xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision f1966390)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "pmu.h"
25 #include "exec/exec-all.h"
26 #include "instmap.h"
27 #include "tcg/tcg-op.h"
28 #include "trace.h"
29 #include "semihosting/common-semi.h"
30 #include "sysemu/cpu-timers.h"
31 #include "cpu_bits.h"
32 #include "debug.h"
33 
34 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
35 {
36 #ifdef CONFIG_USER_ONLY
37     return 0;
38 #else
39     return env->priv;
40 #endif
41 }
42 
43 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
44                           target_ulong *cs_base, uint32_t *pflags)
45 {
46     CPUState *cs = env_cpu(env);
47     RISCVCPU *cpu = RISCV_CPU(cs);
48 
49     uint32_t flags = 0;
50 
51     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
52     *cs_base = 0;
53 
54     if (cpu->cfg.ext_zve32f) {
55         /*
56          * If env->vl equals to VLMAX, we can use generic vector operation
57          * expanders (GVEC) to accerlate the vector operations.
58          * However, as LMUL could be a fractional number. The maximum
59          * vector size can be operated might be less than 8 bytes,
60          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
61          * only when maxsz >= 8 bytes.
62          */
63         uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
64         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
65         uint32_t maxsz = vlmax << sew;
66         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
67                            (maxsz >= 8);
68         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
69         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
70         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
71                            FIELD_EX64(env->vtype, VTYPE, VLMUL));
72         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
73         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
74                            FIELD_EX64(env->vtype, VTYPE, VTA));
75         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
76                            FIELD_EX64(env->vtype, VTYPE, VMA));
77     } else {
78         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
79     }
80 
81 #ifdef CONFIG_USER_ONLY
82     flags |= TB_FLAGS_MSTATUS_FS;
83     flags |= TB_FLAGS_MSTATUS_VS;
84 #else
85     flags |= cpu_mmu_index(env, 0);
86     if (riscv_cpu_fp_enabled(env)) {
87         flags |= env->mstatus & MSTATUS_FS;
88     }
89 
90     if (riscv_cpu_vector_enabled(env)) {
91         flags |= env->mstatus & MSTATUS_VS;
92     }
93 
94     if (riscv_has_ext(env, RVH)) {
95         if (env->priv == PRV_M ||
96             (env->priv == PRV_S && !env->virt_enabled) ||
97             (env->priv == PRV_U && !env->virt_enabled &&
98              get_field(env->hstatus, HSTATUS_HU))) {
99             flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
100         }
101 
102         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
103                            get_field(env->mstatus_hs, MSTATUS_FS));
104 
105         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
106                            get_field(env->mstatus_hs, MSTATUS_VS));
107         flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, env->virt_enabled);
108     }
109     if (cpu->cfg.debug && !icount_enabled()) {
110         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
111     }
112 #endif
113 
114     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
115     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
116         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
117     }
118     if (env->cur_pmbase != 0) {
119         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
120     }
121 
122     *pflags = flags;
123 }
124 
125 void riscv_cpu_update_mask(CPURISCVState *env)
126 {
127     target_ulong mask = -1, base = 0;
128     /*
129      * TODO: Current RVJ spec does not specify
130      * how the extension interacts with XLEN.
131      */
132 #ifndef CONFIG_USER_ONLY
133     if (riscv_has_ext(env, RVJ)) {
134         switch (env->priv) {
135         case PRV_M:
136             if (env->mmte & M_PM_ENABLE) {
137                 mask = env->mpmmask;
138                 base = env->mpmbase;
139             }
140             break;
141         case PRV_S:
142             if (env->mmte & S_PM_ENABLE) {
143                 mask = env->spmmask;
144                 base = env->spmbase;
145             }
146             break;
147         case PRV_U:
148             if (env->mmte & U_PM_ENABLE) {
149                 mask = env->upmmask;
150                 base = env->upmbase;
151             }
152             break;
153         default:
154             g_assert_not_reached();
155         }
156     }
157 #endif
158     if (env->xl == MXL_RV32) {
159         env->cur_pmmask = mask & UINT32_MAX;
160         env->cur_pmbase = base & UINT32_MAX;
161     } else {
162         env->cur_pmmask = mask;
163         env->cur_pmbase = base;
164     }
165 }
166 
167 #ifndef CONFIG_USER_ONLY
168 
169 /*
170  * The HS-mode is allowed to configure priority only for the
171  * following VS-mode local interrupts:
172  *
173  * 0  (Reserved interrupt, reads as zero)
174  * 1  Supervisor software interrupt
175  * 4  (Reserved interrupt, reads as zero)
176  * 5  Supervisor timer interrupt
177  * 8  (Reserved interrupt, reads as zero)
178  * 13 (Reserved interrupt)
179  * 14 "
180  * 15 "
181  * 16 "
182  * 17 "
183  * 18 "
184  * 19 "
185  * 20 "
186  * 21 "
187  * 22 "
188  * 23 "
189  */
190 
191 static const int hviprio_index2irq[] = {
192     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
193 static const int hviprio_index2rdzero[] = {
194     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
195 
196 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
197 {
198     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
199         return -EINVAL;
200     }
201 
202     if (out_irq) {
203         *out_irq = hviprio_index2irq[index];
204     }
205 
206     if (out_rdzero) {
207         *out_rdzero = hviprio_index2rdzero[index];
208     }
209 
210     return 0;
211 }
212 
213 /*
214  * Default priorities of local interrupts are defined in the
215  * RISC-V Advanced Interrupt Architecture specification.
