1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "sysemu/cpu-timers.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 32 /* CSR function table public API */ 33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 34 { 35 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 36 } 37 38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 41 } 42 43 /* Predicates */ 44 #if !defined(CONFIG_USER_ONLY) 45 static RISCVException smstateen_acc_ok(CPURISCVState *env, int index, 46 uint64_t bit) 47 { 48 bool virt = riscv_cpu_virt_enabled(env); 49 RISCVCPU *cpu = env_archcpu(env); 50 51 if (env->priv == PRV_M || !cpu->cfg.ext_smstateen) { 52 return RISCV_EXCP_NONE; 53 } 54 55 if (!(env->mstateen[index] & bit)) { 56 return RISCV_EXCP_ILLEGAL_INST; 57 } 58 59 if (virt) { 60 if (!(env->hstateen[index] & bit)) { 61 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 62 } 63 64 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 65 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 66 } 67 } 68 69 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 70 if (!(env->sstateen[index] & bit)) { 71 return RISCV_EXCP_ILLEGAL_INST; 72 } 73 } 74 75 return RISCV_EXCP_NONE; 76 } 77 #endif 78 79 static RISCVException fs(CPURISCVState *env, int csrno) 80 { 81 #if !defined(CONFIG_USER_ONLY) 82 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 83 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 84 return RISCV_EXCP_ILLEGAL_INST; 85 } 86 #endif 87 return RISCV_EXCP_NONE; 88 } 89 90 static RISCVException vs(CPURISCVState *env, int csrno) 91 { 92 RISCVCPU *cpu = env_archcpu(env); 93 94 if (env->misa_ext & RVV || 95 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 96 #if !defined(CONFIG_USER_ONLY) 97 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 98 return RISCV_EXCP_ILLEGAL_INST; 99 } 100 #endif 101 return RISCV_EXCP_NONE; 102 } 103 return RISCV_EXCP_ILLEGAL_INST; 104 } 105 106 static RISCVException ctr(CPURISCVState *env, int csrno) 107 { 108 #if !defined(CONFIG_USER_ONLY) 109 RISCVCPU *cpu = env_archcpu(env); 110 int ctr_index; 111 target_ulong ctr_mask; 112 int base_csrno = CSR_CYCLE; 113 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 114 115 if (rv32 && csrno >= CSR_CYCLEH) { 116 /* Offset for RV32 hpmcounternh counters */ 117 base_csrno += 0x80; 118 } 119 ctr_index = csrno - base_csrno; 120 ctr_mask = BIT(ctr_index); 121 122 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 123 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 124 goto skip_ext_pmu_check; 125 } 126 127 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 128 /* No counter is enabled in PMU or the counter is out of range */ 129 return RISCV_EXCP_ILLEGAL_INST; 130 } 131 132 skip_ext_pmu_check: 133 134 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 135 return RISCV_EXCP_ILLEGAL_INST; 136 } 137 138 if (riscv_cpu_virt_enabled(env)) { 139 if (!get_field(env->hcounteren, ctr_mask) || 140 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 141 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 142 } 143 } 144 145 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 146 !get_field(env->scounteren, ctr_mask)) { 147 return RISCV_EXCP_ILLEGAL_INST; 148 } 149 150 #endif 151 return RISCV_EXCP_NONE; 152 } 153 154 static RISCVException ctr32(CPURISCVState *env, int csrno) 155 { 156 if (riscv_cpu_mxl(env) != MXL_RV32) { 157 return RISCV_EXCP_ILLEGAL_INST; 158 } 159 160 return ctr(env, csrno); 161 } 162 163 #if !defined(CONFIG_USER_ONLY) 164 static RISCVException mctr(CPURISCVState *env, int csrno) 165 { 166 RISCVCPU *cpu = env_archcpu(env); 167 int ctr_index; 168 int base_csrno = CSR_MHPMCOUNTER3; 169 170 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 171 /* Offset for RV32 mhpmcounternh counters */ 172 base_csrno += 0x80; 173 } 174 ctr_index = csrno - base_csrno; 175 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 176 /* The PMU is not enabled or counter is out of range*/ 177 return RISCV_EXCP_ILLEGAL_INST; 178 } 179 180 return RISCV_EXCP_NONE; 181 } 182 183 static RISCVException mctr32(CPURISCVState *env, int csrno) 184 { 185 if (riscv_cpu_mxl(env) != MXL_RV32) { 186 return RISCV_EXCP_ILLEGAL_INST; 187 } 188 189 return mctr(env, csrno); 190 } 191 192 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 193 { 194 RISCVCPU *cpu = env_archcpu(env); 195 196 if (!cpu->cfg.ext_sscofpmf) { 197 return RISCV_EXCP_ILLEGAL_INST; 198 } 199 200 return RISCV_EXCP_NONE; 201 } 202 203 static RISCVException any(CPURISCVState *env, int csrno) 204 { 205 return RISCV_EXCP_NONE; 206 } 207 208 static RISCVException any32(CPURISCVState *env, int csrno) 209 { 210 if (riscv_cpu_mxl(env) != MXL_RV32) { 211 return RISCV_EXCP_ILLEGAL_INST; 212 } 213 214 return any(env, csrno); 215 216 } 217 218 static int aia_any(CPURISCVState *env, int csrno) 219 { 220 RISCVCPU *cpu = env_archcpu(env); 221 222 if (!cpu->cfg.ext_smaia) { 223 return RISCV_EXCP_ILLEGAL_INST; 224 } 225 226 return any(env, csrno); 227 } 228 229 static int aia_any32(CPURISCVState *env, int csrno) 230 { 231 RISCVCPU *cpu = env_archcpu(env); 232 233 if (!cpu->cfg.ext_smaia) { 234 return RISCV_EXCP_ILLEGAL_INST; 235 } 236 237 return any32(env, csrno); 238 } 239 240 static RISCVException smode(CPURISCVState *env, int csrno) 241 { 242 if (riscv_has_ext(env, RVS)) { 243 return RISCV_EXCP_NONE; 244 } 245 246 return RISCV_EXCP_ILLEGAL_INST; 247 } 248 249 static int smode32(CPURISCVState *env, int csrno) 250 { 251 if (riscv_cpu_mxl(env) != MXL_RV32) { 252 return RISCV_EXCP_ILLEGAL_INST; 253 } 254 255 return smode(env, csrno); 256 } 257 258 static int aia_smode(CPURISCVState *env, int csrno) 259 { 260 RISCVCPU *cpu = env_archcpu(env); 261 262 if (!cpu->cfg.ext_ssaia) { 263 return RISCV_EXCP_ILLEGAL_INST; 264 } 265 266 return smode(env, csrno); 267 } 268 269 static int aia_smode32(CPURISCVState *env, int csrno) 270 { 271 RISCVCPU *cpu = env_archcpu(env); 272 273 if (!cpu->cfg.ext_ssaia) { 274 return RISCV_EXCP_ILLEGAL_INST; 275 } 276 277 return smode32(env, csrno); 278 } 279 280 static RISCVException hmode(CPURISCVState *env, int csrno) 281 { 282 if (riscv_has_ext(env, RVH)) { 283 return RISCV_EXCP_NONE; 284 } 285 286 return RISCV_EXCP_ILLEGAL_INST; 287 } 288 289 static RISCVException hmode32(CPURISCVState *env, int csrno) 290 { 291 if (riscv_cpu_mxl(env) != MXL_RV32) { 292 return RISCV_EXCP_ILLEGAL_INST; 293 } 294 295 return hmode(env, csrno); 296 297 } 298 299 static RISCVException umode(CPURISCVState *env, int csrno) 300 { 301 if (riscv_has_ext(env, RVU)) { 302 return RISCV_EXCP_NONE; 303 } 304 305 return RISCV_EXCP_ILLEGAL_INST; 306 } 307 308 static RISCVException umode32(CPURISCVState *env, int csrno) 309 { 310 if (riscv_cpu_mxl(env) != MXL_RV32) { 311 return RISCV_EXCP_ILLEGAL_INST; 312 } 313 314 return umode(env, csrno); 315 } 316 317 static RISCVException mstateen(CPURISCVState *env, int csrno) 318 { 319 RISCVCPU *cpu = env_archcpu(env); 320 321 if (!cpu->cfg.ext_smstateen) { 322 return RISCV_EXCP_ILLEGAL_INST; 323 } 324 325 return any(env, csrno); 326 } 327 328 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 329 { 330 RISCVCPU *cpu = env_archcpu(env); 331 332 if (!cpu->cfg.ext_smstateen) { 333 return RISCV_EXCP_ILLEGAL_INST; 334 } 335 336 if (env->priv < PRV_M) { 337 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 338 return RISCV_EXCP_ILLEGAL_INST; 339 } 340 } 341 342 return hmode(env, csrno); 343 } 344 345 static RISCVException hstateen(CPURISCVState *env, int csrno) 346 { 347 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 348 } 349 350 static RISCVException hstateenh(CPURISCVState *env, int csrno) 351 { 352 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 353 } 354 355 static RISCVException sstateen(CPURISCVState *env, int csrno) 356 { 357 bool virt = riscv_cpu_virt_enabled(env); 358 int index = csrno - CSR_SSTATEEN0; 359 RISCVCPU *cpu = env_archcpu(env); 360 361 if (!cpu->cfg.ext_smstateen) { 362 return RISCV_EXCP_ILLEGAL_INST; 363 } 364 365 if (env->priv < PRV_M) { 366 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 367 return RISCV_EXCP_ILLEGAL_INST; 368 } 369 370 if (virt) { 371 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 372 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 373 } 374 } 375 } 376 377 return smode(env, csrno); 378 } 379 380 /* Checks if PointerMasking registers could be accessed */ 381 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 382 { 383 /* Check if j-ext is present */ 384 if (riscv_has_ext(env, RVJ)) { 385 return RISCV_EXCP_NONE; 386 } 387 return RISCV_EXCP_ILLEGAL_INST; 388 } 389 390 static int aia_hmode(CPURISCVState *env, int csrno) 391 { 392 RISCVCPU *cpu = env_archcpu(env); 393 394 if (!cpu->cfg.ext_ssaia) { 395 return RISCV_EXCP_ILLEGAL_INST; 396 } 397 398 return hmode(env, csrno); 399 } 400 401 static int aia_hmode32(CPURISCVState *env, int csrno) 402 { 403 RISCVCPU *cpu = env_archcpu(env); 404 405 if (!cpu->cfg.ext_ssaia) { 406 return RISCV_EXCP_ILLEGAL_INST; 407 } 408 409 return hmode32(env, csrno); 410 } 411 412 static RISCVException pmp(CPURISCVState *env, int csrno) 413 { 414 if (riscv_cpu_cfg(env)->pmp) { 415 if (csrno <= CSR_PMPCFG3) { 416 uint32_t reg_index = csrno - CSR_PMPCFG0; 417 418 /* TODO: RV128 restriction check */ 419 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 420 return RISCV_EXCP_ILLEGAL_INST; 421 } 422 } 423 424 return RISCV_EXCP_NONE; 425 } 426 427 return RISCV_EXCP_ILLEGAL_INST; 428 } 429 430 static RISCVException epmp(CPURISCVState *env, int csrno) 431 { 432 if (env->priv == PRV_M && riscv_cpu_cfg(env)->epmp) { 433 return RISCV_EXCP_NONE; 434 } 435 436 return RISCV_EXCP_ILLEGAL_INST; 437 } 438 439 static RISCVException debug(CPURISCVState *env, int csrno) 440 { 441 if (riscv_cpu_cfg(env)->debug) { 442 return RISCV_EXCP_NONE; 443 } 444 445 return RISCV_EXCP_ILLEGAL_INST; 446 } 447 #endif 448 449 static RISCVException seed(CPURISCVState *env, int csrno) 450 { 451 RISCVCPU *cpu = env_archcpu(env); 452 453 if (!cpu->cfg.ext_zkr) { 454 return RISCV_EXCP_ILLEGAL_INST; 455 } 456 457 #if !defined(CONFIG_USER_ONLY) 458 /* 459 * With a CSR read-write instruction: 460 * 1) The seed CSR is always available in machine mode as normal. 461 * 2) Attempted access to seed from virtual modes VS and VU always raises 462 * an exception(virtual instruction exception only if mseccfg.sseed=1). 463 * 3) Without the corresponding access control bit set to 1, any attempted 464 * access to seed from U, S or HS modes will raise an illegal instruction 465 * exception. 466 */ 467 if (env->priv == PRV_M) { 468 return RISCV_EXCP_NONE; 469 } else if (riscv_cpu_virt_enabled(env)) { 470 if (env->mseccfg & MSECCFG_SSEED) { 471 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 472 } else { 473 return RISCV_EXCP_ILLEGAL_INST; 474 } 475 } else { 476 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 477 return RISCV_EXCP_NONE; 478 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 479 return RISCV_EXCP_NONE; 480 } else { 481 return RISCV_EXCP_ILLEGAL_INST; 482 } 483 } 484 #else 485 return RISCV_EXCP_NONE; 486 #endif 487 } 488 489 /* User Floating-Point CSRs */ 490 static RISCVException read_fflags(CPURISCVState *env, int csrno, 491 target_ulong *val) 492 { 493 *val = riscv_cpu_get_fflags(env); 494 return RISCV_EXCP_NONE; 495 } 496 497 static RISCVException write_fflags(CPURISCVState *env, int csrno, 498 target_ulong val) 499 { 500 #if !defined(CONFIG_USER_ONLY) 501 if (riscv_has_ext(env, RVF)) { 502 env->mstatus |= MSTATUS_FS; 503 } 504 #endif 505 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 506 return RISCV_EXCP_NONE; 507 } 508 509 static RISCVException read_frm(CPURISCVState *env, int csrno, 510 target_ulong *val) 511 { 512 *val = env->frm; 513 return RISCV_EXCP_NONE; 514 } 515 516 static RISCVException write_frm(CPURISCVState *env, int csrno, 517 target_ulong val) 518 { 519 #if !defined(CONFIG_USER_ONLY) 520 if (riscv_has_ext(env, RVF)) { 521 env->mstatus |= MSTATUS_FS; 522 } 523 #endif 524 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 525 return RISCV_EXCP_NONE; 526 } 527 528 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 529 target_ulong *val) 530 { 531 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 532 | (env->frm << FSR_RD_SHIFT); 533 return RISCV_EXCP_NONE; 534 } 535 536 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 537 target_ulong val) 538 { 539 #if !defined(CONFIG_USER_ONLY) 540 if (riscv_has_ext(env, RVF)) { 541 env->mstatus |= MSTATUS_FS; 542 } 543 #endif 544 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 545 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 546 return RISCV_EXCP_NONE; 547 } 548 549 static RISCVException read_vtype(CPURISCVState *env, int csrno, 550 target_ulong *val) 551 { 552 uint64_t vill; 553 switch (env->xl) { 554 case MXL_RV32: 555 vill = (uint32_t)env->vill << 31; 556 break; 557 case MXL_RV64: 558 vill = (uint64_t)env->vill << 63; 559 break; 560 default: 561 g_assert_not_reached(); 562 } 563 *val = (target_ulong)vill | env->vtype; 564 return RISCV_EXCP_NONE; 565 } 566 567 static RISCVException read_vl(CPURISCVState *env, int csrno, 568 target_ulong *val) 569 { 570 *val = env->vl; 571 return RISCV_EXCP_NONE; 572 } 573 574 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 575 { 576 *val = env_archcpu(env)->cfg.vlen >> 3; 577 return RISCV_EXCP_NONE; 578 } 579 580 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 581 target_ulong *val) 582 { 583 *val = env->vxrm; 584 return RISCV_EXCP_NONE; 585 } 586 587 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 588 target_ulong val) 589 { 590 #if !defined(CONFIG_USER_ONLY) 591 env->mstatus |= MSTATUS_VS; 592 #endif 593 env->vxrm = val; 594 return RISCV_EXCP_NONE; 595 } 596 597 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 598 target_ulong *val) 599 { 600 *val = env->vxsat; 601 return RISCV_EXCP_NONE; 602 } 603 604 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 605 target_ulong val) 606 { 607 #if !defined(CONFIG_USER_ONLY) 608 env->mstatus |= MSTATUS_VS; 609 #endif 610 env->vxsat = val; 611 return RISCV_EXCP_NONE; 612 } 613 614 static RISCVException read_vstart(CPURISCVState *env, int csrno, 615 target_ulong *val) 616 { 617 *val = env->vstart; 618 return RISCV_EXCP_NONE; 619 } 620 621 static RISCVException write_vstart(CPURISCVState *env, int csrno, 622 target_ulong val) 623 { 624 #if !defined(CONFIG_USER_ONLY) 625 env->mstatus |= MSTATUS_VS; 626 #endif 627 /* 628 * The vstart CSR is defined to have only enough writable bits 629 * to hold the largest element index, i.e. lg2(VLEN) bits. 630 */ 631 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 632 return RISCV_EXCP_NONE; 633 } 634 635 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 636 { 637 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 638 return RISCV_EXCP_NONE; 639 } 640 641 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 642 { 643 #if !defined(CONFIG_USER_ONLY) 644 env->mstatus |= MSTATUS_VS; 645 #endif 646 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 647 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 648 return RISCV_EXCP_NONE; 649 } 650 651 /* User Timers and Counters */ 652 static target_ulong get_ticks(bool shift) 653 { 654 int64_t val; 655 target_ulong result; 656 657 #if !defined(CONFIG_USER_ONLY) 658 if (icount_enabled()) { 659 val = icount_get(); 660 } else { 661 val = cpu_get_host_ticks(); 662 } 663 #else 664 val = cpu_get_host_ticks(); 665 #endif 666 667 if (shift) { 668 result = val >> 32; 669 } else { 670 result = val; 671 } 672 673 return result; 674 } 675 676 #if defined(CONFIG_USER_ONLY) 677 static RISCVException read_time(CPURISCVState *env, int csrno, 678 target_ulong *val) 679 { 680 *val = cpu_get_host_ticks(); 681 return RISCV_EXCP_NONE; 682 } 683 684 static RISCVException read_timeh(CPURISCVState *env, int csrno, 685 target_ulong *val) 686 { 687 *val = cpu_get_host_ticks() >> 32; 688 return RISCV_EXCP_NONE; 689 } 690 691 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 692 { 693 *val = get_ticks(false); 694 return RISCV_EXCP_NONE; 695 } 696 697 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 698 { 699 *val = get_ticks(true); 700 return RISCV_EXCP_NONE; 701 } 702 703 #else /* CONFIG_USER_ONLY */ 704 705 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 706 { 707 int evt_index = csrno - CSR_MCOUNTINHIBIT; 708 709 *val = env->mhpmevent_val[evt_index]; 710 711 return RISCV_EXCP_NONE; 712 } 713 714 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 715 { 716 int evt_index = csrno - CSR_MCOUNTINHIBIT; 717 uint64_t mhpmevt_val = val; 718 719 env->mhpmevent_val[evt_index] = val; 720 721 if (riscv_cpu_mxl(env) == MXL_RV32) { 722 mhpmevt_val = mhpmevt_val | 723 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 724 } 725 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 726 727 return RISCV_EXCP_NONE; 728 } 729 730 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 731 { 732 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 733 734 *val = env->mhpmeventh_val[evt_index]; 735 736 return RISCV_EXCP_NONE; 737 } 738 739 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 740 { 741 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 742 uint64_t mhpmevth_val = val; 743 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 744 745 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 746 env->mhpmeventh_val[evt_index] = val; 747 748 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 749 750 return RISCV_EXCP_NONE; 751 } 752 753 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 754 { 755 int ctr_idx = csrno - CSR_MCYCLE; 756 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 757 uint64_t mhpmctr_val = val; 758 759 counter->mhpmcounter_val = val; 760 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 761 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 762 counter->mhpmcounter_prev = get_ticks(false); 763 if (ctr_idx > 2) { 764 if (riscv_cpu_mxl(env) == MXL_RV32) { 765 mhpmctr_val = mhpmctr_val | 766 ((uint64_t)counter->mhpmcounterh_val << 32); 767 } 768 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 769 } 770 } else { 771 /* Other counters can keep incrementing from the given value */ 772 counter->mhpmcounter_prev = val; 773 } 774 775 return RISCV_EXCP_NONE; 776 } 777 778 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 779 { 780 int ctr_idx = csrno - CSR_MCYCLEH; 781 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 782 uint64_t mhpmctr_val = counter->mhpmcounter_val; 783 uint64_t mhpmctrh_val = val; 784 785 counter->mhpmcounterh_val = val; 786 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 787 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 788 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 789 counter->mhpmcounterh_prev = get_ticks(true); 790 if (ctr_idx > 2) { 791 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 792 } 793 } else { 794 counter->mhpmcounterh_prev = val; 795 } 796 797 return RISCV_EXCP_NONE; 798 } 799 800 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 801 bool upper_half, uint32_t ctr_idx) 802 { 803 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 804 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 805 counter.mhpmcounter_prev; 806 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 807 counter.mhpmcounter_val; 808 809 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 810 /** 811 * Counter should not increment if inhibit bit is set. We can't really 812 * stop the icount counting. Just return the counter value written by 813 * the supervisor to indicate that counter was not incremented. 814 */ 815 if (!counter.started) { 816 *val = ctr_val; 817 return RISCV_EXCP_NONE; 818 } else { 819 /* Mark that the counter has been stopped */ 820 counter.started = false; 821 } 822 } 823 824 /** 825 * The kernel computes the perf delta by subtracting the current value from 826 * the value it initialized previously (ctr_val). 827 */ 828 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 829 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 830 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 831 } else { 832 *val = ctr_val; 833 } 834 835 return RISCV_EXCP_NONE; 836 } 837 838 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 839 { 840 uint16_t ctr_index; 841 842 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 843 ctr_index = csrno - CSR_MCYCLE; 844 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 845 ctr_index = csrno - CSR_CYCLE; 846 } else { 847 return RISCV_EXCP_ILLEGAL_INST; 848 } 849 850 return riscv_pmu_read_ctr(env, val, false, ctr_index); 851 } 852 853 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 854 { 855 uint16_t ctr_index; 856 857 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 858 ctr_index = csrno - CSR_MCYCLEH; 859 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 860 ctr_index = csrno - CSR_CYCLEH; 861 } else { 862 return RISCV_EXCP_ILLEGAL_INST; 863 } 864 865 return riscv_pmu_read_ctr(env, val, true, ctr_index); 866 } 867 868 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 869 { 870 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 871 int i; 872 *val = 0; 873 target_ulong *mhpm_evt_val; 874 uint64_t of_bit_mask; 875 876 if (riscv_cpu_mxl(env) == MXL_RV32) { 877 mhpm_evt_val = env->mhpmeventh_val; 878 of_bit_mask = MHPMEVENTH_BIT_OF; 879 } else { 880 mhpm_evt_val = env->mhpmevent_val; 881 of_bit_mask = MHPMEVENT_BIT_OF; 882 } 883 884 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 885 if ((get_field(env->mcounteren, BIT(i))) && 886 (mhpm_evt_val[i] & of_bit_mask)) { 887 *val |= BIT(i); 888 } 889 } 890 891 return RISCV_EXCP_NONE; 892 } 893 894 static RISCVException read_time(CPURISCVState *env, int csrno, 895 target_ulong *val) 896 { 897 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 898 899 if (!env->rdtime_fn) { 900 return RISCV_EXCP_ILLEGAL_INST; 901 } 902 903 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 904 return RISCV_EXCP_NONE; 905 } 906 907 static RISCVException read_timeh(CPURISCVState *env, int csrno, 908 target_ulong *val) 909 { 910 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 911 912 if (!env->rdtime_fn) { 913 return RISCV_EXCP_ILLEGAL_INST; 914 } 915 916 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 917 return RISCV_EXCP_NONE; 918 } 919 920 static RISCVException sstc(CPURISCVState *env, int csrno) 921 { 922 RISCVCPU *cpu = env_archcpu(env); 923 bool hmode_check = false; 924 925 if (!cpu->cfg.ext_sstc || !env->rdtime_fn) { 926 return RISCV_EXCP_ILLEGAL_INST; 927 } 928 929 if (env->priv == PRV_M) { 930 return RISCV_EXCP_NONE; 931 } 932 933 /* 934 * No need of separate function for rv32 as menvcfg stores both menvcfg 935 * menvcfgh for RV32. 936 */ 937 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 938 get_field(env->menvcfg, MENVCFG_STCE))) { 939 return RISCV_EXCP_ILLEGAL_INST; 940 } 941 942 if (riscv_cpu_virt_enabled(env)) { 943 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 944 get_field(env->henvcfg, HENVCFG_STCE))) { 945 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 946 } 947 } 948 949 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 950 hmode_check = true; 951 } 952 953 return hmode_check ? hmode(env, csrno) : smode(env, csrno); 954 } 955 956 static RISCVException sstc_32(CPURISCVState *env, int csrno) 957 { 958 if (riscv_cpu_mxl(env) != MXL_RV32) { 959 return RISCV_EXCP_ILLEGAL_INST; 960 } 961 962 return sstc(env, csrno); 963 } 964 965 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 966 target_ulong *val) 967 { 968 *val = env->vstimecmp; 969 970 return RISCV_EXCP_NONE; 971 } 972 973 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 974 target_ulong *val) 975 { 976 *val = env->vstimecmp >> 32; 977 978 return RISCV_EXCP_NONE; 979 } 980 981 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 982 target_ulong val) 983 { 984 RISCVCPU *cpu = env_archcpu(env); 985 986 if (riscv_cpu_mxl(env) == MXL_RV32) { 987 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 988 } else { 989 env->vstimecmp = val; 990 } 991 992 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 993 env->htimedelta, MIP_VSTIP); 994 995 return RISCV_EXCP_NONE; 996 } 997 998 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 999 target_ulong val) 1000 { 1001 RISCVCPU *cpu = env_archcpu(env); 1002 1003 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1004 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1005 env->htimedelta, MIP_VSTIP); 1006 1007 return RISCV_EXCP_NONE; 1008 } 1009 1010 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1011 target_ulong *val) 1012 { 1013 if (riscv_cpu_virt_enabled(env)) { 1014 *val = env->vstimecmp; 1015 } else { 1016 *val = env->stimecmp; 1017 } 1018 1019 return RISCV_EXCP_NONE; 1020 } 1021 1022 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1023 target_ulong *val) 1024 { 1025 if (riscv_cpu_virt_enabled(env)) { 1026 *val = env->vstimecmp >> 32; 1027 } else { 1028 *val = env->stimecmp >> 32; 1029 } 1030 1031 return RISCV_EXCP_NONE; 1032 } 1033 1034 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1035 target_ulong val) 1036 { 1037 RISCVCPU *cpu = env_archcpu(env); 1038 1039 if (riscv_cpu_virt_enabled(env)) { 1040 if (env->hvictl & HVICTL_VTI) { 1041 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1042 } 1043 return write_vstimecmp(env, csrno, val); 1044 } 1045 1046 if (riscv_cpu_mxl(env) == MXL_RV32) { 1047 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1048 } else { 1049 env->stimecmp = val; 1050 } 1051 1052 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1053 1054 return RISCV_EXCP_NONE; 1055 } 1056 1057 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1058 target_ulong val) 1059 { 1060 RISCVCPU *cpu = env_archcpu(env); 1061 1062 if (riscv_cpu_virt_enabled(env)) { 1063 if (env->hvictl & HVICTL_VTI) { 1064 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1065 } 1066 return write_vstimecmph(env, csrno, val); 1067 } 1068 1069 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1070 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1071 1072 return RISCV_EXCP_NONE; 1073 } 1074 1075 /* Machine constants */ 1076 1077 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1078 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1079 MIP_LCOFIP)) 1080 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1081 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1082 1083 #define VSTOPI_NUM_SRCS 5 1084 1085 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1086 VS_MODE_INTERRUPTS; 1087 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1088 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1089 HS_MODE_INTERRUPTS; 1090 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1091 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1092 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1093 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1094 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1095 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1096 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1097 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1098 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1099 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1100 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1101 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1102 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1103 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1104 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1105 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1106 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1107 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1108 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1109 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1110 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1111 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1112 (1ULL << (RISCV_EXCP_M_ECALL)) | 1113 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1114 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1115 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1116 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1117 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1118 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1119 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1120 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1121 SIP_LCOFIP; 1122 static const target_ulong hip_writable_mask = MIP_VSSIP; 1123 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1124 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1125 1126 static const char valid_vm_1_10_32[16] = { 1127 [VM_1_10_MBARE] = 1, 1128 [VM_1_10_SV32] = 1 1129 }; 1130 1131 static const char valid_vm_1_10_64[16] = { 1132 [VM_1_10_MBARE] = 1, 1133 [VM_1_10_SV39] = 1, 1134 [VM_1_10_SV48] = 1, 1135 [VM_1_10_SV57] = 1 1136 }; 1137 1138 /* Machine Information Registers */ 1139 static RISCVException read_zero(CPURISCVState *env, int csrno, 1140 target_ulong *val) 1141 { 1142 *val = 0; 1143 return RISCV_EXCP_NONE; 1144 } 1145 1146 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1147 target_ulong val) 1148 { 1149 return RISCV_EXCP_NONE; 1150 } 1151 1152 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1153 target_ulong *val) 1154 { 1155 RISCVCPU *cpu = env_archcpu(env); 1156 1157 *val = cpu->cfg.mvendorid; 1158 return RISCV_EXCP_NONE; 1159 } 1160 1161 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1162 target_ulong *val) 1163 { 1164 RISCVCPU *cpu = env_archcpu(env); 1165 1166 *val = cpu->cfg.marchid; 1167 return RISCV_EXCP_NONE; 1168 } 1169 1170 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1171 target_ulong *val) 1172 { 1173 RISCVCPU *cpu = env_archcpu(env); 1174 1175 *val = cpu->cfg.mimpid; 1176 return RISCV_EXCP_NONE; 1177 } 1178 1179 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1180 target_ulong *val) 1181 { 1182 *val = env->mhartid; 1183 return RISCV_EXCP_NONE; 1184 } 1185 1186 /* Machine Trap Setup */ 1187 1188 /* We do not store SD explicitly, only compute it on demand. */ 1189 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1190 { 1191 if ((status & MSTATUS_FS) == MSTATUS_FS || 1192 (status & MSTATUS_VS) == MSTATUS_VS || 1193 (status & MSTATUS_XS) == MSTATUS_XS) { 1194 switch (xl) { 1195 case MXL_RV32: 1196 return status | MSTATUS32_SD; 1197 case MXL_RV64: 1198 return status | MSTATUS64_SD; 1199 case MXL_RV128: 1200 return MSTATUSH128_SD; 1201 default: 1202 g_assert_not_reached(); 1203 } 1204 } 1205 return status; 1206 } 1207 1208 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1209 target_ulong *val) 1210 { 1211 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1212 return RISCV_EXCP_NONE; 1213 } 1214 1215 static int validate_vm(CPURISCVState *env, target_ulong vm) 1216 { 1217 if (riscv_cpu_mxl(env) == MXL_RV32) { 1218 return valid_vm_1_10_32[vm & 0xf]; 1219 } else { 1220 return valid_vm_1_10_64[vm & 0xf]; 1221 } 1222 } 1223 1224 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1225 target_ulong val) 1226 { 1227 uint64_t mstatus = env->mstatus; 1228 uint64_t mask = 0; 1229 RISCVMXL xl = riscv_cpu_mxl(env); 1230 1231 /* flush tlb on mstatus fields that affect VM */ 1232 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1233 MSTATUS_MPRV | MSTATUS_SUM)) { 1234 tlb_flush(env_cpu(env)); 1235 } 1236 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1237 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1238 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1239 MSTATUS_TW | MSTATUS_VS; 1240 1241 if (riscv_has_ext(env, RVF)) { 1242 mask |= MSTATUS_FS; 1243 } 1244 1245 if (xl != MXL_RV32 || env->debugger) { 1246 /* 1247 * RV32: MPV and GVA are not in mstatus. The current plan is to 1248 * add them to mstatush. For now, we just don't support it. 1249 */ 1250 mask |= MSTATUS_MPV | MSTATUS_GVA; 1251 if ((val & MSTATUS64_UXL) != 0) { 1252 mask |= MSTATUS64_UXL; 1253 } 1254 } 1255 1256 mstatus = (mstatus & ~mask) | (val & mask); 1257 1258 if (xl > MXL_RV32) { 1259 /* SXL field is for now read only */ 1260 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1261 } 1262 env->mstatus = mstatus; 1263 env->xl = cpu_recompute_xl(env); 1264 1265 return RISCV_EXCP_NONE; 1266 } 1267 1268 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1269 target_ulong *val) 1270 { 1271 *val = env->mstatus >> 32; 1272 return RISCV_EXCP_NONE; 1273 } 1274 1275 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1276 target_ulong val) 1277 { 1278 uint64_t valh = (uint64_t)val << 32; 1279 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1280 1281 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1282 tlb_flush(env_cpu(env)); 1283 } 1284 1285 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1286 1287 return RISCV_EXCP_NONE; 1288 } 1289 1290 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1291 Int128 *val) 1292 { 1293 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1294 return RISCV_EXCP_NONE; 1295 } 1296 1297 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1298 Int128 *val) 1299 { 1300 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1301 return RISCV_EXCP_NONE; 1302 } 1303 1304 static RISCVException read_misa(CPURISCVState *env, int csrno, 1305 target_ulong *val) 1306 { 1307 target_ulong misa; 1308 1309 switch (env->misa_mxl) { 1310 case MXL_RV32: 1311 misa = (target_ulong)MXL_RV32 << 30; 1312 break; 1313 #ifdef TARGET_RISCV64 1314 case MXL_RV64: 1315 misa = (target_ulong)MXL_RV64 << 62; 1316 break; 1317 #endif 1318 default: 1319 g_assert_not_reached(); 1320 } 1321 1322 *val = misa | env->misa_ext; 1323 return RISCV_EXCP_NONE; 1324 } 1325 1326 static RISCVException write_misa(CPURISCVState *env, int csrno, 1327 target_ulong val) 1328 { 1329 if (!riscv_cpu_cfg(env)->misa_w) { 1330 /* drop write to misa */ 1331 return RISCV_EXCP_NONE; 1332 } 1333 1334 /* 'I' or 'E' must be present */ 1335 if (!