1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "exec/exec-all.h" 25 #include "tcg/tcg-op.h" 26 #include "trace.h" 27 28 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) 29 { 30 #ifdef CONFIG_USER_ONLY 31 return 0; 32 #else 33 return env->priv; 34 #endif 35 } 36 37 #ifndef CONFIG_USER_ONLY 38 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 39 { 40 target_ulong irqs; 41 42 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE); 43 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE); 44 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE); 45 46 target_ulong pending = env->mip & env->mie & 47 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 48 target_ulong vspending = (env->mip & env->mie & 49 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) >> 1; 50 51 target_ulong mie = env->priv < PRV_M || 52 (env->priv == PRV_M && mstatus_mie); 53 target_ulong sie = env->priv < PRV_S || 54 (env->priv == PRV_S && mstatus_sie); 55 target_ulong hs_sie = env->priv < PRV_S || 56 (env->priv == PRV_S && hs_mstatus_sie); 57 58 if (riscv_cpu_virt_enabled(env)) { 59 target_ulong pending_hs_irq = pending & -hs_sie; 60 61 if (pending_hs_irq) { 62 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP); 63 return ctz64(pending_hs_irq); 64 } 65 66 pending = vspending; 67 } 68 69 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie); 70 71 if (irqs) { 72 return ctz64(irqs); /* since non-zero */ 73 } else { 74 return EXCP_NONE; /* indicates no pending interrupt */ 75 } 76 } 77 #endif 78 79 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 80 { 81 #if !defined(CONFIG_USER_ONLY) 82 if (interrupt_request & CPU_INTERRUPT_HARD) { 83 RISCVCPU *cpu = RISCV_CPU(cs); 84 CPURISCVState *env = &cpu->env; 85 int interruptno = riscv_cpu_local_irq_pending(env); 86 if (interruptno >= 0) { 87 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 88 riscv_cpu_do_interrupt(cs); 89 return true; 90 } 91 } 92 #endif 93 return false; 94 } 95 96 #if !defined(CONFIG_USER_ONLY) 97 98 /* Return true is floating point support is currently enabled */ 99 bool riscv_cpu_fp_enabled(CPURISCVState *env) 100 { 101 if (env->mstatus & MSTATUS_FS) { 102 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) { 103 return false; 104 } 105 return true; 106 } 107 108 return false; 109 } 110 111 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 112 { 113 target_ulong mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS | 114 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE; 115 bool current_virt = riscv_cpu_virt_enabled(env); 116 117 g_assert(riscv_has_ext(env, RVH)); 118 119 #if defined(TARGET_RISCV64) 120 mstatus_mask |= MSTATUS64_UXL; 121 #endif 122 123 if (current_virt) { 124 /* Current V=1 and we are about to change to V=0 */ 125 env->vsstatus = env->mstatus & mstatus_mask; 126 env->mstatus &= ~mstatus_mask; 127 env->mstatus |= env->mstatus_hs; 128 129 #if defined(TARGET_RISCV32) 130 env->vsstatush = env->mstatush; 131 env->mstatush |= env->mstatush_hs; 132 #endif 133 134 env->vstvec = env->stvec; 135 env->stvec = env->stvec_hs; 136 137 env->vsscratch = env->sscratch; 138 env->sscratch = env->sscratch_hs; 139 140 env->vsepc = env->sepc; 141 env->sepc = env->sepc_hs; 142 143 env->vscause = env->scause; 144 env->scause = env->scause_hs; 145 146 env->vstval = env->sbadaddr; 147 env->sbadaddr = env->stval_hs; 148 149 env->vsatp = env->satp; 150 env->satp = env->satp_hs; 151 } else { 152 /* Current V=0 and we are about to change to V=1 */ 153 env->mstatus_hs = env->mstatus & mstatus_mask; 154 env->mstatus &= ~mstatus_mask; 155 env->mstatus |= env->vsstatus; 156 157 #if defined(TARGET_RISCV32) 