xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision eccc5a12)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
27 
28 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
29 {
30 #ifdef CONFIG_USER_ONLY
31     return 0;
32 #else
33     return env->priv;
34 #endif
35 }
36 
37 #ifndef CONFIG_USER_ONLY
38 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
39 {
40     target_ulong irqs;
41 
42     target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
43     target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
44     target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
45 
46     target_ulong pending = env->mip & env->mie &
47                                ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
48     target_ulong vspending = (env->mip & env->mie &
49                               (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) >> 1;
50 
51     target_ulong mie    = env->priv < PRV_M ||
52                           (env->priv == PRV_M && mstatus_mie);
53     target_ulong sie    = env->priv < PRV_S ||
54                           (env->priv == PRV_S && mstatus_sie);
55     target_ulong hs_sie = env->priv < PRV_S ||
56                           (env->priv == PRV_S && hs_mstatus_sie);
57 
58     if (riscv_cpu_virt_enabled(env)) {
59         target_ulong pending_hs_irq = pending & -hs_sie;
60 
61         if (pending_hs_irq) {
62             riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
63             return ctz64(pending_hs_irq);
64         }
65 
66         pending = vspending;
67     }
68 
69     irqs = (pending & ~env->mideleg & -mie) | (pending &  env->mideleg & -sie);
70 
71     if (irqs) {
72         return ctz64(irqs); /* since non-zero */
73     } else {
74         return EXCP_NONE; /* indicates no pending interrupt */
75     }
76 }
77 #endif
78 
79 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
80 {
81 #if !defined(CONFIG_USER_ONLY)
82     if (interrupt_request & CPU_INTERRUPT_HARD) {
83         RISCVCPU *cpu = RISCV_CPU(cs);
84         CPURISCVState *env = &cpu->env;
85         int interruptno = riscv_cpu_local_irq_pending(env);
86         if (interruptno >= 0) {
87             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
88             riscv_cpu_do_interrupt(cs);
89             return true;
90         }
91     }
92 #endif
93     return false;
94 }
95 
96 #if !defined(CONFIG_USER_ONLY)
97 
98 /* Return true is floating point support is currently enabled */
99 bool riscv_cpu_fp_enabled(CPURISCVState *env)
100 {
101     if (env->mstatus & MSTATUS_FS) {
102         return true;
103     }
104 
105     return false;
106 }
107 
108 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
109 {
110     target_ulong mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
111                                 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE;
112     bool current_virt = riscv_cpu_virt_enabled(env);
113 
114     g_assert(riscv_has_ext(env, RVH));
115 
116 #if defined(TARGET_RISCV64)
117     mstatus_mask |= MSTATUS64_UXL;
118 #endif
119 
120     if (current_virt) {
121         /* Current V=1 and we are about to change to V=0 */
122         env->vsstatus = env->mstatus & mstatus_mask;
123         env->mstatus &= ~mstatus_mask;
124         env->mstatus |= env->mstatus_hs;
125 
126         env->vstvec = env->stvec;
127         env->stvec = env->stvec_hs;
128 
129         env->vsscratch = env->sscratch;
130         env->sscratch = env->sscratch_hs;
131 
132         env->vsepc = env->sepc;
133         env->sepc = env->sepc_hs;
134 
135         env->vscause = env->scause;
136         env->scause = env->scause_hs;
137 
138         env->vstval = env->sbadaddr;
139         env->sbadaddr = env->stval_hs;
140 
141         env->vsatp = env->satp;
142         env->satp = env->satp_hs;
143     } else {
144         /* Current V=0 and we are about to change to V=1 */
145         env->mstatus_hs = env->mstatus & mstatus_mask;
146         env->mstatus &= ~mstatus_mask;
147         env->mstatus |= env->vsstatus;
148 
149         env->stvec_hs = env->stvec;
150         env->stvec = env->vstvec;
151 
152         env->sscratch_hs = env->sscratch;
153         env->sscratch = env->vsscratch;
154 
155         env->sepc_hs = env->sepc;
156         env->sepc = env->vsepc;
157 
158         env->scause_hs = env->scause;
159         env->scause = env->vscause;
160 
161         env->stval_hs = env->sbadaddr;
162         env->sbadaddr = env->vstval;
163 
164         env->satp_hs = env->satp;
165         env->satp = env->vsatp;
166     }
167 }
168 
169 bool riscv_cpu_virt_enabled(CPURISCVState *env)
170 {
171     if (!riscv_has_ext(env, RVH)) {
172         return false;
173     }
174 
175     return get_field(env->virt, VIRT_ONOFF);
