xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision e0b343b5)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "instmap.h"
28 #include "tcg/tcg-op.h"
29 #include "trace.h"
30 #include "semihosting/common-semi.h"
31 #include "sysemu/cpu-timers.h"
32 #include "cpu_bits.h"
33 #include "debug.h"
34 #include "tcg/oversized-guest.h"
35 
36 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
37 {
38 #ifdef CONFIG_USER_ONLY
39     return 0;
40 #else
41     bool virt = env->virt_enabled;
42     int mode = env->priv;
43 
44     /* All priv -> mmu_idx mapping are here */
45     if (!ifetch) {
46         uint64_t status = env->mstatus;
47 
48         if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
49             mode = get_field(env->mstatus, MSTATUS_MPP);
50             virt = get_field(env->mstatus, MSTATUS_MPV);
51             if (virt) {
52                 status = env->vsstatus;
53             }
54         }
55         if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
56             mode = MMUIdx_S_SUM;
57         }
58     }
59 
60     return mode | (virt ? MMU_2STAGE_BIT : 0);
61 #endif
62 }
63 
64 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
65                           target_ulong *cs_base, uint32_t *pflags)
66 {
67     CPUState *cs = env_cpu(env);
68     RISCVCPU *cpu = RISCV_CPU(cs);
69     RISCVExtStatus fs, vs;
70     uint32_t flags = 0;
71 
72     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
73     *cs_base = 0;
74 
75     if (cpu->cfg.ext_zve32f) {
76         /*
77          * If env->vl equals to VLMAX, we can use generic vector operation
78          * expanders (GVEC) to accerlate the vector operations.
79          * However, as LMUL could be a fractional number. The maximum
80          * vector size can be operated might be less than 8 bytes,
81          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
82          * only when maxsz >= 8 bytes.
83          */
84         uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
85         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
86         uint32_t maxsz = vlmax << sew;
87         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
88                            (maxsz >= 8);
89         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
90         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
91         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
92                            FIELD_EX64(env->vtype, VTYPE, VLMUL));
93         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
94         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
95                            FIELD_EX64(env->vtype, VTYPE, VTA));
96         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
97                            FIELD_EX64(env->vtype, VTYPE, VMA));
98         flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
99     } else {
100         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
101     }
102 
103 #ifdef CONFIG_USER_ONLY
104     fs = EXT_STATUS_DIRTY;
105     vs = EXT_STATUS_DIRTY;
106 #else
107     flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
108 
109     flags |= cpu_mmu_index(env, 0);
110     fs = get_field(env->mstatus, MSTATUS_FS);
111     vs = get_field(env->mstatus, MSTATUS_VS);
112 
113     if (env->virt_enabled) {
114         flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
115         /*
116          * Merge DISABLED and !DIRTY states using MIN.
117          * We will set both fields when dirtying.
118          */
119         fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
120         vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
121     }
122 
123     /* With Zfinx, floating point is enabled/disabled by Smstateen. */
124     if (!riscv_has_ext(env, RVF)) {
125         fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE)
126              ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED;
127     }
128 
129     if (cpu->cfg.debug && !icount_enabled()) {
130         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
131     }
132 #endif
133 
134     flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
135     flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
136     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
137     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
138         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
139     }
140     if (env->cur_pmbase != 0) {
141         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
142     }
143 
144     *pflags = flags;
145 }
146 
147 void riscv_cpu_update_mask(CPURISCVState *env)
148 {
149     target_ulong mask = -1, base = 0;
150     /*
151      * TODO: Current RVJ spec does not specify
152      * how the extension interacts with XLEN.
153      */
154 #ifndef CONFIG_USER_ONLY
155     if (riscv_has_ext(env, RVJ)) {
156         switch (env->priv) {
157         case PRV_M:
158             if (env->mmte & M_PM_ENABLE) {
159                 mask = env->mpmmask;
160                 base = env->mpmbase;
161             }
162             break;
163         case PRV_S:
164             if (env->mmte & S_PM_ENABLE) {
165                 mask = env->spmmask;
166                 base = env->spmbase;
167             }
168             break;
169         case PRV_U:
170             if (env->mmte & U_PM_ENABLE) {
171                 mask = env->upmmask;
172                 base = env->upmbase;
173             }
174             break;
175         default:
176             g_assert_not_reached();
177         }
178     }
179 #endif
180     if (env->xl == MXL_RV32) {
181         env->cur_pmmask = mask & UINT32_MAX;
182         env->cur_pmbase = base & UINT32_MAX;
183     } else {
184         env->cur_pmmask = mask;
185         env->cur_pmbase = base;
186     }
187 }
188 
189 #ifndef CONFIG_USER_ONLY
190 
191 /*
192  * The HS-mode is allowed to configure priority only for the
193  * following VS-mode local interrupts:
194  *
195  * 0  (Reserved interrupt, reads as zero)
196  * 1  Supervisor software interrupt
197  * 4  (Reserved interrupt, reads as zero)
198  * 5  Supervisor timer interrupt
199  * 8  (Reserved interrupt, reads as zero)
200  * 13 (Reserved interrupt)
201  * 14 "
202  * 15 "
203  * 16 "
204  * 17 "
205  * 18 "
206  * 19 "
207  * 20 "
208  * 21 "
209  * 22 "
210  * 23 "
211  */
212 
213 static const int hviprio_index2irq[] = {
214     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
215 static const int hviprio_index2rdzero[] = {
216     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
217 
218 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
219 {
220     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
221         return -EINVAL;
222     }
223 
224     if (out_irq) {
225         *out_irq = hviprio_index2irq[index];
226     }
227 
228     if (out_rdzero) {
229         *out_rdzero = hviprio_index2rdzero[index];
230     }
231 
232     return 0;
233 }
234 
235 /*
236  * Default priorities of local interrupts are defined in the
237  * RISC-V Advanced Interrupt Architecture specification.