158 env->mstatush_hs = env->mstatush; 159 env->mstatush |= env->vsstatush; 160 #endif 161 162 env->stvec_hs = env->stvec; 163 env->stvec = env->vstvec; 164 165 env->sscratch_hs = env->sscratch; 166 env->sscratch = env->vsscratch; 167 168 env->sepc_hs = env->sepc; 169 env->sepc = env->vsepc; 170 171 env->scause_hs = env->scause; 172 env->scause = env->vscause; 173 174 env->stval_hs = env->sbadaddr; 175 env->sbadaddr = env->vstval; 176 177 env->satp_hs = env->satp; 178 env->satp = env->vsatp; 179 } 180 } 181 182 bool riscv_cpu_virt_enabled(CPURISCVState *env) 183 { 184 if (!riscv_has_ext(env, RVH)) { 185 return false; 186 } 187 188 return get_field(env->virt, VIRT_ONOFF); 189 } 190 191 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) 192 { 193 if (!riscv_has_ext(env, RVH)) { 194 return; 195 } 196 197 /* Flush the TLB on all virt mode changes. */ 198 if (get_field(env->virt, VIRT_ONOFF) != enable) { 199 tlb_flush(env_cpu(env)); 200 } 201 202 env->virt = set_field(env->virt, VIRT_ONOFF, enable); 203 } 204 205 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env) 206 { 207 if (!riscv_has_ext(env, RVH)) { 208 return false; 209 } 210 211 return get_field(env->virt, FORCE_HS_EXCEP); 212 } 213 214 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable) 215 { 216 if (!riscv_has_ext(env, RVH)) { 217 return; 218 } 219 220 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable); 221 } 222 223 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts) 224 { 225 CPURISCVState *env = &cpu->env; 226 if (env->miclaim & interrupts) { 227 return -1; 228 } else { 229 env->miclaim |= interrupts; 230 return 0; 231 } 232 } 233 234 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value) 235 { 236 CPURISCVState *env = &cpu->env; 237 CPUState *cs = CPU(cpu); 238 uint32_t old = env->mip; 239 bool locked = false; 240 241 if (!qemu_mutex_iothread_locked()) { 242 locked = true; 243 qemu_mutex_lock_iothread(); 244 } 245 246 env->mip = (env->mip & ~mask) | (value & mask); 247 248 if (env->mip) { 249 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 250 } else { 251 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 252 } 253 254 if (locked) { 255 qemu_mutex_unlock_iothread(); 256 } 257 258 return old; 259 } 260 261 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) 262 { 263 if (newpriv > PRV_M) { 264 g_assert_not_reached(); 265 } 266 if (newpriv == PRV_H) { 267 newpriv = PRV_U; 268 } 269 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 270 env->priv = newpriv; 271 272 /* 273 * Clear the load reservation - otherwise a reservation placed in one 274 * context/process can be used by another, resulting in an SC succeeding 275 * incorrectly. Version 2.2 of the ISA specification explicitly requires 276 * this behaviour, while later revisions say that the kernel "should" use 277 * an SC instruction to force the yielding of a load reservation on a 278 * preemptive context switch. As a result, do both. 279 */ 280 env->load_res = -1; 281 } 282 283 /* get_physical_address - get the physical address for this virtual address 284 * 285 * Do a page table walk to obtain the physical address corresponding to a 286 * virtual address. Returns 0 if the translation was successful 287 * 288 * Adapted from Spike's mmu_t::translate and mmu_t::walk 289 * 290 * @env: CPURISCVState 291 * @physical: This will be set to the calculated physical address 292 * @prot: The returned protection attributes 293 * @addr: The virtual address to be translated 294 * @access_type: The type of MMU access 295 * @mmu_idx: Indicates current privilege level 296 * @first_stage: Are we in first stage translation? 