can do is log the reason and return a 3779 * failure indication to the guest. There is no reason 3780 * we know to expect the failure to be transitory, so 3781 * indicate DEAD to avoid having the guest spin on WAIT. 3782 */ 3783 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3784 __func__, error_get_pretty(random_e)); 3785 error_free(random_e); 3786 rval = SEED_OPST_DEAD; 3787 } else { 3788 rval = random_v | SEED_OPST_ES16; 3789 } 3790 3791 if (ret_value) { 3792 *ret_value = rval; 3793 } 3794 3795 return RISCV_EXCP_NONE; 3796 } 3797 3798 /* 3799 * riscv_csrrw - read and/or update control and status register 3800 * 3801 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3802 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3803 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3804 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3805 */ 3806 3807 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3808 int csrno, 3809 bool write_mask) 3810 { 3811 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3812 bool read_only = get_field(csrno, 0xC00) == 3; 3813 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3814 3815 /* ensure the CSR extension is enabled */ 3816 if (!riscv_cpu_cfg(env)->ext_icsr) { 3817 return RISCV_EXCP_ILLEGAL_INST; 3818 } 3819 3820 /* privileged spec version check */ 3821 if (env->priv_ver < csr_min_priv) { 3822 return RISCV_EXCP_ILLEGAL_INST; 3823 } 3824 3825 /* read / write check */ 3826 if (write_mask && read_only) { 3827 return RISCV_EXCP_ILLEGAL_INST; 3828 } 3829 3830 /* 3831 * The predicate() not only does existence check but also does some 3832 * access control check which triggers for example virtual instruction 3833 * exception in some cases. When writing read-only CSRs in those cases 3834 * illegal instruction exception should be triggered instead of virtual 3835 * instruction exception. Hence this comes after the read / write check. 3836 */ 3837 g_assert(csr_ops[csrno].predicate != NULL); 3838 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3839 if (ret != RISCV_EXCP_NONE) { 3840 return ret; 3841 } 3842 3843 #if !defined(CONFIG_USER_ONLY) 3844 int csr_priv, effective_priv = env->priv; 3845 3846 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3847 !env->virt_enabled) { 3848 /* 3849 * We are in HS mode. Add 1 to the effective privledge level to 3850 * allow us to access the Hypervisor CSRs. 3851 */ 3852 effective_priv++; 3853 } 3854 3855 csr_priv = get_field(csrno, 0x300); 3856 if (!env->debugger && (effective_priv < csr_priv)) { 3857 if (csr_priv == (PRV_S + 1) && env->virt_enabled) { 3858 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3859 } 3860 return RISCV_EXCP_ILLEGAL_INST; 3861 } 3862 #endif 3863 return RISCV_EXCP_NONE; 3864 } 3865 3866 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3867 target_ulong *ret_value, 3868 target_ulong new_value, 3869 target_ulong write_mask) 3870 { 3871 RISCVException ret; 3872 target_ulong old_value; 3873 3874 /* execute combined read/write operation if it exists */ 3875 if (csr_ops[csrno].op) { 3876 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3877 } 3878 3879 /* if no accessor exists then return failure */ 3880 if (!csr_ops[csrno].read) { 3881 return RISCV_EXCP_ILLEGAL_INST; 3882 } 3883 /* read old value */ 3884 ret = csr_ops[csrno].read(env, csrno, &old_value); 3885 if (ret != RISCV_EXCP_NONE) { 3886 return ret; 3887 } 3888 3889 /* write value if writable and write mask set, otherwise drop writes */ 3890 if (write_mask) { 3891 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3892 if (csr_ops[csrno].write) { 3893 ret = csr_ops[csrno].write(env, csrno, new_value); 3894 if (ret != RISCV_EXCP_NONE) { 3895 return ret; 3896 } 3897 } 3898 } 3899 3900 /* return old value */ 3901 if (ret_value) { 3902 *ret_value = old_value; 3903 } 3904 3905 return RISCV_EXCP_NONE; 3906 } 3907 3908 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3909 target_ulong *ret_value, 3910 target_ulong new_value, target_ulong write_mask) 3911 { 3912 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask); 3913 if (ret != RISCV_EXCP_NONE) { 3914 return ret; 3915 } 3916 3917 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3918 } 3919 3920 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3921 Int128 *ret_value, 3922 Int128 new_value, 3923 Int128 write_mask) 3924 { 3925 RISCVException ret; 3926 Int128 old_value; 3927 3928 /* read old value */ 3929 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3930 if (ret != RISCV_EXCP_NONE) { 3931 return ret; 3932 } 3933 3934 /* write value if writable and write mask set, otherwise drop writes */ 3935 if (int128_nz(write_mask)) { 3936 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3937 int128_and(new_value, write_mask)); 3938 if (csr_ops[csrno].write128) { 3939 ret = csr_ops[csrno].write128(env, csrno, new_value); 3940 if (ret != RISCV_EXCP_NONE) { 3941 return ret; 3942 } 3943 } else if (csr_ops[csrno].write) { 3944 /* avoids having to write wrappers for all registers */ 3945 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3946 if (ret != RISCV_EXCP_NONE) { 3947 return ret; 3948 } 3949 } 3950 } 3951 3952 /* return old value */ 3953 if (ret_value) { 3954 *ret_value = old_value; 3955 } 3956 3957 return RISCV_EXCP_NONE; 3958 } 3959 3960 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3961 Int128 *ret_value, 3962 Int128 new_value, Int128 write_mask) 3963 { 3964 RISCVException ret; 3965 3966 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask)); 3967 if (ret != RISCV_EXCP_NONE) { 3968 return ret; 3969 } 3970 3971 if (csr_ops[csrno].read128) { 3972 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3973 } 3974 3975 /* 3976 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3977 * at all defined. 3978 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3979 * significant), for those, this fallback is correctly handling the 3980 * accesses 3981 */ 3982 target_ulong old_value; 3983 ret = riscv_csrrw_do64(env, csrno, &old_value, 3984 int128_getlo(new_value), 3985 int128_getlo(write_mask)); 3986 if (ret == RISCV_EXCP_NONE && ret_value) { 3987 *ret_value = int128_make64(old_value); 3988 } 3989 return ret; 3990 } 3991 3992 /* 3993 * Debugger support. If not in user mode, set env->debugger before the 3994 * riscv_csrrw call and clear it after the call. 3995 */ 3996 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3997 target_ulong *ret_value, 3998 target_ulong new_value, 3999 target_ulong write_mask) 4000 { 4001 RISCVException ret; 4002 #if !defined(CONFIG_USER_ONLY) 4003 env->debugger = true; 4004 #endif 4005 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 4006 #if !defined(CONFIG_USER_ONLY) 4007 env->debugger = false; 4008 #endif 4009 return ret; 4010 } 4011 4012 static RISCVException read_jvt(CPURISCVState *env, int csrno, 4013 target_ulong *val) 4014 { 4015 *val = env->jvt; 4016 return RISCV_EXCP_NONE; 4017 } 4018 4019 static RISCVException write_jvt(CPURISCVState *env, int csrno, 4020 target_ulong val) 4021 { 4022 env->jvt = val; 4023 return RISCV_EXCP_NONE; 4024 } 4025 4026 /* Control and Status Register function table */ 4027 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 4028 /* User Floating-Point CSRs */ 4029 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 4030 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 4031 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 4032 /* Vector CSRs */ 4033 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 4034 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 4035 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 4036 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 4037 [CSR_VL] = { "vl", vs, read_vl }, 4038 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4039 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4040 /* User Timers and Counters */ 4041 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4042 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4043 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4044 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4045 4046 /* 4047 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4048 * rdtime callback is not provided by machine/platform emulation. 