xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision e0c72452)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "instmap.h"
28 #include "tcg/tcg-op.h"
29 #include "trace.h"
30 #include "semihosting/common-semi.h"
31 #include "sysemu/cpu-timers.h"
32 #include "cpu_bits.h"
33 #include "debug.h"
34 #include "tcg/oversized-guest.h"
35 
36 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
37 {
38 #ifdef CONFIG_USER_ONLY
39     return 0;
40 #else
41     bool virt = env->virt_enabled;
42     int mode = env->priv;
43 
44     /* All priv -> mmu_idx mapping are here */
45     if (!ifetch) {
46         uint64_t status = env->mstatus;
47 
48         if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
49             mode = get_field(env->mstatus, MSTATUS_MPP);
50             virt = get_field(env->mstatus, MSTATUS_MPV) &&
51                    (mode != PRV_M);
52             if (virt) {
53                 status = env->vsstatus;
54             }
55         }
56         if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
57             mode = MMUIdx_S_SUM;
58         }
59     }
60 
61     return mode | (virt ? MMU_2STAGE_BIT : 0);
62 #endif
63 }
64 
65 void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc,
66                           uint64_t *cs_base, uint32_t *pflags)
67 {
68     RISCVCPU *cpu = env_archcpu(env);
69     RISCVExtStatus fs, vs;
70     uint32_t flags = 0;
71 
72     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
73     *cs_base = 0;
74 
75     if (cpu->cfg.ext_zve32f) {
76         /*
77          * If env->vl equals to VLMAX, we can use generic vector operation
78          * expanders (GVEC) to accerlate the vector operations.
79          * However, as LMUL could be a fractional number. The maximum
80          * vector size can be operated might be less than 8 bytes,
81          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
82          * only when maxsz >= 8 bytes.
83          */
84         uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
85         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
86         uint32_t maxsz = vlmax << sew;
87         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
88                            (maxsz >= 8);
89         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
90         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
91         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
92                            FIELD_EX64(env->vtype, VTYPE, VLMUL));
93         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
94         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
95                            FIELD_EX64(env->vtype, VTYPE, VTA));
96         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
97                            FIELD_EX64(env->vtype, VTYPE, VMA));
98         flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
99     } else {
100         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
101     }
102 
103 #ifdef CONFIG_USER_ONLY
104     fs = EXT_STATUS_DIRTY;
105     vs = EXT_STATUS_DIRTY;
106 #else
107     flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
108 
109     flags |= cpu_mmu_index(env, 0);
110     fs = get_field(env->mstatus, MSTATUS_FS);
111     vs = get_field(env->mstatus, MSTATUS_VS);
112 
113     if (env->virt_enabled) {
114         flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
115         /*
116          * Merge DISABLED and !DIRTY states using MIN.
117          * We will set both fields when dirtying.
118          */
119         fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
120         vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
121     }
122 
123     /* With Zfinx, floating point is enabled/disabled by Smstateen. */
124     if (!riscv_has_ext(env, RVF)) {
125         fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE)
126              ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED;
127     }
128 
129     if (cpu->cfg.debug && !icount_enabled()) {
130         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
131     }
132 #endif
133 
134     flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
135     flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
136     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
137     flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env));
138     if (env->cur_pmmask != 0) {
139         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
140     }
141     if (env->cur_pmbase != 0) {
142         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
143     }
144 
145     *pflags = flags;
146 }
147 
148 void riscv_cpu_update_mask(CPURISCVState *env)
149 {
150     target_ulong mask = 0, base = 0;
151     RISCVMXL xl = env->xl;
152     /*
153      * TODO: Current RVJ spec does not specify
154      * how the extension interacts with XLEN.
155      */
156 #ifndef CONFIG_USER_ONLY
157     int mode = cpu_address_mode(env);
158     xl = cpu_get_xl(env, mode);
159     if (riscv_has_ext(env, RVJ)) {
160         switch (mode) {
161         case PRV_M:
162             if (env->mmte & M_PM_ENABLE) {
163                 mask = env->mpmmask;
164                 base = env->mpmbase;
165             }
166             break;
167         case PRV_S:
168             if (env->mmte & S_PM_ENABLE) {
169                 mask = env->spmmask;
170                 base = env->spmbase;
171             }
172             break;
173         case PRV_U:
174             if (env->mmte & U_PM_ENABLE) {
175                 mask = env->upmmask;
176                 base = env->upmbase;
177             }
178             break;
179         default:
180             g_assert_not_reached();
181         }
182     }
183 #endif
184     if (xl == MXL_RV32) {
185         env->cur_pmmask = mask & UINT32_MAX;
186         env->cur_pmbase = base & UINT32_MAX;
187     } else {
188         env->cur_pmmask = mask;
189         env->cur_pmbase = base;
190     }
191 }
192 
193 #ifndef CONFIG_USER_ONLY
194 
195 /*
196  * The HS-mode is allowed to configure priority only for the
197  * following VS-mode local interrupts:
198  *
199  * 0  (Reserved interrupt, reads as zero)
200  * 1  Supervisor software interrupt
201  * 4  (Reserved interrupt, reads as zero)
202  * 5  Supervisor timer interrupt
203  * 8  (Reserved interrupt, reads as zero)
204  * 13 (Reserved interrupt)
205  * 14 "
206  * 15 "
207  * 16 "
208  * 17 "
209  * 18 "
210  * 19 "
211  * 20 "
212  * 21 "
213  * 22 "
214  * 23 "
215  */
216 
217 static const int hviprio_index2irq[] = {
218     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
219 static const int hviprio_index2rdzero[] = {
220     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
221 
222 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
223 {
224     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
225         return -EINVAL;
226     }
227 
228     if (out_irq) {
229         *out_irq = hviprio_index2irq[index];
230     }
231 
232     if (out_rdzero) {
233         *out_rdzero = hviprio_index2rdzero[index];
234     }
235 
236     return 0;
237 }
238 
239 /*
240  * Default priorities of local interrupts are defined in the
241  * RISC-V Advanced Interrupt Architecture specification.