238  *
239  * ----------------------------------------------------------------
240  *  Default  |
241  *  Priority | Major Interrupt Numbers
242  * ----------------------------------------------------------------
243  *  Highest  | 47, 23, 46, 45, 22, 44,
244  *           | 43, 21, 42, 41, 20, 40
245  *           |
246  *           | 11 (0b),  3 (03),  7 (07)
247  *           |  9 (09),  1 (01),  5 (05)
248  *           | 12 (0c)
249  *           | 10 (0a),  2 (02),  6 (06)
250  *           |
251  *           | 39, 19, 38, 37, 18, 36,
252  *  Lowest   | 35, 17, 34, 33, 16, 32
253  * ----------------------------------------------------------------
254  */
255 static const uint8_t default_iprio[64] = {
256     /* Custom interrupts 48 to 63 */
257     [63] = IPRIO_MMAXIPRIO,
258     [62] = IPRIO_MMAXIPRIO,
259     [61] = IPRIO_MMAXIPRIO,
260     [60] = IPRIO_MMAXIPRIO,
261     [59] = IPRIO_MMAXIPRIO,
262     [58] = IPRIO_MMAXIPRIO,
263     [57] = IPRIO_MMAXIPRIO,
264     [56] = IPRIO_MMAXIPRIO,
265     [55] = IPRIO_MMAXIPRIO,
266     [54] = IPRIO_MMAXIPRIO,
267     [53] = IPRIO_MMAXIPRIO,
268     [52] = IPRIO_MMAXIPRIO,
269     [51] = IPRIO_MMAXIPRIO,
270     [50] = IPRIO_MMAXIPRIO,
271     [49] = IPRIO_MMAXIPRIO,
272     [48] = IPRIO_MMAXIPRIO,
273 
274     /* Custom interrupts 24 to 31 */
275     [31] = IPRIO_MMAXIPRIO,
276     [30] = IPRIO_MMAXIPRIO,
277     [29] = IPRIO_MMAXIPRIO,
278     [28] = IPRIO_MMAXIPRIO,
279     [27] = IPRIO_MMAXIPRIO,
280     [26] = IPRIO_MMAXIPRIO,
281     [25] = IPRIO_MMAXIPRIO,
282     [24] = IPRIO_MMAXIPRIO,
283 
284     [47] = IPRIO_DEFAULT_UPPER,
285     [23] = IPRIO_DEFAULT_UPPER + 1,
286     [46] = IPRIO_DEFAULT_UPPER + 2,
287     [45] = IPRIO_DEFAULT_UPPER + 3,
288     [22] = IPRIO_DEFAULT_UPPER + 4,
289     [44] = IPRIO_DEFAULT_UPPER + 5,
290 
291     [43] = IPRIO_DEFAULT_UPPER + 6,
292     [21] = IPRIO_DEFAULT_UPPER + 7,
293     [42] = IPRIO_DEFAULT_UPPER + 8,
294     [41] = IPRIO_DEFAULT_UPPER + 9,
295     [20] = IPRIO_DEFAULT_UPPER + 10,
296     [40] = IPRIO_DEFAULT_UPPER + 11,
297 
298     [11] = IPRIO_DEFAULT_M,
299     [3]  = IPRIO_DEFAULT_M + 1,
300     [7]  = IPRIO_DEFAULT_M + 2,
301 
302     [9]  = IPRIO_DEFAULT_S,
303     [1]  = IPRIO_DEFAULT_S + 1,
304     [5]  = IPRIO_DEFAULT_S + 2,
305 
306     [12] = IPRIO_DEFAULT_SGEXT,
307 
308     [10] = IPRIO_DEFAULT_VS,
309     [2]  = IPRIO_DEFAULT_VS + 1,
310     [6]  = IPRIO_DEFAULT_VS + 2,
311 
312     [39] = IPRIO_DEFAULT_LOWER,
313     [19] = IPRIO_DEFAULT_LOWER + 1,
314     [38] = IPRIO_DEFAULT_LOWER + 2,
315     [37] = IPRIO_DEFAULT_LOWER + 3,
316     [18] = IPRIO_DEFAULT_LOWER + 4,
317     [36] = IPRIO_DEFAULT_LOWER + 5,
318 
319     [35] = IPRIO_DEFAULT_LOWER + 6,
320     [17] = IPRIO_DEFAULT_LOWER + 7,
321     [34] = IPRIO_DEFAULT_LOWER + 8,
322     [33] = IPRIO_DEFAULT_LOWER + 9,
323     [16] = IPRIO_DEFAULT_LOWER + 10,
324     [32] = IPRIO_DEFAULT_LOWER + 11,
325 };
326 
327 uint8_t riscv_cpu_default_priority(int irq)
328 {
329     if (irq < 0 || irq > 63) {
330         return IPRIO_MMAXIPRIO;
331     }
332 
333     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
334 };
335 
336 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
337                                     int extirq, unsigned int extirq_def_prio,
338                                     uint64_t pending, uint8_t *iprio)
339 {
340     int irq, best_irq = RISCV_EXCP_NONE;
341     unsigned int prio, best_prio = UINT_MAX;
342 
343     if (!pending) {
344         return RISCV_EXCP_NONE;
345     }
346 
347     irq = ctz64(pending);
348     if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
349                                   riscv_cpu_cfg(env)->ext_ssaia)) {
350         return irq;
351     }
352 
353     pending = pending >> irq;
354     while (pending) {
355         prio = iprio[irq];
356         if (!prio) {
357             if (irq == extirq) {
358                 prio = extirq_def_prio;
359             } else {
360                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
361                        1 : IPRIO_MMAXIPRIO;
362             }
363         }
364         if ((pending & 0x1) && (prio <= best_prio)) {
365             best_irq = irq;
366             best_prio = prio;
367         }
368         irq++;
369         pending = pending >> 1;
370     }
371 
372     return best_irq;
373 }
374 
375 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
376 {
377     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
378     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
379     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
380 
381     return (env->mip | vsgein | vstip) & env->mie;
382 }
383 
384 int riscv_cpu_mirq_pending(CPURISCVState *env)
385 {
386     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
387                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
388 
389     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
390                                     irqs, env->miprio);
391 }
392 
393 int riscv_cpu_sirq_pending(CPURISCVState *env)
394 {
395     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
396                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
397 
398     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
399                                     irqs, env->siprio);
400 }
401 
402 int riscv_cpu_vsirq_pending(CPURISCVState *env)
403 {
404     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
405                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
406 
407     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
408                                     irqs >> 1, env->hviprio);
409 }
410 
411 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
412 {
413     int virq;
414     uint64_t irqs, pending, mie, hsie, vsie;
415 
416     /* Determine interrupt enable state of all privilege modes */
417     if (env->virt_enabled) {
418         mie = 1;
419         hsie = 1;
420         vsie = (env->priv < PRV_S) ||
421                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
422     } else {
423         mie = (env->priv < PRV_M) ||
424               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
425         hsie = (env->priv < PRV_S) ||
426                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
427         vsie = 0;
428     }
429 
430     /* Determine all pending interrupts */
431     pending = riscv_cpu_all_pending(env);
432 
433     /* Check M-mode interrupts */
434     irqs = pending & ~env->mideleg & -mie;
435     if (irqs) {
436         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
437                                         irqs, env->miprio);
438     }
439 
440     /* Check HS-mode interrupts */
441     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
442     if (irqs) {
443         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
444                                         irqs, env->siprio);
445     }
446 
447     /* Check VS-mode interrupts */
448     irqs = pending & env->mideleg & env->hideleg & -vsie;
449     if (irqs) {
450         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
451                                         irqs >> 1, env->hviprio);
452         return (virq <= 0) ? virq : virq + 1;
453     }
454 
455     /* Indicate no pending interrupt */
456     return RISCV_EXCP_NONE;
457 }
458 
459 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
460 {
461     if (interrupt_request & CPU_INTERRUPT_HARD) {
462         RISCVCPU *cpu = RISCV_CPU(cs);
463         CPURISCVState *env = &cpu->env;