216  *
217  * ----------------------------------------------------------------
218  *  Default  |
219  *  Priority | Major Interrupt Numbers
220  * ----------------------------------------------------------------
221  *  Highest  | 47, 23, 46, 45, 22, 44,
222  *           | 43, 21, 42, 41, 20, 40
223  *           |
224  *           | 11 (0b),  3 (03),  7 (07)
225  *           |  9 (09),  1 (01),  5 (05)
226  *           | 12 (0c)
227  *           | 10 (0a),  2 (02),  6 (06)
228  *           |
229  *           | 39, 19, 38, 37, 18, 36,
230  *  Lowest   | 35, 17, 34, 33, 16, 32
231  * ----------------------------------------------------------------
232  */
233 static const uint8_t default_iprio[64] = {
234     /* Custom interrupts 48 to 63 */
235     [63] = IPRIO_MMAXIPRIO,
236     [62] = IPRIO_MMAXIPRIO,
237     [61] = IPRIO_MMAXIPRIO,
238     [60] = IPRIO_MMAXIPRIO,
239     [59] = IPRIO_MMAXIPRIO,
240     [58] = IPRIO_MMAXIPRIO,
241     [57] = IPRIO_MMAXIPRIO,
242     [56] = IPRIO_MMAXIPRIO,
243     [55] = IPRIO_MMAXIPRIO,
244     [54] = IPRIO_MMAXIPRIO,
245     [53] = IPRIO_MMAXIPRIO,
246     [52] = IPRIO_MMAXIPRIO,
247     [51] = IPRIO_MMAXIPRIO,
248     [50] = IPRIO_MMAXIPRIO,
249     [49] = IPRIO_MMAXIPRIO,
250     [48] = IPRIO_MMAXIPRIO,
251 
252     /* Custom interrupts 24 to 31 */
253     [31] = IPRIO_MMAXIPRIO,
254     [30] = IPRIO_MMAXIPRIO,
255     [29] = IPRIO_MMAXIPRIO,
256     [28] = IPRIO_MMAXIPRIO,
257     [27] = IPRIO_MMAXIPRIO,
258     [26] = IPRIO_MMAXIPRIO,
259     [25] = IPRIO_MMAXIPRIO,
260     [24] = IPRIO_MMAXIPRIO,
261 
262     [47] = IPRIO_DEFAULT_UPPER,
263     [23] = IPRIO_DEFAULT_UPPER + 1,
264     [46] = IPRIO_DEFAULT_UPPER + 2,
265     [45] = IPRIO_DEFAULT_UPPER + 3,
266     [22] = IPRIO_DEFAULT_UPPER + 4,
267     [44] = IPRIO_DEFAULT_UPPER + 5,
268 
269     [43] = IPRIO_DEFAULT_UPPER + 6,
270     [21] = IPRIO_DEFAULT_UPPER + 7,
271     [42] = IPRIO_DEFAULT_UPPER + 8,
272     [41] = IPRIO_DEFAULT_UPPER + 9,
273     [20] = IPRIO_DEFAULT_UPPER + 10,
274     [40] = IPRIO_DEFAULT_UPPER + 11,
275 
276     [11] = IPRIO_DEFAULT_M,
277     [3]  = IPRIO_DEFAULT_M + 1,
278     [7]  = IPRIO_DEFAULT_M + 2,
279 
280     [9]  = IPRIO_DEFAULT_S,
281     [1]  = IPRIO_DEFAULT_S + 1,
282     [5]  = IPRIO_DEFAULT_S + 2,
283 
284     [12] = IPRIO_DEFAULT_SGEXT,
285 
286     [10] = IPRIO_DEFAULT_VS,
287     [2]  = IPRIO_DEFAULT_VS + 1,
288     [6]  = IPRIO_DEFAULT_VS + 2,
289 
290     [39] = IPRIO_DEFAULT_LOWER,
291     [19] = IPRIO_DEFAULT_LOWER + 1,
292     [38] = IPRIO_DEFAULT_LOWER + 2,
293     [37] = IPRIO_DEFAULT_LOWER + 3,
294     [18] = IPRIO_DEFAULT_LOWER + 4,
295     [36] = IPRIO_DEFAULT_LOWER + 5,
296 
297     [35] = IPRIO_DEFAULT_LOWER + 6,
298     [17] = IPRIO_DEFAULT_LOWER + 7,
299     [34] = IPRIO_DEFAULT_LOWER + 8,
300     [33] = IPRIO_DEFAULT_LOWER + 9,
301     [16] = IPRIO_DEFAULT_LOWER + 10,
302     [32] = IPRIO_DEFAULT_LOWER + 11,
303 };
304 
305 uint8_t riscv_cpu_default_priority(int irq)
306 {
307     if (irq < 0 || irq > 63) {
308         return IPRIO_MMAXIPRIO;
309     }
310 
311     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
312 };
313 
314 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
315                                     int extirq, unsigned int extirq_def_prio,
316                                     uint64_t pending, uint8_t *iprio)
317 {
318     int irq, best_irq = RISCV_EXCP_NONE;
319     unsigned int prio, best_prio = UINT_MAX;
320 
321     if (!pending) {
322         return RISCV_EXCP_NONE;
323     }
324 
325     irq = ctz64(pending);
326     if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
327                                   riscv_cpu_cfg(env)->ext_ssaia)) {
328         return irq;
329     }
330 
331     pending = pending >> irq;
332     while (pending) {
333         prio = iprio[irq];
334         if (!prio) {
335             if (irq == extirq) {
336                 prio = extirq_def_prio;
337             } else {
338                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
339                        1 : IPRIO_MMAXIPRIO;
340             }
341         }
342         if ((pending & 0x1) && (prio <= best_prio)) {
343             best_irq = irq;
344             best_prio = prio;
345         }
346         irq++;
347         pending = pending >> 1;
348     }
349 
350     return best_irq;
351 }
352 
353 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
354 {
355     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
356     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
357     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
358 
359     return (env->mip | vsgein | vstip) & env->mie;
360 }
361 
362 int riscv_cpu_mirq_pending(CPURISCVState *env)
363 {
364     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
365                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
366 
367     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
368                                     irqs, env->miprio);
369 }
370 
371 int riscv_cpu_sirq_pending(CPURISCVState *env)
372 {
373     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
374                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
375 
376     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
377                                     irqs, env->siprio);
378 }
379 
380 int riscv_cpu_vsirq_pending(CPURISCVState *env)
381 {
382     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
383                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
384 
385     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
386                                     irqs >> 1, env->hviprio);
387 }
388 
389 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
390 {
391     int virq;
392     uint64_t irqs, pending, mie, hsie, vsie;
393 
394     /* Determine interrupt enable state of all privilege modes */
395     if (env->virt_enabled) {
396         mie = 1;
397         hsie = 1;
398         vsie = (env->priv < PRV_S) ||
399                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
400     } else {
401         mie = (env->priv < PRV_M) ||
402               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
403         hsie = (env->priv < PRV_S) ||
404                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
405         vsie = 0;
406     }
407 
408     /* Determine all pending interrupts */
409     pending = riscv_cpu_all_pending(env);
410 
411     /* Check M-mode interrupts */
412     irqs = pending & ~env->mideleg & -mie;
413     if (irqs) {
414         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
415                                         irqs, env->miprio);
416     }
417 
418     /* Check HS-mode interrupts */
419     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
420     if (irqs) {
421         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
422                                         irqs, env->siprio);
423     }
424 
425     /* Check VS-mode interrupts */
426     irqs = pending & env->mideleg & env->hideleg & -vsie;
427     if (irqs) {
428         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
429                                         irqs >> 1, env->hviprio);
430         return (virq <= 0) ? virq : virq + 1;
431     }
432 
433     /* Indicate no pending interrupt */
434     return RISCV_EXCP_NONE;
435 }
436 
437 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
438 {
439     if (interrupt_request & CPU_INTERRUPT_HARD) {
440         RISCVCPU *cpu = RISCV_CPU(cs);
441         CPURISCVState *env = &cpu->env;
442         int interruptno = riscv_cpu_local_irq_pending(env);
443         if (interruptno >= 0) {
444             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
445             riscv_cpu_do_interrupt(cs);
446             return true;
447         }
448     }
449     return false;
450 }
451 
452 /* Return true is floating point support is currently enabled */
453 bool riscv_cpu_fp_enabled(CPURISCVState *env)
454 {
455     if (env->mstatus & MSTATUS_FS) {
456         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
457             return false;
458         }
459         return true;
460     }
461 
462     return false;
463 }
464 
465 /* Return true is vector support is currently enabled */
466 bool riscv_cpu_vector_enabled(CPURISCVState *env)
467 {
468     if (env->mstatus & MSTATUS_VS) {
469         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
470             return false;
471         }
472         return true;
473     }
474 
475     return false;
476 }
477 
478 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
479 {
