xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision e4ec5ad4)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "tcg-op.h"
25 #include "trace.h"
26 
27 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
28 {
29 #ifdef CONFIG_USER_ONLY
30     return 0;
31 #else
32     return env->priv;
33 #endif
34 }
35 
36 #ifndef CONFIG_USER_ONLY
37 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
38 {
39     target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
40     target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
41     target_ulong pending = atomic_read(&env->mip) & env->mie;
42     target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie);
43     target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie);
44     target_ulong irqs = (pending & ~env->mideleg & -mie) |
45                         (pending &  env->mideleg & -sie);
46 
47     if (irqs) {
48         return ctz64(irqs); /* since non-zero */
49     } else {
50         return EXCP_NONE; /* indicates no pending interrupt */
51     }
52 }
53 #endif
54 
55 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
56 {
57 #if !defined(CONFIG_USER_ONLY)
58     if (interrupt_request & CPU_INTERRUPT_HARD) {
59         RISCVCPU *cpu = RISCV_CPU(cs);
60         CPURISCVState *env = &cpu->env;
61         int interruptno = riscv_cpu_local_irq_pending(env);
62         if (interruptno >= 0) {
63             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
64             riscv_cpu_do_interrupt(cs);
65             return true;
66         }
67     }
68 #endif
69     return false;
70 }
71 
72 #if !defined(CONFIG_USER_ONLY)
73 
74 /* Return true is floating point support is currently enabled */
75 bool riscv_cpu_fp_enabled(CPURISCVState *env)
76 {
77     if (env->mstatus & MSTATUS_FS) {
78         return true;
79     }
80 
81     return false;
82 }
83 
84 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
85 {
86     CPURISCVState *env = &cpu->env;
87     if (env->miclaim & interrupts) {
88         return -1;
89     } else {
90         env->miclaim |= interrupts;
91         return 0;
92     }
93 }
94 
95 struct CpuAsyncInfo {
96     uint32_t new_mip;
97 };
98 
99 static void riscv_cpu_update_mip_irqs_async(CPUState *target_cpu_state,
100                                             run_on_cpu_data data)
101 {
102     struct CpuAsyncInfo *info = (struct CpuAsyncInfo *) data.host_ptr;
103 
104     if (info->new_mip) {
105         cpu_interrupt(target_cpu_state, CPU_INTERRUPT_HARD);
106     } else {
107         cpu_reset_interrupt(target_cpu_state, CPU_INTERRUPT_HARD);
108     }
109 
110     g_free(info);
111 }
112 
113 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
114 {
115     CPURISCVState *env = &cpu->env;
116     CPUState *cs = CPU(cpu);
117     struct CpuAsyncInfo *info;
118     uint32_t old, new, cmp = atomic_read(&env->mip);
119 
120     do {
121         old = cmp;
122         new = (old & ~mask) | (value & mask);
123         cmp = atomic_cmpxchg(&env->mip, old, new);
124     } while (old != cmp);
125 
126     info = g_new(struct CpuAsyncInfo, 1);
127     info->new_mip = new;
128 
129     async_run_on_cpu(cs, riscv_cpu_update_mip_irqs_async,
130                      RUN_ON_CPU_HOST_PTR(info));
131 
132     return old;
133 }
134 
135 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
136 {
137     if (newpriv > PRV_M) {
138         g_assert_not_reached();
139     }
140     if (newpriv == PRV_H) {
141         newpriv = PRV_U;
142     }
143     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
144     env->priv = newpriv;
145 
146     /*
147      * Clear the load reservation - otherwise a reservation placed in one
148      * context/process can be used by another, resulting in an SC succeeding
149      * incorrectly. Version 2.2 of the ISA specification explicitly requires
150      * this behaviour, while later revisions say that the kernel "should" use
151      * an SC instruction to force the yielding of a load reservation on a
152      * preemptive context switch. As a result, do both.