176 }
177 
178 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
179 {
180     if (!riscv_has_ext(env, RVH)) {
181         return;
182     }
183 
184     /* Flush the TLB on all virt mode changes. */
185     if (get_field(env->virt, VIRT_ONOFF) != enable) {
186         tlb_flush(env_cpu(env));
187     }
188 
189     env->virt = set_field(env->virt, VIRT_ONOFF, enable);
190 }
191 
192 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
193 {
194     if (!riscv_has_ext(env, RVH)) {
195         return false;
196     }
197 
198     return get_field(env->virt, FORCE_HS_EXCEP);
199 }
200 
201 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
202 {
203     if (!riscv_has_ext(env, RVH)) {
204         return;
205     }
206 
207     env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
208 }
209 
210 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
211 {
212     CPURISCVState *env = &cpu->env;
213     if (env->miclaim & interrupts) {
214         return -1;
215     } else {
216         env->miclaim |= interrupts;
217         return 0;
218     }
219 }
220 
221 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
222 {
223     CPURISCVState *env = &cpu->env;
224     CPUState *cs = CPU(cpu);
225     uint32_t old = env->mip;
226     bool locked = false;
227 
228     if (!qemu_mutex_iothread_locked()) {
229         locked = true;
230         qemu_mutex_lock_iothread();
231     }
232 
233     env->mip = (env->mip & ~mask) | (value & mask);
234 
235     if (env->mip) {
236         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
237     } else {
238         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
239     }
240 
241     if (locked) {
242         qemu_mutex_unlock_iothread();
243     }
244 
245     return old;
246 }
247 
248 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
249 {
250     if (newpriv > PRV_M) {
251         g_assert_not_reached();
252     }
253     if (newpriv == PRV_H) {
254         newpriv = PRV_U;
255     }
256     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
257     env->priv = newpriv;
258 
259     /*
260      * Clear the load reservation - otherwise a reservation placed in one
261      * context/process can be used by another, resulting in an SC succeeding
262      * incorrectly. Version 2.2 of the ISA specification explicitly requires
263      * this behaviour, while later revisions say that the kernel "should" use
264      * an SC instruction to force the yielding of a load reservation on a
265      * preemptive context switch. As a result, do both.
266      */
267     env->load_res = -1;
268 }
269 
270 /* get_physical_address - get the physical address for this virtual address
271  *
272  * Do a page table walk to obtain the physical address corresponding to a
273  * virtual address. Returns 0 if the translation was successful
274  *
275  * Adapted from Spike's mmu_t::translate and mmu_t::walk
276  *
277  */
278 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
279                                 int *prot, target_ulong addr,
280                                 int access_type, int mmu_idx)
281 {
282     /* NOTE: the env->pc value visible here will not be
283      * correct, but the value visible to the exception handler
284      * (riscv_cpu_do_interrupt) is correct */
285     MemTxResult res;
286     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
287     int mode = mmu_idx;
288 
289     if (mode == PRV_M && access_type != MMU_INST_FETCH) {
290         if (get_field(env->mstatus, MSTATUS_MPRV)) {
291             mode = get_field(env->mstatus, MSTATUS_MPP);
292         }
293     }
294 
295     if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
296         *physical = addr;
297         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
298         return TRANSLATE_SUCCESS;
299     }
300 
301     *prot = 0;
302 
303     hwaddr base;
304     int levels, ptidxbits, ptesize, vm, sum;
305     int mxr = get_field(env->mstatus, MSTATUS_MXR);
306 
307     if (env->priv_ver >= PRIV_VERSION_1_10_0) {
308         base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
309         sum = get_field(env->mstatus, MSTATUS_SUM);
310         vm = get_field(env->satp, SATP_MODE);
311         switch (vm) {
312         case VM_1_10_SV32:
313           levels = 2; ptidxbits = 10; ptesize = 4; break;
314         case VM_1_10_SV39:
315           levels = 3; ptidxbits = 9; ptesize = 8; break;
316         case VM_1_10_SV48:
317           levels = 4; ptidxbits = 9; ptesize = 8; break;
318         case VM_1_10_SV57:
319           levels = 5; ptidxbits = 9; ptesize = 8; break;
320         case VM_1_10_MBARE:
321             *physical = addr;
322             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