4049 */ 4050 [CSR_TIME] = { "time", ctr, read_time }, 4051 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4052 4053 /* Crypto Extension */ 4054 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4055 4056 /* Zcmt Extension */ 4057 [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, 4058 4059 #if !defined(CONFIG_USER_ONLY) 4060 /* Machine Timers and Counters */ 4061 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4062 write_mhpmcounter }, 4063 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4064 write_mhpmcounter }, 4065 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4066 write_mhpmcounterh }, 4067 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4068 write_mhpmcounterh }, 4069 4070 /* Machine Information Registers */ 4071 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4072 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4073 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4074 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4075 4076 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4077 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4078 /* Machine Trap Setup */ 4079 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4080 NULL, read_mstatus_i128 }, 4081 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4082 NULL, read_misa_i128 }, 4083 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4084 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4085 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4086 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4087 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4088 write_mcounteren }, 4089 4090 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4091 write_mstatush }, 4092 4093 /* Machine Trap Handling */ 4094 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4095 NULL, read_mscratch_i128, write_mscratch_i128 }, 4096 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4097 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4098 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4099 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4100 4101 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4102 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4103 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4104 4105 /* Machine-Level Interrupts (AIA) */ 4106 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4107 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4108 4109 /* Virtual Interrupts for Supervisor Level (AIA) */ 4110 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4111 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4112 4113 /* Machine-Level High-Half CSRs (AIA) */ 4114 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4115 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4116 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4117 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4118 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4119 4120 /* Execution environment configuration */ 4121 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4122 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4123 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4124 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4125 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4126 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4127 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4128 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4129 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4130 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4131 4132 /* Smstateen extension CSRs */ 4133 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4134 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4135 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4136 write_mstateen0h, 4137 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4138 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4139 write_mstateen_1_3, 4140 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4141 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4142 write_mstateenh_1_3, 4143 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4144 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4145 write_mstateen_1_3, 4146 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4147 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4148 write_mstateenh_1_3, 4149 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4150 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4151 write_mstateen_1_3, 4152 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4153 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4154 write_mstateenh_1_3, 4155 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4156 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4157 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4158 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4159 write_hstateen0h, 4160 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4161 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4162 write_hstateen_1_3, 4163 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4164 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4165 write_hstateenh_1_3, 4166 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4167 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4168 write_hstateen_1_3, 4169 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4170 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4171 write_hstateenh_1_3, 4172 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4173 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4174 write_hstateen_1_3, 4175 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4176 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4177 write_hstateenh_1_3, 4178 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4179 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4180 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4181 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4182 write_sstateen_1_3, 4183 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4184 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4185 write_sstateen_1_3, 4186 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4187 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4188 write_sstateen_1_3, 4189 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4190 4191 /* Supervisor Trap Setup */ 4192 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4193 NULL, read_sstatus_i128 }, 4194 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4195 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4196 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4197 write_scounteren }, 4198 4199 /* Supervisor Trap Handling */ 4200 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4201 NULL, read_sscratch_i128, write_sscratch_i128 }, 4202 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4203 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4204 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4205 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4206 