480     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
481                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
482                             MSTATUS64_UXL | MSTATUS_VS;
483 
484     if (riscv_has_ext(env, RVF)) {
485         mstatus_mask |= MSTATUS_FS;
486     }
487     bool current_virt = env->virt_enabled;
488 
489     g_assert(riscv_has_ext(env, RVH));
490 
491     if (current_virt) {
492         /* Current V=1 and we are about to change to V=0 */
493         env->vsstatus = env->mstatus & mstatus_mask;
494         env->mstatus &= ~mstatus_mask;
495         env->mstatus |= env->mstatus_hs;
496 
497         env->vstvec = env->stvec;
498         env->stvec = env->stvec_hs;
499 
500         env->vsscratch = env->sscratch;
501         env->sscratch = env->sscratch_hs;
502 
503         env->vsepc = env->sepc;
504         env->sepc = env->sepc_hs;
505 
506         env->vscause = env->scause;
507         env->scause = env->scause_hs;
508 
509         env->vstval = env->stval;
510         env->stval = env->stval_hs;
511 
512         env->vsatp = env->satp;
513         env->satp = env->satp_hs;
514     } else {
515         /* Current V=0 and we are about to change to V=1 */
516         env->mstatus_hs = env->mstatus & mstatus_mask;
517         env->mstatus &= ~mstatus_mask;
518         env->mstatus |= env->vsstatus;
519 
520         env->stvec_hs = env->stvec;
521         env->stvec = env->vstvec;
522 
523         env->sscratch_hs = env->sscratch;
524         env->sscratch = env->vsscratch;
525 
526         env->sepc_hs = env->sepc;
527         env->sepc = env->vsepc;
528 
529         env->scause_hs = env->scause;
530         env->scause = env->vscause;
531 
532         env->stval_hs = env->stval;
533         env->stval = env->vstval;
534 
535         env->satp_hs = env->satp;
536         env->satp = env->vsatp;
537     }
538 }
539 
540 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
541 {
542     if (!riscv_has_ext(env, RVH)) {
543         return 0;
544     }
545 
546     return env->geilen;
547 }
548 
549 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
550 {
551     if (!riscv_has_ext(env, RVH)) {
552         return;
553     }
554 
555     if (geilen > (TARGET_LONG_BITS - 1)) {
556         return;
557     }
558 
559     env->geilen = geilen;
560 }
561 
562 /* This function can only be called to set virt when RVH is enabled */
563 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
564 {
565     /* Flush the TLB on all virt mode changes. */
566     if (env->virt_enabled != enable) {
567         tlb_flush(env_cpu(env));
568     }
569 
570     env->virt_enabled = enable;
571 
572     if (enable) {
573         /*
574          * The guest external interrupts from an interrupt controller are
575          * delivered only when the Guest/VM is running (i.e. V=1). This means
576          * any guest external interrupt which is triggered while the Guest/VM
577          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
578          * with sluggish response to serial console input and other I/O events.
579          *
580          * To solve this, we check and inject interrupt after setting V=1.
581          */
582         riscv_cpu_update_mip(env, 0, 0);
583     }
584 }
585 
586 bool riscv_cpu_two_stage_lookup(int mmu_idx)
587 {
588     return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
589 }
590 
591 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
592 {
593     CPURISCVState *env = &cpu->env;
594     if (env->miclaim & interrupts) {
595         return -1;
596     } else {
597         env->miclaim |= interrupts;
598         return 0;
599     }
600 }
601 
602 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
603                               uint64_t value)
604 {
605     CPUState *cs = env_cpu(env);
606     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
607 
608     if (env->virt_enabled) {
609         gein = get_field(env->hstatus, HSTATUS_VGEIN);
610         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
611     }
612 
613     vstip = env->vstime_irq ? MIP_VSTIP : 0;
614 
615     QEMU_IOTHREAD_LOCK_GUARD();
616 
617     env->mip = (env->mip & ~mask) | (value & mask);
618 
619     if (env->mip | vsgein | vstip) {
620         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
621     } else {
622         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
623     }
624 
625     return old;
626 }
627 
628 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
629                              void *arg)
630 {
631     env->rdtime_fn = fn;
632     env->rdtime_fn_arg = arg;
633 }
634 
635 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
636                                    int (*rmw_fn)(void *arg,
637                                                  target_ulong reg,
638                                                  target_ulong *val,
639                                                  target_ulong new_val,
640                                                  target_ulong write_mask),
641                                    void *rmw_fn_arg)
642 {
643     if (priv <= PRV_M) {
644         env->aia_ireg_rmw_fn[priv] = rmw_fn;
645         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
646     }
647 }
648 
649 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
650 {
651     g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
652 
653     if (icount_enabled() && newpriv != env->priv) {
654         riscv_itrigger_update_priv(env);
655     }
656     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
657     env->priv = newpriv;
658     env->xl = cpu_recompute_xl(env);
659     riscv_cpu_update_mask(env);
660 
661     /*
662      * Clear the load reservation - otherwise a reservation placed in one
663      * context/process can be used by another, resulting in an SC succeeding
664      * incorrectly. Version 2.2 of the ISA specification explicitly requires
665      * this behaviour, while later revisions say that the kernel "should" use
666      * an SC instruction to force the yielding of a load reservation on a
667      * preemptive context switch. As a result, do both.
668      */
669     env->load_res = -1;
670 }
671 
672 /*
673  * get_physical_address_pmp - check PMP permission for this physical address
674  *
675  * Match the PMP region and check permission for this physical address and it's
676  * TLB page. Returns 0 if the permission checking was successful
677  *
678  * @env: CPURISCVState
679  * @prot: The returned protection attributes
680  * @tlb_size: TLB page size containing addr. It could be modified after PMP
681  *            permission checking. NULL if not set TLB page for addr.
682  * @addr: The physical address to be checked permission
683  * @access_type: The type of MMU access
684  * @mode: Indicates current privilege level.
685  */
686 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
687                                     target_ulong *tlb_size, hwaddr addr,
688                                     int size, MMUAccessType access_type,
689                                     int mode)
690 {
691     pmp_priv_t pmp_priv;
692     int pmp_index = -1;
693 
694     if (!riscv_cpu_cfg(env)->pmp) {
695         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
696         return TRANSLATE_SUCCESS;
697     }
698 
699     pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
700                                    &pmp_priv, mode);
701     if (pmp_index < 0) {
702         *prot = 0;
703         return TRANSLATE_PMP_FAIL;
704     }
705 
706     *prot = pmp_priv_to_page_prot(pmp_priv);
707     if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
708         target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
709         target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
710 
711         *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
712     }
713 
714     return TRANSLATE_SUCCESS;
715 }
716 
717 /*
718  * get_physical_address - get the physical address for this virtual address
719  *
720  * Do a page table walk to obtain the physical address corresponding to a
721  * virtual address. Returns 0 if the translation was successful
722  *
723  * Adapted from Spike's mmu_t::translate and mmu_t::walk
724  *
725  * @env: CPURISCVState
726  * @physical: This will be set to the calculated physical address
727  * @prot: The returned protection attributes
728  * @addr: The virtual address or guest physical address to be translated
729  * @fault_pte_addr: If not NULL, this will be set to fault pte address
730  *                  when a error occurs on pte address translation.
