1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "sysemu/cpu-timers.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 32 /* CSR function table public API */ 33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 34 { 35 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 36 } 37 38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 41 } 42 43 /* Predicates */ 44 #if !defined(CONFIG_USER_ONLY) 45 static RISCVException smstateen_acc_ok(CPURISCVState *env, int index, 46 uint64_t bit) 47 { 48 bool virt = riscv_cpu_virt_enabled(env); 49 CPUState *cs = env_cpu(env); 50 RISCVCPU *cpu = RISCV_CPU(cs); 51 52 if (env->priv == PRV_M || !cpu->cfg.ext_smstateen) { 53 return RISCV_EXCP_NONE; 54 } 55 56 if (!(env->mstateen[index] & bit)) { 57 return RISCV_EXCP_ILLEGAL_INST; 58 } 59 60 if (virt) { 61 if (!(env->hstateen[index] & bit)) { 62 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 63 } 64 65 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 66 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 67 } 68 } 69 70 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 71 if (!(env->sstateen[index] & bit)) { 72 return RISCV_EXCP_ILLEGAL_INST; 73 } 74 } 75 76 return RISCV_EXCP_NONE; 77 } 78 #endif 79 80 static RISCVException fs(CPURISCVState *env, int csrno) 81 { 82 #if !defined(CONFIG_USER_ONLY) 83 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 84 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 85 return RISCV_EXCP_ILLEGAL_INST; 86 } 87 #endif 88 return RISCV_EXCP_NONE; 89 } 90 91 static RISCVException vs(CPURISCVState *env, int csrno) 92 { 93 CPUState *cs = env_cpu(env); 94 RISCVCPU *cpu = RISCV_CPU(cs); 95 96 if (env->misa_ext & RVV || 97 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 98 #if !defined(CONFIG_USER_ONLY) 99 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 100 return RISCV_EXCP_ILLEGAL_INST; 101 } 102 #endif 103 return RISCV_EXCP_NONE; 104 } 105 return RISCV_EXCP_ILLEGAL_INST; 106 } 107 108 static RISCVException ctr(CPURISCVState *env, int csrno) 109 { 110 #if !defined(CONFIG_USER_ONLY) 111 CPUState *cs = env_cpu(env); 112 RISCVCPU *cpu = RISCV_CPU(cs); 113 int ctr_index; 114 target_ulong ctr_mask; 115 int base_csrno = CSR_CYCLE; 116 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 117 118 if (rv32 && csrno >= CSR_CYCLEH) { 119 /* Offset for RV32 hpmcounternh counters */ 120 base_csrno += 0x80; 121 } 122 ctr_index = csrno - base_csrno; 123 ctr_mask = BIT(ctr_index); 124 125 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 126 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 127 goto skip_ext_pmu_check; 128 } 129 130 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 131 /* No counter is enabled in PMU or the counter is out of range */ 132 return RISCV_EXCP_ILLEGAL_INST; 133 } 134 135 skip_ext_pmu_check: 136 137 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 138 return RISCV_EXCP_ILLEGAL_INST; 139 } 140 141 if (riscv_cpu_virt_enabled(env)) { 142 if (!get_field(env->hcounteren, ctr_mask) || 143 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 144 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 145 } 146 } 147 148 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 149 !get_field(env->scounteren, ctr_mask)) { 150 return RISCV_EXCP_ILLEGAL_INST; 151 } 152 153 #endif 154 return RISCV_EXCP_NONE; 155 } 156 157 static RISCVException ctr32(CPURISCVState *env, int csrno) 158 { 159 if (riscv_cpu_mxl(env) != MXL_RV32) { 160 return RISCV_EXCP_ILLEGAL_INST; 161 } 162 163 return ctr(env, csrno); 164 } 165 166 #if !defined(CONFIG_USER_ONLY) 167 static RISCVException mctr(CPURISCVState *env, int csrno) 168 { 169 CPUState *cs = env_cpu(env); 170 RISCVCPU *cpu = RISCV_CPU(cs); 171 int ctr_index; 172 int base_csrno = CSR_MHPMCOUNTER3; 173 174 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 175 /* Offset for RV32 mhpmcounternh counters */ 176 base_csrno += 0x80; 177 } 178 ctr_index = csrno - base_csrno; 179 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 180 /* The PMU is not enabled or counter is out of range*/ 181 return RISCV_EXCP_ILLEGAL_INST; 182 } 183 184 return RISCV_EXCP_NONE; 185 } 186 187 static RISCVException mctr32(CPURISCVState *env, int csrno) 188 { 189 if (riscv_cpu_mxl(env) != MXL_RV32) { 190 return RISCV_EXCP_ILLEGAL_INST; 191 } 192 193 return mctr(env, csrno); 194 } 195 196 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 197 { 198 CPUState *cs = env_cpu(env); 199 RISCVCPU *cpu = RISCV_CPU(cs); 200 201 if (!cpu->cfg.ext_sscofpmf) { 202 return RISCV_EXCP_ILLEGAL_INST; 203 } 204 205 return RISCV_EXCP_NONE; 206 } 207 208 static RISCVException any(CPURISCVState *env, int csrno) 209 { 210 return RISCV_EXCP_NONE; 211 } 212 213 static RISCVException any32(CPURISCVState *env, int csrno) 214 { 215 if (riscv_cpu_mxl(env) != MXL_RV32) { 216 return RISCV_EXCP_ILLEGAL_INST; 217 } 218 219 return any(env, csrno); 220 221 } 222 223 static int aia_any(CPURISCVState *env, int csrno) 224 { 225 RISCVCPU *cpu = env_archcpu(env); 226 227 if (!cpu->cfg.ext_smaia) { 228 return RISCV_EXCP_ILLEGAL_INST; 229 } 230 231 return any(env, csrno); 232 } 233 234 static int aia_any32(CPURISCVState *env, int csrno) 235 { 236 RISCVCPU *cpu = env_archcpu(env); 237 238 if (!cpu->cfg.ext_smaia) { 239 return RISCV_EXCP_ILLEGAL_INST; 240 } 241 242 return any32(env, csrno); 243 } 244 245 static RISCVException smode(CPURISCVState *env, int csrno) 246 { 247 if (riscv_has_ext(env, RVS)) { 248 return RISCV_EXCP_NONE; 249 } 250 251 return RISCV_EXCP_ILLEGAL_INST; 252 } 253 254 static int smode32(CPURISCVState *env, int csrno) 255 { 256 if (riscv_cpu_mxl(env) != MXL_RV32) { 257 return RISCV_EXCP_ILLEGAL_INST; 258 } 259 260 return smode(env, csrno); 261 } 262 263 static int aia_smode(CPURISCVState *env, int csrno) 264 { 265 RISCVCPU *cpu = env_archcpu(env); 266 267 if (!cpu->cfg.ext_ssaia) { 268 return RISCV_EXCP_ILLEGAL_INST; 269 } 270 271 return smode(env, csrno); 272 } 273 274 static int aia_smode32(CPURISCVState *env, int csrno) 275 { 276 RISCVCPU *cpu = env_archcpu(env); 277 278 if (!cpu->cfg.ext_ssaia) { 279 return RISCV_EXCP_ILLEGAL_INST; 280 } 281 282 return smode32(env, csrno); 283 } 284 285 static RISCVException hmode(CPURISCVState *env, int csrno) 286 { 287 if (riscv_has_ext(env, RVH)) { 288 return RISCV_EXCP_NONE; 289 } 290 291 return RISCV_EXCP_ILLEGAL_INST; 292 } 293 294 static RISCVException hmode32(CPURISCVState *env, int csrno) 295 { 296 if (riscv_cpu_mxl(env) != MXL_RV32) { 297 return RISCV_EXCP_ILLEGAL_INST; 298 } 299 300 return hmode(env, csrno); 301 302 } 303 304 static RISCVException umode(CPURISCVState *env, int csrno) 305 { 306 if (riscv_has_ext(env, RVU)) { 307 return RISCV_EXCP_NONE; 308 } 309 310 return RISCV_EXCP_ILLEGAL_INST; 311 } 312 313 static RISCVException umode32(CPURISCVState *env, int csrno) 314 { 315 if (riscv_cpu_mxl(env) != MXL_RV32) { 316 return RISCV_EXCP_ILLEGAL_INST; 317 } 318 319 return umode(env, csrno); 320 } 321 322 static RISCVException mstateen(CPURISCVState *env, int csrno) 323 { 324 CPUState *cs = env_cpu(env); 325 RISCVCPU *cpu = RISCV_CPU(cs); 326 327 if (!cpu->cfg.ext_smstateen) { 328 return RISCV_EXCP_ILLEGAL_INST; 329 } 330 331 return any(env, csrno); 332 } 333 334 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 335 { 336 CPUState *cs = env_cpu(env); 337 RISCVCPU *cpu = RISCV_CPU(cs); 338 339 if (!cpu->cfg.ext_smstateen) { 340 return RISCV_EXCP_ILLEGAL_INST; 341 } 342 343 if (env->priv < PRV_M) { 344 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 345 return RISCV_EXCP_ILLEGAL_INST; 346 } 347 } 348 349 return hmode(env, csrno); 350 } 351 352 static RISCVException hstateen(CPURISCVState *env, int csrno) 353 { 354 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 355 } 356 357 static RISCVException hstateenh(CPURISCVState *env, int csrno) 358 { 359 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 360 } 361 362 static RISCVException sstateen(CPURISCVState *env, int csrno) 363 { 364 bool virt = riscv_cpu_virt_enabled(env); 365 int index = csrno - CSR_SSTATEEN0; 366 CPUState *cs = env_cpu(env); 367 RISCVCPU *cpu = RISCV_CPU(cs); 368 369 if (!cpu->cfg.ext_smstateen) { 370 return RISCV_EXCP_ILLEGAL_INST; 371 } 372 373 if (env->priv < PRV_M) { 374 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 375 return RISCV_EXCP_ILLEGAL_INST; 376 } 377 378 if (virt) { 379 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 380 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 381 } 382 } 383 } 384 385 return smode(env, csrno); 386 } 387 388 /* Checks if PointerMasking registers could be accessed */ 389 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 390 { 391 /* Check if j-ext is present */ 392 if (riscv_has_ext(env, RVJ)) { 393 return RISCV_EXCP_NONE; 394 } 395 return RISCV_EXCP_ILLEGAL_INST; 396 } 397 398 static int aia_hmode(CPURISCVState *env, int csrno) 399 { 400 RISCVCPU *cpu = env_archcpu(env); 401 402 if (!cpu->cfg.ext_ssaia) { 403 return RISCV_EXCP_ILLEGAL_INST; 404 } 405 406 return hmode(env, csrno); 407 } 408 409 static int aia_hmode32(CPURISCVState *env, int csrno) 410 { 411 RISCVCPU *cpu = env_archcpu(env); 412 413 if (!cpu->cfg.ext_ssaia) { 414 return RISCV_EXCP_ILLEGAL_INST; 415 } 416 417 return hmode32(env, csrno); 418 } 419 420 static RISCVException pmp(CPURISCVState *env, int csrno) 421 { 422 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 423 return RISCV_EXCP_NONE; 424 } 425 426 return RISCV_EXCP_ILLEGAL_INST; 427 } 428 429 static RISCVException epmp(CPURISCVState *env, int csrno) 430 { 431 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 432 return RISCV_EXCP_NONE; 433 } 434 435 return RISCV_EXCP_ILLEGAL_INST; 436 } 437 438 static RISCVException debug(CPURISCVState *env, int csrno) 439 { 440 if (riscv_feature(env, RISCV_FEATURE_DEBUG)) { 441 return RISCV_EXCP_NONE; 442 } 443 444 return RISCV_EXCP_ILLEGAL_INST; 445 } 446 #endif 447 448 static RISCVException seed(CPURISCVState *env, int csrno) 449 { 450 RISCVCPU *cpu = env_archcpu(env); 451 452 if (!cpu->cfg.ext_zkr) { 453 return RISCV_EXCP_ILLEGAL_INST; 454 } 455 456 #if !defined(CONFIG_USER_ONLY) 457 /* 458 * With a CSR read-write instruction: 459 * 1) The seed CSR is always available in machine mode as normal. 460 * 2) Attempted access to seed from virtual modes VS and VU always raises 461 * an exception(virtual instruction exception only if mseccfg.sseed=1). 462 * 3) Without the corresponding access control bit set to 1, any attempted 463 * access to seed from U, S or HS modes will raise an illegal instruction 464 * exception. 465 */ 466 if (env->priv == PRV_M) { 467 return RISCV_EXCP_NONE; 468 } else if (riscv_cpu_virt_enabled(env)) { 469 if (env->mseccfg & MSECCFG_SSEED) { 470 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 471 } else { 472 return RISCV_EXCP_ILLEGAL_INST; 473 } 474 } else { 475 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 476 return RISCV_EXCP_NONE; 477 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 478 return RISCV_EXCP_NONE; 479 } else { 480 return RISCV_EXCP_ILLEGAL_INST; 481 } 482 } 483 #else 484 return RISCV_EXCP_NONE; 485 #endif 486 } 487 488 /* User Floating-Point CSRs */ 489 static RISCVException read_fflags(CPURISCVState *env, int csrno, 490 target_ulong *val) 491 { 492 *val = riscv_cpu_get_fflags(env); 493 return RISCV_EXCP_NONE; 494 } 495 496 static RISCVException write_fflags(CPURISCVState *env, int csrno, 497 target_ulong val) 498 { 499 #if !defined(CONFIG_USER_ONLY) 500 if (riscv_has_ext(env, RVF)) { 501 env->mstatus |= MSTATUS_FS; 502 } 503 #endif 504 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 505 return RISCV_EXCP_NONE; 506 } 507 508 static RISCVException read_frm(CPURISCVState *env, int csrno, 509 target_ulong *val) 510 { 511 *val = env->frm; 512 return RISCV_EXCP_NONE; 513 } 514 515 static RISCVException write_frm(CPURISCVState *env, int csrno, 516 target_ulong val) 517 { 518 #if !defined(CONFIG_USER_ONLY) 519 if (riscv_has_ext(env, RVF)) { 520 env->mstatus |= MSTATUS_FS; 521 } 522 #endif 523 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 524 return RISCV_EXCP_NONE; 525 } 526 527 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 528 target_ulong *val) 529 { 530 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 531 | (env->frm << FSR_RD_SHIFT); 532 return RISCV_EXCP_NONE; 533 } 534 535 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 536 target_ulong val) 537 { 538 #if !defined(CONFIG_USER_ONLY) 539 if (riscv_has_ext(env, RVF)) { 540 env->mstatus |= MSTATUS_FS; 541 } 542 #endif 543 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 544 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 545 return RISCV_EXCP_NONE; 546 } 547 548 static RISCVException read_vtype(CPURISCVState *env, int csrno, 549 target_ulong *val) 550 { 551 uint64_t vill; 552 switch (env->xl) { 553 case MXL_RV32: 554 vill = (uint32_t)env->vill << 31; 555 break; 556 case MXL_RV64: 557 vill = (uint64_t)env->vill << 63; 558 break; 559 default: 560 g_assert_not_reached(); 561 } 562 *val = (target_ulong)vill | env->vtype; 563 return RISCV_EXCP_NONE; 564 } 565 566 static RISCVException read_vl(CPURISCVState *env, int csrno, 567 target_ulong *val) 568 { 569 *val = env->vl; 570 return RISCV_EXCP_NONE; 571 } 572 573 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 574 { 575 *val = env_archcpu(env)->cfg.vlen >> 3; 576 return RISCV_EXCP_NONE; 577 } 578 579 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 580 target_ulong *val) 581 { 582 *val = env->vxrm; 583 return RISCV_EXCP_NONE; 584 } 585 586 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 587 target_ulong val) 588 { 589 #if !defined(CONFIG_USER_ONLY) 590 env->mstatus |= MSTATUS_VS; 591 #endif 592 env->vxrm = val; 593 return RISCV_EXCP_NONE; 594 } 595 596 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 597 target_ulong *val) 598 { 599 *val = env->vxsat; 600 return RISCV_EXCP_NONE; 601 } 602 603 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 604 target_ulong val) 605 { 606 #if !defined(CONFIG_USER_ONLY) 607 env->mstatus |= MSTATUS_VS; 608 #endif 609 env->vxsat = val; 610 return RISCV_EXCP_NONE; 611 } 612 613 static RISCVException read_vstart(CPURISCVState *env, int csrno, 614 target_ulong *val) 615 { 616 *val = env->vstart; 617 return RISCV_EXCP_NONE; 618 } 619 620 static RISCVException write_vstart(CPURISCVState *env, int csrno, 621 target_ulong val) 622 { 623 #if !defined(CONFIG_USER_ONLY) 624 env->mstatus |= MSTATUS_VS; 625 #endif 626 /* 627 * The vstart CSR is defined to have only enough writable bits 628 * to hold the largest element index, i.e. lg2(VLEN) bits. 629 */ 630 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 631 return RISCV_EXCP_NONE; 632 } 633 634 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 635 { 636 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 637 return RISCV_EXCP_NONE; 638 } 639 640 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 641 { 642 #if !defined(CONFIG_USER_ONLY) 643 env->mstatus |= MSTATUS_VS; 644 #endif 645 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 646 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 647 return RISCV_EXCP_NONE; 648 } 649 650 /* User Timers and Counters */ 651 static target_ulong get_ticks(bool shift) 652 { 653 int64_t val; 654 target_ulong result; 655 656 #if !defined(CONFIG_USER_ONLY) 657 if (icount_enabled()) { 658 val = icount_get(); 659 } else { 660 val = cpu_get_host_ticks(); 661 } 662 #else 663 val = cpu_get_host_ticks(); 664 #endif 665 666 if (shift) { 667 result = val >> 32; 668 } else { 669 result = val; 670 } 671 672 return result; 673 } 674 675 #if defined(CONFIG_USER_ONLY) 676 static RISCVException read_time(CPURISCVState *env, int csrno, 677 target_ulong *val) 678 { 679 *val = cpu_get_host_ticks(); 680 return RISCV_EXCP_NONE; 681 } 682 683 static RISCVException read_timeh(CPURISCVState *env, int csrno, 684 target_ulong *val) 685 { 686 *val = cpu_get_host_ticks() >> 32; 687 return RISCV_EXCP_NONE; 688 } 689 690 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 691 { 692 *val = get_ticks(false); 693 return RISCV_EXCP_NONE; 694 } 695 696 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 697 { 698 *val = get_ticks(true); 699 return RISCV_EXCP_NONE; 700 } 701 702 #else /* CONFIG_USER_ONLY */ 703 704 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 705 { 706 int evt_index = csrno - CSR_MCOUNTINHIBIT; 707 708 *val = env->mhpmevent_val[evt_index]; 709 710 return RISCV_EXCP_NONE; 711 } 712 713 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 