464         int interruptno = riscv_cpu_local_irq_pending(env);
465         if (interruptno >= 0) {
466             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
467             riscv_cpu_do_interrupt(cs);
468             return true;
469         }
470     }
471     return false;
472 }
473 
474 /* Return true is floating point support is currently enabled */
475 bool riscv_cpu_fp_enabled(CPURISCVState *env)
476 {
477     if (env->mstatus & MSTATUS_FS) {
478         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
479             return false;
480         }
481         return true;
482     }
483 
484     return false;
485 }
486 
487 /* Return true is vector support is currently enabled */
488 bool riscv_cpu_vector_enabled(CPURISCVState *env)
489 {
490     if (env->mstatus & MSTATUS_VS) {
491         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
492             return false;
493         }
494         return true;
495     }
496 
497     return false;
498 }
499 
500 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
501 {
502     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
503                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
504                             MSTATUS64_UXL | MSTATUS_VS;
505 
506     if (riscv_has_ext(env, RVF)) {
507         mstatus_mask |= MSTATUS_FS;
508     }
509     bool current_virt = env->virt_enabled;
510 
511     g_assert(riscv_has_ext(env, RVH));
512 
513     if (current_virt) {
514         /* Current V=1 and we are about to change to V=0 */
515         env->vsstatus = env->mstatus & mstatus_mask;
516         env->mstatus &= ~mstatus_mask;
517         env->mstatus |= env->mstatus_hs;
518 
519         env->vstvec = env->stvec;
520         env->stvec = env->stvec_hs;
521 
522         env->vsscratch = env->sscratch;
523         env->sscratch = env->sscratch_hs;
524 
525         env->vsepc = env->sepc;
526         env->sepc = env->sepc_hs;
527 
528         env->vscause = env->scause;
529         env->scause = env->scause_hs;
530 
531         env->vstval = env->stval;
532         env->stval = env->stval_hs;
533 
534         env->vsatp = env->satp;
535         env->satp = env->satp_hs;
536     } else {
537         /* Current V=0 and we are about to change to V=1 */
538         env->mstatus_hs = env->mstatus & mstatus_mask;
539         env->mstatus &= ~mstatus_mask;
540         env->mstatus |= env->vsstatus;
541 
542         env->stvec_hs = env->stvec;
543         env->stvec = env->vstvec;
544 
545         env->sscratch_hs = env->sscratch;
546         env->sscratch = env->vsscratch;
547 
548         env->sepc_hs = env->sepc;
549         env->sepc = env->vsepc;
550 
551         env->scause_hs = env->scause;
552         env->scause = env->vscause;
553 
554         env->stval_hs = env->stval;
555         env->stval = env->vstval;
556 
557         env->satp_hs = env->satp;
558         env->satp = env->vsatp;
559     }
560 }
561 
562 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
563 {
564     if (!riscv_has_ext(env, RVH)) {
565         return 0;
566     }
567 
568     return env->geilen;
569 }
570 
571 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
572 {
573     if (!riscv_has_ext(env, RVH)) {
574         return;
575     }
576 
577     if (geilen > (TARGET_LONG_BITS - 1)) {
578         return;
579     }
580 
581     env->geilen = geilen;
582 }
583 
584 /* This function can only be called to set virt when RVH is enabled */
585 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
586 {
587     /* Flush the TLB on all virt mode changes. */
588     if (env->virt_enabled != enable) {
589         tlb_flush(env_cpu(env));
590     }
591 
592     env->virt_enabled = enable;
593 
594     if (enable) {
595         /*
596          * The guest external interrupts from an interrupt controller are
597          * delivered only when the Guest/VM is running (i.e. V=1). This means
598          * any guest external interrupt which is triggered while the Guest/VM
599          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
600          * with sluggish response to serial console input and other I/O events.
601          *
602          * To solve this, we check and inject interrupt after setting V=1.
603          */
604         riscv_cpu_update_mip(env, 0, 0);
605     }
606 }
607 
608 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
609 {
610     CPURISCVState *env = &cpu->env;
611     if (env->miclaim & interrupts) {
612         return -1;
613     } else {
614         env->miclaim |= interrupts;
615         return 0;
616     }
617 }
618 
619 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
620                               uint64_t value)
621 {
622     CPUState *cs = env_cpu(env);
623     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
624 
625     if (env->virt_enabled) {
626         gein = get_field(env->hstatus, HSTATUS_VGEIN);
627         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
628     }
629 
630     vstip = env->vstime_irq ? MIP_VSTIP : 0;
631 
632     QEMU_IOTHREAD_LOCK_GUARD();
633 
634     env->mip = (env->mip & ~mask) | (value & mask);
635 
636     if (env->mip | vsgein | vstip) {
637         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
638     } else {
639         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
640     }
641 
642     return old;
643 }
644 
645 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
646                              void *arg)
647 {
648     env->rdtime_fn = fn;
649     env->rdtime_fn_arg = arg;
650 }
651 
652 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
653                                    int (*rmw_fn)(void *arg,
654                                                  target_ulong reg,
655                                                  target_ulong *val,
656                                                  target_ulong new_val,
657                                                  target_ulong write_mask),
658                                    void *rmw_fn_arg)
659 {
660     if (priv <= PRV_M) {
661         env->aia_ireg_rmw_fn[priv] = rmw_fn;
662         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
663     }
664 }
665 
666 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
667 {
668     g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
669 
670     if (icount_enabled() && newpriv != env->priv) {
671         riscv_itrigger_update_priv(env);
672     }
673     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
674     env->priv = newpriv;
675     env->xl = cpu_recompute_xl(env);
676     riscv_cpu_update_mask(env);
677 
678     /*
679      * Clear the load reservation - otherwise a reservation placed in one
680      * context/process can be used by another, resulting in an SC succeeding
681      * incorrectly. Version 2.2 of the ISA specification explicitly requires
682      * this behaviour, while later revisions say that the kernel "should" use
683      * an SC instruction to force the yielding of a load reservation on a
684      * preemptive context switch. As a result, do both.
685      */
686     env->load_res = -1;
687 }
688 
689 /*
690  * get_physical_address_pmp - check PMP permission for this physical address
691  *
692  * Match the PMP region and check permission for this physical address and it's
693  * TLB page. Returns 0 if the permission checking was successful
694  *
695  * @env: CPURISCVState
696  * @prot: The returned protection attributes
697  * @addr: The physical address to be checked permission
698  * @access_type: The type of MMU access
699  * @mode: Indicates current privilege level.