297 * Second stage is used for hypervisor guest translation 298 * @two_stage: Are we going to perform two stage translation 299 */ 300 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 301 int *prot, target_ulong addr, 302 int access_type, int mmu_idx, 303 bool first_stage, bool two_stage) 304 { 305 /* NOTE: the env->pc value visible here will not be 306 * correct, but the value visible to the exception handler 307 * (riscv_cpu_do_interrupt) is correct */ 308 MemTxResult res; 309 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 310 int mode = mmu_idx; 311 bool use_background = false; 312 313 /* 314 * Check if we should use the background registers for the two 315 * stage translation. We don't need to check if we actually need 316 * two stage translation as that happened before this function 317 * was called. Background registers will be used if the guest has 318 * forced a two stage translation to be on (in HS or M mode). 319 */ 320 if (mode == PRV_M && access_type != MMU_INST_FETCH) { 321 if (get_field(env->mstatus, MSTATUS_MPRV)) { 322 mode = get_field(env->mstatus, MSTATUS_MPP); 323 324 if (riscv_has_ext(env, RVH) && 325 MSTATUS_MPV_ISSET(env)) { 326 use_background = true; 327 } 328 } 329 } 330 331 if (mode == PRV_S && access_type != MMU_INST_FETCH && 332 riscv_has_ext(env, RVH) && !riscv_cpu_virt_enabled(env)) { 333 if (get_field(env->hstatus, HSTATUS_SPRV)) { 334 mode = get_field(env->mstatus, SSTATUS_SPP); 335 use_background = true; 336 } 337 } 338 339 if (first_stage == false) { 340 /* We are in stage 2 translation, this is similar to stage 1. */ 341 /* Stage 2 is always taken as U-mode */ 342 mode = PRV_U; 343 } 344 345 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) { 346 *physical = addr; 347 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 348 return TRANSLATE_SUCCESS; 349 } 350 351 *prot = 0; 352 353 hwaddr base; 354 int levels, ptidxbits, ptesize, vm, sum, mxr, widened; 355 356 if (first_stage == true) { 357 mxr = get_field(env->mstatus, MSTATUS_MXR); 358 } else { 359 mxr = get_field(env->vsstatus, MSTATUS_MXR); 360 } 361 362 if (env->priv_ver >= PRIV_VERSION_1_10_0) { 363 if (first_stage == true) { 364 if (use_background) { 365 base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT; 366 vm = get_field(env->vsatp, SATP_MODE); 367 } else { 368 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT; 369 vm = get_field(env->satp, SATP_MODE); 370 } 371 widened = 0; 372 } else { 373 base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT; 374 vm = get_field(env->hgatp, HGATP_MODE); 375 widened = 2; 376 } 377 sum = get_field(env->mstatus, MSTATUS_SUM); 378 switch (vm) { 379 case VM_1_10_SV32: 380 levels = 2; ptidxbits = 10; ptesize = 4; break; 381 case VM_1_10_SV39: 382 levels = 3; ptidxbits = 9; ptesize = 8; break; 383 case VM_1_10_SV48: 384 levels = 4; ptidxbits = 9; ptesize = 8; break; 385 case VM_1_10_SV57: 386 levels = 5; ptidxbits = 9; ptesize = 8; break; 387 case VM_1_10_MBARE: 388 *physical = addr; 389 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 390 return TRANSLATE_SUCCESS; 391 default: 392 g_assert_not_reached(); 393 } 394 } else { 395 widened = 0; 396 base = (hwaddr)(env->sptbr) << PGSHIFT; 397 sum = !get_field(env->mstatus, MSTATUS_PUM); 398 vm = get_field(env->mstatus, MSTATUS_VM); 399 switch (vm) { 400 case VM_1_09_SV32: 401 levels = 2; ptidxbits = 10; ptesize = 4; break; 402 case VM_1_09_SV39: 403 levels = 3; ptidxbits = 9; ptesize = 8; break; 404 case VM_1_09_SV48: 405 levels = 4; ptidxbits = 9; ptesize = 8; break; 406 case VM_1_09_MBARE: 407 *physical = addr; 408 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 