714 { 715 int evt_index = csrno - CSR_MCOUNTINHIBIT; 716 uint64_t mhpmevt_val = val; 717 718 env->mhpmevent_val[evt_index] = val; 719 720 if (riscv_cpu_mxl(env) == MXL_RV32) { 721 mhpmevt_val = mhpmevt_val | 722 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 723 } 724 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 725 726 return RISCV_EXCP_NONE; 727 } 728 729 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 730 { 731 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 732 733 *val = env->mhpmeventh_val[evt_index]; 734 735 return RISCV_EXCP_NONE; 736 } 737 738 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 739 { 740 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 741 uint64_t mhpmevth_val = val; 742 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 743 744 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 745 env->mhpmeventh_val[evt_index] = val; 746 747 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 748 749 return RISCV_EXCP_NONE; 750 } 751 752 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 753 { 754 int ctr_idx = csrno - CSR_MCYCLE; 755 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 756 uint64_t mhpmctr_val = val; 757 758 counter->mhpmcounter_val = val; 759 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 760 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 761 counter->mhpmcounter_prev = get_ticks(false); 762 if (ctr_idx > 2) { 763 if (riscv_cpu_mxl(env) == MXL_RV32) { 764 mhpmctr_val = mhpmctr_val | 765 ((uint64_t)counter->mhpmcounterh_val << 32); 766 } 767 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 768 } 769 } else { 770 /* Other counters can keep incrementing from the given value */ 771 counter->mhpmcounter_prev = val; 772 } 773 774 return RISCV_EXCP_NONE; 775 } 776 777 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 778 { 779 int ctr_idx = csrno - CSR_MCYCLEH; 780 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 781 uint64_t mhpmctr_val = counter->mhpmcounter_val; 782 uint64_t mhpmctrh_val = val; 783 784 counter->mhpmcounterh_val = val; 785 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 786 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 787 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 788 counter->mhpmcounterh_prev = get_ticks(true); 789 if (ctr_idx > 2) { 790 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 791 } 792 } else { 793 counter->mhpmcounterh_prev = val; 794 } 795 796 return RISCV_EXCP_NONE; 797 } 798 799 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 800 bool upper_half, uint32_t ctr_idx) 801 { 802 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 803 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 804 counter.mhpmcounter_prev; 805 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 806 counter.mhpmcounter_val; 807 808 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 809 /** 810 * Counter should not increment if inhibit bit is set. We can't really 811 * stop the icount counting. Just return the counter value written by 812 * the supervisor to indicate that counter was not incremented. 813 */ 814 if (!counter.started) { 815 *val = ctr_val; 816 return RISCV_EXCP_NONE; 817 } else { 818 /* Mark that the counter has been stopped */ 819 counter.started = false; 820 } 821 } 822 823 /** 824 * The kernel computes the perf delta by subtracting the current value from 825 * the value it initialized previously (ctr_val). 826 */ 827 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 828 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 829 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 830 } else { 831 *val = ctr_val; 832 } 833 834 return RISCV_EXCP_NONE; 835 } 836 837 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 838 { 839 uint16_t ctr_index; 840 841 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 842 ctr_index = csrno - CSR_MCYCLE; 843 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 844 ctr_index = csrno - CSR_CYCLE; 845 } else { 846 return RISCV_EXCP_ILLEGAL_INST; 847 } 848 849 return riscv_pmu_read_ctr(env, val, false, ctr_index); 850 } 851 852 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 853 { 854 uint16_t ctr_index; 855 856 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 857 ctr_index = csrno - CSR_MCYCLEH; 858 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 859 ctr_index = csrno - CSR_CYCLEH; 860 } else { 861 return RISCV_EXCP_ILLEGAL_INST; 862 } 863 864 return riscv_pmu_read_ctr(env, val, true, ctr_index); 865 } 866 867 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 868 { 869 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 870 int i; 871 *val = 0; 872 target_ulong *mhpm_evt_val; 873 uint64_t of_bit_mask; 874 875 if (riscv_cpu_mxl(env) == MXL_RV32) { 876 mhpm_evt_val = env->mhpmeventh_val; 877 of_bit_mask = MHPMEVENTH_BIT_OF; 878 } else { 879 mhpm_evt_val = env->mhpmevent_val; 880 of_bit_mask = MHPMEVENT_BIT_OF; 881 } 882 883 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 884 if ((get_field(env->mcounteren, BIT(i))) && 885 (mhpm_evt_val[i] & of_bit_mask)) { 886 *val |= BIT(i); 887 } 888 } 889 890 return RISCV_EXCP_NONE; 891 } 892 893 static RISCVException read_time(CPURISCVState *env, int csrno, 894 target_ulong *val) 895 { 896 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 897 898 if (!env->rdtime_fn) { 899 return RISCV_EXCP_ILLEGAL_INST; 900 } 901 902 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 903 return RISCV_EXCP_NONE; 904 } 905 906 static RISCVException read_timeh(CPURISCVState *env, int csrno, 907 target_ulong *val) 908 { 909 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 910 911 if (!env->rdtime_fn) { 912 return RISCV_EXCP_ILLEGAL_INST; 913 } 914 915 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 916 return RISCV_EXCP_NONE; 917 } 918 919 static RISCVException sstc(CPURISCVState *env, int csrno) 920 { 921 CPUState *cs = env_cpu(env); 922 RISCVCPU *cpu = RISCV_CPU(cs); 923 bool hmode_check = false; 924 925 if (!cpu->cfg.ext_sstc || !env->rdtime_fn) { 926 return RISCV_EXCP_ILLEGAL_INST; 927 } 928 929 if (env->priv == PRV_M) { 930 return RISCV_EXCP_NONE; 931 } 932 933 /* 934 * No need of separate function for rv32 as menvcfg stores both menvcfg 935 * menvcfgh for RV32. 936 */ 937 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 938 get_field(env->menvcfg, MENVCFG_STCE))) { 939 return RISCV_EXCP_ILLEGAL_INST; 940 } 941 942 if (riscv_cpu_virt_enabled(env)) { 943 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 944 get_field(env->henvcfg, HENVCFG_STCE))) { 945 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 946 } 947 } 948 949 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 950 hmode_check = true; 951 } 952 953 return hmode_check ? hmode(env, csrno) : smode(env, csrno); 954 } 955 956 static RISCVException sstc_32(CPURISCVState *env, int csrno) 957 { 958 if (riscv_cpu_mxl(env) != MXL_RV32) { 959 return RISCV_EXCP_ILLEGAL_INST; 960 } 961 962 return sstc(env, csrno); 963 } 964 965 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 966 target_ulong *val) 967 { 968 *val = env->vstimecmp; 969 970 return RISCV_EXCP_NONE; 971 } 972 973 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 974 target_ulong *val) 975 { 976 *val = env->vstimecmp >> 32; 977 978 return RISCV_EXCP_NONE; 979 } 980 981 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 982 target_ulong val) 983 { 984 RISCVCPU *cpu = env_archcpu(env); 985 986 if (riscv_cpu_mxl(env) == MXL_RV32) { 987 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 988 } else { 989 env->vstimecmp = val; 990 } 991 992 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 993 env->htimedelta, MIP_VSTIP); 994 995 return RISCV_EXCP_NONE; 996 } 997 998 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 999 target_ulong val) 1000 { 1001 RISCVCPU *cpu = env_archcpu(env); 1002 1003 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1004 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1005 env->htimedelta, MIP_VSTIP); 1006 1007 return RISCV_EXCP_NONE; 1008 } 1009 1010 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1011 target_ulong *val) 1012 { 1013 if (riscv_cpu_virt_enabled(env)) { 1014 *val = env->vstimecmp; 1015 } else { 1016 *val = env->stimecmp; 1017 } 1018 1019 return RISCV_EXCP_NONE; 1020 } 1021 1022 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1023 target_ulong *val) 1024 { 1025 if (riscv_cpu_virt_enabled(env)) { 1026 *val = env->vstimecmp >> 32; 1027 } else { 1028 *val = env->stimecmp >> 32; 1029 } 1030 1031 return RISCV_EXCP_NONE; 1032 } 1033 1034 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1035 target_ulong val) 1036 { 1037 RISCVCPU *cpu = env_archcpu(env); 1038 1039 if (riscv_cpu_virt_enabled(env)) { 1040 return write_vstimecmp(env, csrno, val); 1041 } 1042 1043 if (riscv_cpu_mxl(env) == MXL_RV32) { 1044 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1045 } else { 1046 env->stimecmp = val; 1047 } 1048 1049 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1050 1051 return RISCV_EXCP_NONE; 1052 } 1053 1054 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1055 target_ulong val) 1056 { 1057 RISCVCPU *cpu = env_archcpu(env); 1058 1059 if (riscv_cpu_virt_enabled(env)) { 1060 return write_vstimecmph(env, csrno, val); 1061 } 1062 1063 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1064 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1065 1066 return RISCV_EXCP_NONE; 1067 } 1068 1069 /* Machine constants */ 1070 1071 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1072 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1073 MIP_LCOFIP)) 1074 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1075 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1076 1077 #define VSTOPI_NUM_SRCS 5 1078 1079 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1080 VS_MODE_INTERRUPTS; 1081 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1082 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1083 HS_MODE_INTERRUPTS; 1084 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1085 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1086 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1087 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1088 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1089 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1090 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1091 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1092 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1093 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1094 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1095 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1096 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1097 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1098 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1099 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1100 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1101 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1102 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1103 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1104 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1105 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1106 (1ULL << (RISCV_EXCP_M_ECALL)) | 1107 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1108 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1109 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1110 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1111 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1112 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1113 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1114 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1115 SIP_LCOFIP; 1116 static const target_ulong hip_writable_mask = MIP_VSSIP; 1117 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1118 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1119 1120 static const char valid_vm_1_10_32[16] = { 1121 [VM_1_10_MBARE] = 1, 1122 [VM_1_10_SV32] = 1 1123 }; 1124 1125 static const char valid_vm_1_10_64[16] = { 1126 [VM_1_10_MBARE] = 1, 1127 [VM_1_10_SV39] = 1, 1128 [VM_1_10_SV48] = 1, 1129 [VM_1_10_SV57] = 1 1130 }; 1131 1132 /* Machine Information Registers */ 1133 static RISCVException read_zero(CPURISCVState *env, int csrno, 1134 target_ulong *val) 1135 { 1136 *val = 0; 1137 return RISCV_EXCP_NONE; 1138 } 1139 1140 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1141 target_ulong val) 1142 { 1143 return RISCV_EXCP_NONE; 1144 } 1145 1146 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1147 target_ulong *val) 1148 { 1149 CPUState *cs = env_cpu(env); 1150 RISCVCPU *cpu = RISCV_CPU(cs); 1151 1152 *val = cpu->cfg.mvendorid; 1153 return RISCV_EXCP_NONE; 1154 } 1155 1156 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1157 target_ulong *val) 1158 { 1159 CPUState *cs = env_cpu(env); 1160 RISCVCPU *cpu = RISCV_CPU(cs); 1161 1162 *val = cpu->cfg.marchid; 1163 return RISCV_EXCP_NONE; 1164 } 1165 1166 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1167 target_ulong *val) 1168 { 1169 CPUState *cs = env_cpu(env); 1170 RISCVCPU *cpu = RISCV_CPU(cs); 1171 1172 *val = cpu->cfg.mimpid; 1173 return RISCV_EXCP_NONE; 1174 } 1175 1176 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1177 target_ulong *val) 1178 { 1179 *val = env->mhartid; 1180 return RISCV_EXCP_NONE; 1181 } 1182 1183 /* Machine Trap Setup */ 1184 1185 /* We do not store SD explicitly, only compute it on demand. */ 1186 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1187 { 1188 if ((status & MSTATUS_FS) == MSTATUS_FS || 1189 (status & MSTATUS_VS) == MSTATUS_VS || 1190 (status & MSTATUS_XS) == MSTATUS_XS) { 1191 switch (xl) { 1192 case MXL_RV32: 1193 return status | MSTATUS32_SD; 1194 case MXL_RV64: 1195 return status | MSTATUS64_SD; 1196 case MXL_RV128: 1197 return MSTATUSH128_SD; 1198 default: 1199 g_assert_not_reached(); 1200 } 1201 } 1202 return status; 1203 } 1204 1205 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1206 target_ulong *val) 1207 { 1208 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1209 return RISCV_EXCP_NONE; 1210 } 1211 1212 static int validate_vm(CPURISCVState *env, target_ulong vm) 1213 { 1214 if (riscv_cpu_mxl(env) == MXL_RV32) { 1215 return valid_vm_1_10_32[vm & 0xf]; 1216 } else { 1217 return valid_vm_1_10_64[vm & 0xf]; 1218 } 1219 } 1220 1221 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1222 target_ulong val) 1223 { 1224 uint64_t mstatus = env->mstatus; 1225 uint64_t mask = 0; 1226 RISCVMXL xl = riscv_cpu_mxl(env); 1227 1228 /* flush tlb on mstatus fields that affect VM */ 1229 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1230 MSTATUS_MPRV | MSTATUS_SUM)) { 1231 tlb_flush(env_cpu(env)); 1232 } 1233 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1234 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1235 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1236 MSTATUS_TW | MSTATUS_VS; 1237 1238 if (riscv_has_ext(env, RVF)) { 1239 mask |= MSTATUS_FS; 1240 } 1241 1242 if (xl != MXL_RV32 || env->debugger) { 1243 /* 1244 * RV32: MPV and GVA are not in mstatus. The current plan is to 1245 * add them to mstatush. For now, we just don't support it. 1246 */ 1247 mask |= MSTATUS_MPV | MSTATUS_GVA; 1248 if ((val & MSTATUS64_UXL) != 0) { 1249 mask |= MSTATUS64_UXL; 1250 } 1251 } 1252 1253 mstatus = (mstatus & ~mask) | (val & mask); 1254 1255 if (xl > MXL_RV32) { 1256 /* SXL field is for now read only */ 1257 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1258 } 1259 env->mstatus = mstatus; 1260 env->xl = cpu_recompute_xl(env); 1261 1262 return RISCV_EXCP_NONE; 1263 } 1264 1265 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1266 target_ulong *val) 1267 { 1268 *val = env->mstatus >> 32; 1269 return RISCV_EXCP_NONE; 1270 } 1271 1272 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1273 target_ulong val) 1274 { 1275 uint64_t valh = (uint64_t)val << 32; 1276 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1277 1278 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1279 tlb_flush(env_cpu(env)); 1280 } 1281 1282 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1283 1284 return RISCV_EXCP_NONE; 1285 } 1286 1287 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1288 Int128 *val) 1289 { 1290 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1291 return RISCV_EXCP_NONE; 1292 } 1293 1294 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1295 Int128 *val) 1296 { 1297 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1298 return RISCV_EXCP_NONE; 1299 } 1300 1301 static RISCVException read_misa(CPURISCVState *env, int csrno, 1302 target_ulong *val) 1303 { 1304 target_ulong misa; 1305 1306 switch (env->misa_mxl) { 1307 case MXL_RV32: 1308 misa = (target_ulong)MXL_RV32 << 30; 1309 break; 1310 #ifdef TARGET_RISCV64 1311 case MXL_RV64: 1312 misa = (target_ulong)MXL_RV64 << 62; 1313 break; 1314 #endif 1315 default: 1316 g_assert_not_reached(); 1317 } 1318 1319 *val = misa | env->misa_ext; 1320 return RISCV_EXCP_NONE; 1321 } 1322 1323 static RISCVException write_misa(CPURISCVState *env, int csrno, 1324 target_ulong val) 1325 { 1326 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 1327 /* drop write to misa */ 1328 return RISCV_EXCP_NONE; 1329 } 1330 1331 /* 'I' or 'E' must be present */ 1332 if (!