700  */
701 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr,
702                                     int size, MMUAccessType access_type,
703                                     int mode)
704 {
705     pmp_priv_t pmp_priv;
706     bool pmp_has_privs;
707 
708     if (!riscv_cpu_cfg(env)->pmp) {
709         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
710         return TRANSLATE_SUCCESS;
711     }
712 
713     pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type,
714                                        &pmp_priv, mode);
715     if (!pmp_has_privs) {
716         *prot = 0;
717         return TRANSLATE_PMP_FAIL;
718     }
719 
720     *prot = pmp_priv_to_page_prot(pmp_priv);
721 
722     return TRANSLATE_SUCCESS;
723 }
724 
725 /*
726  * get_physical_address - get the physical address for this virtual address
727  *
728  * Do a page table walk to obtain the physical address corresponding to a
729  * virtual address. Returns 0 if the translation was successful
730  *
731  * Adapted from Spike's mmu_t::translate and mmu_t::walk
732  *
733  * @env: CPURISCVState
734  * @physical: This will be set to the calculated physical address
735  * @prot: The returned protection attributes
736  * @addr: The virtual address or guest physical address to be translated
737  * @fault_pte_addr: If not NULL, this will be set to fault pte address
738  *                  when a error occurs on pte address translation.
739  *                  This will already be shifted to match htval.
740  * @access_type: The type of MMU access
741  * @mmu_idx: Indicates current privilege level
742  * @first_stage: Are we in first stage translation?
743  *               Second stage is used for hypervisor guest translation
744  * @two_stage: Are we going to perform two stage translation
745  * @is_debug: Is this access from a debugger or the monitor?
746  */
747 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
748                                 int *ret_prot, vaddr addr,
749                                 target_ulong *fault_pte_addr,
750                                 int access_type, int mmu_idx,
751                                 bool first_stage, bool two_stage,
752                                 bool is_debug)
753 {
754     /*
755      * NOTE: the env->pc value visible here will not be
756      * correct, but the value visible to the exception handler
757      * (riscv_cpu_do_interrupt) is correct
758      */
759     MemTxResult res;
760     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
761     int mode = mmuidx_priv(mmu_idx);
762     bool use_background = false;
763     hwaddr ppn;
764     int napot_bits = 0;
765     target_ulong napot_mask;
766 
767     /*
768      * Check if we should use the background registers for the two
769      * stage translation. We don't need to check if we actually need
770      * two stage translation as that happened before this function
771      * was called. Background registers will be used if the guest has
772      * forced a two stage translation to be on (in HS or M mode).
773      */
774     if (!env->virt_enabled && two_stage) {
775         use_background = true;
776     }
777 
778     if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
779         *physical = addr;
780         *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
781         return TRANSLATE_SUCCESS;
782     }
783 
784     *ret_prot = 0;
785 
786     hwaddr base;
787     int levels, ptidxbits, ptesize, vm, widened;
788 
789     if (first_stage == true) {
790         if (use_background) {
791             if (riscv_cpu_mxl(env) == MXL_RV32) {
792                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
793                 vm = get_field(env->vsatp, SATP32_MODE);
794             } else {
795                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
796                 vm = get_field(env->vsatp, SATP64_MODE);
797             }
798         } else {
799             if (riscv_cpu_mxl(env) == MXL_RV32) {
800                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
801                 vm = get_field(env->satp, SATP32_MODE);
802             } else {
803                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
804                 vm = get_field(env->satp, SATP64_MODE);
805             }
806         }
807         widened = 0;
808     } else {
809         if (riscv_cpu_mxl(env) == MXL_RV32) {
810             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
811             vm = get_field(env->hgatp, SATP32_MODE);
812         } else {
813             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
814             vm = get_field(env->hgatp, SATP64_MODE);
815         }
816         widened = 2;
817     }
818 
819     switch (vm) {
820     case VM_1_10_SV32:
821       levels = 2; ptidxbits = 10; ptesize = 4; break;
822     case VM_1_10_SV39:
823       levels = 3; ptidxbits = 9; ptesize = 8; break;
824     case VM_1_10_SV48:
825       levels = 4; ptidxbits = 9; ptesize = 8; break;
826     case VM_1_10_SV57:
827       levels = 5; ptidxbits = 9; ptesize = 8; break;
828     case VM_1_10_MBARE:
829         *physical = addr;
830         *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
831         return TRANSLATE_SUCCESS;
832     default:
833       g_assert_not_reached();
834     }
835 
836     CPUState *cs = env_cpu(env);
837     int va_bits = PGSHIFT + levels * ptidxbits + widened;
838 
839     if (first_stage == true) {
840         target_ulong mask, masked_msbs;
841 
842         if (TARGET_LONG_BITS > (va_bits - 1)) {
843             mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
844         } else {
845             mask = 0;
846         }
847         masked_msbs = (addr >> (va_bits - 1)) & mask;
848 
849         if (masked_msbs != 0 && masked_msbs != mask) {
850             return TRANSLATE_FAIL;
851         }
852     } else {
853         if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
854             return TRANSLATE_FAIL;
855         }
856     }
857 
858     bool pbmte = env->menvcfg & MENVCFG_PBMTE;
859     bool hade = env->menvcfg & MENVCFG_HADE;
860 
861     if (first_stage && two_stage && env->virt_enabled) {
862         pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
863         hade = hade && (env->henvcfg & HENVCFG_HADE);
864     }
865 
866     int ptshift = (levels - 1) * ptidxbits;
867     target_ulong pte;
868     hwaddr pte_addr;
869     int i;
870 
871 #if !TCG_OVERSIZED_GUEST
872 restart:
873 #endif
874     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
875         target_ulong idx;
876         if (i == 0) {
877             idx = (addr >> (PGSHIFT + ptshift)) &
878                            ((1 << (ptidxbits + widened)) - 1);
879         } else {
880             idx = (addr >> (PGSHIFT + ptshift)) &
881                            ((1 << ptidxbits) - 1);
882         }
883 
884         /* check that physical address of PTE is legal */
885 
886         if (two_stage && first_stage) {
887             int vbase_prot;
888             hwaddr vbase;
889 
890             /* Do the second stage translation on the base PTE address. */
891             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
892                                                  base, NULL, MMU_DATA_LOAD,
893                                                  MMUIdx_U, false, true,
894                                                  is_debug);
895 
896             if (vbase_ret != TRANSLATE_SUCCESS) {
897                 if (fault_pte_addr) {
898                     *fault_pte_addr = (base + idx * ptesize) >> 2;
899                 }
900                 return TRANSLATE_G_STAGE_FAIL;
901             }
902 
903             pte_addr = vbase + idx * ptesize;
904         } else {
905             pte_addr = base + idx * ptesize;
906         }
907 
908         int pmp_prot;
909         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr,