409 return TRANSLATE_SUCCESS; 410 default: 411 g_assert_not_reached(); 412 } 413 } 414 415 CPUState *cs = env_cpu(env); 416 int va_bits = PGSHIFT + levels * ptidxbits + widened; 417 target_ulong mask, masked_msbs; 418 419 if (TARGET_LONG_BITS > (va_bits - 1)) { 420 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; 421 } else { 422 mask = 0; 423 } 424 masked_msbs = (addr >> (va_bits - 1)) & mask; 425 426 if (masked_msbs != 0 && masked_msbs != mask) { 427 return TRANSLATE_FAIL; 428 } 429 430 int ptshift = (levels - 1) * ptidxbits; 431 int i; 432 433 #if !TCG_OVERSIZED_GUEST 434 restart: 435 #endif 436 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 437 target_ulong idx; 438 if (i == 0) { 439 idx = (addr >> (PGSHIFT + ptshift)) & 440 ((1 << (ptidxbits + widened)) - 1); 441 } else { 442 idx = (addr >> (PGSHIFT + ptshift)) & 443 ((1 << ptidxbits) - 1); 444 } 445 446 /* check that physical address of PTE is legal */ 447 hwaddr pte_addr; 448 449 if (two_stage && first_stage) { 450 hwaddr vbase; 451 452 /* Do the second stage translation on the base PTE address. */ 453 get_physical_address(env, &vbase, prot, base, access_type, 454 mmu_idx, false, true); 455 456 pte_addr = vbase + idx * ptesize; 457 } else { 458 pte_addr = base + idx * ptesize; 459 } 460 461 if (riscv_feature(env, RISCV_FEATURE_PMP) && 462 !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong), 463 1 << MMU_DATA_LOAD, PRV_S)) { 464 return TRANSLATE_PMP_FAIL; 465 } 466 467 #if defined(TARGET_RISCV32) 468 target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 469 #elif defined(TARGET_RISCV64) 470 target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 471 #endif 472 if (res != MEMTX_OK) { 473 return TRANSLATE_FAIL; 474 } 475 476 hwaddr ppn = pte >> PTE_PPN_SHIFT; 477 478 if (!(pte & PTE_V)) { 479 /* Invalid PTE */ 480 return TRANSLATE_FAIL; 481 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) { 482 /* Inner PTE, continue walking */ 483 base = ppn << PGSHIFT; 484 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) { 485 /* Reserved leaf PTE flags: PTE_W */ 486 return TRANSLATE_FAIL; 487 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) { 488 /* Reserved leaf PTE flags: PTE_W + PTE_X */ 489 return TRANSLATE_FAIL; 490 } else if ((pte & PTE_U) && ((mode != PRV_U) && 491 (!sum || access_type == MMU_INST_FETCH))) { 492 /* User PTE flags when not U mode and mstatus.SUM is not set, 493 or the access type is an instruction fetch */ 494 return TRANSLATE_FAIL; 495 } else if (!(pte & PTE_U) && (mode != PRV_S)) { 496 /* Supervisor PTE flags when not S mode */ 497 return TRANSLATE_FAIL; 498 } else if (ppn & ((1ULL << ptshift) - 1)) { 499 /* Misaligned PPN */ 500 return TRANSLATE_FAIL; 501 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) || 502 ((pte & PTE_X) && mxr))) { 503 /* Read access check failed */ 504 return TRANSLATE_FAIL; 505 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) { 506 /* Write access check failed */ 507 return TRANSLATE_FAIL; 508 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) { 509 /* Fetch access check failed */ 510 return TRANSLATE_FAIL; 511 } else { 512 /* if necessary, set accessed and dirty bits. */ 513 target_ulong updated_pte = pte | PTE_A | 514 (access_type == MMU_DATA_STORE ? PTE_D : 0); 515 516 /* Page table updates need to be atomic with MTTCG enabled */ 517 if (updated_pte != pte) { 518 /* 519 * - if accessed or dirty bits need updating, and the PTE is 520 * in RAM, then we do so atomically with a compare and swap. 521 * - if the PTE is in IO space or ROM, then it can't be updated 522 * and we return TRANSLATE_FAIL. 523 * - if the PTE changed by the time we went to update it, then 524 * it is no longer valid and we must re-walk the page table. 