(val & (RVI | RVE))) { 1336 /* It is not, drop write to misa */ 1337 return RISCV_EXCP_NONE; 1338 } 1339 1340 /* 'E' excludes all other extensions */ 1341 if (val & RVE) { 1342 /* 1343 * when we support 'E' we can do "val = RVE;" however 1344 * for now we just drop writes if 'E' is present. 1345 */ 1346 return RISCV_EXCP_NONE; 1347 } 1348 1349 /* 1350 * misa.MXL writes are not supported by QEMU. 1351 * Drop writes to those bits. 1352 */ 1353 1354 /* Mask extensions that are not supported by this hart */ 1355 val &= env->misa_ext_mask; 1356 1357 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1358 if ((val & RVD) && !(val & RVF)) { 1359 val &= ~RVD; 1360 } 1361 1362 /* 1363 * Suppress 'C' if next instruction is not aligned 1364 * TODO: this should check next_pc 1365 */ 1366 if ((val & RVC) && (GETPC() & ~3) != 0) { 1367 val &= ~RVC; 1368 } 1369 1370 /* If nothing changed, do nothing. */ 1371 if (val == env->misa_ext) { 1372 return RISCV_EXCP_NONE; 1373 } 1374 1375 if (!(val & RVF)) { 1376 env->mstatus &= ~MSTATUS_FS; 1377 } 1378 1379 /* flush translation cache */ 1380 tb_flush(env_cpu(env)); 1381 env->misa_ext = val; 1382 env->xl = riscv_cpu_mxl(env); 1383 return RISCV_EXCP_NONE; 1384 } 1385 1386 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1387 target_ulong *val) 1388 { 1389 *val = env->medeleg; 1390 return RISCV_EXCP_NONE; 1391 } 1392 1393 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1394 target_ulong val) 1395 { 1396 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1397 return RISCV_EXCP_NONE; 1398 } 1399 1400 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1401 uint64_t *ret_val, 1402 uint64_t new_val, uint64_t wr_mask) 1403 { 1404 uint64_t mask = wr_mask & delegable_ints; 1405 1406 if (ret_val) { 1407 *ret_val = env->mideleg; 1408 } 1409 1410 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1411 1412 if (riscv_has_ext(env, RVH)) { 1413 env->mideleg |= HS_MODE_INTERRUPTS; 1414 } 1415 1416 return RISCV_EXCP_NONE; 1417 } 1418 1419 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1420 target_ulong *ret_val, 1421 target_ulong new_val, target_ulong wr_mask) 1422 { 1423 uint64_t rval; 1424 RISCVException ret; 1425 1426 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1427 if (ret_val) { 1428 *ret_val = rval; 1429 } 1430 1431 return ret; 1432 } 1433 1434 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1435 target_ulong *ret_val, 1436 target_ulong new_val, 1437 target_ulong wr_mask) 1438 { 1439 uint64_t rval; 1440 RISCVException ret; 1441 1442 ret = rmw_mideleg64(env, csrno, &rval, 1443 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1444 if (ret_val) { 1445 *ret_val = rval >> 32; 1446 } 1447 1448 return ret; 1449 } 1450 1451 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1452 uint64_t *ret_val, 1453 uint64_t new_val, uint64_t wr_mask) 1454 { 1455 uint64_t mask = wr_mask & all_ints; 1456 1457 if (ret_val) { 1458 *ret_val = env->mie; 1459 } 1460 1461 env->mie = (env->mie & ~mask) | (new_val & mask); 1462 1463 if (!riscv_has_ext(env, RVH)) { 1464 env->mie &= ~((uint64_t)MIP_SGEIP); 1465 } 1466 1467 return RISCV_EXCP_NONE; 1468 } 1469 1470 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1471 target_ulong *ret_val, 1472 target_ulong new_val, target_ulong wr_mask) 1473 { 1474 uint64_t rval; 1475 RISCVException ret; 1476 1477 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1478 if (ret_val) { 1479 *ret_val = rval; 1480 } 1481 1482 return ret; 1483 } 1484 1485 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1486 target_ulong *ret_val, 1487 target_ulong new_val, target_ulong wr_mask) 1488 { 1489 uint64_t rval; 1490 RISCVException ret; 1491 1492 ret = rmw_mie64(env, csrno, &rval, 1493 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1494 if (ret_val) { 1495 *ret_val = rval >> 32; 1496 } 1497 1498 return ret; 1499 } 1500 1501 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1502 { 1503 int irq; 1504 uint8_t iprio; 1505 1506 irq = riscv_cpu_mirq_pending(env); 1507 if (irq <= 0 || irq > 63) { 1508 *val = 0; 1509 } else { 1510 iprio = env->miprio[irq]; 1511 if (!iprio) { 1512 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1513 iprio = IPRIO_MMAXIPRIO; 1514 } 1515 } 1516 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1517 *val |= iprio; 1518 } 1519 1520 return RISCV_EXCP_NONE; 1521 } 1522 1523 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1524 { 1525 if (!riscv_cpu_virt_enabled(env)) { 1526 return csrno; 1527 } 1528 1529 switch (csrno) { 1530 case CSR_SISELECT: 1531 return CSR_VSISELECT; 1532 case CSR_SIREG: 1533 return CSR_VSIREG; 1534 case CSR_STOPEI: 1535 return CSR_VSTOPEI; 1536 default: 1537 return csrno; 1538 }; 1539 } 1540 1541 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1542 target_ulong new_val, target_ulong wr_mask) 1543 { 1544 target_ulong *iselect; 1545 1546 /* Translate CSR number for VS-mode */ 1547 csrno = aia_xlate_vs_csrno(env, csrno); 1548 1549 /* Find the iselect CSR based on CSR number */ 1550 switch (csrno) { 1551 case CSR_MISELECT: 1552 iselect = &env->miselect; 1553 break; 1554 case CSR_SISELECT: 1555 iselect = &env->siselect; 1556 break; 1557 case CSR_VSISELECT: 1558 iselect = &env->vsiselect; 1559 break; 1560 default: 1561 return RISCV_EXCP_ILLEGAL_INST; 1562 }; 1563 1564 if (val) { 1565 *val = *iselect; 1566 } 1567 1568 wr_mask &= ISELECT_MASK; 1569 if (wr_mask) { 1570 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1571 } 1572 1573 return RISCV_EXCP_NONE; 1574 } 1575 1576 static int rmw_iprio(target_ulong xlen, 1577 target_ulong iselect, uint8_t *iprio, 1578 target_ulong *val, target_ulong new_val, 1579 target_ulong wr_mask, int ext_irq_no) 1580 { 1581 int i, firq, nirqs; 1582 target_ulong old_val; 1583 1584 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1585 return -EINVAL; 1586 } 1587 if (xlen != 32 && iselect & 0x1) { 1588 return -EINVAL; 1589 } 1590 1591 nirqs = 4 * (xlen / 32); 1592 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1593 1594 old_val = 0; 1595 for (i = 0; i < nirqs; i++) { 1596 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1597 } 1598 1599 if (val) { 1600 *val = old_val; 1601 } 1602 1603 if (wr_mask) { 1604 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1605 for (i = 0; i < nirqs; i++) { 1606 /* 1607 * M-level and S-level external IRQ priority always read-only 1608 * zero. This means default priority order is always preferred 1609 * for M-level and S-level external IRQs. 1610 */ 1611 if ((firq + i) == ext_irq_no) { 1612 continue; 1613 } 1614 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1615 } 1616 } 1617 1618 return 0; 1619 } 1620 1621 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1622 target_ulong new_val, target_ulong wr_mask) 1623 { 1624 bool virt; 1625 uint8_t *iprio; 1626 int ret = -EINVAL; 1627 target_ulong priv, isel, vgein; 1628 1629 /* Translate CSR number for VS-mode */ 1630 csrno = aia_xlate_vs_csrno(env, csrno); 1631 1632 /* Decode register details from CSR number */ 1633 virt = false; 1634 switch (csrno) { 1635 case CSR_MIREG: 1636 iprio = env->miprio; 1637 isel = env->miselect; 1638 priv = PRV_M; 1639 break; 1640 case CSR_SIREG: 1641 iprio = env->siprio; 1642 isel = env->siselect; 1643 priv = PRV_S; 1644 break; 1645 case CSR_VSIREG: 1646 iprio = env->hviprio; 1647 isel = env->vsiselect; 1648 priv = PRV_S; 1649 virt = true; 1650 break; 1651 default: 1652 goto done; 1653 }; 1654 1655 /* Find the selected guest interrupt file */ 1656 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1657 1658 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1659 /* Local interrupt priority registers not available for VS-mode */ 1660 if (!virt) { 1661 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1662 isel, iprio, val, new_val, wr_mask, 1663 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1664 } 1665 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1666 /* IMSIC registers only available when machine implements it. */ 1667 if (env->aia_ireg_rmw_fn[priv]) { 1668 /* Selected guest interrupt file should not be zero */ 1669 if (virt && (!vgein || env->geilen < vgein)) { 1670 goto done; 1671 } 1672 /* Call machine specific IMSIC register emulation */ 1673 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1674 AIA_MAKE_IREG(isel, priv, virt, vgein, 1675 riscv_cpu_mxl_bits(env)), 1676 val, new_val, wr_mask); 1677 } 1678 } 1679 1680 done: 1681 if (ret) { 1682 return (riscv_cpu_virt_enabled(env) && virt) ? 1683 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1684 } 1685 return RISCV_EXCP_NONE; 1686 } 1687 1688 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1689 target_ulong new_val, target_ulong wr_mask) 1690 { 1691 bool virt; 1692 int ret = -EINVAL; 1693 target_ulong priv, vgein; 1694 1695 /* Translate CSR number for VS-mode */ 1696 csrno = aia_xlate_vs_csrno(env, csrno); 1697 1698 /* Decode register details from CSR number */ 1699 virt = false; 1700 switch (csrno) { 1701 case CSR_MTOPEI: 1702 priv = PRV_M; 1703 break; 1704 case CSR_STOPEI: 1705 priv = PRV_S; 1706 break; 1707 case CSR_VSTOPEI: 1708 priv = PRV_S; 1709 virt = true; 1710 break; 1711 default: 1712 goto done; 1713 }; 1714 1715 /* IMSIC CSRs only available when machine implements IMSIC. */ 1716 if (!env->aia_ireg_rmw_fn[priv]) { 1717 goto done; 1718 } 1719 1720 /* Find the selected guest interrupt file */ 1721 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1722 1723 /* Selected guest interrupt file should be valid */ 1724 if (virt && (!vgein || env->geilen < vgein)) { 1725 goto done; 1726 } 1727 1728 /* Call machine specific IMSIC register emulation for TOPEI */ 1729 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1730 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1731 riscv_cpu_mxl_bits(env)), 1732 val, new_val, wr_mask); 1733 1734 done: 1735 if (ret) { 1736 return (riscv_cpu_virt_enabled(env) && virt) ? 1737 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1738 } 1739 return RISCV_EXCP_NONE; 1740 } 1741 1742 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1743 target_ulong *val) 1744 { 1745 *val = env->mtvec; 1746 return RISCV_EXCP_NONE; 1747 } 1748 1749 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1750 target_ulong val) 1751 { 1752 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1753 if ((val & 3) < 2) { 1754 env->mtvec = val; 1755 } else { 1756 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1757 } 1758 return RISCV_EXCP_NONE; 1759 } 1760 1761 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1762 target_ulong *val) 1763 { 1764 *val = env->mcountinhibit; 1765 return RISCV_EXCP_NONE; 1766 } 1767 1768 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1769 target_ulong val) 1770 { 1771 int cidx; 1772 PMUCTRState *counter; 1773 1774 env->mcountinhibit = val; 1775 1776 /* Check if any other counter is also monitoring cycles/instructions */ 1777 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1778 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1779 counter = &env->pmu_ctrs[cidx]; 1780 counter->started = true; 1781 } 1782 } 1783 1784 return RISCV_EXCP_NONE; 1785 } 1786 1787 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1788 target_ulong *val) 1789 { 1790 *val = env->mcounteren; 1791 return RISCV_EXCP_NONE; 1792 } 1793 1794 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1795 target_ulong val) 1796 { 1797 env->mcounteren = val; 1798 return RISCV_EXCP_NONE; 1799 } 1800 1801 /* Machine Trap Handling */ 1802 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1803 Int128 *val) 1804 { 1805 *val = int128_make128(env->mscratch, env->mscratchh); 1806 return RISCV_EXCP_NONE; 1807 } 1808 1809 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1810 Int128 val) 1811 { 1812 env->mscratch = int128_getlo(val); 1813 env->mscratchh = int128_gethi(val); 1814 return RISCV_EXCP_NONE; 1815 } 1816 1817 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1818 target_ulong *val) 1819 { 1820 *val = env->mscratch; 1821 return RISCV_EXCP_NONE; 1822 } 1823 1824 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1825 target_ulong val) 1826 { 1827 env->mscratch = val; 1828 return RISCV_EXCP_NONE; 1829 } 1830 1831 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1832 target_ulong *val) 1833 { 1834 *val = env->mepc; 1835 return RISCV_EXCP_NONE; 1836 } 1837 1838 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1839 target_ulong val) 1840 { 1841 env->mepc = val; 1842 return RISCV_EXCP_NONE; 1843 } 1844 1845 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1846 target_ulong *val) 1847 { 1848 *val = env->mcause; 1849 return RISCV_EXCP_NONE; 1850 } 1851 1852 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1853 target_ulong val) 1854 { 1855 env->mcause = val; 1856 return RISCV_EXCP_NONE; 1857 } 1858 1859 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1860 target_ulong *val) 1861 { 1862 *val = env->mtval; 1863 return RISCV_EXCP_NONE; 1864 } 1865 1866 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1867 target_ulong val) 1868 { 1869 env->mtval = val; 1870 return RISCV_EXCP_NONE; 1871 } 1872 1873 /* Execution environment configuration setup */ 1874 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1875 target_ulong *val) 1876 { 1877 *val = env->menvcfg; 1878 return RISCV_EXCP_NONE; 1879 } 1880 1881 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1882 target_ulong val) 1883 { 1884 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1885 1886 if (riscv_cpu_mxl(env) == MXL_RV64) { 1887 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1888 } 1889 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1890 1891 return RISCV_EXCP_NONE; 1892 } 1893 1894 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1895 target_ulong *val) 1896 { 1897 *val = env->menvcfg >> 32; 1898 return RISCV_EXCP_NONE; 1899 } 1900 1901 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1902 target_ulong val) 1903 { 1904 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1905 uint64_t valh = (uint64_t)val << 32; 1906 1907 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1908 1909 return RISCV_EXCP_NONE; 1910 } 1911 1912 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1913 target_ulong *val) 1914 { 1915 RISCVException ret; 1916 1917 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1918 if (ret != RISCV_EXCP_NONE) { 1919 return ret; 1920 } 1921 1922 *val = env->senvcfg; 1923 return RISCV_EXCP_NONE; 1924 } 1925 1926 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1927 target_ulong val) 1928 { 1929 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1930 RISCVException ret; 1931 1932 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1933 if (ret != RISCV_EXCP_NONE) { 1934 return ret; 1935 } 1936 1937 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1938 return RISCV_EXCP_NONE; 1939 } 1940 1941 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1942 target_ulong *val) 1943 { 1944 RISCVException ret; 1945 1946 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1947 if (ret != RISCV_EXCP_NONE) { 1948 return ret; 1949 } 1950 1951 *val = env->henvcfg; 1952 return RISCV_EXCP_NONE; 1953 } 1954 1955 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1956 target_ulong val) 1957 { 1958 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1959 RISCVException ret; 1960 1961 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1962 if (ret != RISCV_EXCP_NONE) { 1963 return ret; 1964 } 1965 1966 if (riscv_cpu_mxl(env) == MXL_RV64) { 1967 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 1968 } 1969 1970 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1971 