242  *
243  * ----------------------------------------------------------------
244  *  Default  |
245  *  Priority | Major Interrupt Numbers
246  * ----------------------------------------------------------------
247  *  Highest  | 47, 23, 46, 45, 22, 44,
248  *           | 43, 21, 42, 41, 20, 40
249  *           |
250  *           | 11 (0b),  3 (03),  7 (07)
251  *           |  9 (09),  1 (01),  5 (05)
252  *           | 12 (0c)
253  *           | 10 (0a),  2 (02),  6 (06)
254  *           |
255  *           | 39, 19, 38, 37, 18, 36,
256  *  Lowest   | 35, 17, 34, 33, 16, 32
257  * ----------------------------------------------------------------
258  */
259 static const uint8_t default_iprio[64] = {
260     /* Custom interrupts 48 to 63 */
261     [63] = IPRIO_MMAXIPRIO,
262     [62] = IPRIO_MMAXIPRIO,
263     [61] = IPRIO_MMAXIPRIO,
264     [60] = IPRIO_MMAXIPRIO,
265     [59] = IPRIO_MMAXIPRIO,
266     [58] = IPRIO_MMAXIPRIO,
267     [57] = IPRIO_MMAXIPRIO,
268     [56] = IPRIO_MMAXIPRIO,
269     [55] = IPRIO_MMAXIPRIO,
270     [54] = IPRIO_MMAXIPRIO,
271     [53] = IPRIO_MMAXIPRIO,
272     [52] = IPRIO_MMAXIPRIO,
273     [51] = IPRIO_MMAXIPRIO,
274     [50] = IPRIO_MMAXIPRIO,
275     [49] = IPRIO_MMAXIPRIO,
276     [48] = IPRIO_MMAXIPRIO,
277 
278     /* Custom interrupts 24 to 31 */
279     [31] = IPRIO_MMAXIPRIO,
280     [30] = IPRIO_MMAXIPRIO,
281     [29] = IPRIO_MMAXIPRIO,
282     [28] = IPRIO_MMAXIPRIO,
283     [27] = IPRIO_MMAXIPRIO,
284     [26] = IPRIO_MMAXIPRIO,
285     [25] = IPRIO_MMAXIPRIO,
286     [24] = IPRIO_MMAXIPRIO,
287 
288     [47] = IPRIO_DEFAULT_UPPER,
289     [23] = IPRIO_DEFAULT_UPPER + 1,
290     [46] = IPRIO_DEFAULT_UPPER + 2,
291     [45] = IPRIO_DEFAULT_UPPER + 3,
292     [22] = IPRIO_DEFAULT_UPPER + 4,
293     [44] = IPRIO_DEFAULT_UPPER + 5,
294 
295     [43] = IPRIO_DEFAULT_UPPER + 6,
296     [21] = IPRIO_DEFAULT_UPPER + 7,
297     [42] = IPRIO_DEFAULT_UPPER + 8,
298     [41] = IPRIO_DEFAULT_UPPER + 9,
299     [20] = IPRIO_DEFAULT_UPPER + 10,
300     [40] = IPRIO_DEFAULT_UPPER + 11,
301 
302     [11] = IPRIO_DEFAULT_M,
303     [3]  = IPRIO_DEFAULT_M + 1,
304     [7]  = IPRIO_DEFAULT_M + 2,
305 
306     [9]  = IPRIO_DEFAULT_S,
307     [1]  = IPRIO_DEFAULT_S + 1,
308     [5]  = IPRIO_DEFAULT_S + 2,
309 
310     [12] = IPRIO_DEFAULT_SGEXT,
311 
312     [10] = IPRIO_DEFAULT_VS,
313     [2]  = IPRIO_DEFAULT_VS + 1,
314     [6]  = IPRIO_DEFAULT_VS + 2,
315 
316     [39] = IPRIO_DEFAULT_LOWER,
317     [19] = IPRIO_DEFAULT_LOWER + 1,
318     [38] = IPRIO_DEFAULT_LOWER + 2,
319     [37] = IPRIO_DEFAULT_LOWER + 3,
320     [18] = IPRIO_DEFAULT_LOWER + 4,
321     [36] = IPRIO_DEFAULT_LOWER + 5,
322 
323     [35] = IPRIO_DEFAULT_LOWER + 6,
324     [17] = IPRIO_DEFAULT_LOWER + 7,
325     [34] = IPRIO_DEFAULT_LOWER + 8,
326     [33] = IPRIO_DEFAULT_LOWER + 9,
327     [16] = IPRIO_DEFAULT_LOWER + 10,
328     [32] = IPRIO_DEFAULT_LOWER + 11,
329 };
330 
331 uint8_t riscv_cpu_default_priority(int irq)
332 {
333     if (irq < 0 || irq > 63) {
334         return IPRIO_MMAXIPRIO;
335     }
336 
337     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
338 };
339 
340 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
341                                     int extirq, unsigned int extirq_def_prio,
342                                     uint64_t pending, uint8_t *iprio)
343 {
344     int irq, best_irq = RISCV_EXCP_NONE;
345     unsigned int prio, best_prio = UINT_MAX;
346 
347     if (!pending) {
348         return RISCV_EXCP_NONE;
349     }
350 
351     irq = ctz64(pending);
352     if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
353                                   riscv_cpu_cfg(env)->ext_ssaia)) {
354         return irq;
355     }
356 
357     pending = pending >> irq;
358     while (pending) {
359         prio = iprio[irq];
360         if (!prio) {
361             if (irq == extirq) {
362                 prio = extirq_def_prio;
363             } else {
364                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
365                        1 : IPRIO_MMAXIPRIO;
366             }
367         }
368         if ((pending & 0x1) && (prio <= best_prio)) {
369             best_irq = irq;
370             best_prio = prio;
371         }
372         irq++;
373         pending = pending >> 1;
374     }
375 
376     return best_irq;
377 }
378 
379 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
380 {
381     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
382     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
383     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
384 
385     return (env->mip | vsgein | vstip) & env->mie;
386 }
387 
388 int riscv_cpu_mirq_pending(CPURISCVState *env)
389 {
390     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
391                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
392 
393     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
394                                     irqs, env->miprio);
395 }
396 
397 int riscv_cpu_sirq_pending(CPURISCVState *env)
398 {
399     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
400                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
401 
402     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
403                                     irqs, env->siprio);
404 }
405 
406 int riscv_cpu_vsirq_pending(CPURISCVState *env)
407 {
408     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
409                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
410 
411     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
412                                     irqs >> 1, env->hviprio);
413 }
414 
415 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
416 {
417     int virq;
418     uint64_t irqs, pending, mie, hsie, vsie;
419 
420     /* Determine interrupt enable state of all privilege modes */
421     if (env->virt_enabled) {
422         mie = 1;
423         hsie = 1;
424         vsie = (env->priv < PRV_S) ||
425                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
426     } else {
427         mie = (env->priv < PRV_M) ||
428               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
429         hsie = (env->priv < PRV_S) ||
430                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
431         vsie = 0;
432     }
433 
434     /* Determine all pending interrupts */
435     pending = riscv_cpu_all_pending(env);
436 
437     /* Check M-mode interrupts */
438     irqs = pending & ~env->mideleg & -mie;
439     if (irqs) {
440         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
441                                         irqs, env->miprio);
442     }
443 
444     /* Check HS-mode interrupts */
445     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
446     if (irqs) {
447         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
448                                         irqs, env->siprio);
449     }
450 
451     /* Check VS-mode interrupts */
452     irqs = pending & env->mideleg & env->hideleg & -vsie;
453     if (irqs) {
454         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
455                                         irqs >> 1, env->hviprio);
456         return (virq <= 0) ? virq : virq + 1;
457     }
458 
459     /* Indicate no pending interrupt */
460     return RISCV_EXCP_NONE;
461 }
462 
463 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
464 {
465     if (interrupt_request & CPU_INTERRUPT_HARD) {
466         RISCVCPU *cpu = RISCV_CPU(cs);
467         CPURISCVState *env = &cpu->env;