153      */
154     env->load_res = -1;
155 }
156 
157 /* get_physical_address - get the physical address for this virtual address
158  *
159  * Do a page table walk to obtain the physical address corresponding to a
160  * virtual address. Returns 0 if the translation was successful
161  *
162  * Adapted from Spike's mmu_t::translate and mmu_t::walk
163  *
164  */
165 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
166                                 int *prot, target_ulong addr,
167                                 int access_type, int mmu_idx)
168 {
169     /* NOTE: the env->pc value visible here will not be
170      * correct, but the value visible to the exception handler
171      * (riscv_cpu_do_interrupt) is correct */
172 
173     int mode = mmu_idx;
174 
175     if (mode == PRV_M && access_type != MMU_INST_FETCH) {
176         if (get_field(env->mstatus, MSTATUS_MPRV)) {
177             mode = get_field(env->mstatus, MSTATUS_MPP);
178         }
179     }
180 
181     if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
182         *physical = addr;
183         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
184         return TRANSLATE_SUCCESS;
185     }
186 
187     *prot = 0;
188 
189     hwaddr base;
190     int levels, ptidxbits, ptesize, vm, sum;
191     int mxr = get_field(env->mstatus, MSTATUS_MXR);
192 
193     if (env->priv_ver >= PRIV_VERSION_1_10_0) {
194         base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
195         sum = get_field(env->mstatus, MSTATUS_SUM);
196         vm = get_field(env->satp, SATP_MODE);
197         switch (vm) {
198         case VM_1_10_SV32:
199           levels = 2; ptidxbits = 10; ptesize = 4; break;
200         case VM_1_10_SV39:
201           levels = 3; ptidxbits = 9; ptesize = 8; break;
202         case VM_1_10_SV48:
203           levels = 4; ptidxbits = 9; ptesize = 8; break;
204         case VM_1_10_SV57:
205           levels = 5; ptidxbits = 9; ptesize = 8; break;
206         case VM_1_10_MBARE:
207             *physical = addr;
208             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
209             return TRANSLATE_SUCCESS;
210         default:
211           g_assert_not_reached();
212         }
213     } else {
214         base = (hwaddr)(env->sptbr) << PGSHIFT;
215         sum = !get_field(env->mstatus, MSTATUS_PUM);
216         vm = get_field(env->mstatus, MSTATUS_VM);
217         switch (vm) {
218         case VM_1_09_SV32:
219           levels = 2; ptidxbits = 10; ptesize = 4; break;
220         case VM_1_09_SV39:
221           levels = 3; ptidxbits = 9; ptesize = 8; break;
222         case VM_1_09_SV48:
223           levels = 4; ptidxbits = 9; ptesize = 8; break;
224         case VM_1_09_MBARE:
225             *physical = addr;
226             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
227             return TRANSLATE_SUCCESS;
228         default:
229           g_assert_not_reached();
230         }
231     }
232 
233     CPUState *cs = env_cpu(env);
234     int va_bits = PGSHIFT + levels * ptidxbits;
235     target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
236     target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
237     if (masked_msbs != 0 && masked_msbs != mask) {
238         return TRANSLATE_FAIL;
239     }
240 
241     int ptshift = (levels - 1) * ptidxbits;
242     int i;
243 
244 #if !TCG_OVERSIZED_GUEST
245 restart:
246 #endif
247     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
248         target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
249                            ((1 << ptidxbits) - 1);
250 
251         /* check that physical address of PTE is legal */
252         hwaddr pte_addr = base + idx * ptesize;
253 
254         if (riscv_feature(env, RISCV_FEATURE_PMP) &&
255             !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
256             1 << MMU_DATA_LOAD, PRV_S)) {
257             return TRANSLATE_PMP_FAIL;
258         }
259 #if defined(TARGET_RISCV32)
260         target_ulong pte = ldl_phys(cs->as, pte_addr);
261 #elif defined(TARGET_RISCV64)
262         target_ulong pte = ldq_phys(cs->as, pte_addr);
263 #endif
264         hwaddr ppn = pte >> PTE_PPN_SHIFT;
265 
266         if (!(pte & PTE_V)) {
267             /* Invalid PTE */
268             return TRANSLATE_FAIL;
269         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
270             /* Inner PTE, continue walking */
271             base = ppn << PGSHIFT;
272         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
273             /* Reserved leaf PTE flags: PTE_W */
274             return TRANSLATE_FAIL;
275         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
276             /* Reserved leaf PTE flags: PTE_W + PTE_X */
277             return TRANSLATE_FAIL;
278         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
279                    (!sum || access_type == MMU_INST_FETCH))) {
280             /* User PTE flags when not U mode and mstatus.SUM is not set,
281                or the access type is an instruction fetch */
282             return TRANSLATE_FAIL;
283         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
284             /* Supervisor PTE flags when not S mode */
285             return TRANSLATE_FAIL;
286         } else if (ppn & ((1ULL << ptshift) - 1)) {
287             /* Misaligned PPN */
288             return TRANSLATE_FAIL;
289         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
290                    ((pte & PTE_X) && mxr))) {
291             /* Read access check failed */
292             return TRANSLATE_FAIL;
293         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
294             /* Write access check failed */
295             return TRANSLATE_FAIL;
296         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
297             /* Fetch access check failed */
298             return TRANSLATE_FAIL;
299         } else {
300             /* if necessary, set accessed and dirty bits. */
301             target_ulong updated_pte = pte | PTE_A |
302                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
303 
304             /* Page table updates need to be atomic with MTTCG enabled */
305             if (updated_pte != pte) {
306                 /*
307                  * - if accessed or dirty bits need updating, and the PTE is
308                  *   in RAM, then we do so atomically with a compare and swap.