731  *                  This will already be shifted to match htval.
732  * @access_type: The type of MMU access
733  * @mmu_idx: Indicates current privilege level
734  * @first_stage: Are we in first stage translation?
735  *               Second stage is used for hypervisor guest translation
736  * @two_stage: Are we going to perform two stage translation
737  * @is_debug: Is this access from a debugger or the monitor?
738  */
739 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
740                                 int *prot, vaddr addr,
741                                 target_ulong *fault_pte_addr,
742                                 int access_type, int mmu_idx,
743                                 bool first_stage, bool two_stage,
744                                 bool is_debug)
745 {
746     /*
747      * NOTE: the env->pc value visible here will not be
748      * correct, but the value visible to the exception handler
749      * (riscv_cpu_do_interrupt) is correct
750      */
751     MemTxResult res;
752     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
753     int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
754     bool use_background = false;
755     hwaddr ppn;
756     int napot_bits = 0;
757     target_ulong napot_mask;
758 
759     /*
760      * Check if we should use the background registers for the two
761      * stage translation. We don't need to check if we actually need
762      * two stage translation as that happened before this function
763      * was called. Background registers will be used if the guest has
764      * forced a two stage translation to be on (in HS or M mode).
765      */
766     if (!env->virt_enabled && two_stage) {
767         use_background = true;
768     }
769 
770     /*
771      * MPRV does not affect the virtual-machine load/store
772      * instructions, HLV, HLVX, and HSV.
773      */
774     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
775         mode = get_field(env->hstatus, HSTATUS_SPVP);
776     } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
777         if (get_field(env->mstatus, MSTATUS_MPRV)) {
778             mode = get_field(env->mstatus, MSTATUS_MPP);
779         }
780     }
781 
782     if (first_stage == false) {
783         /*
784          * We are in stage 2 translation, this is similar to stage 1.
785          * Stage 2 is always taken as U-mode
786          */
787         mode = PRV_U;
788     }
789 
790     if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
791         *physical = addr;
792         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
793         return TRANSLATE_SUCCESS;
794     }
795 
796     *prot = 0;
797 
798     hwaddr base;
799     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
800 
801     if (first_stage == true) {
802         mxr = get_field(env->mstatus, MSTATUS_MXR);
803     } else {
804         mxr = get_field(env->vsstatus, MSTATUS_MXR);
805     }
806 
807     if (first_stage == true) {
808         if (use_background) {
809             if (riscv_cpu_mxl(env) == MXL_RV32) {
810                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
811                 vm = get_field(env->vsatp, SATP32_MODE);
812             } else {
813                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
814                 vm = get_field(env->vsatp, SATP64_MODE);
815             }
816         } else {
817             if (riscv_cpu_mxl(env) == MXL_RV32) {
818                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
819                 vm = get_field(env->satp, SATP32_MODE);
820             } else {
821                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
822                 vm = get_field(env->satp, SATP64_MODE);
823             }
824         }
825         widened = 0;
826     } else {
827         if (riscv_cpu_mxl(env) == MXL_RV32) {
828             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
829             vm = get_field(env->hgatp, SATP32_MODE);
830         } else {
831             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
832             vm = get_field(env->hgatp, SATP64_MODE);
833         }
834         widened = 2;
835     }
836     /* status.SUM will be ignored if execute on background */
837     sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
838     switch (vm) {
839     case VM_1_10_SV32:
840       levels = 2; ptidxbits = 10; ptesize = 4; break;
841     case VM_1_10_SV39:
842       levels = 3; ptidxbits = 9; ptesize = 8; break;
843     case VM_1_10_SV48:
844       levels = 4; ptidxbits = 9; ptesize = 8; break;
845     case VM_1_10_SV57:
846       levels = 5; ptidxbits = 9; ptesize = 8; break;
847     case VM_1_10_MBARE:
848         *physical = addr;
849         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
850         return TRANSLATE_SUCCESS;
851     default:
852       g_assert_not_reached();
853     }
854 
855     CPUState *cs = env_cpu(env);
856     int va_bits = PGSHIFT + levels * ptidxbits + widened;
857     target_ulong mask, masked_msbs;
858 
859     if (TARGET_LONG_BITS > (va_bits - 1)) {
860         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
861     } else {
862         mask = 0;
863     }
864     masked_msbs = (addr >> (va_bits - 1)) & mask;
865 
866     if (masked_msbs != 0 && masked_msbs != mask) {
867         return TRANSLATE_FAIL;
868     }
869 
870     int ptshift = (levels - 1) * ptidxbits;
871     int i;
872 
873 #if !TCG_OVERSIZED_GUEST
874 restart:
875 #endif
876     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
877         target_ulong idx;
878         if (i == 0) {
879             idx = (addr >> (PGSHIFT + ptshift)) &
880                            ((1 << (ptidxbits + widened)) - 1);
881         } else {
882             idx = (addr >> (PGSHIFT + ptshift)) &
883                            ((1 << ptidxbits) - 1);
884         }
885 
886         /* check that physical address of PTE is legal */
887         hwaddr pte_addr;
888 
889         if (two_stage && first_stage) {
890             int vbase_prot;
891             hwaddr vbase;
892 
893             /* Do the second stage translation on the base PTE address. */
894             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
895                                                  base, NULL, MMU_DATA_LOAD,
896                                                  mmu_idx, false, true,
897                                                  is_debug);
898 
899             if (vbase_ret != TRANSLATE_SUCCESS) {
900                 if (fault_pte_addr) {
901                     *fault_pte_addr = (base + idx * ptesize) >> 2;
902                 }
903                 return TRANSLATE_G_STAGE_FAIL;
904             }
905 
906             pte_addr = vbase + idx * ptesize;
907         } else {
908             pte_addr = base + idx * ptesize;
909         }
910 
911         int pmp_prot;
912         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
913                                                sizeof(target_ulong),
914                                                MMU_DATA_LOAD, PRV_S);
915         if (pmp_ret != TRANSLATE_SUCCESS) {
916             return TRANSLATE_PMP_FAIL;
917         }
918 
919         target_ulong pte;
920         if (riscv_cpu_mxl(env) == MXL_RV32) {
921             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
922         } else {
923             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
924         }
925 
926         if (res != MEMTX_OK) {
927             return TRANSLATE_FAIL;
928         }
929 
930         bool pbmte = env->menvcfg & MENVCFG_PBMTE;
931         bool hade = env->menvcfg & MENVCFG_HADE;
932 
933         if (first_stage && two_stage && env->virt_enabled) {
934             pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
935             hade = hade && (env->henvcfg & HENVCFG_HADE);
936         }
937 
938         if (riscv_cpu_sxl(env) == MXL_RV32) {
939             ppn = pte >> PTE_PPN_SHIFT;
940         } else if (pbmte || riscv_cpu_cfg(env)->ext_svnapot) {
941             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
942         } else {
943             ppn = pte >> PTE_PPN_SHIFT;
944             if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
945                 return TRANSLATE_FAIL;
946             }
947         }
948 
949         if (!(pte & PTE_V)) {
950             /* Invalid PTE */
951             return TRANSLATE_FAIL;
952         } else if (!pbmte && (pte & PTE_PBMT)) {
953             return TRANSLATE_FAIL;
954         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
955             /* Inner PTE, continue walking */
956             if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
957                 return TRANSLATE_FAIL;
958             }
959             base = ppn << PGSHIFT;
960         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
961             /* Reserved leaf PTE flags: PTE_W */
962             return TRANSLATE_FAIL;
963         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
964             /* Reserved leaf PTE flags: PTE_W + PTE_X */
965             return TRANSLATE_FAIL;
966         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
967                    (!sum || access_type == MMU_INST_FETCH))) {
968             /* User PTE flags when not U mode and mstatus.SUM is not set,
969                or the access type is an instruction fetch */
970             return TRANSLATE_FAIL;
971         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
972             /* Supervisor PTE flags when not S mode */
973             return TRANSLATE_FAIL;
974         } else if (ppn & ((1ULL << ptshift) - 1)) {
975             /* Misaligned PPN */
976             return TRANSLATE_FAIL;
977         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
978                    ((pte & PTE_X) && mxr))) {
979             /* Read access check failed */
980             return TRANSLATE_FAIL;
981         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
982             /* Write access check failed */
983             return TRANSLATE_FAIL;
984         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
985             /* Fetch access check failed */
986             return TRANSLATE_FAIL;
987         } else {
988             /* if necessary, set accessed and dirty bits. */
989             target_ulong updated_pte = pte | PTE_A |
990                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
991 
992             /* Page table updates need to be atomic with MTTCG enabled */
993             if (updated_pte != pte) {
994                 if (!hade) {
995                     return TRANSLATE_FAIL;
996                 }
997 
998                 /*
999                  * - if accessed or dirty bits need updating, and the PTE is
1000                  *   in RAM, then we do so atomically with a compare and swap.
