1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "qemu/main-loop.h" 25 #include "exec/exec-all.h" 26 #include "sysemu/cpu-timers.h" 27 28 /* CSR function table public API */ 29 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 30 { 31 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 32 } 33 34 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 35 { 36 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 37 } 38 39 /* Predicates */ 40 static RISCVException fs(CPURISCVState *env, int csrno) 41 { 42 #if !defined(CONFIG_USER_ONLY) 43 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 44 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 45 return RISCV_EXCP_ILLEGAL_INST; 46 } 47 #endif 48 return RISCV_EXCP_NONE; 49 } 50 51 static RISCVException vs(CPURISCVState *env, int csrno) 52 { 53 CPUState *cs = env_cpu(env); 54 RISCVCPU *cpu = RISCV_CPU(cs); 55 56 if (env->misa_ext & RVV || 57 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 58 #if !defined(CONFIG_USER_ONLY) 59 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 60 return RISCV_EXCP_ILLEGAL_INST; 61 } 62 #endif 63 return RISCV_EXCP_NONE; 64 } 65 return RISCV_EXCP_ILLEGAL_INST; 66 } 67 68 static RISCVException ctr(CPURISCVState *env, int csrno) 69 { 70 #if !defined(CONFIG_USER_ONLY) 71 CPUState *cs = env_cpu(env); 72 RISCVCPU *cpu = RISCV_CPU(cs); 73 74 if (!cpu->cfg.ext_counters) { 75 /* The Counters extensions is not enabled */ 76 return RISCV_EXCP_ILLEGAL_INST; 77 } 78 79 if (riscv_cpu_virt_enabled(env)) { 80 switch (csrno) { 81 case CSR_CYCLE: 82 if (!get_field(env->hcounteren, COUNTEREN_CY) && 83 get_field(env->mcounteren, COUNTEREN_CY)) { 84 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 85 } 86 break; 87 case CSR_TIME: 88 if (!get_field(env->hcounteren, COUNTEREN_TM) && 89 get_field(env->mcounteren, COUNTEREN_TM)) { 90 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 91 } 92 break; 93 case CSR_INSTRET: 94 if (!get_field(env->hcounteren, COUNTEREN_IR) && 95 get_field(env->mcounteren, COUNTEREN_IR)) { 96 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 97 } 98 break; 99 case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31: 100 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3)) && 101 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3))) { 102 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 103 } 104 break; 105 } 106 if (riscv_cpu_mxl(env) == MXL_RV32) { 107 switch (csrno) { 108 case CSR_CYCLEH: 109 if (!get_field(env->hcounteren, COUNTEREN_CY) && 110 get_field(env->mcounteren, COUNTEREN_CY)) { 111 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 112 } 113 break; 114 case CSR_TIMEH: 115 if (!get_field(env->hcounteren, COUNTEREN_TM) && 116 get_field(env->mcounteren, COUNTEREN_TM)) { 117 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 118 } 119 break; 120 case CSR_INSTRETH: 121 if (!get_field(env->hcounteren, COUNTEREN_IR) && 122 get_field(env->mcounteren, COUNTEREN_IR)) { 123 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 124 } 125 break; 126 case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H: 127 if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3H)) && 128 get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3H))) { 129 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 130 } 131 break; 132 } 133 } 134 } 135 #endif 136 return RISCV_EXCP_NONE; 137 } 138 139 static RISCVException ctr32(CPURISCVState *env, int csrno) 140 { 141 if (riscv_cpu_mxl(env) != MXL_RV32) { 142 return RISCV_EXCP_ILLEGAL_INST; 143 } 144 145 return ctr(env, csrno); 146 } 147 148 #if !defined(CONFIG_USER_ONLY) 149 static RISCVException any(CPURISCVState *env, int csrno) 150 { 151 return RISCV_EXCP_NONE; 152 } 153 154 static RISCVException any32(CPURISCVState *env, int csrno) 155 { 156 if (riscv_cpu_mxl(env) != MXL_RV32) { 157 return RISCV_EXCP_ILLEGAL_INST; 158 } 159 160 return any(env, csrno); 161 162 } 163 164 static int aia_any(CPURISCVState *env, int csrno) 165 { 166 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 167 return RISCV_EXCP_ILLEGAL_INST; 168 } 169 170 return any(env, csrno); 171 } 172 173 static int aia_any32(CPURISCVState *env, int csrno) 174 { 175 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 176 return RISCV_EXCP_ILLEGAL_INST; 177 } 178 179 return any32(env, csrno); 180 } 181 182 static RISCVException smode(CPURISCVState *env, int csrno) 183 { 184 if (riscv_has_ext(env, RVS)) { 185 return RISCV_EXCP_NONE; 186 } 187 188 return RISCV_EXCP_ILLEGAL_INST; 189 } 190 191 static int smode32(CPURISCVState *env, int csrno) 192 { 193 if (riscv_cpu_mxl(env) != MXL_RV32) { 194 return RISCV_EXCP_ILLEGAL_INST; 195 } 196 197 return smode(env, csrno); 198 } 199 200 static int aia_smode(CPURISCVState *env, int csrno) 201 { 202 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 203 return RISCV_EXCP_ILLEGAL_INST; 204 } 205 206 return smode(env, csrno); 207 } 208 209 static int aia_smode32(CPURISCVState *env, int csrno) 210 { 211 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 212 return RISCV_EXCP_ILLEGAL_INST; 213 } 214 215 return smode32(env, csrno); 216 } 217 218 static RISCVException hmode(CPURISCVState *env, int csrno) 219 { 220 if (riscv_has_ext(env, RVS) && 221 riscv_has_ext(env, RVH)) { 222 /* Hypervisor extension is supported */ 223 if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 224 env->priv == PRV_M) { 225 return RISCV_EXCP_NONE; 226 } else { 227 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 228 } 229 } 230 231 return RISCV_EXCP_ILLEGAL_INST; 232 } 233 234 static RISCVException hmode32(CPURISCVState *env, int csrno) 235 { 236 if (riscv_cpu_mxl(env) != MXL_RV32) { 237 if (!riscv_cpu_virt_enabled(env)) { 238 return RISCV_EXCP_ILLEGAL_INST; 239 } else { 240 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 241 } 242 } 243 244 return hmode(env, csrno); 245 246 } 247 248 /* Checks if PointerMasking registers could be accessed */ 249 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 250 { 251 /* Check if j-ext is present */ 252 if (riscv_has_ext(env, RVJ)) { 253 return RISCV_EXCP_NONE; 254 } 255 return RISCV_EXCP_ILLEGAL_INST; 256 } 257 258 static int aia_hmode(CPURISCVState *env, int csrno) 259 { 260 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 261 return RISCV_EXCP_ILLEGAL_INST; 262 } 263 264 return hmode(env, csrno); 265 } 266 267 static int aia_hmode32(CPURISCVState *env, int csrno) 268 { 269 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 270 return RISCV_EXCP_ILLEGAL_INST; 271 } 272 273 return hmode32(env, csrno); 274 } 275 276 static RISCVException pmp(CPURISCVState *env, int csrno) 277 { 278 if (riscv_feature(env, RISCV_FEATURE_PMP)) { 279 return RISCV_EXCP_NONE; 280 } 281 282 return RISCV_EXCP_ILLEGAL_INST; 283 } 284 285 static RISCVException epmp(CPURISCVState *env, int csrno) 286 { 287 if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) { 288 return RISCV_EXCP_NONE; 289 } 290 291 return RISCV_EXCP_ILLEGAL_INST; 292 } 293 #endif 294 295 /* User Floating-Point CSRs */ 296 static RISCVException read_fflags(CPURISCVState *env, int csrno, 297 target_ulong *val) 298 { 299 *val = riscv_cpu_get_fflags(env); 300 return RISCV_EXCP_NONE; 301 } 302 303 static RISCVException write_fflags(CPURISCVState *env, int csrno, 304 target_ulong val) 305 { 306 #if !defined(CONFIG_USER_ONLY) 307 if (riscv_has_ext(env, RVF)) { 308 env->mstatus |= MSTATUS_FS; 309 } 310 #endif 311 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 312 return RISCV_EXCP_NONE; 313 } 314 315 static RISCVException read_frm(CPURISCVState *env, int csrno, 316 target_ulong *val) 317 { 318 *val = env->frm; 319 return RISCV_EXCP_NONE; 320 } 321 322 static RISCVException write_frm(CPURISCVState *env, int csrno, 323 target_ulong val) 324 { 325 #if !defined(CONFIG_USER_ONLY) 326 if (riscv_has_ext(env, RVF)) { 327 env->mstatus |= MSTATUS_FS; 328 } 329 #endif 330 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 331 return RISCV_EXCP_NONE; 332 } 333 334 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 335 target_ulong *val) 336 { 337 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 338 | (env->frm << FSR_RD_SHIFT); 339 return RISCV_EXCP_NONE; 340 } 341 342 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 343 target_ulong val) 344 { 345 #if !defined(CONFIG_USER_ONLY) 346 if (riscv_has_ext(env, RVF)) { 347 env->mstatus |= MSTATUS_FS; 348 } 349 #endif 350 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 351 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 352 return RISCV_EXCP_NONE; 353 } 354 355 static RISCVException read_vtype(CPURISCVState *env, int csrno, 356 target_ulong *val) 357 { 358 uint64_t vill; 359 switch (env->xl) { 360 case MXL_RV32: 361 vill = (uint32_t)env->vill << 31; 362 break; 363 case MXL_RV64: 364 vill = (uint64_t)env->vill << 63; 365 break; 366 default: 367 g_assert_not_reached(); 368 } 369 *val = (target_ulong)vill | env->vtype; 370 return RISCV_EXCP_NONE; 371 } 372 373 static RISCVException read_vl(CPURISCVState *env, int csrno, 374 target_ulong *val) 375 { 376 *val = env->vl; 377 return RISCV_EXCP_NONE; 378 } 379 380 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 381 { 382 *val = env_archcpu(env)->cfg.vlen >> 3; 383 return RISCV_EXCP_NONE; 384 } 385 386 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 387 target_ulong *val) 388 { 389 *val = env->vxrm; 390 return RISCV_EXCP_NONE; 391 } 392 393 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 394 target_ulong val) 395 { 396 #if !defined(CONFIG_USER_ONLY) 397 env->mstatus |= MSTATUS_VS; 398 #endif 399 env->vxrm = val; 400 return RISCV_EXCP_NONE; 401 } 402 403 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 404 target_ulong *val) 405 { 406 *val = env->vxsat; 407 return RISCV_EXCP_NONE; 408 } 409 410 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 411 target_ulong val) 412 { 413 #if !defined(CONFIG_USER_ONLY) 414 env->mstatus |= MSTATUS_VS; 415 #endif 416 env->vxsat = val; 417 return RISCV_EXCP_NONE; 418 } 419 420 static RISCVException read_vstart(CPURISCVState *env, int csrno, 421 target_ulong *val) 422 { 423 *val = env->vstart; 424 return RISCV_EXCP_NONE; 425 } 426 427 static RISCVException write_vstart(CPURISCVState *env, int csrno, 428 target_ulong val) 429 { 430 #if !defined(CONFIG_USER_ONLY) 431 env->mstatus |= MSTATUS_VS; 432 #endif 433 /* 434 * The vstart CSR is defined to have only enough writable bits 435 * to hold the largest element index, i.e. lg2(VLEN) bits. 436 */ 437 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 438 return RISCV_EXCP_NONE; 439 } 440 441 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 442 { 443 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 444 return RISCV_EXCP_NONE; 445 } 446 447 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 448 { 449 #if !defined(CONFIG_USER_ONLY) 450 env->mstatus |= MSTATUS_VS; 451 #endif 452 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 453 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 454 return RISCV_EXCP_NONE; 455 } 456 457 /* User Timers and Counters */ 458 static RISCVException read_instret(CPURISCVState *env, int csrno, 459 target_ulong *val) 460 { 461 #if !defined(CONFIG_USER_ONLY) 462 if (icount_enabled()) { 463 *val = icount_get(); 464 } else { 465 *val = cpu_get_host_ticks(); 466 } 467 #else 468 *val = cpu_get_host_ticks(); 469 #endif 470 return RISCV_EXCP_NONE; 471 } 472 473 static RISCVException read_instreth(CPURISCVState *env, int csrno, 474 target_ulong *val) 475 { 476 #if !defined(CONFIG_USER_ONLY) 477 if (icount_enabled()) { 478 *val = icount_get() >> 32; 479 } else { 480 *val = cpu_get_host_ticks() >> 32; 481 } 482 #else 483 *val = cpu_get_host_ticks() >> 32; 484 #endif 485 return RISCV_EXCP_NONE; 486 } 487 488 #if defined(CONFIG_USER_ONLY) 489 static RISCVException read_time(CPURISCVState *env, int csrno, 490 target_ulong *val) 491 { 492 *val = cpu_get_host_ticks(); 493 return RISCV_EXCP_NONE; 494 } 495 496 static RISCVException read_timeh(CPURISCVState *env, int csrno, 497 target_ulong *val) 498 { 499 *val = cpu_get_host_ticks() >> 32; 500 return RISCV_EXCP_NONE; 501 } 502 503 #else /* CONFIG_USER_ONLY */ 504 505 static RISCVException read_time(CPURISCVState *env, int csrno, 506 target_ulong *val) 507 { 508 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 509 510 if (!env->rdtime_fn) { 511 return RISCV_EXCP_ILLEGAL_INST; 512 } 513 514 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 515 return RISCV_EXCP_NONE; 516 } 517 518 static