323             return TRANSLATE_SUCCESS;
324         default:
325           g_assert_not_reached();
326         }
327     } else {
328         base = (hwaddr)(env->sptbr) << PGSHIFT;
329         sum = !get_field(env->mstatus, MSTATUS_PUM);
330         vm = get_field(env->mstatus, MSTATUS_VM);
331         switch (vm) {
332         case VM_1_09_SV32:
333           levels = 2; ptidxbits = 10; ptesize = 4; break;
334         case VM_1_09_SV39:
335           levels = 3; ptidxbits = 9; ptesize = 8; break;
336         case VM_1_09_SV48:
337           levels = 4; ptidxbits = 9; ptesize = 8; break;
338         case VM_1_09_MBARE:
339             *physical = addr;
340             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
341             return TRANSLATE_SUCCESS;
342         default:
343           g_assert_not_reached();
344         }
345     }
346 
347     CPUState *cs = env_cpu(env);
348     int va_bits = PGSHIFT + levels * ptidxbits;
349     target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
350     target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
351     if (masked_msbs != 0 && masked_msbs != mask) {
352         return TRANSLATE_FAIL;
353     }
354 
355     int ptshift = (levels - 1) * ptidxbits;
356     int i;
357 
358 #if !TCG_OVERSIZED_GUEST
359 restart:
360 #endif
361     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
362         target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
363                            ((1 << ptidxbits) - 1);
364 
365         /* check that physical address of PTE is legal */
366         hwaddr pte_addr = base + idx * ptesize;
367 
368         if (riscv_feature(env, RISCV_FEATURE_PMP) &&
369             !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
370             1 << MMU_DATA_LOAD, PRV_S)) {
371             return TRANSLATE_PMP_FAIL;
372         }
373 
374 #if defined(TARGET_RISCV32)
375         target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
376 #elif defined(TARGET_RISCV64)
377         target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
378 #endif
379         if (res != MEMTX_OK) {
380             return TRANSLATE_FAIL;
381         }
382 
383         hwaddr ppn = pte >> PTE_PPN_SHIFT;
384 
385         if (!(pte & PTE_V)) {
386             /* Invalid PTE */
387             return TRANSLATE_FAIL;
388         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
389             /* Inner PTE, continue walking */
390             base = ppn << PGSHIFT;
391         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
392             /* Reserved leaf PTE flags: PTE_W */
393             return TRANSLATE_FAIL;
394         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
395             /* Reserved leaf PTE flags: PTE_W + PTE_X */
396             return TRANSLATE_FAIL;
397         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
398                    (!sum || access_type == MMU_INST_FETCH))) {
399             /* User PTE flags when not U mode and mstatus.SUM is not set,
400                or the access type is an instruction fetch */
401             return TRANSLATE_FAIL;
402         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
403             /* Supervisor PTE flags when not S mode */
404             return TRANSLATE_FAIL;
405         } else if (ppn & ((1ULL << ptshift) - 1)) {
406             /* Misaligned PPN */
407             return TRANSLATE_FAIL;
408         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
409                    ((pte & PTE_X) && mxr))) {
410             /* Read access check failed */
411             return TRANSLATE_FAIL;
412         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
413             /* Write access check failed */
414             return TRANSLATE_FAIL;
415         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
416             /* Fetch access check failed */
417             return TRANSLATE_FAIL;
418         } else {
419             /* if necessary, set accessed and dirty bits. */
420             target_ulong updated_pte = pte | PTE_A |
421                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
422 
423             /* Page table updates need to be atomic with MTTCG enabled */
424             if (updated_pte != pte) {
425                 /*
426                  * - if accessed or dirty bits need updating, and the PTE is
427                  *   in RAM, then we do so atomically with a compare and swap.
428                  * - if the PTE is in IO space or ROM, then it can't be updated
429                  *   and we return TRANSLATE_FAIL.
430                  * - if the PTE changed by the time we went to update it, then
431                  *   it is no longer valid and we must re-walk the page table.
