xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision dcb32f1d)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
27 
28 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
29 {
30 #ifdef CONFIG_USER_ONLY
31     return 0;
32 #else
33     return env->priv;
34 #endif
35 }
36 
37 #ifndef CONFIG_USER_ONLY
38 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
39 {
40     target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
41     target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
42     target_ulong pending = env->mip & env->mie;
43     target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie);
44     target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie);
45     target_ulong irqs = (pending & ~env->mideleg & -mie) |
46                         (pending &  env->mideleg & -sie);
47 
48     if (irqs) {
49         return ctz64(irqs); /* since non-zero */
50     } else {
51         return EXCP_NONE; /* indicates no pending interrupt */
52     }
53 }
54 #endif
55 
56 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
57 {
58 #if !defined(CONFIG_USER_ONLY)
59     if (interrupt_request & CPU_INTERRUPT_HARD) {
60         RISCVCPU *cpu = RISCV_CPU(cs);
61         CPURISCVState *env = &cpu->env;
62         int interruptno = riscv_cpu_local_irq_pending(env);
63         if (interruptno >= 0) {
64             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
65             riscv_cpu_do_interrupt(cs);
66             return true;
67         }
68     }
69 #endif
70     return false;
71 }
72 
73 #if !defined(CONFIG_USER_ONLY)
74 
75 /* Return true is floating point support is currently enabled */
76 bool riscv_cpu_fp_enabled(CPURISCVState *env)
77 {
78     if (env->mstatus & MSTATUS_FS) {
79         return true;
80     }
81 
82     return false;
83 }
84 
85 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
86 {
87     CPURISCVState *env = &cpu->env;
88     if (env->miclaim & interrupts) {
89         return -1;
90     } else {
91         env->miclaim |= interrupts;
92         return 0;
93     }
94 }
95 
96 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
97 {
98     CPURISCVState *env = &cpu->env;
99     CPUState *cs = CPU(cpu);
100     uint32_t old = env->mip;
101     bool locked = false;
102 
103     if (!qemu_mutex_iothread_locked()) {
104         locked = true;
105         qemu_mutex_lock_iothread();
106     }
107 
108     env->mip = (env->mip & ~mask) | (value & mask);
109 
110     if (env->mip) {
111         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
112     } else {
113         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
114     }
115 
116     if (locked) {
117         qemu_mutex_unlock_iothread();
118     }
119 
120     return old;
121 }
122 
123 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
124 {
125     if (newpriv > PRV_M) {
126         g_assert_not_reached();
127     }
128     if (newpriv == PRV_H) {
129         newpriv = PRV_U;
130     }
131     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
132     env->priv = newpriv;
133 
134     /*
135      * Clear the load reservation - otherwise a reservation placed in one
136      * context/process can be used by another, resulting in an SC succeeding
137      * incorrectly. Version 2.2 of the ISA specification explicitly requires
138      * this behaviour, while later revisions say that the kernel "should" use
139      * an SC instruction to force the yielding of a load reservation on a
140      * preemptive context switch. As a result, do both.
141      */
142     env->load_res = -1;
143 }
144 
145 /* get_physical_address - get the physical address for this virtual address
146  *
147  * Do a page table walk to obtain the physical address corresponding to a
148  * virtual address. Returns 0 if the translation was successful
149  *
150  * Adapted from Spike's mmu_t::translate and mmu_t::walk
151  *
152  */
153 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
154                                 int *prot, target_ulong addr,
155                                 int access_type, int mmu_idx)
156 {
157     /* NOTE: the env->pc value visible here will not be
158      * correct, but the value visible to the exception handler
159      * (riscv_cpu_do_interrupt) is correct */
160     MemTxResult res;
161     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
162     int mode = mmu_idx;
163 
164     if (mode == PRV_M && access_type != MMU_INST_FETCH) {
165         if (get_field(env->mstatus, MSTATUS_MPRV)) {
166             mode = get_field(env->mstatus, MSTATUS_MPP);
167         }
168     }
169 
170     if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
171         *physical = addr;
172         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
173         return TRANSLATE_SUCCESS;
174     }
175 
176     *prot = 0;
177 
178     hwaddr base;
179     int levels, ptidxbits, ptesize, vm, sum;
180     int mxr = get_field(env->mstatus, MSTATUS_MXR);
181 
182     if (env->priv_ver >= PRIV_VERSION_1_10_0) {
183         base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
184         sum = get_field(env->mstatus, MSTATUS_SUM);
185         vm = get_field(env->satp, SATP_MODE);
186         switch (vm) {
187         case VM_1_10_SV32:
188           levels = 2; ptidxbits = 10; ptesize = 4; break;
189         case VM_1_10_SV39:
190           levels = 3; ptidxbits = 9; ptesize = 8; break;
191         case VM_1_10_SV48:
192           levels = 4; ptidxbits = 9; ptesize = 8; break;
193         case VM_1_10_SV57:
194           levels = 5; ptidxbits = 9; ptesize = 8; break;
195         case VM_1_10_MBARE:
196             *physical = addr;
197             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
198             return TRANSLATE_SUCCESS;
199         default:
200           g_assert_not_reached();
201         }
202     } else {
203         base = (hwaddr)(env->sptbr) << PGSHIFT;
204         sum = !get_field(env->mstatus, MSTATUS_PUM);
205         vm = get_field(env->mstatus, MSTATUS_VM);
206         switch (vm) {
207         case VM_1_09_SV32:
208           levels = 2; ptidxbits = 10; ptesize = 4; break;
209         case VM_1_09_SV39:
210           levels = 3; ptidxbits = 9; ptesize = 8; break;
211         case VM_1_09_SV48:
212           levels = 4; ptidxbits = 9; ptesize = 8; break;
213         case VM_1_09_MBARE:
214             *physical = addr;
215             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
216             return TRANSLATE_SUCCESS;
217         default:
218           g_assert_not_reached();
219         }
220     }
221 
222     CPUState *cs = env_cpu(env);
223     int va_bits = PGSHIFT + levels * ptidxbits;
224     target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
225     target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
226     if (masked_msbs != 0 && masked_msbs != mask) {
227         return TRANSLATE_FAIL;
228     }
229 
230     int ptshift = (levels - 1) * ptidxbits;
231     int i;
232 
233 #if !TCG_OVERSIZED_GUEST
234 restart:
235 #endif
236     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
237         target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
238                            ((1 << ptidxbits) - 1);
239 
240         /* check that physical address of PTE is legal */
241         hwaddr pte_addr = base + idx * ptesize;
242 
243         if (riscv_feature(env, RISCV_FEATURE_PMP) &&
244             !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
245             1 << MMU_DATA_LOAD, PRV_S)) {
246             return TRANSLATE_PMP_FAIL;
247         }
248 
249 #if defined(TARGET_RISCV32)
250         target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
251 #elif defined(TARGET_RISCV64)
252         target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
253 #endif
254         if (res != MEMTX_OK) {
255             return TRANSLATE_FAIL;
256         }
257 
258         hwaddr ppn = pte >> PTE_PPN_SHIFT;
259 
260         if (!(pte & PTE_V)) {
261             /* Invalid PTE */
262             return TRANSLATE_FAIL;
263         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
264             /* Inner PTE, continue walking */
265             base = ppn << PGSHIFT;
266         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
267             /* Reserved leaf PTE flags: PTE_W */
268             return TRANSLATE_FAIL;
269         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
270             /* Reserved leaf PTE flags: PTE_W + PTE_X */
271             return TRANSLATE_FAIL;
272         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
273                    (!sum || access_type == MMU_INST_FETCH))) {
274             /* User PTE flags when not U mode and mstatus.SUM is not set,
275                or the access type is an instruction fetch */
276             return TRANSLATE_FAIL;
277         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
278             /* Supervisor PTE flags when not S mode */
279             return TRANSLATE_FAIL;
280         } else if (ppn & ((1ULL << ptshift) - 1)) {
281             /* Misaligned PPN */
282             return TRANSLATE_FAIL;
283         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
284                    ((pte & PTE_X) && mxr))) {
285             /* Read access check failed */
286             return TRANSLATE_FAIL;
287         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
288             /* Write access check failed */
289             return TRANSLATE_FAIL;
290         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
291             /* Fetch access check failed */
292             return TRANSLATE_FAIL;
293         } else {
294             /* if necessary, set accessed and dirty bits. */
295             target_ulong updated_pte = pte | PTE_A |
296                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
297 
298             /* Page table updates need to be atomic with MTTCG enabled */
299             if (updated_pte != pte) {
300                 /*
301                  * - if accessed or dirty bits need updating, and the PTE is
302                  *   in RAM, then we do so atomically with a compare and swap.
303                  * - if the PTE is in IO space or ROM, then it can't be updated
304                  *   and we return TRANSLATE_FAIL.
305                  * - if the PTE changed by the time we went to update it, then
306                  *   it is no longer valid and we must re-walk the page table.