910                                                sizeof(target_ulong),
911                                                MMU_DATA_LOAD, PRV_S);
912         if (pmp_ret != TRANSLATE_SUCCESS) {
913             return TRANSLATE_PMP_FAIL;
914         }
915 
916         if (riscv_cpu_mxl(env) == MXL_RV32) {
917             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
918         } else {
919             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
920         }
921 
922         if (res != MEMTX_OK) {
923             return TRANSLATE_FAIL;
924         }
925 
926         if (riscv_cpu_sxl(env) == MXL_RV32) {
927             ppn = pte >> PTE_PPN_SHIFT;
928         } else {
929             if (pte & PTE_RESERVED) {
930                 return TRANSLATE_FAIL;
931             }
932 
933             if (!pbmte && (pte & PTE_PBMT)) {
934                 return TRANSLATE_FAIL;
935             }
936 
937             if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
938                 return TRANSLATE_FAIL;
939             }
940 
941             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
942         }
943 
944         if (!(pte & PTE_V)) {
945             /* Invalid PTE */
946             return TRANSLATE_FAIL;
947         }
948         if (pte & (PTE_R | PTE_W | PTE_X)) {
949             goto leaf;
950         }
951 
952         /* Inner PTE, continue walking */
953         if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
954             return TRANSLATE_FAIL;
955         }
956         base = ppn << PGSHIFT;
957     }
958 
959     /* No leaf pte at any translation level. */
960     return TRANSLATE_FAIL;
961 
962  leaf:
963     if (ppn & ((1ULL << ptshift) - 1)) {
964         /* Misaligned PPN */
965         return TRANSLATE_FAIL;
966     }
967     if (!pbmte && (pte & PTE_PBMT)) {
968         /* Reserved without Svpbmt. */
969         return TRANSLATE_FAIL;
970     }
971 
972     /* Check for reserved combinations of RWX flags. */
973     switch (pte & (PTE_R | PTE_W | PTE_X)) {
974     case PTE_W:
975     case PTE_W | PTE_X:
976         return TRANSLATE_FAIL;
977     }
978 
979     int prot = 0;
980     if (pte & PTE_R) {
981         prot |= PAGE_READ;
982     }
983     if (pte & PTE_W) {
984         prot |= PAGE_WRITE;
985     }
986     if (pte & PTE_X) {
987         bool mxr;
988 
989         if (first_stage == true) {
990             mxr = get_field(env->mstatus, MSTATUS_MXR);
991         } else {
992             mxr = get_field(env->vsstatus, MSTATUS_MXR);
993         }
994         if (mxr) {
995             prot |= PAGE_READ;
996         }
997         prot |= PAGE_EXEC;
998     }
999 
1000     if (pte & PTE_U) {
1001         if (mode != PRV_U) {
1002             if (!mmuidx_sum(mmu_idx)) {
1003                 return TRANSLATE_FAIL;
1004             }
1005             /* SUM allows only read+write, not execute. */
1006             prot &= PAGE_READ | PAGE_WRITE;
1007         }
1008     } else if (mode != PRV_S) {
1009         /* Supervisor PTE flags when not S mode */
1010         return TRANSLATE_FAIL;
1011     }
1012 
1013     if (!((prot >> access_type) & 1)) {
1014         /* Access check failed */
1015         return TRANSLATE_FAIL;
1016     }
1017 
1018     /* If necessary, set accessed and dirty bits. */
1019     target_ulong updated_pte = pte | PTE_A |
1020                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1021 
1022     /* Page table updates need to be atomic with MTTCG enabled */
1023     if (updated_pte != pte && !is_debug) {
1024         if (!hade) {
1025             return TRANSLATE_FAIL;
1026         }
1027 
1028         /*
1029          * - if accessed or dirty bits need updating, and the PTE is
1030          *   in RAM, then we do so atomically with a compare and swap.
1031          * - if the PTE is in IO space or ROM, then it can't be updated
1032          *   and we return TRANSLATE_FAIL.
1033          * - if the PTE changed by the time we went to update it, then
1034          *   it is no longer valid and we must re-walk the page table.
1035          */
1036         MemoryRegion *mr;
1037         hwaddr l = sizeof(target_ulong), addr1;
1038         mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1039                                      false, MEMTXATTRS_UNSPECIFIED);
1040         if (memory_region_is_ram(mr)) {
1041             target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
1042 #if TCG_OVERSIZED_GUEST
1043             /*
1044              * MTTCG is not enabled on oversized TCG guests so
1045              * page table updates do not need to be atomic
1046              */
1047             *pte_pa = pte = updated_pte;
1048 #else
1049             target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
1050             if (old_pte != pte) {
1051                 goto restart;
1052             }
1053             pte = updated_pte;
1054 #endif
1055         } else {
1056             /*
1057              * Misconfigured PTE in ROM (AD bits are not preset) or
1058              * PTE is in IO space and can't be updated atomically.
1059              */
1060             return TRANSLATE_FAIL;
1061         }
1062     }
1063 
1064     /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1065     target_ulong vpn = addr >> PGSHIFT;
1066 
1067     if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1068         napot_bits = ctzl(ppn) + 1;
1069         if ((i != (levels - 1)) || (napot_bits != 4)) {
1070             return TRANSLATE_FAIL;
1071         }
1072     }
1073 
1074     napot_mask = (1 << napot_bits) - 1;
1075     *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1076                   (vpn & (((target_ulong)1 << ptshift) - 1))
1077                  ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1078 
1079     /*
1080      * Remove write permission unless this is a store, or the page is
1081      * already dirty, so that we TLB miss on later writes to update
1082      * the dirty bit.
1083      */
1084     if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1085         prot &= ~PAGE_WRITE;
1086     }
1087     *ret_prot = prot;
1088 
1089     return TRANSLATE_SUCCESS;
1090 }
1091 
1092 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1093                                 MMUAccessType access_type, bool pmp_violation,
1094                                 bool first_stage, bool two_stage,
1095                                 bool two_stage_indirect)
1096 {
1097     CPUState *cs = env_cpu(env);
1098     int page_fault_exceptions, vm;
1099     uint64_t stap_mode;
1100 
1101     if (riscv_cpu_mxl(env) == MXL_RV32) {
1102         stap_mode = SATP32_MODE;
1103     } else {
1104         stap_mode = SATP64_MODE;
1105     }
1106 
1107     if (first_stage) {
1108         vm = get_field(env->satp, stap_mode);
1109     } else {
1110         vm = get_field(env->hgatp, stap_mode);
1111     }
1112 
1113     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1114 
1115     switch (access_type) {
1116     case MMU_INST_FETCH:
1117         if (env->virt_enabled && !first_stage) {
1118             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1119         } else {
1120             cs->exception_index = page_fault_exceptions ?
1121                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1122         }
1123         break;
1124     case MMU_DATA_LOAD:
1125         if (two_stage && !first_stage) {
1126             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1127         } else {
1128             cs->exception_index = page_fault_exceptions ?
1129                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1130         }
1131         break;
1132     case MMU_DATA_STORE:
1133         if (two_stage && !first_stage) {
1134             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1135         } else {
1136             cs->exception_index = page_fault_exceptions ?