468         int interruptno = riscv_cpu_local_irq_pending(env);
469         if (interruptno >= 0) {
470             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
471             riscv_cpu_do_interrupt(cs);
472             return true;
473         }
474     }
475     return false;
476 }
477 
478 /* Return true is floating point support is currently enabled */
479 bool riscv_cpu_fp_enabled(CPURISCVState *env)
480 {
481     if (env->mstatus & MSTATUS_FS) {
482         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
483             return false;
484         }
485         return true;
486     }
487 
488     return false;
489 }
490 
491 /* Return true is vector support is currently enabled */
492 bool riscv_cpu_vector_enabled(CPURISCVState *env)
493 {
494     if (env->mstatus & MSTATUS_VS) {
495         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
496             return false;
497         }
498         return true;
499     }
500 
501     return false;
502 }
503 
504 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
505 {
506     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
507                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
508                             MSTATUS64_UXL | MSTATUS_VS;
509 
510     if (riscv_has_ext(env, RVF)) {
511         mstatus_mask |= MSTATUS_FS;
512     }
513     bool current_virt = env->virt_enabled;
514 
515     g_assert(riscv_has_ext(env, RVH));
516 
517     if (current_virt) {
518         /* Current V=1 and we are about to change to V=0 */
519         env->vsstatus = env->mstatus & mstatus_mask;
520         env->mstatus &= ~mstatus_mask;
521         env->mstatus |= env->mstatus_hs;
522 
523         env->vstvec = env->stvec;
524         env->stvec = env->stvec_hs;
525 
526         env->vsscratch = env->sscratch;
527         env->sscratch = env->sscratch_hs;
528 
529         env->vsepc = env->sepc;
530         env->sepc = env->sepc_hs;
531 
532         env->vscause = env->scause;
533         env->scause = env->scause_hs;
534 
535         env->vstval = env->stval;
536         env->stval = env->stval_hs;
537 
538         env->vsatp = env->satp;
539         env->satp = env->satp_hs;
540     } else {
541         /* Current V=0 and we are about to change to V=1 */
542         env->mstatus_hs = env->mstatus & mstatus_mask;
543         env->mstatus &= ~mstatus_mask;
544         env->mstatus |= env->vsstatus;
545 
546         env->stvec_hs = env->stvec;
547         env->stvec = env->vstvec;
548 
549         env->sscratch_hs = env->sscratch;
550         env->sscratch = env->vsscratch;
551 
552         env->sepc_hs = env->sepc;
553         env->sepc = env->vsepc;
554 
555         env->scause_hs = env->scause;
556         env->scause = env->vscause;
557 
558         env->stval_hs = env->stval;
559         env->stval = env->vstval;
560 
561         env->satp_hs = env->satp;
562         env->satp = env->vsatp;
563     }
564 }
565 
566 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
567 {
568     if (!riscv_has_ext(env, RVH)) {
569         return 0;
570     }
571 
572     return env->geilen;
573 }
574 
575 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
576 {
577     if (!riscv_has_ext(env, RVH)) {
578         return;
579     }
580 
581     if (geilen > (TARGET_LONG_BITS - 1)) {
582         return;
583     }
584 
585     env->geilen = geilen;
586 }
587 
588 /* This function can only be called to set virt when RVH is enabled */
589 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
590 {
591     /* Flush the TLB on all virt mode changes. */
592     if (env->virt_enabled != enable) {
593         tlb_flush(env_cpu(env));
594     }
595 
596     env->virt_enabled = enable;
597 
598     if (enable) {
599         /*
600          * The guest external interrupts from an interrupt controller are
601          * delivered only when the Guest/VM is running (i.e. V=1). This means
602          * any guest external interrupt which is triggered while the Guest/VM
603          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
604          * with sluggish response to serial console input and other I/O events.
605          *
606          * To solve this, we check and inject interrupt after setting V=1.
607          */
608         riscv_cpu_update_mip(env, 0, 0);
609     }
610 }
611 
612 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
613 {
614     CPURISCVState *env = &cpu->env;
615     if (env->miclaim & interrupts) {
616         return -1;
617     } else {
618         env->miclaim |= interrupts;
619         return 0;
620     }
621 }
622 
623 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
624                               uint64_t value)
625 {
626     CPUState *cs = env_cpu(env);
627     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
628 
629     if (env->virt_enabled) {
630         gein = get_field(env->hstatus, HSTATUS_VGEIN);
631         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
632     }
633 
634     vstip = env->vstime_irq ? MIP_VSTIP : 0;
635 
636     QEMU_IOTHREAD_LOCK_GUARD();
637 
638     env->mip = (env->mip & ~mask) | (value & mask);
639 
640     if (env->mip | vsgein | vstip) {
641         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
642     } else {
643         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
644     }
645 
646     return old;
647 }
648 
649 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
650                              void *arg)
651 {
652     env->rdtime_fn = fn;
653     env->rdtime_fn_arg = arg;
654 }
655 
656 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
657                                    int (*rmw_fn)(void *arg,
658                                                  target_ulong reg,
659                                                  target_ulong *val,
660                                                  target_ulong new_val,
661                                                  target_ulong write_mask),
662                                    void *rmw_fn_arg)
663 {
664     if (priv <= PRV_M) {
665         env->aia_ireg_rmw_fn[priv] = rmw_fn;
666         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
667     }
668 }
669 
670 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
671 {
672     g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
673 
674     if (icount_enabled() && newpriv != env->priv) {
675         riscv_itrigger_update_priv(env);
676     }
677     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
678     env->priv = newpriv;
679     env->xl = cpu_recompute_xl(env);
680     riscv_cpu_update_mask(env);
681 
682     /*
683      * Clear the load reservation - otherwise a reservation placed in one
684      * context/process can be used by another, resulting in an SC succeeding
685      * incorrectly. Version 2.2 of the ISA specification explicitly requires
686      * this behaviour, while later revisions say that the kernel "should" use
687      * an SC instruction to force the yielding of a load reservation on a
688      * preemptive context switch. As a result, do both.
689      */
690     env->load_res = -1;
691 }
692 
693 /*
694  * get_physical_address_pmp - check PMP permission for this physical address
695  *
696  * Match the PMP region and check permission for this physical address and it's
697  * TLB page. Returns 0 if the permission checking was successful
698  *
699  * @env: CPURISCVState
700  * @prot: The returned protection attributes
701  * @addr: The physical address to be checked permission
702  * @access_type: The type of MMU access
703  * @mode: Indicates current privilege level.
