1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "time_helper.h" 26 #include "qemu/main-loop.h" 27 #include "exec/exec-all.h" 28 #include "sysemu/cpu-timers.h" 29 #include "qemu/guest-random.h" 30 #include "qapi/error.h" 31 32 /* CSR function table public API */ 33 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 34 { 35 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 36 } 37 38 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 41 } 42 43 /* Predicates */ 44 #if !defined(CONFIG_USER_ONLY) 45 static RISCVException smstateen_acc_ok(CPURISCVState *env, int index, 46 uint64_t bit) 47 { 48 bool virt = riscv_cpu_virt_enabled(env); 49 RISCVCPU *cpu = env_archcpu(env); 50 51 if (env->priv == PRV_M || !cpu->cfg.ext_smstateen) { 52 return RISCV_EXCP_NONE; 53 } 54 55 if (!(env->mstateen[index] & bit)) { 56 return RISCV_EXCP_ILLEGAL_INST; 57 } 58 59 if (virt) { 60 if (!(env->hstateen[index] & bit)) { 61 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 62 } 63 64 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 65 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 66 } 67 } 68 69 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 70 if (!(env->sstateen[index] & bit)) { 71 return RISCV_EXCP_ILLEGAL_INST; 72 } 73 } 74 75 return RISCV_EXCP_NONE; 76 } 77 #endif 78 79 static RISCVException fs(CPURISCVState *env, int csrno) 80 { 81 #if !defined(CONFIG_USER_ONLY) 82 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 83 !RISCV_CPU(env_cpu(env))->cfg.ext_zfinx) { 84 return RISCV_EXCP_ILLEGAL_INST; 85 } 86 #endif 87 return RISCV_EXCP_NONE; 88 } 89 90 static RISCVException vs(CPURISCVState *env, int csrno) 91 { 92 RISCVCPU *cpu = env_archcpu(env); 93 94 if (env->misa_ext & RVV || 95 cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 96 #if !defined(CONFIG_USER_ONLY) 97 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 98 return RISCV_EXCP_ILLEGAL_INST; 99 } 100 #endif 101 return RISCV_EXCP_NONE; 102 } 103 return RISCV_EXCP_ILLEGAL_INST; 104 } 105 106 static RISCVException ctr(CPURISCVState *env, int csrno) 107 { 108 #if !defined(CONFIG_USER_ONLY) 109 RISCVCPU *cpu = env_archcpu(env); 110 int ctr_index; 111 target_ulong ctr_mask; 112 int base_csrno = CSR_CYCLE; 113 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 114 115 if (rv32 && csrno >= CSR_CYCLEH) { 116 /* Offset for RV32 hpmcounternh counters */ 117 base_csrno += 0x80; 118 } 119 ctr_index = csrno - base_csrno; 120 ctr_mask = BIT(ctr_index); 121 122 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 123 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 124 goto skip_ext_pmu_check; 125 } 126 127 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 128 /* No counter is enabled in PMU or the counter is out of range */ 129 return RISCV_EXCP_ILLEGAL_INST; 130 } 131 132 skip_ext_pmu_check: 133 134 if (env->debugger) { 135 return RISCV_EXCP_NONE; 136 } 137 138 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 139 return RISCV_EXCP_ILLEGAL_INST; 140 } 141 142 if (riscv_cpu_virt_enabled(env)) { 143 if (!get_field(env->hcounteren, ctr_mask) || 144 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 145 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 146 } 147 } 148 149 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 150 !get_field(env->scounteren, ctr_mask)) { 151 return RISCV_EXCP_ILLEGAL_INST; 152 } 153 154 #endif 155 return RISCV_EXCP_NONE; 156 } 157 158 static RISCVException ctr32(CPURISCVState *env, int csrno) 159 { 160 if (riscv_cpu_mxl(env) != MXL_RV32) { 161 return RISCV_EXCP_ILLEGAL_INST; 162 } 163 164 return ctr(env, csrno); 165 } 166 167 #if !defined(CONFIG_USER_ONLY) 168 static RISCVException mctr(CPURISCVState *env, int csrno) 169 { 170 RISCVCPU *cpu = env_archcpu(env); 171 int ctr_index; 172 int base_csrno = CSR_MHPMCOUNTER3; 173 174 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 175 /* Offset for RV32 mhpmcounternh counters */ 176 base_csrno += 0x80; 177 } 178 ctr_index = csrno - base_csrno; 179 if (!cpu->cfg.pmu_num || ctr_index >= cpu->cfg.pmu_num) { 180 /* The PMU is not enabled or counter is out of range*/ 181 return RISCV_EXCP_ILLEGAL_INST; 182 } 183 184 return RISCV_EXCP_NONE; 185 } 186 187 static RISCVException mctr32(CPURISCVState *env, int csrno) 188 { 189 if (riscv_cpu_mxl(env) != MXL_RV32) { 190 return RISCV_EXCP_ILLEGAL_INST; 191 } 192 193 return mctr(env, csrno); 194 } 195 196 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 197 { 198 RISCVCPU *cpu = env_archcpu(env); 199 200 if (!cpu->cfg.ext_sscofpmf) { 201 return RISCV_EXCP_ILLEGAL_INST; 202 } 203 204 return RISCV_EXCP_NONE; 205 } 206 207 static RISCVException any(CPURISCVState *env, int csrno) 208 { 209 return RISCV_EXCP_NONE; 210 } 211 212 static RISCVException any32(CPURISCVState *env, int csrno) 213 { 214 if (riscv_cpu_mxl(env) != MXL_RV32) { 215 return RISCV_EXCP_ILLEGAL_INST; 216 } 217 218 return any(env, csrno); 219 220 } 221 222 static int aia_any(CPURISCVState *env, int csrno) 223 { 224 RISCVCPU *cpu = env_archcpu(env); 225 226 if (!cpu->cfg.ext_smaia) { 227 return RISCV_EXCP_ILLEGAL_INST; 228 } 229 230 return any(env, csrno); 231 } 232 233 static int aia_any32(CPURISCVState *env, int csrno) 234 { 235 RISCVCPU *cpu = env_archcpu(env); 236 237 if (!cpu->cfg.ext_smaia) { 238 return RISCV_EXCP_ILLEGAL_INST; 239 } 240 241 return any32(env, csrno); 242 } 243 244 static RISCVException smode(CPURISCVState *env, int csrno) 245 { 246 if (riscv_has_ext(env, RVS)) { 247 return RISCV_EXCP_NONE; 248 } 249 250 return RISCV_EXCP_ILLEGAL_INST; 251 } 252 253 static int smode32(CPURISCVState *env, int csrno) 254 { 255 if (riscv_cpu_mxl(env) != MXL_RV32) { 256 return RISCV_EXCP_ILLEGAL_INST; 257 } 258 259 return smode(env, csrno); 260 } 261 262 static int aia_smode(CPURISCVState *env, int csrno) 263 { 264 RISCVCPU *cpu = env_archcpu(env); 265 266 if (!cpu->cfg.ext_ssaia) { 267 return RISCV_EXCP_ILLEGAL_INST; 268 } 269 270 return smode(env, csrno); 271 } 272 273 static int aia_smode32(CPURISCVState *env, int csrno) 274 { 275 RISCVCPU *cpu = env_archcpu(env); 276 277 if (!cpu->cfg.ext_ssaia) { 278 return RISCV_EXCP_ILLEGAL_INST; 279 } 280 281 return smode32(env, csrno); 282 } 283 284 static RISCVException hmode(CPURISCVState *env, int csrno) 285 { 286 if (riscv_has_ext(env, RVH)) { 287 return RISCV_EXCP_NONE; 288 } 289 290 return RISCV_EXCP_ILLEGAL_INST; 291 } 292 293 static RISCVException hmode32(CPURISCVState *env, int csrno) 294 { 295 if (riscv_cpu_mxl(env) != MXL_RV32) { 296 return RISCV_EXCP_ILLEGAL_INST; 297 } 298 299 return hmode(env, csrno); 300 301 } 302 303 static RISCVException umode(CPURISCVState *env, int csrno) 304 { 305 if (riscv_has_ext(env, RVU)) { 306 return RISCV_EXCP_NONE; 307 } 308 309 return RISCV_EXCP_ILLEGAL_INST; 310 } 311 312 static RISCVException umode32(CPURISCVState *env, int csrno) 313 { 314 if (riscv_cpu_mxl(env) != MXL_RV32) { 315 return RISCV_EXCP_ILLEGAL_INST; 316 } 317 318 return umode(env, csrno); 319 } 320 321 static RISCVException mstateen(CPURISCVState *env, int csrno) 322 { 323 RISCVCPU *cpu = env_archcpu(env); 324 325 if (!cpu->cfg.ext_smstateen) { 326 return RISCV_EXCP_ILLEGAL_INST; 327 } 328 329 return any(env, csrno); 330 } 331 332 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 333 { 334 RISCVCPU *cpu = env_archcpu(env); 335 336 if (!cpu->cfg.ext_smstateen) { 337 return RISCV_EXCP_ILLEGAL_INST; 338 } 339 340 RISCVException ret = hmode(env, csrno); 341 if (ret != RISCV_EXCP_NONE) { 342 return ret; 343 } 344 345 if (env->debugger) { 346 return RISCV_EXCP_NONE; 347 } 348 349 if (env->priv < PRV_M) { 350 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 351 return RISCV_EXCP_ILLEGAL_INST; 352 } 353 } 354 355 return RISCV_EXCP_NONE; 356 } 357 358 static RISCVException hstateen(CPURISCVState *env, int csrno) 359 { 360 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 361 } 362 363 static RISCVException hstateenh(CPURISCVState *env, int csrno) 364 { 365 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 366 } 367 368 static RISCVException sstateen(CPURISCVState *env, int csrno) 369 { 370 bool virt = riscv_cpu_virt_enabled(env); 371 int index = csrno - CSR_SSTATEEN0; 372 RISCVCPU *cpu = env_archcpu(env); 373 374 if (!cpu->cfg.ext_smstateen) { 375 return RISCV_EXCP_ILLEGAL_INST; 376 } 377 378 RISCVException ret = smode(env, csrno); 379 if (ret != RISCV_EXCP_NONE) { 380 return ret; 381 } 382 383 if (env->debugger) { 384 return RISCV_EXCP_NONE; 385 } 386 387 if (env->priv < PRV_M) { 388 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 389 return RISCV_EXCP_ILLEGAL_INST; 390 } 391 392 if (virt) { 393 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 394 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 395 } 396 } 397 } 398 399 return RISCV_EXCP_NONE; 400 } 401 402 /* Checks if PointerMasking registers could be accessed */ 403 static RISCVException pointer_masking(CPURISCVState *env, int csrno) 404 { 405 /* Check if j-ext is present */ 406 if (riscv_has_ext(env, RVJ)) { 407 return RISCV_EXCP_NONE; 408 } 409 return RISCV_EXCP_ILLEGAL_INST; 410 } 411 412 static int aia_hmode(CPURISCVState *env, int csrno) 413 { 414 RISCVCPU *cpu = env_archcpu(env); 415 416 if (!cpu->cfg.ext_ssaia) { 417 return RISCV_EXCP_ILLEGAL_INST; 418 } 419 420 return hmode(env, csrno); 421 } 422 423 static int aia_hmode32(CPURISCVState *env, int csrno) 424 { 425 RISCVCPU *cpu = env_archcpu(env); 426 427 if (!cpu->cfg.ext_ssaia) { 428 return RISCV_EXCP_ILLEGAL_INST; 429 } 430 431 return hmode32(env, csrno); 432 } 433 434 static RISCVException pmp(CPURISCVState *env, int csrno) 435 { 436 if (riscv_cpu_cfg(env)->pmp) { 437 if (csrno <= CSR_PMPCFG3) { 438 uint32_t reg_index = csrno - CSR_PMPCFG0; 439 440 /* TODO: RV128 restriction check */ 441 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 442 return RISCV_EXCP_ILLEGAL_INST; 443 } 444 } 445 446 return RISCV_EXCP_NONE; 447 } 448 449 return RISCV_EXCP_ILLEGAL_INST; 450 } 451 452 static RISCVException epmp(CPURISCVState *env, int csrno) 453 { 454 if (env->priv == PRV_M && riscv_cpu_cfg(env)->epmp) { 455 return RISCV_EXCP_NONE; 456 } 457 458 return RISCV_EXCP_ILLEGAL_INST; 459 } 460 461 static RISCVException debug(CPURISCVState *env, int csrno) 462 { 463 if (riscv_cpu_cfg(env)->debug) { 464 return RISCV_EXCP_NONE; 465 } 466 467 return RISCV_EXCP_ILLEGAL_INST; 468 } 469 #endif 470 471 static RISCVException seed(CPURISCVState *env, int csrno) 472 { 473 RISCVCPU *cpu = env_archcpu(env); 474 475 if (!cpu->cfg.ext_zkr) { 476 return RISCV_EXCP_ILLEGAL_INST; 477 } 478 479 #if !defined(CONFIG_USER_ONLY) 480 if (env->debugger) { 481 return RISCV_EXCP_NONE; 482 } 483 484 /* 485 * With a CSR read-write instruction: 486 * 1) The seed CSR is always available in machine mode as normal. 487 * 2) Attempted access to seed from virtual modes VS and VU always raises 488 * an exception(virtual instruction exception only if mseccfg.sseed=1). 489 * 3) Without the corresponding access control bit set to 1, any attempted 490 * access to seed from U, S or HS modes will raise an illegal instruction 491 * exception. 492 */ 493 if (env->priv == PRV_M) { 494 return RISCV_EXCP_NONE; 495 } else if (riscv_cpu_virt_enabled(env)) { 496 if (env->mseccfg & MSECCFG_SSEED) { 497 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 498 } else { 499 return RISCV_EXCP_ILLEGAL_INST; 500 } 501 } else { 502 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 503 return RISCV_EXCP_NONE; 504 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 505 return RISCV_EXCP_NONE; 506 } else { 507 return RISCV_EXCP_ILLEGAL_INST; 508 } 509 } 510 #else 511 return RISCV_EXCP_NONE; 512 #endif 513 } 514 515 /* User Floating-Point CSRs */ 516 static RISCVException read_fflags(CPURISCVState *env, int csrno, 517 target_ulong *val) 518 { 519 *val = riscv_cpu_get_fflags(env); 520 return RISCV_EXCP_NONE; 521 } 522 523 static RISCVException write_fflags(CPURISCVState *env, int csrno, 524 target_ulong val) 525 { 526 #if !defined(CONFIG_USER_ONLY) 527 if (riscv_has_ext(env, RVF)) { 528 env->mstatus |= MSTATUS_FS; 529 } 530 #endif 531 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 532 return RISCV_EXCP_NONE; 533 } 534 535 static RISCVException read_frm(CPURISCVState *env, int csrno, 536 target_ulong *val) 537 { 538 *val = env->frm; 539 return RISCV_EXCP_NONE; 540 } 541 542 static RISCVException write_frm(CPURISCVState *env, int csrno, 543 target_ulong val) 544 { 545 #if !defined(CONFIG_USER_ONLY) 546 if (riscv_has_ext(env, RVF)) { 547 env->mstatus |= MSTATUS_FS; 548 } 549 #endif 550 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 551 return RISCV_EXCP_NONE; 552 } 553 554 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 555 target_ulong *val) 556 { 557 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 558 | (env->frm << FSR_RD_SHIFT); 559 return RISCV_EXCP_NONE; 560 } 561 562 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 563 target_ulong val) 564 { 565 #if !defined(CONFIG_USER_ONLY) 566 if (riscv_has_ext(env, RVF)) { 567 env->mstatus |= MSTATUS_FS; 568 } 569 #endif 570 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 571 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 572 return RISCV_EXCP_NONE; 573 } 574 575 static RISCVException read_vtype(CPURISCVState *env, int csrno, 576 target_ulong *val) 577 { 578 uint64_t vill; 579 switch (env->xl) { 580 case MXL_RV32: 581 vill = (uint32_t)env->vill << 31; 582 break; 583 case MXL_RV64: 584 vill = (uint64_t)env->vill << 63; 585 break; 586 default: 587 g_assert_not_reached(); 588 } 589 *val = (target_ulong)vill | env->vtype; 590 return RISCV_EXCP_NONE; 591 } 592 593 static RISCVException read_vl(CPURISCVState *env, int csrno, 594 target_ulong *val) 595 { 596 *val = env->vl; 597 return RISCV_EXCP_NONE; 598 } 599 600 static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val) 601 { 602 *val = env_archcpu(env)->cfg.vlen >> 3; 603 return RISCV_EXCP_NONE; 604 } 605 606 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 607 target_ulong *val) 608 { 609 *val = env->vxrm; 610 return RISCV_EXCP_NONE; 611 } 612 613 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 614 target_ulong val) 615 { 616 #if !defined(CONFIG_USER_ONLY) 617 env->mstatus |= MSTATUS_VS; 618 #endif 619 env->vxrm = val; 620 return RISCV_EXCP_NONE; 621 } 622 623 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 624 target_ulong *val) 625 { 626 *val = env->vxsat; 627 return RISCV_EXCP_NONE; 628 } 629 630 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 631 target_ulong val) 632 { 633 #if !defined(CONFIG_USER_ONLY) 634 env->mstatus |= MSTATUS_VS; 635 #endif 636 env->vxsat = val; 637 return RISCV_EXCP_NONE; 638 } 639 640 static RISCVException read_vstart(CPURISCVState *env, int csrno, 641 target_ulong *val) 642 { 643 *val = env->vstart; 644 return RISCV_EXCP_NONE; 645 } 646 647 static RISCVException write_vstart(CPURISCVState *env, int csrno, 648 target_ulong val) 649 { 650 #if !defined(CONFIG_USER_ONLY) 651 env->mstatus |= MSTATUS_VS; 652 #endif 653 /* 654 * The vstart CSR is defined to have only enough writable bits 655 * to hold the largest element index, i.e. lg2(VLEN) bits. 656 */ 657 env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen)); 658 return RISCV_EXCP_NONE; 659 } 660 661 static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val) 662 { 663 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 664 return RISCV_EXCP_NONE; 665 } 666 667 static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val) 668 { 669 #if !defined(CONFIG_USER_ONLY) 670 env->mstatus |= MSTATUS_VS; 671 #endif 672 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 673 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 674 return RISCV_EXCP_NONE; 675 } 676 677 /* User Timers and Counters */ 678 static target_ulong get_ticks(bool shift) 679 { 680 int64_t val; 681 target_ulong result; 682 683 #if !defined(CONFIG_USER_ONLY) 684 if (icount_enabled()) { 685 val = icount_get(); 686 } else { 687 val = cpu_get_host_ticks(); 688 } 689 #else 690 val = cpu_get_host_ticks(); 691 #endif 692 693 if (shift) { 694 result = val >> 32; 695 } else { 696 result = val; 697 } 698 699 return result; 700 } 701 702 #if defined(CONFIG_USER_ONLY) 703 static RISCVException read_time(CPURISCVState *env, int csrno, 704 target_ulong *val) 705 { 706 *val = cpu_get_host_ticks(); 707 return RISCV_EXCP_NONE; 708 } 709 710 static RISCVException read_timeh(CPURISCVState *env, int csrno, 711 target_ulong *val) 712 { 713 *val = cpu_get_host_ticks() >> 32; 714 return RISCV_EXCP_NONE; 715 } 716 717 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 718 { 719 *val = get_ticks(false); 720 return RISCV_EXCP_NONE; 721 } 722 723 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 724 { 725 *val = get_ticks(true); 726 return RISCV_EXCP_NONE; 727 } 728 729 #else /* CONFIG_USER_ONLY */ 730 731 static int read_mhpmevent(CPURISCVState *env, int