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4207 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4208 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4209 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4210 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4211 write_vstimecmp, 4212 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4213 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4214 write_vstimecmph, 4215 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4216 4217 /* Supervisor Protection and Translation */ 4218 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 4219 4220 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4221 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4222 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4223 4224 /* Supervisor-Level Interrupts (AIA) */ 4225 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4226 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4227 4228 /* Supervisor-Level High-Half CSRs (AIA) */ 4229 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4230 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4231 4232 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4233 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4234 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4235 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4236 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4237 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4238 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4239 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4240 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4241 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4242 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4243 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4244 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4245 write_hcounteren, 4246 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4247 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4248 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4249 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4250 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4251 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4252 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4253 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4254 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4255 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 4256 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4257 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4258 write_htimedelta, 4259 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4260 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4261 write_htimedeltah, 4262 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4263 4264 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4265 write_vsstatus, 4266 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4267 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4268 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4269 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4270 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4271 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4272 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4273 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4274 write_vsscratch, 4275 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4276 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4277 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4278 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4279 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4280 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4281 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4282 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4283 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4284 4285 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4286 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4287 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4288 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4289 4290 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4291 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4292 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4293 write_hvictl }, 4294 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4295 write_hviprio1 }, 4296 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4297 write_hviprio2 }, 4298 4299 /* 4300 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4301 */ 4302 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4303 rmw_xiselect }, 4304 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4305 4306 /* VS-Level Interrupts (H-extension with AIA) */ 4307 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4308 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4309 4310 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4311 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4312 rmw_hidelegh }, 4313 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4314 write_ignore }, 4315 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4316 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4317 write_hviprio1h }, 4318 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4319 write_hviprio2h }, 4320 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4321 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4322 4323 /* Physical Memory Protection */ 4324 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4325 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4326 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4327 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4328 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4329 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4330 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4331 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4332 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4333 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4334 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4335 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4336 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4337 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4338 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4339 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4340 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4341 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4342 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4343 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4344 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4345 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4346 4347 /* Debug CSRs */ 4348 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4349 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4350 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4351 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4352 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4353 4354 /* User Pointer Masking */ 4355 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4356 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4357 write_upmmask }, 4358 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4359 write_upmbase }, 4360 /* Machine Pointer Masking */ 4361 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4362 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4363 write_mpmmask }, 4364 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4365 write_mpmbase }, 4366 /* Supervisor Pointer Masking */ 4367 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4368 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4369 write_spmmask }, 4370 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4371 write_spmbase }, 4372 4373 /* Performance Counters */ 4374 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4375 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4376 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4377 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4378 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4379 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4380 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4381 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4382 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4383 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4384 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4385 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4386 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4387 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4388 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4389 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4390 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4391 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4392 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4393 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4394 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4395 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4396 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4397 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4398 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4399 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4400 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4401 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4402 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4403 4404 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4405 write_mhpmcounter }, 4406 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4407 write_mhpmcounter }, 4408 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4409 write_mhpmcounter }, 4410 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4411 write_mhpmcounter }, 4412 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4413 write_mhpmcounter }, 4414 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4415 write_mhpmcounter }, 4416 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4417 write_mhpmcounter }, 4418 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4419 write_mhpmcounter }, 4420 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4421 write_mhpmcounter }, 4422 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4423 write_mhpmcounter }, 4424 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4425 write_mhpmcounter }, 4426 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4427 write_mhpmcounter }, 4428 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4429 write_mhpmcounter }, 4430 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4431 write_mhpmcounter }, 4432 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4433 write_mhpmcounter }, 4434 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4435 write_mhpmcounter }, 4436 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4437 write_mhpmcounter }, 4438 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4439 write_mhpmcounter }, 4440 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4441 write_mhpmcounter }, 4442 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4443 write_mhpmcounter }, 4444 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4445 write_mhpmcounter }, 4446 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4447 write_mhpmcounter }, 4448 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4449 write_mhpmcounter }, 4450 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4451 write_mhpmcounter }, 4452 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4453 write_mhpmcounter }, 4454 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4455 write_mhpmcounter }, 4456 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4457 write_mhpmcounter }, 4458 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4459 write_mhpmcounter }, 4460 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4461 write_mhpmcounter }, 4462 4463 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4464 write_mcountinhibit, 4465 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4466 4467 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4468 write_mhpmevent }, 4469 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4470 write_mhpmevent }, 4471 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4472 write_mhpmevent }, 4473 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4474 write_mhpmevent }, 4475 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4476 write_mhpmevent }, 4477 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4478 write_mhpmevent }, 4479 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4480 write_mhpmevent }, 4481 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4482 write_mhpmevent }, 4483 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4484 write_mhpmevent }, 4485 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4486 write_mhpmevent }, 4487 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4488 write_mhpmevent }, 4489 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4490 write_mhpmevent }, 4491 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4492 write_mhpmevent }, 4493 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4494 write_mhpmevent }, 4495 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4496 write_mhpmevent }, 4497 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4498 write_mhpmevent }, 4499 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4500 write_mhpmevent }, 4501 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4502 write_mhpmevent }, 4503 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4504 write_mhpmevent }, 4505 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4506 write_mhpmevent }, 4507 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4508 write_mhpmevent }, 4509 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4510 write_mhpmevent }, 4511 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4512 write_mhpmevent }, 4513 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4514 write_mhpmevent }, 4515 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4516 write_mhpmevent }, 4517 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4518 write_mhpmevent }, 4519 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4520 write_mhpmevent }, 4521 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4522 write_mhpmevent }, 4523 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4524 write_mhpmevent }, 4525 4526 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4527 write_mhpmeventh, 4528 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4529 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4530 write_mhpmeventh, 4531 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4532 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4533 write_mhpmeventh, 4534 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4535 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4536 write_mhpmeventh, 4537 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4538 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4539 write_mhpmeventh, 4540 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4541 