1001                  * - if the PTE is in IO space or ROM, then it can't be updated
1002                  *   and we return TRANSLATE_FAIL.
1003                  * - if the PTE changed by the time we went to update it, then
1004                  *   it is no longer valid and we must re-walk the page table.
1005                  */
1006                 MemoryRegion *mr;
1007                 hwaddr l = sizeof(target_ulong), addr1;
1008                 mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1009                                              false, MEMTXATTRS_UNSPECIFIED);
1010                 if (memory_region_is_ram(mr)) {
1011                     target_ulong *pte_pa =
1012                         qemu_map_ram_ptr(mr->ram_block, addr1);
1013 #if TCG_OVERSIZED_GUEST
1014                     /*
1015                      * MTTCG is not enabled on oversized TCG guests so
1016                      * page table updates do not need to be atomic
1017                      */
1018                     *pte_pa = pte = updated_pte;
1019 #else
1020                     target_ulong old_pte =
1021                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
1022                     if (old_pte != pte) {
1023                         goto restart;
1024                     } else {
1025                         pte = updated_pte;
1026                     }
1027 #endif
1028                 } else {
1029                     /*
1030                      * misconfigured PTE in ROM (AD bits are not preset) or
1031                      * PTE is in IO space and can't be updated atomically
1032                      */
1033                     return TRANSLATE_FAIL;
1034                 }
1035             }
1036 
1037             /*
1038              * for superpage mappings, make a fake leaf PTE for the TLB's
1039              * benefit.
1040              */
1041             target_ulong vpn = addr >> PGSHIFT;
1042 
1043             if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1044                 napot_bits = ctzl(ppn) + 1;
1045                 if ((i != (levels - 1)) || (napot_bits != 4)) {
1046                     return TRANSLATE_FAIL;
1047                 }
1048             }
1049 
1050             napot_mask = (1 << napot_bits) - 1;
1051             *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1052                           (vpn & (((target_ulong)1 << ptshift) - 1))
1053                          ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1054 
1055             /* set permissions on the TLB entry */
1056             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1057                 *prot |= PAGE_READ;
1058             }
1059             if (pte & PTE_X) {
1060                 *prot |= PAGE_EXEC;
1061             }
1062             /*
1063              * add write permission on stores or if the page is already dirty,
1064              * so that we TLB miss on later writes to update the dirty bit
1065              */
1066             if ((pte & PTE_W) &&
1067                 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1068                 *prot |= PAGE_WRITE;
1069             }
1070             return TRANSLATE_SUCCESS;
1071         }
1072     }
1073     return TRANSLATE_FAIL;
1074 }
1075 
1076 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1077                                 MMUAccessType access_type, bool pmp_violation,
1078                                 bool first_stage, bool two_stage,
1079                                 bool two_stage_indirect)
1080 {
1081     CPUState *cs = env_cpu(env);
1082     int page_fault_exceptions, vm;
1083     uint64_t stap_mode;
1084 
1085     if (riscv_cpu_mxl(env) == MXL_RV32) {
1086         stap_mode = SATP32_MODE;
1087     } else {
1088         stap_mode = SATP64_MODE;
1089     }
1090 
1091     if (first_stage) {
1092         vm = get_field(env->satp, stap_mode);
1093     } else {
1094         vm = get_field(env->hgatp, stap_mode);
1095     }
1096 
1097     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1098 
1099     switch (access_type) {
1100     case MMU_INST_FETCH:
1101         if (env->virt_enabled && !first_stage) {
1102             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1103         } else {
1104             cs->exception_index = page_fault_exceptions ?
1105                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1106         }
1107         break;
1108     case MMU_DATA_LOAD:
1109         if (two_stage && !first_stage) {
1110             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1111         } else {
1112             cs->exception_index = page_fault_exceptions ?
1113                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1114         }
1115         break;
1116     case MMU_DATA_STORE:
1117         if (two_stage && !first_stage) {
1118             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1119         } else {
1120             cs->exception_index = page_fault_exceptions ?