csrno, target_ulong *val) 732 { 733 int evt_index = csrno - CSR_MCOUNTINHIBIT; 734 735 *val = env->mhpmevent_val[evt_index]; 736 737 return RISCV_EXCP_NONE; 738 } 739 740 static int write_mhpmevent(CPURISCVState *env, int csrno, target_ulong val) 741 { 742 int evt_index = csrno - CSR_MCOUNTINHIBIT; 743 uint64_t mhpmevt_val = val; 744 745 env->mhpmevent_val[evt_index] = val; 746 747 if (riscv_cpu_mxl(env) == MXL_RV32) { 748 mhpmevt_val = mhpmevt_val | 749 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 750 } 751 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 752 753 return RISCV_EXCP_NONE; 754 } 755 756 static int read_mhpmeventh(CPURISCVState *env, int csrno, target_ulong *val) 757 { 758 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 759 760 *val = env->mhpmeventh_val[evt_index]; 761 762 return RISCV_EXCP_NONE; 763 } 764 765 static int write_mhpmeventh(CPURISCVState *env, int csrno, target_ulong val) 766 { 767 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 768 uint64_t mhpmevth_val = val; 769 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 770 771 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 772 env->mhpmeventh_val[evt_index] = val; 773 774 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 775 776 return RISCV_EXCP_NONE; 777 } 778 779 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 780 { 781 int ctr_idx = csrno - CSR_MCYCLE; 782 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 783 uint64_t mhpmctr_val = val; 784 785 counter->mhpmcounter_val = val; 786 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 787 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 788 counter->mhpmcounter_prev = get_ticks(false); 789 if (ctr_idx > 2) { 790 if (riscv_cpu_mxl(env) == MXL_RV32) { 791 mhpmctr_val = mhpmctr_val | 792 ((uint64_t)counter->mhpmcounterh_val << 32); 793 } 794 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 795 } 796 } else { 797 /* Other counters can keep incrementing from the given value */ 798 counter->mhpmcounter_prev = val; 799 } 800 801 return RISCV_EXCP_NONE; 802 } 803 804 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 805 { 806 int ctr_idx = csrno - CSR_MCYCLEH; 807 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 808 uint64_t mhpmctr_val = counter->mhpmcounter_val; 809 uint64_t mhpmctrh_val = val; 810 811 counter->mhpmcounterh_val = val; 812 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 813 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 814 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 815 counter->mhpmcounterh_prev = get_ticks(true); 816 if (ctr_idx > 2) { 817 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 818 } 819 } else { 820 counter->mhpmcounterh_prev = val; 821 } 822 823 return RISCV_EXCP_NONE; 824 } 825 826 static RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 827 bool upper_half, uint32_t ctr_idx) 828 { 829 PMUCTRState counter = env->pmu_ctrs[ctr_idx]; 830 target_ulong ctr_prev = upper_half ? counter.mhpmcounterh_prev : 831 counter.mhpmcounter_prev; 832 target_ulong ctr_val = upper_half ? counter.mhpmcounterh_val : 833 counter.mhpmcounter_val; 834 835 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 836 /** 837 * Counter should not increment if inhibit bit is set. We can't really 838 * stop the icount counting. Just return the counter value written by 839 * the supervisor to indicate that counter was not incremented. 840 */ 841 if (!counter.started) { 842 *val = ctr_val; 843 return RISCV_EXCP_NONE; 844 } else { 845 /* Mark that the counter has been stopped */ 846 counter.started = false; 847 } 848 } 849 850 /** 851 * The kernel computes the perf delta by subtracting the current value from 852 * the value it initialized previously (ctr_val). 853 */ 854 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 855 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 856 *val = get_ticks(upper_half) - ctr_prev + ctr_val; 857 } else { 858 *val = ctr_val; 859 } 860 861 return RISCV_EXCP_NONE; 862 } 863 864 static int read_hpmcounter(CPURISCVState *env, int csrno, target_ulong *val) 865 { 866 uint16_t ctr_index; 867 868 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 869 ctr_index = csrno - CSR_MCYCLE; 870 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 871 ctr_index = csrno - CSR_CYCLE; 872 } else { 873 return RISCV_EXCP_ILLEGAL_INST; 874 } 875 876 return riscv_pmu_read_ctr(env, val, false, ctr_index); 877 } 878 879 static int read_hpmcounterh(CPURISCVState *env, int csrno, target_ulong *val) 880 { 881 uint16_t ctr_index; 882 883 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 884 ctr_index = csrno - CSR_MCYCLEH; 885 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 886 ctr_index = csrno - CSR_CYCLEH; 887 } else { 888 return RISCV_EXCP_ILLEGAL_INST; 889 } 890 891 return riscv_pmu_read_ctr(env, val, true, ctr_index); 892 } 893 894 static int read_scountovf(CPURISCVState *env, int csrno, target_ulong *val) 895 { 896 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 897 int i; 898 *val = 0; 899 target_ulong *mhpm_evt_val; 900 uint64_t of_bit_mask; 901 902 if (riscv_cpu_mxl(env) == MXL_RV32) { 903 mhpm_evt_val = env->mhpmeventh_val; 904 of_bit_mask = MHPMEVENTH_BIT_OF; 905 } else { 906 mhpm_evt_val = env->mhpmevent_val; 907 of_bit_mask = MHPMEVENT_BIT_OF; 908 } 909 910 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 911 if ((get_field(env->mcounteren, BIT(i))) && 912 (mhpm_evt_val[i] & of_bit_mask)) { 913 *val |= BIT(i); 914 } 915 } 916 917 return RISCV_EXCP_NONE; 918 } 919 920 static RISCVException read_time(CPURISCVState *env, int csrno, 921 target_ulong *val) 922 { 923 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 924 925 if (!env->rdtime_fn) { 926 return RISCV_EXCP_ILLEGAL_INST; 927 } 928 929 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 930 return RISCV_EXCP_NONE; 931 } 932 933 static RISCVException read_timeh(CPURISCVState *env, int csrno, 934 target_ulong *val) 935 { 936 uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0; 937 938 if (!env->rdtime_fn) { 939 return RISCV_EXCP_ILLEGAL_INST; 940 } 941 942 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 943 return RISCV_EXCP_NONE; 944 } 945 946 static RISCVException sstc(CPURISCVState *env, int csrno) 947 { 948 RISCVCPU *cpu = env_archcpu(env); 949 bool hmode_check = false; 950 951 if (!cpu->cfg.ext_sstc || !env->rdtime_fn) { 952 return RISCV_EXCP_ILLEGAL_INST; 953 } 954 955 if (env->priv == PRV_M) { 956 return RISCV_EXCP_NONE; 957 } 958 959 /* 960 * No need of separate function for rv32 as menvcfg stores both menvcfg 961 * menvcfgh for RV32. 962 */ 963 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 964 get_field(env->menvcfg, MENVCFG_STCE))) { 965 return RISCV_EXCP_ILLEGAL_INST; 966 } 967 968 if (riscv_cpu_virt_enabled(env)) { 969 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 970 get_field(env->henvcfg, HENVCFG_STCE))) { 971 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 972 } 973 } 974 975 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 976 hmode_check = true; 977 } 978 979 return hmode_check ? hmode(env, csrno) : smode(env, csrno); 980 } 981 982 static RISCVException sstc_32(CPURISCVState *env, int csrno) 983 { 984 if (riscv_cpu_mxl(env) != MXL_RV32) { 985 return RISCV_EXCP_ILLEGAL_INST; 986 } 987 988 return sstc(env, csrno); 989 } 990 991 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 992 target_ulong *val) 993 { 994 *val = env->vstimecmp; 995 996 return RISCV_EXCP_NONE; 997 } 998 999 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 1000 target_ulong *val) 1001 { 1002 *val = env->vstimecmp >> 32; 1003 1004 return RISCV_EXCP_NONE; 1005 } 1006 1007 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1008 target_ulong val) 1009 { 1010 RISCVCPU *cpu = env_archcpu(env); 1011 1012 if (riscv_cpu_mxl(env) == MXL_RV32) { 1013 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1014 } else { 1015 env->vstimecmp = val; 1016 } 1017 1018 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1019 env->htimedelta, MIP_VSTIP); 1020 1021 return RISCV_EXCP_NONE; 1022 } 1023 1024 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1025 target_ulong val) 1026 { 1027 RISCVCPU *cpu = env_archcpu(env); 1028 1029 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1030 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 1031 env->htimedelta, MIP_VSTIP); 1032 1033 return RISCV_EXCP_NONE; 1034 } 1035 1036 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1037 target_ulong *val) 1038 { 1039 if (riscv_cpu_virt_enabled(env)) { 1040 *val = env->vstimecmp; 1041 } else { 1042 *val = env->stimecmp; 1043 } 1044 1045 return RISCV_EXCP_NONE; 1046 } 1047 1048 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1049 target_ulong *val) 1050 { 1051 if (riscv_cpu_virt_enabled(env)) { 1052 *val = env->vstimecmp >> 32; 1053 } else { 1054 *val = env->stimecmp >> 32; 1055 } 1056 1057 return RISCV_EXCP_NONE; 1058 } 1059 1060 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1061 target_ulong val) 1062 { 1063 RISCVCPU *cpu = env_archcpu(env); 1064 1065 if (riscv_cpu_virt_enabled(env)) { 1066 if (env->hvictl & HVICTL_VTI) { 1067 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1068 } 1069 return write_vstimecmp(env, csrno, val); 1070 } 1071 1072 if (riscv_cpu_mxl(env) == MXL_RV32) { 1073 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1074 } else { 1075 env->stimecmp = val; 1076 } 1077 1078 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1079 1080 return RISCV_EXCP_NONE; 1081 } 1082 1083 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1084 target_ulong val) 1085 { 1086 RISCVCPU *cpu = env_archcpu(env); 1087 1088 if (riscv_cpu_virt_enabled(env)) { 1089 if (env->hvictl & HVICTL_VTI) { 1090 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1091 } 1092 return write_vstimecmph(env, csrno, val); 1093 } 1094 1095 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1096 riscv_timer_write_timecmp(cpu, env->stimer, env->stimecmp, 0, MIP_STIP); 1097 1098 return RISCV_EXCP_NONE; 1099 } 1100 1101 /* Machine constants */ 1102 1103 #define M_MODE_INTERRUPTS ((uint64_t)(MIP_MSIP | MIP_MTIP | MIP_MEIP)) 1104 #define S_MODE_INTERRUPTS ((uint64_t)(MIP_SSIP | MIP_STIP | MIP_SEIP | \ 1105 MIP_LCOFIP)) 1106 #define VS_MODE_INTERRUPTS ((uint64_t)(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) 1107 #define HS_MODE_INTERRUPTS ((uint64_t)(MIP_SGEIP | VS_MODE_INTERRUPTS)) 1108 1109 #define VSTOPI_NUM_SRCS 5 1110 1111 static const uint64_t delegable_ints = S_MODE_INTERRUPTS | 1112 VS_MODE_INTERRUPTS; 1113 static const uint64_t vs_delegable_ints = VS_MODE_INTERRUPTS; 1114 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1115 HS_MODE_INTERRUPTS; 1116 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1117 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1118 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1119 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1120 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1121 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1122 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1123 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1124 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1125 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1126 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1127 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1128 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1129 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1130 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1131 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1132 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1133 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1134 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1135 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1136 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1137 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1138 (1ULL << (RISCV_EXCP_M_ECALL)) | 1139 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1140 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1141 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1142 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1143 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1144 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1145 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1146 static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP | 1147 SIP_LCOFIP; 1148 static const target_ulong hip_writable_mask = MIP_VSSIP; 1149 static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP; 1150 static const target_ulong vsip_writable_mask = MIP_VSSIP; 1151 1152 static const char valid_vm_1_10_32[16] = { 1153 [VM_1_10_MBARE] = 1, 1154 [VM_1_10_SV32] = 1 1155 }; 1156 1157 static const char valid_vm_1_10_64[16] = { 1158 [VM_1_10_MBARE] = 1, 1159 [VM_1_10_SV39] = 1, 1160 [VM_1_10_SV48] = 1, 1161 [VM_1_10_SV57] = 1 1162 }; 1163 1164 /* Machine Information Registers */ 1165 static RISCVException read_zero(CPURISCVState *env, int csrno, 1166 target_ulong *val) 1167 { 1168 *val = 0; 1169 return RISCV_EXCP_NONE; 1170 } 1171 1172 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1173 target_ulong val) 1174 { 1175 return RISCV_EXCP_NONE; 1176 } 1177 1178 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1179 target_ulong *val) 1180 { 1181 RISCVCPU *cpu = env_archcpu(env); 1182 1183 *val = cpu->cfg.mvendorid; 1184 return RISCV_EXCP_NONE; 1185 } 1186 1187 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1188 target_ulong *val) 1189 { 1190 RISCVCPU *cpu = env_archcpu(env); 1191 1192 *val = cpu->cfg.marchid; 1193 return RISCV_EXCP_NONE; 1194 } 1195 1196 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1197 target_ulong *val) 1198 { 1199 RISCVCPU *cpu = env_archcpu(env); 1200 1201 *val = cpu->cfg.mimpid; 1202 return RISCV_EXCP_NONE; 1203 } 1204 1205 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1206 target_ulong *val) 1207 { 1208 *val = env->mhartid; 1209 return RISCV_EXCP_NONE; 1210 } 1211 1212 /* Machine Trap Setup */ 1213 1214 /* We do not store SD explicitly, only compute it on demand. */ 1215 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1216 { 1217 if ((status & MSTATUS_FS) == MSTATUS_FS || 1218 (status & MSTATUS_VS) == MSTATUS_VS || 1219 (status & MSTATUS_XS) == MSTATUS_XS) { 1220 switch (xl) { 1221 case MXL_RV32: 1222 return status | MSTATUS32_SD; 1223 case MXL_RV64: 1224 return status | MSTATUS64_SD; 1225 case MXL_RV128: 1226 return MSTATUSH128_SD; 1227 default: 1228 g_assert_not_reached(); 1229 } 1230 } 1231 return status; 1232 } 1233 1234 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1235 target_ulong *val) 1236 { 1237 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1238 return RISCV_EXCP_NONE; 1239 } 1240 1241 static int validate_vm(CPURISCVState *env, target_ulong vm) 1242 { 1243 if (riscv_cpu_mxl(env) == MXL_RV32) { 1244 return valid_vm_1_10_32[vm & 0xf]; 1245 } else { 1246 return valid_vm_1_10_64[vm & 0xf]; 1247 } 1248 } 1249 1250 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1251 target_ulong val) 1252 { 1253 uint64_t mstatus = env->mstatus; 1254 uint64_t mask = 0; 1255 RISCVMXL xl = riscv_cpu_mxl(env); 1256 1257 /* flush tlb on mstatus fields that affect VM */ 1258 if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV | 1259 MSTATUS_MPRV | MSTATUS_SUM)) { 1260 tlb_flush(env_cpu(env)); 1261 } 1262 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1263 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1264 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1265 MSTATUS_TW | MSTATUS_VS; 1266 1267 if (riscv_has_ext(env, RVF)) { 1268 mask |= MSTATUS_FS; 1269 } 1270 1271 if (xl != MXL_RV32 || env->debugger) { 1272 /* 1273 * RV32: MPV and GVA are not in mstatus. The current plan is to 1274 * add them to mstatush. For now, we just don't support it. 1275 */ 1276 mask |= MSTATUS_MPV | MSTATUS_GVA; 1277 if ((val & MSTATUS64_UXL) != 0) { 1278 mask |= MSTATUS64_UXL; 1279 } 1280 } 1281 1282 mstatus = (mstatus & ~mask) | (val & mask); 1283 1284 if (xl > MXL_RV32) { 1285 /* SXL field is for now read only */ 1286 mstatus = set_field(mstatus, MSTATUS64_SXL, xl); 1287 } 1288 env->mstatus = mstatus; 1289 env->xl = cpu_recompute_xl(env); 1290 1291 return RISCV_EXCP_NONE; 1292 } 1293 1294 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 1295 target_ulong *val) 1296 { 1297 *val = env->mstatus >> 32; 1298 return RISCV_EXCP_NONE; 1299 } 1300 1301 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 1302 target_ulong val) 1303 { 1304 uint64_t valh = (uint64_t)val << 32; 1305 uint64_t mask = MSTATUS_MPV | MSTATUS_GVA; 1306 1307 if ((valh ^ env->mstatus) & (MSTATUS_MPV)) { 1308 tlb_flush(env_cpu(env)); 1309 } 1310 1311 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 1312 1313 return RISCV_EXCP_NONE; 1314 } 1315 1316 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 1317 Int128 *val) 1318 { 1319 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus)); 1320 return RISCV_EXCP_NONE; 1321 } 1322 1323 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 1324 Int128 *val) 1325 { 1326 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 1327 return RISCV_EXCP_NONE; 1328 } 1329 1330 static RISCVException read_misa(CPURISCVState *env, int csrno, 1331 target_ulong *val) 1332 { 1333 target_ulong misa; 1334 1335 switch (env->misa_mxl) { 1336 case MXL_RV32: 1337 misa = (target_ulong)MXL_RV32 << 30; 1338 break; 1339 #ifdef TARGET_RISCV64 1340 case MXL_RV64: 1341 misa = (target_ulong)MXL_RV64 << 62; 1342 break; 1343 #endif 1344 default: 1345 g_assert_not_reached(); 1346 } 1347 1348 *val = misa | env->misa_ext; 1349 return RISCV_EXCP_NONE; 1350 } 1351 1352 static RISCVException write_misa(CPURISCVState *env, int csrno, 1353 target_ulong val) 1354 { 1355 if (!riscv_cpu_cfg(env)->misa_w) { 1356 /* drop write to misa */ 1357 return RISCV_EXCP_NONE; 1358 } 1359 1360 /* 'I' or 'E' must be present */ 1361 if (!