1972 return RISCV_EXCP_NONE; 1973 } 1974 1975 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 1976 target_ulong *val) 1977 { 1978 RISCVException ret; 1979 1980 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1981 if (ret != RISCV_EXCP_NONE) { 1982 return ret; 1983 } 1984 1985 *val = env->henvcfg >> 32; 1986 return RISCV_EXCP_NONE; 1987 } 1988 1989 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 1990 target_ulong val) 1991 { 1992 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 1993 uint64_t valh = (uint64_t)val << 32; 1994 RISCVException ret; 1995 1996 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1997 if (ret != RISCV_EXCP_NONE) { 1998 return ret; 1999 } 2000 2001 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2002 return RISCV_EXCP_NONE; 2003 } 2004 2005 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2006 target_ulong *val) 2007 { 2008 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2009 2010 return RISCV_EXCP_NONE; 2011 } 2012 2013 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2014 uint64_t wr_mask, target_ulong new_val) 2015 { 2016 uint64_t *reg; 2017 2018 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2019 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2020 2021 return RISCV_EXCP_NONE; 2022 } 2023 2024 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2025 target_ulong new_val) 2026 { 2027 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2028 2029 return write_mstateen(env, csrno, wr_mask, new_val); 2030 } 2031 2032 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2033 target_ulong new_val) 2034 { 2035 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2036 } 2037 2038 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2039 target_ulong *val) 2040 { 2041 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2042 2043 return RISCV_EXCP_NONE; 2044 } 2045 2046 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2047 uint64_t wr_mask, target_ulong new_val) 2048 { 2049 uint64_t *reg, val; 2050 2051 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2052 val = (uint64_t)new_val << 32; 2053 val |= *reg & 0xFFFFFFFF; 2054 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2055 2056 return RISCV_EXCP_NONE; 2057 } 2058 2059 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2060 target_ulong new_val) 2061 { 2062 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2063 2064 return write_mstateenh(env, csrno, wr_mask, new_val); 2065 } 2066 2067 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2068 target_ulong new_val) 2069 { 2070 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2071 } 2072 2073 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2074 target_ulong *val) 2075 { 2076 int index = csrno - CSR_HSTATEEN0; 2077 2078 *val = env->hstateen[index] & env->mstateen[index]; 2079 2080 return RISCV_EXCP_NONE; 2081 } 2082 2083 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2084 uint64_t mask, target_ulong new_val) 2085 { 2086 int index = csrno - CSR_HSTATEEN0; 2087 uint64_t *reg, wr_mask; 2088 2089 reg = &env->hstateen[index]; 2090 wr_mask = env->mstateen[index] & mask; 2091 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2092 2093 return RISCV_EXCP_NONE; 2094 } 2095 2096 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2097 target_ulong new_val) 2098 { 2099 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2100 2101 return write_hstateen(env, csrno, wr_mask, new_val); 2102 } 2103 2104 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2105 target_ulong new_val) 2106 { 2107 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2108 } 2109 2110 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2111 target_ulong *val) 2112 { 2113 int index = csrno - CSR_HSTATEEN0H; 2114 2115 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2116 2117 return RISCV_EXCP_NONE; 2118 } 2119 2120 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2121 uint64_t mask, target_ulong new_val) 2122 { 2123 int index = csrno - CSR_HSTATEEN0H; 2124 uint64_t *reg, wr_mask, val; 2125 2126 reg = &env->hstateen[index]; 2127 val = (uint64_t)new_val << 32; 2128 val |= *reg & 0xFFFFFFFF; 2129 wr_mask = env->mstateen[index] & mask; 2130 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2131 2132 return RISCV_EXCP_NONE; 2133 } 2134 2135 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2136 target_ulong new_val) 2137 { 2138 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2139 2140 return write_hstateenh(env, csrno, wr_mask, new_val); 2141 } 2142 2143 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2144 target_ulong new_val) 2145 { 2146 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2147 } 2148 2149 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2150 target_ulong *val) 2151 { 2152 bool virt = riscv_cpu_virt_enabled(env); 2153 int index = csrno - CSR_SSTATEEN0; 2154 2155 *val = env->sstateen[index] & env->mstateen[index]; 2156 if (virt) { 2157 *val &= env->hstateen[index]; 2158 } 2159 2160 return RISCV_EXCP_NONE; 2161 } 2162 2163 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2164 uint64_t mask, target_ulong new_val) 2165 { 2166 bool virt = riscv_cpu_virt_enabled(env); 2167 int index = csrno - CSR_SSTATEEN0; 2168 uint64_t wr_mask; 2169 uint64_t *reg; 2170 2171 wr_mask = env->mstateen[index] & mask; 2172 if (virt) { 2173 wr_mask &= env->hstateen[index]; 2174 } 2175 2176 reg = &env->sstateen[index]; 2177 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2178 2179 return RISCV_EXCP_NONE; 2180 } 2181 2182 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2183 target_ulong new_val) 2184 { 2185 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2186 2187 return write_sstateen(env, csrno, wr_mask, new_val); 2188 } 2189 2190 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2191 target_ulong new_val) 2192 { 2193 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2194 } 2195 2196 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2197 uint64_t *ret_val, 2198 uint64_t new_val, uint64_t wr_mask) 2199 { 2200 RISCVCPU *cpu = env_archcpu(env); 2201 uint64_t old_mip, mask = wr_mask & delegable_ints; 2202 uint32_t gin; 2203 2204 if (mask & MIP_SEIP) { 2205 env->software_seip = new_val & MIP_SEIP; 2206 new_val |= env->external_seip * MIP_SEIP; 2207 } 2208 2209 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2210 get_field(env->menvcfg, MENVCFG_STCE)) { 2211 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2212 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2213 } 2214 2215 if (mask) { 2216 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 2217 } else { 2218 old_mip = env->mip; 2219 } 2220 2221 if (csrno != CSR_HVIP) { 2222 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2223 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2224 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2225 } 2226 2227 if (ret_val) { 2228 *ret_val = old_mip; 2229 } 2230 2231 return RISCV_EXCP_NONE; 2232 } 2233 2234 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2235 target_ulong *ret_val, 2236 target_ulong new_val, target_ulong wr_mask) 2237 { 2238 uint64_t rval; 2239 RISCVException ret; 2240 2241 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2242 if (ret_val) { 2243 *ret_val = rval; 2244 } 2245 2246 return ret; 2247 } 2248 2249 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2250 target_ulong *ret_val, 2251 target_ulong new_val, target_ulong wr_mask) 2252 { 2253 uint64_t rval; 2254 RISCVException ret; 2255 2256 ret = rmw_mip64(env, csrno, &rval, 2257 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2258 if (ret_val) { 2259 *ret_val = rval >> 32; 2260 } 2261 2262 return ret; 2263 } 2264 2265 /* Supervisor Trap Setup */ 2266 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2267 Int128 *val) 2268 { 2269 uint64_t mask = sstatus_v1_10_mask; 2270 uint64_t sstatus = env->mstatus & mask; 2271 if (env->xl != MXL_RV32 || env->debugger) { 2272 mask |= SSTATUS64_UXL; 2273 } 2274 2275 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2276 return RISCV_EXCP_NONE; 2277 } 2278 2279 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2280 target_ulong *val) 2281 { 2282 target_ulong mask = (sstatus_v1_10_mask); 2283 if (env->xl != MXL_RV32 || env->debugger) { 2284 mask |= SSTATUS64_UXL; 2285 } 2286 /* TODO: Use SXL not MXL. */ 2287 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2288 return RISCV_EXCP_NONE; 2289 } 2290 2291 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2292 target_ulong val) 2293 { 2294 target_ulong mask = (sstatus_v1_10_mask); 2295 2296 if (env->xl != MXL_RV32 || env->debugger) { 2297 if ((val & SSTATUS64_UXL) != 0) { 2298 mask |= SSTATUS64_UXL; 2299 } 2300 } 2301 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2302 return write_mstatus(env, CSR_MSTATUS, newval); 2303 } 2304 2305 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2306 uint64_t *ret_val, 2307 uint64_t new_val, uint64_t wr_mask) 2308 { 2309 RISCVException ret; 2310 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2311 2312 /* Bring VS-level bits to correct position */ 2313 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2314 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2315 2316 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2317 if (ret_val) { 2318 *ret_val = (rval & mask) >> 1; 2319 } 2320 2321 return ret; 2322 } 2323 2324 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2325 target_ulong *ret_val, 2326 target_ulong new_val, target_ulong wr_mask) 2327 { 2328 uint64_t rval; 2329 RISCVException ret; 2330 2331 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2332 if (ret_val) { 2333 *ret_val = rval; 2334 } 2335 2336 return ret; 2337 } 2338 2339 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2340 target_ulong *ret_val, 2341 target_ulong new_val, target_ulong wr_mask) 2342 { 2343 uint64_t rval; 2344 RISCVException ret; 2345 2346 ret = rmw_vsie64(env, csrno, &rval, 2347 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2348 if (ret_val) { 2349 *ret_val = rval >> 32; 2350 } 2351 2352 return ret; 2353 } 2354 2355 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2356 uint64_t *ret_val, 2357 uint64_t new_val, uint64_t wr_mask) 2358 { 2359 RISCVException ret; 2360 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2361 2362 if (riscv_cpu_virt_enabled(env)) { 2363 if (env->hvictl & HVICTL_VTI) { 2364 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2365 } 2366 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2367 } else { 2368 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2369 } 2370 2371 if (ret_val) { 2372 *ret_val &= mask; 2373 } 2374 2375 return ret; 2376 } 2377 2378 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2379 target_ulong *ret_val, 2380 target_ulong new_val, target_ulong wr_mask) 2381 { 2382 uint64_t rval; 2383 RISCVException ret; 2384 2385 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2386 if (ret == RISCV_EXCP_NONE && ret_val) { 2387 *ret_val = rval; 2388 } 2389 2390 return ret; 2391 } 2392 2393 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2394 target_ulong *ret_val, 2395 target_ulong new_val, target_ulong wr_mask) 2396 { 2397 uint64_t rval; 2398 RISCVException ret; 2399 2400 ret = rmw_sie64(env, csrno, &rval, 2401 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2402 if (ret_val) { 2403 *ret_val = rval >> 32; 2404 } 2405 2406 return ret; 2407 } 2408 2409 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2410 target_ulong *val) 2411 { 2412 *val = env->stvec; 2413 return RISCV_EXCP_NONE; 2414 } 2415 2416 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2417 target_ulong val) 2418 { 2419 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2420 if ((val & 3) < 2) { 2421 env->stvec = val; 2422 } else { 2423 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2424 } 2425 return RISCV_EXCP_NONE; 2426 } 2427 2428 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2429 target_ulong *val) 2430 { 2431 *val = env->scounteren; 2432 return RISCV_EXCP_NONE; 2433 } 2434 2435 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2436 target_ulong val) 2437 { 2438 env->scounteren = val; 2439 return RISCV_EXCP_NONE; 2440 } 2441 2442 /* Supervisor Trap Handling */ 2443 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2444 Int128 *val) 2445 { 2446 *val = int128_make128(env->sscratch, env->sscratchh); 2447 return RISCV_EXCP_NONE; 2448 } 2449 2450 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2451 Int128 val) 2452 { 2453 env->sscratch = int128_getlo(val); 2454 env->sscratchh = int128_gethi(val); 2455 return RISCV_EXCP_NONE; 2456 } 2457 2458 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2459 target_ulong *val) 2460 { 2461 *val = env->sscratch; 2462 return RISCV_EXCP_NONE; 2463 } 2464 2465 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2466 target_ulong val) 2467 { 2468 env->sscratch = val; 2469 return RISCV_EXCP_NONE; 2470 } 2471 2472 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2473 target_ulong *val) 2474 { 2475 *val = env->sepc; 2476 return RISCV_EXCP_NONE; 2477 } 2478 2479 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2480 target_ulong val) 2481 { 2482 env->sepc = val; 2483 return RISCV_EXCP_NONE; 2484 } 2485 2486 static RISCVException read_scause(CPURISCVState *env, int csrno, 2487 target_ulong *val) 2488 { 2489 *val = env->scause; 2490 return RISCV_EXCP_NONE; 2491 } 2492 2493 static RISCVException write_scause(CPURISCVState *env, int csrno, 2494 target_ulong val) 2495 { 2496 env->scause = val; 2497 return RISCV_EXCP_NONE; 2498 } 2499 2500 static RISCVException read_stval(CPURISCVState *env, int csrno, 2501 target_ulong *val) 2502 { 2503 *val = env->stval; 2504 return RISCV_EXCP_NONE; 2505 } 2506 2507 static RISCVException write_stval(CPURISCVState *env, int csrno, 2508 target_ulong val) 2509 { 2510 env->stval = val; 2511 return RISCV_EXCP_NONE; 2512 } 2513 2514 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2515 uint64_t *ret_val, 2516 uint64_t new_val, uint64_t wr_mask) 2517 { 2518 RISCVException ret; 2519 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2520 2521 /* Bring VS-level bits to correct position */ 2522 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2523 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2524 2525 ret = rmw_mip64(env, csrno, &rval, new_val, 2526 wr_mask & mask & vsip_writable_mask); 2527 if (ret_val) { 2528 *ret_val = (rval & mask) >> 1; 2529 } 2530 2531 return ret; 2532 } 2533 2534 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2535 target_ulong *ret_val, 2536 target_ulong new_val, target_ulong wr_mask) 2537 { 2538 uint64_t rval; 2539 RISCVException ret; 2540 2541 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2542 if (ret_val) { 2543 *ret_val = rval; 2544 } 2545 2546 return ret; 2547 } 2548 2549 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2550 target_ulong *ret_val, 2551 target_ulong new_val, target_ulong wr_mask) 2552 { 2553 uint64_t rval; 2554 RISCVException ret; 2555 2556 ret = rmw_vsip64(env, csrno, &rval, 2557 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2558 if (ret_val) { 2559 *ret_val = rval >> 32; 2560 } 2561 2562 return ret; 2563 } 2564 2565 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2566 uint64_t *ret_val, 2567 uint64_t new_val, uint64_t wr_mask) 2568 { 2569 RISCVException ret; 2570 uint64_t mask = env->mideleg & sip_writable_mask; 2571 2572 if (riscv_cpu_virt_enabled(env)) { 2573 if (env->hvictl & HVICTL_VTI) { 2574 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2575 } 2576 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2577 } else { 2578 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2579 } 2580 2581 if (ret_val) { 2582 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2583 } 2584 2585 return ret; 2586 } 2587 2588 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2589 target_ulong *ret_val, 2590 target_ulong new_val, target_ulong wr_mask) 2591 { 2592 uint64_t rval; 2593 RISCVException ret; 2594 2595 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2596 if (ret_val) { 2597 *ret_val = rval; 2598 } 2599 2600 return ret; 2601 } 2602 2603 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2604 target_ulong *ret_val, 2605 target_ulong new_val, target_ulong wr_mask) 2606 { 2607 uint64_t rval; 2608 RISCVException ret; 2609 2610 ret = rmw_sip64(env, csrno, &rval, 2611 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2612 if (ret_val) { 2613 *ret_val = rval >> 32; 2614 } 2615 2616 return ret; 2617 } 2618 2619 /* Supervisor Protection and Translation */ 2620 static RISCVException read_satp(CPURISCVState *env, int csrno, 2621 target_ulong *val) 2622 { 2623 if (!riscv_cpu_cfg(env)->mmu) { 2624 *val = 0; 2625 return RISCV_EXCP_NONE; 2626 } 2627 2628 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2629 return RISCV_EXCP_ILLEGAL_INST; 2630 } else { 2631 *val = env->satp; 2632 } 2633 2634 return RISCV_EXCP_NONE; 2635 } 2636 2637 static RISCVException write_satp(CPURISCVState *env, int csrno, 2638 target_ulong val) 2639 { 2640 target_ulong vm, mask; 2641 2642 if (!riscv_cpu_cfg(env)->mmu) { 2643 return RISCV_EXCP_NONE; 2644 } 2645 2646 if (riscv_cpu_mxl(env) == MXL_RV32) { 2647 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2648 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2649 } else { 2650 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2651 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2652 } 2653 2654 if (vm && mask) { 2655 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2656 return RISCV_EXCP_ILLEGAL_INST; 2657 } else { 2658 /* 2659 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2660 * pass these through QEMU's TLB emulation as it improves 2661 * performance. Flushing the TLB on SATP writes with paging 2662 * enabled avoids leaking those invalid cached mappings. 