RISCVException read_timeh(CPURISCVState *env, int csrno, 519 target_ulong *val) 520 { 521 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 522 523 if (!env->rdtime_fn) { 524 return RISCV_EXCP_ILLEGAL_INST; 525 } 526 527 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 528 return RISCV_EXCP_NONE; 529 } 530 531 /* Machine constants */ 532 533 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 534 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP)) 535 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 536 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 537 538 #define VSTOPI_NUM_SRCS 5 539 540 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 541 VS_MODE_INTERRUPTS; 542 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 543 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 544 HS_MODE_INTERRUPTS; 545 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 546 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 547 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 548 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 549 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 550 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 551 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 552 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 553 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 554 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 555 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 556 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 557 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 558 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 559 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 560 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 561 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 562 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 563 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 564 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 565 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 566 (1ULL << (RISCV_EXCP_VS_ECALL)) | 567 (1ULL << (RISCV_EXCP_M_ECALL)) | 568 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 569 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 570 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 571 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 572 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 573 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 574 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 575 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP; 576 static const target_ulong hip_writable_mask = MIP_VSSIP; 577 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 578 static const target_ulong vsip_writable_mask = MIP_VSSIP; 579 580 static const char valid_vm_1_10_32[16] = { 581 [VM_1_10_MBARE] = 1, 582 [VM_1_10_SV32] = 1 583 }; 584 585 static const char valid_vm_1_10_64[16] = { 586 [VM_1_10_MBARE] = 1, 587 [VM_1_10_SV39] = 1, 588 [VM_1_10_SV48] = 1, 589 [VM_1_10_SV57] = 1 590 }; 591 592 /* Machine Information Registers */ 593 static RISCVException read_zero(CPURISCVState *env, int csrno, 594 target_ulong *val) 595 { 596 *val = 0; 597 return RISCV_EXCP_NONE; 598 } 599 600 static RISCVException write_ignore(CPURISCVState *env, int csrno, 601 target_ulong val) 602 { 603 return RISCV_EXCP_NONE; 604 } 605 606 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 607 target_ulong *val) 608 { 609 *val = env->mhartid; 610 return RISCV_EXCP_NONE; 611 } 612 613 /* Machine Trap Setup */ 614 615 /* We do not store SD explicitly, only compute it on demand. */ 616 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 617 { 618 if ((status & MSTATUS_FS) == MSTATUS_FS || 619 (status & MSTATUS_VS) == MSTATUS_VS || 620 (status & MSTATUS_XS) == MSTATUS_XS) { 621 switch (xl) { 622 case MXL_RV32: 623 return status | MSTATUS32_SD; 624 case MXL_RV64: 625 return status | MSTATUS64_SD; 626 case MXL_RV128: 627 return MSTATUSH128_SD; 628 default: 629 g_assert_not_reached(); 630 } 631 } 632 return status; 633 } 634 635 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 636 target_ulong *val) 637 { 638 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 639 return RISCV_EXCP_NONE; 640 } 641 642 static int validate_vm(CPURISCVState *env, target_ulong vm) 643 { 644 if (riscv_cpu_mxl(env) == MXL_RV32) { 645 return valid_vm_1_10_32[vm & 0xf]; 646 } else { 647 return valid_vm_1_10_64[vm & 0xf]; 648 } 649 } 650 651 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 652 target_ulong val) 653 { 654 uint64_t mstatus = env->mstatus; 655 uint64_t mask = 0; 656 RISCVMXL xl = riscv_cpu_mxl(env); 657 658 /* flush tlb on mstatus fields that affect VM */ 659 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 660 MSTATUS_MPRV | MSTATUS_SUM)) { 661 tlb_flush(env_cpu(env)); 662 } 663 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 664 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 665 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 666 MSTATUS_TW | MSTATUS_VS; 667 668 if (riscv_has_ext(env, RVF)) { 669 mask |= MSTATUS_FS; 670 } 671 672 if (xl != MXL_RV32 || env->debugger) { 673 /* 674 * RV32: MPV and GVA are not in mstatus. The current plan is to 675 * add them to mstatush. For now, we just don't support it. 676 */ 677 mask |= MSTATUS_MPV | MSTATUS_GVA; 678 if ((val & MSTATUS64_UXL) != 0) { 679 mask |= MSTATUS64_UXL; 680 } 681 } 682 683 mstatus = (mstatus & ~mask) | (val & mask); 684 685 if (xl > MXL_RV32) { 686 /* SXL field is for now read only */ 687 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 688 } 689 env->mstatus = mstatus; 690 env->xl = cpu_recompute_xl(env); 691 692 return RISCV_EXCP_NONE; 693 } 694 695 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 696 target_ulong *val) 697 { 698 *val = env->mstatus >> 32; 699 return RISCV_EXCP_NONE; 700 } 701 702 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 703 target_ulong val) 704 { 705 uint64_t valh = (uint64_t)val << 32; 706 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 707 708 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 709 tlb_flush(env_cpu(env)); 710 } 711 712 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 713 714 return RISCV_EXCP_NONE; 715 } 716 717 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 718 Int128 *val) 719 { 720 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 721 return RISCV_EXCP_NONE; 722 } 723 724 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 725 Int128 *val) 726 { 727 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 728 return RISCV_EXCP_NONE; 729 } 730 731 static RISCVException read_misa(CPURISCVState *env, int csrno, 732 target_ulong *val) 733 { 734 target_ulong misa; 735 736 switch (env->misa_mxl) { 737 case MXL_RV32: 738 misa = (target_ulong)MXL_RV32 << 30; 739 break; 740 #ifdef TARGET_RISCV64 741 case MXL_RV64: 742 misa = (target_ulong)MXL_RV64 << 62; 743 break; 744 #endif 745 default: 746 g_assert_not_reached(); 747 } 748 749 *val = misa | env->misa_ext; 750 return RISCV_EXCP_NONE; 751 } 752 753 static RISCVException write_misa(CPURISCVState *env, int csrno, 754 target_ulong val) 755 { 756 if (!riscv_feature(env, RISCV_FEATURE_MISA)) { 757 /* drop write to misa */ 758 return RISCV_EXCP_NONE; 759 } 760 761 /* 'I' or 'E' must be present */ 762 if (!(val & (RVI | RVE))) { 763 /* It is not, drop write to misa */ 764 return RISCV_EXCP_NONE; 765 } 766 767 /* 'E' excludes all other extensions */ 768 if (val & RVE) { 769 /* when we support 'E' we can do "val = RVE;" however 770 * for now we just drop writes if 'E' is present. 771 */ 772 return RISCV_EXCP_NONE; 773 } 774 775 /* 776 * misa.MXL writes are not supported by QEMU. 777 * Drop writes to those bits. 778 */ 779 780 /* Mask extensions that are not supported by this hart */ 781 val &= env->misa_ext_mask; 782 783 /* Mask extensions that are not supported by QEMU */ 784 val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV); 785 786 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 787 if ((val & RVD) && !(val & RVF)) { 788 val &= ~RVD; 789 } 790 791 /* Suppress 'C' if next instruction is not aligned 792 * TODO: this should check next_pc 793 */ 794 if ((val & RVC) && (GETPC() & ~3) != 0) { 795 val &= ~RVC; 796 } 797 798 /* If nothing changed, do nothing. */ 799 if (val == env->misa_ext) { 800 return RISCV_EXCP_NONE; 801 } 802 803 if (!(val & RVF)) { 804 env->mstatus &= ~MSTATUS_FS; 805 } 806 807 /* flush translation cache */ 808 tb_flush(env_cpu(env)); 809 env->misa_ext = val; 810 env->xl = riscv_cpu_mxl(env); 811 return RISCV_EXCP_NONE; 812 } 813 814 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 815 target_ulong *val) 816 { 817 *val = env->medeleg; 818 return RISCV_EXCP_NONE; 819 } 820 821 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 822 target_ulong val) 823 { 824 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 825 return RISCV_EXCP_NONE; 826 } 827 828 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 829 uint64_t *ret_val, 830 uint64_t new_val, uint64_t wr_mask) 831 { 832 uint64_t mask = wr_mask & delegable_ints; 833 834 if (ret_val) { 835 *ret_val = env->mideleg; 836 } 837 838 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 839 840 if (riscv_has_ext(env, RVH)) { 841 env->mideleg |= HS_MODE_INTERRUPTS; 842 } 843 844 return RISCV_EXCP_NONE; 845 } 846 847 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 848 target_ulong *ret_val, 849 target_ulong new_val, target_ulong wr_mask) 850 { 851 uint64_t rval; 852 RISCVException ret; 853 854 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 855 if (ret_val) { 856 *ret_val = rval; 857 } 858 859 return ret; 860 } 861 862 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 863 target_ulong *ret_val, 864 target_ulong new_val, 865 target_ulong wr_mask) 866 { 867 uint64_t rval; 868 RISCVException ret; 869 870 ret = rmw_mideleg64(env, csrno, &rval, 871 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 872 if (ret_val) { 873 *ret_val = rval >> 32; 874 } 875 876 return ret; 877 } 878 879 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 880 uint64_t *ret_val, 881 uint64_t new_val, uint64_t wr_mask) 882 { 883 uint64_t mask = wr_mask & all_ints; 884 885 if (ret_val) { 886 *ret_val = env->mie; 887 } 888 889 env->mie = (env->mie & ~mask) | (new_val & mask); 890 891 if (!riscv_has_ext(env, RVH)) { 892 env->mie &= ~((uint64_t)MIP_SGEIP); 893 } 894 895 return RISCV_EXCP_NONE; 896 } 897 898 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 899 target_ulong *ret_val, 900 target_ulong new_val, target_ulong wr_mask) 901 { 902 uint64_t rval; 903 RISCVException ret; 904 905 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 906 if (ret_val) { 907 *ret_val = rval; 908 } 909 910 return ret; 911 } 912 913 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 914 target_ulong *ret_val, 915 target_ulong new_val, target_ulong wr_mask) 916 { 917 uint64_t rval; 918 RISCVException ret; 919 920 ret = rmw_mie64(env, csrno, &rval, 921 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 922 if (ret_val) { 923 *ret_val = rval >> 32; 924 } 925 926 return ret; 927 } 928 929 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 930 { 931 int irq; 932 uint8_t iprio; 933 934 irq = riscv_cpu_mirq_pending(env); 935 if (irq <= 0 || irq > 63) { 936 *val = 0; 937 } else { 938 iprio = env->miprio[irq]; 939 if (!iprio) { 940 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 941 iprio = IPRIO_MMAXIPRIO; 942 } 943 } 944 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 945 *val |= iprio; 946 } 947 948 return RISCV_EXCP_NONE; 949 } 950 951 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 952 { 953 if (!riscv_cpu_virt_enabled(env)) { 954 return csrno; 955 } 956 957 switch (csrno) { 958 case CSR_SISELECT: 959 return CSR_VSISELECT; 960 case CSR_SIREG: 961 return CSR_VSIREG; 962 case CSR_SSETEIPNUM: 963 return CSR_VSSETEIPNUM; 964 case CSR_SCLREIPNUM: 965 return CSR_VSCLREIPNUM; 966 case CSR_SSETEIENUM: 967 return CSR_VSSETEIENUM; 968 case CSR_SCLREIENUM: 969 return CSR_VSCLREIENUM; 970 case CSR_STOPEI: 971 return CSR_VSTOPEI; 972 default: 973 return csrno; 974 }; 975 } 976 977 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 978 target_ulong new_val, target_ulong wr_mask) 979 { 980 target_ulong *iselect; 981 982 /* Translate CSR number for VS-mode */ 983 csrno = aia_xlate_vs_csrno(env, csrno); 984 985 /* Find the iselect CSR based on CSR number */ 986 switch (csrno) { 987 case CSR_MISELECT: 