704  */
705 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr,
706                                     int size, MMUAccessType access_type,
707                                     int mode)
708 {
709     pmp_priv_t pmp_priv;
710     bool pmp_has_privs;
711 
712     if (!riscv_cpu_cfg(env)->pmp) {
713         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
714         return TRANSLATE_SUCCESS;
715     }
716 
717     pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type,
718                                        &pmp_priv, mode);
719     if (!pmp_has_privs) {
720         *prot = 0;
721         return TRANSLATE_PMP_FAIL;
722     }
723 
724     *prot = pmp_priv_to_page_prot(pmp_priv);
725 
726     return TRANSLATE_SUCCESS;
727 }
728 
729 /*
730  * get_physical_address - get the physical address for this virtual address
731  *
732  * Do a page table walk to obtain the physical address corresponding to a
733  * virtual address. Returns 0 if the translation was successful
734  *
735  * Adapted from Spike's mmu_t::translate and mmu_t::walk
736  *
737  * @env: CPURISCVState
738  * @physical: This will be set to the calculated physical address
739  * @prot: The returned protection attributes
740  * @addr: The virtual address or guest physical address to be translated
741  * @fault_pte_addr: If not NULL, this will be set to fault pte address
742  *                  when a error occurs on pte address translation.
743  *                  This will already be shifted to match htval.
744  * @access_type: The type of MMU access
745  * @mmu_idx: Indicates current privilege level
746  * @first_stage: Are we in first stage translation?
747  *               Second stage is used for hypervisor guest translation
748  * @two_stage: Are we going to perform two stage translation
749  * @is_debug: Is this access from a debugger or the monitor?
750  */
751 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
752                                 int *ret_prot, vaddr addr,
753                                 target_ulong *fault_pte_addr,
754                                 int access_type, int mmu_idx,
755                                 bool first_stage, bool two_stage,
756                                 bool is_debug)
757 {
758     /*
759      * NOTE: the env->pc value visible here will not be
760      * correct, but the value visible to the exception handler
761      * (riscv_cpu_do_interrupt) is correct
762      */
763     MemTxResult res;
764     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
765     int mode = mmuidx_priv(mmu_idx);
766     bool use_background = false;
767     hwaddr ppn;
768     int napot_bits = 0;
769     target_ulong napot_mask;
770 
771     /*
772      * Check if we should use the background registers for the two
773      * stage translation. We don't need to check if we actually need
774      * two stage translation as that happened before this function
775      * was called. Background registers will be used if the guest has
776      * forced a two stage translation to be on (in HS or M mode).
777      */
778     if (!env->virt_enabled && two_stage) {
779         use_background = true;
780     }
781 
782     if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
783         *physical = addr;
784         *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
785         return TRANSLATE_SUCCESS;
786     }
787 
788     *ret_prot = 0;
789 
790     hwaddr base;
791     int levels, ptidxbits, ptesize, vm, widened;
792 
793     if (first_stage == true) {
794         if (use_background) {
795             if (riscv_cpu_mxl(env) == MXL_RV32) {
796                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
797                 vm = get_field(env->vsatp, SATP32_MODE);
798             } else {
799                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
800                 vm = get_field(env->vsatp, SATP64_MODE);
801             }
802         } else {
803             if (riscv_cpu_mxl(env) == MXL_RV32) {
804                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
805                 vm = get_field(env->satp, SATP32_MODE);
806             } else {
807                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
808                 vm = get_field(env->satp, SATP64_MODE);
809             }
810         }
811         widened = 0;
812     } else {
813         if (riscv_cpu_mxl(env) == MXL_RV32) {
814             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
815             vm = get_field(env->hgatp, SATP32_MODE);
816         } else {
817             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
818             vm = get_field(env->hgatp, SATP64_MODE);
819         }
820         widened = 2;
821     }
822 
823     switch (vm) {
824     case VM_1_10_SV32:
825       levels = 2; ptidxbits = 10; ptesize = 4; break;
826     case VM_1_10_SV39:
827       levels = 3; ptidxbits = 9; ptesize = 8; break;
828     case VM_1_10_SV48:
829       levels = 4; ptidxbits = 9; ptesize = 8; break;
830     case VM_1_10_SV57:
831       levels = 5; ptidxbits = 9; ptesize = 8; break;
832     case VM_1_10_MBARE:
833         *physical = addr;
834         *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
835         return TRANSLATE_SUCCESS;
836     default:
837       g_assert_not_reached();
838     }
839 
840     CPUState *cs = env_cpu(env);
841     int va_bits = PGSHIFT + levels * ptidxbits + widened;
842 
843     if (first_stage == true) {
844         target_ulong mask, masked_msbs;
845 
846         if (TARGET_LONG_BITS > (va_bits - 1)) {
847             mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
848         } else {
849             mask = 0;
850         }
851         masked_msbs = (addr >> (va_bits - 1)) & mask;
852 
853         if (masked_msbs != 0 && masked_msbs != mask) {
854             return TRANSLATE_FAIL;
855         }
856     } else {
857         if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
858             return TRANSLATE_FAIL;
859         }
860     }
861 
862     bool pbmte = env->menvcfg & MENVCFG_PBMTE;
863     bool adue = env->menvcfg & MENVCFG_ADUE;
864 
865     if (first_stage && two_stage && env->virt_enabled) {
866         pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
867         adue = adue && (env->henvcfg & HENVCFG_ADUE);
868     }
869 
870     int ptshift = (levels - 1) * ptidxbits;
871     target_ulong pte;
872     hwaddr pte_addr;
873     int i;
874 
875 #if !TCG_OVERSIZED_GUEST
876 restart:
877 #endif
878     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
879         target_ulong idx;
880         if (i == 0) {
881             idx = (addr >> (PGSHIFT + ptshift)) &
882                            ((1 << (ptidxbits + widened)) - 1);
883         } else {
884             idx = (addr >> (PGSHIFT + ptshift)) &
885                            ((1 << ptidxbits) - 1);
886         }
887 
888         /* check that physical address of PTE is legal */
889 
890         if (two_stage && first_stage) {
891             int vbase_prot;
892             hwaddr vbase;
893 
894             /* Do the second stage translation on the base PTE address. */
895             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
896                                                  base, NULL, MMU_DATA_LOAD,
897                                                  MMUIdx_U, false, true,
898                                                  is_debug);
899 
900             if (vbase_ret != TRANSLATE_SUCCESS) {
901                 if (fault_pte_addr) {
902                     *fault_pte_addr = (base + idx * ptesize) >> 2;
903                 }
904                 return TRANSLATE_G_STAGE_FAIL;
905             }
906 
907             pte_addr = vbase + idx * ptesize;
908         } else {
909             pte_addr = base + idx * ptesize;
910         }
911 
912         int pmp_prot;
913         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr,