1121                 RISCV_EXCP_STORE_PAGE_FAULT :
1122                 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1123         }
1124         break;
1125     default:
1126         g_assert_not_reached();
1127     }
1128     env->badaddr = address;
1129     env->two_stage_lookup = two_stage;
1130     env->two_stage_indirect_lookup = two_stage_indirect;
1131 }
1132 
1133 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1134 {
1135     RISCVCPU *cpu = RISCV_CPU(cs);
1136     CPURISCVState *env = &cpu->env;
1137     hwaddr phys_addr;
1138     int prot;
1139     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1140 
1141     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1142                              true, env->virt_enabled, true)) {
1143         return -1;
1144     }
1145 
1146     if (env->virt_enabled) {
1147         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1148                                  0, mmu_idx, false, true, true)) {
1149             return -1;
1150         }
1151     }
1152 
1153     return phys_addr & TARGET_PAGE_MASK;
1154 }
1155 
1156 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1157                                      vaddr addr, unsigned size,
1158                                      MMUAccessType access_type,
1159                                      int mmu_idx, MemTxAttrs attrs,
1160                                      MemTxResult response, uintptr_t retaddr)
1161 {
1162     RISCVCPU *cpu = RISCV_CPU(cs);
1163     CPURISCVState *env = &cpu->env;
1164 
1165     if (access_type == MMU_DATA_STORE) {
1166         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1167     } else if (access_type == MMU_DATA_LOAD) {
1168         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1169     } else {
1170         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1171     }
1172 
1173     env->badaddr = addr;
1174     env->two_stage_lookup = env->virt_enabled ||
1175                             riscv_cpu_two_stage_lookup(mmu_idx);
1176     env->two_stage_indirect_lookup = false;
1177     cpu_loop_exit_restore(cs, retaddr);
1178 }
1179 
1180 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1181                                    MMUAccessType access_type, int mmu_idx,
1182                                    uintptr_t retaddr)
1183 {
1184     RISCVCPU *cpu = RISCV_CPU(cs);
1185     CPURISCVState *env = &cpu->env;
1186     switch (access_type) {
1187     case MMU_INST_FETCH:
1188         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1189         break;
1190     case MMU_DATA_LOAD:
1191         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1192         break;
1193     case MMU_DATA_STORE:
1194         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1195         break;
1196     default:
1197         g_assert_not_reached();
1198     }
1199     env->badaddr = addr;
1200     env->two_stage_lookup = env->virt_enabled ||
1201                             riscv_cpu_two_stage_lookup(mmu_idx);
1202     env->two_stage_indirect_lookup = false;
1203     cpu_loop_exit_restore(cs, retaddr);
1204 }
1205 
1206 
1207 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1208 {
1209     enum riscv_pmu_event_idx pmu_event_type;
1210 
1211     switch (access_type) {
1212     case MMU_INST_FETCH:
1213         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1214         break;
1215     case MMU_DATA_LOAD:
1216         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1217         break;
1218     case MMU_DATA_STORE:
1219         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1220         break;
1221     default:
1222         return;
1223     }
1224 
1225     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1226 }
1227 
1228 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1229                         MMUAccessType access_type, int mmu_idx,
1230                         bool probe, uintptr_t retaddr)
1231 {
1232     RISCVCPU *cpu = RISCV_CPU(cs);
1233     CPURISCVState *env = &cpu->env;
1234     vaddr im_address;
1235     hwaddr pa = 0;
1236     int prot, prot2, prot_pmp;
1237     bool pmp_violation = false;
1238     bool first_stage_error = true;
1239     bool two_stage_lookup = false;
1240     bool two_stage_indirect_error = false;
1241     int ret = TRANSLATE_FAIL;
1242     int mode = mmu_idx;
1243     /* default TLB page size */
1244     target_ulong tlb_size = TARGET_PAGE_SIZE;
1245 
1246     env->guest_phys_fault_addr = 0;
1247 
1248     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1249                   __func__, address, access_type, mmu_idx);
1250 
1251     /*
1252      * MPRV does not affect the virtual-machine load/store
1253      * instructions, HLV, HLVX, and HSV.
1254      */
1255     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1256         mode = get_field(env->hstatus, HSTATUS_SPVP);
1257     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1258                get_field(env->mstatus, MSTATUS_MPRV)) {
1259         mode = get_field(env->mstatus, MSTATUS_MPP);
1260         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1261             two_stage_lookup = true;
1262         }
1263     }
1264 
1265     pmu_tlb_fill_incr_ctr(cpu, access_type);
1266     if (env->virt_enabled ||
1267         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1268          access_type != MMU_INST_FETCH)) {
1269         /* Two stage lookup */
1270         ret = get_physical_address(env, &pa, &prot, address,
1271                                    &env->guest_phys_fault_addr, access_type,
1272                                    mmu_idx, true, true, false);
1273 
1274         /*
1275          * A G-stage exception may be triggered during two state lookup.
1276          * And the env->guest_phys_fault_addr has already been set in
1277          * get_physical_address().
1278          */
1279         if (ret == TRANSLATE_G_STAGE_FAIL) {
1280             first_stage_error = false;
1281             two_stage_indirect_error = true;
1282             access_type = MMU_DATA_LOAD;
1283         }
1284 
1285         qemu_log_mask(CPU_LOG_MMU,
1286                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1287                       HWADDR_FMT_plx " prot %d\n",
1288                       __func__, address, ret, pa, prot);
1289 
1290         if (ret == TRANSLATE_SUCCESS) {
1291             /* Second stage lookup */
1292             im_address = pa;
1293 
1294             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1295                                        access_type, mmu_idx, false, true,
1296                                        false);
1297 
1298             qemu_log_mask(CPU_LOG_MMU,
1299                           "%s 2nd-stage address=%" VADDR_PRIx
1300                           " ret %d physical "
1301                           HWADDR_FMT_plx " prot %d\n",
1302                           __func__, im_address, ret, pa, prot2);
1303 
1304             prot &= prot2;
1305 
1306             if (ret == TRANSLATE_SUCCESS) {
1307                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1308                                                size, access_type, mode);
1309 
1310                 qemu_log_mask(CPU_LOG_MMU,
1311                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1312                               " %d tlb_size " TARGET_FMT_lu "\n",
1313                               __func__, pa, ret, prot_pmp, tlb_size);
1314 
1315                 prot &= prot_pmp;
1316             }
1317 
1318             if (ret != TRANSLATE_SUCCESS) {
1319                 /*
1320                  * Guest physical address translation failed, this is a HS
1321                  * level exception
1322                  */
1323                 first_stage_error = false;
1324                 env->guest_phys_fault_addr = (im_address |
1325                                               (address &
1326                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1327             }
1328         }
1329     } else {
1330         /* Single stage lookup */
1331         ret = get_physical_address(env, &pa, &prot, address, NULL,
1332                                    access_type, mmu_idx, true, false, false);
1333 
1334         qemu_log_mask(CPU_LOG_MMU,
1335                       "%s address=%" VADDR_PRIx " ret %d physical "
1336                       HWADDR_FMT_plx " prot %d\n",
1337                       __func__, address, ret, pa, prot);
1338 
1339         if (ret == TRANSLATE_SUCCESS) {
1340             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1341                                            size, access_type, mode);
1342 
1343             qemu_log_mask(CPU_LOG_MMU,
1344                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1345                           " %d tlb_size " TARGET_FMT_lu "\n",
1346                           __func__, pa, ret, prot_pmp, tlb_size);
1347 
1348             prot &= prot_pmp;
1349         }
1350     }
1351 
1352     if (ret == TRANSLATE_PMP_FAIL) {
1353         pmp_violation = true;
1354     }
1355 
1356     if (ret == TRANSLATE_SUCCESS) {
1357         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1358                      prot, mmu_idx, tlb_size);
1359         return true;
1360     } else if (probe) {
1361         return false;
1362     } else {
1363         raise_mmu_exception(env, address, access_type, pmp_violation,
1364                             first_stage_error,
1365                             env->virt_enabled ||
1366                                 riscv_cpu_two_stage_lookup(mmu_idx),
1367                             two_stage_indirect_error);
1368         cpu_loop_exit_restore(cs, retaddr);
1369     }
1370 
1371     return true;
1372 }
1373 
1374 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1375                                            target_ulong insn,
1376                                            target_ulong taddr)
1377 {
1378     target_ulong xinsn = 0;
1379     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1380 
1381     /*
1382      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1383      * be uncompressed. The Quadrant 1 of RVC instruction space need
1384      * not be transformed because these instructions won't generate
1385      * any load/store trap.