2663 */ 2664 tlb_flush(env_cpu(env)); 2665 env->satp = val; 2666 } 2667 } 2668 return RISCV_EXCP_NONE; 2669 } 2670 2671 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2672 { 2673 int irq, ret; 2674 target_ulong topei; 2675 uint64_t vseip, vsgein; 2676 uint32_t iid, iprio, hviid, hviprio, gein; 2677 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2678 2679 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2680 hviid = get_field(env->hvictl, HVICTL_IID); 2681 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2682 2683 if (gein) { 2684 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2685 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2686 if (gein <= env->geilen && vseip) { 2687 siid[scount] = IRQ_S_EXT; 2688 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2689 if (env->aia_ireg_rmw_fn[PRV_S]) { 2690 /* 2691 * Call machine specific IMSIC register emulation for 2692 * reading TOPEI. 2693 */ 2694 ret = env->aia_ireg_rmw_fn[PRV_S]( 2695 env->aia_ireg_rmw_fn_arg[PRV_S], 2696 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2697 riscv_cpu_mxl_bits(env)), 2698 &topei, 0, 0); 2699 if (!ret && topei) { 2700 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2701 } 2702 } 2703 scount++; 2704 } 2705 } else { 2706 if (hviid == IRQ_S_EXT && hviprio) { 2707 siid[scount] = IRQ_S_EXT; 2708 siprio[scount] = hviprio; 2709 scount++; 2710 } 2711 } 2712 2713 if (env->hvictl & HVICTL_VTI) { 2714 if (hviid != IRQ_S_EXT) { 2715 siid[scount] = hviid; 2716 siprio[scount] = hviprio; 2717 scount++; 2718 } 2719 } else { 2720 irq = riscv_cpu_vsirq_pending(env); 2721 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2722 siid[scount] = irq; 2723 siprio[scount] = env->hviprio[irq]; 2724 scount++; 2725 } 2726 } 2727 2728 iid = 0; 2729 iprio = UINT_MAX; 2730 for (s = 0; s < scount; s++) { 2731 if (siprio[s] < iprio) { 2732 iid = siid[s]; 2733 iprio = siprio[s]; 2734 } 2735 } 2736 2737 if (iid) { 2738 if (env->hvictl & HVICTL_IPRIOM) { 2739 if (iprio > IPRIO_MMAXIPRIO) { 2740 iprio = IPRIO_MMAXIPRIO; 2741 } 2742 if (!iprio) { 2743 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2744 iprio = IPRIO_MMAXIPRIO; 2745 } 2746 } 2747 } else { 2748 iprio = 1; 2749 } 2750 } else { 2751 iprio = 0; 2752 } 2753 2754 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2755 *val |= iprio; 2756 return RISCV_EXCP_NONE; 2757 } 2758 2759 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2760 { 2761 int irq; 2762 uint8_t iprio; 2763 2764 if (riscv_cpu_virt_enabled(env)) { 2765 return read_vstopi(env, CSR_VSTOPI, val); 2766 } 2767 2768 irq = riscv_cpu_sirq_pending(env); 2769 if (irq <= 0 || irq > 63) { 2770 *val = 0; 2771 } else { 2772 iprio = env->siprio[irq]; 2773 if (!iprio) { 2774 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2775 iprio = IPRIO_MMAXIPRIO; 2776 } 2777 } 2778 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2779 *val |= iprio; 2780 } 2781 2782 return RISCV_EXCP_NONE; 2783 } 2784 2785 /* Hypervisor Extensions */ 2786 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2787 target_ulong *val) 2788 { 2789 *val = env->hstatus; 2790 if (riscv_cpu_mxl(env) != MXL_RV32) { 2791 /* We only support 64-bit VSXL */ 2792 *val = set_field(*val, HSTATUS_VSXL, 2); 2793 } 2794 /* We only support little endian */ 2795 *val = set_field(*val, HSTATUS_VSBE, 0); 2796 return RISCV_EXCP_NONE; 2797 } 2798 2799 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2800 target_ulong val) 2801 { 2802 env->hstatus = val; 2803 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2804 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2805 } 2806 if (get_field(val, HSTATUS_VSBE) != 0) { 2807 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2808 } 2809 return RISCV_EXCP_NONE; 2810 } 2811 2812 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2813 target_ulong *val) 2814 { 2815 *val = env->hedeleg; 2816 return RISCV_EXCP_NONE; 2817 } 2818 2819 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2820 target_ulong val) 2821 { 2822 env->hedeleg = val & vs_delegable_excps; 2823 return RISCV_EXCP_NONE; 2824 } 2825 2826 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2827 uint64_t *ret_val, 2828 uint64_t new_val, uint64_t wr_mask) 2829 { 2830 uint64_t mask = wr_mask & vs_delegable_ints; 2831 2832 if (ret_val) { 2833 *ret_val = env->hideleg & vs_delegable_ints; 2834 } 2835 2836 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2837 return RISCV_EXCP_NONE; 2838 } 2839 2840 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2841 target_ulong *ret_val, 2842 target_ulong new_val, target_ulong wr_mask) 2843 { 2844 uint64_t rval; 2845 RISCVException ret; 2846 2847 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2848 if (ret_val) { 2849 *ret_val = rval; 2850 } 2851 2852 return ret; 2853 } 2854 2855 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2856 target_ulong *ret_val, 2857 target_ulong new_val, target_ulong wr_mask) 2858 { 2859 uint64_t rval; 2860 RISCVException ret; 2861 2862 ret = rmw_hideleg64(env, csrno, &rval, 2863 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2864 if (ret_val) { 2865 *ret_val = rval >> 32; 2866 } 2867 2868 return ret; 2869 } 2870 2871 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2872 uint64_t *ret_val, 2873 uint64_t new_val, uint64_t wr_mask) 2874 { 2875 RISCVException ret; 2876 2877 ret = rmw_mip64(env, csrno, ret_val, new_val, 2878 wr_mask & hvip_writable_mask); 2879 if (ret_val) { 2880 *ret_val &= VS_MODE_INTERRUPTS; 2881 } 2882 2883 return ret; 2884 } 2885 2886 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2887 target_ulong *ret_val, 2888 target_ulong new_val, target_ulong wr_mask) 2889 { 2890 uint64_t rval; 2891 RISCVException ret; 2892 2893 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2894 if (ret_val) { 2895 *ret_val = rval; 2896 } 2897 2898 return ret; 2899 } 2900 2901 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2902 target_ulong *ret_val, 2903 target_ulong new_val, target_ulong wr_mask) 2904 { 2905 uint64_t rval; 2906 RISCVException ret; 2907 2908 ret = rmw_hvip64(env, csrno, &rval, 2909 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2910 if (ret_val) { 2911 *ret_val = rval >> 32; 2912 } 2913 2914 return ret; 2915 } 2916 2917 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2918 target_ulong *ret_value, 2919 target_ulong new_value, target_ulong write_mask) 2920 { 2921 int ret = rmw_mip(env, csrno, ret_value, new_value, 2922 write_mask & hip_writable_mask); 2923 2924 if (ret_value) { 2925 *ret_value &= HS_MODE_INTERRUPTS; 2926 } 2927 return ret; 2928 } 2929 2930 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2931 target_ulong *ret_val, 2932 target_ulong new_val, target_ulong wr_mask) 2933 { 2934 uint64_t rval; 2935 RISCVException ret; 2936 2937 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2938 if (ret_val) { 2939 *ret_val = rval & HS_MODE_INTERRUPTS; 2940 } 2941 2942 return ret; 2943 } 2944 2945 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2946 target_ulong *val) 2947 { 2948 *val = env->hcounteren; 2949 return RISCV_EXCP_NONE; 2950 } 2951 2952 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2953 target_ulong val) 2954 { 2955 env->hcounteren = val; 2956 return RISCV_EXCP_NONE; 2957 } 2958 2959 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2960 target_ulong *val) 2961 { 2962 if (val) { 2963 *val = env->hgeie; 2964 } 2965 return RISCV_EXCP_NONE; 2966 } 2967 2968 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2969 target_ulong val) 2970 { 2971 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2972 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2973 env->hgeie = val; 2974 /* Update mip.SGEIP bit */ 2975 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2976 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2977 return RISCV_EXCP_NONE; 2978 } 2979 2980 static RISCVException read_htval(CPURISCVState *env, int csrno, 2981 target_ulong *val) 2982 { 2983 *val = env->htval; 2984 return RISCV_EXCP_NONE; 2985 } 2986 2987 static RISCVException write_htval(CPURISCVState *env, int csrno, 2988 target_ulong val) 2989 { 2990 env->htval = val; 2991 return RISCV_EXCP_NONE; 2992 } 2993 2994 static RISCVException read_htinst(CPURISCVState *env, int csrno, 2995 target_ulong *val) 2996 { 2997 *val = env->htinst; 2998 return RISCV_EXCP_NONE; 2999 } 3000 3001 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3002 target_ulong val) 3003 { 3004 return RISCV_EXCP_NONE; 3005 } 3006 3007 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3008 target_ulong *val) 3009 { 3010 if (val) { 3011 *val = env->hgeip; 3012 } 3013 return RISCV_EXCP_NONE; 3014 } 3015 3016 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3017 target_ulong *val) 3018 { 3019 *val = env->hgatp; 3020 return RISCV_EXCP_NONE; 3021 } 3022 3023 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3024 target_ulong val) 3025 { 3026 env->hgatp = val; 3027 return RISCV_EXCP_NONE; 3028 } 3029 3030 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3031 target_ulong *val) 3032 { 3033 if (!env->rdtime_fn) { 3034 return RISCV_EXCP_ILLEGAL_INST; 3035 } 3036 3037 *val = env->htimedelta; 3038 return RISCV_EXCP_NONE; 3039 } 3040 3041 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3042 target_ulong val) 3043 { 3044 RISCVCPU *cpu = env_archcpu(env); 3045 3046 if (!env->rdtime_fn) { 3047 return RISCV_EXCP_ILLEGAL_INST; 3048 } 3049 3050 if (riscv_cpu_mxl(env) == MXL_RV32) { 3051 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3052 } else { 3053 env->htimedelta = val; 3054 } 3055 3056 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3057 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3058 env->htimedelta, MIP_VSTIP); 3059 } 3060 3061 return RISCV_EXCP_NONE; 3062 } 3063 3064 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3065 target_ulong *val) 3066 { 3067 if (!env->rdtime_fn) { 3068 return RISCV_EXCP_ILLEGAL_INST; 3069 } 3070 3071 *val = env->htimedelta >> 32; 3072 return RISCV_EXCP_NONE; 3073 } 3074 3075 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3076 target_ulong val) 3077 { 3078 RISCVCPU *cpu = env_archcpu(env); 3079 3080 if (!env->rdtime_fn) { 3081 return RISCV_EXCP_ILLEGAL_INST; 3082 } 3083 3084 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3085 3086 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3087 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3088 env->htimedelta, MIP_VSTIP); 3089 } 3090 3091 return RISCV_EXCP_NONE; 3092 } 3093 3094 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3095 { 3096 *val = env->hvictl; 3097 return RISCV_EXCP_NONE; 3098 } 3099 3100 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3101 { 3102 env->hvictl = val & HVICTL_VALID_MASK; 3103 return RISCV_EXCP_NONE; 3104 } 3105 3106 static int read_hvipriox(CPURISCVState *env, int first_index, 3107 uint8_t *iprio, target_ulong *val) 3108 { 3109 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3110 3111 /* First index has to be a multiple of number of irqs per register */ 3112 if (first_index % num_irqs) { 3113 return (riscv_cpu_virt_enabled(env)) ? 3114 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3115 } 3116 3117 /* Fill-up return value */ 3118 *val = 0; 3119 for (i = 0; i < num_irqs; i++) { 3120 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3121 continue; 3122 } 3123 if (rdzero) { 3124 continue; 3125 } 3126 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3127 } 3128 3129 return RISCV_EXCP_NONE; 3130 } 3131 3132 static int write_hvipriox(CPURISCVState *env, int first_index, 3133 uint8_t *iprio, target_ulong val) 3134 { 3135 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3136 3137 /* First index has to be a multiple of number of irqs per register */ 3138 if (first_index % num_irqs) { 3139 return (riscv_cpu_virt_enabled(env)) ? 3140 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3141 } 3142 3143 /* Fill-up priority arrary */ 3144 for (i = 0; i < num_irqs; i++) { 3145 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3146 continue; 3147 } 3148 if (rdzero) { 3149 iprio[irq] = 0; 3150 } else { 3151 iprio[irq] = (val >> (i * 8)) & 0xff; 3152 } 3153 } 3154 3155 return RISCV_EXCP_NONE; 3156 } 3157 3158 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3159 { 3160 return read_hvipriox(env, 0, env->hviprio, val); 3161 } 3162 3163 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3164 { 3165 return write_hvipriox(env, 0, env->hviprio, val); 3166 } 3167 3168 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3169 { 3170 return read_hvipriox(env, 4, env->hviprio, val); 3171 } 3172 3173 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3174 { 3175 return write_hvipriox(env, 4, env->hviprio, val); 3176 } 3177 3178 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3179 { 3180 return read_hvipriox(env, 8, env->hviprio, val); 3181 } 3182 3183 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3184 { 3185 return write_hvipriox(env, 8, env->hviprio, val); 3186 } 3187 3188 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3189 { 3190 return read_hvipriox(env, 12, env->hviprio, val); 3191 } 3192 3193 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3194 { 3195 return write_hvipriox(env, 12, env->hviprio, val); 3196 } 3197 3198 /* Virtual CSR Registers */ 3199 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3200 target_ulong *val) 3201 { 3202 *val = env->vsstatus; 3203 return RISCV_EXCP_NONE; 3204 } 3205 3206 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3207 target_ulong val) 3208 { 3209 uint64_t mask = (target_ulong)-1; 3210 if ((val & VSSTATUS64_UXL) == 0) { 3211 mask &= ~VSSTATUS64_UXL; 3212 } 3213 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3214 return RISCV_EXCP_NONE; 3215 } 3216 3217 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3218 { 3219 *val = env->vstvec; 3220 return RISCV_EXCP_NONE; 3221 } 3222 3223 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3224 target_ulong val) 3225 { 3226 env->vstvec = val; 3227 return RISCV_EXCP_NONE; 3228 } 3229 3230 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3231 target_ulong *val) 3232 { 3233 *val = env->vsscratch; 3234 return RISCV_EXCP_NONE; 3235 } 3236 3237 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3238 target_ulong val) 3239 { 3240 env->vsscratch = val; 3241 return RISCV_EXCP_NONE; 3242 } 3243 3244 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3245 target_ulong *val) 3246 { 3247 *val = env->vsepc; 3248 return RISCV_EXCP_NONE; 3249 } 3250 3251 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3252 target_ulong val) 3253 { 3254 env->vsepc = val; 3255 return RISCV_EXCP_NONE; 3256 } 3257 3258 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3259 target_ulong *val) 3260 { 3261 *val = env->vscause; 3262 return RISCV_EXCP_NONE; 3263 } 3264 3265 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3266 target_ulong val) 3267 { 3268 env->vscause = val; 3269 return RISCV_EXCP_NONE; 3270 } 3271 3272 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3273 target_ulong *val) 3274 { 3275 *val = env->vstval; 3276 return RISCV_EXCP_NONE; 3277 } 3278 3279 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3280 target_ulong val) 