914                                                sizeof(target_ulong),
915                                                MMU_DATA_LOAD, PRV_S);
916         if (pmp_ret != TRANSLATE_SUCCESS) {
917             return TRANSLATE_PMP_FAIL;
918         }
919 
920         if (riscv_cpu_mxl(env) == MXL_RV32) {
921             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
922         } else {
923             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
924         }
925 
926         if (res != MEMTX_OK) {
927             return TRANSLATE_FAIL;
928         }
929 
930         if (riscv_cpu_sxl(env) == MXL_RV32) {
931             ppn = pte >> PTE_PPN_SHIFT;
932         } else {
933             if (pte & PTE_RESERVED) {
934                 return TRANSLATE_FAIL;
935             }
936 
937             if (!pbmte && (pte & PTE_PBMT)) {
938                 return TRANSLATE_FAIL;
939             }
940 
941             if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
942                 return TRANSLATE_FAIL;
943             }
944 
945             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
946         }
947 
948         if (!(pte & PTE_V)) {
949             /* Invalid PTE */
950             return TRANSLATE_FAIL;
951         }
952         if (pte & (PTE_R | PTE_W | PTE_X)) {
953             goto leaf;
954         }
955 
956         /* Inner PTE, continue walking */
957         if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
958             return TRANSLATE_FAIL;
959         }
960         base = ppn << PGSHIFT;
961     }
962 
963     /* No leaf pte at any translation level. */
964     return TRANSLATE_FAIL;
965 
966  leaf:
967     if (ppn & ((1ULL << ptshift) - 1)) {
968         /* Misaligned PPN */
969         return TRANSLATE_FAIL;
970     }
971     if (!pbmte && (pte & PTE_PBMT)) {
972         /* Reserved without Svpbmt. */
973         return TRANSLATE_FAIL;
974     }
975 
976     /* Check for reserved combinations of RWX flags. */
977     switch (pte & (PTE_R | PTE_W | PTE_X)) {
978     case PTE_W:
979     case PTE_W | PTE_X:
980         return TRANSLATE_FAIL;
981     }
982 
983     int prot = 0;
984     if (pte & PTE_R) {
985         prot |= PAGE_READ;
986     }
987     if (pte & PTE_W) {
988         prot |= PAGE_WRITE;
989     }
990     if (pte & PTE_X) {
991         bool mxr;
992 
993         if (first_stage == true) {
994             mxr = get_field(env->mstatus, MSTATUS_MXR);
995         } else {
996             mxr = get_field(env->vsstatus, MSTATUS_MXR);
997         }
998         if (mxr) {
999             prot |= PAGE_READ;
1000         }
1001         prot |= PAGE_EXEC;
1002     }
1003 
1004     if (pte & PTE_U) {
1005         if (mode != PRV_U) {
1006             if (!mmuidx_sum(mmu_idx)) {
1007                 return TRANSLATE_FAIL;
1008             }
1009             /* SUM allows only read+write, not execute. */
1010             prot &= PAGE_READ | PAGE_WRITE;
1011         }
1012     } else if (mode != PRV_S) {
1013         /* Supervisor PTE flags when not S mode */
1014         return TRANSLATE_FAIL;
1015     }
1016 
1017     if (!((prot >> access_type) & 1)) {
1018         /* Access check failed */
1019         return TRANSLATE_FAIL;
1020     }
1021 
1022     /* If necessary, set accessed and dirty bits. */
1023     target_ulong updated_pte = pte | PTE_A |
1024                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1025 
1026     /* Page table updates need to be atomic with MTTCG enabled */
1027     if (updated_pte != pte && !is_debug) {
1028         if (!adue) {
1029             return TRANSLATE_FAIL;
1030         }
1031 
1032         /*
1033          * - if accessed or dirty bits need updating, and the PTE is
1034          *   in RAM, then we do so atomically with a compare and swap.
1035          * - if the PTE is in IO space or ROM, then it can't be updated
1036          *   and we return TRANSLATE_FAIL.
1037          * - if the PTE changed by the time we went to update it, then
1038          *   it is no longer valid and we must re-walk the page table.
1039          */
1040         MemoryRegion *mr;
1041         hwaddr l = sizeof(target_ulong), addr1;
1042         mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1043                                      false, MEMTXATTRS_UNSPECIFIED);
1044         if (memory_region_is_ram(mr)) {
1045             target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
1046 #if TCG_OVERSIZED_GUEST
1047             /*
1048              * MTTCG is not enabled on oversized TCG guests so
1049              * page table updates do not need to be atomic
1050              */
1051             *pte_pa = pte = updated_pte;
1052 #else
1053             target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
1054             if (old_pte != pte) {
1055                 goto restart;
1056             }
1057             pte = updated_pte;
1058 #endif
1059         } else {
1060             /*
1061              * Misconfigured PTE in ROM (AD bits are not preset) or
1062              * PTE is in IO space and can't be updated atomically.
1063              */
1064             return TRANSLATE_FAIL;
1065         }
1066     }
1067 
1068     /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1069     target_ulong vpn = addr >> PGSHIFT;
1070 
1071     if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1072         napot_bits = ctzl(ppn) + 1;
1073         if ((i != (levels - 1)) || (napot_bits != 4)) {
1074             return TRANSLATE_FAIL;
1075         }
1076     }
1077 
1078     napot_mask = (1 << napot_bits) - 1;
1079     *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1080                   (vpn & (((target_ulong)1 << ptshift) - 1))
1081                  ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1082 
1083     /*
1084      * Remove write permission unless this is a store, or the page is
1085      * already dirty, so that we TLB miss on later writes to update
1086      * the dirty bit.
1087      */
1088     if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1089         prot &= ~PAGE_WRITE;
1090     }
1091     *ret_prot = prot;
1092 
1093     return TRANSLATE_SUCCESS;
1094 }
1095 
1096 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1097                                 MMUAccessType access_type, bool pmp_violation,
1098                                 bool first_stage, bool two_stage,
1099                                 bool two_stage_indirect)
1100 {
1101     CPUState *cs = env_cpu(env);
1102     int page_fault_exceptions, vm;
1103     uint64_t stap_mode;
1104 
1105     if (riscv_cpu_mxl(env) == MXL_RV32) {
1106         stap_mode = SATP32_MODE;
1107     } else {
1108         stap_mode = SATP64_MODE;
1109     }
1110 
1111     if (first_stage) {
1112         vm = get_field(env->satp, stap_mode);
1113     } else {
1114         vm = get_field(env->hgatp, stap_mode);
1115     }
1116 
1117     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1118 
1119     switch (access_type) {
1120     case MMU_INST_FETCH:
1121         if (env->virt_enabled && !first_stage) {
1122             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1123         } else {
1124             cs->exception_index = page_fault_exceptions ?
1125                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1126         }
1127         break;
1128     case MMU_DATA_LOAD:
1129         if (two_stage && !first_stage) {
1130             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1131         } else {
1132             cs->exception_index = page_fault_exceptions ?
1133                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1134         }
1135         break;
1136     case MMU_DATA_STORE:
1137         if (two_stage && !first_stage) {
1138             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1139         } else {
1140             cs->exception_index = page_fault_exceptions ?