(val & (RVI | RVE))) { 1362 /* It is not, drop write to misa */ 1363 return RISCV_EXCP_NONE; 1364 } 1365 1366 /* 'E' excludes all other extensions */ 1367 if (val & RVE) { 1368 /* 1369 * when we support 'E' we can do "val = RVE;" however 1370 * for now we just drop writes if 'E' is present. 1371 */ 1372 return RISCV_EXCP_NONE; 1373 } 1374 1375 /* 1376 * misa.MXL writes are not supported by QEMU. 1377 * Drop writes to those bits. 1378 */ 1379 1380 /* Mask extensions that are not supported by this hart */ 1381 val &= env->misa_ext_mask; 1382 1383 /* 'D' depends on 'F', so clear 'D' if 'F' is not present */ 1384 if ((val & RVD) && !(val & RVF)) { 1385 val &= ~RVD; 1386 } 1387 1388 /* 1389 * Suppress 'C' if next instruction is not aligned 1390 * TODO: this should check next_pc 1391 */ 1392 if ((val & RVC) && (GETPC() & ~3) != 0) { 1393 val &= ~RVC; 1394 } 1395 1396 /* If nothing changed, do nothing. */ 1397 if (val == env->misa_ext) { 1398 return RISCV_EXCP_NONE; 1399 } 1400 1401 if (!(val & RVF)) { 1402 env->mstatus &= ~MSTATUS_FS; 1403 } 1404 1405 /* flush translation cache */ 1406 tb_flush(env_cpu(env)); 1407 env->misa_ext = val; 1408 env->xl = riscv_cpu_mxl(env); 1409 return RISCV_EXCP_NONE; 1410 } 1411 1412 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 1413 target_ulong *val) 1414 { 1415 *val = env->medeleg; 1416 return RISCV_EXCP_NONE; 1417 } 1418 1419 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 1420 target_ulong val) 1421 { 1422 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 1423 return RISCV_EXCP_NONE; 1424 } 1425 1426 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 1427 uint64_t *ret_val, 1428 uint64_t new_val, uint64_t wr_mask) 1429 { 1430 uint64_t mask = wr_mask & delegable_ints; 1431 1432 if (ret_val) { 1433 *ret_val = env->mideleg; 1434 } 1435 1436 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 1437 1438 if (riscv_has_ext(env, RVH)) { 1439 env->mideleg |= HS_MODE_INTERRUPTS; 1440 } 1441 1442 return RISCV_EXCP_NONE; 1443 } 1444 1445 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 1446 target_ulong *ret_val, 1447 target_ulong new_val, target_ulong wr_mask) 1448 { 1449 uint64_t rval; 1450 RISCVException ret; 1451 1452 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 1453 if (ret_val) { 1454 *ret_val = rval; 1455 } 1456 1457 return ret; 1458 } 1459 1460 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 1461 target_ulong *ret_val, 1462 target_ulong new_val, 1463 target_ulong wr_mask) 1464 { 1465 uint64_t rval; 1466 RISCVException ret; 1467 1468 ret = rmw_mideleg64(env, csrno, &rval, 1469 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1470 if (ret_val) { 1471 *ret_val = rval >> 32; 1472 } 1473 1474 return ret; 1475 } 1476 1477 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 1478 uint64_t *ret_val, 1479 uint64_t new_val, uint64_t wr_mask) 1480 { 1481 uint64_t mask = wr_mask & all_ints; 1482 1483 if (ret_val) { 1484 *ret_val = env->mie; 1485 } 1486 1487 env->mie = (env->mie & ~mask) | (new_val & mask); 1488 1489 if (!riscv_has_ext(env, RVH)) { 1490 env->mie &= ~((uint64_t)MIP_SGEIP); 1491 } 1492 1493 return RISCV_EXCP_NONE; 1494 } 1495 1496 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 1497 target_ulong *ret_val, 1498 target_ulong new_val, target_ulong wr_mask) 1499 { 1500 uint64_t rval; 1501 RISCVException ret; 1502 1503 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 1504 if (ret_val) { 1505 *ret_val = rval; 1506 } 1507 1508 return ret; 1509 } 1510 1511 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 1512 target_ulong *ret_val, 1513 target_ulong new_val, target_ulong wr_mask) 1514 { 1515 uint64_t rval; 1516 RISCVException ret; 1517 1518 ret = rmw_mie64(env, csrno, &rval, 1519 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 1520 if (ret_val) { 1521 *ret_val = rval >> 32; 1522 } 1523 1524 return ret; 1525 } 1526 1527 static int read_mtopi(CPURISCVState *env, int csrno, target_ulong *val) 1528 { 1529 int irq; 1530 uint8_t iprio; 1531 1532 irq = riscv_cpu_mirq_pending(env); 1533 if (irq <= 0 || irq > 63) { 1534 *val = 0; 1535 } else { 1536 iprio = env->miprio[irq]; 1537 if (!iprio) { 1538 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 1539 iprio = IPRIO_MMAXIPRIO; 1540 } 1541 } 1542 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 1543 *val |= iprio; 1544 } 1545 1546 return RISCV_EXCP_NONE; 1547 } 1548 1549 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 1550 { 1551 if (!riscv_cpu_virt_enabled(env)) { 1552 return csrno; 1553 } 1554 1555 switch (csrno) { 1556 case CSR_SISELECT: 1557 return CSR_VSISELECT; 1558 case CSR_SIREG: 1559 return CSR_VSIREG; 1560 case CSR_STOPEI: 1561 return CSR_VSTOPEI; 1562 default: 1563 return csrno; 1564 }; 1565 } 1566 1567 static int rmw_xiselect(CPURISCVState *env, int csrno, target_ulong *val, 1568 target_ulong new_val, target_ulong wr_mask) 1569 { 1570 target_ulong *iselect; 1571 1572 /* Translate CSR number for VS-mode */ 1573 csrno = aia_xlate_vs_csrno(env, csrno); 1574 1575 /* Find the iselect CSR based on CSR number */ 1576 switch (csrno) { 1577 case CSR_MISELECT: 1578 iselect = &env->miselect; 1579 break; 1580 case CSR_SISELECT: 1581 iselect = &env->siselect; 1582 break; 1583 case CSR_VSISELECT: 1584 iselect = &env->vsiselect; 1585 break; 1586 default: 1587 return RISCV_EXCP_ILLEGAL_INST; 1588 }; 1589 1590 if (val) { 1591 *val = *iselect; 1592 } 1593 1594 wr_mask &= ISELECT_MASK; 1595 if (wr_mask) { 1596 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 1597 } 1598 1599 return RISCV_EXCP_NONE; 1600 } 1601 1602 static int rmw_iprio(target_ulong xlen, 1603 target_ulong iselect, uint8_t *iprio, 1604 target_ulong *val, target_ulong new_val, 1605 target_ulong wr_mask, int ext_irq_no) 1606 { 1607 int i, firq, nirqs; 1608 target_ulong old_val; 1609 1610 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 1611 return -EINVAL; 1612 } 1613 if (xlen != 32 && iselect & 0x1) { 1614 return -EINVAL; 1615 } 1616 1617 nirqs = 4 * (xlen / 32); 1618 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 1619 1620 old_val = 0; 1621 for (i = 0; i < nirqs; i++) { 1622 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 1623 } 1624 1625 if (val) { 1626 *val = old_val; 1627 } 1628 1629 if (wr_mask) { 1630 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 1631 for (i = 0; i < nirqs; i++) { 1632 /* 1633 * M-level and S-level external IRQ priority always read-only 1634 * zero. This means default priority order is always preferred 1635 * for M-level and S-level external IRQs. 1636 */ 1637 if ((firq + i) == ext_irq_no) { 1638 continue; 1639 } 1640 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 1641 } 1642 } 1643 1644 return 0; 1645 } 1646 1647 static int rmw_xireg(CPURISCVState *env, int csrno, target_ulong *val, 1648 target_ulong new_val, target_ulong wr_mask) 1649 { 1650 bool virt; 1651 uint8_t *iprio; 1652 int ret = -EINVAL; 1653 target_ulong priv, isel, vgein; 1654 1655 /* Translate CSR number for VS-mode */ 1656 csrno = aia_xlate_vs_csrno(env, csrno); 1657 1658 /* Decode register details from CSR number */ 1659 virt = false; 1660 switch (csrno) { 1661 case CSR_MIREG: 1662 iprio = env->miprio; 1663 isel = env->miselect; 1664 priv = PRV_M; 1665 break; 1666 case CSR_SIREG: 1667 iprio = env->siprio; 1668 isel = env->siselect; 1669 priv = PRV_S; 1670 break; 1671 case CSR_VSIREG: 1672 iprio = env->hviprio; 1673 isel = env->vsiselect; 1674 priv = PRV_S; 1675 virt = true; 1676 break; 1677 default: 1678 goto done; 1679 }; 1680 1681 /* Find the selected guest interrupt file */ 1682 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1683 1684 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 1685 /* Local interrupt priority registers not available for VS-mode */ 1686 if (!virt) { 1687 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 1688 isel, iprio, val, new_val, wr_mask, 1689 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 1690 } 1691 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 1692 /* IMSIC registers only available when machine implements it. */ 1693 if (env->aia_ireg_rmw_fn[priv]) { 1694 /* Selected guest interrupt file should not be zero */ 1695 if (virt && (!vgein || env->geilen < vgein)) { 1696 goto done; 1697 } 1698 /* Call machine specific IMSIC register emulation */ 1699 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1700 AIA_MAKE_IREG(isel, priv, virt, vgein, 1701 riscv_cpu_mxl_bits(env)), 1702 val, new_val, wr_mask); 1703 } 1704 } 1705 1706 done: 1707 if (ret) { 1708 return (riscv_cpu_virt_enabled(env) && virt) ? 1709 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1710 } 1711 return RISCV_EXCP_NONE; 1712 } 1713 1714 static int rmw_xtopei(CPURISCVState *env, int csrno, target_ulong *val, 1715 target_ulong new_val, target_ulong wr_mask) 1716 { 1717 bool virt; 1718 int ret = -EINVAL; 1719 target_ulong priv, vgein; 1720 1721 /* Translate CSR number for VS-mode */ 1722 csrno = aia_xlate_vs_csrno(env, csrno); 1723 1724 /* Decode register details from CSR number */ 1725 virt = false; 1726 switch (csrno) { 1727 case CSR_MTOPEI: 1728 priv = PRV_M; 1729 break; 1730 case CSR_STOPEI: 1731 priv = PRV_S; 1732 break; 1733 case CSR_VSTOPEI: 1734 priv = PRV_S; 1735 virt = true; 1736 break; 1737 default: 1738 goto done; 1739 }; 1740 1741 /* IMSIC CSRs only available when machine implements IMSIC. */ 1742 if (!env->aia_ireg_rmw_fn[priv]) { 1743 goto done; 1744 } 1745 1746 /* Find the selected guest interrupt file */ 1747 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 1748 1749 /* Selected guest interrupt file should be valid */ 1750 if (virt && (!vgein || env->geilen < vgein)) { 1751 goto done; 1752 } 1753 1754 /* Call machine specific IMSIC register emulation for TOPEI */ 1755 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 1756 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 1757 riscv_cpu_mxl_bits(env)), 1758 val, new_val, wr_mask); 1759 1760 done: 1761 if (ret) { 1762 return (riscv_cpu_virt_enabled(env) && virt) ? 1763 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 1764 } 1765 return RISCV_EXCP_NONE; 1766 } 1767 1768 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 1769 target_ulong *val) 1770 { 1771 *val = env->mtvec; 1772 return RISCV_EXCP_NONE; 1773 } 1774 1775 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 1776 target_ulong val) 1777 { 1778 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 1779 if ((val & 3) < 2) { 1780 env->mtvec = val; 1781 } else { 1782 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 1783 } 1784 return RISCV_EXCP_NONE; 1785 } 1786 1787 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 1788 target_ulong *val) 1789 { 1790 *val = env->mcountinhibit; 1791 return RISCV_EXCP_NONE; 1792 } 1793 1794 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 1795 target_ulong val) 1796 { 1797 int cidx; 1798 PMUCTRState *counter; 1799 1800 env->mcountinhibit = val; 1801 1802 /* Check if any other counter is also monitoring cycles/instructions */ 1803 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 1804 if (!get_field(env->mcountinhibit, BIT(cidx))) { 1805 counter = &env->pmu_ctrs[cidx]; 1806 counter->started = true; 1807 } 1808 } 1809 1810 return RISCV_EXCP_NONE; 1811 } 1812 1813 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 1814 target_ulong *val) 1815 { 1816 *val = env->mcounteren; 1817 return RISCV_EXCP_NONE; 1818 } 1819 1820 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 1821 target_ulong val) 1822 { 1823 env->mcounteren = val; 1824 return RISCV_EXCP_NONE; 1825 } 1826 1827 /* Machine Trap Handling */ 1828 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 1829 Int128 *val) 1830 { 1831 *val = int128_make128(env->mscratch, env->mscratchh); 1832 return RISCV_EXCP_NONE; 1833 } 1834 1835 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 1836 Int128 val) 1837 { 1838 env->mscratch = int128_getlo(val); 1839 env->mscratchh = int128_gethi(val); 1840 return RISCV_EXCP_NONE; 1841 } 1842 1843 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 1844 target_ulong *val) 1845 { 1846 *val = env->mscratch; 1847 return RISCV_EXCP_NONE; 1848 } 1849 1850 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 1851 target_ulong val) 1852 { 1853 env->mscratch = val; 1854 return RISCV_EXCP_NONE; 1855 } 1856 1857 static RISCVException read_mepc(CPURISCVState *env, int csrno, 1858 target_ulong *val) 1859 { 1860 *val = env->mepc; 1861 return RISCV_EXCP_NONE; 1862 } 1863 1864 static RISCVException write_mepc(CPURISCVState *env, int csrno, 1865 target_ulong val) 1866 { 1867 env->mepc = val; 1868 return RISCV_EXCP_NONE; 1869 } 1870 1871 static RISCVException read_mcause(CPURISCVState *env, int csrno, 1872 target_ulong *val) 1873 { 1874 *val = env->mcause; 1875 return RISCV_EXCP_NONE; 1876 } 1877 1878 static RISCVException write_mcause(CPURISCVState *env, int csrno, 1879 target_ulong val) 1880 { 1881 env->mcause = val; 1882 return RISCV_EXCP_NONE; 1883 } 1884 1885 static RISCVException read_mtval(CPURISCVState *env, int csrno, 1886 target_ulong *val) 1887 { 1888 *val = env->mtval; 1889 return RISCV_EXCP_NONE; 1890 } 1891 1892 static RISCVException write_mtval(CPURISCVState *env, int csrno, 1893 target_ulong val) 1894 { 1895 env->mtval = val; 1896 return RISCV_EXCP_NONE; 1897 } 1898 1899 /* Execution environment configuration setup */ 1900 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 1901 target_ulong *val) 1902 { 1903 *val = env->menvcfg; 1904 return RISCV_EXCP_NONE; 1905 } 1906 1907 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 1908 target_ulong val) 1909 { 1910 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | MENVCFG_CBZE; 1911 1912 if (riscv_cpu_mxl(env) == MXL_RV64) { 1913 mask |= MENVCFG_PBMTE | MENVCFG_STCE; 1914 } 1915 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 1916 1917 return RISCV_EXCP_NONE; 1918 } 1919 1920 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 1921 target_ulong *val) 1922 { 1923 *val = env->menvcfg >> 32; 1924 return RISCV_EXCP_NONE; 1925 } 1926 1927 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 1928 target_ulong val) 1929 { 1930 uint64_t mask = MENVCFG_PBMTE | MENVCFG_STCE; 1931 uint64_t valh = (uint64_t)val << 32; 1932 1933 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 1934 1935 return RISCV_EXCP_NONE; 1936 } 1937 1938 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 1939 target_ulong *val) 1940 { 1941 RISCVException ret; 1942 1943 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1944 if (ret != RISCV_EXCP_NONE) { 1945 return ret; 1946 } 1947 1948 *val = env->senvcfg; 1949 return RISCV_EXCP_NONE; 1950 } 1951 1952 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 1953 target_ulong val) 1954 { 1955 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 1956 RISCVException ret; 1957 1958 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1959 if (ret != RISCV_EXCP_NONE) { 1960 return ret; 1961 } 1962 1963 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 1964 return RISCV_EXCP_NONE; 1965 } 1966 1967 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 1968 target_ulong *val) 1969 { 1970 RISCVException ret; 1971 1972 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1973 if (ret != RISCV_EXCP_NONE) { 1974 return ret; 1975 } 1976 1977 *val = env->henvcfg; 1978 return RISCV_EXCP_NONE; 1979 } 1980 1981 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 1982 target_ulong val) 1983 { 1984 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 1985 RISCVException ret; 1986 1987 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 1988 if (ret != RISCV_EXCP_NONE) { 1989 return ret; 1990 } 1991 1992 if (riscv_cpu_mxl(env) == MXL_RV64) { 1993 mask |= HENVCFG_PBMTE | HENVCFG_STCE; 1994 } 1995 1996 env->henvcfg = (env->henvcfg & ~mask) | (val & mask); 1997 1998 return RISCV_EXCP_NONE; 1999 } 2000 2001 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 2002 target_ulong *val) 2003 { 2004 RISCVException ret; 2005 2006 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2007 if (ret != RISCV_EXCP_NONE) { 2008 return ret; 2009 } 2010 2011 *val = env->henvcfg >> 32; 2012 return RISCV_EXCP_NONE; 2013 } 2014 2015 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 2016 target_ulong val) 2017 { 2018 uint64_t mask = HENVCFG_PBMTE | HENVCFG_STCE; 2019 uint64_t valh = (uint64_t)val << 32; 2020 RISCVException ret; 2021 2022 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 2023 if (ret != RISCV_EXCP_NONE) { 2024 return ret; 2025 } 2026 2027 env->henvcfg = (env->henvcfg & ~mask) | (valh & mask); 2028 return RISCV_EXCP_NONE; 2029 } 2030 2031 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 2032 target_ulong *val) 2033 { 2034 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 2035 2036 return RISCV_EXCP_NONE; 2037 } 2038 2039 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 2040 uint64_t wr_mask, target_ulong new_val) 2041 { 2042 uint64_t *reg; 2043 2044 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 2045 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2046 2047 return RISCV_EXCP_NONE; 2048 } 2049 2050 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 2051 target_ulong new_val) 2052 { 2053 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2054 2055 return write_mstateen(env, csrno, wr_mask, new_val); 2056 } 2057 2058 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 2059 target_ulong new_val) 2060 { 2061 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2062 } 2063 2064 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 2065 target_ulong *val) 2066 { 2067 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 2068 2069 return RISCV_EXCP_NONE; 2070 } 2071 2072 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 2073 uint64_t wr_mask, target_ulong new_val) 2074 { 2075 uint64_t *reg, val; 2076 2077 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 2078 val = (uint64_t)new_val << 32; 2079 val |= *reg & 0xFFFFFFFF; 2080 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2081 2082 return RISCV_EXCP_NONE; 2083 } 2084 2085 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 2086 target_ulong new_val) 2087 { 2088 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2089 2090 return write_mstateenh(env, csrno, wr_mask, new_val); 2091 } 2092 2093 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 2094 target_ulong new_val) 2095 { 2096 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2097 } 2098 2099 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 2100 target_ulong *val) 2101 { 2102 int index = csrno - CSR_HSTATEEN0; 2103 2104 *val = env->hstateen[index] & env->mstateen[index]; 2105 2106 return RISCV_EXCP_NONE; 2107 } 2108 2109 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 2110 uint64_t mask, target_ulong new_val) 2111 { 2112 int index = csrno - CSR_HSTATEEN0; 2113 uint64_t *reg, wr_mask; 2114 2115 reg = &env->hstateen[index]; 2116 wr_mask = env->mstateen[index] & mask; 2117 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2118 2119 return RISCV_EXCP_NONE; 2120 } 2121 2122 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 2123 target_ulong new_val) 2124 { 2125 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2126 2127 return write_hstateen(env, csrno, wr_mask, new_val); 2128 } 2129 2130 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 2131 target_ulong new_val) 2132 { 2133 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2134 } 2135 2136 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 2137 target_ulong *val) 2138 { 2139 int index = csrno - CSR_HSTATEEN0H; 2140 2141 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 2142 2143 return RISCV_EXCP_NONE; 2144 } 2145 2146 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 2147 uint64_t mask, target_ulong new_val) 2148 { 2149 int index = csrno - CSR_HSTATEEN0H; 2150 uint64_t *reg, wr_mask, val; 2151 2152 reg = &env->hstateen[index]; 2153 val = (uint64_t)new_val << 32; 2154 val |= *reg & 0xFFFFFFFF; 2155 wr_mask = env->mstateen[index] & mask; 2156 *reg = (*reg & ~wr_mask) | (val & wr_mask); 2157 2158 return RISCV_EXCP_NONE; 2159 } 2160 2161 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 2162 target_ulong new_val) 2163 { 2164 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2165 2166 return write_hstateenh(env, csrno, wr_mask, new_val); 2167 } 2168 2169 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 2170 target_ulong new_val) 2171 { 2172 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 2173 } 2174 2175 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 2176 target_ulong *val) 2177 { 2178 bool virt = riscv_cpu_virt_enabled(env); 2179 int index = csrno - CSR_SSTATEEN0; 2180 2181 *val = env->sstateen[index] & env->mstateen[index]; 2182 if (virt) { 2183 *val &= env->hstateen[index]; 2184 } 2185 2186 return RISCV_EXCP_NONE; 2187 } 2188 2189 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 2190 uint64_t mask, target_ulong new_val) 2191 { 2192 bool virt = riscv_cpu_virt_enabled(env); 2193 int index = csrno - CSR_SSTATEEN0; 2194 uint64_t wr_mask; 2195 uint64_t *reg; 2196 2197 wr_mask = env->mstateen[index] & mask; 2198 if (virt) { 2199 wr_mask &= env->hstateen[index]; 2200 } 2201 2202 reg = &env->sstateen[index]; 2203 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 2204 2205 return RISCV_EXCP_NONE; 2206 } 2207 2208 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 2209 target_ulong new_val) 2210 { 2211 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 2212 2213 return write_sstateen(env, csrno, wr_mask, new_val); 2214 } 2215 2216 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 2217 target_ulong new_val) 2218 { 2219 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 2220 } 2221 2222 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 2223 uint64_t *ret_val, 2224 uint64_t new_val, uint64_t wr_mask) 2225 { 2226 RISCVCPU *cpu = env_archcpu(env); 2227 uint64_t old_mip, mask = wr_mask & delegable_ints; 2228 uint32_t gin; 2229 2230 if (mask & MIP_SEIP) { 2231 env->software_seip = new_val & MIP_SEIP; 2232 new_val |= env->external_seip * MIP_SEIP; 2233 } 2234 2235 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 2236 get_field(env->menvcfg, MENVCFG_STCE)) { 2237 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 2238 mask = mask & ~(MIP_STIP | MIP_VSTIP); 2239 } 2240 2241 if (mask) { 2242 old_mip = riscv_cpu_update_mip(cpu, mask, (new_val & mask)); 2243 } else { 2244 old_mip = env->mip; 2245 } 2246 2247 if (csrno != CSR_HVIP) { 2248 gin = get_field(env->hstatus, HSTATUS_VGEIN); 2249 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 2250 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 2251 } 2252 2253 if (ret_val) { 2254 *ret_val = old_mip; 2255 } 2256 2257 return RISCV_EXCP_NONE; 2258 } 2259 2260 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 2261 target_ulong *ret_val, 2262 target_ulong new_val, target_ulong wr_mask) 2263 { 2264 uint64_t rval; 2265 RISCVException ret; 2266 2267 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 2268 if (ret_val) { 2269 *ret_val = rval; 2270 } 2271 2272 return ret; 2273 } 2274 2275 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 2276 target_ulong *ret_val, 2277 target_ulong new_val, target_ulong wr_mask) 2278 { 2279 uint64_t rval; 2280 RISCVException ret; 2281 2282 ret = rmw_mip64(env, csrno, &rval, 2283 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2284 if (ret_val) { 2285 *ret_val = rval >> 32; 2286 } 2287 2288 return ret; 2289 } 2290 2291 /* Supervisor Trap Setup */ 2292 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 2293 Int128 *val) 2294 { 2295 uint64_t mask = sstatus_v1_10_mask; 2296 uint64_t sstatus = env->mstatus & mask; 2297 if (env->xl != MXL_RV32 || env->debugger) { 2298 mask |= SSTATUS64_UXL; 2299 } 2300 2301 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 2302 return RISCV_EXCP_NONE; 2303 } 2304 2305 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 2306 target_ulong *val) 2307 { 2308 target_ulong mask = (sstatus_v1_10_mask); 2309 if (env->xl != MXL_RV32 || env->debugger) { 2310 mask |= SSTATUS64_UXL; 2311 } 2312 /* TODO: Use SXL not MXL. */ 2313 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 2314 return RISCV_EXCP_NONE; 2315 } 2316 2317 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 2318 target_ulong val) 2319 { 2320 target_ulong mask = (sstatus_v1_10_mask); 2321 2322 if (env->xl != MXL_RV32 || env->debugger) { 2323 if ((val & SSTATUS64_UXL) != 0) { 2324 mask |= SSTATUS64_UXL; 2325 } 2326 } 2327 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 2328 return write_mstatus(env, CSR_MSTATUS, newval); 2329 } 2330 2331 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 2332 uint64_t *ret_val, 2333 uint64_t new_val, uint64_t wr_mask) 2334 { 2335 RISCVException ret; 2336 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2337 2338 /* Bring VS-level bits to correct position */ 2339 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2340 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2341 2342 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & mask); 2343 if (ret_val) { 2344 *ret_val = (rval & mask) >> 1; 2345 } 2346 2347 return ret; 2348 } 2349 2350 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 2351 target_ulong *ret_val, 2352 target_ulong new_val, target_ulong wr_mask) 2353 { 2354 uint64_t rval; 2355 RISCVException ret; 2356 2357 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 2358 if (ret_val) { 2359 *ret_val = rval; 2360 } 2361 2362 return ret; 2363 } 2364 2365 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 2366 target_ulong *ret_val, 2367 target_ulong new_val, target_ulong wr_mask) 2368 { 2369 uint64_t rval; 2370 RISCVException ret; 2371 2372 ret = rmw_vsie64(env, csrno, &rval, 2373 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2374 if (ret_val) { 2375 *ret_val = rval >> 32; 2376 } 2377 2378 return ret; 2379 } 2380 2381 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 2382 uint64_t *ret_val, 2383 uint64_t new_val, uint64_t wr_mask) 2384 { 2385 RISCVException ret; 2386 uint64_t mask = env->mideleg & S_MODE_INTERRUPTS; 2387 2388 if (riscv_cpu_virt_enabled(env)) { 2389 if (env->hvictl & HVICTL_VTI) { 2390 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2391 } 2392 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 2393 } else { 2394 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & mask); 2395 } 2396 2397 if (ret_val) { 2398 *ret_val &= mask; 2399 } 2400 2401 return ret; 2402 } 2403 2404 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 2405 target_ulong *ret_val, 2406 target_ulong new_val, target_ulong wr_mask) 2407 { 2408 uint64_t rval; 2409 RISCVException ret; 2410 2411 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 2412 if (ret == RISCV_EXCP_NONE && ret_val) { 2413 *ret_val = rval; 2414 } 2415 2416 return ret; 2417 } 2418 2419 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 2420 target_ulong *ret_val, 2421 target_ulong new_val, target_ulong wr_mask) 2422 { 2423 uint64_t rval; 2424 RISCVException ret; 2425 2426 ret = rmw_sie64(env, csrno, &rval, 2427 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2428 if (ret_val) { 2429 *ret_val = rval >> 32; 2430 } 2431 2432 return ret; 2433 } 2434 2435 static RISCVException read_stvec(CPURISCVState *env, int csrno, 2436 target_ulong *val) 2437 { 2438 *val = env->stvec; 2439 return RISCV_EXCP_NONE; 2440 } 2441 2442 static RISCVException write_stvec(CPURISCVState *env, int csrno, 2443 target_ulong val) 2444 { 2445 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2446 if ((val & 3) < 2) { 2447 env->stvec = val; 2448 } else { 2449 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 2450 } 2451 return RISCV_EXCP_NONE; 2452 } 2453 2454 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 2455 target_ulong *val) 2456 { 2457 *val = env->scounteren; 2458 return RISCV_EXCP_NONE; 2459 } 2460 2461 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 2462 target_ulong val) 2463 { 2464 env->scounteren = val; 2465 return RISCV_EXCP_NONE; 2466 } 2467 2468 /* Supervisor Trap Handling */ 2469 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 2470 Int128 *val) 2471 { 2472 *val = int128_make128(env->sscratch, env->sscratchh); 2473 return RISCV_EXCP_NONE; 2474 } 2475 2476 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 2477 Int128 val) 2478 { 2479 env->sscratch = int128_getlo(val); 2480 env->sscratchh = int128_gethi(val); 2481 return RISCV_EXCP_NONE; 2482 } 2483 2484 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 2485 target_ulong *val) 2486 { 2487 *val = env->sscratch; 2488 return RISCV_EXCP_NONE; 2489 } 2490 2491 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 2492 target_ulong val) 2493 { 2494 env->sscratch = val; 2495 return RISCV_EXCP_NONE; 2496 } 2497 2498 static RISCVException read_sepc(CPURISCVState *env, int csrno, 2499 target_ulong *val) 2500 { 2501 *val = env->sepc; 2502 return RISCV_EXCP_NONE; 2503 } 2504 2505 static RISCVException write_sepc(CPURISCVState *env, int csrno, 2506 target_ulong val) 2507 { 2508 env->sepc = val; 2509 return RISCV_EXCP_NONE; 2510 } 2511 2512 static RISCVException read_scause(CPURISCVState *env, int csrno, 2513 target_ulong *val) 2514 { 2515 *val = env->scause; 2516 return RISCV_EXCP_NONE; 2517 } 2518 2519 static RISCVException write_scause(CPURISCVState *env, int csrno, 2520 target_ulong val) 2521 { 2522 env->scause = val; 2523 return RISCV_EXCP_NONE; 2524 } 2525 2526 static RISCVException read_stval(CPURISCVState *env, int csrno, 2527 target_ulong *val) 2528 { 2529 *val = env->stval; 2530 return RISCV_EXCP_NONE; 2531 } 2532 2533 static RISCVException write_stval(CPURISCVState *env, int csrno, 2534 target_ulong val) 2535 { 2536 env->stval = val; 2537 return RISCV_EXCP_NONE; 2538 } 2539 2540 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 2541 uint64_t *ret_val, 2542 uint64_t new_val, uint64_t wr_mask) 2543 { 2544 RISCVException ret; 2545 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 2546 2547 /* Bring VS-level bits to correct position */ 2548 new_val = (new_val & (VS_MODE_INTERRUPTS >> 1)) << 1; 2549 wr_mask = (wr_mask & (VS_MODE_INTERRUPTS >> 1)) << 1; 2550 2551 ret = rmw_mip64(env, csrno, &rval, new_val, 2552 wr_mask & mask & vsip_writable_mask); 2553 if (ret_val) { 2554 *ret_val = (rval & mask) >> 1; 2555 } 2556 2557 return ret; 2558 } 2559 2560 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 2561 target_ulong *ret_val, 2562 target_ulong new_val, target_ulong wr_mask) 2563 { 2564 uint64_t rval; 2565 RISCVException ret; 2566 2567 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 2568 if (ret_val) { 2569 *ret_val = rval; 2570 } 2571 2572 return ret; 2573 } 2574 2575 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 2576 target_ulong *ret_val, 2577 target_ulong new_val, target_ulong wr_mask) 2578 { 2579 uint64_t rval; 2580 RISCVException ret; 2581 2582 ret = rmw_vsip64(env, csrno, &rval, 2583 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2584 if (ret_val) { 2585 *ret_val = rval >> 32; 2586 } 2587 2588 return ret; 2589 } 2590 2591 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 2592 uint64_t *ret_val, 2593 uint64_t new_val, uint64_t wr_mask) 2594 { 2595 RISCVException ret; 2596 uint64_t mask = env->mideleg & sip_writable_mask; 2597 2598 if (riscv_cpu_virt_enabled(env)) { 2599 if (env->hvictl & HVICTL_VTI) { 2600 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 2601 } 2602 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 2603 } else { 2604 ret = rmw_mip64(env, csrno, ret_val, new_val, wr_mask & mask); 2605 } 2606 2607 if (ret_val) { 2608 *ret_val &= env->mideleg & S_MODE_INTERRUPTS; 2609 } 2610 2611 return ret; 2612 } 2613 2614 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 2615 target_ulong *ret_val, 2616 target_ulong new_val, target_ulong wr_mask) 2617 { 2618 uint64_t rval; 2619 RISCVException ret; 2620 2621 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 2622 if (ret_val) { 2623 *ret_val = rval; 2624 } 2625 2626 return ret; 2627 } 2628 2629 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 2630 target_ulong *ret_val, 2631 target_ulong new_val, target_ulong wr_mask) 2632 { 2633 uint64_t rval; 2634 RISCVException ret; 2635 2636 ret = rmw_sip64(env, csrno, &rval, 2637 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2638 if (ret_val) { 2639 *ret_val = rval >> 32; 2640 } 2641 2642 return ret; 2643 } 2644 2645 /* Supervisor Protection and Translation */ 2646 static RISCVException read_satp(CPURISCVState *env, int csrno, 2647 target_ulong *val) 2648 { 2649 if (!riscv_cpu_cfg(env)->mmu) { 2650 *val = 0; 2651 return RISCV_EXCP_NONE; 2652 } 2653 2654 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2655 return RISCV_EXCP_ILLEGAL_INST; 2656 } else { 2657 *val = env->satp; 2658 } 2659 2660 return RISCV_EXCP_NONE; 2661 } 2662 2663 static RISCVException write_satp(CPURISCVState *env, int csrno, 2664 target_ulong val) 2665 { 2666 target_ulong vm, mask; 2667 2668 if (!riscv_cpu_cfg(env)->mmu) { 2669 return RISCV_EXCP_NONE; 2670 } 2671 2672 if (riscv_cpu_mxl(env) == MXL_RV32) { 2673 vm = validate_vm(env, get_field(val, SATP32_MODE)); 2674 mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 2675 } else { 2676 vm = validate_vm(env, get_field(val, SATP64_MODE)); 2677 mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 2678 } 2679 2680 if (vm && mask) { 2681 if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) { 2682 return RISCV_EXCP_ILLEGAL_INST; 2683 } else { 2684 /* 2685 * The ISA defines SATP.MODE=Bare as "no translation", but we still 2686 * pass these through QEMU's TLB emulation as it improves 2687 * performance. Flushing the TLB on SATP writes with paging 2688 * enabled avoids leaking those invalid cached mappings. 