(val & (RVI | RVE))) { 1333 /* It is not, drop write to misa */ 1334 return RISCV_EXCP_NONE; 1335 } 1336 1337 /* 'E' excludes all other extensions */ 1338 if (val & RVE) { 1339 /* when we support 'E' we can do "val = RVE;" however 1340 * for now we just drop writes if 'E' is present. 1341 */ 1342 return RISCV_EXCP_NONE; 1343 } 1344 1345 /* 1346 * misa.MXL writes are not supported by QEMU. 1347 * Drop writes to those bits. 1348 */ 1349 1350 /* Mask extensions that are not supported by this hart */ 1351 val &= env->misa_ext_mask; 1352 1353 /* Mask extensions that are not supported by QEMU */ 1354 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 1355 1356 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1357 if ((val & RVD) && !(val & RVF)) { 1358 val &= ~RVD; 1359 } 1360 1361 /* Suppress 'C' if next instruction is not aligned 1362 * TODO: this should check next_pc 1363 */ 1364 if ((val & RVC) && (GETPC() & ~3) != 0) { 1365 val &= ~RVC; 1366 } 1367 1368 /* If nothing changed, do nothing. */ 1369 if (val == env->misa_ext) { 1370 return RISCV_EXCP_NONE; 1371 } 1372 1373 if (!(val & RVF)) { 1374 env->mstatus &= ~MSTATUS_FS; 1375 } 1376 1377 /* flush translation cache */ 1378 tb_flush(env_cpu(env)); 1379 env->misa_ext = val; 1380 env->xl = riscv_cpu_mxl(env); 1381 return RISCV_EXCP_NONE; 1382 } 1383 1384 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1385 target_ulong *val) 1386 { 1387 *val = env->medeleg; 1388 return RISCV_EXCP_NONE; 1389 } 1390 1391 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1392 target_ulong val) 1393 { 1394 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1395 return RISCV_EXCP_NONE; 1396 } 1397 1398 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1399 uint64_t *ret_val, 1400 uint64_t new_val, uint64_t wr_mask) 1401 { 1402 uint64_t mask = wr_mask & delegable_ints; 1403 1404 if (ret_val) { 1405 *ret_val = env->mideleg; 1406 } 1407 1408 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1409 1410 if (riscv_has_ext(env, RVH)) { 1411 env->mideleg |= HS_MODE_INTERRUPTS; 1412 } 1413 1414 return RISCV_EXCP_NONE; 1415 } 1416 1417 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1418 target_ulong *ret_val, 1419 target_ulong new_val, target_ulong wr_mask) 1420 { 1421 uint64_t rval; 1422 RISCVException ret; 1423 1424 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1425 if (ret_val) { 1426 *ret_val = rval; 1427 } 1428 1429 return ret; 1430 } 1431 1432 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1433 target_ulong *ret_val, 1434 target_ulong new_val, 1435 target_ulong wr_mask) 1436 { 1437 uint64_t rval; 1438 RISCVException ret; 1439 1440 ret = rmw_mideleg64(env, csrno, &rval, 1441 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1442 if (ret_val) { 1443 *ret_val = rval >> 32; 1444 } 1445 1446 return ret; 1447 } 1448 1449 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1450 uint64_t *ret_val, 1451 uint64_t new_val, uint64_t wr_mask) 1452 { 1453 uint64_t mask = wr_mask & all_ints; 1454 1455 if (ret_val) { 1456 *ret_val = env->mie; 1457 } 1458 1459 env->mie = (env->mie & ~mask) | (new_val & mask); 1460 1461 if (!riscv_has_ext(env, RVH)) { 1462 env->mie &= ~((uint64_t)MIP_SGEIP); 1463 } 1464 1465 return RISCV_EXCP_NONE; 1466 } 1467 1468 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1469 target_ulong *ret_val, 1470 target_ulong new_val, target_ulong wr_mask) 1471 { 1472 uint64_t rval; 1473 RISCVException ret; 1474 1475 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1476 if (ret_val) { 1477 *ret_val = rval; 1478 } 1479 1480 return ret; 1481 } 1482 1483 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1484 target_ulong *ret_val, 1485 target_ulong new_val, target_ulong wr_mask) 1486 { 1487 uint64_t rval; 1488 RISCVException ret; 1489 1490 ret = rmw_mie64(env, csrno, &rval, 1491 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1492 if (ret_val) { 1493 *ret_val = rval >> 32; 1494 } 1495 1496 return ret; 1497 } 1498 1499 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1500 { 1501 int irq; 1502 uint8_t iprio; 1503 1504 irq = riscv_cpu_mirq_pending(env); 1505 if (irq <= 0 || irq > 63) { 1506 *val = 0; 1507 } else { 1508 iprio = env->miprio[irq]; 1509 if (!iprio) { 1510 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1511 iprio = IPRIO_MMAXIPRIO; 1512 } 1513 } 1514 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1515 *val |= iprio; 1516 } 1517 1518 return RISCV_EXCP_NONE; 1519 } 1520 1521 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1522 { 1523 if (!riscv_cpu_virt_enabled(env)) { 1524 return csrno; 1525 } 1526 1527 switch (csrno) { 1528 case CSR_SISELECT: 1529 return CSR_VSISELECT; 1530 case CSR_SIREG: 1531 return CSR_VSIREG; 1532 case CSR_STOPEI: 1533 return CSR_VSTOPEI; 1534 default: 1535 return csrno; 1536 }; 1537 } 1538 1539 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1540 target_ulong new_val, target_ulong wr_mask) 1541 { 1542 target_ulong *iselect; 1543 1544 /* Translate CSR number for VS-mode */ 1545 csrno = aia_xlate_vs_csrno(env, csrno); 1546 1547 /* Find the iselect CSR based on CSR number */ 1548 switch (csrno) { 1549 case CSR_MISELECT: 1550 iselect = &env->miselect; 1551 break; 1552 case CSR_SISELECT: 1553 iselect = &env->siselect; 1554 break; 1555 case CSR_VSISELECT: 1556 iselect = &env->vsiselect; 1557 break; 1558 default: 1559 return RISCV_EXCP_ILLEGAL_INST; 1560 }; 1561 1562 if (val) { 1563 *val = *iselect; 1564 } 1565 1566 wr_mask &= ISELECT_MASK; 1567 if (wr_mask) { 1568 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1569 } 1570 1571 return RISCV_EXCP_NONE; 1572 } 1573 1574 static int rmw_iprio(target_ulong xlen, 1575 target_ulong iselect, uint8_t *iprio, 1576 target_ulong *val, target_ulong new_val, 1577 target_ulong wr_mask, int ext_irq_no) 1578 { 1579 int i, firq, nirqs; 1580 target_ulong old_val; 1581 1582 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1583 return -EINVAL; 1584 } 1585 if (xlen != 32 && iselect & 0x1) { 1586 return -EINVAL; 1587 } 1588 1589 nirqs = 4 * (xlen / 32); 1590 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1591 1592 old_val = 0; 1593 for (i = 0; i < nirqs; i++) { 1594 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1595 } 1596 1597 if (val) { 1598 *val = old_val; 1599 } 1600 1601 if (wr_mask) { 1602 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1603 for (i = 0; i < nirqs; i++) { 1604 /* 1605 * M-level and S-level external IRQ priority always read-only 1606 * zero. This means default priority order is always preferred 1607 * for M-level and S-level external IRQs. 1608 */ 1609 if ((firq + i) == ext_irq_no) { 1610 continue; 1611 } 1612 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1613 } 1614 } 1615 1616 return 0; 1617 } 1618 1619 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1620 target_ulong new_val, target_ulong wr_mask) 1621 { 1622 bool virt; 1623 uint8_t *iprio; 1624 int ret = -EINVAL; 1625 target_ulong priv, isel, vgein; 1626 1627 /* Translate CSR number for VS-mode */ 1628 csrno = aia_xlate_vs_csrno(env, csrno); 1629 1630 /* Decode register details from CSR number */ 1631 virt = false; 1632 switch (csrno) { 1633 case CSR_MIREG: 1634 iprio = env->miprio; 1635 isel = env->miselect; 1636 priv = PRV_M; 1637 break; 1638 case CSR_SIREG: 1639 iprio = env->siprio; 1640 isel = env->siselect; 1641 priv = PRV_S; 1642 break; 1643 case CSR_VSIREG: 1644 iprio = env->hviprio; 1645 isel = env->vsiselect; 1646 priv = PRV_S; 1647 virt = true; 1648 break; 1649 default: 1650 goto done; 1651 }; 1652 1653 /* Find the selected guest interrupt file */ 1654 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1655 1656 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1657 /* Local interrupt priority registers not available for VS-mode */ 1658 if (!virt) { 1659 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1660 isel, iprio, val, new_val, wr_mask, 1661 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1662 } 1663 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1664 /* IMSIC registers only available when machine implements it. */ 1665 if (env->aia_ireg_rmw_fn[priv]) { 1666 /* Selected guest interrupt file should not be zero */ 1667 if (virt && (!vgein || env->geilen < vgein)) { 1668 goto done; 1669 } 1670 /* Call machine specific IMSIC register emulation */ 1671 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1672 AIA_MAKE_IREG(isel, priv, virt, vgein, 1673 riscv_cpu_mxl_bits(env)), 1674 val, new_val, wr_mask); 1675 } 1676 } 1677 1678 done: 1679 if (ret) { 1680 return (riscv_cpu_virt_enabled(env) && virt) ? 1681 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1682 } 1683 return RISCV_EXCP_NONE; 1684 } 1685 1686 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1687 target_ulong new_val, target_ulong wr_mask) 1688 { 1689 bool virt; 1690 int ret = -EINVAL; 1691 target_ulong priv, vgein; 1692 1693 /* Translate CSR number for VS-mode */ 1694 csrno = aia_xlate_vs_csrno(env, csrno); 1695 1696 /* Decode register details from CSR number */ 1697 virt = false; 1698 switch (csrno) { 1699 case CSR_MTOPEI: 1700 priv = PRV_M; 1701 break; 1702 case CSR_STOPEI: 1703 priv = PRV_S; 1704 break; 1705 case CSR_VSTOPEI: 1706 priv = PRV_S; 1707 virt = true; 1708 break; 1709 default: 1710 goto done; 1711 }; 1712 1713 /* IMSIC CSRs only available when machine implements IMSIC. */ 1714 if (!env->aia_ireg_rmw_fn[priv]) { 1715 goto done; 1716 } 1717 1718 /* Find the selected guest interrupt file */ 1719 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1720 1721 /* Selected guest interrupt file should be valid */ 1722 if (virt && (!vgein || env->geilen < vgein)) { 1723 goto done; 1724 } 1725 1726 /* Call machine specific IMSIC register emulation for TOPEI */ 1727 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1728 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1729 riscv_cpu_mxl_bits(env)), 1730 val, new_val, wr_mask); 1731 1732 done: 1733 if (ret) { 1734 return (riscv_cpu_virt_enabled(env) && virt) ? 1735 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1736 } 1737 return RISCV_EXCP_NONE; 1738 } 1739 1740 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1741 target_ulong *val) 1742 { 1743 *val = env->mtvec; 1744 return RISCV_EXCP_NONE; 1745 } 1746 1747 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1748 target_ulong val) 1749 { 1750 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1751 if ((val & 3) < 2) { 1752 env->mtvec = val; 1753 } else { 1754 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1755 } 1756 return RISCV_EXCP_NONE; 1757 } 1758 1759 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1760 target_ulong *val) 1761 { 1762 *val = env->mcountinhibit; 1763 return RISCV_EXCP_NONE; 1764 } 1765 1766 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1767 target_ulong val) 1768 { 1769 int cidx; 1770 PMUCTRState *counter; 1771 1772 env->mcountinhibit = val; 1773 1774 /* Check if any other counter is also monitoring cycles/instructions */ 1775 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1776 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1777 counter = &env->pmu_ctrs[cidx]; 1778 counter->started = true; 1779 } 1780 } 1781 1782 return RISCV_EXCP_NONE; 1783 } 1784 1785 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1786 target_ulong *val) 1787 { 1788 *val = env->mcounteren; 1789 return RISCV_EXCP_NONE; 1790 } 1791 1792 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1793 target_ulong val) 1794 { 1795 env->mcounteren = val; 1796 return RISCV_EXCP_NONE; 1797 } 1798 1799 /* Machine Trap Handling */ 1800 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1801 Int128 *val) 1802 { 1803 *val = int128_make128(env->mscratch, env->mscratchh); 1804 return RISCV_EXCP_NONE; 1805 } 1806 1807 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1808 Int128 val) 1809 { 1810 env->mscratch = int128_getlo(val); 1811 env->mscratchh = int128_gethi(val); 1812 return RISCV_EXCP_NONE; 1813 } 1814 1815 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1816 target_ulong *val) 1817 { 1818 *val = env->mscratch; 1819 return RISCV_EXCP_NONE; 1820 } 1821 1822 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1823 target_ulong val) 1824 { 1825 env->mscratch = val; 1826 return RISCV_EXCP_NONE; 1827 } 1828 1829 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1830 target_ulong *val) 1831 { 1832 *val = env->mepc; 1833 return RISCV_EXCP_NONE; 1834 } 1835 1836 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1837 target_ulong val) 1838 { 1839 env->mepc = val; 1840 return RISCV_EXCP_NONE; 1841 } 1842 1843 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1844 target_ulong *val) 1845 { 1846 *val = env->mcause; 1847 return RISCV_EXCP_NONE; 1848 } 1849 1850 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1851 target_ulong val) 1852 { 1853 env->mcause = val; 1854 return RISCV_EXCP_NONE; 1855 } 1856 1857 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1858 target_ulong *val) 1859 { 1860 *val = env->mtval; 1861 return RISCV_EXCP_NONE; 1862 } 1863 1864 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1865 target_ulong val) 1866 { 1867 env->mtval = val; 1868 return RISCV_EXCP_NONE; 1869 } 1870 1871 /* Execution environment configuration setup */ 1872 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1873 target_ulong *val) 1874 { 1875 *val = env->menvcfg; 1876 return RISCV_EXCP_NONE; 1877 } 1878 1879 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1880 target_ulong val) 1881 { 1882 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1883 1884 if (riscv_cpu_mxl(env) == MXL_RV64) { 1885 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1886 } 1887 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1888 1889 return RISCV_EXCP_NONE; 1890 } 1891 1892 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1893 target_ulong *val) 1894 { 1895 *val = env->menvcfg >> 32; 1896 return RISCV_EXCP_NONE; 1897 } 1898 1899 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1900 target_ulong val) 1901 { 1902 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1903 uint64_t valh = (uint64_t)val << 32; 1904 1905 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1906 1907 return RISCV_EXCP_NONE; 1908 } 1909 1910 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1911 target_ulong *val) 1912 { 1913 RISCVException ret; 1914 1915 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1916 if (ret != RISCV_EXCP_NONE) { 1917 return ret; 1918 } 1919 1920 *val = env->senvcfg; 1921 return RISCV_EXCP_NONE; 1922 } 1923 1924 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1925 target_ulong val) 1926 { 1927 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1928 RISCVException ret; 1929 1930 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1931 if (ret != RISCV_EXCP_NONE) { 1932 return ret; 1933 } 1934 1935 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1936 return RISCV_EXCP_NONE; 1937 } 1938 1939 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1940 target_ulong *val) 1941 { 1942 RISCVException ret; 1943 1944 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1945 if (ret != RISCV_EXCP_NONE) { 1946 return ret; 1947 } 1948 1949 *val = env->henvcfg; 1950 return RISCV_EXCP_NONE; 1951 } 1952 1953 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1954 target_ulong val) 1955 { 1956 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1957 RISCVException ret; 1958 1959 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1960 if (ret != RISCV_EXCP_NONE) { 1961 return ret; 1962 } 1963 1964 if (riscv_cpu_mxl(env) == MXL_RV64) { 1965 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 1966 } 1967 1968 