988 iselect = &env->miselect; 989 break; 990 case CSR_SISELECT: 991 iselect = &env->siselect; 992 break; 993 case CSR_VSISELECT: 994 iselect = &env->vsiselect; 995 break; 996 default: 997 return RISCV_EXCP_ILLEGAL_INST; 998 }; 999 1000 if (val) { 1001 *val = *iselect; 1002 } 1003 1004 wr_mask &= ISELECT_MASK; 1005 if (wr_mask) { 1006 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1007 } 1008 1009 return RISCV_EXCP_NONE; 1010 } 1011 1012 static int rmw_iprio(target_ulong xlen, 1013 target_ulong iselect, uint8_t *iprio, 1014 target_ulong *val, target_ulong new_val, 1015 target_ulong wr_mask, int ext_irq_no) 1016 { 1017 int i, firq, nirqs; 1018 target_ulong old_val; 1019 1020 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1021 return -EINVAL; 1022 } 1023 if (xlen != 32 && iselect & 0x1) { 1024 return -EINVAL; 1025 } 1026 1027 nirqs = 4 * (xlen / 32); 1028 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1029 1030 old_val = 0; 1031 for (i = 0; i < nirqs; i++) { 1032 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1033 } 1034 1035 if (val) { 1036 *val = old_val; 1037 } 1038 1039 if (wr_mask) { 1040 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1041 for (i = 0; i < nirqs; i++) { 1042 /* 1043 * M-level and S-level external IRQ priority always read-only 1044 * zero. This means default priority order is always preferred 1045 * for M-level and S-level external IRQs. 1046 */ 1047 if ((firq + i) == ext_irq_no) { 1048 continue; 1049 } 1050 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1051 } 1052 } 1053 1054 return 0; 1055 } 1056 1057 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1058 target_ulong new_val, target_ulong wr_mask) 1059 { 1060 bool virt; 1061 uint8_t *iprio; 1062 int ret = -EINVAL; 1063 target_ulong priv, isel, vgein; 1064 1065 /* Translate CSR number for VS-mode */ 1066 csrno = aia_xlate_vs_csrno(env, csrno); 1067 1068 /* Decode register details from CSR number */ 1069 virt = false; 1070 switch (csrno) { 1071 case CSR_MIREG: 1072 iprio = env->miprio; 1073 isel = env->miselect; 1074 priv = PRV_M; 1075 break; 1076 case CSR_SIREG: 1077 iprio = env->siprio; 1078 isel = env->siselect; 1079 priv = PRV_S; 1080 break; 1081 case CSR_VSIREG: 1082 iprio = env->hviprio; 1083 isel = env->vsiselect; 1084 priv = PRV_S; 1085 virt = true; 1086 break; 1087 default: 1088 goto done; 1089 }; 1090 1091 /* Find the selected guest interrupt file */ 1092 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1093 1094 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1095 /* Local interrupt priority registers not available for VS-mode */ 1096 if (!virt) { 1097 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1098 isel, iprio, val, new_val, wr_mask, 1099 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1100 } 1101 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1102 /* IMSIC registers only available when machine implements it. */ 1103 if (env->aia_ireg_rmw_fn[priv]) { 1104 /* Selected guest interrupt file should not be zero */ 1105 if (virt && (!vgein || env->geilen < vgein)) { 1106 goto done; 1107 } 1108 /* Call machine specific IMSIC register emulation */ 1109 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1110 AIA_MAKE_IREG(isel, priv, virt, vgein, 1111 riscv_cpu_mxl_bits(env)), 1112 val, new_val, wr_mask); 1113 } 1114 } 1115 1116 done: 1117 if (ret) { 1118 return (riscv_cpu_virt_enabled(env) && virt) ? 1119 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1120 } 1121 return RISCV_EXCP_NONE; 1122 } 1123 1124 static int rmw_xsetclreinum(CPURISCVState *env, int csrno, target_ulong *val, 1125 target_ulong new_val, target_ulong wr_mask) 1126 { 1127 int ret = -EINVAL; 1128 bool set, pend, virt; 1129 target_ulong priv, isel, vgein, xlen, nval, wmask; 1130 1131 /* Translate CSR number for VS-mode */ 1132 csrno = aia_xlate_vs_csrno(env, csrno); 1133 1134 /* Decode register details from CSR number */ 1135 virt = set = pend = false; 1136 switch (csrno) { 1137 case CSR_MSETEIPNUM: 1138 priv = PRV_M; 1139 set = true; 1140 pend = true; 1141 break; 1142 case CSR_MCLREIPNUM: 1143 priv = PRV_M; 1144 pend = true; 1145 break; 1146 case CSR_MSETEIENUM: 1147 priv = PRV_M; 1148 set = true; 1149 break; 1150 case CSR_MCLREIENUM: 1151 priv = PRV_M; 1152 break; 1153 case CSR_SSETEIPNUM: 1154 priv = PRV_S; 1155 set = true; 1156 pend = true; 1157 break; 1158 case CSR_SCLREIPNUM: 1159 priv = PRV_S; 1160 pend = true; 1161 break; 1162 case CSR_SSETEIENUM: 1163 priv = PRV_S; 1164 set = true; 1165 break; 1166 case CSR_SCLREIENUM: 1167 priv = PRV_S; 1168 break; 1169 case CSR_VSSETEIPNUM: 1170 priv = PRV_S; 1171 virt = true; 1172 set = true; 1173 pend = true; 1174 break; 1175 case CSR_VSCLREIPNUM: 1176 priv = PRV_S; 1177 virt = true; 1178 pend = true; 1179 break; 1180 case CSR_VSSETEIENUM: 1181 priv = PRV_S; 1182 virt = true; 1183 set = true; 1184 break; 1185 case CSR_VSCLREIENUM: 1186 priv = PRV_S; 1187 virt = true; 1188 break; 1189 default: 1190 goto done; 1191 }; 1192 1193 /* IMSIC CSRs only available when machine implements IMSIC. */ 1194 if (!env->aia_ireg_rmw_fn[priv]) { 1195 goto done; 1196 } 1197 1198 /* Find the selected guest interrupt file */ 1199 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1200 1201 /* Selected guest interrupt file should be valid */ 1202 if (virt && (!vgein || env->geilen < vgein)) { 1203 goto done; 1204 } 1205 1206 /* Set/Clear CSRs always read zero */ 1207 if (val) { 1208 *val = 0; 1209 } 1210 1211 if (wr_mask) { 1212 /* Get interrupt number */ 1213 new_val &= wr_mask; 1214 1215 /* Find target interrupt pending/enable register */ 1216 xlen = riscv_cpu_mxl_bits(env); 1217 isel = (new_val / xlen); 1218 isel *= (xlen / IMSIC_EIPx_BITS); 1219 isel += (pend) ? ISELECT_IMSIC_EIP0 : ISELECT_IMSIC_EIE0; 1220 1221 /* Find the interrupt bit to be set/clear */ 1222 wmask = ((target_ulong)1) << (new_val % xlen); 1223 nval = (set) ? wmask : 0; 1224 1225 /* Call machine specific IMSIC register emulation */ 1226 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1227 AIA_MAKE_IREG(isel, priv, virt, 1228 vgein, xlen), 1229 NULL, nval, wmask); 1230 } else { 1231 ret = 0; 1232 } 1233 1234 done: 1235 if (ret) { 1236 return (riscv_cpu_virt_enabled(env) && virt) ? 1237 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1238 } 1239 return RISCV_EXCP_NONE; 1240 } 1241 1242 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1243 target_ulong new_val, target_ulong wr_mask) 1244 { 1245 bool virt; 1246 int ret = -EINVAL; 1247 target_ulong priv, vgein; 1248 1249 /* Translate CSR number for VS-mode */ 1250 csrno = aia_xlate_vs_csrno(env, csrno); 1251 1252 /* Decode register details from CSR number */ 1253 virt = false; 1254 switch (csrno) { 1255 case CSR_MTOPEI: 1256 priv = PRV_M; 1257 break; 1258 case CSR_STOPEI: 1259 priv = PRV_S; 1260 break; 1261 case CSR_VSTOPEI: 1262 priv = PRV_S; 1263 virt = true; 1264 break; 1265 default: 1266 goto done; 1267 }; 1268 1269 /* IMSIC CSRs only available when machine implements IMSIC. */ 1270 if (!env->aia_ireg_rmw_fn[priv]) { 1271 goto done; 1272 } 1273 1274 /* Find the selected guest interrupt file */ 1275 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1276 1277 /* Selected guest interrupt file should be valid */ 1278 if (virt && (!vgein || env->geilen < vgein)) { 1279 goto done; 1280 } 1281 1282 /* Call machine specific IMSIC register emulation for TOPEI */ 1283 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1284 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1285 riscv_cpu_mxl_bits(env)), 1286 val, new_val, wr_mask); 1287 1288 done: 1289 if (ret) { 1290 return (riscv_cpu_virt_enabled(env) && virt) ? 1291 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1292 } 1293 return RISCV_EXCP_NONE; 1294 } 1295 1296 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1297 target_ulong *val) 1298 { 1299 *val = env->mtvec; 1300 return RISCV_EXCP_NONE; 1301 } 1302 1303 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1304 target_ulong val) 1305 { 1306 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1307 if ((val & 3) < 2) { 1308 env->mtvec = val; 1309 } else { 1310 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1311 } 1312 return RISCV_EXCP_NONE; 1313 } 1314 1315 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1316 target_ulong *val) 1317 { 1318 *val = env->mcounteren; 1319 return RISCV_EXCP_NONE; 1320 } 1321 1322 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1323 target_ulong val) 1324 { 1325 env->mcounteren = val; 1326 return RISCV_EXCP_NONE; 1327 } 1328 1329 /* Machine Trap Handling */ 1330 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1331 Int128 *val) 1332 { 1333 *val = int128_make128(env->mscratch, env->mscratchh); 1334 return RISCV_EXCP_NONE; 1335 } 1336 1337 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1338 Int128 val) 1339 { 1340 env->mscratch = int128_getlo(val); 1341 env->mscratchh = int128_gethi(val); 1342 return RISCV_EXCP_NONE; 1343 } 1344 1345 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1346 target_ulong *val) 1347 { 1348 *val = env->mscratch; 1349 return RISCV_EXCP_NONE; 1350 } 1351 1352 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1353 target_ulong val) 1354 { 1355 env->mscratch = val; 1356 return RISCV_EXCP_NONE; 1357 } 1358 1359 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1360 target_ulong *val) 1361 { 1362 *val = env->mepc; 1363 return RISCV_EXCP_NONE; 1364 } 1365 1366 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1367 target_ulong val) 1368 { 1369 env->mepc = val; 1370 return RISCV_EXCP_NONE; 1371 } 1372 1373 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1374 target_ulong *val) 1375 { 1376 *val = env->mcause; 1377 return RISCV_EXCP_NONE; 1378 } 1379 1380 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1381 target_ulong val) 1382 { 1383 env->mcause = val; 1384 return RISCV_EXCP_NONE; 1385 } 1386 1387 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1388 target_ulong *val) 1389 { 1390 *val = env->mtval; 1391 return RISCV_EXCP_NONE; 1392 } 1393 1394 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1395 target_ulong val) 1396 { 1397 env->mtval = val; 1398 return RISCV_EXCP_NONE; 1399 } 1400 1401 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 1402 uint64_t *ret_val, 1403 uint64_t new_val, uint64_t wr_mask) 1404 { 1405 RISCVCPU *cpu = env_archcpu(env); 1406 /* Allow software control of delegable interrupts not claimed by hardware */ 1407 uint64_t old_mip, mask = wr_mask & delegable_ints & ~env->miclaim; 1408 uint32_t gin; 1409 1410 if (mask) { 1411 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 1412 } else { 1413 old_mip = env->mip; 1414 } 1415 1416 if (csrno != CSR_HVIP) { 1417 gin = get_field(env->hstatus, HSTATUS_VGEIN); 1418 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 1419 } 1420 1421 if (ret_val) { 1422 *ret_val = old_mip; 1423 } 1424 1425 return RISCV_EXCP_NONE; 1426 } 1427 1428 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 1429 target_ulong *ret_val, 1430 target_ulong new_val, target_ulong wr_mask) 1431 { 1432 uint64_t rval; 1433 RISCVException ret; 1434 1435 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 1436 if (ret_val) { 1437 *ret_val = rval; 1438 } 1439 1440 return ret; 1441 } 1442 1443 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 1444 target_ulong *ret_val, 1445 target_ulong new_val, target_ulong wr_mask) 1446 { 1447 uint64_t rval; 1448 RISCVException ret; 1449 1450 ret = rmw_mip64(env, csrno, &rval, 1451 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1452 if (ret_val) { 1453 *ret_val = rval >> 32; 1454 } 1455 1456 return ret; 1457 } 1458 1459 /* Supervisor Trap Setup */ 1460 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 1461 Int128 *val) 1462 { 1463 uint64_t mask = sstatus_v1_10_mask; 1464 uint64_t sstatus = env->mstatus & mask; 1465 if (env->xl != MXL_RV32 || env->debugger) { 1466 mask |= SSTATUS64_UXL; 1467 } 1468 1469 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 1470 return RISCV_EXCP_NONE; 1471 } 1472 1473 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 1474 target_ulong *val) 1475 { 1476 target_ulong mask = (sstatus_v1_10_mask); 1477 if (env->xl != MXL_RV32 || env->debugger) { 1478 mask |= SSTATUS64_UXL; 1479 } 1480 /* TODO: Use SXL not MXL. */ 1481 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 1482 return RISCV_EXCP_NONE; 1483 } 1484 1485 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 1486 target_ulong val) 1487 { 1488 target_ulong mask = (sstatus_v1_10_mask); 1489 1490 if (env->xl != MXL_RV32 || env->debugger) { 1491 if ((val & SSTATUS64_UXL) != 0) { 1492 mask |= SSTATUS64_UXL; 1493 } 1494 } 1495 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 1496 return write_mstatus(env, CSR_MSTATUS, newval); 1497 } 1498 1499 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 1500 uint64_t *ret_val, 1501 uint64_t new_val, uint64_t wr_mask) 1502 { 1503 RISCVException ret; 1504 uint64_t rval, vsbits, mask = env->hideleg & VS_MODE_INTERRUPTS; 1505 1506 /* Bring VS-level bits to correct position */ 1507 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 1508 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 1509 new_val |= vsbits << 1; 1510 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 1511 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 1512 wr_mask |= vsbits << 1; 1513 1514 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 1515 if (ret_val) { 1516 rval &= mask; 1517 vsbits = rval & VS_MODE_INTERRUPTS; 1518 rval &= ~VS_MODE_INTERRUPTS; 1519 *ret_val = rval | (vsbits >> 1); 1520 } 1521 1522 return ret; 1523 } 1524 1525 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 1526 target_ulong *ret_val, 1527 target_ulong new_val, target_ulong wr_mask) 1528 { 1529 uint64_t rval; 1530 RISCVException ret; 1531 1532 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 1533 if (ret_val) { 1534 *ret_val = rval; 1535 } 1536 1537 return ret; 1538 } 1539 1540 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 1541 target_ulong *ret_val, 1542 target_ulong new_val, target_ulong wr_mask) 1543 { 1544 uint64_t rval; 1545 RISCVException ret; 1546 1547 ret = rmw_vsie64(env, csrno, &rval, 1548 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1549 if (ret_val) { 1550 *ret_val = rval >> 32; 1551 } 1552 1553 return ret; 1554 } 1555 1556 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 1557 uint64_t *ret_val, 1558 uint64_t new_val, uint64_t wr_mask) 1559 { 1560 RISCVException ret; 1561 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 1562 1563 if (riscv_cpu_virt_enabled(env)) { 1564 if (env->hvictl & HVICTL_VTI) { 1565 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1566 } 1567 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 1568 } else { 1569 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 1570 } 1571 1572 if (ret_val) { 1573 *ret_val &= mask; 1574 } 1575 1576 return ret; 1577 } 1578 1579 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 1580 target_ulong *ret_val, 1581 target_ulong new_val, target_ulong wr_mask) 1582 { 1583 uint64_t rval; 1584 RISCVException ret; 1585 1586 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 1587 if (ret == RISCV_EXCP_NONE && ret_val) { 1588 *ret_val = rval; 1589 } 1590 1591 return ret; 1592 } 1593 1594 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 1595 target_ulong *ret_val, 1596 target_ulong new_val, target_ulong wr_mask) 1597 { 1598 uint64_t rval; 1599 RISCVException ret; 1600 1601 ret = rmw_sie64(env, csrno, &rval, 1602 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1603 if (ret_val) { 1604 *ret_val = rval >> 32; 1605 } 1606 1607 return ret; 1608 } 1609 1610 static RISCVException read_stvec(CPURISCVState *env, int csrno, 1611 target_ulong *val) 1612 { 1613 *val = env->stvec; 1614 return RISCV_EXCP_NONE; 1615 } 1616 1617 static RISCVException write_stvec(CPURISCVState *env, int csrno, 1618 target_ulong val) 1619 { 1620 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1621 if ((val & 3) < 2) { 1622 env->stvec = val; 1623 } else { 1624 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 1625 } 1626 return RISCV_EXCP_NONE; 1627 } 1628 1629 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 1630 target_ulong *val) 1631 { 1632 *val = env->scounteren; 1633 return RISCV_EXCP_NONE; 1634 } 1635 1636 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 1637 target_ulong val) 1638 { 1639 env->scounteren = val; 1640 return RISCV_EXCP_NONE; 1641 } 1642 1643 /* Supervisor Trap Handling */ 1644 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 1645 Int128 *val) 1646 { 1647 *val = int128_make128(env->sscratch, env->sscratchh); 1648 return RISCV_EXCP_NONE; 1649 } 1650 1651 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 1652 Int128 val) 1653 { 1654 env->sscratch = int128_getlo(val); 1655 env->sscratchh = int128_gethi(val); 1656 return RISCV_EXCP_NONE; 1657 } 1658 1659 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 1660 target_ulong *val) 1661 { 1662 *val = env->sscratch; 1663 return RISCV_EXCP_NONE; 1664 } 1665 1666 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 1667 target_ulong val) 1668 { 1669 env->sscratch = val; 1670 return RISCV_EXCP_NONE; 1671 } 1672 1673 static RISCVException read_sepc(CPURISCVState *env, int csrno, 1674 target_ulong *val) 1675 { 1676 *val = env->sepc; 1677 return RISCV_EXCP_NONE; 1678 } 1679 1680 static RISCVException write_sepc(CPURISCVState *env, int csrno, 1681 target_ulong val) 1682 { 1683 env->sepc = val; 1684 return RISCV_EXCP_NONE; 1685 } 1686 1687 static RISCVException read_scause(CPURISCVState *env, int csrno, 1688 target_ulong *val) 1689 { 1690 *val = env->scause; 1691 return RISCV_EXCP_NONE; 1692 } 1693 1694 static RISCVException write_scause(CPURISCVState *env, int csrno, 1695 target_ulong val) 1696 { 1697 env->scause = val; 1698 return RISCV_EXCP_NONE; 1699 } 1700 1701 static RISCVException read_stval(CPURISCVState *env, int csrno, 1702 target_ulong *val) 1703 { 1704 *val = env->stval; 1705 return RISCV_EXCP_NONE; 1706 } 1707 1708 static RISCVException write_stval(CPURISCVState *env, int csrno, 1709 target_ulong val) 1710 { 1711 env->stval = val; 1712 return RISCV_EXCP_NONE; 1713 } 1714 1715 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 1716 uint64_t *ret_val, 1717 uint64_t new_val, uint64_t wr_mask) 1718 { 1719 RISCVException ret; 1720 uint64_t rval, vsbits, mask = env->hideleg & vsip_writable_mask; 1721 1722 /* Bring VS-level bits to correct position */ 1723 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 1724 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 1725 new_val |= vsbits << 1; 1726 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 1727 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 1728 wr_mask |= vsbits << 1; 1729 1730 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask & mask); 1731 if (ret_val) { 1732 rval &= mask; 1733 vsbits = rval & VS_MODE_INTERRUPTS; 1734 rval &= ~VS_MODE_INTERRUPTS; 1735 *ret_val = rval | (vsbits >> 1); 1736 } 1737 1738 return ret; 1739 } 1740 1741 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 1742 target_ulong *ret_val, 1743 target_ulong new_val, target_ulong wr_mask) 1744 { 1745 uint64_t rval; 1746 RISCVException ret; 1747 1748 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 1749 if (ret_val) { 1750 *ret_val = rval; 1751 } 1752 1753 return ret; 1754 } 1755 1756 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 1757 target_ulong *ret_val, 1758 target_ulong new_val, target_ulong wr_mask) 1759 { 1760 uint64_t rval; 1761 RISCVException ret; 1762 1763 ret = rmw_vsip64(env, csrno, &rval, 1764 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1765 if (ret_val) { 1766 *ret_val = rval >> 32; 1767 } 1768 1769 return ret; 1770 } 1771 1772 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 1773 uint64_t *ret_val, 1774 uint64_t new_val, uint64_t wr_mask) 1775 { 1776 RISCVException ret; 1777 uint64_t mask = env->mideleg & sip_writable_mask; 1778 1779 if (riscv_cpu_virt_enabled(env)) { 1780 if (env->hvictl & HVICTL_VTI) { 1781 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1782 } 1783 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 1784 } else { 1785 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 1786 } 1787 1788 if (ret_val) { 1789 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 1790 } 1791 1792 return ret; 1793 } 1794 1795 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 1796 target_ulong *ret_val, 1797 target_ulong new_val, target_ulong wr_mask) 1798 { 1799 uint64_t rval; 1800 RISCVException ret; 1801 1802 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 1803 if (ret_val) { 1804 *ret_val = rval; 1805 } 1806 1807 return ret; 1808 } 1809 1810 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 1811 target_ulong *ret_val, 1812 target_ulong new_val, target_ulong wr_mask) 1813 { 1814 uint64_t rval; 1815 RISCVException ret; 1816 1817 ret = rmw_sip64(env, csrno, &rval, 1818 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1819 if (ret_val) { 1820 *ret_val = rval >> 32; 1821 } 1822 1823 return ret; 1824 } 1825 1826 /* Supervisor Protection and Translation */ 1827 static RISCVException read_satp(CPURISCVState *env, int csrno, 1828 target_ulong *val) 1829 { 1830 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 1831 *val = 0; 1832 return RISCV_EXCP_NONE; 1833 } 1834 1835 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 1836 return RISCV_EXCP_ILLEGAL_INST; 1837 } else { 1838 *val = env->satp; 1839 } 1840 1841 return RISCV_EXCP_NONE; 1842 } 1843 1844 static RISCVException write_satp(CPURISCVState *env, int csrno, 1845 target_ulong val) 1846 { 1847 target_ulong vm, mask, asid; 1848 1849 if (!riscv_feature(env, RISCV_FEATURE_MMU)) { 1850 return RISCV_EXCP_NONE; 1851 } 1852 1853 if (riscv_cpu_mxl(env) == MXL_RV32) { 1854 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1855 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1856 asid = (val ^ env->satp) & SATP32_ASID; 1857 } else { 1858 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1859 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1860 asid = (val ^ env->satp) & SATP64_ASID; 1861 } 1862 1863 if (vm && mask) { 1864 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 1865 return RISCV_EXCP_ILLEGAL_INST; 1866 } else { 1867 if (asid) { 1868 tlb_flush(env_cpu(env)); 1869 } 1870 env->satp = val; 1871 } 1872 } 1873 return RISCV_EXCP_NONE; 1874 } 1875 1876 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 1877 { 1878 int irq, ret; 1879 target_ulong topei; 1880 uint64_t vseip, vsgein; 1881 uint32_t iid, iprio, hviid, hviprio, gein; 1882 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 1883 1884 gein = get_field(env->hstatus, HSTATUS_VGEIN); 1885 hviid = get_field(env->hvictl, HVICTL_IID); 1886 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 1887 1888 if (gein) { 1889 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 1890 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 1891 if (gein <= env->geilen && vseip) { 1892 siid[scount] = IRQ_S_EXT; 1893 siprio[scount] = IPRIO_MMAXIPRIO + 1; 1894 if (env->aia_ireg_rmw_fn[PRV_S]) { 1895 /* 1896 * Call machine specific IMSIC register emulation for 1897 * reading TOPEI. 