307                  */
308                 MemoryRegion *mr;
309                 hwaddr l = sizeof(target_ulong), addr1;
310                 mr = address_space_translate(cs->as, pte_addr,
311                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
312                 if (memory_region_is_ram(mr)) {
313                     target_ulong *pte_pa =
314                         qemu_map_ram_ptr(mr->ram_block, addr1);
315 #if TCG_OVERSIZED_GUEST
316                     /* MTTCG is not enabled on oversized TCG guests so
317                      * page table updates do not need to be atomic */
318                     *pte_pa = pte = updated_pte;
319 #else
320                     target_ulong old_pte =
321                         atomic_cmpxchg(pte_pa, pte, updated_pte);
322                     if (old_pte != pte) {
323                         goto restart;
324                     } else {
325                         pte = updated_pte;
326                     }
327 #endif
328                 } else {
329                     /* misconfigured PTE in ROM (AD bits are not preset) or
330                      * PTE is in IO space and can't be updated atomically */
331                     return TRANSLATE_FAIL;
332                 }
333             }
334 
335             /* for superpage mappings, make a fake leaf PTE for the TLB's
336                benefit. */
337             target_ulong vpn = addr >> PGSHIFT;
338             *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
339 
340             /* set permissions on the TLB entry */
341             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
342                 *prot |= PAGE_READ;
343             }
344             if ((pte & PTE_X)) {
345                 *prot |= PAGE_EXEC;
346             }
347             /* add write permission on stores or if the page is already dirty,
348                so that we TLB miss on later writes to update the dirty bit */
349             if ((pte & PTE_W) &&
350                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
351                 *prot |= PAGE_WRITE;
352             }
353             return TRANSLATE_SUCCESS;
354         }
355     }
356     return TRANSLATE_FAIL;
357 }
358 
359 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
360                                 MMUAccessType access_type, bool pmp_violation)
361 {
362     CPUState *cs = env_cpu(env);
363     int page_fault_exceptions =
364         (env->priv_ver >= PRIV_VERSION_1_10_0) &&
365         get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
366         !pmp_violation;
367     switch (access_type) {
368     case MMU_INST_FETCH:
369         cs->exception_index = page_fault_exceptions ?
370             RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
371         break;
372     case MMU_DATA_LOAD:
373         cs->exception_index = page_fault_exceptions ?
374             RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
375         break;
376     case MMU_DATA_STORE:
377         cs->exception_index = page_fault_exceptions ?
378             RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
379         break;
380     default:
381         g_assert_not_reached();
382     }
383     env->badaddr = address;
384 }
385 
386 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
387 {
388     RISCVCPU *cpu = RISCV_CPU(cs);
389     hwaddr phys_addr;
390     int prot;
391     int mmu_idx = cpu_mmu_index(&cpu->env, false);
392 
393     if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
394         return -1;
395     }
396     return phys_addr;
397 }
398 
399 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
400                                      vaddr addr, unsigned size,
401                                      MMUAccessType access_type,
402                                      int mmu_idx, MemTxAttrs attrs,
403                                      MemTxResult response, uintptr_t retaddr)
404 {
405     RISCVCPU *cpu = RISCV_CPU(cs);
406     CPURISCVState *env = &cpu->env;
407 
408     if (access_type == MMU_DATA_STORE) {
409         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
410     } else {
411         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
412     }
413 
414     env->badaddr = addr;
415     riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
416 }
417 
418 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
419                                    MMUAccessType access_type, int mmu_idx,
420                                    uintptr_t retaddr)
421 {
422     RISCVCPU *cpu = RISCV_CPU(cs);
423     CPURISCVState *env = &cpu->env;
424     switch (access_type) {
425     case MMU_INST_FETCH:
426         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
427         break;
428     case MMU_DATA_LOAD:
429         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
430         break;
431     case MMU_DATA_STORE:
432         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
433         break;
434     default:
435         g_assert_not_reached();
436     }
437     env->badaddr = addr;
438     riscv_raise_exception(env, cs->exception_index, retaddr);
439 }
440 #endif
441 
442 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
443                         MMUAccessType access_type, int mmu_idx,
444                         bool probe, uintptr_t retaddr)
445 {
446     RISCVCPU *cpu = RISCV_CPU(cs);
447     CPURISCVState *env = &cpu->env;
448 #ifndef CONFIG_USER_ONLY
449     hwaddr pa = 0;
450     int prot;
451     bool pmp_violation = false;
452     int ret = TRANSLATE_FAIL;
453     int mode = mmu_idx;
454 
455     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
456                   __func__, address, access_type, mmu_idx);
457 
458     ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx);
459 
460     if (mode == PRV_M && access_type != MMU_INST_FETCH) {
461         if (get_field(env->mstatus, MSTATUS_MPRV)) {
462             mode = get_field(env->mstatus, MSTATUS_MPP);
463         }
464     }
465 
466     qemu_log_mask(CPU_LOG_MMU,
467                   "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
468                   " prot %d\n", __func__, address, ret, pa, prot);
469 
470     if (riscv_feature(env, RISCV_FEATURE_PMP) &&
471         (ret == TRANSLATE_SUCCESS) &&
472         !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
473         ret = TRANSLATE_PMP_FAIL;
474     }
475     if (ret == TRANSLATE_PMP_FAIL) {
476         pmp_violation = true;
477     }
478     if (ret == TRANSLATE_SUCCESS) {
479         tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
480                      prot, mmu_idx, TARGET_PAGE_SIZE);
481         return true;
482     } else if (probe) {
483         return false;
484     } else {
485         raise_mmu_exception(env, address, access_type, pmp_violation);
486         riscv_raise_exception(env, cs->exception_index, retaddr);
487     }
488 #else
489     switch (access_type) {
490     case MMU_INST_FETCH:
491         cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
492         break;
493     case MMU_DATA_LOAD:
494         cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
495         break;
496     case MMU_DATA_STORE:
497         cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
498         break;
499     default:
500         g_assert_not_reached();
501     }
502     env->badaddr = address;
503     cpu_loop_exit_restore(cs, retaddr);
504 #endif
505 }
506 
507 /*
508  * Handle Traps
509  *
510  * Adapted from Spike's processor_t::take_trap.