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4542 write_mhpmeventh, 4543 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4544 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4545 write_mhpmeventh, 4546 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4547 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4548 write_mhpmeventh, 4549 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4550 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4551 write_mhpmeventh, 4552 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4553 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4554 write_mhpmeventh, 4555 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4556 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4557 write_mhpmeventh, 4558 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4559 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4560 write_mhpmeventh, 4561 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4562 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4563 write_mhpmeventh, 4564 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4565 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4566 write_mhpmeventh, 4567 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4568 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4569 write_mhpmeventh, 4570 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4571 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4572 write_mhpmeventh, 4573 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4574 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4575 write_mhpmeventh, 4576 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4577 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4578 write_mhpmeventh, 4579 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4580 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4581 write_mhpmeventh, 4582 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4583 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4584 write_mhpmeventh, 4585 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4586 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4587 write_mhpmeventh, 4588 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4589 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4590 write_mhpmeventh, 4591 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4592 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4593 write_mhpmeventh, 4594 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4595 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4596 write_mhpmeventh, 4597 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4598 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4599 write_mhpmeventh, 4600 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4601 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4602 write_mhpmeventh, 4603 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4604 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4605 write_mhpmeventh, 4606 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4607 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4608 write_mhpmeventh, 4609 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4610 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4611 write_mhpmeventh, 4612 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4613 4614 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4615 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4616 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4617 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4618 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4619 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4620 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4621 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4622 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4623 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4624 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4625 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4626 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4627 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4628 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4629 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4630 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4631 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4632 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4633 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4634 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4635 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4636 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4637 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4638 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4639 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4640 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4641 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4642 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4643 4644 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4645 write_mhpmcounterh }, 4646 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4647 write_mhpmcounterh }, 4648 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4649 write_mhpmcounterh }, 4650 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4651 write_mhpmcounterh }, 4652 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4653 write_mhpmcounterh }, 4654 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4655 write_mhpmcounterh }, 4656 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4657 write_mhpmcounterh }, 4658 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4659 write_mhpmcounterh }, 4660 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4661 write_mhpmcounterh }, 4662 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4663 write_mhpmcounterh }, 4664 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4665 write_mhpmcounterh }, 4666 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4667 write_mhpmcounterh }, 4668 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4669 write_mhpmcounterh }, 4670 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4671 write_mhpmcounterh }, 4672 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4673 write_mhpmcounterh }, 4674 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4675 write_mhpmcounterh }, 4676 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4677 write_mhpmcounterh }, 4678 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4679 write_mhpmcounterh }, 4680 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4681 write_mhpmcounterh }, 4682 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4683 write_mhpmcounterh }, 4684 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4685 write_mhpmcounterh }, 4686 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4687 write_mhpmcounterh }, 4688 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4689 write_mhpmcounterh }, 4690 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4691 write_mhpmcounterh }, 4692 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4693 write_mhpmcounterh }, 4694 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4695 write_mhpmcounterh }, 4696 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4697 write_mhpmcounterh }, 4698 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4699 write_mhpmcounterh }, 4700 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4701 write_mhpmcounterh }, 4702 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4703 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4704 4705 #endif /* !CONFIG_USER_ONLY */ 4706 }; 4707