1898 */ 1899 ret = env->aia_ireg_rmw_fn[PRV_S]( 1900 env->aia_ireg_rmw_fn_arg[PRV_S], 1901 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 1902 riscv_cpu_mxl_bits(env)), 1903 &topei, 0, 0); 1904 if (!ret && topei) { 1905 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 1906 } 1907 } 1908 scount++; 1909 } 1910 } else { 1911 if (hviid == IRQ_S_EXT && hviprio) { 1912 siid[scount] = IRQ_S_EXT; 1913 siprio[scount] = hviprio; 1914 scount++; 1915 } 1916 } 1917 1918 if (env->hvictl & HVICTL_VTI) { 1919 if (hviid != IRQ_S_EXT) { 1920 siid[scount] = hviid; 1921 siprio[scount] = hviprio; 1922 scount++; 1923 } 1924 } else { 1925 irq = riscv_cpu_vsirq_pending(env); 1926 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 1927 siid[scount] = irq; 1928 siprio[scount] = env->hviprio[irq]; 1929 scount++; 1930 } 1931 } 1932 1933 iid = 0; 1934 iprio = UINT_MAX; 1935 for (s = 0; s < scount; s++) { 1936 if (siprio[s] < iprio) { 1937 iid = siid[s]; 1938 iprio = siprio[s]; 1939 } 1940 } 1941 1942 if (iid) { 1943 if (env->hvictl & HVICTL_IPRIOM) { 1944 if (iprio > IPRIO_MMAXIPRIO) { 1945 iprio = IPRIO_MMAXIPRIO; 1946 } 1947 if (!iprio) { 1948 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 1949 iprio = IPRIO_MMAXIPRIO; 1950 } 1951 } 1952 } else { 1953 iprio = 1; 1954 } 1955 } else { 1956 iprio = 0; 1957 } 1958 1959 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1960 *val |= iprio; 1961 return RISCV_EXCP_NONE; 1962 } 1963 1964 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 1965 { 1966 int irq; 1967 uint8_t iprio; 1968 1969 if (riscv_cpu_virt_enabled(env)) { 1970 return read_vstopi(env, CSR_VSTOPI, val); 1971 } 1972 1973 irq = riscv_cpu_sirq_pending(env); 1974 if (irq <= 0 || irq > 63) { 1975 *val = 0; 1976 } else { 1977 iprio = env->siprio[irq]; 1978 if (!iprio) { 1979 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 1980 iprio = IPRIO_MMAXIPRIO; 1981 } 1982 } 1983 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1984 *val |= iprio; 1985 } 1986 1987 return RISCV_EXCP_NONE; 1988 } 1989 1990 /* Hypervisor Extensions */ 1991 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 1992 target_ulong *val) 1993 { 1994 *val = env->hstatus; 1995 if (riscv_cpu_mxl(env) != MXL_RV32) { 1996 /* We only support 64-bit VSXL */ 1997 *val = set_field(*val, HSTATUS_VSXL, 2); 1998 } 1999 /* We only support little endian */ 2000 *val = set_field(*val, HSTATUS_VSBE, 0); 2001 return RISCV_EXCP_NONE; 2002 } 2003 2004 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2005 target_ulong val) 2006 { 2007 env->hstatus = val; 2008 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2009 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2010 } 2011 if (get_field(val, HSTATUS_VSBE) != 0) { 2012 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2013 } 2014 return RISCV_EXCP_NONE; 2015 } 2016 2017 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2018 target_ulong *val) 2019 { 2020 *val = env->hedeleg; 2021 return RISCV_EXCP_NONE; 2022 } 2023 2024 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2025 target_ulong val) 2026 { 2027 env->hedeleg = val & vs_delegable_excps; 2028 return RISCV_EXCP_NONE; 2029 } 2030 2031 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2032 uint64_t *ret_val, 2033 uint64_t new_val, uint64_t wr_mask) 2034 { 2035 uint64_t mask = wr_mask & vs_delegable_ints; 2036 2037 if (ret_val) { 2038 *ret_val = env->hideleg & vs_delegable_ints; 2039 } 2040 2041 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2042 return RISCV_EXCP_NONE; 2043 } 2044 2045 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2046 target_ulong *ret_val, 2047 target_ulong new_val, target_ulong wr_mask) 2048 { 2049 uint64_t rval; 2050 RISCVException ret; 2051 2052 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2053 if (ret_val) { 2054 *ret_val = rval; 2055 } 2056 2057 return ret; 2058 } 2059 2060 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2061 target_ulong *ret_val, 2062 target_ulong new_val, target_ulong wr_mask) 2063 { 2064 uint64_t rval; 2065 RISCVException ret; 2066 2067 ret = rmw_hideleg64(env, csrno, &rval, 2068 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2069 if (ret_val) { 2070 *ret_val = rval >> 32; 2071 } 2072 2073 return ret; 2074 } 2075 2076 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2077 uint64_t *ret_val, 2078 uint64_t new_val, uint64_t wr_mask) 2079 { 2080 RISCVException ret; 2081 2082 ret = rmw_mip64(env, csrno, ret_val, new_val, 2083 wr_mask & hvip_writable_mask); 2084 if (ret_val) { 2085 *ret_val &= VS_MODE_INTERRUPTS; 2086 } 2087 2088 return ret; 2089 } 2090 2091 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2092 target_ulong *ret_val, 2093 target_ulong new_val, target_ulong wr_mask) 2094 { 2095 uint64_t rval; 2096 RISCVException ret; 2097 2098 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2099 if (ret_val) { 2100 *ret_val = rval; 2101 } 2102 2103 return ret; 2104 } 2105 2106 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2107 target_ulong *ret_val, 2108 target_ulong new_val, target_ulong wr_mask) 2109 { 2110 uint64_t rval; 2111 RISCVException ret; 2112 2113 ret = rmw_hvip64(env, csrno, &rval, 2114 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2115 if (ret_val) { 2116 *ret_val = rval >> 32; 2117 } 2118 2119 return ret; 2120 } 2121 2122 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2123 target_ulong *ret_value, 2124 target_ulong new_value, target_ulong write_mask) 2125 { 2126 int ret = rmw_mip(env, csrno, ret_value, new_value, 2127 write_mask & hip_writable_mask); 2128 2129 if (ret_value) { 2130 *ret_value &= HS_MODE_INTERRUPTS; 2131 } 2132 return ret; 2133 } 2134 2135 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2136 target_ulong *ret_val, 2137 target_ulong new_val, target_ulong wr_mask) 2138 { 2139 uint64_t rval; 2140 RISCVException ret; 2141 2142 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2143 if (ret_val) { 2144 *ret_val = rval & HS_MODE_INTERRUPTS; 2145 } 2146 2147 return ret; 2148 } 2149 2150 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2151 target_ulong *val) 2152 { 2153 *val = env->hcounteren; 2154 return RISCV_EXCP_NONE; 2155 } 2156 2157 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2158 target_ulong val) 2159 { 2160 env->hcounteren = val; 2161 return RISCV_EXCP_NONE; 2162 } 2163 2164 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2165 target_ulong *val) 2166 { 2167 if (val) { 2168 *val = env->hgeie; 2169 } 2170 return RISCV_EXCP_NONE; 2171 } 2172 2173 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2174 target_ulong val) 2175 { 2176 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2177 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2178 env->hgeie = val; 2179 /* Update mip.SGEIP bit */ 2180 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 2181 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 2182 return RISCV_EXCP_NONE; 2183 } 2184 2185 static RISCVException read_htval(CPURISCVState *env, int csrno, 2186 target_ulong *val) 2187 { 2188 *val = env->htval; 2189 return RISCV_EXCP_NONE; 2190 } 2191 2192 static RISCVException write_htval(CPURISCVState *env, int csrno, 2193 target_ulong val) 2194 { 2195 env->htval = val; 2196 return RISCV_EXCP_NONE; 2197 } 2198 2199 static RISCVException read_htinst(CPURISCVState *env, int csrno, 2200 target_ulong *val) 2201 { 2202 *val = env->htinst; 2203 return RISCV_EXCP_NONE; 2204 } 2205 2206 static RISCVException write_htinst(CPURISCVState *env, int csrno, 2207 target_ulong val) 2208 { 2209 return RISCV_EXCP_NONE; 2210 } 2211 2212 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 2213 target_ulong *val) 2214 { 2215 if (val) { 2216 *val = env->hgeip; 2217 } 2218 return RISCV_EXCP_NONE; 2219 } 2220 2221 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 2222 target_ulong *val) 2223 { 2224 *val = env->hgatp; 2225 return RISCV_EXCP_NONE; 2226 } 2227 2228 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 2229 target_ulong val) 2230 { 2231 env->hgatp = val; 2232 return RISCV_EXCP_NONE; 2233 } 2234 2235 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 2236 target_ulong *val) 2237 { 2238 if (!env->rdtime_fn) { 2239 return RISCV_EXCP_ILLEGAL_INST; 2240 } 2241 2242 *val = env->htimedelta; 2243 return RISCV_EXCP_NONE; 2244 } 2245 2246 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 2247 target_ulong val) 2248 { 2249 if (!env->rdtime_fn) { 2250 return RISCV_EXCP_ILLEGAL_INST; 2251 } 2252 2253 if (riscv_cpu_mxl(env) == MXL_RV32) { 2254 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 2255 } else { 2256 env->htimedelta = val; 2257 } 2258 return RISCV_EXCP_NONE; 2259 } 2260 2261 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 2262 target_ulong *val) 2263 { 2264 if (!env->rdtime_fn) { 2265 return RISCV_EXCP_ILLEGAL_INST; 2266 } 2267 2268 *val = env->htimedelta >> 32; 2269 return RISCV_EXCP_NONE; 2270 } 2271 2272 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 2273 target_ulong val) 2274 { 2275 if (!env->rdtime_fn) { 2276 return RISCV_EXCP_ILLEGAL_INST; 2277 } 2278 2279 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 2280 return RISCV_EXCP_NONE; 2281 } 2282 2283 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 2284 { 2285 *val = env->hvictl; 2286 return RISCV_EXCP_NONE; 2287 } 2288 2289 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 2290 { 2291 env->hvictl = val & HVICTL_VALID_MASK; 2292 return RISCV_EXCP_NONE; 2293 } 2294 2295 static int read_hvipriox(CPURISCVState *env, int first_index, 2296 uint8_t *iprio, target_ulong *val) 2297 { 2298 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2299 2300 /* First index has to be a multiple of number of irqs per register */ 2301 if (first_index % num_irqs) { 2302 return (riscv_cpu_virt_enabled(env)) ? 2303 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2304 } 2305 2306 /* Fill-up return value */ 2307 *val = 0; 2308 for (i = 0; i < num_irqs; i++) { 2309 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2310 continue; 2311 } 2312 if (rdzero) { 2313 continue; 2314 } 2315 *val |= ((target_ulong)iprio[irq]) << (i * 8); 2316 } 2317 2318 return RISCV_EXCP_NONE; 2319 } 2320 2321 static int write_hvipriox(CPURISCVState *env, int first_index, 2322 uint8_t *iprio, target_ulong val) 2323 { 2324 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 2325 2326 /* First index has to be a multiple of number of irqs per register */ 2327 if (first_index % num_irqs) { 2328 return (riscv_cpu_virt_enabled(env)) ? 2329 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2330 } 2331 2332 /* Fill-up priority arrary */ 2333 for (i = 0; i < num_irqs; i++) { 2334 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 2335 continue; 2336 } 2337 if (rdzero) { 2338 iprio[irq] = 0; 2339 } else { 2340 iprio[irq] = (val >> (i * 8)) & 0xff; 2341 } 2342 } 2343 2344 return RISCV_EXCP_NONE; 2345 } 2346 2347 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 2348 { 2349 return read_hvipriox(env, 0, env->hviprio, val); 2350 } 2351 2352 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 2353 { 2354 return write_hvipriox(env, 0, env->hviprio, val); 2355 } 2356 2357 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 2358 { 2359 return read_hvipriox(env, 4, env->hviprio, val); 2360 } 2361 2362 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 2363 { 2364 return write_hvipriox(env, 4, env->hviprio, val); 2365 } 2366 2367 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 2368 { 2369 return read_hvipriox(env, 8, env->hviprio, val); 2370 } 2371 2372 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 2373 { 2374 return write_hvipriox(env, 8, env->hviprio, val); 2375 } 2376 2377 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 2378 { 2379 return read_hvipriox(env, 12, env->hviprio, val); 2380 } 2381 2382 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 2383 { 2384 return write_hvipriox(env, 12, env->hviprio, val); 2385 } 2386 2387 /* Virtual CSR Registers */ 2388 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 2389 target_ulong *val) 2390 { 2391 *val = env->vsstatus; 2392 return RISCV_EXCP_NONE; 2393 } 2394 2395 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 2396 target_ulong val) 2397 { 2398 uint64_t mask = (target_ulong)-1; 2399 if ((val & VSSTATUS64_UXL) == 0) { 2400 mask &= ~VSSTATUS64_UXL; 2401 } 2402 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 2403 return RISCV_EXCP_NONE; 2404 } 2405 2406 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 2407 { 2408 *val = env->vstvec; 2409 return RISCV_EXCP_NONE; 2410 } 2411 2412 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 2413 target_ulong val) 2414 { 2415 env->vstvec = val; 2416 return RISCV_EXCP_NONE; 2417 } 2418 2419 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 2420 target_ulong *val) 2421 { 2422 *val = env->vsscratch; 2423 return RISCV_EXCP_NONE; 2424 } 2425 2426 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 2427 target_ulong val) 2428 { 2429 env->vsscratch = val; 2430 return RISCV_EXCP_NONE; 2431 } 2432 2433 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 2434 target_ulong *val) 2435 { 2436 *val = env->vsepc; 2437 return RISCV_EXCP_NONE; 2438 } 2439 2440 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 2441 target_ulong val) 2442 { 2443 env->vsepc = val; 2444 return RISCV_EXCP_NONE; 2445 } 2446 2447 static RISCVException read_vscause(CPURISCVState *env, int csrno, 2448 target_ulong *val) 2449 { 2450 *val = env->vscause; 2451 return RISCV_EXCP_NONE; 2452 } 2453 2454 static RISCVException write_vscause(CPURISCVState *env, int csrno, 2455 target_ulong val) 2456 { 2457 env->vscause = val; 2458 return RISCV_EXCP_NONE; 2459 } 2460 2461 static RISCVException read_vstval(CPURISCVState *env, int csrno, 2462 target_ulong *val) 2463 { 2464 *val = env->vstval; 2465 return RISCV_EXCP_NONE; 2466 } 2467 2468 static RISCVException write_vstval(CPURISCVState *env, int csrno, 2469 target_ulong val) 2470 { 2471 env->vstval = val; 2472 return RISCV_EXCP_NONE; 2473 } 2474 2475 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 2476 target_ulong *val) 2477 { 2478 *val = env->vsatp; 2479 return RISCV_EXCP_NONE; 2480 } 2481 2482 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 2483 target_ulong val) 2484 { 2485 