3281 { 3282 env->vstval = val; 3283 return RISCV_EXCP_NONE; 3284 } 3285 3286 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3287 target_ulong *val) 3288 { 3289 *val = env->vsatp; 3290 return RISCV_EXCP_NONE; 3291 } 3292 3293 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3294 target_ulong val) 3295 { 3296 env->vsatp = val; 3297 return RISCV_EXCP_NONE; 3298 } 3299 3300 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3301 target_ulong *val) 3302 { 3303 *val = env->mtval2; 3304 return RISCV_EXCP_NONE; 3305 } 3306 3307 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3308 target_ulong val) 3309 { 3310 env->mtval2 = val; 3311 return RISCV_EXCP_NONE; 3312 } 3313 3314 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3315 target_ulong *val) 3316 { 3317 *val = env->mtinst; 3318 return RISCV_EXCP_NONE; 3319 } 3320 3321 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3322 target_ulong val) 3323 { 3324 env->mtinst = val; 3325 return RISCV_EXCP_NONE; 3326 } 3327 3328 /* Physical Memory Protection */ 3329 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3330 target_ulong *val) 3331 { 3332 *val = mseccfg_csr_read(env); 3333 return RISCV_EXCP_NONE; 3334 } 3335 3336 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3337 target_ulong val) 3338 { 3339 mseccfg_csr_write(env, val); 3340 return RISCV_EXCP_NONE; 3341 } 3342 3343 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3344 target_ulong *val) 3345 { 3346 uint32_t reg_index = csrno - CSR_PMPCFG0; 3347 3348 *val = pmpcfg_csr_read(env, reg_index); 3349 return RISCV_EXCP_NONE; 3350 } 3351 3352 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3353 target_ulong val) 3354 { 3355 uint32_t reg_index = csrno - CSR_PMPCFG0; 3356 3357 pmpcfg_csr_write(env, reg_index, val); 3358 return RISCV_EXCP_NONE; 3359 } 3360 3361 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3362 target_ulong *val) 3363 { 3364 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3365 return RISCV_EXCP_NONE; 3366 } 3367 3368 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3369 target_ulong val) 3370 { 3371 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3372 return RISCV_EXCP_NONE; 3373 } 3374 3375 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3376 target_ulong *val) 3377 { 3378 *val = tselect_csr_read(env); 3379 return RISCV_EXCP_NONE; 3380 } 3381 3382 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3383 target_ulong val) 3384 { 3385 tselect_csr_write(env, val); 3386 return RISCV_EXCP_NONE; 3387 } 3388 3389 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3390 target_ulong *val) 3391 { 3392 /* return 0 in tdata1 to end the trigger enumeration */ 3393 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3394 *val = 0; 3395 return RISCV_EXCP_NONE; 3396 } 3397 3398 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3399 return RISCV_EXCP_ILLEGAL_INST; 3400 } 3401 3402 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3403 return RISCV_EXCP_NONE; 3404 } 3405 3406 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3407 target_ulong val) 3408 { 3409 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3410 return RISCV_EXCP_ILLEGAL_INST; 3411 } 3412 3413 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3414 return RISCV_EXCP_NONE; 3415 } 3416 3417 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3418 target_ulong *val) 3419 { 3420 *val = tinfo_csr_read(env); 3421 return RISCV_EXCP_NONE; 3422 } 3423 3424 /* 3425 * Functions to access Pointer Masking feature registers 3426 * We have to check if current priv lvl could modify 3427 * csr in given mode 3428 */ 3429 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3430 { 3431 int csr_priv = get_field(csrno, 0x300); 3432 int pm_current; 3433 3434 if (env->debugger) { 3435 return false; 3436 } 3437 /* 3438 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3439 * so allow the access 3440 */ 3441 if (env->priv != csr_priv) { 3442 return false; 3443 } 3444 switch (env->priv) { 3445 case PRV_M: 3446 pm_current = get_field(env->mmte, M_PM_CURRENT); 3447 break; 3448 case PRV_S: 3449 pm_current = get_field(env->mmte, S_PM_CURRENT); 3450 break; 3451 case PRV_U: 3452 pm_current = get_field(env->mmte, U_PM_CURRENT); 3453 break; 3454 default: 3455 g_assert_not_reached(); 3456 } 3457 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3458 return !pm_current; 3459 } 3460 3461 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3462 target_ulong *val) 3463 { 3464 *val = env->mmte & MMTE_MASK; 3465 return RISCV_EXCP_NONE; 3466 } 3467 3468 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3469 target_ulong val) 3470 { 3471 uint64_t mstatus; 3472 target_ulong wpri_val = val & MMTE_MASK; 3473 3474 if (val != wpri_val) { 3475 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3476 "MMTE: WPRI violation written 0x", val, 3477 "vs expected 0x", wpri_val); 3478 } 3479 /* for machine mode pm.current is hardwired to 1 */ 3480 wpri_val |= MMTE_M_PM_CURRENT; 3481 3482 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3483 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3484 env->mmte = wpri_val | PM_EXT_DIRTY; 3485 riscv_cpu_update_mask(env); 3486 3487 /* Set XS and SD bits, since PM CSRs are dirty */ 3488 mstatus = env->mstatus | MSTATUS_XS; 3489 write_mstatus(env, csrno, mstatus); 3490 return RISCV_EXCP_NONE; 3491 } 3492 3493 static RISCVException read_smte(CPURISCVState *env, int csrno, 3494 target_ulong *val) 3495 { 3496 *val = env->mmte & SMTE_MASK; 3497 return RISCV_EXCP_NONE; 3498 } 3499 3500 static RISCVException write_smte(CPURISCVState *env, int csrno, 3501 target_ulong val) 3502 { 3503 target_ulong wpri_val = val & SMTE_MASK; 3504 3505 if (val != wpri_val) { 3506 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3507 "SMTE: WPRI violation written 0x", val, 3508 "vs expected 0x", wpri_val); 3509 } 3510 3511 /* if pm.current==0 we can't modify current PM CSRs */ 3512 if (check_pm_current_disabled(env, csrno)) { 3513 return RISCV_EXCP_NONE; 3514 } 3515 3516 wpri_val |= (env->mmte & ~SMTE_MASK); 3517 write_mmte(env, csrno, wpri_val); 3518 return RISCV_EXCP_NONE; 3519 } 3520 3521 static RISCVException read_umte(CPURISCVState *env, int csrno, 3522 target_ulong *val) 3523 { 3524 *val = env->mmte & UMTE_MASK; 3525 return RISCV_EXCP_NONE; 3526 } 3527 3528 static RISCVException write_umte(CPURISCVState *env, int csrno, 3529 target_ulong val) 3530 { 3531 target_ulong wpri_val = val & UMTE_MASK; 3532 3533 if (val != wpri_val) { 3534 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3535 "UMTE: WPRI violation written 0x", val, 3536 "vs expected 0x", wpri_val); 3537 } 3538 3539 if (check_pm_current_disabled(env, csrno)) { 3540 return RISCV_EXCP_NONE; 3541 } 3542 3543 wpri_val |= (env->mmte & ~UMTE_MASK); 3544 write_mmte(env, csrno, wpri_val); 3545 return RISCV_EXCP_NONE; 3546 } 3547 3548 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3549 target_ulong *val) 3550 { 3551 *val = env->mpmmask; 3552 return RISCV_EXCP_NONE; 3553 } 3554 3555 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3556 target_ulong val) 3557 { 3558 uint64_t mstatus; 3559 3560 env->mpmmask = val; 3561 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3562 env->cur_pmmask = val; 3563 } 3564 env->mmte |= PM_EXT_DIRTY; 3565 3566 /* Set XS and SD bits, since PM CSRs are dirty */ 3567 mstatus = env->mstatus | MSTATUS_XS; 3568 write_mstatus(env, csrno, mstatus); 3569 return RISCV_EXCP_NONE; 3570 } 3571 3572 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3573 target_ulong *val) 3574 { 3575 *val = env->spmmask; 3576 return RISCV_EXCP_NONE; 3577 } 3578 3579 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3580 target_ulong val) 3581 { 3582 uint64_t mstatus; 3583 3584 /* if pm.current==0 we can't modify current PM CSRs */ 3585 if (check_pm_current_disabled(env, csrno)) { 3586 return RISCV_EXCP_NONE; 3587 } 3588 env->spmmask = val; 3589 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3590 env->cur_pmmask = val; 3591 } 3592 env->mmte |= PM_EXT_DIRTY; 3593 3594 /* Set XS and SD bits, since PM CSRs are dirty */ 3595 mstatus = env->mstatus | MSTATUS_XS; 3596 write_mstatus(env, csrno, mstatus); 3597 return RISCV_EXCP_NONE; 3598 } 3599 3600 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3601 target_ulong *val) 3602 { 3603 *val = env->upmmask; 3604 return RISCV_EXCP_NONE; 3605 } 3606 3607 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3608 target_ulong val) 3609 { 3610 uint64_t mstatus; 3611 3612 /* if pm.current==0 we can't modify current PM CSRs */ 3613 if (check_pm_current_disabled(env, csrno)) { 3614 return RISCV_EXCP_NONE; 3615 } 3616 env->upmmask = val; 3617 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3618 env->cur_pmmask = val; 3619 } 3620 env->mmte |= PM_EXT_DIRTY; 3621 3622 /* Set XS and SD bits, since PM CSRs are dirty */ 3623 mstatus = env->mstatus | MSTATUS_XS; 3624 write_mstatus(env, csrno, mstatus); 3625 return RISCV_EXCP_NONE; 3626 } 3627 3628 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3629 target_ulong *val) 3630 { 3631 *val = env->mpmbase; 3632 return RISCV_EXCP_NONE; 3633 } 3634 3635 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3636 target_ulong val) 3637 { 3638 uint64_t mstatus; 3639 3640 env->mpmbase = val; 3641 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3642 env->cur_pmbase = val; 3643 } 3644 env->mmte |= PM_EXT_DIRTY; 3645 3646 /* Set XS and SD bits, since PM CSRs are dirty */ 3647 mstatus = env->mstatus | MSTATUS_XS; 3648 write_mstatus(env, csrno, mstatus); 3649 return RISCV_EXCP_NONE; 3650 } 3651 3652 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3653 target_ulong *val) 3654 { 3655 *val = env->spmbase; 3656 return RISCV_EXCP_NONE; 3657 } 3658 3659 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3660 target_ulong val) 3661 { 3662 uint64_t mstatus; 3663 3664 /* if pm.current==0 we can't modify current PM CSRs */ 3665 if (check_pm_current_disabled(env, csrno)) { 3666 return RISCV_EXCP_NONE; 3667 } 3668 env->spmbase = val; 3669 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3670 env->cur_pmbase = val; 3671 } 3672 env->mmte |= PM_EXT_DIRTY; 3673 3674 /* Set XS and SD bits, since PM CSRs are dirty */ 3675 mstatus = env->mstatus | MSTATUS_XS; 3676 write_mstatus(env, csrno, mstatus); 3677 return RISCV_EXCP_NONE; 3678 } 3679 3680 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3681 target_ulong *val) 3682 { 3683 *val = env->upmbase; 3684 return RISCV_EXCP_NONE; 3685 } 3686 3687 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3688 target_ulong val) 3689 { 3690 uint64_t mstatus; 3691 3692 /* if pm.current==0 we can't modify current PM CSRs */ 3693 if (check_pm_current_disabled(env, csrno)) { 3694 return RISCV_EXCP_NONE; 3695 } 3696 env->upmbase = val; 3697 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3698 env->cur_pmbase = val; 3699 } 3700 env->mmte |= PM_EXT_DIRTY; 3701 3702 /* Set XS and SD bits, since PM CSRs are dirty */ 3703 mstatus = env->mstatus | MSTATUS_XS; 3704 write_mstatus(env, csrno, mstatus); 3705 return RISCV_EXCP_NONE; 3706 } 3707 3708 #endif 3709 3710 /* Crypto Extension */ 3711 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3712 target_ulong *ret_value, 3713 target_ulong new_value, 3714 target_ulong write_mask) 3715 { 3716 uint16_t random_v; 3717 Error *random_e = NULL; 3718 int random_r; 3719 target_ulong rval; 3720 3721 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3722 if (unlikely(random_r < 0)) { 3723 /* 3724 * Failed, for unknown reasons in the crypto subsystem. 3725 * The best we can do is log the reason and return a 3726 * failure indication to the guest. There is no reason 3727 * we know to expect the failure to be transitory, so 3728 * indicate DEAD to avoid having the guest spin on WAIT. 3729 */ 3730 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3731 __func__, error_get_pretty(random_e)); 3732 error_free(random_e); 3733 rval = SEED_OPST_DEAD; 3734 } else { 3735 rval = random_v | SEED_OPST_ES16; 3736 } 3737 3738 if (ret_value) { 3739 *ret_value = rval; 3740 } 3741 3742 return RISCV_EXCP_NONE; 3743 } 3744 3745 /* 3746 * riscv_csrrw - read and/or update control and status register 3747 * 3748 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3749 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3750 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3751 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3752 */ 3753 3754 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3755 int csrno, 3756 bool write_mask, 3757 RISCVCPU *cpu) 3758 { 3759 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3760 bool read_only = get_field(csrno, 0xC00) == 3; 3761 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3762 3763 /* ensure the CSR extension is enabled */ 3764 if (!cpu->cfg.ext_icsr) { 3765 return RISCV_EXCP_ILLEGAL_INST; 3766 } 3767 3768 /* privileged spec version check */ 3769 if (env->priv_ver < csr_min_priv) { 3770 return RISCV_EXCP_ILLEGAL_INST; 3771 } 3772 3773 /* read / write check */ 3774 if (write_mask && read_only) { 3775 return RISCV_EXCP_ILLEGAL_INST; 3776 } 3777 3778 /* 3779 * The predicate() not only does existence check but also does some 3780 * access control check which triggers for example virtual instruction 3781 * exception in some cases. When writing read-only CSRs in those cases 3782 * illegal instruction exception should be triggered instead of virtual 3783 * instruction exception. Hence this comes after the read / write check. 3784 */ 3785 g_assert(csr_ops[csrno].predicate != NULL); 3786 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3787 if (ret != RISCV_EXCP_NONE) { 3788 return ret; 3789 } 3790 3791 #if !defined(CONFIG_USER_ONLY) 3792 int csr_priv, effective_priv = env->priv; 3793 3794 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3795 !riscv_cpu_virt_enabled(env)) { 3796 /* 3797 * We are in HS mode. Add 1 to the effective privledge level to 3798 * allow us to access the Hypervisor CSRs. 3799 */ 3800 effective_priv++; 3801 } 3802 3803 csr_priv = get_field(csrno, 0x300); 3804 if (!env->debugger && (effective_priv < csr_priv)) { 3805 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3806 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3807 } 3808 return RISCV_EXCP_ILLEGAL_INST; 3809 } 3810 #endif 3811 return RISCV_EXCP_NONE; 3812 } 3813 3814 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3815 target_ulong *ret_value, 3816 target_ulong new_value, 3817 target_ulong write_mask) 3818 { 3819 RISCVException ret; 3820 target_ulong old_value; 3821 3822 /* execute combined read/write operation if it exists */ 3823 if (csr_ops[csrno].op) { 3824 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3825 } 3826 3827 /* if no accessor exists then return failure */ 3828 if (!csr_ops[csrno].read) { 3829 return RISCV_EXCP_ILLEGAL_INST; 3830 } 3831 /* read old value */ 3832 ret = csr_ops[csrno].read(env, csrno, &old_value); 3833 if (ret != RISCV_EXCP_NONE) { 3834 return ret; 3835 } 3836 3837 /* write value if writable and write mask set, otherwise drop writes */ 3838 if (write_mask) { 3839 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3840 if (csr_ops[csrno].write) { 3841 ret = csr_ops[csrno].write(env, csrno, new_value); 3842 if (ret != RISCV_EXCP_NONE) { 3843 return ret; 3844 } 3845 } 3846 } 3847 3848 /* return old value */ 3849 if (ret_value) { 3850 *ret_value = old_value; 3851 } 3852 3853 return RISCV_EXCP_NONE; 3854 } 3855 3856 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3857 target_ulong *ret_value, 3858 target_ulong new_value, target_ulong write_mask) 3859 { 3860 RISCVCPU *cpu = env_archcpu(env); 3861 3862 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3863 if (ret != RISCV_EXCP_NONE) { 3864 return ret; 3865 } 3866 3867 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3868 } 3869 3870 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3871 Int128 *ret_value, 3872 Int128 new_value, 3873 Int128 write_mask) 3874 { 3875 RISCVException ret; 3876 Int128 old_value; 3877 3878 /* read old value */ 3879 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3880 if (ret != RISCV_EXCP_NONE) { 3881 return ret; 3882 } 3883 3884 /* write value if writable and write mask set, otherwise drop writes */ 3885 if (int128_nz(write_mask)) { 3886 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3887 int128_and(new_value, write_mask)); 3888 if (csr_ops[csrno].write128) { 3889 ret = csr_ops[csrno].write128(env, csrno, new_value); 3890 if (ret != RISCV_EXCP_NONE) { 3891 return ret; 3892 } 3893 } else if (csr_ops[csrno].write) { 3894 /* avoids having to write wrappers for all registers */ 3895 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3896 if (ret != RISCV_EXCP_NONE) { 3897 return ret; 3898 } 3899 } 3900 } 3901 3902 /* return old value */ 3903 if (ret_value) { 3904 *ret_value = old_value; 3905 } 3906 3907 return RISCV_EXCP_NONE; 3908 } 3909 3910 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3911 Int128 *ret_value, 3912 Int128 new_value, Int128 write_mask) 3913 { 3914 RISCVException ret; 3915 RISCVCPU *cpu = env_archcpu(env); 3916 3917 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3918 if (ret != RISCV_EXCP_NONE) { 3919 return ret; 3920 } 3921 3922 if (csr_ops[csrno].read128) { 3923 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3924 } 3925 3926 /* 3927 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3928 * at all defined. 