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1969 1970 return RISCV_EXCP_NONE; 1971 } 1972 1973 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1974 target_ulong *val) 1975 { 1976 RISCVException ret; 1977 1978 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1979 if (ret != RISCV_EXCP_NONE) { 1980 return ret; 1981 } 1982 1983 *val = env->henvcfg >> 32; 1984 return RISCV_EXCP_NONE; 1985 } 1986 1987 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 1988 target_ulong val) 1989 { 1990 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 1991 uint64_t valh = (uint64_t)val << 32; 1992 RISCVException ret; 1993 1994 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1995 if (ret != RISCV_EXCP_NONE) { 1996 return ret; 1997 } 1998 1999 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2000 return RISCV_EXCP_NONE; 2001 } 2002 2003 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2004 target_ulong *val) 2005 { 2006 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2007 2008 return RISCV_EXCP_NONE; 2009 } 2010 2011 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2012 uint64_t wr_mask, target_ulong new_val) 2013 { 2014 uint64_t *reg; 2015 2016 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2017 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2018 2019 return RISCV_EXCP_NONE; 2020 } 2021 2022 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2023 target_ulong new_val) 2024 { 2025 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2026 2027 return write_mstateen(env, csrno, wr_mask, new_val); 2028 } 2029 2030 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2031 target_ulong new_val) 2032 { 2033 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2034 } 2035 2036 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2037 target_ulong *val) 2038 { 2039 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2040 2041 return RISCV_EXCP_NONE; 2042 } 2043 2044 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2045 uint64_t wr_mask, target_ulong new_val) 2046 { 2047 uint64_t *reg, val; 2048 2049 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2050 val = (uint64_t)new_val << 32; 2051 val |= *reg & 0xFFFFFFFF; 2052 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2053 2054 return RISCV_EXCP_NONE; 2055 } 2056 2057 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2058 target_ulong new_val) 2059 { 2060 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2061 2062 return write_mstateenh(env, csrno, wr_mask, new_val); 2063 } 2064 2065 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2066 target_ulong new_val) 2067 { 2068 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2069 } 2070 2071 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2072 target_ulong *val) 2073 { 2074 int index = csrno - CSR_HSTATEEN0; 2075 2076 *val = env->hstateen[index] & env->mstateen[index]; 2077 2078 return RISCV_EXCP_NONE; 2079 } 2080 2081 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2082 uint64_t mask, target_ulong new_val) 2083 { 2084 int index = csrno - CSR_HSTATEEN0; 2085 uint64_t *reg, wr_mask; 2086 2087 reg = &env->hstateen[index]; 2088 wr_mask = env->mstateen[index] & mask; 2089 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2090 2091 return RISCV_EXCP_NONE; 2092 } 2093 2094 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2095 target_ulong new_val) 2096 { 2097 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2098 2099 return write_hstateen(env, csrno, wr_mask, new_val); 2100 } 2101 2102 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2103 target_ulong new_val) 2104 { 2105 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2106 } 2107 2108 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2109 target_ulong *val) 2110 { 2111 int index = csrno - CSR_HSTATEEN0H; 2112 2113 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2114 2115 return RISCV_EXCP_NONE; 2116 } 2117 2118 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2119 uint64_t mask, target_ulong new_val) 2120 { 2121 int index = csrno - CSR_HSTATEEN0H; 2122 uint64_t *reg, wr_mask, val; 2123 2124 reg = &env->hstateen[index]; 2125 val = (uint64_t)new_val << 32; 2126 val |= *reg & 0xFFFFFFFF; 2127 wr_mask = env->mstateen[index] & mask; 2128 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2129 2130 return RISCV_EXCP_NONE; 2131 } 2132 2133 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2134 target_ulong new_val) 2135 { 2136 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2137 2138 return write_hstateenh(env, csrno, wr_mask, new_val); 2139 } 2140 2141 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2142 target_ulong new_val) 2143 { 2144 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2145 } 2146 2147 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2148 target_ulong *val) 2149 { 2150 bool virt = riscv_cpu_virt_enabled(env); 2151 int index = csrno - CSR_SSTATEEN0; 2152 2153 *val = env->sstateen[index] & env->mstateen[index]; 2154 if (virt) { 2155 *val &= env->hstateen[index]; 2156 } 2157 2158 return RISCV_EXCP_NONE; 2159 } 2160 2161 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2162 uint64_t mask, target_ulong new_val) 2163 { 2164 bool virt = riscv_cpu_virt_enabled(env); 2165 int index = csrno - CSR_SSTATEEN0; 2166 uint64_t wr_mask; 2167 uint64_t *reg; 2168 2169 wr_mask = env->mstateen[index] & mask; 2170 if (virt) { 2171 wr_mask &= env->hstateen[index]; 2172 } 2173 2174 reg = &env->sstateen[index]; 2175 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2176 2177 return RISCV_EXCP_NONE; 2178 } 2179 2180 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2181 target_ulong new_val) 2182 { 2183 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2184 2185 return write_sstateen(env, csrno, wr_mask, new_val); 2186 } 2187 2188 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2189 target_ulong new_val) 2190 { 2191 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2192 } 2193 2194 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2195 uint64_t *ret_val, 2196 uint64_t new_val, uint64_t wr_mask) 2197 { 2198 RISCVCPU *cpu = env_archcpu(env); 2199 uint64_t old_mip, mask = wr_mask & delegable_ints; 2200 uint32_t gin; 2201 2202 if (mask & MIP_SEIP) { 2203 env->software_seip = new_val & MIP_SEIP; 2204 new_val |= env->external_seip * MIP_SEIP; 2205 } 2206 2207 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2208 get_field(env->menvcfg, MENVCFG_STCE)) { 2209 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2210 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2211 } 2212 2213 if (mask) { 2214 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 2215 } else { 2216 old_mip = env->mip; 2217 } 2218 2219 if (csrno != CSR_HVIP) { 2220 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2221 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2222 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2223 } 2224 2225 if (ret_val) { 2226 *ret_val = old_mip; 2227 } 2228 2229 return RISCV_EXCP_NONE; 2230 } 2231 2232 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2233 target_ulong *ret_val, 2234 target_ulong new_val, target_ulong wr_mask) 2235 { 2236 uint64_t rval; 2237 RISCVException ret; 2238 2239 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2240 if (ret_val) { 2241 *ret_val = rval; 2242 } 2243 2244 return ret; 2245 } 2246 2247 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2248 target_ulong *ret_val, 2249 target_ulong new_val, target_ulong wr_mask) 2250 { 2251 uint64_t rval; 2252 RISCVException ret; 2253 2254 ret = rmw_mip64(env, csrno, &rval, 2255 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2256 if (ret_val) { 2257 *ret_val = rval >> 32; 2258 } 2259 2260 return ret; 2261 } 2262 2263 /* Supervisor Trap Setup */ 2264 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2265 Int128 *val) 2266 { 2267 uint64_t mask = sstatus_v1_10_mask; 2268 uint64_t sstatus = env->mstatus & mask; 2269 if (env->xl != MXL_RV32 || env->debugger) { 2270 mask |= SSTATUS64_UXL; 2271 } 2272 2273 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2274 return RISCV_EXCP_NONE; 2275 } 2276 2277 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2278 target_ulong *val) 2279 { 2280 target_ulong mask = (sstatus_v1_10_mask); 2281 if (env->xl != MXL_RV32 || env->debugger) { 2282 mask |= SSTATUS64_UXL; 2283 } 2284 /* TODO: Use SXL not MXL. */ 2285 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2286 return RISCV_EXCP_NONE; 2287 } 2288 2289 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2290 target_ulong val) 2291 { 2292 target_ulong mask = (sstatus_v1_10_mask); 2293 2294 if (env->xl != MXL_RV32 || env->debugger) { 2295 if ((val & SSTATUS64_UXL) != 0) { 2296 mask |= SSTATUS64_UXL; 2297 } 2298 } 2299 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2300 return write_mstatus(env, CSR_MSTATUS, newval); 2301 } 2302 2303 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2304 uint64_t *ret_val, 2305 uint64_t new_val, uint64_t wr_mask) 2306 { 2307 RISCVException ret; 2308 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2309 2310 /* Bring VS-level bits to correct position */ 2311 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2312 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2313 2314 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2315 if (ret_val) { 2316 *ret_val = (rval & mask) >> 1; 2317 } 2318 2319 return ret; 2320 } 2321 2322 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2323 target_ulong *ret_val, 2324 target_ulong new_val, target_ulong wr_mask) 2325 { 2326 uint64_t rval; 2327 RISCVException ret; 2328 2329 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2330 if (ret_val) { 2331 *ret_val = rval; 2332 } 2333 2334 return ret; 2335 } 2336 2337 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2338 target_ulong *ret_val, 2339 target_ulong new_val, target_ulong wr_mask) 2340 { 2341 uint64_t rval; 2342 RISCVException ret; 2343 2344 ret = rmw_vsie64(env, csrno, &rval, 2345 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2346 if (ret_val) { 2347 *ret_val = rval >> 32; 2348 } 2349 2350 return ret; 2351 } 2352 2353 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2354 uint64_t *ret_val, 2355 uint64_t new_val, uint64_t wr_mask) 2356 { 2357 RISCVException ret; 2358 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2359 2360 if (riscv_cpu_virt_enabled(env)) { 2361 if (env->hvictl & HVICTL_VTI) { 2362 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2363 } 2364 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2365 } else { 2366 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2367 } 2368 2369 if (ret_val) { 2370 *ret_val &= mask; 2371 } 2372 2373 return ret; 2374 } 2375 2376 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2377 target_ulong *ret_val, 2378 target_ulong new_val, target_ulong wr_mask) 2379 { 2380 uint64_t rval; 2381 RISCVException ret; 2382 2383 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2384 if (ret == RISCV_EXCP_NONE && ret_val) { 2385 *ret_val = rval; 2386 } 2387 2388 return ret; 2389 } 2390 2391 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2392 target_ulong *ret_val, 2393 target_ulong new_val, target_ulong wr_mask) 2394 { 2395 uint64_t rval; 2396 RISCVException ret; 2397 2398 ret = rmw_sie64(env, csrno, &rval, 2399 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2400 if (ret_val) { 2401 *ret_val = rval >> 32; 2402 } 2403 2404 return ret; 2405 } 2406 2407 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2408 target_ulong *val) 2409 { 2410 *val = env->stvec; 2411 return RISCV_EXCP_NONE; 2412 } 2413 2414 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2415 target_ulong val) 2416 { 2417 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2418 if ((val & 3) < 2) { 2419 env->stvec = val; 2420 } else { 2421 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2422 } 2423 return RISCV_EXCP_NONE; 2424 } 2425 2426 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2427 target_ulong *val) 2428 { 2429 *val = env->scounteren; 2430 return RISCV_EXCP_NONE; 2431 } 2432 2433 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2434 target_ulong val) 2435 { 2436 env->scounteren = val; 2437 return RISCV_EXCP_NONE; 2438 } 2439 2440 /* Supervisor Trap Handling */ 2441 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2442 Int128 *val) 2443 { 2444 *val = int128_make128(env->sscratch, env->sscratchh); 2445 return RISCV_EXCP_NONE; 2446 } 2447 2448 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2449 Int128 val) 2450 { 2451 env->sscratch = int128_getlo(val); 2452 env->sscratchh = int128_gethi(val); 2453 return RISCV_EXCP_NONE; 2454 } 2455 2456 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2457 target_ulong *val) 2458 { 2459 *val = env->sscratch; 2460 return RISCV_EXCP_NONE; 2461 } 2462 2463 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2464 target_ulong val) 2465 { 2466 env->sscratch = val; 2467 return RISCV_EXCP_NONE; 2468 } 2469 2470 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2471 target_ulong *val) 2472 { 2473 *val = env->sepc; 2474 return RISCV_EXCP_NONE; 2475 } 2476 2477 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2478 target_ulong val) 2479 { 2480 env->sepc = val; 2481 return RISCV_EXCP_NONE; 2482 } 2483 2484 static RISCVException read_scause(CPURISCVState *env, int csrno, 2485 target_ulong *val) 2486 { 2487 *val = env->scause; 2488 return RISCV_EXCP_NONE; 2489 } 2490 2491 static RISCVException write_scause(CPURISCVState *env, int csrno, 2492 target_ulong val) 2493 { 2494 env->scause = val; 2495 return RISCV_EXCP_NONE; 2496 } 2497 2498 static RISCVException read_stval(CPURISCVState *env, int csrno, 2499 target_ulong *val) 2500 { 2501 *val = env->stval; 2502 return RISCV_EXCP_NONE; 2503 } 2504 2505 static RISCVException write_stval(CPURISCVState *env, int csrno, 2506 target_ulong val) 2507 { 2508 env->stval = val; 2509 return RISCV_EXCP_NONE; 2510 } 2511 2512 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2513 uint64_t *ret_val, 2514 uint64_t new_val, uint64_t wr_mask) 2515 { 2516 RISCVException ret; 2517 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2518 2519 /* Bring VS-level bits to correct position */ 2520 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2521 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2522 2523 ret = rmw_mip64(env, csrno, &rval, new_val, 2524 wr_mask & mask & vsip_writable_mask); 2525 if (ret_val) { 2526 *ret_val = (rval & mask) >> 1; 2527 } 2528 2529 return ret; 2530 } 2531 2532 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2533 target_ulong *ret_val, 2534 target_ulong new_val, target_ulong wr_mask) 2535 { 2536 uint64_t rval; 2537 RISCVException ret; 2538 2539 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2540 if (ret_val) { 2541 *ret_val = rval; 2542 } 2543 2544 return ret; 2545 } 2546 2547 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2548 target_ulong *ret_val, 2549 target_ulong new_val, target_ulong wr_mask) 2550 { 2551 uint64_t rval; 2552 RISCVException ret; 2553 2554 ret = rmw_vsip64(env, csrno, &rval, 2555 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2556 if (ret_val) { 2557 *ret_val = rval >> 32; 2558 } 2559 2560 return ret; 2561 } 2562 2563 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2564 uint64_t *ret_val, 2565 uint64_t new_val, uint64_t wr_mask) 2566 { 2567 RISCVException ret; 2568 uint64_t mask = env->mideleg & sip_writable_mask; 2569 2570 if (riscv_cpu_virt_enabled(env)) { 2571 if (env->hvictl & HVICTL_VTI) { 2572 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2573 } 2574 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2575 } else { 2576 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2577 } 2578 2579 if (ret_val) { 2580 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2581 } 2582 2583 return ret; 2584 } 2585 2586 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2587 target_ulong *ret_val, 2588 target_ulong new_val, target_ulong wr_mask) 2589 { 2590 uint64_t rval; 2591 RISCVException ret; 2592 2593 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2594 if (ret_val) { 2595 *ret_val = rval; 2596 } 2597 2598 return ret; 2599 } 2600 2601 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2602 target_ulong *ret_val, 2603 target_ulong new_val, target_ulong wr_mask) 2604 { 2605 uint64_t rval; 2606 RISCVException ret; 2607 2608 ret = rmw_sip64(env, csrno, &rval, 2609 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2610 if (ret_val) { 2611 *ret_val = rval >> 32; 2612 } 2613 2614 return ret; 2615 } 2616 2617 /* Supervisor Protection and Translation */ 2618 static RISCVException read_satp(CPURISCVState *env, int csrno, 2619 target_ulong *val) 2620 { 2621 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2622 *val = 0; 2623 return RISCV_EXCP_NONE; 2624 } 2625 2626 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2627 return RISCV_EXCP_ILLEGAL_INST; 2628 } else { 2629 *val = env->satp; 2630 } 2631 2632 return RISCV_EXCP_NONE; 2633 } 2634 2635 static RISCVException write_satp(CPURISCVState *env, int csrno, 2636 target_ulong val) 2637 { 2638 target_ulong vm, mask; 2639 2640 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 2641 return RISCV_EXCP_NONE; 2642 } 2643 2644 if (riscv_cpu_mxl(env) == MXL_RV32) { 2645 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2646 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2647 } else { 2648 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2649 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2650 } 2651 2652 if (vm && mask) { 2653 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2654 return RISCV_EXCP_ILLEGAL_INST; 2655 } else { 2656 /* 2657 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2658 * pass these through QEMU's TLB emulation as it improves 2659 * performance. Flushing the TLB on SATP writes with paging 2660 * enabled avoids leaking those invalid cached mappings. 