511  *
512  */
513 void riscv_cpu_do_interrupt(CPUState *cs)
514 {
515 #if !defined(CONFIG_USER_ONLY)
516 
517     RISCVCPU *cpu = RISCV_CPU(cs);
518     CPURISCVState *env = &cpu->env;
519 
520     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
521      * so we mask off the MSB and separate into trap type and cause.
522      */
523     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
524     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
525     target_ulong deleg = async ? env->mideleg : env->medeleg;
526     target_ulong tval = 0;
527 
528     static const int ecall_cause_map[] = {
529         [PRV_U] = RISCV_EXCP_U_ECALL,
530         [PRV_S] = RISCV_EXCP_S_ECALL,
531         [PRV_H] = RISCV_EXCP_H_ECALL,
532         [PRV_M] = RISCV_EXCP_M_ECALL
533     };
534 
535     if (!async) {
536         /* set tval to badaddr for traps with address information */
537         switch (cause) {
538         case RISCV_EXCP_INST_ADDR_MIS:
539         case RISCV_EXCP_INST_ACCESS_FAULT:
540         case RISCV_EXCP_LOAD_ADDR_MIS:
541         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
542         case RISCV_EXCP_LOAD_ACCESS_FAULT:
543         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
544         case RISCV_EXCP_INST_PAGE_FAULT:
545         case RISCV_EXCP_LOAD_PAGE_FAULT:
546         case RISCV_EXCP_STORE_PAGE_FAULT:
547             tval = env->badaddr;
548             break;
549         default:
550             break;
551         }
552         /* ecall is dispatched as one cause so translate based on mode */
553         if (cause == RISCV_EXCP_U_ECALL) {
554             assert(env->priv <= 3);
555             cause = ecall_cause_map[env->priv];
556         }
557     }
558 
559     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 16 ?
560         (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
561 
562     if (env->priv <= PRV_S &&
563             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
564         /* handle the trap in S-mode */
565         target_ulong s = env->mstatus;
566         s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
567             get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
568         s = set_field(s, MSTATUS_SPP, env->priv);
569         s = set_field(s, MSTATUS_SIE, 0);
570         env->mstatus = s;
571         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
572         env->sepc = env->pc;
573         env->sbadaddr = tval;
574         env->pc = (env->stvec >> 2 << 2) +
575             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
576         riscv_cpu_set_mode(env, PRV_S);
577     } else {
578         /* handle the trap in M-mode */
579         target_ulong s = env->mstatus;
580         s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
581             get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
582         s = set_field(s, MSTATUS_MPP, env->priv);
583         s = set_field(s, MSTATUS_MIE, 0);
584         env->mstatus = s;
585         env->mcause = cause | ~(((target_ulong)-1) >> async);
586         env->mepc = env->pc;
587         env->mbadaddr = tval;
588         env->pc = (env->mtvec >> 2 << 2) +
589             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
590         riscv_cpu_set_mode(env, PRV_M);
591     }
592 
593     /* NOTE: it is not necessary to yield load reservations here. It is only
594      * necessary for an SC from "another hart" to cause a load reservation
595      * to be yielded. Refer to the memory consistency model section of the
596      * RISC-V ISA Specification.
597      */
598 
599 #endif
600     cs->exception_index = EXCP_NONE; /* mark handled to qemu */
601 }
602