env->vsatp = val; 2486 return RISCV_EXCP_NONE; 2487 } 2488 2489 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 2490 target_ulong *val) 2491 { 2492 *val = env->mtval2; 2493 return RISCV_EXCP_NONE; 2494 } 2495 2496 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 2497 target_ulong val) 2498 { 2499 env->mtval2 = val; 2500 return RISCV_EXCP_NONE; 2501 } 2502 2503 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 2504 target_ulong *val) 2505 { 2506 *val = env->mtinst; 2507 return RISCV_EXCP_NONE; 2508 } 2509 2510 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 2511 target_ulong val) 2512 { 2513 env->mtinst = val; 2514 return RISCV_EXCP_NONE; 2515 } 2516 2517 /* Physical Memory Protection */ 2518 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 2519 target_ulong *val) 2520 { 2521 *val = mseccfg_csr_read(env); 2522 return RISCV_EXCP_NONE; 2523 } 2524 2525 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 2526 target_ulong val) 2527 { 2528 mseccfg_csr_write(env, val); 2529 return RISCV_EXCP_NONE; 2530 } 2531 2532 static bool check_pmp_reg_index(CPURISCVState *env, uint32_t reg_index) 2533 { 2534 /* TODO: RV128 restriction check */ 2535 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 2536 return false; 2537 } 2538 return true; 2539 } 2540 2541 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 2542 target_ulong *val) 2543 { 2544 uint32_t reg_index = csrno - CSR_PMPCFG0; 2545 2546 if (!check_pmp_reg_index(env, reg_index)) { 2547 return RISCV_EXCP_ILLEGAL_INST; 2548 } 2549 *val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0); 2550 return RISCV_EXCP_NONE; 2551 } 2552 2553 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 2554 target_ulong val) 2555 { 2556 uint32_t reg_index = csrno - CSR_PMPCFG0; 2557 2558 if (!check_pmp_reg_index(env, reg_index)) { 2559 return RISCV_EXCP_ILLEGAL_INST; 2560 } 2561 pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val); 2562 return RISCV_EXCP_NONE; 2563 } 2564 2565 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 2566 target_ulong *val) 2567 { 2568 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 2569 return RISCV_EXCP_NONE; 2570 } 2571 2572 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 2573 target_ulong val) 2574 { 2575 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 2576 return RISCV_EXCP_NONE; 2577 } 2578 2579 /* 2580 * Functions to access Pointer Masking feature registers 2581 * We have to check if current priv lvl could modify 2582 * csr in given mode 2583 */ 2584 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 2585 { 2586 int csr_priv = get_field(csrno, 0x300); 2587 int pm_current; 2588 2589 if (env->debugger) { 2590 return false; 2591 } 2592 /* 2593 * If priv lvls differ that means we're accessing csr from higher priv lvl, 2594 * so allow the access 2595 */ 2596 if (env->priv != csr_priv) { 2597 return false; 2598 } 2599 switch (env->priv) { 2600 case PRV_M: 2601 pm_current = get_field(env->mmte, M_PM_CURRENT); 2602 break; 2603 case PRV_S: 2604 pm_current = get_field(env->mmte, S_PM_CURRENT); 2605 break; 2606 case PRV_U: 2607 pm_current = get_field(env->mmte, U_PM_CURRENT); 2608 break; 2609 default: 2610 g_assert_not_reached(); 2611 } 2612 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 2613 return !pm_current; 2614 } 2615 2616 static RISCVException read_mmte(CPURISCVState *env, int csrno, 2617 target_ulong *val) 2618 { 2619 *val = env->mmte & MMTE_MASK; 2620 return RISCV_EXCP_NONE; 2621 } 2622 2623 static RISCVException write_mmte(CPURISCVState *env, int csrno, 2624 target_ulong val) 2625 { 2626 uint64_t mstatus; 2627 target_ulong wpri_val = val & MMTE_MASK; 2628 2629 if (val != wpri_val) { 2630 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 2631 "MMTE: WPRI violation written 0x", val, 2632 "vs expected 0x", wpri_val); 2633 } 2634 /* for machine mode pm.current is hardwired to 1 */ 2635 wpri_val |= MMTE_M_PM_CURRENT; 2636 2637 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 2638 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 2639 env->mmte = wpri_val | PM_EXT_DIRTY; 2640 riscv_cpu_update_mask(env); 2641 2642 /* Set XS and SD bits, since PM CSRs are dirty */ 2643 mstatus = env->mstatus | MSTATUS_XS; 2644 write_mstatus(env, csrno, mstatus); 2645 return RISCV_EXCP_NONE; 2646 } 2647 2648 static RISCVException read_smte(CPURISCVState *env, int csrno, 2649 target_ulong *val) 2650 { 2651 *val = env->mmte & SMTE_MASK; 2652 return RISCV_EXCP_NONE; 2653 } 2654 2655 static RISCVException write_smte(CPURISCVState *env, int csrno, 2656 target_ulong val) 2657 { 2658 target_ulong wpri_val = val & SMTE_MASK; 2659 2660 if (val != wpri_val) { 2661 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 2662 "SMTE: WPRI violation written 0x", val, 2663 "vs expected 0x", wpri_val); 2664 } 2665 2666 /* if pm.current==0 we can't modify current PM CSRs */ 2667 if (check_pm_current_disabled(env, csrno)) { 2668 return RISCV_EXCP_NONE; 2669 } 2670 2671 wpri_val |= (env->mmte & ~SMTE_MASK); 2672 write_mmte(env, csrno, wpri_val); 2673 return RISCV_EXCP_NONE; 2674 } 2675 2676 static RISCVException read_umte(CPURISCVState *env, int csrno, 2677 target_ulong *val) 2678 { 2679 *val = env->mmte & UMTE_MASK; 2680 return RISCV_EXCP_NONE; 2681 } 2682 2683 static RISCVException write_umte(CPURISCVState *env, int csrno, 2684 target_ulong val) 2685 { 2686 target_ulong wpri_val = val & UMTE_MASK; 2687 2688 if (val != wpri_val) { 2689 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 2690 "UMTE: WPRI violation written 0x", val, 2691 "vs expected 0x", wpri_val); 2692 } 2693 2694 if (check_pm_current_disabled(env, csrno)) { 2695 return RISCV_EXCP_NONE; 2696 } 2697 2698 wpri_val |= (env->mmte & ~UMTE_MASK); 2699 write_mmte(env, csrno, wpri_val); 2700 return RISCV_EXCP_NONE; 2701 } 2702 2703 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 2704 target_ulong *val) 2705 { 2706 *val = env->mpmmask; 2707 return RISCV_EXCP_NONE; 2708 } 2709 2710 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 2711 target_ulong val) 2712 { 2713 uint64_t mstatus; 2714 2715 env->mpmmask = val; 2716 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 2717 env->cur_pmmask = val; 2718 } 2719 env->mmte |= PM_EXT_DIRTY; 2720 2721 /* Set XS and SD bits, since PM CSRs are dirty */ 2722 mstatus = env->mstatus | MSTATUS_XS; 2723 write_mstatus(env, csrno, mstatus); 2724 return RISCV_EXCP_NONE; 2725 } 2726 2727 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 2728 target_ulong *val) 2729 { 2730 *val = env->spmmask; 2731 return RISCV_EXCP_NONE; 2732 } 2733 2734 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 2735 target_ulong val) 2736 { 2737 uint64_t mstatus; 2738 2739 /* if pm.current==0 we can't modify current PM CSRs */ 2740 if (check_pm_current_disabled(env, csrno)) { 2741 return RISCV_EXCP_NONE; 2742 } 2743 env->spmmask = val; 2744 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 2745 env->cur_pmmask = val; 2746 } 2747 env->mmte |= PM_EXT_DIRTY; 2748 2749 /* Set XS and SD bits, since PM CSRs are dirty */ 2750 mstatus = env->mstatus | MSTATUS_XS; 2751 write_mstatus(env, csrno, mstatus); 2752 return RISCV_EXCP_NONE; 2753 } 2754 2755 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 2756 target_ulong *val) 2757 { 2758 *val = env->upmmask; 2759 return RISCV_EXCP_NONE; 2760 } 2761 2762 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 2763 target_ulong val) 2764 { 2765 uint64_t mstatus; 2766 2767 /* if pm.current==0 we can't modify current PM CSRs */ 2768 if (check_pm_current_disabled(env, csrno)) { 2769 return RISCV_EXCP_NONE; 2770 } 2771 env->upmmask = val; 2772 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 2773 env->cur_pmmask = val; 2774 } 2775 env->mmte |= PM_EXT_DIRTY; 2776 2777 /* Set XS and SD bits, since PM CSRs are dirty */ 2778 mstatus = env->mstatus | MSTATUS_XS; 2779 write_mstatus(env, csrno, mstatus); 2780 return RISCV_EXCP_NONE; 2781 } 2782 2783 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 2784 target_ulong *val) 2785 { 2786 *val = env->mpmbase; 2787 return RISCV_EXCP_NONE; 2788 } 2789 2790 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 2791 target_ulong val) 2792 { 2793 uint64_t mstatus; 2794 2795 env->mpmbase = val; 2796 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 2797 env->cur_pmbase = val; 2798 } 2799 env->mmte |= PM_EXT_DIRTY; 2800 2801 /* Set XS and SD bits, since PM CSRs are dirty */ 2802 mstatus = env->mstatus | MSTATUS_XS; 2803 write_mstatus(env, csrno, mstatus); 2804 return RISCV_EXCP_NONE; 2805 } 2806 2807 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 2808 target_ulong *val) 2809 { 2810 *val = env->spmbase; 2811 return RISCV_EXCP_NONE; 2812 } 2813 2814 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 2815 target_ulong val) 2816 { 2817 uint64_t mstatus; 2818 2819 /* if pm.current==0 we can't modify current PM CSRs */ 2820 if (check_pm_current_disabled(env, csrno)) { 2821 return RISCV_EXCP_NONE; 2822 } 2823 env->spmbase = val; 2824 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 2825 env->cur_pmbase = val; 2826 } 2827 env->mmte |= PM_EXT_DIRTY; 2828 2829 /* Set XS and SD bits, since PM CSRs are dirty */ 2830 mstatus = env->mstatus | MSTATUS_XS; 2831 write_mstatus(env, csrno, mstatus); 2832 return RISCV_EXCP_NONE; 2833 } 2834 2835 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 2836 target_ulong *val) 2837 { 2838 *val = env->upmbase; 2839 return RISCV_EXCP_NONE; 2840 } 2841 2842 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 2843 target_ulong val) 2844 { 2845 uint64_t mstatus; 2846 2847 /* if pm.current==0 we can't modify current PM CSRs */ 2848 if (check_pm_current_disabled(env, csrno)) { 2849 return RISCV_EXCP_NONE; 2850 } 2851 env->upmbase = val; 2852 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 2853 env->cur_pmbase = val; 2854 } 2855 env->mmte |= PM_EXT_DIRTY; 2856 2857 /* Set XS and SD bits, since PM CSRs are dirty */ 2858 mstatus = env->mstatus | MSTATUS_XS; 2859 write_mstatus(env, csrno, mstatus); 2860 return RISCV_EXCP_NONE; 2861 } 2862 2863 #endif 2864 2865 /* 2866 * riscv_csrrw - read and/or update control and status register 2867 * 2868 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 2869 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 2870 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 2871 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 2872 */ 2873 2874 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 2875 int csrno, 2876 bool write_mask, 2877 RISCVCPU *cpu) 2878 { 2879 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 2880 int read_only = get_field(csrno, 0xC00) == 3; 2881 #if !defined(CONFIG_USER_ONLY) 2882 int effective_priv = env->priv; 2883 2884 if (riscv_has_ext(env, RVH) && 2885 env->priv == PRV_S && 2886 !riscv_cpu_virt_enabled(env)) { 2887 /* 2888 * We are in S mode without virtualisation, therefore we are in HS Mode. 2889 * Add 1 to the effective privledge level to allow us to access the 2890 * Hypervisor CSRs. 2891 */ 2892 effective_priv++; 2893 } 2894 2895 if (!env->debugger && (effective_priv < get_field(csrno, 0x300))) { 2896 return RISCV_EXCP_ILLEGAL_INST; 2897 } 2898 #endif 2899 if (write_mask && read_only) { 2900 return RISCV_EXCP_ILLEGAL_INST; 2901 } 2902 2903 /* ensure the CSR extension is enabled. */ 2904 if (!cpu->cfg.ext_icsr) { 2905 return RISCV_EXCP_ILLEGAL_INST; 2906 } 2907 2908 /* check predicate */ 2909 if (!csr_ops[csrno].predicate) { 2910 return RISCV_EXCP_ILLEGAL_INST; 2911 } 2912 2913 return csr_ops[csrno].predicate(env, csrno); 2914 } 2915 2916 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 2917 target_ulong *ret_value, 2918 target_ulong new_value, 2919 target_ulong write_mask) 2920 { 2921 RISCVException ret; 2922 target_ulong old_value; 2923 2924 /* execute combined read/write operation if it exists */ 2925 if (csr_ops[csrno].op) { 2926 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 2927 } 2928 2929 /* if no accessor exists then return failure */ 2930 if (!csr_ops[csrno].read) { 2931 return RISCV_EXCP_ILLEGAL_INST; 2932 } 2933 /* read old value */ 2934 ret = csr_ops[csrno].read(env, csrno, &old_value); 2935 if (ret != RISCV_EXCP_NONE) { 2936 return ret; 2937 } 2938 2939 /* write value if writable and write mask set, otherwise drop writes */ 2940 if (write_mask) { 2941 new_value = (old_value & ~write_mask) | (new_value & write_mask); 2942 if (csr_ops[csrno].write) { 2943 ret = csr_ops[csrno].write(env, csrno, new_value); 2944 if (ret != RISCV_EXCP_NONE) { 2945 