2661 */ 2662 tlb_flush(env_cpu(env)); 2663 env->satp = val; 2664 } 2665 } 2666 return RISCV_EXCP_NONE; 2667 } 2668 2669 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2670 { 2671 int irq, ret; 2672 target_ulong topei; 2673 uint64_t vseip, vsgein; 2674 uint32_t iid, iprio, hviid, hviprio, gein; 2675 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2676 2677 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2678 hviid = get_field(env->hvictl, HVICTL_IID); 2679 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2680 2681 if (gein) { 2682 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2683 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2684 if (gein <= env->geilen && vseip) { 2685 siid[scount] = IRQ_S_EXT; 2686 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2687 if (env->aia_ireg_rmw_fn[PRV_S]) { 2688 /* 2689 * Call machine specific IMSIC register emulation for 2690 * reading TOPEI. 2691 */ 2692 ret = env->aia_ireg_rmw_fn[PRV_S]( 2693 env->aia_ireg_rmw_fn_arg[PRV_S], 2694 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2695 riscv_cpu_mxl_bits(env)), 2696 &topei, 0, 0); 2697 if (!ret && topei) { 2698 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2699 } 2700 } 2701 scount++; 2702 } 2703 } else { 2704 if (hviid == IRQ_S_EXT && hviprio) { 2705 siid[scount] = IRQ_S_EXT; 2706 siprio[scount] = hviprio; 2707 scount++; 2708 } 2709 } 2710 2711 if (env->hvictl & HVICTL_VTI) { 2712 if (hviid != IRQ_S_EXT) { 2713 siid[scount] = hviid; 2714 siprio[scount] = hviprio; 2715 scount++; 2716 } 2717 } else { 2718 irq = riscv_cpu_vsirq_pending(env); 2719 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2720 siid[scount] = irq; 2721 siprio[scount] = env->hviprio[irq]; 2722 scount++; 2723 } 2724 } 2725 2726 iid = 0; 2727 iprio = UINT_MAX; 2728 for (s = 0; s < scount; s++) { 2729 if (siprio[s] < iprio) { 2730 iid = siid[s]; 2731 iprio = siprio[s]; 2732 } 2733 } 2734 2735 if (iid) { 2736 if (env->hvictl & HVICTL_IPRIOM) { 2737 if (iprio > IPRIO_MMAXIPRIO) { 2738 iprio = IPRIO_MMAXIPRIO; 2739 } 2740 if (!iprio) { 2741 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2742 iprio = IPRIO_MMAXIPRIO; 2743 } 2744 } 2745 } else { 2746 iprio = 1; 2747 } 2748 } else { 2749 iprio = 0; 2750 } 2751 2752 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2753 *val |= iprio; 2754 return RISCV_EXCP_NONE; 2755 } 2756 2757 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2758 { 2759 int irq; 2760 uint8_t iprio; 2761 2762 if (riscv_cpu_virt_enabled(env)) { 2763 return read_vstopi(env, CSR_VSTOPI, val); 2764 } 2765 2766 irq = riscv_cpu_sirq_pending(env); 2767 if (irq <= 0 || irq > 63) { 2768 *val = 0; 2769 } else { 2770 iprio = env->siprio[irq]; 2771 if (!iprio) { 2772 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2773 iprio = IPRIO_MMAXIPRIO; 2774 } 2775 } 2776 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2777 *val |= iprio; 2778 } 2779 2780 return RISCV_EXCP_NONE; 2781 } 2782 2783 /* Hypervisor Extensions */ 2784 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2785 target_ulong *val) 2786 { 2787 *val = env->hstatus; 2788 if (riscv_cpu_mxl(env) != MXL_RV32) { 2789 /* We only support 64-bit VSXL */ 2790 *val = set_field(*val, HSTATUS_VSXL, 2); 2791 } 2792 /* We only support little endian */ 2793 *val = set_field(*val, HSTATUS_VSBE, 0); 2794 return RISCV_EXCP_NONE; 2795 } 2796 2797 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2798 target_ulong val) 2799 { 2800 env->hstatus = val; 2801 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2802 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2803 } 2804 if (get_field(val, HSTATUS_VSBE) != 0) { 2805 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2806 } 2807 return RISCV_EXCP_NONE; 2808 } 2809 2810 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2811 target_ulong *val) 2812 { 2813 *val = env->hedeleg; 2814 return RISCV_EXCP_NONE; 2815 } 2816 2817 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2818 target_ulong val) 2819 { 2820 env->hedeleg = val & vs_delegable_excps; 2821 return RISCV_EXCP_NONE; 2822 } 2823 2824 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2825 uint64_t *ret_val, 2826 uint64_t new_val, uint64_t wr_mask) 2827 { 2828 uint64_t mask = wr_mask & vs_delegable_ints; 2829 2830 if (ret_val) { 2831 *ret_val = env->hideleg & vs_delegable_ints; 2832 } 2833 2834 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2835 return RISCV_EXCP_NONE; 2836 } 2837 2838 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2839 target_ulong *ret_val, 2840 target_ulong new_val, target_ulong wr_mask) 2841 { 2842 uint64_t rval; 2843 RISCVException ret; 2844 2845 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2846 if (ret_val) { 2847 *ret_val = rval; 2848 } 2849 2850 return ret; 2851 } 2852 2853 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2854 target_ulong *ret_val, 2855 target_ulong new_val, target_ulong wr_mask) 2856 { 2857 uint64_t rval; 2858 RISCVException ret; 2859 2860 ret = rmw_hideleg64(env, csrno, &rval, 2861 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2862 if (ret_val) { 2863 *ret_val = rval >> 32; 2864 } 2865 2866 return ret; 2867 } 2868 2869 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2870 uint64_t *ret_val, 2871 uint64_t new_val, uint64_t wr_mask) 2872 { 2873 RISCVException ret; 2874 2875 ret = rmw_mip64(env, csrno, ret_val, new_val, 2876 wr_mask & hvip_writable_mask); 2877 if (ret_val) { 2878 *ret_val &= VS_MODE_INTERRUPTS; 2879 } 2880 2881 return ret; 2882 } 2883 2884 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2885 target_ulong *ret_val, 2886 target_ulong new_val, target_ulong wr_mask) 2887 { 2888 uint64_t rval; 2889 RISCVException ret; 2890 2891 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2892 if (ret_val) { 2893 *ret_val = rval; 2894 } 2895 2896 return ret; 2897 } 2898 2899 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2900 target_ulong *ret_val, 2901 target_ulong new_val, target_ulong wr_mask) 2902 { 2903 uint64_t rval; 2904 RISCVException ret; 2905 2906 ret = rmw_hvip64(env, csrno, &rval, 2907 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2908 if (ret_val) { 2909 *ret_val = rval >> 32; 2910 } 2911 2912 return ret; 2913 } 2914 2915 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2916 target_ulong *ret_value, 2917 target_ulong new_value, target_ulong write_mask) 2918 { 2919 int ret = rmw_mip(env, csrno, ret_value, new_value, 2920 write_mask & hip_writable_mask); 2921 2922 if (ret_value) { 2923 *ret_value &= HS_MODE_INTERRUPTS; 2924 } 2925 return ret; 2926 } 2927 2928 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2929 target_ulong *ret_val, 2930 target_ulong new_val, target_ulong wr_mask) 2931 { 2932 uint64_t rval; 2933 RISCVException ret; 2934 2935 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2936 if (ret_val) { 2937 *ret_val = rval & HS_MODE_INTERRUPTS; 2938 } 2939 2940 return ret; 2941 } 2942 2943 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2944 target_ulong *val) 2945 { 2946 *val = env->hcounteren; 2947 return RISCV_EXCP_NONE; 2948 } 2949 2950 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2951 target_ulong val) 2952 { 2953 env->hcounteren = val; 2954 return RISCV_EXCP_NONE; 2955 } 2956 2957 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2958 target_ulong *val) 2959 { 2960 if (val) { 2961 *val = env->hgeie; 2962 } 2963 return RISCV_EXCP_NONE; 2964 } 2965 2966 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2967 target_ulong val) 2968 { 2969 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2970 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2971 env->hgeie = val; 2972 /* Update mip.SGEIP bit */ 2973 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2974 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2975 return RISCV_EXCP_NONE; 2976 } 2977 2978 static RISCVException read_htval(CPURISCVState *env, int csrno, 2979 target_ulong *val) 2980 { 2981 *val = env->htval; 2982 return RISCV_EXCP_NONE; 2983 } 2984 2985 static RISCVException write_htval(CPURISCVState *env, int csrno, 2986 target_ulong val) 2987 { 2988 env->htval = val; 2989 return RISCV_EXCP_NONE; 2990 } 2991 2992 static RISCVException read_htinst(CPURISCVState *env, int csrno, 2993 target_ulong *val) 2994 { 2995 *val = env->htinst; 2996 return RISCV_EXCP_NONE; 2997 } 2998 2999 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3000 target_ulong val) 3001 { 3002 return RISCV_EXCP_NONE; 3003 } 3004 3005 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3006 target_ulong *val) 3007 { 3008 if (val) { 3009 *val = env->hgeip; 3010 } 3011 return RISCV_EXCP_NONE; 3012 } 3013 3014 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3015 target_ulong *val) 3016 { 3017 *val = env->hgatp; 3018 return RISCV_EXCP_NONE; 3019 } 3020 3021 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3022 target_ulong val) 3023 { 3024 env->hgatp = val; 3025 return RISCV_EXCP_NONE; 3026 } 3027 3028 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3029 target_ulong *val) 3030 { 3031 if (!env->rdtime_fn) { 3032 return RISCV_EXCP_ILLEGAL_INST; 3033 } 3034 3035 *val = env->htimedelta; 3036 return RISCV_EXCP_NONE; 3037 } 3038 3039 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3040 target_ulong val) 3041 { 3042 if (!env->rdtime_fn) { 3043 return RISCV_EXCP_ILLEGAL_INST; 3044 } 3045 3046 if (riscv_cpu_mxl(env) == MXL_RV32) { 3047 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3048 } else { 3049 env->htimedelta = val; 3050 } 3051 return RISCV_EXCP_NONE; 3052 } 3053 3054 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3055 target_ulong *val) 3056 { 3057 if (!env->rdtime_fn) { 3058 return RISCV_EXCP_ILLEGAL_INST; 3059 } 3060 3061 *val = env->htimedelta >> 32; 3062 return RISCV_EXCP_NONE; 3063 } 3064 3065 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3066 target_ulong val) 3067 { 3068 if (!env->rdtime_fn) { 3069 return RISCV_EXCP_ILLEGAL_INST; 3070 } 3071 3072 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3073 return RISCV_EXCP_NONE; 3074 } 3075 3076 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3077 { 3078 *val = env->hvictl; 3079 return RISCV_EXCP_NONE; 3080 } 3081 3082 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3083 { 3084 env->hvictl = val & HVICTL_VALID_MASK; 3085 return RISCV_EXCP_NONE; 3086 } 3087 3088 static int read_hvipriox(CPURISCVState *env, int first_index, 3089 uint8_t *iprio, target_ulong *val) 3090 { 3091 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3092 3093 /* First index has to be a multiple of number of irqs per register */ 3094 if (first_index % num_irqs) { 3095 return (riscv_cpu_virt_enabled(env)) ? 3096 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3097 } 3098 3099 /* Fill-up return value */ 3100 *val = 0; 3101 for (i = 0; i < num_irqs; i++) { 3102 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3103 continue; 3104 } 3105 if (rdzero) { 3106 continue; 3107 } 3108 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3109 } 3110 3111 return RISCV_EXCP_NONE; 3112 } 3113 3114 static int write_hvipriox(CPURISCVState *env, int first_index, 3115 uint8_t *iprio, target_ulong val) 3116 { 3117 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3118 3119 /* First index has to be a multiple of number of irqs per register */ 3120 if (first_index % num_irqs) { 3121 return (riscv_cpu_virt_enabled(env)) ? 3122 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3123 } 3124 3125 /* Fill-up priority arrary */ 3126 for (i = 0; i < num_irqs; i++) { 3127 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3128 continue; 3129 } 3130 if (rdzero) { 3131 iprio[irq] = 0; 3132 } else { 3133 iprio[irq] = (val >> (i * 8)) & 0xff; 3134 } 3135 } 3136 3137 return RISCV_EXCP_NONE; 3138 } 3139 3140 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3141 { 3142 return read_hvipriox(env, 0, env->hviprio, val); 3143 } 3144 3145 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3146 { 3147 return write_hvipriox(env, 0, env->hviprio, val); 3148 } 3149 3150 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3151 { 3152 return read_hvipriox(env, 4, env->hviprio, val); 3153 } 3154 3155 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3156 { 3157 return write_hvipriox(env, 4, env->hviprio, val); 3158 } 3159 3160 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3161 { 3162 return read_hvipriox(env, 8, env->hviprio, val); 3163 } 3164 3165 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3166 { 3167 return write_hvipriox(env, 8, env->hviprio, val); 3168 } 3169 3170 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3171 { 3172 return read_hvipriox(env, 12, env->hviprio, val); 3173 } 3174 3175 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3176 { 3177 return write_hvipriox(env, 12, env->hviprio, val); 3178 } 3179 3180 /* Virtual CSR Registers */ 3181 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3182 target_ulong *val) 3183 { 3184 *val = env->vsstatus; 3185 return RISCV_EXCP_NONE; 3186 } 3187 3188 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3189 target_ulong val) 3190 { 3191 uint64_t mask = (target_ulong)-1; 3192 if ((val & VSSTATUS64_UXL) == 0) { 3193 mask &= ~VSSTATUS64_UXL; 3194 } 3195 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3196 return RISCV_EXCP_NONE; 3197 } 3198 3199 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3200 { 3201 *val = env->vstvec; 3202 return RISCV_EXCP_NONE; 3203 } 3204 3205 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3206 target_ulong val) 3207 { 3208 env->vstvec = val; 3209 return RISCV_EXCP_NONE; 3210 } 3211 3212 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3213 target_ulong *val) 3214 { 3215 *val = env->vsscratch; 3216 return RISCV_EXCP_NONE; 3217 } 3218 3219 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3220 target_ulong val) 3221 { 3222 env->vsscratch = val; 3223 return RISCV_EXCP_NONE; 3224 } 3225 3226 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3227 target_ulong *val) 3228 { 3229 *val = env->vsepc; 3230 return RISCV_EXCP_NONE; 3231 } 3232 3233 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3234 target_ulong val) 3235 { 3236 env->vsepc = val; 3237 return RISCV_EXCP_NONE; 3238 } 3239 3240 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3241 target_ulong *val) 3242 { 3243 *val = env->vscause; 3244 return RISCV_EXCP_NONE; 3245 } 3246 3247 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3248 target_ulong val) 3249 { 3250 env->vscause = val; 3251 return RISCV_EXCP_NONE; 3252 } 3253 3254 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3255 target_ulong *val) 3256 { 3257 *val = env->vstval; 3258 return RISCV_EXCP_NONE; 3259 } 3260 3261 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3262 target_ulong val) 3263 { 3264 env->vstval = val; 3265 return RISCV_EXCP_NONE; 3266 } 3267 3268 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3269 target_ulong *val) 3270 { 3271 *val = env->vsatp; 3272 return RISCV_EXCP_NONE; 3273 } 3274 3275 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3276 target_ulong val) 3277 { 3278 env->vsatp = val; 3279 return RISCV_EXCP_NONE; 3280 } 3281 3282 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3283 target_ulong *val) 3284 { 3285 *val = env->mtval2; 3286 return RISCV_EXCP_NONE; 3287 } 3288 3289 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3290 target_ulong val) 3291 { 3292 env->mtval2 = val; 3293 return RISCV_EXCP_NONE; 3294 } 3295 3296 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3297 target_ulong *val) 3298 { 3299 *val = env->mtinst; 3300 return RISCV_EXCP_NONE; 3301 } 3302 3303 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3304 target_ulong val) 3305 { 3306 env->mtinst = val; 3307 return RISCV_EXCP_NONE; 3308 } 3309 3310 /* Physical Memory Protection */ 3311 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3312 target_ulong *val) 3313 { 3314 *val = mseccfg_csr_read(env); 3315 return RISCV_EXCP_NONE; 3316 } 3317 3318 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3319 target_ulong val) 3320 { 3321 mseccfg_csr_write(env, val); 3322 return RISCV_EXCP_NONE; 3323 } 3324 3325 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 3326 { 3327 /* TODO: RV128 restriction check */ 3328 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 3329 return false; 3330 } 3331 return true; 3332 } 3333 3334 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3335 target_ulong *val) 3336 { 3337 uint32_t reg_index = csrno - CSR_PMPCFG0; 3338 3339 if (!check_pmp_reg_index(env, reg_index)) { 3340 return RISCV_EXCP_ILLEGAL_INST; 3341 } 3342 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 3343 return RISCV_EXCP_NONE; 3344 } 3345 3346 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3347 target_ulong val) 3348 { 3349 uint32_t reg_index = csrno - CSR_PMPCFG0; 3350 3351 if (!check_pmp_reg_index(env, reg_index)) { 3352 return RISCV_EXCP_ILLEGAL_INST; 3353 } 3354 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 3355 return RISCV_EXCP_NONE; 3356 } 3357 3358 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3359 target_ulong *val) 3360 { 3361 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3362 return RISCV_EXCP_NONE; 3363 } 3364 3365 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3366 target_ulong val) 3367 { 3368 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3369 return RISCV_EXCP_NONE; 3370 } 3371 3372 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3373 target_ulong *val) 3374 { 3375 *val = tselect_csr_read(env); 3376 return RISCV_EXCP_NONE; 3377 } 3378 3379 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3380 target_ulong val) 3381 { 3382 tselect_csr_write(env, val); 3383 return RISCV_EXCP_NONE; 3384 } 3385 3386 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3387 target_ulong *val) 3388 { 3389 /* return 0 in tdata1 to end the trigger enumeration */ 3390 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3391 *val = 0; 3392 return RISCV_EXCP_NONE; 3393 } 3394 3395 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3396 return RISCV_EXCP_ILLEGAL_INST; 3397 } 3398 3399 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3400 return RISCV_EXCP_NONE; 3401 } 3402 3403 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3404 target_ulong val) 3405 { 3406 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3407 return RISCV_EXCP_ILLEGAL_INST; 3408 } 3409 3410 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3411 return RISCV_EXCP_NONE; 3412 } 3413 3414 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3415 target_ulong *val) 3416 { 3417 *val = tinfo_csr_read(env); 3418 return RISCV_EXCP_NONE; 3419 } 3420 3421 /* 3422 * Functions to access Pointer Masking feature registers 3423 * We have to check if current priv lvl could modify 3424 * csr in given mode 3425 */ 3426 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3427 { 3428 int csr_priv = get_field(csrno, 0x300); 3429 int pm_current; 3430 3431 if (env->debugger) { 3432 return false; 3433 } 3434 /* 3435 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3436 * so allow the access 3437 */ 3438 if (env->priv != csr_priv) { 3439 return false; 3440 } 3441 switch (env->priv) { 3442 case PRV_M: 3443 pm_current = get_field(env->mmte, M_PM_CURRENT); 3444 break; 3445 case PRV_S: 3446 pm_current = get_field(env->mmte, S_PM_CURRENT); 3447 break; 3448 case PRV_U: 3449 pm_current = get_field(env->mmte, U_PM_CURRENT); 3450 break; 3451 default: 3452 g_assert_not_reached(); 3453 } 3454 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3455 return !pm_current; 3456 } 3457 3458 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3459 target_ulong *val) 3460 { 3461 *val = env->mmte & MMTE_MASK; 3462 return RISCV_EXCP_NONE; 3463 } 3464 3465 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3466 target_ulong val) 3467 { 3468 uint64_t mstatus; 3469 target_ulong wpri_val = val & MMTE_MASK; 3470 3471 if (val != wpri_val) { 3472 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3473 "MMTE: WPRI violation written 0x", val, 3474 "vs expected 0x", wpri_val); 3475 } 3476 /* for machine mode pm.current is hardwired to 1 */ 3477 wpri_val |= MMTE_M_PM_CURRENT; 3478 3479 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3480 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3481 env->mmte = wpri_val | PM_EXT_DIRTY; 3482 riscv_cpu_update_mask(env); 3483 3484 /* Set XS and SD bits, since PM CSRs are dirty */ 3485 mstatus = env->mstatus | MSTATUS_XS; 3486 write_mstatus(env, csrno, mstatus); 3487 return RISCV_EXCP_NONE; 3488 } 3489 3490 static RISCVException read_smte(CPURISCVState *env, int csrno, 3491 target_ulong *val) 3492 { 3493 *val = env->mmte & SMTE_MASK; 3494 return RISCV_EXCP_NONE; 3495 } 3496 3497 static RISCVException write_smte(CPURISCVState *env, int csrno, 3498 target_ulong val) 3499 { 3500 target_ulong wpri_val = val & SMTE_MASK; 3501 3502 if (val != wpri_val) { 3503 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3504 "SMTE: WPRI violation written 0x", val, 3505 "vs expected 0x", wpri_val); 3506 } 3507 3508 /* if pm.current==0 we can't modify current PM CSRs */ 3509 if (check_pm_current_disabled(env, csrno)) { 3510 return RISCV_EXCP_NONE; 3511 } 3512 3513 wpri_val |= (env->mmte & ~SMTE_MASK); 3514 write_mmte(env, csrno, wpri_val); 3515 return RISCV_EXCP_NONE; 3516 } 3517 3518 static RISCVException read_umte(CPURISCVState *env, int csrno, 3519 target_ulong *val) 3520 { 3521 *val = env->mmte & UMTE_MASK; 3522 return RISCV_EXCP_NONE; 3523 } 3524 3525 static RISCVException write_umte(CPURISCVState *env, int csrno, 3526 target_ulong val) 3527 { 3528 target_ulong wpri_val = val & UMTE_MASK; 3529 3530 if (val != wpri_val) { 3531 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3532 "UMTE: WPRI violation written 0x", val, 3533 "vs expected 0x", wpri_val); 3534 } 3535 3536 if (check_pm_current_disabled(env, csrno)) { 3537 return RISCV_EXCP_NONE; 3538 } 3539 3540 wpri_val |= (env->mmte & ~UMTE_MASK); 3541 write_mmte(env, csrno, wpri_val); 3542 return RISCV_EXCP_NONE; 3543 } 3544 3545 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3546 target_ulong *val) 3547 { 3548 *val = env->mpmmask; 3549 return RISCV_EXCP_NONE; 3550 } 3551 3552 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3553 target_ulong val) 3554 { 3555 uint64_t mstatus; 3556 3557 env->mpmmask = val; 3558 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3559 env->cur_pmmask = val; 3560 } 3561 env->mmte |= PM_EXT_DIRTY; 3562 3563 /* Set XS and SD bits, since PM CSRs are dirty */ 3564 mstatus = env->mstatus | MSTATUS_XS; 3565 write_mstatus(env, csrno, mstatus); 3566 return RISCV_EXCP_NONE; 3567 } 3568 3569 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3570 target_ulong *val) 3571 { 3572 *val = env->spmmask; 3573 return RISCV_EXCP_NONE; 3574 } 3575 3576 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3577 target_ulong val) 3578 { 3579 uint64_t mstatus; 3580 3581 /* if pm.current==0 we can't modify current PM CSRs */ 3582 if (check_pm_current_disabled(env, csrno)) { 3583 return RISCV_EXCP_NONE; 3584 } 3585 env->spmmask = val; 3586 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3587 env->cur_pmmask = val; 3588 } 3589 env->mmte |= PM_EXT_DIRTY; 3590 3591 /* Set XS and SD bits, since PM CSRs are dirty */ 3592 mstatus = env->mstatus | MSTATUS_XS; 3593 write_mstatus(env, csrno, mstatus); 3594 return RISCV_EXCP_NONE; 3595 } 3596 3597 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3598 target_ulong *val) 3599 { 3600 *val = env->upmmask; 3601 return RISCV_EXCP_NONE; 3602 } 3603 3604 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3605 target_ulong val) 3606 { 3607 uint64_t mstatus; 3608 3609 /* if pm.current==0 we can't modify current PM CSRs */ 3610 if (check_pm_current_disabled(env, csrno)) { 3611 return RISCV_EXCP_NONE; 3612 } 3613 env->upmmask = val; 3614 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3615 env->cur_pmmask = val; 3616 } 3617 env->mmte |= PM_EXT_DIRTY; 3618 3619 /* Set XS and SD bits, since PM CSRs are dirty */ 3620 mstatus = env->mstatus | MSTATUS_XS; 3621 write_mstatus(env, csrno, mstatus); 3622 return RISCV_EXCP_NONE; 3623 } 3624 3625 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3626 target_ulong *val) 3627 { 3628 *val = env->mpmbase; 3629 return RISCV_EXCP_NONE; 3630 } 3631 3632 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3633 target_ulong val) 3634 { 3635 uint64_t mstatus; 3636 3637 env->mpmbase = val; 3638 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3639 env->cur_pmbase = val; 3640 } 3641 env->mmte |= PM_EXT_DIRTY; 3642 3643 /* Set XS and SD bits, since PM CSRs are dirty */ 3644 mstatus = env->mstatus | MSTATUS_XS; 3645 write_mstatus(env, csrno, mstatus); 3646 return RISCV_EXCP_NONE; 3647 } 3648 3649 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3650 target_ulong *val) 3651 { 3652 *val = env->spmbase; 3653 return RISCV_EXCP_NONE; 3654 } 3655 3656 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3657 target_ulong val) 3658 { 3659 uint64_t mstatus; 3660 3661 /* if pm.current==0 we can't modify current PM CSRs */ 3662 if (check_pm_current_disabled(env, csrno)) { 3663 return RISCV_EXCP_NONE; 3664 } 3665 env->spmbase = val; 3666 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3667 env->cur_pmbase = val; 3668 } 3669 env->mmte |= PM_EXT_DIRTY; 3670 3671 /* Set XS and SD bits, since PM CSRs are dirty */ 3672 mstatus = env->mstatus | MSTATUS_XS; 3673 write_mstatus(env, csrno, mstatus); 3674 return RISCV_EXCP_NONE; 3675 } 3676 3677 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3678 target_ulong *val) 3679 { 3680 *val = env->upmbase; 3681 return RISCV_EXCP_NONE; 3682 } 3683 3684 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3685 target_ulong val) 3686 { 3687 uint64_t mstatus; 3688 3689 /* if pm.current==0 we can't modify current PM CSRs */ 3690 if (check_pm_current_disabled(env, csrno)) { 3691 return RISCV_EXCP_NONE; 3692 } 3693 env->upmbase = val; 3694 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3695 env->cur_pmbase = val; 3696 } 3697 env->mmte |= PM_EXT_DIRTY; 3698 3699 /* Set XS and SD bits, since PM CSRs are dirty */ 3700 mstatus = env->mstatus | MSTATUS_XS; 3701 write_mstatus(env, csrno, mstatus); 3702 return RISCV_EXCP_NONE; 3703 } 3704 3705 #endif 3706 3707 /* Crypto Extension */ 3708 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3709 target_ulong *ret_value, 3710 target_ulong new_value, 3711 target_ulong write_mask) 3712 { 3713 uint16_t random_v; 3714 Error *random_e = NULL; 3715 int random_r; 3716 target_ulong rval; 3717 3718 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3719 if (unlikely(random_r < 0)) { 3720 /* 3721 * Failed, for unknown reasons in the crypto subsystem. 3722 * The best we can do is log the reason and return a 3723 * failure indication to the guest. There is no reason 3724 * we know to expect the failure to be transitory, so 3725 * indicate DEAD to avoid having the guest spin on WAIT. 3726 */ 3727 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3728 __func__, error_get_pretty(random_e)); 3729 error_free(random_e); 3730 rval = SEED_OPST_DEAD; 3731 } else { 3732 rval = random_v | SEED_OPST_ES16; 3733 } 3734 3735 if (ret_value) { 3736 *ret_value = rval; 3737 } 3738 3739 return RISCV_EXCP_NONE; 3740 } 3741 3742 /* 3743 * riscv_csrrw - read and/or update control and status register 3744 * 3745 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3746 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3747 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3748 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3749 */ 3750 3751 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3752 int csrno, 3753 bool write_mask, 3754 RISCVCPU *cpu) 3755 { 3756 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3757 int read_only = get_field(csrno, 0xC00) == 3; 3758 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3759 3760 /* ensure the CSR extension is enabled. */ 3761 if (!cpu->cfg.ext_icsr) { 3762 return RISCV_EXCP_ILLEGAL_INST; 3763 } 3764 3765 if (env->priv_ver < csr_min_priv) { 3766 return RISCV_EXCP_ILLEGAL_INST; 3767 } 3768 3769 /* check predicate */ 3770 if (!csr_ops[csrno].predicate) { 3771 return RISCV_EXCP_ILLEGAL_INST; 3772 } 3773 3774 if (write_mask && read_only) { 3775 return RISCV_EXCP_ILLEGAL_INST; 3776 } 3777 3778 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3779 if (ret != RISCV_EXCP_NONE) { 3780 return ret; 3781 } 3782 3783 #if !defined(CONFIG_USER_ONLY) 3784 int csr_priv, effective_priv = env->priv; 3785 3786 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3787 !riscv_cpu_virt_enabled(env)) { 3788 /* 3789 * We are in HS mode. Add 1 to the effective privledge level to 3790 * allow us to access the Hypervisor CSRs. 3791 */ 3792 effective_priv++; 3793 } 3794 3795 csr_priv = get_field(csrno, 0x300); 3796 if (!env->debugger && (effective_priv < csr_priv)) { 3797 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3798 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3799 } 3800 return RISCV_EXCP_ILLEGAL_INST; 3801 } 3802 #endif 3803 return RISCV_EXCP_NONE; 3804 } 3805 3806 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3807 target_ulong *ret_value, 3808 target_ulong new_value, 3809 target_ulong write_mask) 3810 { 3811 RISCVException ret; 3812 target_ulong old_value; 3813 3814 /* execute combined read/write operation if it exists */ 3815 if (csr_ops[csrno].op) { 3816 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3817 } 3818 3819 /* if no accessor exists then return failure */ 3820 if (!csr_ops[csrno].read) { 3821 return RISCV_EXCP_ILLEGAL_INST; 3822 } 3823 /* read old value */ 3824 ret = csr_ops[csrno].read(env, csrno, &old_value); 3825 if (ret != RISCV_EXCP_NONE) { 3826 return ret; 3827 } 3828 3829 /* write value if writable and write mask set, otherwise drop writes */ 3830 if (write_mask) { 3831 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3832 if (csr_ops[csrno].write) { 3833 ret = csr_ops[csrno].write(env, csrno, new_value); 3834 if (ret != RISCV_EXCP_NONE) { 3835 return ret; 3836 } 3837 } 3838 } 3839 3840 /* return old value */ 3841 if (ret_value) { 3842 *ret_value = old_value; 3843 } 3844 3845 return RISCV_EXCP_NONE; 3846 } 3847 3848 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3849 target_ulong *ret_value, 3850 target_ulong new_value, target_ulong write_mask) 3851 { 3852 RISCVCPU *cpu = env_archcpu(env); 3853 3854 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3855 if (ret != RISCV_EXCP_NONE) { 3856 return ret; 3857 } 3858 3859 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3860 } 3861 3862 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3863 Int128 *ret_value, 3864 Int128 new_value, 3865 Int128 write_mask) 3866 { 3867 RISCVException ret; 3868 Int128 old_value; 3869 3870 /* read old value */ 3871 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3872 if (ret != RISCV_EXCP_NONE) { 3873 return ret; 3874 } 3875 3876 /* write value if writable and write mask set, otherwise drop writes */ 3877 if (int128_nz(write_mask)) { 3878 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3879 int128_and(new_value, write_mask)); 3880 if (csr_ops[csrno].write128) { 3881 ret = csr_ops[csrno].write128(env, csrno, new_value); 3882 if (ret != RISCV_EXCP_NONE) { 3883 return ret; 3884 } 3885 } else if (csr_ops[csrno].write) { 3886 /* avoids having to write wrappers for all registers */ 3887 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3888 if (ret != RISCV_EXCP_NONE) { 3889 return ret; 3890 } 3891 } 3892 } 3893 3894 /* return old value */ 3895 if (ret_value) { 3896 *ret_value = old_value; 3897 } 3898 3899 return RISCV_EXCP_NONE; 3900 } 3901 3902 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3903 Int128 *ret_value, 3904 Int128 new_value, Int128 write_mask) 3905 { 3906 RISCVException ret; 3907 RISCVCPU *cpu = env_archcpu(env); 3908 3909 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3910 if (ret != RISCV_EXCP_NONE) { 3911 return ret; 3912 } 3913 3914 if (csr_ops[csrno].read128) { 3915 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3916 } 3917 3918 /* 3919 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3920 * at all defined. 