1386      */
1387 
1388     if ((insn & 0x3) != 0x3) {
1389         /* Transform 16bit instruction into 32bit instruction */
1390         switch (GET_C_OP(insn)) {
1391         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1392             switch (GET_C_FUNC(insn)) {
1393             case OPC_RISC_C_FUNC_FLD_LQ:
1394                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1395                     xinsn = OPC_RISC_FLD;
1396                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1397                     access_rs1 = GET_C_RS1S(insn);
1398                     access_imm = GET_C_LD_IMM(insn);
1399                     access_size = 8;
1400                 }
1401                 break;
1402             case OPC_RISC_C_FUNC_LW: /* C.LW */
1403                 xinsn = OPC_RISC_LW;
1404                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1405                 access_rs1 = GET_C_RS1S(insn);
1406                 access_imm = GET_C_LW_IMM(insn);
1407                 access_size = 4;
1408                 break;
1409             case OPC_RISC_C_FUNC_FLW_LD:
1410                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1411                     xinsn = OPC_RISC_FLW;
1412                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1413                     access_rs1 = GET_C_RS1S(insn);
1414                     access_imm = GET_C_LW_IMM(insn);
1415                     access_size = 4;
1416                 } else { /* C.LD (RV64/RV128) */
1417                     xinsn = OPC_RISC_LD;
1418                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1419                     access_rs1 = GET_C_RS1S(insn);
1420                     access_imm = GET_C_LD_IMM(insn);
1421                     access_size = 8;
1422                 }
1423                 break;
1424             case OPC_RISC_C_FUNC_FSD_SQ:
1425                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1426                     xinsn = OPC_RISC_FSD;
1427                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1428                     access_rs1 = GET_C_RS1S(insn);
1429                     access_imm = GET_C_SD_IMM(insn);
1430                     access_size = 8;
1431                 }
1432                 break;
1433             case OPC_RISC_C_FUNC_SW: /* C.SW */
1434                 xinsn = OPC_RISC_SW;
1435                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1436                 access_rs1 = GET_C_RS1S(insn);
1437                 access_imm = GET_C_SW_IMM(insn);
1438                 access_size = 4;
1439                 break;
1440             case OPC_RISC_C_FUNC_FSW_SD:
1441                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1442                     xinsn = OPC_RISC_FSW;
1443                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1444                     access_rs1 = GET_C_RS1S(insn);
1445                     access_imm = GET_C_SW_IMM(insn);
1446                     access_size = 4;
1447                 } else { /* C.SD (RV64/RV128) */
1448                     xinsn = OPC_RISC_SD;
1449                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1450                     access_rs1 = GET_C_RS1S(insn);
1451                     access_imm = GET_C_SD_IMM(insn);
1452                     access_size = 8;
1453                 }
1454                 break;
1455             default:
1456                 break;
1457             }
1458             break;
1459         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1460             switch (GET_C_FUNC(insn)) {
1461             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1462                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1463                     xinsn = OPC_RISC_FLD;
1464                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1465                     access_rs1 = 2;
1466                     access_imm = GET_C_LDSP_IMM(insn);
1467                     access_size = 8;
1468                 }
1469                 break;
1470             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1471                 xinsn = OPC_RISC_LW;
1472                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1473                 access_rs1 = 2;
1474                 access_imm = GET_C_LWSP_IMM(insn);
1475                 access_size = 4;
1476                 break;
1477             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1478                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1479                     xinsn = OPC_RISC_FLW;
1480                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1481                     access_rs1 = 2;
1482                     access_imm = GET_C_LWSP_IMM(insn);
1483                     access_size = 4;
1484                 } else { /* C.LDSP (RV64/RV128) */
1485                     xinsn = OPC_RISC_LD;
1486                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1487                     access_rs1 = 2;
1488                     access_imm = GET_C_LDSP_IMM(insn);
1489                     access_size = 8;
1490                 }
1491                 break;
1492             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1493                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1494                     xinsn = OPC_RISC_FSD;
1495                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1496                     access_rs1 = 2;
1497                     access_imm = GET_C_SDSP_IMM(insn);
1498                     access_size = 8;
1499                 }
1500                 break;
1501             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1502                 xinsn = OPC_RISC_SW;
1503                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1504                 access_rs1 = 2;
1505                 access_imm = GET_C_SWSP_IMM(insn);
1506                 access_size = 4;
1507                 break;
1508             case 7:
1509                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1510                     xinsn = OPC_RISC_FSW;
1511                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1512                     access_rs1 = 2;
1513                     access_imm = GET_C_SWSP_IMM(insn);
1514                     access_size = 4;
1515                 } else { /* C.SDSP (RV64/RV128) */
1516                     xinsn = OPC_RISC_SD;
1517                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1518                     access_rs1 = 2;
1519                     access_imm = GET_C_SDSP_IMM(insn);
1520                     access_size = 8;
1521                 }
1522                 break;
1523             default:
1524                 break;
1525             }
1526             break;
1527         default:
1528             break;
1529         }
1530 
1531         /*
1532          * Clear Bit1 of transformed instruction to indicate that
1533          * original insruction was a 16bit instruction
1534          */
1535         xinsn &= ~((target_ulong)0x2);
1536     } else {
1537         /* Transform 32bit (or wider) instructions */
1538         switch (MASK_OP_MAJOR(insn)) {
1539         case OPC_RISC_ATOMIC:
1540             xinsn = insn;
1541             access_rs1 = GET_RS1(insn);
1542             access_size = 1 << GET_FUNCT3(insn);
1543             break;
1544         case OPC_RISC_LOAD:
1545         case OPC_RISC_FP_LOAD:
1546             xinsn = SET_I_IMM(insn, 0);
1547             access_rs1 = GET_RS1(insn);
1548             access_imm = GET_IMM(insn);
1549             access_size = 1 << GET_FUNCT3(insn);
1550             break;
1551         case OPC_RISC_STORE:
1552         case OPC_RISC_FP_STORE:
1553             xinsn = SET_S_IMM(insn, 0);
1554             access_rs1 = GET_RS1(insn);
1555             access_imm = GET_STORE_IMM(insn);
1556             access_size = 1 << GET_FUNCT3(insn);
1557             break;
1558         case OPC_RISC_SYSTEM:
1559             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1560                 xinsn = insn;
1561                 access_rs1 = GET_RS1(insn);
1562                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1563                 access_size = 1 << access_size;
1564             }
1565             break;
1566         default:
1567             break;
1568         }
1569     }
1570 
1571     if (access_size) {
1572         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1573                                (access_size - 1));
1574     }
1575 
1576     return xinsn;
1577 }
1578 #endif /* !CONFIG_USER_ONLY */
1579 
1580 /*
1581  * Handle Traps
1582  *
1583  * Adapted from Spike's processor_t::take_trap.