1137                 RISCV_EXCP_STORE_PAGE_FAULT :
1138                 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1139         }
1140         break;
1141     default:
1142         g_assert_not_reached();
1143     }
1144     env->badaddr = address;
1145     env->two_stage_lookup = two_stage;
1146     env->two_stage_indirect_lookup = two_stage_indirect;
1147 }
1148 
1149 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1150 {
1151     RISCVCPU *cpu = RISCV_CPU(cs);
1152     CPURISCVState *env = &cpu->env;
1153     hwaddr phys_addr;
1154     int prot;
1155     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1156 
1157     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1158                              true, env->virt_enabled, true)) {
1159         return -1;
1160     }
1161 
1162     if (env->virt_enabled) {
1163         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1164                                  0, mmu_idx, false, true, true)) {
1165             return -1;
1166         }
1167     }
1168 
1169     return phys_addr & TARGET_PAGE_MASK;
1170 }
1171 
1172 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1173                                      vaddr addr, unsigned size,
1174                                      MMUAccessType access_type,
1175                                      int mmu_idx, MemTxAttrs attrs,
1176                                      MemTxResult response, uintptr_t retaddr)
1177 {
1178     RISCVCPU *cpu = RISCV_CPU(cs);
1179     CPURISCVState *env = &cpu->env;
1180 
1181     if (access_type == MMU_DATA_STORE) {
1182         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1183     } else if (access_type == MMU_DATA_LOAD) {
1184         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1185     } else {
1186         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1187     }
1188 
1189     env->badaddr = addr;
1190     env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1191     env->two_stage_indirect_lookup = false;
1192     cpu_loop_exit_restore(cs, retaddr);
1193 }
1194 
1195 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1196                                    MMUAccessType access_type, int mmu_idx,
1197                                    uintptr_t retaddr)
1198 {
1199     RISCVCPU *cpu = RISCV_CPU(cs);
1200     CPURISCVState *env = &cpu->env;
1201     switch (access_type) {
1202     case MMU_INST_FETCH:
1203         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1204         break;
1205     case MMU_DATA_LOAD:
1206         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1207         break;
1208     case MMU_DATA_STORE:
1209         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1210         break;
1211     default:
1212         g_assert_not_reached();
1213     }
1214     env->badaddr = addr;
1215     env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1216     env->two_stage_indirect_lookup = false;
1217     cpu_loop_exit_restore(cs, retaddr);
1218 }
1219 
1220 
1221 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1222 {
1223     enum riscv_pmu_event_idx pmu_event_type;
1224 
1225     switch (access_type) {
1226     case MMU_INST_FETCH:
1227         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1228         break;
1229     case MMU_DATA_LOAD:
1230         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1231         break;
1232     case MMU_DATA_STORE:
1233         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1234         break;
1235     default:
1236         return;
1237     }
1238 
1239     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1240 }
1241 
1242 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1243                         MMUAccessType access_type, int mmu_idx,
1244                         bool probe, uintptr_t retaddr)
1245 {
1246     RISCVCPU *cpu = RISCV_CPU(cs);
1247     CPURISCVState *env = &cpu->env;
1248     vaddr im_address;
1249     hwaddr pa = 0;
1250     int prot, prot2, prot_pmp;
1251     bool pmp_violation = false;
1252     bool first_stage_error = true;
1253     bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1254     bool two_stage_indirect_error = false;
1255     int ret = TRANSLATE_FAIL;
1256     int mode = mmu_idx;
1257     /* default TLB page size */
1258     target_ulong tlb_size = TARGET_PAGE_SIZE;
1259 
1260     env->guest_phys_fault_addr = 0;
1261 
1262     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1263                   __func__, address, access_type, mmu_idx);
1264 
1265     pmu_tlb_fill_incr_ctr(cpu, access_type);
1266     if (two_stage_lookup) {
1267         /* Two stage lookup */
1268         ret = get_physical_address(env, &pa, &prot, address,
1269                                    &env->guest_phys_fault_addr, access_type,
1270                                    mmu_idx, true, true, false);
1271 
1272         /*
1273          * A G-stage exception may be triggered during two state lookup.
1274          * And the env->guest_phys_fault_addr has already been set in
1275          * get_physical_address().
1276          */
1277         if (ret == TRANSLATE_G_STAGE_FAIL) {
1278             first_stage_error = false;
1279             two_stage_indirect_error = true;
1280             access_type = MMU_DATA_LOAD;
1281         }
1282 
1283         qemu_log_mask(CPU_LOG_MMU,
1284                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1285                       HWADDR_FMT_plx " prot %d\n",
1286                       __func__, address, ret, pa, prot);
1287 
1288         if (ret == TRANSLATE_SUCCESS) {
1289             /* Second stage lookup */
1290             im_address = pa;
1291 
1292             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1293                                        access_type, MMUIdx_U, false, true,
1294                                        false);
1295 
1296             qemu_log_mask(CPU_LOG_MMU,
1297                           "%s 2nd-stage address=%" VADDR_PRIx
1298                           " ret %d physical "
1299                           HWADDR_FMT_plx " prot %d\n",
1300                           __func__, im_address, ret, pa, prot2);
1301 
1302             prot &= prot2;
1303 
1304             if (ret == TRANSLATE_SUCCESS) {
1305                 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1306                                                size, access_type, mode);
1307                 tlb_size = pmp_get_tlb_size(env, pa);
1308 
1309                 qemu_log_mask(CPU_LOG_MMU,
1310                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1311                               " %d tlb_size " TARGET_FMT_lu "\n",
1312                               __func__, pa, ret, prot_pmp, tlb_size);
1313 
1314                 prot &= prot_pmp;
1315             }
1316 
1317             if (ret != TRANSLATE_SUCCESS) {
1318                 /*
1319                  * Guest physical address translation failed, this is a HS
1320                  * level exception
1321                  */
1322                 first_stage_error = false;
1323                 env->guest_phys_fault_addr = (im_address |
1324                                               (address &
1325                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1326             }
1327         }
1328     } else {
1329         /* Single stage lookup */
1330         ret = get_physical_address(env, &pa, &prot, address, NULL,
1331                                    access_type, mmu_idx, true, false, false);
1332 
1333         qemu_log_mask(CPU_LOG_MMU,
1334                       "%s address=%" VADDR_PRIx " ret %d physical "
1335                       HWADDR_FMT_plx " prot %d\n",
1336                       __func__, address, ret, pa, prot);
1337 
1338         if (ret == TRANSLATE_SUCCESS) {
1339             ret = get_physical_address_pmp(env, &prot_pmp, pa,
1340                                            size, access_type, mode);
1341             tlb_size = pmp_get_tlb_size(env, pa);
1342 
1343             qemu_log_mask(CPU_LOG_MMU,
1344                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1345                           " %d tlb_size " TARGET_FMT_lu "\n",
1346                           __func__, pa, ret, prot_pmp, tlb_size);
1347 
1348             prot &= prot_pmp;
1349         }
1350     }
1351 
1352     if (ret == TRANSLATE_PMP_FAIL) {
1353         pmp_violation = true;
1354     }
1355 
1356     if (ret == TRANSLATE_SUCCESS) {
1357         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1358                      prot, mmu_idx, tlb_size);
1359         return true;
1360     } else if (probe) {
1361         return false;
1362     } else {
1363         raise_mmu_exception(env, address, access_type, pmp_violation,
1364                             first_stage_error, two_stage_lookup,
1365                             two_stage_indirect_error);
1366         cpu_loop_exit_restore(cs, retaddr);
1367     }
1368 
1369     return true;
1370 }
1371 
1372 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1373                                            target_ulong insn,
1374                                            target_ulong taddr)
1375 {
1376     target_ulong xinsn = 0;
1377     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1378 
1379     /*
1380      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1381      * be uncompressed. The Quadrant 1 of RVC instruction space need
1382      * not be transformed because these instructions won't generate
1383      * any load/store trap.