309                  * - if the PTE is in IO space or ROM, then it can't be updated
310                  *   and we return TRANSLATE_FAIL.
311                  * - if the PTE changed by the time we went to update it, then
312                  *   it is no longer valid and we must re-walk the page table.
313                  */
314                 MemoryRegion *mr;
315                 hwaddr l = sizeof(target_ulong), addr1;
316                 mr = address_space_translate(cs->as, pte_addr,
317                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
318                 if (memory_region_is_ram(mr)) {
319                     target_ulong *pte_pa =
320                         qemu_map_ram_ptr(mr->ram_block, addr1);
321 #if TCG_OVERSIZED_GUEST
322                     /* MTTCG is not enabled on oversized TCG guests so
323                      * page table updates do not need to be atomic */
324                     *pte_pa = pte = updated_pte;
325 #else
326                     target_ulong old_pte =
327                         atomic_cmpxchg(pte_pa, pte, updated_pte);
328                     if (old_pte != pte) {
329                         goto restart;
330                     } else {
331                         pte = updated_pte;
332                     }
333 #endif
334                 } else {
335                     /* misconfigured PTE in ROM (AD bits are not preset) or
336                      * PTE is in IO space and can't be updated atomically */
337                     return TRANSLATE_FAIL;
338                 }
339             }
340 
341             /* for superpage mappings, make a fake leaf PTE for the TLB's
342                benefit. */
343             target_ulong vpn = addr >> PGSHIFT;
344             *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
345 
346             /* set permissions on the TLB entry */
347             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
348                 *prot |= PAGE_READ;
349             }
350             if ((pte & PTE_X)) {
351                 *prot |= PAGE_EXEC;
352             }
353             /* add write permission on stores or if the page is already dirty,
354                so that we TLB miss on later writes to update the dirty bit */
355             if ((pte & PTE_W) &&
356                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
357                 *prot |= PAGE_WRITE;
358             }
359             return TRANSLATE_SUCCESS;
360         }
361     }
362     return TRANSLATE_FAIL;
363 }
364 
365 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
366                                 MMUAccessType access_type, bool pmp_violation)
367 {
368     CPUState *cs = env_cpu(env);
369     int page_fault_exceptions =
370         (env->priv_ver >= PRIV_VERSION_1_10_0) &&
371         get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
372         !pmp_violation;
373     switch (access_type) {
374     case MMU_INST_FETCH:
375         cs->exception_index = page_fault_exceptions ?
376             RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
377         break;
378     case MMU_DATA_LOAD:
379         cs->exception_index = page_fault_exceptions ?
380             RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
381         break;
382     case MMU_DATA_STORE:
383         cs->exception_index = page_fault_exceptions ?
384             RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
385         break;
386     default:
387         g_assert_not_reached();
388     }
389     env->badaddr = address;
390 }
391 
392 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
393 {
394     RISCVCPU *cpu = RISCV_CPU(cs);
395     hwaddr phys_addr;
396     int prot;
397     int mmu_idx = cpu_mmu_index(&cpu->env, false);
398 
399     if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
400         return -1;
401     }
402     return phys_addr;
403 }
404 
405 void riscv_cpu_unassigned_access(CPUState *cs, hwaddr addr, bool is_write,
406                                  bool is_exec, int unused, unsigned size)
407 {
408     RISCVCPU *cpu = RISCV_CPU(cs);
409     CPURISCVState *env = &cpu->env;
410 
411     if (is_write) {
412         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
413     } else {
414         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
415     }
416 
417     env->badaddr = addr;
418     riscv_raise_exception(&cpu->env, cs->exception_index, GETPC());
419 }
420 
421 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
422                                    MMUAccessType access_type, int mmu_idx,
423                                    uintptr_t retaddr)
424 {
425     RISCVCPU *cpu = RISCV_CPU(cs);
426     CPURISCVState *env = &cpu->env;
427     switch (access_type) {
428     case MMU_INST_FETCH:
429         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
430         break;
431     case MMU_DATA_LOAD:
432         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
433         break;
434     case MMU_DATA_STORE:
435         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
436         break;
437     default:
438         g_assert_not_reached();
439     }
440     env->badaddr = addr;
441     riscv_raise_exception(env, cs->exception_index, retaddr);
442 }
443 #endif
444 
445 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
446                         MMUAccessType access_type, int mmu_idx,
447                         bool probe, uintptr_t retaddr)
448 {
449 #ifndef CONFIG_USER_ONLY
450     RISCVCPU *cpu = RISCV_CPU(cs);
451     CPURISCVState *env = &cpu->env;
452     hwaddr pa = 0;
453     int prot;