525 */ 526 MemoryRegion *mr; 527 hwaddr l = sizeof(target_ulong), addr1; 528 mr = address_space_translate(cs->as, pte_addr, 529 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED); 530 if (memory_region_is_ram(mr)) { 531 target_ulong *pte_pa = 532 qemu_map_ram_ptr(mr->ram_block, addr1); 533 #if TCG_OVERSIZED_GUEST 534 /* MTTCG is not enabled on oversized TCG guests so 535 * page table updates do not need to be atomic */ 536 *pte_pa = pte = updated_pte; 537 #else 538 target_ulong old_pte = 539 atomic_cmpxchg(pte_pa, pte, updated_pte); 540 if (old_pte != pte) { 541 goto restart; 542 } else { 543 pte = updated_pte; 544 } 545 #endif 546 } else { 547 /* misconfigured PTE in ROM (AD bits are not preset) or 548 * PTE is in IO space and can't be updated atomically */ 549 return TRANSLATE_FAIL; 550 } 551 } 552 553 /* for superpage mappings, make a fake leaf PTE for the TLB's 554 benefit. */ 555 target_ulong vpn = addr >> PGSHIFT; 556 if (i == 0) { 557 *physical = (ppn | (vpn & ((1L << (ptshift + widened)) - 1))) << 558 PGSHIFT; 559 } else { 560 *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT; 561 } 562 563 /* set permissions on the TLB entry */ 564 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) { 565 *prot |= PAGE_READ; 566 } 567 if ((pte & PTE_X)) { 568 *prot |= PAGE_EXEC; 569 } 570 /* add write permission on stores or if the page is already dirty, 571 so that we TLB miss on later writes to update the dirty bit */ 572 if ((pte & PTE_W) && 573 (access_type == MMU_DATA_STORE || (pte & PTE_D))) { 574 *prot |= PAGE_WRITE; 575 } 576 return TRANSLATE_SUCCESS; 577 } 578 } 579 return TRANSLATE_FAIL; 580 } 581 582 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 583 MMUAccessType access_type, bool pmp_violation, 584 bool first_stage) 585 { 586 CPUState *cs = env_cpu(env); 587 int page_fault_exceptions; 588 if (first_stage) { 589 page_fault_exceptions = 590 (env->priv_ver >= PRIV_VERSION_1_10_0) && 591 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE && 592 !pmp_violation; 593 } else { 594 page_fault_exceptions = 595 get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE && 596 !pmp_violation; 597 } 598 switch (access_type) { 599 case MMU_INST_FETCH: 600 if (riscv_cpu_virt_enabled(env) && !first_stage) { 601 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 602 } else { 603 cs->exception_index = page_fault_exceptions ? 604 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT; 605 } 606 break; 607 case MMU_DATA_LOAD: 608 if (riscv_cpu_virt_enabled(env) && !first_stage) { 609 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 610 } else { 611 cs->exception_index = page_fault_exceptions ? 612 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT; 613 } 614 break; 615 case MMU_DATA_STORE: 616 if (riscv_cpu_virt_enabled(env) && !first_stage) { 617 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 618 } else { 619 cs->exception_index = page_fault_exceptions ? 620 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 621 } 622 break; 623 default: 624 g_assert_not_reached(); 625 } 626 env->badaddr = address; 627 } 628 629 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 630 { 631 RISCVCPU *cpu = RISCV_CPU(cs); 632 CPURISCVState *env = &cpu->env; 633 hwaddr phys_addr; 634 int prot; 635 int mmu_idx = cpu_mmu_index(&cpu->env, false); 636 637 if (get_physical_address(env, &phys_addr, &prot, addr, 0, mmu_idx, 638 true, riscv_cpu_virt_enabled(env))) { 639 return -1; 640 } 641 642 if (riscv_cpu_virt_enabled(env)) { 643 if (get_physical_address(env, &phys_addr, &prot, phys_addr, 