1584  *
1585  */
1586 void riscv_cpu_do_interrupt(CPUState *cs)
1587 {
1588 #if !defined(CONFIG_USER_ONLY)
1589 
1590     RISCVCPU *cpu = RISCV_CPU(cs);
1591     CPURISCVState *env = &cpu->env;
1592     bool write_gva = false;
1593     uint64_t s;
1594 
1595     /*
1596      * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1597      * so we mask off the MSB and separate into trap type and cause.
1598      */
1599     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1600     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1601     uint64_t deleg = async ? env->mideleg : env->medeleg;
1602     target_ulong tval = 0;
1603     target_ulong tinst = 0;
1604     target_ulong htval = 0;
1605     target_ulong mtval2 = 0;
1606 
1607     if  (cause == RISCV_EXCP_SEMIHOST) {
1608         do_common_semihosting(cs);
1609         env->pc += 4;
1610         return;
1611     }
1612 
1613     if (!async) {
1614         /* set tval to badaddr for traps with address information */
1615         switch (cause) {
1616         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1617         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1618         case RISCV_EXCP_LOAD_ADDR_MIS:
1619         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1620         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1621         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1622         case RISCV_EXCP_LOAD_PAGE_FAULT:
1623         case RISCV_EXCP_STORE_PAGE_FAULT:
1624             write_gva = env->two_stage_lookup;
1625             tval = env->badaddr;
1626             if (env->two_stage_indirect_lookup) {
1627                 /*
1628                  * special pseudoinstruction for G-stage fault taken while
1629                  * doing VS-stage page table walk.
1630                  */
1631                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1632             } else {
1633                 /*
1634                  * The "Addr. Offset" field in transformed instruction is
1635                  * non-zero only for misaligned access.
1636                  */
1637                 tinst = riscv_transformed_insn(env, env->bins, tval);
1638             }
1639             break;
1640         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1641         case RISCV_EXCP_INST_ADDR_MIS:
1642         case RISCV_EXCP_INST_ACCESS_FAULT:
1643         case RISCV_EXCP_INST_PAGE_FAULT:
1644             write_gva = env->two_stage_lookup;
1645             tval = env->badaddr;
1646             if (env->two_stage_indirect_lookup) {
1647                 /*
1648                  * special pseudoinstruction for G-stage fault taken while
1649                  * doing VS-stage page table walk.
1650                  */
1651                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1652             }
1653             break;
1654         case RISCV_EXCP_ILLEGAL_INST:
1655         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1656             tval = env->bins;
1657             break;
1658         case RISCV_EXCP_BREAKPOINT:
1659             if (cs->watchpoint_hit) {
1660                 tval = cs->watchpoint_hit->hitaddr;
1661                 cs->watchpoint_hit = NULL;
1662             }
1663             break;
1664         default:
1665             break;
1666         }
1667         /* ecall is dispatched as one cause so translate based on mode */
1668         if (cause == RISCV_EXCP_U_ECALL) {
1669             assert(env->priv <= 3);
1670 
1671             if (env->priv == PRV_M) {
1672                 cause = RISCV_EXCP_M_ECALL;
1673             } else if (env->priv == PRV_S && env->virt_enabled) {
1674                 cause = RISCV_EXCP_VS_ECALL;
1675             } else if (env->priv == PRV_S && !env->virt_enabled) {
1676                 cause = RISCV_EXCP_S_ECALL;
1677             } else if (env->priv == PRV_U) {
1678                 cause = RISCV_EXCP_U_ECALL;
1679             }
1680         }
1681     }
1682 
1683     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1684                      riscv_cpu_get_trap_name(cause, async));
1685 
1686     qemu_log_mask(CPU_LOG_INT,
1687                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1688                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1689                   __func__, env->mhartid, async, cause, env->pc, tval,
1690                   riscv_cpu_get_trap_name(cause, async));
1691 
1692     if (env->priv <= PRV_S &&
1693             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1694         /* handle the trap in S-mode */
1695         if (riscv_has_ext(env, RVH)) {
1696             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1697 
1698             if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1699                 /* Trap to VS mode */
1700                 /*
1701                  * See if we need to adjust cause. Yes if its VS mode interrupt
1702                  * no if hypervisor has delegated one of hs mode's interrupt
1703                  */
1704                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1705                     cause == IRQ_VS_EXT) {
1706                     cause = cause - 1;
1707                 }
1708                 write_gva = false;
1709             } else if (env->virt_enabled) {
1710                 /* Trap into HS mode, from virt */
1711                 riscv_cpu_swap_hypervisor_regs(env);
1712                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1713                                          env->priv);
1714                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1715 
1716                 htval = env->guest_phys_fault_addr;
1717 
1718                 riscv_cpu_set_virt_enabled(env, 0);
1719             } else {
1720                 /* Trap into HS mode */
1721                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1722                 htval = env->guest_phys_fault_addr;
1723             }
1724             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1725         }
1726 
1727         s = env->mstatus;
1728         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1729         s = set_field(s, MSTATUS_SPP, env->priv);
1730         s = set_field(s, MSTATUS_SIE, 0);
1731         env->mstatus = s;
1732         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1733         env->sepc = env->pc;
1734         env->stval = tval;
1735         env->htval = htval;
1736         env->htinst = tinst;
1737         env->pc = (env->stvec >> 2 << 2) +
1738                   ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1739         riscv_cpu_set_mode(env, PRV_S);
1740     } else {
1741         /* handle the trap in M-mode */
1742         if (riscv_has_ext(env, RVH)) {
1743             if (env->virt_enabled) {
1744                 riscv_cpu_swap_hypervisor_regs(env);
1745             }
1746             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1747                                      env->virt_enabled);
1748             if (env->virt_enabled && tval) {
1749                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1750             }
1751 
1752             mtval2 = env->guest_phys_fault_addr;
1753 
1754             /* Trapping to M mode, virt is disabled */
1755             riscv_cpu_set_virt_enabled(env, 0);
1756         }
1757 
1758         s = env->mstatus;
1759         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1760         s = set_field(s, MSTATUS_MPP, env->priv);
1761         s = set_field(s, MSTATUS_MIE, 0);
1762         env->mstatus = s;
1763         env->mcause = cause | ~(((target_ulong)-1) >> async);
1764         env->mepc = env->pc;
1765         env->mtval = tval;
1766         env->mtval2 = mtval2;
1767         env->mtinst = tinst;
1768         env->pc = (env->mtvec >> 2 << 2) +
1769                   ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1770         riscv_cpu_set_mode(env, PRV_M);
1771     }
1772 
1773     /*
1774      * NOTE: it is not necessary to yield load reservations here. It is only
1775      * necessary for an SC from "another hart" to cause a load reservation
1776      * to be yielded. Refer to the memory consistency model section of the
1777      * RISC-V ISA Specification.
1778      */
1779 
1780     env->two_stage_lookup = false;
1781     env->two_stage_indirect_lookup = false;
1782 #endif
1783     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1784 }
1785