3921 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3922 * significant), for those, this fallback is correctly handling the accesses 3923 */ 3924 target_ulong old_value; 3925 ret = riscv_csrrw_do64(env, csrno, &old_value, 3926 int128_getlo(new_value), 3927 int128_getlo(write_mask)); 3928 if (ret == RISCV_EXCP_NONE && ret_value) { 3929 *ret_value = int128_make64(old_value); 3930 } 3931 return ret; 3932 } 3933 3934 /* 3935 * Debugger support. If not in user mode, set env->debugger before the 3936 * riscv_csrrw call and clear it after the call. 3937 */ 3938 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3939 target_ulong *ret_value, 3940 target_ulong new_value, 3941 target_ulong write_mask) 3942 { 3943 RISCVException ret; 3944 #if !defined(CONFIG_USER_ONLY) 3945 env->debugger = true; 3946 #endif 3947 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3948 #if !defined(CONFIG_USER_ONLY) 3949 env->debugger = false; 3950 #endif 3951 return ret; 3952 } 3953 3954 /* Control and Status Register function table */ 3955 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3956 /* User Floating-Point CSRs */ 3957 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3958 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3959 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3960 /* Vector CSRs */ 3961 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart, 3962 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3963 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat, 3964 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3965 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm, 3966 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3967 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr, 3968 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3969 [CSR_VL] = { "vl", vs, read_vl, 3970 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3971 [CSR_VTYPE] = { "vtype", vs, read_vtype, 3972 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3973 [CSR_VLENB] = { "vlenb", vs, read_vlenb, 3974 .min_priv_ver = PRIV_VERSION_1_12_0 }, 3975 /* User Timers and Counters */ 3976 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 3977 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 3978 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 3979 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 3980 3981 /* 3982 * In privileged mode, the monitor will have to emulate TIME CSRs only if 3983 * rdtime callback is not provided by machine/platform emulation. 3984 */ 3985 [CSR_TIME] = { "time", ctr, read_time }, 3986 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 3987 3988 /* Crypto Extension */ 3989 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 3990 3991 #if !defined(CONFIG_USER_ONLY) 3992 /* Machine Timers and Counters */ 3993 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 3994 write_mhpmcounter }, 3995 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 3996 write_mhpmcounter }, 3997 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 3998 write_mhpmcounterh }, 3999 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4000 write_mhpmcounterh }, 4001 4002 /* Machine Information Registers */ 4003 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4004 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4005 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4006 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4007 4008 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4009 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4010 /* Machine Trap Setup */ 4011 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4012 NULL, read_mstatus_i128 }, 4013 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4014 NULL, read_misa_i128 }, 4015 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4016 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4017 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4018 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4019 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4020 write_mcounteren }, 4021 4022 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4023 write_mstatush }, 4024 4025 /* Machine Trap Handling */ 4026 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4027 NULL, read_mscratch_i128, write_mscratch_i128 }, 4028 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4029 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4030 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4031 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4032 4033 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4034 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4035 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4036 4037 /* Machine-Level Interrupts (AIA) */ 4038 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4039 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4040 4041 /* Virtual Interrupts for Supervisor Level (AIA) */ 4042 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4043 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4044 4045 /* Machine-Level High-Half CSRs (AIA) */ 4046 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4047 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4048 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4049 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4050 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4051 4052 /* Execution environment configuration */ 4053 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4054 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4055 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4056 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4057 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4058 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4059 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4060 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4061 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4062 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4063 4064 /* Smstateen extension CSRs */ 4065 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4066 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4067 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4068 write_mstateen0h, 4069 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4070 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4071 write_mstateen_1_3, 4072 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4073 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4074 write_mstateenh_1_3, 4075 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4076 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4077 write_mstateen_1_3, 4078 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4079 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4080 write_mstateenh_1_3, 4081 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4082 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4083 write_mstateen_1_3, 4084 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4085 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4086 write_mstateenh_1_3, 4087 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4088 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4089 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4090 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4091 write_hstateen0h, 4092 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4093 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4094 write_hstateen_1_3, 4095 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4096 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4097 write_hstateenh_1_3, 4098 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4099 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4100 write_hstateen_1_3, 4101 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4102 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4103 write_hstateenh_1_3, 4104 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4105 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4106 write_hstateen_1_3, 4107 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4108 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4109 write_hstateenh_1_3, 4110 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4111 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4112 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4113 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4114 write_sstateen_1_3, 4115 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4116 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4117 write_sstateen_1_3, 4118 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4119 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4120 write_sstateen_1_3, 4121 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4122 4123 /* Supervisor Trap Setup */ 4124 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4125 NULL, read_sstatus_i128 }, 4126 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4127 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4128 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4129 write_scounteren }, 4130 4131 /* Supervisor Trap Handling */ 4132 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4133 NULL, read_sscratch_i128, write_sscratch_i128 }, 4134 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4135 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4136 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4137 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4138 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4139 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4140 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4141 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4142 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4143 write_vstimecmp, 4144 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4145 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4146 write_vstimecmph, 4147 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4148 4149 /* Supervisor Protection and Translation */ 4150 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 4151 4152 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4153 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4154 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4155 4156 /* Supervisor-Level Interrupts (AIA) */ 4157 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4158 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4159 4160 /* Supervisor-Level High-Half CSRs (AIA) */ 4161 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4162 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4163 4164 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4165 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4166 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4167 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4168 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4169 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4170 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4171 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4172 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4173 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4174 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4175 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4176 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4177 write_hcounteren, 4178 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4179 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4180 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4181 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4182 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4183 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4184 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4185 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4186 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4187 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 4188 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4189 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4190 write_htimedelta, 4191 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4192 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4193 write_htimedeltah, 4194 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4195 4196 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4197 write_vsstatus, 4198 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4199 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4200 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4201 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4202 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4203 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4204 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4205 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4206 write_vsscratch, 4207 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4208 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4209 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4210 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4211 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4212 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4213 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4214 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4215 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4216 4217 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4218 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4219 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4220 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4221 4222 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4223 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4224 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4225 write_hvictl }, 4226 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4227 write_hviprio1 }, 4228 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4229 write_hviprio2 }, 4230 4231 /* 4232 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4233 */ 4234 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4235 rmw_xiselect }, 4236 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4237 4238 /* VS-Level Interrupts (H-extension with AIA) */ 4239 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4240 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4241 4242 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4243 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4244 rmw_hidelegh }, 4245 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4246 write_ignore }, 4247 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4248 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4249 write_hviprio1h }, 4250 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4251 write_hviprio2h }, 4252 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4253 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4254 4255 /* Physical Memory Protection */ 4256 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4257 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4258 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4259 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4260 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4261 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4262 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4263 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4264 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4265 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4266 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4267 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4268 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4269 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4270 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4271 