2689 */ 2690 tlb_flush(env_cpu(env)); 2691 env->satp = val; 2692 } 2693 } 2694 return RISCV_EXCP_NONE; 2695 } 2696 2697 static int read_vstopi(CPURISCVState *env, int csrno, target_ulong *val) 2698 { 2699 int irq, ret; 2700 target_ulong topei; 2701 uint64_t vseip, vsgein; 2702 uint32_t iid, iprio, hviid, hviprio, gein; 2703 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 2704 2705 gein = get_field(env->hstatus, HSTATUS_VGEIN); 2706 hviid = get_field(env->hvictl, HVICTL_IID); 2707 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 2708 2709 if (gein) { 2710 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 2711 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 2712 if (gein <= env->geilen && vseip) { 2713 siid[scount] = IRQ_S_EXT; 2714 siprio[scount] = IPRIO_MMAXIPRIO + 1; 2715 if (env->aia_ireg_rmw_fn[PRV_S]) { 2716 /* 2717 * Call machine specific IMSIC register emulation for 2718 * reading TOPEI. 2719 */ 2720 ret = env->aia_ireg_rmw_fn[PRV_S]( 2721 env->aia_ireg_rmw_fn_arg[PRV_S], 2722 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 2723 riscv_cpu_mxl_bits(env)), 2724 &topei, 0, 0); 2725 if (!ret && topei) { 2726 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 2727 } 2728 } 2729 scount++; 2730 } 2731 } else { 2732 if (hviid == IRQ_S_EXT && hviprio) { 2733 siid[scount] = IRQ_S_EXT; 2734 siprio[scount] = hviprio; 2735 scount++; 2736 } 2737 } 2738 2739 if (env->hvictl & HVICTL_VTI) { 2740 if (hviid != IRQ_S_EXT) { 2741 siid[scount] = hviid; 2742 siprio[scount] = hviprio; 2743 scount++; 2744 } 2745 } else { 2746 irq = riscv_cpu_vsirq_pending(env); 2747 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 2748 siid[scount] = irq; 2749 siprio[scount] = env->hviprio[irq]; 2750 scount++; 2751 } 2752 } 2753 2754 iid = 0; 2755 iprio = UINT_MAX; 2756 for (s = 0; s < scount; s++) { 2757 if (siprio[s] < iprio) { 2758 iid = siid[s]; 2759 iprio = siprio[s]; 2760 } 2761 } 2762 2763 if (iid) { 2764 if (env->hvictl & HVICTL_IPRIOM) { 2765 if (iprio > IPRIO_MMAXIPRIO) { 2766 iprio = IPRIO_MMAXIPRIO; 2767 } 2768 if (!iprio) { 2769 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 2770 iprio = IPRIO_MMAXIPRIO; 2771 } 2772 } 2773 } else { 2774 iprio = 1; 2775 } 2776 } else { 2777 iprio = 0; 2778 } 2779 2780 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2781 *val |= iprio; 2782 return RISCV_EXCP_NONE; 2783 } 2784 2785 static int read_stopi(CPURISCVState *env, int csrno, target_ulong *val) 2786 { 2787 int irq; 2788 uint8_t iprio; 2789 2790 if (riscv_cpu_virt_enabled(env)) { 2791 return read_vstopi(env, CSR_VSTOPI, val); 2792 } 2793 2794 irq = riscv_cpu_sirq_pending(env); 2795 if (irq <= 0 || irq > 63) { 2796 *val = 0; 2797 } else { 2798 iprio = env->siprio[irq]; 2799 if (!iprio) { 2800 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 2801 iprio = IPRIO_MMAXIPRIO; 2802 } 2803 } 2804 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2805 *val |= iprio; 2806 } 2807 2808 return RISCV_EXCP_NONE; 2809 } 2810 2811 /* Hypervisor Extensions */ 2812 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 2813 target_ulong *val) 2814 { 2815 *val = env->hstatus; 2816 if (riscv_cpu_mxl(env) != MXL_RV32) { 2817 /* We only support 64-bit VSXL */ 2818 *val = set_field(*val, HSTATUS_VSXL, 2); 2819 } 2820 /* We only support little endian */ 2821 *val = set_field(*val, HSTATUS_VSBE, 0); 2822 return RISCV_EXCP_NONE; 2823 } 2824 2825 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 2826 target_ulong val) 2827 { 2828 env->hstatus = val; 2829 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 2830 qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options."); 2831 } 2832 if (get_field(val, HSTATUS_VSBE) != 0) { 2833 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 2834 } 2835 return RISCV_EXCP_NONE; 2836 } 2837 2838 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 2839 target_ulong *val) 2840 { 2841 *val = env->hedeleg; 2842 return RISCV_EXCP_NONE; 2843 } 2844 2845 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 2846 target_ulong val) 2847 { 2848 env->hedeleg = val & vs_delegable_excps; 2849 return RISCV_EXCP_NONE; 2850 } 2851 2852 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 2853 uint64_t *ret_val, 2854 uint64_t new_val, uint64_t wr_mask) 2855 { 2856 uint64_t mask = wr_mask & vs_delegable_ints; 2857 2858 if (ret_val) { 2859 *ret_val = env->hideleg & vs_delegable_ints; 2860 } 2861 2862 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 2863 return RISCV_EXCP_NONE; 2864 } 2865 2866 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 2867 target_ulong *ret_val, 2868 target_ulong new_val, target_ulong wr_mask) 2869 { 2870 uint64_t rval; 2871 RISCVException ret; 2872 2873 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 2874 if (ret_val) { 2875 *ret_val = rval; 2876 } 2877 2878 return ret; 2879 } 2880 2881 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 2882 target_ulong *ret_val, 2883 target_ulong new_val, target_ulong wr_mask) 2884 { 2885 uint64_t rval; 2886 RISCVException ret; 2887 2888 ret = rmw_hideleg64(env, csrno, &rval, 2889 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2890 if (ret_val) { 2891 *ret_val = rval >> 32; 2892 } 2893 2894 return ret; 2895 } 2896 2897 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 2898 uint64_t *ret_val, 2899 uint64_t new_val, uint64_t wr_mask) 2900 { 2901 RISCVException ret; 2902 2903 ret = rmw_mip64(env, csrno, ret_val, new_val, 2904 wr_mask & hvip_writable_mask); 2905 if (ret_val) { 2906 *ret_val &= VS_MODE_INTERRUPTS; 2907 } 2908 2909 return ret; 2910 } 2911 2912 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 2913 target_ulong *ret_val, 2914 target_ulong new_val, target_ulong wr_mask) 2915 { 2916 uint64_t rval; 2917 RISCVException ret; 2918 2919 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 2920 if (ret_val) { 2921 *ret_val = rval; 2922 } 2923 2924 return ret; 2925 } 2926 2927 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 2928 target_ulong *ret_val, 2929 target_ulong new_val, target_ulong wr_mask) 2930 { 2931 uint64_t rval; 2932 RISCVException ret; 2933 2934 ret = rmw_hvip64(env, csrno, &rval, 2935 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2936 if (ret_val) { 2937 *ret_val = rval >> 32; 2938 } 2939 2940 return ret; 2941 } 2942 2943 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 2944 target_ulong *ret_value, 2945 target_ulong new_value, target_ulong write_mask) 2946 { 2947 int ret = rmw_mip(env, csrno, ret_value, new_value, 2948 write_mask & hip_writable_mask); 2949 2950 if (ret_value) { 2951 *ret_value &= HS_MODE_INTERRUPTS; 2952 } 2953 return ret; 2954 } 2955 2956 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 2957 target_ulong *ret_val, 2958 target_ulong new_val, target_ulong wr_mask) 2959 { 2960 uint64_t rval; 2961 RISCVException ret; 2962 2963 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 2964 if (ret_val) { 2965 *ret_val = rval & HS_MODE_INTERRUPTS; 2966 } 2967 2968 return ret; 2969 } 2970 2971 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 2972 target_ulong *val) 2973 { 2974 *val = env->hcounteren; 2975 return RISCV_EXCP_NONE; 2976 } 2977 2978 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 2979 target_ulong val) 2980 { 2981 env->hcounteren = val; 2982 return RISCV_EXCP_NONE; 2983 } 2984 2985 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 2986 target_ulong *val) 2987 { 2988 if (val) { 2989 *val = env->hgeie; 2990 } 2991 return RISCV_EXCP_NONE; 2992 } 2993 2994 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 2995 target_ulong val) 2996 { 2997 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 2998 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 2999 env->hgeie = val; 3000 /* Update mip.SGEIP bit */ 3001 riscv_cpu_update_mip(env_archcpu(env), MIP_SGEIP, 3002 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 3003 return RISCV_EXCP_NONE; 3004 } 3005 3006 static RISCVException read_htval(CPURISCVState *env, int csrno, 3007 target_ulong *val) 3008 { 3009 *val = env->htval; 3010 return RISCV_EXCP_NONE; 3011 } 3012 3013 static RISCVException write_htval(CPURISCVState *env, int csrno, 3014 target_ulong val) 3015 { 3016 env->htval = val; 3017 return RISCV_EXCP_NONE; 3018 } 3019 3020 static RISCVException read_htinst(CPURISCVState *env, int csrno, 3021 target_ulong *val) 3022 { 3023 *val = env->htinst; 3024 return RISCV_EXCP_NONE; 3025 } 3026 3027 static RISCVException write_htinst(CPURISCVState *env, int csrno, 3028 target_ulong val) 3029 { 3030 return RISCV_EXCP_NONE; 3031 } 3032 3033 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 3034 target_ulong *val) 3035 { 3036 if (val) { 3037 *val = env->hgeip; 3038 } 3039 return RISCV_EXCP_NONE; 3040 } 3041 3042 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 3043 target_ulong *val) 3044 { 3045 *val = env->hgatp; 3046 return RISCV_EXCP_NONE; 3047 } 3048 3049 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 3050 target_ulong val) 3051 { 3052 env->hgatp = val; 3053 return RISCV_EXCP_NONE; 3054 } 3055 3056 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 3057 target_ulong *val) 3058 { 3059 if (!env->rdtime_fn) { 3060 return RISCV_EXCP_ILLEGAL_INST; 3061 } 3062 3063 *val = env->htimedelta; 3064 return RISCV_EXCP_NONE; 3065 } 3066 3067 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 3068 target_ulong val) 3069 { 3070 RISCVCPU *cpu = env_archcpu(env); 3071 3072 if (!env->rdtime_fn) { 3073 return RISCV_EXCP_ILLEGAL_INST; 3074 } 3075 3076 if (riscv_cpu_mxl(env) == MXL_RV32) { 3077 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 3078 } else { 3079 env->htimedelta = val; 3080 } 3081 3082 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3083 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3084 env->htimedelta, MIP_VSTIP); 3085 } 3086 3087 return RISCV_EXCP_NONE; 3088 } 3089 3090 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 3091 target_ulong *val) 3092 { 3093 if (!env->rdtime_fn) { 3094 return RISCV_EXCP_ILLEGAL_INST; 3095 } 3096 3097 *val = env->htimedelta >> 32; 3098 return RISCV_EXCP_NONE; 3099 } 3100 3101 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 3102 target_ulong val) 3103 { 3104 RISCVCPU *cpu = env_archcpu(env); 3105 3106 if (!env->rdtime_fn) { 3107 return RISCV_EXCP_ILLEGAL_INST; 3108 } 3109 3110 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 3111 3112 if (cpu->cfg.ext_sstc && env->rdtime_fn) { 3113 riscv_timer_write_timecmp(cpu, env->vstimer, env->vstimecmp, 3114 env->htimedelta, MIP_VSTIP); 3115 } 3116 3117 return RISCV_EXCP_NONE; 3118 } 3119 3120 static int read_hvictl(CPURISCVState *env, int csrno, target_ulong *val) 3121 { 3122 *val = env->hvictl; 3123 return RISCV_EXCP_NONE; 3124 } 3125 3126 static int write_hvictl(CPURISCVState *env, int csrno, target_ulong val) 3127 { 3128 env->hvictl = val & HVICTL_VALID_MASK; 3129 return RISCV_EXCP_NONE; 3130 } 3131 3132 static int read_hvipriox(CPURISCVState *env, int first_index, 3133 uint8_t *iprio, target_ulong *val) 3134 { 3135 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3136 3137 /* First index has to be a multiple of number of irqs per register */ 3138 if (first_index % num_irqs) { 3139 return (riscv_cpu_virt_enabled(env)) ? 3140 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3141 } 3142 3143 /* Fill-up return value */ 3144 *val = 0; 3145 for (i = 0; i < num_irqs; i++) { 3146 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3147 continue; 3148 } 3149 if (rdzero) { 3150 continue; 3151 } 3152 *val |= ((target_ulong)iprio[irq]) << (i * 8); 3153 } 3154 3155 return RISCV_EXCP_NONE; 3156 } 3157 3158 static int write_hvipriox(CPURISCVState *env, int first_index, 3159 uint8_t *iprio, target_ulong val) 3160 { 3161 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 3162 3163 /* First index has to be a multiple of number of irqs per register */ 3164 if (first_index % num_irqs) { 3165 return (riscv_cpu_virt_enabled(env)) ? 3166 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 3167 } 3168 3169 /* Fill-up priority arrary */ 3170 for (i = 0; i < num_irqs; i++) { 3171 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 3172 continue; 3173 } 3174 if (rdzero) { 3175 iprio[irq] = 0; 3176 } else { 3177 iprio[irq] = (val >> (i * 8)) & 0xff; 3178 } 3179 } 3180 3181 return RISCV_EXCP_NONE; 3182 } 3183 3184 static int read_hviprio1(CPURISCVState *env, int csrno, target_ulong *val) 3185 { 3186 return read_hvipriox(env, 0, env->hviprio, val); 3187 } 3188 3189 static int write_hviprio1(CPURISCVState *env, int csrno, target_ulong val) 3190 { 3191 return write_hvipriox(env, 0, env->hviprio, val); 3192 } 3193 3194 static int read_hviprio1h(CPURISCVState *env, int csrno, target_ulong *val) 3195 { 3196 return read_hvipriox(env, 4, env->hviprio, val); 3197 } 3198 3199 static int write_hviprio1h(CPURISCVState *env, int csrno, target_ulong val) 3200 { 3201 return write_hvipriox(env, 4, env->hviprio, val); 3202 } 3203 3204 static int read_hviprio2(CPURISCVState *env, int csrno, target_ulong *val) 3205 { 3206 return read_hvipriox(env, 8, env->hviprio, val); 3207 } 3208 3209 static int write_hviprio2(CPURISCVState *env, int csrno, target_ulong val) 3210 { 3211 return write_hvipriox(env, 8, env->hviprio, val); 3212 } 3213 3214 static int read_hviprio2h(CPURISCVState *env, int csrno, target_ulong *val) 3215 { 3216 return read_hvipriox(env, 12, env->hviprio, val); 3217 } 3218 3219 static int write_hviprio2h(CPURISCVState *env, int csrno, target_ulong val) 3220 { 3221 return write_hvipriox(env, 12, env->hviprio, val); 3222 } 3223 3224 /* Virtual CSR Registers */ 3225 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 3226 target_ulong *val) 3227 { 3228 *val = env->vsstatus; 3229 return RISCV_EXCP_NONE; 3230 } 3231 3232 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 3233 target_ulong val) 3234 { 3235 uint64_t mask = (target_ulong)-1; 3236 if ((val & VSSTATUS64_UXL) == 0) { 3237 mask &= ~VSSTATUS64_UXL; 3238 } 3239 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 3240 return RISCV_EXCP_NONE; 3241 } 3242 3243 static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val) 3244 { 3245 *val = env->vstvec; 3246 return RISCV_EXCP_NONE; 3247 } 3248 3249 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 3250 target_ulong val) 3251 { 3252 env->vstvec = val; 3253 return RISCV_EXCP_NONE; 3254 } 3255 3256 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 3257 target_ulong *val) 3258 { 3259 *val = env->vsscratch; 3260 return RISCV_EXCP_NONE; 3261 } 3262 3263 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 3264 target_ulong val) 3265 { 3266 env->vsscratch = val; 3267 return RISCV_EXCP_NONE; 3268 } 3269 3270 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 3271 target_ulong *val) 3272 { 3273 *val = env->vsepc; 3274 return RISCV_EXCP_NONE; 3275 } 3276 3277 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 3278 target_ulong val) 3279 { 3280 env->vsepc = val; 3281 return RISCV_EXCP_NONE; 3282 } 3283 3284 static RISCVException read_vscause(CPURISCVState *env, int csrno, 3285 target_ulong *val) 3286 { 3287 *val = env->vscause; 3288 return RISCV_EXCP_NONE; 3289 } 3290 3291 static RISCVException write_vscause(CPURISCVState *env, int csrno, 3292 target_ulong val) 3293 { 3294 env->vscause = val; 3295 return RISCV_EXCP_NONE; 3296 } 3297 3298 static RISCVException read_vstval(CPURISCVState *env, int csrno, 3299 target_ulong *val) 3300 { 3301 *val = env->vstval; 3302 return RISCV_EXCP_NONE; 3303 } 3304 3305 static RISCVException write_vstval(CPURISCVState *env, int csrno, 3306 target_ulong val) 3307 { 3308 env->vstval = val; 3309 return RISCV_EXCP_NONE; 3310 } 3311 3312 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 3313 target_ulong *val) 3314 { 3315 *val = env->vsatp; 3316 return RISCV_EXCP_NONE; 3317 } 3318 3319 