644 0, mmu_idx, false, true)) { 645 return -1; 646 } 647 } 648 649 return phys_addr; 650 } 651 652 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 653 vaddr addr, unsigned size, 654 MMUAccessType access_type, 655 int mmu_idx, MemTxAttrs attrs, 656 MemTxResult response, uintptr_t retaddr) 657 { 658 RISCVCPU *cpu = RISCV_CPU(cs); 659 CPURISCVState *env = &cpu->env; 660 661 if (access_type == MMU_DATA_STORE) { 662 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 663 } else { 664 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 665 } 666 667 env->badaddr = addr; 668 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr); 669 } 670 671 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 672 MMUAccessType access_type, int mmu_idx, 673 uintptr_t retaddr) 674 { 675 RISCVCPU *cpu = RISCV_CPU(cs); 676 CPURISCVState *env = &cpu->env; 677 switch (access_type) { 678 case MMU_INST_FETCH: 679 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 680 break; 681 case MMU_DATA_LOAD: 682 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 683 break; 684 case MMU_DATA_STORE: 685 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 686 break; 687 default: 688 g_assert_not_reached(); 689 } 690 env->badaddr = addr; 691 riscv_raise_exception(env, cs->exception_index, retaddr); 692 } 693 #endif 694 695 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 696 MMUAccessType access_type, int mmu_idx, 697 bool probe, uintptr_t retaddr) 698 { 699 RISCVCPU *cpu = RISCV_CPU(cs); 700 CPURISCVState *env = &cpu->env; 701 #ifndef CONFIG_USER_ONLY 702 vaddr im_address; 703 hwaddr pa = 0; 704 int prot; 705 bool pmp_violation = false; 706 bool m_mode_two_stage = false; 707 bool hs_mode_two_stage = false; 708 bool first_stage_error = true; 709 int ret = TRANSLATE_FAIL; 710 int mode = mmu_idx; 711 712 env->guest_phys_fault_addr = 0; 713 714 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 715 __func__, address, access_type, mmu_idx); 716 717 /* 718 * Determine if we are in M mode and MPRV is set or in HS mode and SPRV is 719 * set and we want to access a virtulisation address. 720 */ 721 if (riscv_has_ext(env, RVH)) { 722 m_mode_two_stage = env->priv == PRV_M && 723 access_type != MMU_INST_FETCH && 724 get_field(env->mstatus, MSTATUS_MPRV) && 725 MSTATUS_MPV_ISSET(env); 726 727 hs_mode_two_stage = env->priv == PRV_S && 728 !riscv_cpu_virt_enabled(env) && 729 access_type != MMU_INST_FETCH && 730 get_field(env->hstatus, HSTATUS_SPRV) && 731 get_field(env->hstatus, HSTATUS_SPV); 732 } 733 734 if (mode == PRV_M && access_type != MMU_INST_FETCH) { 735 if (get_field(env->mstatus, MSTATUS_MPRV)) { 736 mode = get_field(env->mstatus, MSTATUS_MPP); 737 } 738 } 739 740 if (riscv_cpu_virt_enabled(env) || m_mode_two_stage || hs_mode_two_stage) { 741 /* Two stage lookup */ 742 ret = get_physical_address(env, &pa, &prot, address, access_type, 743 mmu_idx, true, true); 744 745 qemu_log_mask(CPU_LOG_MMU, 746 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 747 TARGET_FMT_plx " prot %d\n", 748 __func__, address, ret, pa, prot); 749 750 if (ret != TRANSLATE_FAIL) { 751 /* Second stage lookup */ 752 im_address = pa; 753 754 ret = get_physical_address(env, &pa, &prot, im_address, 755 access_type, mmu_idx, false, true); 756 757 qemu_log_mask(CPU_LOG_MMU, 758 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical " 759 TARGET_FMT_plx " prot %d\n", 760 __func__, im_address, ret, pa, prot); 761 762 if (riscv_feature(env, RISCV_FEATURE_PMP) && 763 (ret == TRANSLATE_SUCCESS) && 764 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) { 765 ret = TRANSLATE_PMP_FAIL; 766 } 767 