432                  */
433                 MemoryRegion *mr;
434                 hwaddr l = sizeof(target_ulong), addr1;
435                 mr = address_space_translate(cs->as, pte_addr,
436                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
437                 if (memory_region_is_ram(mr)) {
438                     target_ulong *pte_pa =
439                         qemu_map_ram_ptr(mr->ram_block, addr1);
440 #if TCG_OVERSIZED_GUEST
441                     /* MTTCG is not enabled on oversized TCG guests so
442                      * page table updates do not need to be atomic */
443                     *pte_pa = pte = updated_pte;
444 #else
445                     target_ulong old_pte =
446                         atomic_cmpxchg(pte_pa, pte, updated_pte);
447                     if (old_pte != pte) {
448                         goto restart;
449                     } else {
450                         pte = updated_pte;
451                     }
452 #endif
453                 } else {
454                     /* misconfigured PTE in ROM (AD bits are not preset) or
455                      * PTE is in IO space and can't be updated atomically */
456                     return TRANSLATE_FAIL;
457                 }
458             }
459 
460             /* for superpage mappings, make a fake leaf PTE for the TLB's
461                benefit. */
462             target_ulong vpn = addr >> PGSHIFT;
463             *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
464 
465             /* set permissions on the TLB entry */
466             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
467                 *prot |= PAGE_READ;
468             }
469             if ((pte & PTE_X)) {
470                 *prot |= PAGE_EXEC;
471             }
472             /* add write permission on stores or if the page is already dirty,
473                so that we TLB miss on later writes to update the dirty bit */
474             if ((pte & PTE_W) &&
475                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
476                 *prot |= PAGE_WRITE;
477             }
478             return TRANSLATE_SUCCESS;
479         }
480     }
481     return TRANSLATE_FAIL;
482 }
483 
484 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
485                                 MMUAccessType access_type, bool pmp_violation)
486 {
487     CPUState *cs = env_cpu(env);
488     int page_fault_exceptions =
489         (env->priv_ver >= PRIV_VERSION_1_10_0) &&
490         get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
491         !pmp_violation;
492     switch (access_type) {
493     case MMU_INST_FETCH:
494         cs->exception_index = page_fault_exceptions ?
495             RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
496         break;
497     case MMU_DATA_LOAD:
498         cs->exception_index = page_fault_exceptions ?
499             RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
500         break;
501     case MMU_DATA_STORE:
502         cs->exception_index = page_fault_exceptions ?
503             RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
504         break;
505     default:
506         g_assert_not_reached();
507     }
508     env->badaddr = address;
509 }
510 
511 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
512 {
513     RISCVCPU *cpu = RISCV_CPU(cs);
514     hwaddr phys_addr;
515     int prot;
516     int mmu_idx = cpu_mmu_index(&cpu->env, false);
517 
518     if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
519         return -1;
520     }
521     return phys_addr;
522 }
523 
524 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
525                                      vaddr addr, unsigned size,
526                                      MMUAccessType access_type,
527                                      int mmu_idx, MemTxAttrs attrs,
528                                      MemTxResult response, uintptr_t retaddr)
529 {
530     RISCVCPU *cpu = RISCV_CPU(cs);
531     CPURISCVState *env = &cpu->env;
532 
533     if (access_type == MMU_DATA_STORE) {
534         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
535     } else {
536         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
537     }
538 
539     env->badaddr = addr;
540     riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
541 }
542 
543 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
544                                    MMUAccessType access_type, int mmu_idx,
545                                    uintptr_t retaddr)
546 {
547     RISCVCPU *cpu = RISCV_CPU(cs);
548     CPURISCVState *env = &cpu->env;
549     switch (access_type) {
550     case MMU_INST_FETCH:
551         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
552         break;
553     case MMU_DATA_LOAD:
554         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
555         break;
556     case MMU_DATA_STORE:
557         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
558         break;
559     default:
560         g_assert_not_reached();
561     }
562     env->badaddr = addr;
563     riscv_raise_exception(env, cs->exception_index, retaddr);
564 }
565 #endif
566 
567 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
568                         MMUAccessType access_type, int mmu_idx,
569                         bool probe, uintptr_t retaddr)
570 {
571     RISCVCPU *cpu = RISCV_CPU(cs);
572     CPURISCVState *env = &cpu->env;
573 #ifndef CONFIG_USER_ONLY
574     hwaddr pa = 0;
575     int prot;
576     bool pmp_violation = false;
577     int ret = TRANSLATE_FAIL;
578     int mode = mmu_idx;
579 
580     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
581                   __func__, address, access_type, mmu_idx);
582 
583     ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx);
584 
585     if (mode == PRV_M && access_type != MMU_INST_FETCH) {
586         if (get_field(env->mstatus, MSTATUS_MPRV)) {
587             mode = get_field(env->mstatus, MSTATUS_MPP);
588         }
589     }
590 
591     qemu_log_mask(CPU_LOG_MMU,
592                   "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
593                   " prot %d\n", __func__, address, ret, pa, prot);
594 
595     if (riscv_feature(env, RISCV_FEATURE_PMP) &&
596         (ret == TRANSLATE_SUCCESS) &&
597         !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
598         ret = TRANSLATE_PMP_FAIL;
599     }
600     if (ret == TRANSLATE_PMP_FAIL) {
601         pmp_violation = true;
602     }
603     if (ret == TRANSLATE_SUCCESS) {
604         tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
605                      prot, mmu_idx, TARGET_PAGE_SIZE);
606         return true;
607     } else if (probe) {
608         return false;
609     } else {
610         raise_mmu_exception(env, address, access_type, pmp_violation);
611         riscv_raise_exception(env, cs->exception_index, retaddr);
612     }
613 #else
614     switch (access_type) {
615     case MMU_INST_FETCH:
616         cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
617         break;
618     case MMU_DATA_LOAD:
619         cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
620         break;
621     case MMU_DATA_STORE:
622         cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
623         break;
624     default:
625         g_assert_not_reached();
626     }
627     env->badaddr = address;
628     cpu_loop_exit_restore(cs, retaddr);
629 #endif
630 }
631 
632 /*
633  * Handle Traps
634  *
635  * Adapted from Spike's processor_t::take_trap.