3929 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3930 * significant), for those, this fallback is correctly handling the accesses 3931 */ 3932 target_ulong old_value; 3933 ret = riscv_csrrw_do64(env, csrno, &old_value, 3934 int128_getlo(new_value), 3935 int128_getlo(write_mask)); 3936 if (ret == RISCV_EXCP_NONE && ret_value) { 3937 *ret_value = int128_make64(old_value); 3938 } 3939 return ret; 3940 } 3941 3942 /* 3943 * Debugger support. If not in user mode, set env->debugger before the 3944 * riscv_csrrw call and clear it after the call. 3945 */ 3946 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3947 target_ulong *ret_value, 3948 target_ulong new_value, 3949 target_ulong write_mask) 3950 { 3951 RISCVException ret; 3952 #if !defined(CONFIG_USER_ONLY) 3953 env->debugger = true; 3954 #endif 3955 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3956 #if !defined(CONFIG_USER_ONLY) 3957 env->debugger = false; 3958 #endif 3959 return ret; 3960 } 3961 3962 /* Control and Status Register function table */ 3963 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3964 /* User Floating-Point CSRs */ 3965 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3966 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3967 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3968 /* Vector CSRs */ 3969 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 3970 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 3971 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 3972 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 3973 [CSR_VL] = { "vl", vs, read_vl }, 3974 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 3975 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 3976 /* User Timers and Counters */ 3977 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 3978 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 3979 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 3980 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 3981 3982 /* 3983 * In privileged mode, the monitor will have to emulate TIME CSRs only if 3984 * rdtime callback is not provided by machine/platform emulation. 3985 */ 3986 [CSR_TIME] = { "time", ctr, read_time }, 3987 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 3988 3989 /* Crypto Extension */ 3990 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 3991 3992 #if !defined(CONFIG_USER_ONLY) 3993 /* Machine Timers and Counters */ 3994 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 3995 write_mhpmcounter }, 3996 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 3997 write_mhpmcounter }, 3998 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 3999 write_mhpmcounterh }, 4000 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4001 write_mhpmcounterh }, 4002 4003 /* Machine Information Registers */ 4004 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4005 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4006 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4007 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4008 4009 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4010 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4011 /* Machine Trap Setup */ 4012 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4013 NULL, read_mstatus_i128 }, 4014 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4015 NULL, read_misa_i128 }, 4016 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4017 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4018 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4019 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4020 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4021 write_mcounteren }, 4022 4023 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4024 write_mstatush }, 4025 4026 /* Machine Trap Handling */ 4027 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4028 NULL, read_mscratch_i128, write_mscratch_i128 }, 4029 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4030 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4031 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4032 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4033 4034 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4035 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4036 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4037 4038 /* Machine-Level Interrupts (AIA) */ 4039 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4040 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4041 4042 /* Virtual Interrupts for Supervisor Level (AIA) */ 4043 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4044 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4045 4046 /* Machine-Level High-Half CSRs (AIA) */ 4047 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4048 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4049 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4050 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4051 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4052 4053 /* Execution environment configuration */ 4054 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4055 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4056 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4057 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4058 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4059 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4060 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4061 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4062 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4063 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4064 4065 /* Smstateen extension CSRs */ 4066 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4067 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4068 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4069 write_mstateen0h, 4070 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4071 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4072 write_mstateen_1_3, 4073 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4074 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4075 write_mstateenh_1_3, 4076 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4077 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4078 write_mstateen_1_3, 4079 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4080 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4081 write_mstateenh_1_3, 4082 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4083 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4084 write_mstateen_1_3, 4085 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4086 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4087 write_mstateenh_1_3, 4088 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4089 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4090 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4091 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4092 write_hstateen0h, 4093 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4094 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4095 write_hstateen_1_3, 4096 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4097 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4098 write_hstateenh_1_3, 4099 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4100 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4101 write_hstateen_1_3, 4102 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4103 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4104 write_hstateenh_1_3, 4105 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4106 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4107 write_hstateen_1_3, 4108 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4109 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4110 write_hstateenh_1_3, 4111 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4112 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4113 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4114 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4115 write_sstateen_1_3, 4116 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4117 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4118 write_sstateen_1_3, 4119 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4120 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4121 write_sstateen_1_3, 4122 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4123 4124 /* Supervisor Trap Setup */ 4125 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4126 NULL, read_sstatus_i128 }, 4127 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4128 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4129 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4130 write_scounteren }, 4131 4132 /* Supervisor Trap Handling */ 4133 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4134 NULL, read_sscratch_i128, write_sscratch_i128 }, 4135 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4136 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4137 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4138 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4139 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4140 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4141 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4142 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4143 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4144 write_vstimecmp, 4145 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4146 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4147 write_vstimecmph, 4148 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4149 4150 /* Supervisor Protection and Translation */ 4151 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 4152 4153 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4154 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4155 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4156 4157 /* Supervisor-Level Interrupts (AIA) */ 4158 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4159 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4160 4161 /* Supervisor-Level High-Half CSRs (AIA) */ 4162 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4163 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4164 4165 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4166 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4167 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4168 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4169 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4170 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4171 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4172 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4173 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4174 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4175 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4176 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4177 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4178 write_hcounteren, 4179 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4180 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4181 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4182 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4183 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4184 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4185 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4186 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4187 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4188 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 4189 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4190 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4191 write_htimedelta, 4192 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4193 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4194 write_htimedeltah, 4195 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4196 4197 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4198 write_vsstatus, 4199 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4200 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4201 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4202 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4203 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4204 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4205 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4206 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4207 write_vsscratch, 4208 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4209 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4210 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4211 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4212 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4213 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4214 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4215 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4216 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4217 4218 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4219 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4220 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4221 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4222 4223 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4224 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4225 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4226 write_hvictl }, 4227 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4228 write_hviprio1 }, 4229 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4230 write_hviprio2 }, 4231 4232 /* 4233 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4234 */ 4235 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4236 rmw_xiselect }, 4237 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4238 4239 /* VS-Level Interrupts (H-extension with AIA) */ 4240 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4241 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4242 4243 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4244 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4245 rmw_hidelegh }, 4246 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4247 write_ignore }, 4248 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4249 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4250 write_hviprio1h }, 4251 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4252 write_hviprio2h }, 4253 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4254 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4255 4256 /* Physical Memory Protection */ 4257 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4258 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4259 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4260 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4261 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4262 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4263 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4264 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4265 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4266 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4267 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4268 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4269 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4270 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4271 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4272 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4273 