768 if (ret != TRANSLATE_SUCCESS) { 769 /* 770 * Guest physical address translation failed, this is a HS 771 * level exception 772 */ 773 first_stage_error = false; 774 env->guest_phys_fault_addr = (im_address | 775 (address & 776 (TARGET_PAGE_SIZE - 1))) >> 2; 777 } 778 } 779 } else { 780 /* Single stage lookup */ 781 ret = get_physical_address(env, &pa, &prot, address, access_type, 782 mmu_idx, true, false); 783 784 qemu_log_mask(CPU_LOG_MMU, 785 "%s address=%" VADDR_PRIx " ret %d physical " 786 TARGET_FMT_plx " prot %d\n", 787 __func__, address, ret, pa, prot); 788 } 789 790 if (riscv_feature(env, RISCV_FEATURE_PMP) && 791 (ret == TRANSLATE_SUCCESS) && 792 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) { 793 ret = TRANSLATE_PMP_FAIL; 794 } 795 if (ret == TRANSLATE_PMP_FAIL) { 796 pmp_violation = true; 797 } 798 799 if (ret == TRANSLATE_SUCCESS) { 800 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK, 801 prot, mmu_idx, TARGET_PAGE_SIZE); 802 return true; 803 } else if (probe) { 804 return false; 805 } else { 806 raise_mmu_exception(env, address, access_type, pmp_violation, first_stage_error); 807 riscv_raise_exception(env, cs->exception_index, retaddr); 808 } 809 810 return true; 811 812 #else 813 switch (access_type) { 814 case MMU_INST_FETCH: 815 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT; 816 break; 817 case MMU_DATA_LOAD: 818 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT; 819 break; 820 case MMU_DATA_STORE: 821 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT; 822 break; 823 default: 824 g_assert_not_reached(); 825 } 826 env->badaddr = address; 827 cpu_loop_exit_restore(cs, retaddr); 828 #endif 829 } 830 831 /* 832 * Handle Traps 833 * 834 * Adapted from Spike's processor_t::take_trap. 835 * 836 */ 837 void riscv_cpu_do_interrupt(CPUState *cs) 838 { 839 #if !defined(CONFIG_USER_ONLY) 840 841 RISCVCPU *cpu = RISCV_CPU(cs); 842 CPURISCVState *env = &cpu->env; 843 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env); 844 target_ulong s; 845 846 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 847 * so we mask off the MSB and separate into trap type and cause. 848 */ 849 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 850 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 851 target_ulong deleg = async ? env->mideleg : env->medeleg; 852 target_ulong tval = 0; 853 target_ulong htval = 0; 854 target_ulong mtval2 = 0; 855 856 if (!async) { 857 /* set tval to badaddr for traps with address information */ 858 switch (cause) { 859 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 860 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 861 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 862 force_hs_execp = true; 863 /* fallthrough */ 864 case RISCV_EXCP_INST_ADDR_MIS: 865 case RISCV_EXCP_INST_ACCESS_FAULT: 866 case RISCV_EXCP_LOAD_ADDR_MIS: 867 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 868 case RISCV_EXCP_LOAD_ACCESS_FAULT: 869 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 870 case RISCV_EXCP_INST_PAGE_FAULT: 871 case RISCV_EXCP_LOAD_PAGE_FAULT: 872 case RISCV_EXCP_STORE_PAGE_FAULT: 873 tval = env->badaddr; 874 break; 875 default: 876 break; 877 } 878 /* ecall is dispatched as one cause so translate based on mode */ 879 if (cause == RISCV_EXCP_U_ECALL) { 880 assert(env->priv <= 3); 881 882 if (env->priv == PRV_M) { 883 cause = RISCV_EXCP_M_ECALL; 884 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) { 885 cause = RISCV_EXCP_VS_ECALL; 886 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) { 887 cause = RISCV_EXCP_S_ECALL; 888 } else if (env->priv == PRV_U) { 889 cause = RISCV_EXCP_U_ECALL; 890 } 891 } 892 } 893 894 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 23 ? 