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 3320 target_ulong val) 3321 { 3322 env->vsatp = val; 3323 return RISCV_EXCP_NONE; 3324 } 3325 3326 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 3327 target_ulong *val) 3328 { 3329 *val = env->mtval2; 3330 return RISCV_EXCP_NONE; 3331 } 3332 3333 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 3334 target_ulong val) 3335 { 3336 env->mtval2 = val; 3337 return RISCV_EXCP_NONE; 3338 } 3339 3340 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 3341 target_ulong *val) 3342 { 3343 *val = env->mtinst; 3344 return RISCV_EXCP_NONE; 3345 } 3346 3347 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 3348 target_ulong val) 3349 { 3350 env->mtinst = val; 3351 return RISCV_EXCP_NONE; 3352 } 3353 3354 /* Physical Memory Protection */ 3355 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 3356 target_ulong *val) 3357 { 3358 *val = mseccfg_csr_read(env); 3359 return RISCV_EXCP_NONE; 3360 } 3361 3362 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 3363 target_ulong val) 3364 { 3365 mseccfg_csr_write(env, val); 3366 return RISCV_EXCP_NONE; 3367 } 3368 3369 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 3370 target_ulong *val) 3371 { 3372 uint32_t reg_index = csrno - CSR_PMPCFG0; 3373 3374 *val = pmpcfg_csr_read(env, reg_index); 3375 return RISCV_EXCP_NONE; 3376 } 3377 3378 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 3379 target_ulong val) 3380 { 3381 uint32_t reg_index = csrno - CSR_PMPCFG0; 3382 3383 pmpcfg_csr_write(env, reg_index, val); 3384 return RISCV_EXCP_NONE; 3385 } 3386 3387 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 3388 target_ulong *val) 3389 { 3390 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 3391 return RISCV_EXCP_NONE; 3392 } 3393 3394 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 3395 target_ulong val) 3396 { 3397 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 3398 return RISCV_EXCP_NONE; 3399 } 3400 3401 static RISCVException read_tselect(CPURISCVState *env, int csrno, 3402 target_ulong *val) 3403 { 3404 *val = tselect_csr_read(env); 3405 return RISCV_EXCP_NONE; 3406 } 3407 3408 static RISCVException write_tselect(CPURISCVState *env, int csrno, 3409 target_ulong val) 3410 { 3411 tselect_csr_write(env, val); 3412 return RISCV_EXCP_NONE; 3413 } 3414 3415 static RISCVException read_tdata(CPURISCVState *env, int csrno, 3416 target_ulong *val) 3417 { 3418 /* return 0 in tdata1 to end the trigger enumeration */ 3419 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 3420 *val = 0; 3421 return RISCV_EXCP_NONE; 3422 } 3423 3424 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3425 return RISCV_EXCP_ILLEGAL_INST; 3426 } 3427 3428 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 3429 return RISCV_EXCP_NONE; 3430 } 3431 3432 static RISCVException write_tdata(CPURISCVState *env, int csrno, 3433 target_ulong val) 3434 { 3435 if (!tdata_available(env, csrno - CSR_TDATA1)) { 3436 return RISCV_EXCP_ILLEGAL_INST; 3437 } 3438 3439 tdata_csr_write(env, csrno - CSR_TDATA1, val); 3440 return RISCV_EXCP_NONE; 3441 } 3442 3443 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 3444 target_ulong *val) 3445 { 3446 *val = tinfo_csr_read(env); 3447 return RISCV_EXCP_NONE; 3448 } 3449 3450 /* 3451 * Functions to access Pointer Masking feature registers 3452 * We have to check if current priv lvl could modify 3453 * csr in given mode 3454 */ 3455 static bool check_pm_current_disabled(CPURISCVState *env, int csrno) 3456 { 3457 int csr_priv = get_field(csrno, 0x300); 3458 int pm_current; 3459 3460 if (env->debugger) { 3461 return false; 3462 } 3463 /* 3464 * If priv lvls differ that means we're accessing csr from higher priv lvl, 3465 * so allow the access 3466 */ 3467 if (env->priv != csr_priv) { 3468 return false; 3469 } 3470 switch (env->priv) { 3471 case PRV_M: 3472 pm_current = get_field(env->mmte, M_PM_CURRENT); 3473 break; 3474 case PRV_S: 3475 pm_current = get_field(env->mmte, S_PM_CURRENT); 3476 break; 3477 case PRV_U: 3478 pm_current = get_field(env->mmte, U_PM_CURRENT); 3479 break; 3480 default: 3481 g_assert_not_reached(); 3482 } 3483 /* It's same priv lvl, so we allow to modify csr only if pm.current==1 */ 3484 return !pm_current; 3485 } 3486 3487 static RISCVException read_mmte(CPURISCVState *env, int csrno, 3488 target_ulong *val) 3489 { 3490 *val = env->mmte & MMTE_MASK; 3491 return RISCV_EXCP_NONE; 3492 } 3493 3494 static RISCVException write_mmte(CPURISCVState *env, int csrno, 3495 target_ulong val) 3496 { 3497 uint64_t mstatus; 3498 target_ulong wpri_val = val & MMTE_MASK; 3499 3500 if (val != wpri_val) { 3501 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3502 "MMTE: WPRI violation written 0x", val, 3503 "vs expected 0x", wpri_val); 3504 } 3505 /* for machine mode pm.current is hardwired to 1 */ 3506 wpri_val |= MMTE_M_PM_CURRENT; 3507 3508 /* hardwiring pm.instruction bit to 0, since it's not supported yet */ 3509 wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN); 3510 env->mmte = wpri_val | PM_EXT_DIRTY; 3511 riscv_cpu_update_mask(env); 3512 3513 /* Set XS and SD bits, since PM CSRs are dirty */ 3514 mstatus = env->mstatus | MSTATUS_XS; 3515 write_mstatus(env, csrno, mstatus); 3516 return RISCV_EXCP_NONE; 3517 } 3518 3519 static RISCVException read_smte(CPURISCVState *env, int csrno, 3520 target_ulong *val) 3521 { 3522 *val = env->mmte & SMTE_MASK; 3523 return RISCV_EXCP_NONE; 3524 } 3525 3526 static RISCVException write_smte(CPURISCVState *env, int csrno, 3527 target_ulong val) 3528 { 3529 target_ulong wpri_val = val & SMTE_MASK; 3530 3531 if (val != wpri_val) { 3532 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3533 "SMTE: WPRI violation written 0x", val, 3534 "vs expected 0x", wpri_val); 3535 } 3536 3537 /* if pm.current==0 we can't modify current PM CSRs */ 3538 if (check_pm_current_disabled(env, csrno)) { 3539 return RISCV_EXCP_NONE; 3540 } 3541 3542 wpri_val |= (env->mmte & ~SMTE_MASK); 3543 write_mmte(env, csrno, wpri_val); 3544 return RISCV_EXCP_NONE; 3545 } 3546 3547 static RISCVException read_umte(CPURISCVState *env, int csrno, 3548 target_ulong *val) 3549 { 3550 *val = env->mmte & UMTE_MASK; 3551 return RISCV_EXCP_NONE; 3552 } 3553 3554 static RISCVException write_umte(CPURISCVState *env, int csrno, 3555 target_ulong val) 3556 { 3557 target_ulong wpri_val = val & UMTE_MASK; 3558 3559 if (val != wpri_val) { 3560 qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n", 3561 "UMTE: WPRI violation written 0x", val, 3562 "vs expected 0x", wpri_val); 3563 } 3564 3565 if (check_pm_current_disabled(env, csrno)) { 3566 return RISCV_EXCP_NONE; 3567 } 3568 3569 wpri_val |= (env->mmte & ~UMTE_MASK); 3570 write_mmte(env, csrno, wpri_val); 3571 return RISCV_EXCP_NONE; 3572 } 3573 3574 static RISCVException read_mpmmask(CPURISCVState *env, int csrno, 3575 target_ulong *val) 3576 { 3577 *val = env->mpmmask; 3578 return RISCV_EXCP_NONE; 3579 } 3580 3581 static RISCVException write_mpmmask(CPURISCVState *env, int csrno, 3582 target_ulong val) 3583 { 3584 uint64_t mstatus; 3585 3586 env->mpmmask = val; 3587 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3588 env->cur_pmmask = val; 3589 } 3590 env->mmte |= PM_EXT_DIRTY; 3591 3592 /* Set XS and SD bits, since PM CSRs are dirty */ 3593 mstatus = env->mstatus | MSTATUS_XS; 3594 write_mstatus(env, csrno, mstatus); 3595 return RISCV_EXCP_NONE; 3596 } 3597 3598 static RISCVException read_spmmask(CPURISCVState *env, int csrno, 3599 target_ulong *val) 3600 { 3601 *val = env->spmmask; 3602 return RISCV_EXCP_NONE; 3603 } 3604 3605 static RISCVException write_spmmask(CPURISCVState *env, int csrno, 3606 target_ulong val) 3607 { 3608 uint64_t mstatus; 3609 3610 /* if pm.current==0 we can't modify current PM CSRs */ 3611 if (check_pm_current_disabled(env, csrno)) { 3612 return RISCV_EXCP_NONE; 3613 } 3614 env->spmmask = val; 3615 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3616 env->cur_pmmask = val; 3617 } 3618 env->mmte |= PM_EXT_DIRTY; 3619 3620 /* Set XS and SD bits, since PM CSRs are dirty */ 3621 mstatus = env->mstatus | MSTATUS_XS; 3622 write_mstatus(env, csrno, mstatus); 3623 return RISCV_EXCP_NONE; 3624 } 3625 3626 static RISCVException read_upmmask(CPURISCVState *env, int csrno, 3627 target_ulong *val) 3628 { 3629 *val = env->upmmask; 3630 return RISCV_EXCP_NONE; 3631 } 3632 3633 static RISCVException write_upmmask(CPURISCVState *env, int csrno, 3634 target_ulong val) 3635 { 3636 uint64_t mstatus; 3637 3638 /* if pm.current==0 we can't modify current PM CSRs */ 3639 if (check_pm_current_disabled(env, csrno)) { 3640 return RISCV_EXCP_NONE; 3641 } 3642 env->upmmask = val; 3643 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3644 env->cur_pmmask = val; 3645 } 3646 env->mmte |= PM_EXT_DIRTY; 3647 3648 /* Set XS and SD bits, since PM CSRs are dirty */ 3649 mstatus = env->mstatus | MSTATUS_XS; 3650 write_mstatus(env, csrno, mstatus); 3651 return RISCV_EXCP_NONE; 3652 } 3653 3654 static RISCVException read_mpmbase(CPURISCVState *env, int csrno, 3655 target_ulong *val) 3656 { 3657 *val = env->mpmbase; 3658 return RISCV_EXCP_NONE; 3659 } 3660 3661 static RISCVException write_mpmbase(CPURISCVState *env, int csrno, 3662 target_ulong val) 3663 { 3664 uint64_t mstatus; 3665 3666 env->mpmbase = val; 3667 if ((env->priv == PRV_M) && (env->mmte & M_PM_ENABLE)) { 3668 env->cur_pmbase = val; 3669 } 3670 env->mmte |= PM_EXT_DIRTY; 3671 3672 /* Set XS and SD bits, since PM CSRs are dirty */ 3673 mstatus = env->mstatus | MSTATUS_XS; 3674 write_mstatus(env, csrno, mstatus); 3675 return RISCV_EXCP_NONE; 3676 } 3677 3678 static RISCVException read_spmbase(CPURISCVState *env, int csrno, 3679 target_ulong *val) 3680 { 3681 *val = env->spmbase; 3682 return RISCV_EXCP_NONE; 3683 } 3684 3685 static RISCVException write_spmbase(CPURISCVState *env, int csrno, 3686 target_ulong val) 3687 { 3688 uint64_t mstatus; 3689 3690 /* if pm.current==0 we can't modify current PM CSRs */ 3691 if (check_pm_current_disabled(env, csrno)) { 3692 return RISCV_EXCP_NONE; 3693 } 3694 env->spmbase = val; 3695 if ((env->priv == PRV_S) && (env->mmte & S_PM_ENABLE)) { 3696 env->cur_pmbase = val; 3697 } 3698 env->mmte |= PM_EXT_DIRTY; 3699 3700 /* Set XS and SD bits, since PM CSRs are dirty */ 3701 mstatus = env->mstatus | MSTATUS_XS; 3702 write_mstatus(env, csrno, mstatus); 3703 return RISCV_EXCP_NONE; 3704 } 3705 3706 static RISCVException read_upmbase(CPURISCVState *env, int csrno, 3707 target_ulong *val) 3708 { 3709 *val = env->upmbase; 3710 return RISCV_EXCP_NONE; 3711 } 3712 3713 static RISCVException write_upmbase(CPURISCVState *env, int csrno, 3714 target_ulong val) 3715 { 3716 uint64_t mstatus; 3717 3718 /* if pm.current==0 we can't modify current PM CSRs */ 3719 if (check_pm_current_disabled(env, csrno)) { 3720 return RISCV_EXCP_NONE; 3721 } 3722 env->upmbase = val; 3723 if ((env->priv == PRV_U) && (env->mmte & U_PM_ENABLE)) { 3724 env->cur_pmbase = val; 3725 } 3726 env->mmte |= PM_EXT_DIRTY; 3727 3728 /* Set XS and SD bits, since PM CSRs are dirty */ 3729 mstatus = env->mstatus | MSTATUS_XS; 3730 write_mstatus(env, csrno, mstatus); 3731 return RISCV_EXCP_NONE; 3732 } 3733 3734 #endif 3735 3736 /* Crypto Extension */ 3737 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 3738 target_ulong *ret_value, 3739 target_ulong new_value, 3740 target_ulong write_mask) 3741 { 3742 uint16_t random_v; 3743 Error *random_e = NULL; 3744 int random_r; 3745 target_ulong rval; 3746 3747 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 3748 if (unlikely(random_r < 0)) { 3749 /* 3750 * Failed, for unknown reasons in the crypto subsystem. 3751 * The best we can do is log the reason and return a 3752 * failure indication to the guest. There is no reason 3753 * we know to expect the failure to be transitory, so 3754 * indicate DEAD to avoid having the guest spin on WAIT. 3755 */ 3756 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 3757 __func__, error_get_pretty(random_e)); 3758 error_free(random_e); 3759 rval = SEED_OPST_DEAD; 3760 } else { 3761 rval = random_v | SEED_OPST_ES16; 3762 } 3763 3764 if (ret_value) { 3765 *ret_value = rval; 3766 } 3767 3768 return RISCV_EXCP_NONE; 3769 } 3770 3771 /* 3772 * riscv_csrrw - read and/or update control and status register 3773 * 3774 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 3775 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 3776 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 3777 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 3778 */ 3779 3780 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 3781 int csrno, 3782 bool write_mask, 3783 RISCVCPU *cpu) 3784 { 3785 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 3786 bool read_only = get_field(csrno, 0xC00) == 3; 3787 int csr_min_priv = csr_ops[csrno].min_priv_ver; 3788 3789 /* ensure the CSR extension is enabled */ 3790 if (!cpu->cfg.ext_icsr) { 3791 return RISCV_EXCP_ILLEGAL_INST; 3792 } 3793 3794 /* privileged spec version check */ 3795 if (env->priv_ver < csr_min_priv) { 3796 return RISCV_EXCP_ILLEGAL_INST; 3797 } 3798 3799 /* read / write check */ 3800 if (write_mask && read_only) { 3801 return RISCV_EXCP_ILLEGAL_INST; 3802 } 3803 3804 /* 3805 * The predicate() not only does existence check but also does some 3806 * access control check which triggers for example virtual instruction 3807 * exception in some cases. When writing read-only CSRs in those cases 3808 * illegal instruction exception should be triggered instead of virtual 3809 * instruction exception. Hence this comes after the read / write check. 3810 */ 3811 g_assert(csr_ops[csrno].predicate != NULL); 3812 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 3813 if (ret != RISCV_EXCP_NONE) { 3814 return ret; 3815 } 3816 3817 #if !defined(CONFIG_USER_ONLY) 3818 int csr_priv, effective_priv = env->priv; 3819 3820 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 3821 !riscv_cpu_virt_enabled(env)) { 3822 /* 3823 * We are in HS mode. Add 1 to the effective privledge level to 3824 * allow us to access the Hypervisor CSRs. 3825 */ 3826 effective_priv++; 3827 } 3828 3829 csr_priv = get_field(csrno, 0x300); 3830 if (!env->debugger && (effective_priv < csr_priv)) { 3831 if (csr_priv == (PRV_S + 1) && riscv_cpu_virt_enabled(env)) { 3832 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3833 } 3834 return RISCV_EXCP_ILLEGAL_INST; 3835 } 3836 #endif 3837 return RISCV_EXCP_NONE; 3838 } 3839 3840 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 3841 target_ulong *ret_value, 3842 target_ulong new_value, 3843 target_ulong write_mask) 3844 { 3845 RISCVException ret; 3846 target_ulong old_value; 3847 3848 /* execute combined read/write operation if it exists */ 3849 if (csr_ops[csrno].op) { 3850 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 3851 } 3852 3853 /* if no accessor exists then return failure */ 3854 if (!csr_ops[csrno].read) { 3855 return RISCV_EXCP_ILLEGAL_INST; 3856 } 3857 /* read old value */ 3858 ret = csr_ops[csrno].read(env, csrno, &old_value); 3859 if (ret != RISCV_EXCP_NONE) { 3860 return ret; 3861 } 3862 3863 /* write value if writable and write mask set, otherwise drop writes */ 3864 if (write_mask) { 3865 new_value = (old_value & ~write_mask) | (new_value & write_mask); 3866 if (csr_ops[csrno].write) { 3867 ret = csr_ops[csrno].write(env, csrno, new_value); 3868 if (ret != RISCV_EXCP_NONE) { 3869 return ret; 3870 } 3871 } 3872 } 3873 3874 /* return old value */ 3875 if (ret_value) { 3876 *ret_value = old_value; 3877 } 3878 3879 return RISCV_EXCP_NONE; 3880 } 3881 3882 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 3883 target_ulong *ret_value, 3884 target_ulong new_value, target_ulong write_mask) 3885 { 3886 RISCVCPU *cpu = env_archcpu(env); 3887 3888 RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu); 3889 if (ret != RISCV_EXCP_NONE) { 3890 return ret; 3891 } 3892 3893 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 3894 } 3895 3896 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 3897 Int128 *ret_value, 3898 Int128 new_value, 3899 Int128 write_mask) 3900 { 3901 RISCVException ret; 3902 Int128 old_value; 3903 3904 /* read old value */ 3905 ret = csr_ops[csrno].read128(env, csrno, &old_value); 3906 if (ret != RISCV_EXCP_NONE) { 3907 return ret; 3908 } 3909 3910 /* write value if writable and write mask set, otherwise drop writes */ 3911 if (int128_nz(write_mask)) { 3912 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 3913 int128_and(new_value, write_mask)); 3914 if (csr_ops[csrno].write128) { 3915 ret = csr_ops[csrno].write128(env, csrno, new_value); 3916 if (ret != RISCV_EXCP_NONE) { 3917 return ret; 3918 } 3919 } else if (csr_ops[csrno].write) { 3920 /* avoids having to write wrappers for all registers */ 3921 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 3922 if (ret != RISCV_EXCP_NONE) { 3923 return ret; 3924 } 3925 } 3926 } 3927 3928 /* return old value */ 3929 if (ret_value) { 3930 *ret_value = old_value; 3931 } 3932 3933 return RISCV_EXCP_NONE; 3934 } 3935 3936 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 3937 Int128 *ret_value, 3938 Int128 new_value, Int128 write_mask) 3939 { 3940 RISCVException ret; 3941 RISCVCPU *cpu = env_archcpu(env); 3942 3943 ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu); 3944 if (ret != RISCV_EXCP_NONE) { 3945 return ret; 3946 } 3947 3948 if (csr_ops[csrno].read128) { 3949 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 3950 } 3951 3952 /* 3953 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 3954 * at all defined. 