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4274 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4275 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4276 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4277 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4278 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4279 4280 /* Debug CSRs */ 4281 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4282 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4283 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4284 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4285 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4286 4287 /* User Pointer Masking */ 4288 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4289 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4290 write_upmmask }, 4291 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4292 write_upmbase }, 4293 /* Machine Pointer Masking */ 4294 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4295 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4296 write_mpmmask }, 4297 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4298 write_mpmbase }, 4299 /* Supervisor Pointer Masking */ 4300 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4301 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4302 write_spmmask }, 4303 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4304 write_spmbase }, 4305 4306 /* Performance Counters */ 4307 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4308 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4309 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4310 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4311 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4312 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4313 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4314 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4315 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4316 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4317 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4318 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4319 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4320 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4321 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4322 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4323 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4324 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4325 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4326 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4327 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4328 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4329 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4330 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4331 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4332 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4333 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4334 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4335 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4336 4337 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4338 write_mhpmcounter }, 4339 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4340 write_mhpmcounter }, 4341 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4342 write_mhpmcounter }, 4343 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4344 write_mhpmcounter }, 4345 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4346 write_mhpmcounter }, 4347 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4348 write_mhpmcounter }, 4349 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4350 write_mhpmcounter }, 4351 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4352 write_mhpmcounter }, 4353 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4354 write_mhpmcounter }, 4355 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4356 write_mhpmcounter }, 4357 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4358 write_mhpmcounter }, 4359 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4360 write_mhpmcounter }, 4361 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4362 write_mhpmcounter }, 4363 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4364 write_mhpmcounter }, 4365 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4366 write_mhpmcounter }, 4367 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4368 write_mhpmcounter }, 4369 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4370 write_mhpmcounter }, 4371 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4372 write_mhpmcounter }, 4373 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4374 write_mhpmcounter }, 4375 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4376 write_mhpmcounter }, 4377 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4378 write_mhpmcounter }, 4379 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4380 write_mhpmcounter }, 4381 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4382 write_mhpmcounter }, 4383 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4384 write_mhpmcounter }, 4385 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4386 write_mhpmcounter }, 4387 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4388 write_mhpmcounter }, 4389 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4390 write_mhpmcounter }, 4391 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4392 write_mhpmcounter }, 4393 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4394 write_mhpmcounter }, 4395 4396 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4397 write_mcountinhibit, 4398 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4399 4400 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4401 write_mhpmevent }, 4402 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4403 write_mhpmevent }, 4404 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4405 write_mhpmevent }, 4406 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4407 write_mhpmevent }, 4408 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4409 write_mhpmevent }, 4410 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4411 write_mhpmevent }, 4412 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4413 write_mhpmevent }, 4414 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4415 write_mhpmevent }, 4416 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4417 write_mhpmevent }, 4418 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4419 write_mhpmevent }, 4420 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4421 write_mhpmevent }, 4422 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4423 write_mhpmevent }, 4424 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4425 write_mhpmevent }, 4426 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4427 write_mhpmevent }, 4428 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4429 write_mhpmevent }, 4430 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4431 write_mhpmevent }, 4432 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4433 write_mhpmevent }, 4434 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4435 write_mhpmevent }, 4436 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4437 write_mhpmevent }, 4438 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4439 write_mhpmevent }, 4440 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4441 write_mhpmevent }, 4442 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4443 write_mhpmevent }, 4444 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4445 write_mhpmevent }, 4446 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4447 write_mhpmevent }, 4448 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4449 write_mhpmevent }, 4450 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4451 write_mhpmevent }, 4452 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4453 write_mhpmevent }, 4454 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4455 write_mhpmevent }, 4456 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4457 write_mhpmevent }, 4458 4459 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4460 write_mhpmeventh, 4461 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4462 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4463 write_mhpmeventh, 4464 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4465 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4466 write_mhpmeventh, 4467 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4468 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4469 write_mhpmeventh, 4470 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4471 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4472 write_mhpmeventh, 4473 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4474 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4475 write_mhpmeventh, 4476 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4477 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4478 write_mhpmeventh, 4479 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4480 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4481 write_mhpmeventh, 4482 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4483 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4484 write_mhpmeventh, 4485 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4486 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4487 write_mhpmeventh, 4488 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4489 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4490 write_mhpmeventh, 4491 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4492 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4493 write_mhpmeventh, 4494 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4495 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4496 write_mhpmeventh, 4497 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4498 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4499 write_mhpmeventh, 4500 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4501 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4502 write_mhpmeventh, 4503 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4504 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4505 write_mhpmeventh, 4506 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4507 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4508 write_mhpmeventh, 4509 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4510 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4511 write_mhpmeventh, 4512 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4513 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4514 write_mhpmeventh, 4515 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4516 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4517 write_mhpmeventh, 4518 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4519 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4520 write_mhpmeventh, 4521 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4522 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4523 write_mhpmeventh, 4524 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4525 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4526 write_mhpmeventh, 4527 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4528 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4529 write_mhpmeventh, 4530 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4531 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4532 write_mhpmeventh, 4533 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4534 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4535 write_mhpmeventh, 4536 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4537 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4538 write_mhpmeventh, 4539 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4540 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4541 write_mhpmeventh, 4542 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4543 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4544 write_mhpmeventh, 4545 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4546 4547 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4548 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4549 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4550 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4551 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4552 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4553 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4554 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4555 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4556 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4557 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4558 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4559 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4560 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4561 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4562 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4563 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4564 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4565 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4566 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4567 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4568 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4569 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4570 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4571 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4572 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4573 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4574 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4575 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4576 4577 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4578 write_mhpmcounterh }, 4579 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4580 write_mhpmcounterh }, 4581 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4582 write_mhpmcounterh }, 4583 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4584 write_mhpmcounterh }, 4585 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4586 write_mhpmcounterh }, 4587 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4588 write_mhpmcounterh }, 4589 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4590 write_mhpmcounterh }, 4591 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4592 write_mhpmcounterh }, 4593 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4594 write_mhpmcounterh }, 4595 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4596 write_mhpmcounterh }, 4597 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4598 write_mhpmcounterh }, 4599 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4600 write_mhpmcounterh }, 4601 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4602 write_mhpmcounterh }, 4603 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4604 write_mhpmcounterh }, 4605 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4606 write_mhpmcounterh }, 4607 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4608 write_mhpmcounterh }, 4609 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4610 write_mhpmcounterh }, 4611 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4612 write_mhpmcounterh }, 4613 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4614 write_mhpmcounterh }, 4615 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4616 write_mhpmcounterh }, 4617 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4618 write_mhpmcounterh }, 4619 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4620 write_mhpmcounterh }, 4621 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4622 write_mhpmcounterh }, 4623 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4624 write_mhpmcounterh }, 4625 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4626 write_mhpmcounterh }, 4627 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4628 write_mhpmcounterh }, 4629 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4630 write_mhpmcounterh }, 4631 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4632 write_mhpmcounterh }, 4633 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4634 write_mhpmcounterh }, 4635 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4636 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4637 4638 #endif /* !CONFIG_USER_ONLY */ 4639 }; 4640