return ret; 2946 } 2947 } 2948 } 2949 2950 /* return old value */ 2951 if (ret_value) { 2952 *ret_value = old_value; 2953 } 2954 2955 return RISCV_EXCP_NONE; 2956 } 2957 2958 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 2959 target_ulong *ret_value, 2960 target_ulong new_value, target_ulong write_mask) 2961 { 2962 RISCVCPU *cpu = env_archcpu(env); 2963 2964 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 2965 if (ret != RISCV_EXCP_NONE) { 2966 return ret; 2967 } 2968 2969 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 2970 } 2971 2972 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 2973 Int128 *ret_value, 2974 Int128 new_value, 2975 Int128 write_mask) 2976 { 2977 RISCVException ret; 2978 Int128 old_value; 2979 2980 /* read old value */ 2981 ret = csr_ops[csrno].read128(env, csrno, &old_value); 2982 if (ret != RISCV_EXCP_NONE) { 2983 return ret; 2984 } 2985 2986 /* write value if writable and write mask set, otherwise drop writes */ 2987 if (int128_nz(write_mask)) { 2988 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 2989 int128_and(new_value, write_mask)); 2990 if (csr_ops[csrno].write128) { 2991 ret = csr_ops[csrno].write128(env, csrno, new_value); 2992 if (ret != RISCV_EXCP_NONE) { 2993 return ret; 2994 } 2995 } else if (csr_ops[csrno].write) { 2996 /* avoids having to write wrappers for all registers */ 2997 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 2998 if (ret != RISCV_EXCP_NONE) { 2999 return ret; 3000 } 3001 } 3002 } 3003 3004 /* return old value */ 3005 if (ret_value) { 3006 *ret_value = old_value; 3007 } 3008 3009 return RISCV_EXCP_NONE; 3010 } 3011 3012 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3013 Int128 *ret_value, 3014 Int128 new_value, Int128 write_mask) 3015 { 3016 RISCVException ret; 3017 RISCVCPU *cpu = env_archcpu(env); 3018 3019 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3020 if (ret != RISCV_EXCP_NONE) { 3021 return ret; 3022 } 3023 3024 if (csr_ops[csrno].read128) { 3025 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3026 } 3027 3028 /* 3029 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3030 * at all defined. 3031 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3032 * significant), for those, this fallback is correctly handling the accesses 3033 */ 3034 target_ulong old_value; 3035 ret = riscv_csrrw_do64(env, csrno, &old_value, 3036 int128_getlo(new_value), 3037 int128_getlo(write_mask)); 3038 if (ret == RISCV_EXCP_NONE && ret_value) { 3039 *ret_value = int128_make64(old_value); 3040 } 3041 return ret; 3042 } 3043 3044 /* 3045 * Debugger support. If not in user mode, set env->debugger before the 3046 * riscv_csrrw call and clear it after the call. 3047 */ 3048 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3049 target_ulong *ret_value, 3050 target_ulong new_value, 3051 target_ulong write_mask) 3052 { 3053 RISCVException ret; 3054 #if !defined(CONFIG_USER_ONLY) 3055 env->debugger = true; 3056 #endif 3057 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3058 #if !defined(CONFIG_USER_ONLY) 3059 env->debugger = false; 3060 #endif 3061 return ret; 3062 } 3063 3064 /* Control and Status Register function table */ 3065 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3066 /* User Floating-Point CSRs */ 3067 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3068 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3069 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3070 /* Vector CSRs */ 3071 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 3072 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 3073 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 3074 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 3075 [CSR_VL] = { "vl", vs, read_vl }, 3076 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 3077 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 3078 /* User Timers and Counters */ 3079 [CSR_CYCLE] = { "cycle", ctr, read_instret }, 3080 [CSR_INSTRET] = { "instret", ctr, read_instret }, 3081 [CSR_CYCLEH] = { "cycleh", ctr32, read_instreth }, 3082 [CSR_INSTRETH] = { "instreth", ctr32, read_instreth }, 3083 3084 /* 3085 * In privileged mode, the monitor will have to emulate TIME CSRs only if 3086 * rdtime callback is not provided by machine/platform emulation. 3087 */ 3088 [CSR_TIME] = { "time", ctr, read_time }, 3089 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 3090 3091 #if !defined(CONFIG_USER_ONLY) 3092 /* Machine Timers and Counters */ 3093 [CSR_MCYCLE] = { "mcycle", any, read_instret }, 3094 [CSR_MINSTRET] = { "minstret", any, read_instret }, 3095 [CSR_MCYCLEH] = { "mcycleh", any32, read_instreth }, 3096 [CSR_MINSTRETH] = { "minstreth", any32, read_instreth }, 3097 3098 /* Machine Information Registers */ 3099 [CSR_MVENDORID] = { "mvendorid", any, read_zero }, 3100 [CSR_MARCHID] = { "marchid", any, read_zero }, 3101 [CSR_MIMPID] = { "mimpid", any, read_zero }, 3102 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 3103 3104 /* Machine Trap Setup */ 3105 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, NULL, 3106 read_mstatus_i128 }, 3107 [CSR_MISA] = { "misa", any, read_misa, write_misa, NULL, 3108 read_misa_i128 }, 3109 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 3110 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 3111 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 3112 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 3113 [CSR_MCOUNTEREN] = { "mcounteren", any, read_mcounteren, write_mcounteren }, 3114 3115 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, write_mstatush }, 3116 3117 /* Machine Trap Handling */ 3118 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, NULL, 3119 read_mscratch_i128, write_mscratch_i128 }, 3120 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 3121 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 3122 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 3123 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 3124 3125 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 3126 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 3127 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 3128 3129 /* Machine-Level Interrupts (AIA) */ 3130 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 3131 3132 /* Machine-Level IMSIC Interface (AIA) */ 3133 [CSR_MSETEIPNUM] = { "mseteipnum", aia_any, NULL, NULL, rmw_xsetclreinum }, 3134 [CSR_MCLREIPNUM] = { "mclreipnum", aia_any, NULL, NULL, rmw_xsetclreinum }, 3135 [CSR_MSETEIENUM] = { "mseteienum", aia_any, NULL, NULL, rmw_xsetclreinum }, 3136 [CSR_MCLREIENUM] = { "mclreienum", aia_any, NULL, NULL, rmw_xsetclreinum }, 3137 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 3138 3139 /* Virtual Interrupts for Supervisor Level (AIA) */ 3140 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 3141 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 3142 3143 /* Machine-Level High-Half CSRs (AIA) */ 3144 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 3145 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 3146 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 3147 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 3148 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 3149 3150 /* Supervisor Trap Setup */ 3151 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, NULL, 3152 read_sstatus_i128 }, 3153 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 3154 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 3155 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, write_scounteren }, 3156 3157 /* Supervisor Trap Handling */ 3158 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, NULL, 3159 read_sscratch_i128, write_sscratch_i128 }, 3160 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 3161 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 3162 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 3163 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 3164 3165 /* Supervisor Protection and Translation */ 3166 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 3167 3168 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 3169 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 3170 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 3171 3172 /* Supervisor-Level Interrupts (AIA) */ 3173 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 3174 3175 /* Supervisor-Level IMSIC Interface (AIA) */ 3176 [CSR_SSETEIPNUM] = { "sseteipnum", aia_smode, NULL, NULL, rmw_xsetclreinum }, 3177 [CSR_SCLREIPNUM] = { "sclreipnum", aia_smode, NULL, NULL, rmw_xsetclreinum }, 3178 [CSR_SSETEIENUM] = { "sseteienum", aia_smode, NULL, NULL, rmw_xsetclreinum }, 3179 [CSR_SCLREIENUM] = { "sclreienum", aia_smode, NULL, NULL, rmw_xsetclreinum }, 3180 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 3181 3182 /* Supervisor-Level High-Half CSRs (AIA) */ 3183 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 3184 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 3185 3186 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus }, 3187 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg }, 3188 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg }, 3189 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip }, 3190 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip }, 3191 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie }, 3192 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, write_hcounteren }, 3193 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie }, 3194 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval }, 3195 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst }, 3196 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, NULL }, 3197 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp }, 3198 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, write_htimedelta }, 3199 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, write_htimedeltah }, 3200 3201 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, write_vsstatus }, 3202 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip }, 3203 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie }, 3204 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec }, 3205 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, write_vsscratch }, 3206 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc }, 3207 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause }, 3208 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval }, 3209 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp }, 3210 3211 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2 }, 3212 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst }, 3213 3214 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 3215 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 3216 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, write_hvictl }, 3217 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, write_hviprio1 }, 3218 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, write_hviprio2 }, 3219 3220 /* 3221 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 3222 */ 3223 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, rmw_xiselect }, 3224 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 3225 3226 /* VS-Level Interrupts (H-extension with AIA) */ 3227 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 3228 3229 /* VS-Level IMSIC Interface (H-extension with AIA) */ 3230 [CSR_VSSETEIPNUM] = { "vsseteipnum", aia_hmode, NULL, NULL, rmw_xsetclreinum }, 3231 [CSR_VSCLREIPNUM] = { "vsclreipnum", aia_hmode, NULL, NULL, rmw_xsetclreinum }, 3232 [CSR_VSSETEIENUM] = { "vsseteienum", aia_hmode, NULL, NULL, rmw_xsetclreinum }, 3233 [CSR_VSCLREIENUM] = { "vsclreienum", aia_hmode, NULL, NULL, rmw_xsetclreinum }, 3234 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 3235 3236 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 3237 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, rmw_hidelegh }, 3238 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, write_ignore }, 3239 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 3240 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, write_hviprio1h }, 3241 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, write_hviprio2h }, 3242 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 3243 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 3244 3245 /* Physical Memory Protection */ 3246 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg }, 3247 