1141                 RISCV_EXCP_STORE_PAGE_FAULT :
1142                 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1143         }
1144         break;
1145     default:
1146         g_assert_not_reached();
1147     }
1148     env->badaddr = address;
1149     env->two_stage_lookup = two_stage;
1150     env->two_stage_indirect_lookup = two_stage_indirect;
1151 }
1152 
1153 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1154 {
1155     RISCVCPU *cpu = RISCV_CPU(cs);
1156     CPURISCVState *env = &cpu->env;
1157     hwaddr phys_addr;
1158     int prot;
1159     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1160 
1161     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1162                              true, env->virt_enabled, true)) {
1163         return -1;
1164     }
1165 
1166     if (env->virt_enabled) {
1167         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1168                                  0, mmu_idx, false, true, true)) {
1169             return -1;
1170         }
1171     }
1172 
1173     return phys_addr & TARGET_PAGE_MASK;
1174 }
1175 
1176 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1177                                      vaddr addr, unsigned size,
1178                                      MMUAccessType access_type,
1179                                      int mmu_idx, MemTxAttrs attrs,
1180                                      MemTxResult response, uintptr_t retaddr)
1181 {
1182     RISCVCPU *cpu = RISCV_CPU(cs);
1183     CPURISCVState *env = &cpu->env;
1184 
1185     if (access_type == MMU_DATA_STORE) {
1186         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1187     } else if (access_type == MMU_DATA_LOAD) {
1188         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1189     } else {
1190         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1191     }
1192 
1193     env->badaddr = addr;
1194     env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1195     env->two_stage_indirect_lookup = false;
1196     cpu_loop_exit_restore(cs, retaddr);
1197 }
1198 
1199 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1200                                    MMUAccessType access_type, int mmu_idx,
1201                                    uintptr_t retaddr)
1202 {
1203     RISCVCPU *cpu = RISCV_CPU(cs);
1204     CPURISCVState *env = &cpu->env;
1205     switch (access_type) {
1206     case MMU_INST_FETCH:
1207         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1208         break;
1209     case MMU_DATA_LOAD:
1210         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1211         break;
1212     case MMU_DATA_STORE:
1213         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1214         break;
1215     default:
1216         g_assert_not_reached();
1217     }
1218     env->badaddr = addr;
1219     env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1220     env->two_stage_indirect_lookup = false;
1221     cpu_loop_exit_restore(cs, retaddr);
1222 }
1223 
1224 
1225 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1226 {
1227     enum riscv_pmu_event_idx pmu_event_type;
1228 
1229     switch (access_type) {
1230     case MMU_INST_FETCH:
1231         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1232         break;
1233     case MMU_DATA_LOAD:
1234         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1235         break;
1236     case MMU_DATA_STORE:
1237         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1238         break;
1239     default:
1240         return;
1241     }
1242 
1243     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1244 }
1245 
1246 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1247                         MMUAccessType access_type, int mmu_idx,
1248                         bool probe, uintptr_t retaddr)
1249 {
1250     RISCVCPU *cpu = RISCV_CPU(cs);
1251     CPURISCVState *env = &cpu->env;
1252     vaddr im_address;
1253     hwaddr pa = 0;
1254     int prot, prot2, prot_pmp;
1255     bool pmp_violation = false;
1256     bool first_stage_error = true;
1257     bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1258     bool two_stage_indirect_error = false;
1259     int ret = TRANSLATE_FAIL;
1260     int mode = mmu_idx;
1261     /* default TLB page size */
1262     target_ulong tlb_size = TARGET_PAGE_SIZE;
1263 
1264     env->guest_phys_fault_addr = 0;
1265 
1266     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1267                   __func__, address, access_type, mmu_idx);
1268 
1269     pmu_tlb_fill_incr_ctr(cpu, access_type);
1270     if (two_stage_lookup) {
1271         /* Two stage lookup */
1272         ret = get_physical_address(env, &pa, &prot, address,
1273                                    &env->guest_phys_fault_addr, access_type,
1274                                    mmu_idx, true, true, false);
1275 
1276         /*
1277          * A G-stage exception may be triggered during two state lookup.
1278          * And the env->guest_phys_fault_addr has already been set in
1279          * get_physical_address().
1280          */
1281         if (ret == TRANSLATE_G_STAGE_FAIL) {
1282             first_stage_error = false;
1283             two_stage_indirect_error = true;
1284         }
1285 
1286         qemu_log_mask(CPU_LOG_MMU,
1287                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1288                       HWADDR_FMT_plx " prot %d\n",
1289                       __func__, address, ret, pa, prot);
1290 
1291         if (ret == TRANSLATE_SUCCESS) {
1292             /* Second stage lookup */
1293             im_address = pa;
1294 
1295             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1296                                        access_type, MMUIdx_U, false, true,
1297                                        false);
1298 
1299             qemu_log_mask(CPU_LOG_MMU,
1300                           "%s 2nd-stage address=%" VADDR_PRIx
1301                           " ret %d physical "
1302                           HWADDR_FMT_plx " prot %d\n",
1303                           __func__, im_address, ret, pa, prot2);
1304 
1305             prot &= prot2;
1306 
1307             if (ret == TRANSLATE_SUCCESS) {
1308                 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1309                                                size, access_type, mode);
1310                 tlb_size = pmp_get_tlb_size(env, pa);
1311 
1312                 qemu_log_mask(CPU_LOG_MMU,
1313                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1314                               " %d tlb_size " TARGET_FMT_lu "\n",
1315                               __func__, pa, ret, prot_pmp, tlb_size);
1316 
1317                 prot &= prot_pmp;
1318             }
1319 
1320             if (ret != TRANSLATE_SUCCESS) {
1321                 /*
1322                  * Guest physical address translation failed, this is a HS
1323                  * level exception
1324                  */
1325                 first_stage_error = false;
1326                 env->guest_phys_fault_addr = (im_address |
1327                                               (address &
1328                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1329             }
1330         }
1331     } else {
1332         /* Single stage lookup */
1333         ret = get_physical_address(env, &pa, &prot, address, NULL,
1334                                    access_type, mmu_idx, true, false, false);
1335 
1336         qemu_log_mask(CPU_LOG_MMU,
1337                       "%s address=%" VADDR_PRIx " ret %d physical "
1338                       HWADDR_FMT_plx " prot %d\n",
1339                       __func__, address, ret, pa, prot);
1340 
1341         if (ret == TRANSLATE_SUCCESS) {
1342             ret = get_physical_address_pmp(env, &prot_pmp, pa,
1343                                            size, access_type, mode);
1344             tlb_size = pmp_get_tlb_size(env, pa);
1345 
1346             qemu_log_mask(CPU_LOG_MMU,
1347                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1348                           " %d tlb_size " TARGET_FMT_lu "\n",
1349                           __func__, pa, ret, prot_pmp, tlb_size);
1350 
1351             prot &= prot_pmp;
1352         }
1353     }
1354 
1355     if (ret == TRANSLATE_PMP_FAIL) {
1356         pmp_violation = true;
1357     }
1358 
1359     if (ret == TRANSLATE_SUCCESS) {
1360         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1361                      prot, mmu_idx, tlb_size);
1362         return true;
1363     } else if (probe) {
1364         return false;
1365     } else {
1366         raise_mmu_exception(env, address, access_type, pmp_violation,
1367                             first_stage_error, two_stage_lookup,
1368                             two_stage_indirect_error);
1369         cpu_loop_exit_restore(cs, retaddr);
1370     }
1371 
1372     return true;
1373 }
1374 
1375 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1376                                            target_ulong insn,
1377                                            target_ulong taddr)
1378 {
1379     target_ulong xinsn = 0;
1380     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1381 
1382     /*
1383      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1384      * be uncompressed. The Quadrant 1 of RVC instruction space need
1385      * not be transformed because these instructions won't generate
1386      * any load/store trap.