454     bool pmp_violation = false;
455     int ret = TRANSLATE_FAIL;
456     int mode = mmu_idx;
457 
458     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
459                   __func__, address, access_type, mmu_idx);
460 
461     ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx);
462 
463     if (mode == PRV_M && access_type != MMU_INST_FETCH) {
464         if (get_field(env->mstatus, MSTATUS_MPRV)) {
465             mode = get_field(env->mstatus, MSTATUS_MPP);
466         }
467     }
468 
469     qemu_log_mask(CPU_LOG_MMU,
470                   "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
471                   " prot %d\n", __func__, address, ret, pa, prot);
472 
473     if (riscv_feature(env, RISCV_FEATURE_PMP) &&
474         (ret == TRANSLATE_SUCCESS) &&
475         !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
476         ret = TRANSLATE_PMP_FAIL;
477     }
478     if (ret == TRANSLATE_PMP_FAIL) {
479         pmp_violation = true;
480     }
481     if (ret == TRANSLATE_SUCCESS) {
482         tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
483                      prot, mmu_idx, TARGET_PAGE_SIZE);
484         return true;
485     } else if (probe) {
486         return false;
487     } else {
488         raise_mmu_exception(env, address, access_type, pmp_violation);
489         riscv_raise_exception(env, cs->exception_index, retaddr);
490     }
491 #else
492     switch (access_type) {
493     case MMU_INST_FETCH:
494         cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
495         break;
496     case MMU_DATA_LOAD:
497         cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
498         break;
499     case MMU_DATA_STORE:
500         cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
501         break;
502     }
503     cpu_loop_exit_restore(cs, retaddr);
504 #endif
505 }
506 
507 /*
508  * Handle Traps
509  *
510  * Adapted from Spike's processor_t::take_trap.
511  *
512  */
513 void riscv_cpu_do_interrupt(CPUState *cs)
514 {
515 #if !defined(CONFIG_USER_ONLY)
516 
517     RISCVCPU *cpu = RISCV_CPU(cs);
518     CPURISCVState *env = &cpu->env;
519 
520     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
521      * so we mask off the MSB and separate into trap type and cause.
522      */
523     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
524     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
525     target_ulong deleg = async ? env->mideleg : env->medeleg;
526     target_ulong tval = 0;
527 
528     static const int ecall_cause_map[] = {
529         [PRV_U] = RISCV_EXCP_U_ECALL,
530         [PRV_S] = RISCV_EXCP_S_ECALL,
531         [PRV_H] = RISCV_EXCP_H_ECALL,
532         [PRV_M] = RISCV_EXCP_M_ECALL
533     };
534 
535     if (!async) {
536         /* set tval to badaddr for traps with address information */
537         switch (cause) {
538         case RISCV_EXCP_INST_ADDR_MIS:
539         case RISCV_EXCP_INST_ACCESS_FAULT:
540         case RISCV_EXCP_LOAD_ADDR_MIS:
541         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
542         case RISCV_EXCP_LOAD_ACCESS_FAULT:
543         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
544         case RISCV_EXCP_INST_PAGE_FAULT:
545         case RISCV_EXCP_LOAD_PAGE_FAULT:
546         case RISCV_EXCP_STORE_PAGE_FAULT:
547             tval = env->badaddr;
548             break;
549         default:
550             break;
551         }
552         /* ecall is dispatched as one cause so translate based on mode */
553         if (cause == RISCV_EXCP_U_ECALL) {
554             assert(env->priv <= 3);
555             cause = ecall_cause_map[env->priv];
556         }
557     }
558 
559     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 16 ?
560         (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
561 
562     if (env->priv <= PRV_S &&
563             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
564         /* handle the trap in S-mode */
565         target_ulong s = env->mstatus;
566         s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
567             get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
568         s = set_field(s, MSTATUS_SPP, env->priv);
569         s = set_field(s, MSTATUS_SIE, 0);
570         env->mstatus = s;
571         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
572         env->sepc = env->pc;
573         env->sbadaddr = tval;
574         env->pc = (env->stvec >> 2 << 2) +
575             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
576         riscv_cpu_set_mode(env, PRV_S);
577     } else {
578         /* handle the trap in M-mode */
579         target_ulong s = env->mstatus;
580         s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
581             get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
582         s = set_field(s, MSTATUS_MPP, env->priv);
583         s = set_field(s, MSTATUS_MIE, 0);
584         env->mstatus = s;
585         env->mcause = cause | ~(((target_ulong)-1) >> async);
586         env->mepc = env->pc;
587         env->mbadaddr = tval;
588         env->pc = (env->mtvec >> 2 << 2) +
589             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
590         riscv_cpu_set_mode(env, PRV_M);
591     }
592 
593     /* NOTE: it is not necessary to yield load reservations here. It is only
594      * necessary for an SC from "another hart" to cause a load reservation
595      * to be yielded. Refer to the memory consistency model section of the
596      * RISC-V ISA Specification.
597      */
598 
599 #endif
600     cs->exception_index = EXCP_NONE; /* mark handled to qemu */
601 }
602