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4272 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4273 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4274 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4275 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4276 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4277 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4278 4279 /* Debug CSRs */ 4280 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4281 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4282 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4283 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4284 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4285 4286 /* User Pointer Masking */ 4287 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4288 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4289 write_upmmask }, 4290 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4291 write_upmbase }, 4292 /* Machine Pointer Masking */ 4293 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4294 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4295 write_mpmmask }, 4296 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4297 write_mpmbase }, 4298 /* Supervisor Pointer Masking */ 4299 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4300 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4301 write_spmmask }, 4302 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4303 write_spmbase }, 4304 4305 /* Performance Counters */ 4306 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4307 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4308 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4309 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4310 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4311 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4312 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4313 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4314 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4315 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4316 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4317 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4318 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4319 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4320 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4321 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4322 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4323 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4324 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4325 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4326 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4327 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4328 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4329 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4330 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4331 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4332 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4333 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4334 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4335 4336 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4337 write_mhpmcounter }, 4338 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4339 write_mhpmcounter }, 4340 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4341 write_mhpmcounter }, 4342 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4343 write_mhpmcounter }, 4344 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4345 write_mhpmcounter }, 4346 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4347 write_mhpmcounter }, 4348 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4349 write_mhpmcounter }, 4350 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4351 write_mhpmcounter }, 4352 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4353 write_mhpmcounter }, 4354 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4355 write_mhpmcounter }, 4356 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4357 write_mhpmcounter }, 4358 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4359 write_mhpmcounter }, 4360 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4361 write_mhpmcounter }, 4362 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4363 write_mhpmcounter }, 4364 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4365 write_mhpmcounter }, 4366 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4367 write_mhpmcounter }, 4368 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4369 write_mhpmcounter }, 4370 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4371 write_mhpmcounter }, 4372 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4373 write_mhpmcounter }, 4374 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4375 write_mhpmcounter }, 4376 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4377 write_mhpmcounter }, 4378 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4379 write_mhpmcounter }, 4380 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4381 write_mhpmcounter }, 4382 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4383 write_mhpmcounter }, 4384 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4385 write_mhpmcounter }, 4386 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4387 write_mhpmcounter }, 4388 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4389 write_mhpmcounter }, 4390 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4391 write_mhpmcounter }, 4392 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4393 write_mhpmcounter }, 4394 4395 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4396 write_mcountinhibit, 4397 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4398 4399 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4400 write_mhpmevent }, 4401 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4402 write_mhpmevent }, 4403 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4404 write_mhpmevent }, 4405 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4406 write_mhpmevent }, 4407 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4408 write_mhpmevent }, 4409 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4410 write_mhpmevent }, 4411 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4412 write_mhpmevent }, 4413 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4414 write_mhpmevent }, 4415 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4416 write_mhpmevent }, 4417 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4418 write_mhpmevent }, 4419 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4420 write_mhpmevent }, 4421 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4422 write_mhpmevent }, 4423 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4424 write_mhpmevent }, 4425 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4426 write_mhpmevent }, 4427 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4428 write_mhpmevent }, 4429 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4430 write_mhpmevent }, 4431 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4432 write_mhpmevent }, 4433 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4434 write_mhpmevent }, 4435 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4436 write_mhpmevent }, 4437 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4438 write_mhpmevent }, 4439 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4440 write_mhpmevent }, 4441 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4442 write_mhpmevent }, 4443 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4444 write_mhpmevent }, 4445 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4446 write_mhpmevent }, 4447 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4448 write_mhpmevent }, 4449 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4450 write_mhpmevent }, 4451 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4452 write_mhpmevent }, 4453 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4454 write_mhpmevent }, 4455 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4456 write_mhpmevent }, 4457 4458 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4459 write_mhpmeventh, 4460 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4461 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4462 write_mhpmeventh, 4463 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4464 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4465 write_mhpmeventh, 4466 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4467 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4468 write_mhpmeventh, 4469 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4470 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4471 write_mhpmeventh, 4472 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4473 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4474 write_mhpmeventh, 4475 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4476 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4477 write_mhpmeventh, 4478 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4479 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4480 write_mhpmeventh, 4481 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4482 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4483 write_mhpmeventh, 4484 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4485 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4486 write_mhpmeventh, 4487 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4488 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4489 write_mhpmeventh, 4490 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4491 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4492 write_mhpmeventh, 4493 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4494 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4495 write_mhpmeventh, 4496 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4497 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4498 write_mhpmeventh, 4499 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4500 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4501 write_mhpmeventh, 4502 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4503 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4504 write_mhpmeventh, 4505 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4506 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4507 write_mhpmeventh, 4508 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4509 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4510 write_mhpmeventh, 4511 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4512 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4513 write_mhpmeventh, 4514 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4515 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4516 write_mhpmeventh, 4517 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4518 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4519 write_mhpmeventh, 4520 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4521 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4522 write_mhpmeventh, 4523 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4524 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4525 write_mhpmeventh, 4526 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4527 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4528 write_mhpmeventh, 4529 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4530 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4531 write_mhpmeventh, 4532 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4533 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4534 write_mhpmeventh, 4535 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4536 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4537 write_mhpmeventh, 4538 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4539 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4540 write_mhpmeventh, 4541 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4542 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4543 write_mhpmeventh, 4544 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4545 4546 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4547 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4548 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4549 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4550 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4551 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4552 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4553 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4554 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4555 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4556 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4557 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4558 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4559 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4560 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4561 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4562 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4563 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4564 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4565 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4566 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4567 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4568 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4569 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4570 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4571 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4572 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4573 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4574 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4575 4576 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4577 write_mhpmcounterh }, 4578 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4579 write_mhpmcounterh }, 4580 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4581 write_mhpmcounterh }, 4582 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4583 write_mhpmcounterh }, 4584 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4585 write_mhpmcounterh }, 4586 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4587 write_mhpmcounterh }, 4588 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4589 write_mhpmcounterh }, 4590 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4591 write_mhpmcounterh }, 4592 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4593 write_mhpmcounterh }, 4594 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4595 write_mhpmcounterh }, 4596 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4597 write_mhpmcounterh }, 4598 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4599 write_mhpmcounterh }, 4600 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4601 write_mhpmcounterh }, 4602 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4603 write_mhpmcounterh }, 4604 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4605 write_mhpmcounterh }, 4606 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4607 write_mhpmcounterh }, 4608 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4609 write_mhpmcounterh }, 4610 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4611 write_mhpmcounterh }, 4612 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4613 write_mhpmcounterh }, 4614 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4615 write_mhpmcounterh }, 4616 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4617 write_mhpmcounterh }, 4618 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4619 write_mhpmcounterh }, 4620 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4621 write_mhpmcounterh }, 4622 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4623 write_mhpmcounterh }, 4624 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4625 write_mhpmcounterh }, 4626 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4627 write_mhpmcounterh }, 4628 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4629 write_mhpmcounterh }, 4630 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4631 write_mhpmcounterh }, 4632 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4633 write_mhpmcounterh }, 4634 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4635 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4636 4637 #endif /* !CONFIG_USER_ONLY */ 4638 }; 4639