1387      */
1388 
1389     if ((insn & 0x3) != 0x3) {
1390         /* Transform 16bit instruction into 32bit instruction */
1391         switch (GET_C_OP(insn)) {
1392         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1393             switch (GET_C_FUNC(insn)) {
1394             case OPC_RISC_C_FUNC_FLD_LQ:
1395                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1396                     xinsn = OPC_RISC_FLD;
1397                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1398                     access_rs1 = GET_C_RS1S(insn);
1399                     access_imm = GET_C_LD_IMM(insn);
1400                     access_size = 8;
1401                 }
1402                 break;
1403             case OPC_RISC_C_FUNC_LW: /* C.LW */
1404                 xinsn = OPC_RISC_LW;
1405                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1406                 access_rs1 = GET_C_RS1S(insn);
1407                 access_imm = GET_C_LW_IMM(insn);
1408                 access_size = 4;
1409                 break;
1410             case OPC_RISC_C_FUNC_FLW_LD:
1411                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1412                     xinsn = OPC_RISC_FLW;
1413                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1414                     access_rs1 = GET_C_RS1S(insn);
1415                     access_imm = GET_C_LW_IMM(insn);
1416                     access_size = 4;
1417                 } else { /* C.LD (RV64/RV128) */
1418                     xinsn = OPC_RISC_LD;
1419                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1420                     access_rs1 = GET_C_RS1S(insn);
1421                     access_imm = GET_C_LD_IMM(insn);
1422                     access_size = 8;
1423                 }
1424                 break;
1425             case OPC_RISC_C_FUNC_FSD_SQ:
1426                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1427                     xinsn = OPC_RISC_FSD;
1428                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1429                     access_rs1 = GET_C_RS1S(insn);
1430                     access_imm = GET_C_SD_IMM(insn);
1431                     access_size = 8;
1432                 }
1433                 break;
1434             case OPC_RISC_C_FUNC_SW: /* C.SW */
1435                 xinsn = OPC_RISC_SW;
1436                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1437                 access_rs1 = GET_C_RS1S(insn);
1438                 access_imm = GET_C_SW_IMM(insn);
1439                 access_size = 4;
1440                 break;
1441             case OPC_RISC_C_FUNC_FSW_SD:
1442                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1443                     xinsn = OPC_RISC_FSW;
1444                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1445                     access_rs1 = GET_C_RS1S(insn);
1446                     access_imm = GET_C_SW_IMM(insn);
1447                     access_size = 4;
1448                 } else { /* C.SD (RV64/RV128) */
1449                     xinsn = OPC_RISC_SD;
1450                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1451                     access_rs1 = GET_C_RS1S(insn);
1452                     access_imm = GET_C_SD_IMM(insn);
1453                     access_size = 8;
1454                 }
1455                 break;
1456             default:
1457                 break;
1458             }
1459             break;
1460         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1461             switch (GET_C_FUNC(insn)) {
1462             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1463                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1464                     xinsn = OPC_RISC_FLD;
1465                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1466                     access_rs1 = 2;
1467                     access_imm = GET_C_LDSP_IMM(insn);
1468                     access_size = 8;
1469                 }
1470                 break;
1471             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1472                 xinsn = OPC_RISC_LW;
1473                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1474                 access_rs1 = 2;
1475                 access_imm = GET_C_LWSP_IMM(insn);
1476                 access_size = 4;
1477                 break;
1478             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1479                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1480                     xinsn = OPC_RISC_FLW;
1481                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1482                     access_rs1 = 2;
1483                     access_imm = GET_C_LWSP_IMM(insn);
1484                     access_size = 4;
1485                 } else { /* C.LDSP (RV64/RV128) */
1486                     xinsn = OPC_RISC_LD;
1487                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1488                     access_rs1 = 2;
1489                     access_imm = GET_C_LDSP_IMM(insn);
1490                     access_size = 8;
1491                 }
1492                 break;
1493             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1494                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1495                     xinsn = OPC_RISC_FSD;
1496                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1497                     access_rs1 = 2;
1498                     access_imm = GET_C_SDSP_IMM(insn);
1499                     access_size = 8;
1500                 }
1501                 break;
1502             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1503                 xinsn = OPC_RISC_SW;
1504                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1505                 access_rs1 = 2;
1506                 access_imm = GET_C_SWSP_IMM(insn);
1507                 access_size = 4;
1508                 break;
1509             case 7:
1510                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1511                     xinsn = OPC_RISC_FSW;
1512                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1513                     access_rs1 = 2;
1514                     access_imm = GET_C_SWSP_IMM(insn);
1515                     access_size = 4;
1516                 } else { /* C.SDSP (RV64/RV128) */
1517                     xinsn = OPC_RISC_SD;
1518                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1519                     access_rs1 = 2;
1520                     access_imm = GET_C_SDSP_IMM(insn);
1521                     access_size = 8;
1522                 }
1523                 break;
1524             default:
1525                 break;
1526             }
1527             break;
1528         default:
1529             break;
1530         }
1531 
1532         /*
1533          * Clear Bit1 of transformed instruction to indicate that
1534          * original insruction was a 16bit instruction
1535          */
1536         xinsn &= ~((target_ulong)0x2);
1537     } else {
1538         /* Transform 32bit (or wider) instructions */
1539         switch (MASK_OP_MAJOR(insn)) {
1540         case OPC_RISC_ATOMIC:
1541             xinsn = insn;
1542             access_rs1 = GET_RS1(insn);
1543             access_size = 1 << GET_FUNCT3(insn);
1544             break;
1545         case OPC_RISC_LOAD:
1546         case OPC_RISC_FP_LOAD:
1547             xinsn = SET_I_IMM(insn, 0);
1548             access_rs1 = GET_RS1(insn);
1549             access_imm = GET_IMM(insn);
1550             access_size = 1 << GET_FUNCT3(insn);
1551             break;
1552         case OPC_RISC_STORE:
1553         case OPC_RISC_FP_STORE:
1554             xinsn = SET_S_IMM(insn, 0);
1555             access_rs1 = GET_RS1(insn);
1556             access_imm = GET_STORE_IMM(insn);
1557             access_size = 1 << GET_FUNCT3(insn);
1558             break;
1559         case OPC_RISC_SYSTEM:
1560             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1561                 xinsn = insn;
1562                 access_rs1 = GET_RS1(insn);
1563                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1564                 access_size = 1 << access_size;
1565             }
1566             break;
1567         default:
1568             break;
1569         }
1570     }
1571 
1572     if (access_size) {
1573         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1574                                (access_size - 1));
1575     }
1576 
1577     return xinsn;
1578 }
1579 #endif /* !CONFIG_USER_ONLY */
1580 
1581 /*
1582  * Handle Traps
1583  *
1584  * Adapted from Spike's processor_t::take_trap.