636  *
637  */
638 void riscv_cpu_do_interrupt(CPUState *cs)
639 {
640 #if !defined(CONFIG_USER_ONLY)
641 
642     RISCVCPU *cpu = RISCV_CPU(cs);
643     CPURISCVState *env = &cpu->env;
644 
645     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
646      * so we mask off the MSB and separate into trap type and cause.
647      */
648     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
649     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
650     target_ulong deleg = async ? env->mideleg : env->medeleg;
651     target_ulong tval = 0;
652 
653     static const int ecall_cause_map[] = {
654         [PRV_U] = RISCV_EXCP_U_ECALL,
655         [PRV_S] = RISCV_EXCP_S_ECALL,
656         [PRV_H] = RISCV_EXCP_VS_ECALL,
657         [PRV_M] = RISCV_EXCP_M_ECALL
658     };
659 
660     if (!async) {
661         /* set tval to badaddr for traps with address information */
662         switch (cause) {
663         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
664         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
665         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
666         case RISCV_EXCP_INST_ADDR_MIS:
667         case RISCV_EXCP_INST_ACCESS_FAULT:
668         case RISCV_EXCP_LOAD_ADDR_MIS:
669         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
670         case RISCV_EXCP_LOAD_ACCESS_FAULT:
671         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
672         case RISCV_EXCP_INST_PAGE_FAULT:
673         case RISCV_EXCP_LOAD_PAGE_FAULT:
674         case RISCV_EXCP_STORE_PAGE_FAULT:
675             tval = env->badaddr;
676             break;
677         default:
678             break;
679         }
680         /* ecall is dispatched as one cause so translate based on mode */
681         if (cause == RISCV_EXCP_U_ECALL) {
682             assert(env->priv <= 3);
683             cause = ecall_cause_map[env->priv];
684         }
685     }
686 
687     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 23 ?
688         (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
689 
690     if (env->priv <= PRV_S &&
691             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
692         /* handle the trap in S-mode */
693         target_ulong s = env->mstatus;
694         s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
695             get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
696         s = set_field(s, MSTATUS_SPP, env->priv);
697         s = set_field(s, MSTATUS_SIE, 0);
698         env->mstatus = s;
699         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
700         env->sepc = env->pc;
701         env->sbadaddr = tval;
702         env->pc = (env->stvec >> 2 << 2) +
703             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
704         riscv_cpu_set_mode(env, PRV_S);
705     } else {
706         /* handle the trap in M-mode */
707         target_ulong s = env->mstatus;
708         s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
709             get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
710         s = set_field(s, MSTATUS_MPP, env->priv);
711         s = set_field(s, MSTATUS_MIE, 0);
712         env->mstatus = s;
713         env->mcause = cause | ~(((target_ulong)-1) >> async);
714         env->mepc = env->pc;
715         env->mbadaddr = tval;
716         env->pc = (env->mtvec >> 2 << 2) +
717             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
718         riscv_cpu_set_mode(env, PRV_M);
719     }
720 
721     /* NOTE: it is not necessary to yield load reservations here. It is only
722      * necessary for an SC from "another hart" to cause a load reservation
723      * to be yielded. Refer to the memory consistency model section of the
724      * RISC-V ISA Specification.
725      */
726 
727 #endif
728     cs->exception_index = EXCP_NONE; /* mark handled to qemu */
729 }
730