1384      */
1385 
1386     if ((insn & 0x3) != 0x3) {
1387         /* Transform 16bit instruction into 32bit instruction */
1388         switch (GET_C_OP(insn)) {
1389         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1390             switch (GET_C_FUNC(insn)) {
1391             case OPC_RISC_C_FUNC_FLD_LQ:
1392                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1393                     xinsn = OPC_RISC_FLD;
1394                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1395                     access_rs1 = GET_C_RS1S(insn);
1396                     access_imm = GET_C_LD_IMM(insn);
1397                     access_size = 8;
1398                 }
1399                 break;
1400             case OPC_RISC_C_FUNC_LW: /* C.LW */
1401                 xinsn = OPC_RISC_LW;
1402                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1403                 access_rs1 = GET_C_RS1S(insn);
1404                 access_imm = GET_C_LW_IMM(insn);
1405                 access_size = 4;
1406                 break;
1407             case OPC_RISC_C_FUNC_FLW_LD:
1408                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1409                     xinsn = OPC_RISC_FLW;
1410                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1411                     access_rs1 = GET_C_RS1S(insn);
1412                     access_imm = GET_C_LW_IMM(insn);
1413                     access_size = 4;
1414                 } else { /* C.LD (RV64/RV128) */
1415                     xinsn = OPC_RISC_LD;
1416                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1417                     access_rs1 = GET_C_RS1S(insn);
1418                     access_imm = GET_C_LD_IMM(insn);
1419                     access_size = 8;
1420                 }
1421                 break;
1422             case OPC_RISC_C_FUNC_FSD_SQ:
1423                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1424                     xinsn = OPC_RISC_FSD;
1425                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1426                     access_rs1 = GET_C_RS1S(insn);
1427                     access_imm = GET_C_SD_IMM(insn);
1428                     access_size = 8;
1429                 }
1430                 break;
1431             case OPC_RISC_C_FUNC_SW: /* C.SW */
1432                 xinsn = OPC_RISC_SW;
1433                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1434                 access_rs1 = GET_C_RS1S(insn);
1435                 access_imm = GET_C_SW_IMM(insn);
1436                 access_size = 4;
1437                 break;
1438             case OPC_RISC_C_FUNC_FSW_SD:
1439                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1440                     xinsn = OPC_RISC_FSW;
1441                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1442                     access_rs1 = GET_C_RS1S(insn);
1443                     access_imm = GET_C_SW_IMM(insn);
1444                     access_size = 4;
1445                 } else { /* C.SD (RV64/RV128) */
1446                     xinsn = OPC_RISC_SD;
1447                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1448                     access_rs1 = GET_C_RS1S(insn);
1449                     access_imm = GET_C_SD_IMM(insn);
1450                     access_size = 8;
1451                 }
1452                 break;
1453             default:
1454                 break;
1455             }
1456             break;
1457         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1458             switch (GET_C_FUNC(insn)) {
1459             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1460                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1461                     xinsn = OPC_RISC_FLD;
1462                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1463                     access_rs1 = 2;
1464                     access_imm = GET_C_LDSP_IMM(insn);
1465                     access_size = 8;
1466                 }
1467                 break;
1468             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1469                 xinsn = OPC_RISC_LW;
1470                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1471                 access_rs1 = 2;
1472                 access_imm = GET_C_LWSP_IMM(insn);
1473                 access_size = 4;
1474                 break;
1475             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1476                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1477                     xinsn = OPC_RISC_FLW;
1478                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1479                     access_rs1 = 2;
1480                     access_imm = GET_C_LWSP_IMM(insn);
1481                     access_size = 4;
1482                 } else { /* C.LDSP (RV64/RV128) */
1483                     xinsn = OPC_RISC_LD;
1484                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1485                     access_rs1 = 2;
1486                     access_imm = GET_C_LDSP_IMM(insn);
1487                     access_size = 8;
1488                 }
1489                 break;
1490             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1491                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1492                     xinsn = OPC_RISC_FSD;
1493                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1494                     access_rs1 = 2;
1495                     access_imm = GET_C_SDSP_IMM(insn);
1496                     access_size = 8;
1497                 }
1498                 break;
1499             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1500                 xinsn = OPC_RISC_SW;
1501                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1502                 access_rs1 = 2;
1503                 access_imm = GET_C_SWSP_IMM(insn);
1504                 access_size = 4;
1505                 break;
1506             case 7:
1507                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1508                     xinsn = OPC_RISC_FSW;
1509                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1510                     access_rs1 = 2;
1511                     access_imm = GET_C_SWSP_IMM(insn);
1512                     access_size = 4;
1513                 } else { /* C.SDSP (RV64/RV128) */
1514                     xinsn = OPC_RISC_SD;
1515                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1516                     access_rs1 = 2;
1517                     access_imm = GET_C_SDSP_IMM(insn);
1518                     access_size = 8;
1519                 }
1520                 break;
1521             default:
1522                 break;
1523             }
1524             break;
1525         default:
1526             break;
1527         }
1528 
1529         /*
1530          * Clear Bit1 of transformed instruction to indicate that
1531          * original insruction was a 16bit instruction
1532          */
1533         xinsn &= ~((target_ulong)0x2);
1534     } else {
1535         /* Transform 32bit (or wider) instructions */
1536         switch (MASK_OP_MAJOR(insn)) {
1537         case OPC_RISC_ATOMIC:
1538             xinsn = insn;
1539             access_rs1 = GET_RS1(insn);
1540             access_size = 1 << GET_FUNCT3(insn);
1541             break;
1542         case OPC_RISC_LOAD:
1543         case OPC_RISC_FP_LOAD:
1544             xinsn = SET_I_IMM(insn, 0);
1545             access_rs1 = GET_RS1(insn);
1546             access_imm = GET_IMM(insn);
1547             access_size = 1 << GET_FUNCT3(insn);
1548             break;
1549         case OPC_RISC_STORE:
1550         case OPC_RISC_FP_STORE:
1551             xinsn = SET_S_IMM(insn, 0);
1552             access_rs1 = GET_RS1(insn);
1553             access_imm = GET_STORE_IMM(insn);
1554             access_size = 1 << GET_FUNCT3(insn);
1555             break;
1556         case OPC_RISC_SYSTEM:
1557             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1558                 xinsn = insn;
1559                 access_rs1 = GET_RS1(insn);
1560                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1561                 access_size = 1 << access_size;
1562             }
1563             break;
1564         default:
1565             break;
1566         }
1567     }
1568 
1569     if (access_size) {
1570         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1571                                (access_size - 1));
1572     }
1573 
1574     return xinsn;
1575 }
1576 #endif /* !CONFIG_USER_ONLY */
1577 
1578 /*
1579  * Handle Traps
1580  *
1581  * Adapted from Spike's processor_t::take_trap.