1585  *
1586  */
1587 void riscv_cpu_do_interrupt(CPUState *cs)
1588 {
1589 #if !defined(CONFIG_USER_ONLY)
1590 
1591     RISCVCPU *cpu = RISCV_CPU(cs);
1592     CPURISCVState *env = &cpu->env;
1593     bool write_gva = false;
1594     uint64_t s;
1595 
1596     /*
1597      * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1598      * so we mask off the MSB and separate into trap type and cause.
1599      */
1600     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1601     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1602     uint64_t deleg = async ? env->mideleg : env->medeleg;
1603     target_ulong tval = 0;
1604     target_ulong tinst = 0;
1605     target_ulong htval = 0;
1606     target_ulong mtval2 = 0;
1607 
1608     if  (cause == RISCV_EXCP_SEMIHOST) {
1609         do_common_semihosting(cs);
1610         env->pc += 4;
1611         return;
1612     }
1613 
1614     if (!async) {
1615         /* set tval to badaddr for traps with address information */
1616         switch (cause) {
1617         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1618         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1619         case RISCV_EXCP_LOAD_ADDR_MIS:
1620         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1621         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1622         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1623         case RISCV_EXCP_LOAD_PAGE_FAULT:
1624         case RISCV_EXCP_STORE_PAGE_FAULT:
1625             write_gva = env->two_stage_lookup;
1626             tval = env->badaddr;
1627             if (env->two_stage_indirect_lookup) {
1628                 /*
1629                  * special pseudoinstruction for G-stage fault taken while
1630                  * doing VS-stage page table walk.
1631                  */
1632                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1633             } else {
1634                 /*
1635                  * The "Addr. Offset" field in transformed instruction is
1636                  * non-zero only for misaligned access.
1637                  */
1638                 tinst = riscv_transformed_insn(env, env->bins, tval);
1639             }
1640             break;
1641         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1642         case RISCV_EXCP_INST_ADDR_MIS:
1643         case RISCV_EXCP_INST_ACCESS_FAULT:
1644         case RISCV_EXCP_INST_PAGE_FAULT:
1645             write_gva = env->two_stage_lookup;
1646             tval = env->badaddr;
1647             if (env->two_stage_indirect_lookup) {
1648                 /*
1649                  * special pseudoinstruction for G-stage fault taken while
1650                  * doing VS-stage page table walk.
1651                  */
1652                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1653             }
1654             break;
1655         case RISCV_EXCP_ILLEGAL_INST:
1656         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1657             tval = env->bins;
1658             break;
1659         case RISCV_EXCP_BREAKPOINT:
1660             if (cs->watchpoint_hit) {
1661                 tval = cs->watchpoint_hit->hitaddr;
1662                 cs->watchpoint_hit = NULL;
1663             }
1664             break;
1665         default:
1666             break;
1667         }
1668         /* ecall is dispatched as one cause so translate based on mode */
1669         if (cause == RISCV_EXCP_U_ECALL) {
1670             assert(env->priv <= 3);
1671 
1672             if (env->priv == PRV_M) {
1673                 cause = RISCV_EXCP_M_ECALL;
1674             } else if (env->priv == PRV_S && env->virt_enabled) {
1675                 cause = RISCV_EXCP_VS_ECALL;
1676             } else if (env->priv == PRV_S && !env->virt_enabled) {
1677                 cause = RISCV_EXCP_S_ECALL;
1678             } else if (env->priv == PRV_U) {
1679                 cause = RISCV_EXCP_U_ECALL;
1680             }
1681         }
1682     }
1683 
1684     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1685                      riscv_cpu_get_trap_name(cause, async));
1686 
1687     qemu_log_mask(CPU_LOG_INT,
1688                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1689                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1690                   __func__, env->mhartid, async, cause, env->pc, tval,
1691                   riscv_cpu_get_trap_name(cause, async));
1692 
1693     if (env->priv <= PRV_S &&
1694             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1695         /* handle the trap in S-mode */
1696         if (riscv_has_ext(env, RVH)) {
1697             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1698 
1699             if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1700                 /* Trap to VS mode */
1701                 /*
1702                  * See if we need to adjust cause. Yes if its VS mode interrupt
1703                  * no if hypervisor has delegated one of hs mode's interrupt
1704                  */
1705                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1706                     cause == IRQ_VS_EXT) {
1707                     cause = cause - 1;
1708                 }
1709                 write_gva = false;
1710             } else if (env->virt_enabled) {
1711                 /* Trap into HS mode, from virt */
1712                 riscv_cpu_swap_hypervisor_regs(env);
1713                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1714                                          env->priv);
1715                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1716 
1717                 htval = env->guest_phys_fault_addr;
1718 
1719                 riscv_cpu_set_virt_enabled(env, 0);
1720             } else {
1721                 /* Trap into HS mode */
1722                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1723                 htval = env->guest_phys_fault_addr;
1724             }
1725             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1726         }
1727 
1728         s = env->mstatus;
1729         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1730         s = set_field(s, MSTATUS_SPP, env->priv);
1731         s = set_field(s, MSTATUS_SIE, 0);
1732         env->mstatus = s;
1733         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1734         env->sepc = env->pc;
1735         env->stval = tval;
1736         env->htval = htval;
1737         env->htinst = tinst;
1738         env->pc = (env->stvec >> 2 << 2) +
1739                   ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1740         riscv_cpu_set_mode(env, PRV_S);
1741     } else {
1742         /* handle the trap in M-mode */
1743         if (riscv_has_ext(env, RVH)) {
1744             if (env->virt_enabled) {
1745                 riscv_cpu_swap_hypervisor_regs(env);
1746             }
1747             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1748                                      env->virt_enabled);
1749             if (env->virt_enabled && tval) {
1750                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1751             }
1752 
1753             mtval2 = env->guest_phys_fault_addr;
1754 
1755             /* Trapping to M mode, virt is disabled */
1756             riscv_cpu_set_virt_enabled(env, 0);
1757         }
1758 
1759         s = env->mstatus;
1760         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1761         s = set_field(s, MSTATUS_MPP, env->priv);
1762         s = set_field(s, MSTATUS_MIE, 0);
1763         env->mstatus = s;
1764         env->mcause = cause | ~(((target_ulong)-1) >> async);
1765         env->mepc = env->pc;
1766         env->mtval = tval;
1767         env->mtval2 = mtval2;
1768         env->mtinst = tinst;
1769         env->pc = (env->mtvec >> 2 << 2) +
1770                   ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1771         riscv_cpu_set_mode(env, PRV_M);
1772     }
1773 
1774     /*
1775      * NOTE: it is not necessary to yield load reservations here. It is only
1776      * necessary for an SC from "another hart" to cause a load reservation
1777      * to be yielded. Refer to the memory consistency model section of the
1778      * RISC-V ISA Specification.
1779      */
1780 
1781     env->two_stage_lookup = false;
1782     env->two_stage_indirect_lookup = false;
1783 #endif
1784     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1785 }
1786