3955 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 3956 * significant), for those, this fallback is correctly handling the accesses 3957 */ 3958 target_ulong old_value; 3959 ret = riscv_csrrw_do64(env, csrno, &old_value, 3960 int128_getlo(new_value), 3961 int128_getlo(write_mask)); 3962 if (ret == RISCV_EXCP_NONE && ret_value) { 3963 *ret_value = int128_make64(old_value); 3964 } 3965 return ret; 3966 } 3967 3968 /* 3969 * Debugger support. If not in user mode, set env->debugger before the 3970 * riscv_csrrw call and clear it after the call. 3971 */ 3972 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 3973 target_ulong *ret_value, 3974 target_ulong new_value, 3975 target_ulong write_mask) 3976 { 3977 RISCVException ret; 3978 #if !defined(CONFIG_USER_ONLY) 3979 env->debugger = true; 3980 #endif 3981 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 3982 #if !defined(CONFIG_USER_ONLY) 3983 env->debugger = false; 3984 #endif 3985 return ret; 3986 } 3987 3988 /* Control and Status Register function table */ 3989 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 3990 /* User Floating-Point CSRs */ 3991 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 3992 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 3993 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 3994 /* Vector CSRs */ 3995 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 3996 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 3997 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 3998 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 3999 [CSR_VL] = { "vl", vs, read_vl }, 4000 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 4001 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 4002 /* User Timers and Counters */ 4003 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 4004 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 4005 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 4006 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 4007 4008 /* 4009 * In privileged mode, the monitor will have to emulate TIME CSRs only if 4010 * rdtime callback is not provided by machine/platform emulation. 4011 */ 4012 [CSR_TIME] = { "time", ctr, read_time }, 4013 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 4014 4015 /* Crypto Extension */ 4016 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 4017 4018 #if !defined(CONFIG_USER_ONLY) 4019 /* Machine Timers and Counters */ 4020 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 4021 write_mhpmcounter }, 4022 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 4023 write_mhpmcounter }, 4024 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 4025 write_mhpmcounterh }, 4026 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 4027 write_mhpmcounterh }, 4028 4029 /* Machine Information Registers */ 4030 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 4031 [CSR_MARCHID] = { "marchid", any, read_marchid }, 4032 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 4033 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 4034 4035 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 4036 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4037 /* Machine Trap Setup */ 4038 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 4039 NULL, read_mstatus_i128 }, 4040 [CSR_MISA] = { "misa", any, read_misa, write_misa, 4041 NULL, read_misa_i128 }, 4042 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 4043 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 4044 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 4045 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 4046 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 4047 write_mcounteren }, 4048 4049 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 4050 write_mstatush }, 4051 4052 /* Machine Trap Handling */ 4053 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 4054 NULL, read_mscratch_i128, write_mscratch_i128 }, 4055 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 4056 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 4057 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 4058 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 4059 4060 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 4061 [CSR_MISELECT] = { "miselect", aia_any, NULL, NULL, rmw_xiselect }, 4062 [CSR_MIREG] = { "mireg", aia_any, NULL, NULL, rmw_xireg }, 4063 4064 /* Machine-Level Interrupts (AIA) */ 4065 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 4066 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 4067 4068 /* Virtual Interrupts for Supervisor Level (AIA) */ 4069 [CSR_MVIEN] = { "mvien", aia_any, read_zero, write_ignore }, 4070 [CSR_MVIP] = { "mvip", aia_any, read_zero, write_ignore }, 4071 4072 /* Machine-Level High-Half CSRs (AIA) */ 4073 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 4074 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 4075 [CSR_MVIENH] = { "mvienh", aia_any32, read_zero, write_ignore }, 4076 [CSR_MVIPH] = { "mviph", aia_any32, read_zero, write_ignore }, 4077 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 4078 4079 /* Execution environment configuration */ 4080 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 4081 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4082 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 4083 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4084 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 4085 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4086 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 4087 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4088 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 4089 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4090 4091 /* Smstateen extension CSRs */ 4092 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 4093 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4094 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 4095 write_mstateen0h, 4096 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4097 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 4098 write_mstateen_1_3, 4099 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4100 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 4101 write_mstateenh_1_3, 4102 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4103 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 4104 write_mstateen_1_3, 4105 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4106 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 4107 write_mstateenh_1_3, 4108 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4109 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 4110 write_mstateen_1_3, 4111 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4112 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 4113 write_mstateenh_1_3, 4114 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4115 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 4116 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4117 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 4118 write_hstateen0h, 4119 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4120 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 4121 write_hstateen_1_3, 4122 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4123 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 4124 write_hstateenh_1_3, 4125 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4126 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 4127 write_hstateen_1_3, 4128 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4129 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 4130 write_hstateenh_1_3, 4131 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4132 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 4133 write_hstateen_1_3, 4134 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4135 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 4136 write_hstateenh_1_3, 4137 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4138 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 4139 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4140 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 4141 write_sstateen_1_3, 4142 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4143 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 4144 write_sstateen_1_3, 4145 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4146 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 4147 write_sstateen_1_3, 4148 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4149 4150 /* Supervisor Trap Setup */ 4151 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 4152 NULL, read_sstatus_i128 }, 4153 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 4154 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 4155 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 4156 write_scounteren }, 4157 4158 /* Supervisor Trap Handling */ 4159 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 4160 NULL, read_sscratch_i128, write_sscratch_i128 }, 4161 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 4162 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 4163 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 4164 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 4165 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 4166 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4167 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 4168 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4169 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 4170 write_vstimecmp, 4171 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4172 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 4173 write_vstimecmph, 4174 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4175 4176 /* Supervisor Protection and Translation */ 4177 [CSR_SATP] = { "satp", smode, read_satp, write_satp }, 4178 4179 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 4180 [CSR_SISELECT] = { "siselect", aia_smode, NULL, NULL, rmw_xiselect }, 4181 [CSR_SIREG] = { "sireg", aia_smode, NULL, NULL, rmw_xireg }, 4182 4183 /* Supervisor-Level Interrupts (AIA) */ 4184 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 4185 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 4186 4187 /* Supervisor-Level High-Half CSRs (AIA) */ 4188 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 4189 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 4190 4191 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 4192 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4193 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 4194 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4195 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 4196 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4197 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 4198 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4199 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 4200 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4201 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 4202 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4203 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 4204 write_hcounteren, 4205 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4206 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 4207 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4208 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 4209 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4210 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 4211 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4212 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 4213 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4214 [CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp, 4215 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4216 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 4217 write_htimedelta, 4218 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4219 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 4220 write_htimedeltah, 4221 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4222 4223 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 4224 write_vsstatus, 4225 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4226 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 4227 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4228 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 4229 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4230 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 4231 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4232 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 4233 write_vsscratch, 4234 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4235 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 4236 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4237 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 4238 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4239 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 4240 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4241 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 4242 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4243 4244 [CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2, 4245 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4246 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 4247 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4248 4249 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 4250 [CSR_HVIEN] = { "hvien", aia_hmode, read_zero, write_ignore }, 4251 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 4252 write_hvictl }, 4253 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 4254 write_hviprio1 }, 4255 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 4256 write_hviprio2 }, 4257 4258 /* 4259 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 4260 */ 4261 [CSR_VSISELECT] = { "vsiselect", aia_hmode, NULL, NULL, 4262 rmw_xiselect }, 4263 [CSR_VSIREG] = { "vsireg", aia_hmode, NULL, NULL, rmw_xireg }, 4264 4265 /* VS-Level Interrupts (H-extension with AIA) */ 4266 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 4267 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 4268 4269 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 4270 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 4271 rmw_hidelegh }, 4272 [CSR_HVIENH] = { "hvienh", aia_hmode32, read_zero, 4273 write_ignore }, 4274 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 4275 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 4276 write_hviprio1h }, 4277 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 4278 write_hviprio2h }, 4279 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 4280 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 4281 4282 /* Physical Memory Protection */ 4283 [CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg, 4284 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4285 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 4286 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 4287 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 4288 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 4289 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 4290 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 4291 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 4292 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 4293 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 4294 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 4295 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 4296 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 4297 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 4298 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 4299 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 4300 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 4301 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 4302 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 4303 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 4304 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 4305 4306 /* Debug