1582  *
1583  */
1584 void riscv_cpu_do_interrupt(CPUState *cs)
1585 {
1586 #if !defined(CONFIG_USER_ONLY)
1587 
1588     RISCVCPU *cpu = RISCV_CPU(cs);
1589     CPURISCVState *env = &cpu->env;
1590     bool write_gva = false;
1591     uint64_t s;
1592 
1593     /*
1594      * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1595      * so we mask off the MSB and separate into trap type and cause.
1596      */
1597     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1598     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1599     uint64_t deleg = async ? env->mideleg : env->medeleg;
1600     target_ulong tval = 0;
1601     target_ulong tinst = 0;
1602     target_ulong htval = 0;
1603     target_ulong mtval2 = 0;
1604 
1605     if  (cause == RISCV_EXCP_SEMIHOST) {
1606         do_common_semihosting(cs);
1607         env->pc += 4;
1608         return;
1609     }
1610 
1611     if (!async) {
1612         /* set tval to badaddr for traps with address information */
1613         switch (cause) {
1614         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1615         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1616         case RISCV_EXCP_LOAD_ADDR_MIS:
1617         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1618         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1619         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1620         case RISCV_EXCP_LOAD_PAGE_FAULT:
1621         case RISCV_EXCP_STORE_PAGE_FAULT:
1622             write_gva = env->two_stage_lookup;
1623             tval = env->badaddr;
1624             if (env->two_stage_indirect_lookup) {
1625                 /*
1626                  * special pseudoinstruction for G-stage fault taken while
1627                  * doing VS-stage page table walk.
1628                  */
1629                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1630             } else {
1631                 /*
1632                  * The "Addr. Offset" field in transformed instruction is
1633                  * non-zero only for misaligned access.
1634                  */
1635                 tinst = riscv_transformed_insn(env, env->bins, tval);
1636             }
1637             break;
1638         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1639         case RISCV_EXCP_INST_ADDR_MIS:
1640         case RISCV_EXCP_INST_ACCESS_FAULT:
1641         case RISCV_EXCP_INST_PAGE_FAULT:
1642             write_gva = env->two_stage_lookup;
1643             tval = env->badaddr;
1644             if (env->two_stage_indirect_lookup) {
1645                 /*
1646                  * special pseudoinstruction for G-stage fault taken while
1647                  * doing VS-stage page table walk.
1648                  */
1649                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1650             }
1651             break;
1652         case RISCV_EXCP_ILLEGAL_INST:
1653         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1654             tval = env->bins;
1655             break;
1656         case RISCV_EXCP_BREAKPOINT:
1657             if (cs->watchpoint_hit) {
1658                 tval = cs->watchpoint_hit->hitaddr;
1659                 cs->watchpoint_hit = NULL;
1660             }
1661             break;
1662         default:
1663             break;
1664         }
1665         /* ecall is dispatched as one cause so translate based on mode */
1666         if (cause == RISCV_EXCP_U_ECALL) {
1667             assert(env->priv <= 3);
1668 
1669             if (env->priv == PRV_M) {
1670                 cause = RISCV_EXCP_M_ECALL;
1671             } else if (env->priv == PRV_S && env->virt_enabled) {
1672                 cause = RISCV_EXCP_VS_ECALL;
1673             } else if (env->priv == PRV_S && !env->virt_enabled) {
1674                 cause = RISCV_EXCP_S_ECALL;
1675             } else if (env->priv == PRV_U) {
1676                 cause = RISCV_EXCP_U_ECALL;
1677             }
1678         }
1679     }
1680 
1681     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1682                      riscv_cpu_get_trap_name(cause, async));
1683 
1684     qemu_log_mask(CPU_LOG_INT,
1685                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1686                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1687                   __func__, env->mhartid, async, cause, env->pc, tval,
1688                   riscv_cpu_get_trap_name(cause, async));
1689 
1690     if (env->priv <= PRV_S &&
1691             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1692         /* handle the trap in S-mode */
1693         if (riscv_has_ext(env, RVH)) {
1694             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1695 
1696             if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1697                 /* Trap to VS mode */
1698                 /*
1699                  * See if we need to adjust cause. Yes if its VS mode interrupt
1700                  * no if hypervisor has delegated one of hs mode's interrupt
1701                  */
1702                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1703                     cause == IRQ_VS_EXT) {
1704                     cause = cause - 1;
1705                 }
1706                 write_gva = false;
1707             } else if (env->virt_enabled) {
1708                 /* Trap into HS mode, from virt */
1709                 riscv_cpu_swap_hypervisor_regs(env);
1710                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1711                                          env->priv);
1712                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1713 
1714                 htval = env->guest_phys_fault_addr;
1715 
1716                 riscv_cpu_set_virt_enabled(env, 0);
1717             } else {
1718                 /* Trap into HS mode */
1719                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1720                 htval = env->guest_phys_fault_addr;
1721             }
1722             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1723         }
1724 
1725         s = env->mstatus;
1726         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1727         s = set_field(s, MSTATUS_SPP, env->priv);
1728         s = set_field(s, MSTATUS_SIE, 0);
1729         env->mstatus = s;
1730         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1731         env->sepc = env->pc;
1732         env->stval = tval;
1733         env->htval = htval;
1734         env->htinst = tinst;
1735         env->pc = (env->stvec >> 2 << 2) +
1736                   ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1737         riscv_cpu_set_mode(env, PRV_S);
1738     } else {
1739         /* handle the trap in M-mode */
1740         if (riscv_has_ext(env, RVH)) {
1741             if (env->virt_enabled) {
1742                 riscv_cpu_swap_hypervisor_regs(env);
1743             }
1744             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1745                                      env->virt_enabled);
1746             if (env->virt_enabled && tval) {
1747                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1748             }
1749 
1750             mtval2 = env->guest_phys_fault_addr;
1751 
1752             /* Trapping to M mode, virt is disabled */
1753             riscv_cpu_set_virt_enabled(env, 0);
1754         }
1755 
1756         s = env->mstatus;
1757         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1758         s = set_field(s, MSTATUS_MPP, env->priv);
1759         s = set_field(s, MSTATUS_MIE, 0);
1760         env->mstatus = s;
1761         env->mcause = cause | ~(((target_ulong)-1) >> async);
1762         env->mepc = env->pc;
1763         env->mtval = tval;
1764         env->mtval2 = mtval2;
1765         env->mtinst = tinst;
1766         env->pc = (env->mtvec >> 2 << 2) +
1767                   ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1768         riscv_cpu_set_mode(env, PRV_M);
1769     }
1770 
1771     /*
1772      * NOTE: it is not necessary to yield load reservations here. It is only
1773      * necessary for an SC from "another hart" to cause a load reservation
1774      * to be yielded. Refer to the memory consistency model section of the
1775      * RISC-V ISA Specification.
1776      */
1777 
1778     env->two_stage_lookup = false;
1779     env->two_stage_indirect_lookup = false;
1780 #endif
1781     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1782 }
1783