895 (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)"); 896 897 if (env->priv <= PRV_S && 898 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) { 899 /* handle the trap in S-mode */ 900 if (riscv_has_ext(env, RVH)) { 901 target_ulong hdeleg = async ? env->hideleg : env->hedeleg; 902 903 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) && 904 !force_hs_execp) { 905 /* Trap to VS mode */ 906 } else if (riscv_cpu_virt_enabled(env)) { 907 /* Trap into HS mode, from virt */ 908 riscv_cpu_swap_hypervisor_regs(env); 909 env->hstatus = set_field(env->hstatus, HSTATUS_SP2V, 910 get_field(env->hstatus, HSTATUS_SPV)); 911 env->hstatus = set_field(env->hstatus, HSTATUS_SP2P, 912 get_field(env->mstatus, SSTATUS_SPP)); 913 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, 914 riscv_cpu_virt_enabled(env)); 915 916 htval = env->guest_phys_fault_addr; 917 918 riscv_cpu_set_virt_enabled(env, 0); 919 riscv_cpu_set_force_hs_excep(env, 0); 920 } else { 921 /* Trap into HS mode */ 922 env->hstatus = set_field(env->hstatus, HSTATUS_SP2V, 923 get_field(env->hstatus, HSTATUS_SPV)); 924 env->hstatus = set_field(env->hstatus, HSTATUS_SP2P, 925 get_field(env->mstatus, SSTATUS_SPP)); 926 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, 927 riscv_cpu_virt_enabled(env)); 928 929 htval = env->guest_phys_fault_addr; 930 } 931 } 932 933 s = env->mstatus; 934 s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ? 935 get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv)); 936 s = set_field(s, MSTATUS_SPP, env->priv); 937 s = set_field(s, MSTATUS_SIE, 0); 938 env->mstatus = s; 939 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); 940 env->sepc = env->pc; 941 env->sbadaddr = tval; 942 env->htval = htval; 943 env->pc = (env->stvec >> 2 << 2) + 944 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 945 riscv_cpu_set_mode(env, PRV_S); 946 } else { 947 /* handle the trap in M-mode */ 948 if (riscv_has_ext(env, RVH)) { 949 if (riscv_cpu_virt_enabled(env)) { 950 riscv_cpu_swap_hypervisor_regs(env); 951 } 952 #ifdef TARGET_RISCV32 953 env->mstatush = set_field(env->mstatush, MSTATUS_MPV, 954 riscv_cpu_virt_enabled(env)); 955 env->mstatush = set_field(env->mstatush, MSTATUS_MTL, 956 riscv_cpu_force_hs_excep_enabled(env)); 957 #else 958 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 959 riscv_cpu_virt_enabled(env)); 960 env->mstatus = set_field(env->mstatus, MSTATUS_MTL, 961 riscv_cpu_force_hs_excep_enabled(env)); 962 #endif 963 964 mtval2 = env->guest_phys_fault_addr; 965 966 /* Trapping to M mode, virt is disabled */ 967 riscv_cpu_set_virt_enabled(env, 0); 968 riscv_cpu_set_force_hs_excep(env, 0); 969 } 970 971 s = env->mstatus; 972 s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ? 973 get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv)); 974 s = set_field(s, MSTATUS_MPP, env->priv); 975 s = set_field(s, MSTATUS_MIE, 0); 976 env->mstatus = s; 977 env->mcause = cause | ~(((target_ulong)-1) >> async); 978 env->mepc = env->pc; 979 env->mbadaddr = tval; 980 env->mtval2 = mtval2; 981 env->pc = (env->mtvec >> 2 << 2) + 982 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 983 riscv_cpu_set_mode(env, PRV_M); 984 } 985 986 /* NOTE: it is not necessary to yield load reservations here. It is only 987 * necessary for an SC from "another hart" to cause a load reservation 988 * to be yielded. Refer to the memory consistency model section of the 989 * RISC-V ISA Specification. 990 */ 991 992 #endif 993 cs->exception_index = EXCP_NONE; /* mark handled to qemu */ 994 } 995