CSRs */ 4307 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 4308 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 4309 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 4310 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 4311 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 4312 4313 /* User Pointer Masking */ 4314 [CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte }, 4315 [CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, 4316 write_upmmask }, 4317 [CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, 4318 write_upmbase }, 4319 /* Machine Pointer Masking */ 4320 [CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte }, 4321 [CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, 4322 write_mpmmask }, 4323 [CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, 4324 write_mpmbase }, 4325 /* Supervisor Pointer Masking */ 4326 [CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte }, 4327 [CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, 4328 write_spmmask }, 4329 [CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, 4330 write_spmbase }, 4331 4332 /* Performance Counters */ 4333 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 4334 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 4335 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 4336 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 4337 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 4338 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 4339 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 4340 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 4341 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 4342 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 4343 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 4344 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 4345 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 4346 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 4347 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 4348 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 4349 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 4350 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 4351 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 4352 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 4353 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 4354 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 4355 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 4356 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 4357 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 4358 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 4359 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 4360 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 4361 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 4362 4363 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 4364 write_mhpmcounter }, 4365 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 4366 write_mhpmcounter }, 4367 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 4368 write_mhpmcounter }, 4369 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 4370 write_mhpmcounter }, 4371 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 4372 write_mhpmcounter }, 4373 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 4374 write_mhpmcounter }, 4375 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 4376 write_mhpmcounter }, 4377 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 4378 write_mhpmcounter }, 4379 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 4380 write_mhpmcounter }, 4381 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 4382 write_mhpmcounter }, 4383 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 4384 write_mhpmcounter }, 4385 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 4386 write_mhpmcounter }, 4387 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 4388 write_mhpmcounter }, 4389 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 4390 write_mhpmcounter }, 4391 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 4392 write_mhpmcounter }, 4393 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 4394 write_mhpmcounter }, 4395 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 4396 write_mhpmcounter }, 4397 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 4398 write_mhpmcounter }, 4399 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 4400 write_mhpmcounter }, 4401 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 4402 write_mhpmcounter }, 4403 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 4404 write_mhpmcounter }, 4405 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 4406 write_mhpmcounter }, 4407 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 4408 write_mhpmcounter }, 4409 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 4410 write_mhpmcounter }, 4411 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 4412 write_mhpmcounter }, 4413 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 4414 write_mhpmcounter }, 4415 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 4416 write_mhpmcounter }, 4417 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 4418 write_mhpmcounter }, 4419 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 4420 write_mhpmcounter }, 4421 4422 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 4423 write_mcountinhibit, 4424 .min_priv_ver = PRIV_VERSION_1_11_0 }, 4425 4426 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 4427 write_mhpmevent }, 4428 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 4429 write_mhpmevent }, 4430 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 4431 write_mhpmevent }, 4432 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 4433 write_mhpmevent }, 4434 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 4435 write_mhpmevent }, 4436 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 4437 write_mhpmevent }, 4438 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 4439 write_mhpmevent }, 4440 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 4441 write_mhpmevent }, 4442 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 4443 write_mhpmevent }, 4444 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 4445 write_mhpmevent }, 4446 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 4447 write_mhpmevent }, 4448 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 4449 write_mhpmevent }, 4450 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 4451 write_mhpmevent }, 4452 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 4453 write_mhpmevent }, 4454 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 4455 write_mhpmevent }, 4456 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 4457 write_mhpmevent }, 4458 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 4459 write_mhpmevent }, 4460 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 4461 write_mhpmevent }, 4462 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 4463 write_mhpmevent }, 4464 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 4465 write_mhpmevent }, 4466 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 4467 write_mhpmevent }, 4468 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 4469 write_mhpmevent }, 4470 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 4471 write_mhpmevent }, 4472 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 4473 write_mhpmevent }, 4474 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 4475 write_mhpmevent }, 4476 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 4477 write_mhpmevent }, 4478 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 4479 write_mhpmevent }, 4480 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 4481 write_mhpmevent }, 4482 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 4483 write_mhpmevent }, 4484 4485 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf, read_mhpmeventh, 4486 write_mhpmeventh, 4487 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4488 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf, read_mhpmeventh, 4489 write_mhpmeventh, 4490 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4491 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf, read_mhpmeventh, 4492 write_mhpmeventh, 4493 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4494 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf, read_mhpmeventh, 4495 write_mhpmeventh, 4496 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4497 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf, read_mhpmeventh, 4498 write_mhpmeventh, 4499 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4500 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf, read_mhpmeventh, 4501 write_mhpmeventh, 4502 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4503 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf, read_mhpmeventh, 4504 write_mhpmeventh, 4505 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4506 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf, read_mhpmeventh, 4507 write_mhpmeventh, 4508 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4509 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf, read_mhpmeventh, 4510 write_mhpmeventh, 4511 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4512 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf, read_mhpmeventh, 4513 write_mhpmeventh, 4514 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4515 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf, read_mhpmeventh, 4516 write_mhpmeventh, 4517 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4518 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf, read_mhpmeventh, 4519 write_mhpmeventh, 4520 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4521 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf, read_mhpmeventh, 4522 write_mhpmeventh, 4523 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4524 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf, read_mhpmeventh, 4525 write_mhpmeventh, 4526 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4527 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf, read_mhpmeventh, 4528 write_mhpmeventh, 4529 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4530 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf, read_mhpmeventh, 4531 write_mhpmeventh, 4532 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4533 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf, read_mhpmeventh, 4534 write_mhpmeventh, 4535 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4536 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf, read_mhpmeventh, 4537 write_mhpmeventh, 4538 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4539 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf, read_mhpmeventh, 4540 write_mhpmeventh, 4541 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4542 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf, read_mhpmeventh, 4543 write_mhpmeventh, 4544 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4545 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf, read_mhpmeventh, 4546 write_mhpmeventh, 4547 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4548 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf, read_mhpmeventh, 4549 write_mhpmeventh, 4550 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4551 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf, read_mhpmeventh, 4552 write_mhpmeventh, 4553 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4554 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf, read_mhpmeventh, 4555 write_mhpmeventh, 4556 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4557 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf, read_mhpmeventh, 4558 write_mhpmeventh, 4559 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4560 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf, read_mhpmeventh, 4561 write_mhpmeventh, 4562 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4563 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf, read_mhpmeventh, 4564 write_mhpmeventh, 4565 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4566 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf, read_mhpmeventh, 4567 write_mhpmeventh, 4568 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4569 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf, read_mhpmeventh, 4570 write_mhpmeventh, 4571 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4572 4573 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 4574 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 4575 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 4576 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 4577 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 4578 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 4579 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 4580 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 4581 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 4582 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 4583 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 4584 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 4585 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 4586 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 4587 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 4588 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 4589 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 4590 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 4591 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 4592 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 4593 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 4594 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 4595 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 4596 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 4597 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 4598 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 4599 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 4600 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 4601 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 4602 4603 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 4604 write_mhpmcounterh }, 4605 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 4606 write_mhpmcounterh }, 4607 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 4608 write_mhpmcounterh }, 4609 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 4610 write_mhpmcounterh }, 4611 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 4612 write_mhpmcounterh }, 4613 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 4614 write_mhpmcounterh }, 4615 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 4616 write_mhpmcounterh }, 4617 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 4618 write_mhpmcounterh }, 4619 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 4620 write_mhpmcounterh }, 4621 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 4622 write_mhpmcounterh }, 4623 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 4624 write_mhpmcounterh }, 4625 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 4626 write_mhpmcounterh }, 4627 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 4628 write_mhpmcounterh }, 4629 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 4630 write_mhpmcounterh }, 4631 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 4632 write_mhpmcounterh }, 4633 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 4634 write_mhpmcounterh }, 4635 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 4636 write_mhpmcounterh }, 4637 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 4638 write_mhpmcounterh }, 4639 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 4640 write_mhpmcounterh }, 4641 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 4642 write_mhpmcounterh }, 4643 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 4644 write_mhpmcounterh }, 4645 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 4646 write_mhpmcounterh }, 4647 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 4648 write_mhpmcounterh }, 4649 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 4650 write_mhpmcounterh }, 4651 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 4652 write_mhpmcounterh }, 4653 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 4654 write_mhpmcounterh }, 4655 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 4656 write_mhpmcounterh }, 4657 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 4658 write_mhpmcounterh }, 4659 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 4660 write_mhpmcounterh }, 4661 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 4662 .min_priv_ver = PRIV_VERSION_1_12_0 }, 4663 4664 #endif /* !CONFIG_USER_ONLY */ 4665 }; 4666