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 3248 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 3249 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 3250 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 3251 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 3252 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 3253 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 3254 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 3255 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 3256 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 3257 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 3258 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 3259 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 3260 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 3261 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 3262 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 3263 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 3264 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 3265 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 3266 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 3267 3268 /* User Pointer Masking */ 3269 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 3270 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, write_upmmask }, 3271 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, write_upmbase }, 3272 /* Machine Pointer Masking */ 3273 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 3274 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, write_mpmmask }, 3275 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, write_mpmbase }, 3276 /* Supervisor Pointer Masking */ 3277 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 3278 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, write_spmmask }, 3279 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, write_spmbase }, 3280 3281 /* Performance Counters */ 3282 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_zero }, 3283 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_zero }, 3284 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_zero }, 3285 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_zero }, 3286 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_zero }, 3287 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_zero }, 3288 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_zero }, 3289 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_zero }, 3290 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_zero }, 3291 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_zero }, 3292 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_zero }, 3293 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_zero }, 3294 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_zero }, 3295 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_zero }, 3296 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_zero }, 3297 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_zero }, 3298 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_zero }, 3299 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_zero }, 3300 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_zero }, 3301 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_zero }, 3302 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_zero }, 3303 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_zero }, 3304 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_zero }, 3305 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_zero }, 3306 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_zero }, 3307 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_zero }, 3308 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_zero }, 3309 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_zero }, 3310 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_zero }, 3311 3312 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", any, read_zero }, 3313 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", any, read_zero }, 3314 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", any, read_zero }, 3315 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", any, read_zero }, 3316 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", any, read_zero }, 3317 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", any, read_zero }, 3318 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", any, read_zero }, 3319 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", any, read_zero }, 3320 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", any, read_zero }, 3321 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", any, read_zero }, 3322 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", any, read_zero }, 3323 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", any, read_zero }, 3324 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", any, read_zero }, 3325 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", any, read_zero }, 3326 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", any, read_zero }, 3327 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", any, read_zero }, 3328 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", any, read_zero }, 3329 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", any, read_zero }, 3330 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", any, read_zero }, 3331 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", any, read_zero }, 3332 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", any, read_zero }, 3333 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", any, read_zero }, 3334 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", any, read_zero }, 3335 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", any, read_zero }, 3336 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", any, read_zero }, 3337 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", any, read_zero }, 3338 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", any, read_zero }, 3339 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", any, read_zero }, 3340 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", any, read_zero }, 3341 3342 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_zero }, 3343 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_zero }, 3344 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_zero }, 3345 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_zero }, 3346 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_zero }, 3347 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_zero }, 3348 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_zero }, 3349 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_zero }, 3350 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_zero }, 3351 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_zero }, 3352 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_zero }, 3353 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_zero }, 3354 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_zero }, 3355 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_zero }, 3356 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_zero }, 3357 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_zero }, 3358 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_zero }, 3359 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_zero }, 3360 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_zero }, 3361 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_zero }, 3362 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_zero }, 3363 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_zero }, 3364 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_zero }, 3365 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_zero }, 3366 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_zero }, 3367 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_zero }, 3368 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_zero }, 3369 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_zero }, 3370 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_zero }, 3371 3372 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_zero }, 3373 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_zero }, 3374 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_zero }, 3375 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_zero }, 3376 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_zero }, 3377 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_zero }, 3378 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_zero }, 3379 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_zero }, 3380 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_zero }, 3381 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_zero }, 3382 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_zero }, 3383 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_zero }, 3384 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_zero }, 3385 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_zero }, 3386 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_zero }, 3387 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_zero }, 3388 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_zero }, 3389 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_zero }, 3390 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_zero }, 3391 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_zero }, 3392 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_zero }, 3393 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_zero }, 3394 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_zero }, 3395 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_zero }, 3396 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_zero }, 3397 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_zero }, 3398 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_zero }, 3399 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_zero }, 3400 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_zero }, 3401 3402 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", any32, read_zero }, 3403 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", any32, read_zero }, 3404 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", any32, read_zero }, 3405 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", any32, read_zero }, 3406 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", any32, read_zero }, 3407 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", any32, read_zero }, 3408 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", any32, read_zero }, 3409 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", any32, read_zero }, 3410 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", any32, read_zero }, 3411 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", any32, read_zero }, 3412 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", any32, read_zero }, 3413 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", any32, read_zero }, 3414 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", any32, read_zero }, 3415 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", any32, read_zero }, 3416 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", any32, read_zero }, 3417 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", any32, read_zero }, 3418 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", any32, read_zero }, 3419 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", any32, read_zero }, 3420 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", any32, read_zero }, 3421 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", any32, read_zero }, 3422 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", any32, read_zero }, 3423 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", any32, read_zero }, 3424 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", any32, read_zero }, 3425 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", any32, read_zero }, 3426 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", any32, read_zero }, 3427 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", any32, read_zero }, 3428 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", any32, read_zero }, 3429 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", any32, read_zero }, 3430 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", any32, read_zero }, 3431 #endif /* !CONFIG_USER_ONLY */ 3432 }; 3433